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Executive Summary 
 
1. Summary 
 
The central all-encompassing question put to the panel is whether the CALFED program has 
adopted an appropriate approach to modeling the CVP-SWP-Central Valley system. Is the 
general CALSIM modeling approach appropriate for predicting the performance of the general 
facilities and for use in allocation planning, assessing water supply reliabilities and for carrying 
out operational studies?  We believe the use of an optimization engine for simulating the 
hydrology and for making allocation decisions is an appropriate approach and is in fact the 
approach many serious efforts of this kind are using.  It is a substantial improvement of the 
previous modeling approaches and provides a basis for consensus among federal and state 
interests. The modeling approach addresses many of the complexities of the CVP-SWP system 
and its water management decisions.   
 
There exists a common tension between those who wish for greater detail and those who want 
less detail from the model.  This argues for a more comprehensive, modular and flexible 
approach than is now available.  In this report we suggest some ways this might be 
accomplished in the future.  We also propose some management procedures that could be 
considered to improve model and model application quality control and documentation.    The 
openness and availability of the model is admirable and very important given the numerous 
stakeholders who have interests in the management and allocation of water in the state.  To 
increase the public�s confidence in the many components and features of CALSIM II, we 
suggest that these components of CALSIM be subjected to careful technical peer review by 
appropriate experts and stakeholders. 
 
  
2. Background 
  
The California Department of Water Resources (DWR) and the U.S. Bureau of Reclamation 
(USBR) have developed a computer model called CALSIM II that simulates much of the water 
resources infrastructure in the Central Valley of California and the Delta region. This 
infrastructure is referred to as the CVP-SWP system.  In particular CALSIM II provides 
quantitative hydrologic-based information to those responsible for planning, managing and 
operating the State Water Project (SWP) and the federal Central Valley Project (CVP).  As the 
official model of those projects, CALSIM II is the default system model for any inter-regional 
or statewide analysis of water in the Central Valley of California.     
 
CALSIM II has a central role in the analysis of many CVP-SWP and related issues, some of 
which require capabilities beyond those included in the model.  California needs a large-scale 
relatively versatile inter-regional operations planning model and CALSIM II currently serves 
that purpose reasonably well.  As the primary State and Federal-sponsored model available for 
water operations and planning, CALSIM II is critical to the study of many technical and policy 
issues related to water supply reliability, environmental management and performance, water 
demands, economics, hydrology and climate, and regulatory compliance. 
 



  

   3

CALSIM II is a particular application of the California Water Resources Simulation Model 
called CALSIM.  It uses a mixed integer linear programming model solver to route water 
through a network over time.  Currently it uses monthly time steps.  Policies and priorities are 
implemented through the use of user-defined weights applied to the flows in the system 
(represented by arcs of the network). Simulation cycles at different temporal scales allow for 
successive implementation of constraints. The model can simulate the operation of relatively 
complex environmental water accounts and state and federal environmental regulations.  In our 
judgment CALSIM II represents a very impressive modeling effort on the part of all those 
involved with its development and application.    
 
The CALFED Science Program commissioned this external review panel (Appendix D) to 1) 
provide an independent analysis and evaluation of the strengths and weaknesses of CALSIM 
and CALSIM II, and 2) to offer suggestions on the appropriate uses of these modeling tools, on 
ways their use might complement or be complemented by other models, and on further 
development, quality assurance, and use in major water systems operations and planning in 
California.   
 
The panel received background documents (Appendix B), including a survey by the University 
of California at Davis of stakeholder responses to questions about CALSIM II.  We 
subsequently met for one and a half days in Sacramento for discussions and presentations 
(Appendix A) by CALFED, DWR and USBR staff.  The discussions concluded with a 
summary presentation by the panel outlining our tentative conclusions.    
 
The information we received and the shortness of our meetings with modeling staff precluded a 
thorough technical analysis of CALSIM II.   We believe such a technical review should be 
carried out.  Only then will users of CALSIM II have some assurance as to the appropriateness 
of its assumptions and to the quality (accuracy) of its results.   By necessity our review is more 
strategic.  It offers some suggestions for establishing a more complete technical peer review, 
for managing the CALSIM II applications and for ensuring greater quality control over the 
model and its input data, and for increasing the quality of the model, the precision of its results, 
and their documentation.    
 
In this review we were asked to address the following questions: 
 

1. Is CALSIM a reasonable modeling approach for current and proposed applications and 
problems? 

2. Do other modeling approaches show similar or greater promise and flexibility for such 
problems?  If so, how? 

3. What are the major comparative strengths and weaknesses of the current CALSIM 
approach and alternative approaches? 

4. What are major scientific, technical, and institutional limitations, uncertainties, and 
impediments for current and proposed applications of CALSIM? 

5. What model, software, and data developments, special studies or tests would be 
beneficial to improve CALSIM for current and proposed uses? 

6. How might CALSIM development and applications be managed and overseen to 
improve the quality assurance of model results for current and proposed applications? 
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7. What are your suggestions for long-term use, development, or replacement of the 
current suite of models and data available for the current and proposed uses of 
CALSIM? 

 
The following sections of this summary present our responses to these questions.  The main 
parts of this report and its appendices provide additional detail.    
 
 
3.  CALSIM Modeling Approach 
 
CALSIM II is a simulation model developed as a joint venture between the California 
Department of Water Resources (DWR) and the U.S. Bureau of Reclamation (USBR) to (i) 
provide a significant modernization and upgrading of the DWRSIM and PROSIM models 
developed and used by these organizations, (ii) develop a comprehensive modeling system that 
simultaneously addresses the current and future needs of both the SWP and CVP systems; and 
(iii) develop a generalized modeling system that could be applied in any river basin system, in 
contrast with the previous models that were less generalized and more specifically designed for 
the existing SWP and CVP systems.  In this respect, CALSIM II represents a state-of-the-art 
modeling system that is similar in general concept, while differing in specific details, to other 
data-driven river basin modeling systems such as ARSP, MODSIM, OASIS, REALM, 
RiverWare and WEAP.   
 
CALSIM uses linear programming to solve sets of equations that simulate water movement 
through the CVP-SWP system in accordance with various objectives and constraints. This is a 
modeling approach which has been used successful in California (Johnson et al., 1991).  In a 
complex system such as that being modeled, it is essential to have some mathematical 
representation of system flows that reflects all of the interconnections and constraints. Use of 
an optimization algorithm allows good decisions to be identified from among all possible and 
feasible decisions.  To the extent this simulates what actually occurs, it is a good modeling 
approach.  To the extent it optimizes when in reality no such optimization is implemented, it 
has the potential to produce inaccurate and overly optimistic outputs.   
 
Most successful applications of optimization that attempt to simulate the behavior of a system 
have calibrated their objective functions (i.e., set the weights that prioritize flows over time and 
space) so that the model results correspond to what actually happens or would happen under a 
particular hydrologic and demand scenario.  In these cases the model�s decisions correspond to 
those the operators would make, as often prescribed by rules that have been worked out in a 
legal/political process.  It does not appear that such a calibration of the objective function 
weights in CALSIM has yet been completed.  
 
