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1 The Proposed Simple Regression Model of
Escapement on Flow

The proposed simple regression model of SJR escapement on flow has a number of weaknesses. The
following four subsections describe weaknesses our analyses have uncovered.

1.1 Evidence Against the Relationship Inferred from the Model Fit

To assess the quality and efficacy of a simple linear regression model of escapement vs. flow, we
first performed statistical calculations similar to the ones done by F&G and FISHBIO on the
available escapement and flow data from the period 1953-2009. Figures 1-3 show the data, model
fit, residuals, and quantile-quantile (Q-Q) plots. Rudimentary straight-line modeling of this kind
has been proposed as a useful description of a relationship governing these variables.

If there were such a simple relationship between these variables, that relationship should appear
consistently when one partitions the 57 data points into subsets. We have examined two natural
ways of doing this, breaking up the data into groups according to time periods and according to
magnitudes of flow. In both cases, the results were inconsistent, calling into question the validity
of the proposed simple relationship.

Figure 4 shows the same data and straight-line fit in black as in the first plot, Figure 1, but
here the 1999-2009 data are shown in red, along with a red line fitted to those data by the same
linear regression method. The 1999-2009 data actually has a slight negative correlation between
escapement and flow, and hence the red line has a negative slope. Since these data for the last
11 years constitute the most recent data, it would seem that they provide an important check
on the potential value of the proposed linear model in predicting a relationship between flow and
escapement in future years. It has been brought to our attention that this 1999-2009 period is in
fact one in which a new program of water resource management has been in effect.

Figure 5 shows the data and fitted lines when the flow range is broken into 1, 2, 3, or 4 bins of
equal sizes. The fitted lines (and hence, the correlation estimates) vary from bin to bin, indicating
that there is not a linear relationship that holds over the entire range of flow values. Note that one of
the fits in the fourth row even has negative slope. These simple data summaries contradict a major
conclusion of Newman’s (2008, p. 75) hierarchical Bayesian model, which concluded that there was
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a strong positive correlation between escapement and flow over all flow ranges. All of these fits
suffer from low R2 values: The ten plots in Figure 5 have R2 values in the range [.0043, .41].

Additional doubts about the validity and value of the linear-fit model arose when we noticed
that a small number of data points overly influence and inflate the linear relationship between
escapement and flow. It is well known that simple linear regression is highly non-robust and
can easily be “fooled” by a small number of data points. (See also the discussion of outliers in
Section 1.2). When a small number of data points are overly influential, one would expect to see
inconsistencies between linear fits made using random subsets of the data points, since the highly
influential points will affect some fits and not others. This behavior is observed in Figure 6, where
the data were divided into four subsets of equal size at random; each row represents an independent
realization of this process. Note that the model fits vary widely and a negative correlation is even
found in one subset in the first and fourth realizations.

1.2 Violations of Model Assumptions

Returning to Figures 1-3, there are several fundamental assumptions of the regression model that
seem to be violated by the data.

The model assumes that the observations of the y variable, here escapement, is normally dis-
tributed. When this holds, the shape of points in the scatterplot is roughly “football” shaped
along the fit line, which is not evident in Figure 1. Another standard way to assess this normality
assumption is to examine the Q-Q plot of the residuals, which compares their distribution to the
assumed normal distribution. If normality holds, then the points in the Q-Q plot should lie close
to the dotted line in the third plot. The fact that they are not close in Figure 3 is evidence of
non-normality.

Another assumption of the model is that observations of the y variable are subject to random
variations whose scale is constant and which average out to zero. When this holds, the residual plot
should appear as roughly a uniform cloud of points, symmetric around the horizontal dotted line.
That is not the case in Figure 2, which on the contrary indicates both a bias (non-zero average) and
a non-constant scale of variations. Moreover, the numbered points in Figures 2 and 3 are outliers –
points that represent deviations from the linear model that are too large to be consistent with that
model.

Finally, we note that the model fit in Figure 1 has an R2 value of .27. R2, the coefficient of
determination, is the square of the correlation coefficient and thus takes values between 0 and 1. R2

is a measure of goodness of fit of the model and, more specifically, is the fraction of the variation
in the y data that is considered to be “explained by the linear fit” on the x data. A value of
.27 is generally considered quite low and indicates that this proposed model does not capture a
meaningful relationship between the two variables.

1.3 Lack of Predictive Power

As would be expected from its poor fit of the available data, particularly in the most recent time
period, the linear model seems to have very little predictive power. A standard way to assess the
usefulness of a fitted model is to calculate and examine so-called “prediction intervals” computed
from it. These are confidence intervals for future observations, calculated so that they should
be correct at some confidence level. Table 1 contains prediction intervals calculated at the 95%
confidence level from the linear model fit to the pre-1999 data and compared with the actual 1999-
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2009 data. These prediction intervals are extremely wide – too wide to have any useful predictive
power. For example, with the exception of one year, the upper prediction for each year is larger
than any escapement measurement made in the entire 1952-2009 data set. (The largest escapement
measurement was 80,000 while the 2004 upper prediction was 79,324). In spite of their extreme
width, the prediction intervals for two years – 2007 and 2008 – do not in fact contain the actual
escapements observed in those years. Figure 7 contains a graphical representation of the prediction
intervals and the actual 1999-2009 observations.

Table 1: Predictions and 95% confidence prediction intervals for 1999-2009. Values in bold are
violated by observed escapements.