4.  Other Modeling Approaches 
 
There are two aspects of modeling, the model structure and algorithms used, and the model 
software.  The use of linear optimization algorithms to solve simultaneous equations for 
simulating hydrology is a common way of avoiding a typically long list of procedural rules for 
simulating regional water systems. Such sets of procedures can be difficult to generate for 
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complex systems, and very different and new rule sets may be needed if structural or 
significant policy changes are to be investigated. In addition the performance of the system 
when simulated will be less than that which can be achieved in practice if a good set of rules is 
not provided. Optimization models are generally easier to reformulate when system changes 
are to be investigated.  However unless the optimization is calibrated in such a way as to 
actually resemble what takes place in practice it can produce an optimistic description of 
system performance. This is particularly true if the optimization model is allowed to have 
perfect foresight of future events that in practice would not be available to system operators.     
 
Large simulation models using optimization and procedural rules both need to have internal 
checks to ensure to the extent possible that errors in mass balances, for example, do not occur 
due to errors made when the model is being defined or created.   Such internal checking is not 
apparent to us in our admittedly brief review of CALSIM II.   Nor were calibration procedures 
well defined.     
 
One obvious limitation of using linear optimization procedures is its inability to model 
accurately and efficiently some of the non-linear hydrologic and decision processes that occur 
in systems as complex as the CVP-SWP.  One approach to addressing this issue of model 
accuracy, and possibly for decreasing the computational time as well, is to link linear 
optimization models to non-linear simulation models in a way that permits the simulation to 
represent the hydrology in any spatial and temporal detail desired.  The optimization is used to 
determine what the decisions should be at every site where a water allocation, reservoir release, 
or other management decisions must be made. The time steps for simulation could be daily, or 
weekly or longer, depending on the needs of the user, but would likely be of shorter durations 
than the optimization time steps. After a predetermined number of simulation time steps, the 
optimization model would be run.   The initial state of the optimization should be set at the 
beginning of each optimization time step.  The optimization component should include 
multiple future time periods, with imperfect hydrologic and demand forecasts, but once solved 
only the current period�s solutions are implemented � i.e., these decision variable values are 
sent to the simulation component.  The decisions indicated for future periods are ignored.  
When appropriate, the initial state of the multi-period optimization model is updated and the 
model is again solved.  And so on.    Such a modeling approach may prove to be both more 
realistic, more accurate, and require less time, once developed.   We believe such an approach 
might be worth considering for future development.   
 
CALSIM II currently consists of a combination of software modules developed in several 
languages, including FORTRAN, Java and C.  Several of the modules require proprietary 
software packages in order to run CALSIM II (Lahey FORTRAN and XA Solver).  DWR and 
USBR staff have said that these components are being replaced by public domain software that 
can be obtained free of charge.   We agree with this decision.  Very good public domain 
software packages of optimization, visualization, file management, and data base support are 
currently available, and new ones will continually be produced.  Periodic updates should be 
anticipated as part of the business of maintaining the modeling system. 
 
Significant thought should be given to the sustainability of the CALSIM II software.  How will 
future programmers be able to maintain this software?  How will future software developments 
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be incorporated into the system?  Will the solver currently being developed by LBNL be 
adequate in terms of accuracy and computation speed?  Will other solvers need to be tested?  
Can the system accommodate these future developments without major modifications?  What 
reasonable modifications could be made now in anticipate of future developments? 
 
5.  Comparative Strengths and Weaknesses 
 
Many of the stakeholder perceived strengths and weaknesses of CALSIM and CALSIM II are 
very well identified in the survey report from the University of California at Davis (Ferreira, et 
al. 2003).  Our background materials and briefings covered various strengths and weaknesses, 
but without first hand experience, all we can do here is to summarize those that we have heard 
expressed by others.  
 
Here we provide a brief summary list.   
 
5.1   Some Prominent Strengths 
 
The strengths of CALSIM II are many.  Most are expressed in comparison to previous 
DWRSIM and PROSIM models DWR and USBR were using.   Some of these strengths 
include: 
 

•  Consensus model.  CALSIM II is the official joint modeling environment of the State 
DWR and USBR.  This includes a common schematic, hydrologic representation of the 
system, common set of facility capacities, and common representation of system 
operating policies.  This helps all parties improve representations, rather than compete 
over representations.  

 
•  Common effort.  The joint development of CALSIM II by USBR and DWR has 

provided more focused and effective use of resources and expertise than previous 
development of agency-specific models.  CALSIM II development has also involved 
other agencies and consulting expertise more than pervious models of this system. 

 
•  Data-driven model.  CALSIM II is a rather data-driven simulation model with an 

optimization engine.  This modeling approach provides: 
a. greater flexibility than its predecessors and traditional water resources 

simulation approaches. 
b. a promising framework for improving transparency, data, and model 

documentation, compared to other approaches. 
 

•  Public domain.  The model and data are substantially in the public domain, facilitating 
transparency and adaptability for California�s decentralized water system.   

 
•  Steady improvements.  Data improvements have been steadily pursued following the 

adoption of CALSIM II, although deficiencies remain. 
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•  Improved Delta water quality representation.  Although problems appear to remain, the 
model developers have made substantial gains in representing Delta water quality 
operating criteria and performance.   

 
•  Better groundwater representation.  Efforts to better include groundwater and non-

CVP-SWP project operations merit continuation and expansion. 
 

•  Benchmark Studies.  The development of documented benchmark studies have resulted 
in significant model improvements and aided in the development of comparative model 
applications.  Such exercises should be continued and improved. 

 
•  Long-term vision.  The vision of a more transparent and publicly available model that 

can be employed by those outside the major agencies is excellent.  This is a major 
change in direction, and achieving this vision will require adjustments over time.  
Often, these adjustments will be externally driven.  Externally-driven improvements are 
a price of success and evidence of success for an open, public, modeling policy. 

 
•   Important CALSIM II features:   

a. CALSIM II is able to simulate the operation of the complete CVP-SWP system 
in all areas that contribute flow to the Delta in monthly time-steps.  

b. CALSIM II is being applied to examine a diverse range of options including  
flood control, water conservation and supply, power generation, recreation, 
water transfers, groundwater banking, recycling, desalination, conjunctive use, 
the purchase of options and streamflow and water quality protection. 

c. CALSIM II has successfully been applied by both DWR and USBR to examine 
both structural and non-structural changes to the CVP-SWP system as well as to 
ascertain the risks involved with different potential operating scenarios and to quantify 
the impacts of proposed actions. 

d. CALSIM II can dynamically model operation of environmental water accounts. 
e. Demands may vary according to various levels of development (e.g. 2001, 

2020) and to hydrologic conditions. 
f. The regulatory environment under which the projects must operate can be 

simulated. 
g. CALSIM II can link to external modules as needed, e.g., to estimate the salinity 

at water quality stations within the Delta. 
 
 

5.2   Some prominent weaknesses 
 

As its strengths are many, so are its weaknesses. It seems worth saying, however, that no 
model can perfectly (meaning efficiently and effectively) serve all interests in a system as 
complex as the CVP-SWP.  Tradeoffs need to be made.  This can result in what some would 
call weaknesses.  Such weaknesses are often accepted to gain strengths in another ways.  
 
We heard that the CALSIM II model was too complex.  We also heard that it did not handle 
particular components of the system with sufficient detail.  And such is the dilemma of any 



  

   8

complex model, such as CALSIM II.  The model is clearly too complex, and not complex 
enough. The root of this difficulty is that when such a model is constructed, it is not clear what 
level of detail is needed, so the model must be made sufficiently complex to ensure it is 
complex enough.  And the complexity needed to address some issues will remain in the model 
when it is used to address other less complex issues, or the same issues at less complex 
locations. One approach to addressing this issue is to develop different linkable modules of 
CALSIM II having different complexities.  In this way the level of detail can be varied to be 
consistent the application or study at hand, and level of sophistication and resources available 
to the user. 
 
Other weaknesses model users would like addressed include:   
 

•  The model provides limited and inadequate coverage of non CVP or SWP water and of 
the California water system south of the Delta. 

•  The model assumes that facilities, land-use, water supply contracts and regulatory 
requirements are constant over this period, representing a fixed level of development 
rather than one that varies in response to hydrologic conditions or changes over time.  

•  Groundwater has only limited representation in CALSIM II.  
•  Groundwater resources are assumed infinite, i.e., there is no upper limit to groundwater 

pumping.    
•  The linear programming model considers only the current month, and hence CALSIM 

II operating rules are required to determine annual water allocations, to establish 
reservoir carryover storage targets, and to trigger transfers from north of Delta to south 
of Delta storage.    

•  Better quality control is needed both for the model and its current version and the input 
data.   Procedures for model calibration and verification are also needed.   Currently 
many users are not sure of the accuracy of the results.  A sensitivity and uncertainty 
prediction capability and analysis is needed.   

•  Need improved ways of altering the model�s geographic scope and resolution and its 
temporal resolution to better meet the needs of various analyses and studies. 

•  Need to improve the model�s comparative as well as absolute (or predictive) 
capabilities.   

•  CALSIM II needs better capabilities for analyzing economic, water quality, and 
groundwater issues.    

•  Need improved documentation explaining how the model works, its assumptions, its 
limitations, and its applicability to various planning and management issues.   

•  DWR and USBR have not provided a centralized source of support for CALSIM II.  
More training for CALSIM II is needed. There is a need for more people who can run 
CALSIM II.  There is a need for a well-publicized user group. A more extensive users� 
guide is needed.   

•  Improved capabilities are needed for real-time operations especially during droughts, 
gaming involving stakeholders during a simulation run, handling of evapotranspiration 
and agriculture demand changes over time, water transfers, Delta storage, carryover 
contract rights, refuge water demands and more up to date representation of Feather 
River, Stanislaus River, Upper American River, San Joaquin River and Yuba River 
operations.   
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•  Need an improved graphical user interface to facilitate input of model data, setting of 
model constraints and weights, operating the model, and displaying and post analysis of 
model results.   

•  Need to be able to change the model time period durations for improved accuracy of 
model results.   

 
 
6.   Limitations, Uncertainties, and Impediments 
 
6.1   Absolute Values or Comparative Results 
 
Modelers sometimes make a distinction between the use of a model for absolute versus 
comparative analyses.  In an absolute analysis one runs the model once to predict an outcome.  
In a comparative analysis, one runs the model twice, once as a baseline and the other with 
some specific change, in order to assess change in outcome due to the given change in model 
input configuration. The suggestion is that, while the model might not generate a highly 
reliable absolute prediction because of errors in model specification and/or estimation, 
nevertheless it might produce a reasonably reliable estimate of the relative change in outcome.  
The panel is somewhat skeptical of this notion because it relies on the assumption that the 
model errors which render an absolute forecast unreliable are sufficiently independent of, or 
orthogonal to, the change being modeled that they do not similarly affect the forecast of change 
in outcome; they mostly cancel out.  This feature of the model is something that would need to 
be documented rather than merely assumed.   
 
In our opinion CALSIM II has not yet been calibrated or validated for making absolute 
predictions values.  Yet it is apparent that there has been a distinct need by model users for 
absolute predictions.  In the absence of alternatives, users are adopting CALSIM II results as 
the best absolute prediction available and they are likely to continue to do so.  We recommend 
that model developers recognize the requirement for CALSIM II to provide absolute 
predictions.  To satisfy this new purpose, additional calibration of the model will be required to 
ensure that the output it produces is fit for this purpose. Regardless of how possible it is to 
match the model closely with observed behavior, statistics on the accuracy of the calibration 
run should be supplied to users to enable them to gauge the likely errors involved with using 
the model output. 
 
 
 
 
6.2   Sensitivity and Uncertainty Analyses  
 
Sensitivity analyses would be useful to identify which parameters and input data have major 
impacts on decisions and system performance criteria of concern.   Uncertainty analyses would 
help users of the model understand better the risks of various decisions and the confidence they 
can have in various predictions.    
 
6.3  Graphical User Interface 
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Having a graphical user interface would substantially aid those who use the model in managing 
both input and output data, and in controlling or managing model operations.   This model will 
not likely become as available to and as well understood by the public, to the extent desired by 
the model developers, until an effective menu-driven GUI has been created that can help create 
and draw from a database of system parameters and characteristics, and simulation results.    
.    
6.4   Documentation and Training 
 
When if ever is adequate documentation and training available?   Rarely, but we believe there 
is a serious need to improve the documentation as well as the training available for all those 
interested in using CALSIM II.   
 
 
7.   Options for Improving CALSIM  
 
7.1   CALSIM Model Software 
 
We encourage the developers of CALSIM to convert their present software to that which is 
publicly available and to develop a useful graphic based user interface that can facilitate the 
input, editing, and display of all the data that are input to and output from CALSIM II.  There 
are many options, some of which we have discussed with the model developers.    
 
The CALSIM package should be made more modular and capable of linking to other more 
complex models of components of the CVP-SWP system.  If the changes in code and modeling 
approach result in a quicker running model, it might be possible to link, when desired, modules 
that facilitate position analyses and other types of uncertainty analyses. A modular system 
would allow alternative representations of different components of the system. Thus different 
levels of spatial detail, or representations of the fundamental processes, would be allowed 
within the overall system representation and record of California hydrology.  This will allow 
the use of more general and streamlined models for use of preliminary investigation and 
general planning, as well as a more detailed representation of the system for final analyses and 
more detailed studies.   This would be very useful. 
 