Vernalis flow (avg. over Predicted Lower Upper
Year

daily values 2.5 yrs prior)
Escapement

Escapement Prediction Prediction
2007 10597 1241 20382 1961 211882
2009 2829 1323 8244 811 83776
2008 25545 2229 37252 3424 405258
2006 2476 4169 7524 740 76522
2005 2707 6376 7999 787 81304
2004 2611 10319 7802 767 79324
2003 3185 11144 8941 880 90837
1999 4575 17347 11460 1126 116672
2002 4811 25666 11862 1164 120839
2001 5364 26659 12781 1253 130412
2000 18665 39447 30043 2814 320704

1.4 Inferential Problems

Because linear regression analysis is so widely used, a number of mistakes and fallacies that occur
frequently in their interpretation are well known. Two that are relevant here are the Ecological
Fallacy and the Correlation/Causation Fallacy.

The Ecological Fallacy refers to making inferences at the individual level based on regression
analysis performed at a subgroup level. This typically occurs when data are averaged or combined
over a subgroup before fitting a regression model. This can lead to fallacious conclusions because
averaging reduces variation and therefore can falsely inflate the strength of linear relationship, or
make one appear when in fact there is a more complex relationship– or no relationship at all.
The current proposed model is in danger of this because the flow data are averaged over two
months before performing the regression fit, a very crude form of data reduction in this setting that
suppresses a large source of natural variability. The proposers of this model have the responsibility
to show that the variation lost in averaging does not affect the inferred relationship.

Another relevant fallacy is the Correlation/Causation Fallacy, in which an estimated correlation
in a regression analysis is mistaken for causation– i.e. that the variables have a genuine cause-and-
effect relationship. Although a robust model fit can indicate a possibility of causation, that is not
the case for the sort of linear model proposed between flow and escapement, which is highly non-
robust in light of the inconsistencies cited in Section 1.1 and the violations of model assumptions
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cited in Section 1.2. The proposers have not shown that the estimated correlation corresponds with
a causal relationship.

2 Environmental data

Figures 8-13 contain boxplots of the available environmental data, before any averaging occurs.
Figure 14 contains scatterplots of this data, on the log scale, after being averaged over the period
April 15 - June 15 for each year of available data. In these scatterplots the escapement data were
paired with the corresponding variable from two years prior. The temperature data in Figure 14
is hourly, back to 1999, and was obtained from the California Department of Water Resources
webpage.

Other than Vernalis flow, there is an overall scarcity of environmental data available, and what
exists is further compressed by the yearly averaging. We suspect that this is one reason for the
focus on Vernalis flow by F&G as an “explanatory” variable for escapement. For example, it is clear
that water temperature may have a large affect on escapement. However, hourly water temperature
data is available only back to 1999. After averaging and matching up with escapement data two
years later, this results in only nine data points corresponding with the 2001-2009 escapement data.
This is a small amount of data to develop any sort of meaningful model. Note also that even if
other environmental variables had more data available, any model that includes temperature would
be restricted to using only these nine years.

We fit a multiple regression model of y = SJR escapement (on the logarithmic scale) on the
variables

x1 = Vernalis temperature
x2 = Mossdale dissolved oxygen
x3 = Mossdale temperature
x4 = CVP exports
x5 = SWP exports,

all on the logarithmic scale, depicted in Figure 14. Quadratic terms were included for the Vernalis
and Mossdale temperature variables since it is expected that extreme temperatures, both low and
high, tend to reduce escapement. The least squares model fit is given by

y = −14092.5 + 777.7x1 − 113.0x2
1 + 14.2x2 + 5909.3x3 − 681.9x2

3 − 4.2x4 + 4.6x5,

and has an R2 value of .6. Though the small number of data points likely causes this R2 value to be
somewhat inflated, this result suggests that one might be able to model escapement in a statistically
useful way using multiple variables in addition to flow.

3 F&G’s “Plug and Play” Model Components
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Figure 1: Data and linear model fit for flow versus escapement data, 1953-2009, on the logarithmic
scale.
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Figure 2: Residuals for flow versus escapement data, 1953-2009, on the logarithmic scale.
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Figure 3: Q-Q plot for flow versus escapement data, 1953-2009, on the logarithmic scale.
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Figure 4: Data and linear model fits for 1953-2009 and 1999-2009 data.
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Figure 5: Data and linear model fits for 1953-2009 data when flow range is divided into 1-4 equally
sized bins (rows 1-4). The R2 values for these ten fits are all low, in the range [.0043, .41].
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Figure 6: Data and linear model fits for 1953 - 2009 data divided into four subsets at random. Each
row is an independent realization.
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Figure 7: 95% confidence prediction intervals from 1952-1998 model for the 1999-2009 data.
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Figure 8: Boxplot of SJR escapement data, 1952-2009.
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Figure 10: Boxplot of daily temperature data.
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Figure 11: Boxplot of hourly Vernalis temperature data.

15



Mossdale.Turbidity Jersey.Point.Turbidity Chipps.Island.Turbidity

0
1
0
0

2
0
0

3
0
0

Turbidity

Figure 12: Boxplot of turbidity data.
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Figure 13: Boxplots of exports data.
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Figure 14: Scatterplots of SJR escapement and April 15 - June 15 averages for other environmental
data, on the log scale.
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