 
 
 
7.2   Sensitivity and uncertainty analyses 
 
Both sensitivity analyses need to be performed, and procedures need to be developed to enable 
the estimation of measures of uncertainty associated with model output. Perhaps workshops 
focused on just these needs should be scheduled to better determine how best to meet these 
needs.  There are numerous procedures available that could be applied.   Appendix H contains 
some approaches for performing sensitivity and uncertainty analyses.         
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7.3  Model calibration 
 
There is a need to develop the model so that it is able to provide absolute estimates of key 
model outputs rather than limiting the use of the model to comparative studies.  One way to do 
this is to subject the model to a comprehensive calibration process where it is fine-tuned until it 
is able to reproduce the historical behavior of the system with sufficient accuracy to provide 
absolute results.  The calibration of the model should aim to test all the key outputs of model 
including water quality in the San Joaquin River and in the Delta.  It is necessary to test the 
monthly values of outputs for those outputs for which the monthly pattern is important. 
 
7.4   Other extensions and improvements 
 
•  The opportunity of improving the collection of data on the use of water (preferably broken 

down by irrigation district and water source) should be investigated. The use of 
groundwater should be included in this investigation. 

•  It would be useful to expand the geographic extent of the model so that it includes all the 
components of the linked water supply system, including both the San Joaquin and Tulare 
Lake Basins of the Central Valley.  The model should also account in some manner for 
imported supplies of water to users in southern California from the Colorado River. 

•  The linkage between surface water and groundwater would appear to be of critical 
importance and output that would enable the impact of surface water use on groundwater 
extractions would appear to be useful. 

•  Examination of the report �CALSIM II Simulation of Historical SWP/CVP Operations�, 
DWR (2003) indicates that the current formulation of CALSIM II: 
•  Overestimates water deliveries to SWP and CVP contractors, 
•  Determines carryover storage target values that differ from those the operators have 

determined in the past, and 
•  Operates the San Luis Reservoir at lower levels and fills it later in the season than 

operators have in the past. 
 
 
8.   Managing CALSIM Development and Applications 
 
The predicted impacts and other information derived from CALSIM II applied to the CVP and 
SWP can influence major investment decisions.   It is thus self evident that those who use the 
model results need to have some confidence as to their precision.  Is the science behind the 
information derived from CALSIM II been reviewed and judged correct?  Is the model 
software free from errors?  Are the assumptions made when performing the modeling the 
correct ones?  Are the model results accurately and fully reported?   In other words, just how 
much credence should decision makers place in the model output?   Users of the model results 
should be assured that they are credible and unbiased.   One way to help ensure this is to have 
the models, their associated software, and their applications under the control of some 
interagency organization that can oversee and provide quality control over model development, 
application and documentation.  They can also plan and implement needed peer reviews.   
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One possible means of facilitating the peer review processes and for maintaining control on the 
particular versions of CALSIM II and accompanying models used for CVP-SWP planning and 
management decisions is to create an interagency modeling consortium (IMC) consisting of 
DWR, USBR, and other stakeholder organization (including university) personnel if they are 
interested and want to participate.  This center would be responsible for maintaining a toolbox 
of �acceptable� models for use by the agencies and contractors.    The models placed in the 
toolbox should be peer reviewed with respect to their applicability and suitability for use in 
particular applications.  Those that are not peer reviewed should be considered for peer review.  
New models proposed for use in California should be peer reviewed with respect to their 
suitability, and for their strengths and limitations, before being placed in the toolbox.   The 
review should be of the theory underlying the model, the model�s software, the documentation 
of the model as well as of its software, the model�s functions and capabilities including those 
pertaining to model data input and output, the input data themselves, model calibration and 
verification, capabilities for sensitivity and uncertainty analyses, user control of all model 
operations including pre and post analyses (GUIs), spatial and temporal resolutions, and its 
limiting assumptions. 
 
 
9.   Future Use, Development, or Replacement of CALSIM   
 
9.1   A coupled optimization simulation approach 
 
Given a system as complex as the SWP/CVP system, it seems to us it might make sense to 
consider the development of a more detailed simulation �engine� and couple it to an 
optimization or management �engine�.  The simulation component can more accurately model 
hydrologic processes.  For example it can include the deterministic non-linear routing of flows 
and their quality constituents through the system on a smaller time step (e.g., daily) and hence 
much more realistically or accurately, than can linear optimization using longer time steps, 
even with all the known tricks for linearizing separable (single variable) non-linear functions 
and �if-then-else� statements. The simulation engine itself may require a simultaneous equation 
solver, especially for the Delta.  But the simulation engine needs to know what to do, i.e., what 
decisions to make.  Periodic use of the optimization, say once a week or even less frequently if 
conditions are relatively constant, for determining the decisions to be simulated, e.g., the water 
allocation and reservoir release decisions, eliminates much of the maze of rules that otherwise 
would be required and which developers of CALSIM II are avoiding through the use of 
optimization.  Each time the optimization or management �engine� is run it is first updated with 
the current state of the system as determined from the more precise simulation �engine�. The 
optimization component would include multiple time periods only to the extent that the current 
period�s solution is not affected by the time horizon in the optimization.  The other time period 
solutions are ignored. This coupled optimization-simulation approach has the potential to be 
both more accurate as well as quicker to execute.  In our opinion it is worth considering for 
future development.      
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9.2   Models as hypotheses  
 
CALSIM II is really about the future, not the past.  Benchmarking studies can help establish 
the credibility of the model and provide estimates of its accuracy by comparing its performance 
to actual historical operations. A concern is how well the model reproduces historical 
operations, not whether it is valid or invalid on some absolute scale of perfection. But the real 
issue is how well CALSIM can predict what might happen in the future with sets of 
hydrological and meteorological conditions that have not yet been experienced, and may be 
significantly different from the past if climate variability and climate change are considered.  In 
these cases the ability of the model to forecast what will happen depends both upon its ability 
to describe what would happen should a particular system operating policy, priorities and water 
demands be adopted. In this sense CALSIM II modeling studies should be thought of as the 
exploration of a hypothesis that particular policies and priorities have been adopted. Our ability 
to predict the future has generally been poor, but it is the obligation of agencies such as DWR 
and USBR to attempt to ensure that should water demands, water supplies, and water policies 
evolve as one would expect, society is prepared for the consequences. And that would seem to 
be what CALSIM II is about. 
 
9.3   Future Model Development and Use 
 
From the list of perceived weaknesses above, there are clearly many opportunities for further 
refinement of CALSIM II.   Rather than attempt to meet all needs using only one model, 
namely CALSIM II, it seems preferable to improve its adaptability to various levels of detail 
through its ability to link to other models when additional detail in a particular region or for a 
particular feature is desired. For example, the monthly time step used by CALSIM II is 
sufficient for many studies. Yet some seasonal (multi-month) decision making is needed in 
CALSIM II to reflect decisions made by the SWP and CVP as to what Table A and other 
allocations to honor in full. On the other hand, it is clear that many water quality and 
ecosystem management decisions would profit from more detailed weekly or daily time steps. 
However, such shorted time-step models will need the guidance of a longer time-step model.  
As discussed earlier, models with shorter time scales can require increased spatial resolution, 
both of which lead to increased model complexity and a strong argument for model modularity.     
 
Additional potential applications of CALSIM II include operational planning using gaming, or 
the involvement of potential decision makers during the simulation runs via a well developed 
graphical user interface, and to improve the capability of modeling water quality, energy 
production,  conjunctive groundwater and surface water interactions and use, to mention a few.   
 
There will always be a need to perform alternative �what if� policy analyses where a relatively 
fast model that also provides some capability for uncertainty analyses is required.   Perhaps 
CALSIM II will never be able to serve this need, and if so another more simplified modeling 
approach could be developed to fill that need.  This simpler screening tool would be calibrated 
to produce results comparable to those of CALSIM II or observed data.   Is this possible?   We 
can not be certain but feel the idea should be seriously considered.   
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Caveat 
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CALSIM model managers and California�s water community to take our assessments and 
suggestions for what they are, arrived at based on our own experiences and some limited 
exposure to those who know much more about CALSIM and CALSIM II than we do.   
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1.  CALSIM Compared to Other Modeling Approaches 
 
Management of complex systems such as coordination of the California State Water Project 
(SWP) and the Federal Central Valley Project (CVP) requires effective decision support tools 
for simulating and analyzing system components in a fully integrated manner.  The classic 
definition of a decision support system (DSS) provided by Sprague and Carlson (1982) is "an 
interactive computer-based support system that helps decision makers utilize data and models 
to solve unstructured problems."   
 
A DSS integrates the following interactive subsystems: (i) dialog generation and management 
subsystem (DGMS) for managing the interface between the user and the system; (ii) data base 
management subsystem (DBMS); and (iii) model base management subsystem (MBMS). 
 
CALSIM II is a DSS developed as a joint venture between the California Department of Water 
Resources (DWR) and the U.S. Bureau of Reclamation (Bureau) to (i) provide a significant 
modernization and upgrading of the previous models DWRSIM and PROSIM employed by 
these organizations, (ii) develop a comprehensive modeling system that simultaneously 
addresses the current and future needs of both the SWP and CVP; and (iii) develop a 
generalized modeling system that could be applied in any river basin system, in contrast with 
the previous models that were less generalized and more specifically designed for the SWP and 
CVP.  In this respect, CALSIM II represents a state-of-the-art modeling system that is similar 
in general concept, while differing in specific details, to other river basin modeling systems 
such as AQUATOOL (Valencia Polytechnic University, Spain), ARSP (Acres Reservoir 
Simulation Program) (Boss International, 2003), IRAS (Interactive River-Aquifer Simulation) 
(Loucks, et al. 1996), MIKE BASIN (Danish Hydrologic Institute, 2002), MODSIM (Labadie 
and Larson, 2000), OASIS (Randall, et al., 1997), RAISON (Young, et al. 2000), ResSim (U.S. 
Army Corps of Engineers, Hydrologic Engineering Center), Ribasim (River BAsin SIMulation 
Model) (Delft Hydraulics, Netherlands), REALM (REsource ALlocation Model) (James, 
2003), RiverWare (Zagona, et al. 1998), WaterWare (Jamieson and Fedra, 1996), and WEAP 
(Water Evaluation and Planning System, 2003) (Hansen, 1994).  All of these can be 
categorized as decision support systems since all three subsystems of a DSS are embodied 
within them.   
 
A distinguishing feature of several of these modeling systems is the use of optimization on a 
period by period basis (not fully dynamic) to �simulate� the allocation of water under various 
prioritization schemes, such as water rights, without the presumption of perfect foreknowledge 
of future hydrology and other uncertain information.  This is a valid approach since use of 
optimization overcomes the disadvantage of employing numerous, unwieldy prescriptive rules 
governing water allocation.  Systems employing optimization in this manner include: ARSP, 
MODSIM, OASIS, REALM, RiverWare, and WEAP and are therefore more akin to CALSIM 
II.  ARSP, MODSIM, REALM and Ribasim are further distinguished by use of specialized 
minimum cost network flow optimization algorithms, although of these only MODSIM 
includes iterative structures using an imbedded scripting language for including non-network 
�side constraints� in the optimization.  The other modeling systems are essentially limited to a 
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pure network structure that does not allow inclusion of all the complex, non-network type 
constraints necessary to model the complex CVP-SWP system.   
 
It may be useful to compare this use of optimization with some other uses that have appeared 
in the modeling literature. One use of optimization is purely for computational convenience; in 
this case optimization is employed as a numerical method for obtaining the solution of a series 
of simultaneous (often linear) equations.  This approach, which was used in the first generation 
of computational economic models about forty years ago, exploited the fact that some existing 
computational algorithms for solving optimization problems were faster than those for solving 
large systems of simultaneous equations. A second use of optimization applies when the 
solution of the system of equations characterizing a water balance has multiple possible 
solutions; this is essentially the case described above, where optimization is being used 
primarily to identify a unique solution for a system of equations.  Both of these uses of 
optimization are primarily descriptive rather than prescriptive (also referred to as positive vs. 
normative) in intent: the goal is to model how a system, characterized by a set of equations, 
operates.  To the extent that the real�world managers of the system do optimize some objective 
function, the aim is to mimic their behavior by setting up and solving a similar optimization.  
But, the goal is to model what they actually do, not to advise them what they ought to do. The 
third use of optimization adopts an explicitly prescriptive goal and sets out to ascertain what 
managers ought to do if they wished to optimize some objective function (e.g. maximize 
economic efficiency).  While this is certainly a legitimate analytical exercise, it should be kept 
conceptually distinct from the use of optimization in a purely descriptive context. 
 
1.1   Advantages of Optimization-Driven Simulation 
 
For large, complex, integrated systems, simulation models that optimize operation and 
allocation of water within each time-step by operational priorities have become the major 
simulation approach.  Models of similar approach include ACRES (Acres Engineering), 
AQUATOOL (Spain), MODSIM (Colorado State U.), OASIS (Hydrologics, Inc.), WASP 
(Australia), and WEAP (Tellus Institute).  Priority-based simulation models with optimization 
engines have become widespread in part because: 
 

•  The models are simpler to develop, comprehend, and modify. 
•  Their software is easier to upgrade, since the data set describing the system and its 

operating policies is substantially separate from the software code. 
•  Data are easier to update and modify, since changes require little or no software changes. 
•  Priority-based operations are a common basis for water rights and operating policies. 
•  Priority-based operations are relatively easy to explain. 

 
The major exception to this technological trend in simulation modeling is to use more 
traditional procedural operating rules in simulation models with a graphical user interface for 
primarily flood control operations (HEC-RESSIM) or for exploratory study of large systems or 
detailed management of relatively small systems (Stella-type models). 
 
Similar to several of these systems, CALSIM II allows specification of objectives and 
constraints in strategic planning and operations without the need for reprogramming of 
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complex models. The CALSIM II authors developed the English-like WRESL (Water 
Resources Engineering Simulation Language) as an intuitive means of defining the objective 
function and constraints for a mixed-integer linear programming model, similar to the OCL 
(Operational Control Language) used in OASIS and the Policy Editor employed in RiverWare.  
In MODSIM, the optimization model is formulated directly through the graphical user 
interface with no need for a modeling language, but with supplemental features of the 
optimization defined through the PERL scripting language.  WRESL allows planners and 
operators to specify targets, objectives, guidelines, constraints, and their associated priorities, 
in ways familiar to them.  WRESL provides simple text file output that is converted to 
FORTRAN 90 code by a parser-interpreter program, whereas PERL is fully embedded in the 
network optimization code.  Both modeling systems are data centered, meaning that model 
operation is controlled solely by user specification of input data rather than hidden rules or 
hard-wired data structures. 
 
CALSIM II, OASIS, RiverWare and MODSIM are similar in that all use a high level language 
with syntax and logical operators; are written to simple text files which are subsequently 
parsed and interpreted; use rule-based or IF-THEN-ELSE conditional structures; are designed 
to be easy for planners and operators to use without the need for reprogramming; allow 
adaptive and conditional rules which are dependent on current system state variable 
information; include constructs for assigning targets, guidelines and constraints, along with 
their associated priorities; and include a goal seeking capability.  CALSIM employs a mixed 
integer linear programming solver for repeated period by period solution that is less efficient 
computationally than the network solver employed in MODSIM, ARSP, REALM and 
Ribasim.   
 
Unfortunately, unlike these aforementioned modeling systems, CALSIM lacks a 
comprehensive graphical user interface for constructing and editing the river basin system 
topology.  CALSIM II would be greatly enhanced if, similar to RiverWare, IRAS, and 
MODSIM, objects representing features of the basin such as reservoirs, canals, and river 
reaches, could be created on the palette of a graphical user interface by simply clicking and 
dragging various icons for the objects to the display.  The objects are instances of various 
classes that share certain common characteristics, and each object contains its own physical 
process methods and associated data.  We believe that complaints concerning the complexity 
of using CALSIM II would be greatly reduced with development of such an object-oriented 
graphical user interface.  
 

2.  Comparative Strengths and Weaknesses 

2.1   Some Prominent Strengths 
 
CALSIM II has important strengths as a general inter-regional operations planning model, 
particularly compared with available alternatives and its predecessors.  The primary strengths 
include: 
 
•  Coordination of Federal and State Interests   A unique aspect of CALSIM II is the high 

degree of cooperation between Federal (i.e., U.S. Bureau of Reclamation) and State (i.e., 



  

   19

California Department of Water Resources) interests in its development.  This kind of 
cooperation is rare, and in fact this may be the only such example of such coordination for 
a system of this scale and complexity.  Although it is clear that DWR staff have taken the 
greatest degree of responsibility in the planning, development, coding, testing and 
application of CALSIM II, it is also clear that USBR staff have also played an important 
role.  CALSIM II can provide a showcase for other states as to what can be accomplished 
with Federal and State cooperation for river basin management. 

 
•  Consensus model.  CALSIM II is the official joint modeling environment of the State and 

USBR.  This includes a common schematic, hydrologic representation of the system, 
common set of facility capacities, and common representation of system operating policies.  
This saves a lot of unproductive bickering and helps all parties improve representations, 
rather than compete over representations. 

 
•  Common effort.  The joint development of CALSIM II by USBR and DWR has provided 

more focused and effective use of resources and expertise than previous development of 
agency-specific models.  CALSIM II development has also involved other agencies and 
consulting expertise more than pervious models of this system. 

 
•  Data-driven model.  CALSIM II is a rather data-driven simulation model with an 

optimization engine.  This modeling approach provides: 
 

a. much greater flexibility than its predecessors and traditional water resources 
simulation approaches. 

b. a promising framework for improving transparency, data, and model 
documentation, compared to other approaches. 

 
•  Public domain.  The model and data are substantially in the public domain, facilitating 

transparency and adaptability for California�s decentralized water system.  Ongoing 
software development efforts will improve CALSIM in this regard. 

 
•  Steady improvements.  Data improvements have been steadily pursued following the 

adoption of CALSIM II, although deficiencies remain widespread. 
 
•  Improved Delta water quality representation.  Although problems appear to remain, the 

model developers have made substantial gains in representing Delta water quality operating 
criteria and performance.   

 
•  Better groundwater representation.  Efforts to better include groundwater and non-CVP-

SWP project operations are good efforts in the right direction, and merit continuation and 
expansion. 

 
•  Benchmark Studies.  The development of documented benchmark studies seems to have 

resulted in significant model improvements and aided in the development of comparative 
model applications.  Such exercises should be continued and improved. 
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•  Long-term vision.  The vision of a more transparent and publicly available model that can 
be employed by those outside the major agencies is excellent.  This is a major change in 
direction, and achieving this vision will require adjustments over time.  Often, these 
adjustments will be externally driven.  Externally-driven improvements are a price of 
success and evidence of success for modeling policy that is open and public. 

 
Few, if any, modeling organizations in the country have consistently done as good a job on 
model development and application for such a large, complex, and controversial system as the 
modeling group which developed CALSIM II.  They are to be commended for their work to 
take California water modeling beyond past �closed shop� practices in favor of the 
development and dissemination of modeling capabilities that are more relevant to California�s 
current water management problems.  Most areas and suggestions for improvement noted 
below are meant to aid the model developers in moving further and faster in the direction they 
are already heading. 
 
2.2   Some Prominent Weaknesses 
 
The strengths and weaknesses of CALSIM II are not only technical (software, data, and 
methods), but also are institutional regarding how this model has been developed and 
employed.  The administrative setting and objectives of model development and application are 
important, and difficult to manage.  Alas, the management/policy problems of a system change 
frequently, while data and modeling capability change more slowly, and effective 
administrative structures change very slowly, if at all. 
 
•  Inadequate data development and management are principal shortcomings of CALSIM II.  

There has not been a sufficiently systematic, transparent, and accessible approach to the 
development and use of hydrologic, water demand, capacity, and operational data for 
CALSIM II.  This problem extends beyond inadequate documentation and has led to 
controversy, confusion, and inefficiency in application of CALSIM II.   

a. Inadequate data management steepens the unavoidably difficult learning curve 
inherent for a complex system.  Data have mostly been considered a �back room� 
activity of a few experienced experts.  Retirement, promotion, or departure of these 
experts has left many gaps in knowledge and created difficulties for re-developing 
data for newer policy and planning problems. 

b. The administration of data development is fragmented, disintegrated, and lacks a 
coherent technical or administrative framework.  Data required by CALSIM II are 
developed by several administrative units, without systematic technical vision or 
quality control for modeling purposes.  Within DWR, different groups develop 
hydrologic and water demand data under different Deputy Directors, without 
effective coordination.  This division must be overcome for a coherent data and 
analytical framework to be developed and implemented. 

c. In many cases it appears that water use and other hydrologic data inputs to 
CALSIM II are based on data collection and analyses that took place during the 
1960s when DWRSIM and PROSIM were being constructed.  It is important to 
ensure that data used for CALSIM II are up-to-date and consistent with the best 
current information 
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•  The expertise and insights of many in local agencies, system operators, and consulting 

firms have not been prominent in the development of CALSIM II.  For such a system with 
many hundreds of local experts, this is somewhat unavoidable, especially early in model 
development.   Periodic re-examinations of how each area in CALSIM II is represented, in 
consultation with local agency and consulting experts, might overcome these technical 
shortcomings, and create and maintain a broader technical, user, and credibility base for 
CALSIM II.  Active involvement of local agencies in CALSIM II development and 
applications would be much easier with better data management, and would be rewarded 
with a broader base of CALSIM II expertise and enhanced model credibility. 

 
•  Compared to the current CALSIM II, any central operations planning model for California 

water management should be: 
a. Expanded in geographic scope to include major non-CVP-SWP areas, especially the 

Tulare Basin, the Colorado River, and southern California.  Operations and 
demands in these regions seem increasingly important for CVP and SWP 
operations, and are important for the integrated operations of California�s major 
local and regional water management agencies. 

b. Expanded in management scope to include local management options such as water 
conservation, reuse, water transfers, groundwater and conjunctive use management, 
etc.  These additional water management options are important for local, regional, 
and statewide water policy, planning, and management efforts and can have 
significant effects on CVP and SWP water demands. 

c. Made regionally modular, so smaller regional models can be run independently and 
tested locally, with boundary conditions consistent with the larger model.   

d. Made modular in terms of hydrologic, water management, and water demand 
processes, allowing better development, comparison, and updating of hydrologic 
and water demand process models.  Agricultural, urban, environmental, and other 
water demands should be represented more directly, and explicitly.  Groundwater 
should be represented and operated more explicitly.  Land use based local 
hydrology and water demand approaches might be implemented in such 
standardized modules.   

e. Subject to a systematic model and data testing regime and continuous quality 
improvement program.  As the problems of California water change, different and 
greater demands will be placed on analytical capability, requiring an essentially 
continuous testing, re-testing, and improvement of data and models.  This might 
parallel a continuous review of local representations and data involving local 
agency and consulting experts. 

f. Financed on a broader base, by more than the CVP and SWP projects.  Increasing 
use of CALSIM II is being made by local, regional, State, and Federal agencies 
interested in developing bilateral or multi-lateral water transfers or projects, which 
incidentally involve the CVP and SWP.  To develop inter-regional modeling 
capability needed to integrate these activities at local, regional, and inter-regional 
scales, more sustained funding and involvement from local and regional agencies is 
needed.  In effect, local and regional agencies have been �free riders� on CALSIM 



  

   22

II�s analytical capabilities, and it is not necessarily a good bargain for them.  
Everyone should benefit from broader technical and financial participation. 

g. Capable of analyzing a wide range of scenarios.  More capability is needed to 
examine various long-term scenarios with respect to hydrologic, water demand, and 
operational uncertainties in the future.  There also needs to be a better capacity to 
accommodate other approaches to representing hydrologic uncertainty and 
variability besides simply simulating 70-plus years of record. 

 
•  Input data and its development.  Important aspects of CALSIM II rest upon the 

representations of other models of Delta hydrodynamics and water quality, water demands, 
and groundwater.  The credibility of CALSIM II also rests on testing these models that 
send important data/representations to CALSIM II, and documenting them adequately.  
These models include: 

a. CU Model and SIMETAW: The consumptive use model and the newer SIMETAW 
model, used to develop hydrologic inputs and estimate return flows, also require 
testing and more explicit documentation.  The underlying data for these models also 
need more systematic, standardized, and transparent treatment. 

b. DSM2: Representation of the Sacramento-San Joaquin Delta will always be important 
and prone to controversy, given the prominent importance of Delta flows and water 
quality for the operation and planning of California�s water system.  The difficulties 
of representing the Delta in operations and planning models are compounded by the 
tidal nature of the Delta, which usually implies a need for shorter time-steps.  
Representation of Delta water quality constraints currently falls heavily on an ANN 
method within CALSIM II.  This ANN is calibrated (trained) based on a 
hydrodynamics model, DSM2.  Thus, controversies regarding Delta representation in 
CALSIM II are likely to lead to questions of the adequacy of DSM2.  The 
transparency and testing procedures valuable for establishing the credibility and 
limitations of a Central Valley operations model would also seem to apply to DSM2, 
or any other Delta hydrodynamics-water quality model.  Tests of methods used to 
represent small-time step phenomena with larger time-steps (e.g., �partial month 
standards�) should be tested in a forum that would give the approach credibility and 
where its limits could be developed, discussed, and documented.   

c. CVPM/CALAG/LCPSIM/IWR-MAIN: Representations of water demands in 
CALSIM II rely heavily on other models, particularly CVPM and eventually CALAG 
for agricultural water demands and LCPSIM and eventually IWR-MAIN for urban 
water demands.  Thus, these models also will attract attention, and will probably 
require the same types of testing, transparency, and documentation suggested for 
DSM2 and CALSIM II.  Many water contractors of the CVP and SWP also have 
internal water sources (groundwater, water conservation, and water reuse) and side 
contracts with other agencies to supply water that can increase or decrease (at 
different times) their water demands from the CVP and SWP contracts and from the 
demands estimated from CALAG and IWR-MAIN types of models.   

d. IGSM /CVGSM: Water users in California rely on groundwater as a water source and 
as the major source of over-year drought storage.  Groundwater is also being 
increasingly used and looked-towards as a source of storage as part of conjunctive use 
schemes, and water transfer and market schemes.  Thus, representation of 
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groundwater in the system is important, and probably should be expanded 
considerably.  The representation of groundwater quantities, storage, and recharge 
and pumping capability will also attract attention from interested and critical parties.  
Thus, the IGSM/CVGSM modeling efforts of DWR and USBR should include the 
same types of transparency, documentation, and testing suggested for CALSIM II.  

e. Agricultural demands:   Agricultural demands in the model are estimated by an 
external modeling system (CU model).  Staff noted that the estimation methods being 
used are include out of date information on agricultural cropping patterns and 
irrigation technology, both of which result in inaccurate estimates of agricultural 
water demands.  This estimation process needs to be revised and updated to include 
current information on an ongoing basis.  The methodology needs to be improved to 
include economic factors in the estimation of cropping decisions and water demands. 
In many case, the preferred spatial scale for the economic modeling of agricultural 
water demand is going to be the individual irrigation district rather than very broad 
areas containing multiple quite heterogeneous districts. 

 
•  CALSIM II is currently awkward to apply for broader State and CVP-SWP policy 

questions.  Practically, the time needed to complete analyses is too long and CALSIM II 
does not explicitly represent many of the management options which policy makers are 
interested in investigating, evaluating, and orchestrating.   

 
•  More CALSIM II modelers are needed.  Many water managers and policy makers across 

California look to CALSIM II for many purposes, and there is near-universal consensus 
that the application of CALSIM II is currently limited by a dearth of knowledgeable 
modelers.  Current training by DWR and USBR on CALSIM software is useful, but clearly 
insufficient.  To be a functioning and credible CALSIM II modeler one must understand 
both CALSIM software and the operational complexities of the system (which probably no 
one can know in its entirety).  Improved model and data documentation is also essential 
here. 

 
•  Stakeholders and policy makers are poorly guided in how to interpret CALSIM II results.  

Not only must CALSIM II become more responsive to current planning and policy 
concerns and management options, but current policy makers must receive some education 
in the benefits and limits of such modeling for their purposes.  This is a very difficult 
problem that will often involve the role assigned to modeling and model results within 
larger politically-driven policy making processes.   

 
•  Non-interpretation of model results is not helpful.  Several recent DWR reports based on 

CALSIM II results have been considerable improvements over past practices in terms of 
presenting model results, discussion of the model, and examination of model performance 
in a historical context.  However, often the studies have not contained the kind of written 
discussion and interpretation of results that would demonstrate that the authors have 
thought about the results and drawn conclusions in a realistic and self-critical manner.  This 
detracts from the perceived credibility of the work and makes the study less informative for 
readers (most of who surely do not have the modeling background of the authors).   
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•  Some needs exist to improve CALSIM software.  These are well-known to the model 
developers and include: 

a.     Elimination of the need for the FORTRAN compiler,  
b. A public-domain mixed integer-linear programming (MIP) solver,  
c.    A graphical user interface, including ties to databases and GIS display if possible,  
d. Post-processing tools for users to help new users and broader application and scrutiny 

of CALSIM II results,  
d. Version control software and system (also a problem for model administration), 
e. Better data and database management software and protocols (this has great data 

management and administration implications), 
f. An ability to more systematically set objective function weights, 
g. More automated input and output data checking is needed to improve productivity in 

model application and quality control of modeling output.  This would also facilitate 
use of CALSIM II by a broader range of modelers, 

h. Ability to access and employ sensitivity analysis information coming from the MIP 
solver to identify possible multiple optima and identify binding constraints and 
slacks, 

i. A debug version of the code where water can be added or subtracted at any location 
and time (at a great penalty) to quickly identify locations and times of model 
infeasibilities.  (Prof. J. Lund has had great success with this approach to correcting 
infeasibilities in the CALVIN model of California for a network flow algorithm.), 

j. Time-step issues should be explored and evaluated comparatively.  There are major 
drawbacks to shortening time-steps system-wide (run-time, data development, 
interpretability of results, etc.), but short time-step components within the model or 
other approaches might adequately represent short-period aspects of the system for 
many purposes. 

 
There will be some who argue that CALSIM II is and should remain a model of only the CVP 
and SWP system.  While this would be simpler administratively and financially, it seems 
technically and politically untenable.  California�s water system is being asked to operate in an 
increasingly integrated manner across local and regional scales, with multiple local water 
demands, supplies, and aquifers being coordinated with the operations of major aqueduct and 
storage infrastructure.  Any model of the CVP and SWP systems must be responsive to this 
operational integration, either implicitly through better parameterization of local supplies and 
demands, or explicitly by widening the geographic and functional scope of the model. 
 
 
3.   Limitations, Uncertainties, and Impediments 

3.1   Removal of Unnecessary Ties to DWRSIM and PROSIM 
 
Much of the spatial detail employed in CALSIM II is a carryover from the previous DWRSIM 
model.  This is particularly evident in the coarse delineation of watersheds and sub-areas, 
which may no longer be relevant for future applications of CALSIM II.  It is recommended that 
all unnecessary ties to the previous DWRSIM and PROSIM models be removed in further 
development of CALSIM II. 
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3.2   Relative vs. Absolute Predictions 
 
As noted in the Executive Summary, we are skeptical of the usefulness of the distinction 
between comparative and absolute predictions.  To declare that CALSIM II is intended for 
comparative predictions and should not be used for absolute predictions is not a helpful or 
desirable strategy.  Rather than embracing this limited view of what CALSIM II can be 
expected to accomplish, we recommend that model developers recognize the requirement for 
CALSIM II to provide absolute values. To satisfy this purpose, additional calibration of the 
model will be required to ensure that it provides a reasonably reliable depiction of how the 
California water system operates.  In addition, data on model accuracy and the outcome of the 
calibration runs should be made available so that users can gauge the likely errors involved in 
using the model for their own particular purposes.  Some methods for doing this and 
performing sensitivity and uncertainty analyses are contained in Appendix H.    
 
Model uses should realize that model calibration and validation exercises can illustrate only 
how well the model can reproduce historical decisions and system behavior. Our ability to 
predict future policy decisions and the emergency responses to water shortages is clearly 
limited, thus decreasing the absolute precision of any model�s predicted values of various 
system performance measures.  Thus it is useful to distinguish between the ability of the model 
to reproduce correctly the physical operations of the water systems in California (which should 
be good), its ability to reproduce and anticipate decisions by the agricultural sector that 
determine the quantities of water the consume, and its ability to mimic historical and current 
water operation decisions by the CVP, SWP and other water management agencies. 
 
In general, it appears that the developers of CALSIM II do not have a clear idea of how to 
define the scope of CALSIM II use and many of the applications are evolving in a reactionary 
manner.  Model developers should identify clearly the desired uses for CALSIM II and then 
determine acceptable approaches for satisfying those desires.  Developers should seek to 
improve data accuracy and overcome unrealistic assumptions to improve confidence in model 
results.     
 
3.3   Hydropower 
 
CALSIM II is currently greatly lacking in hydropower computations, which is an important of 
the federal CVP system.  This should include risk-based power capacity evaluation, and 
possible incorporate the ISM (indexed sequential hydrologic modeling) method that the Bureau 
has used for many years in hydropower capacity analysis.  Also, hydropower should not simply 
be an after-the-fact calculation, but explicitly included in the system objectives.  
 
3.4   Daily operations 
 
A great challenge awaits the developers as they attempt to adapt CALSIM II to daily 
operations.  These challenges are primarily related to the impacts of routing on distribution of 
flows and scheduling of reservoir releases.  Under the current period-by-period optimization 
structure over daily time increments, without appropriate consideration of routing there is the 
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danger that the model will allow diversion of upstream flows to lower priority users, resulting 
in injury to higher priority downstream users in the following days where travel times exceed 1 
day.  The proper inclusion of routing in the daily operations requires some kind of look-ahead 
capability in CALSIM II, which is currently lacking.  In addition, scheduling of reservoir 
releases on a daily basis creates difficult timing issues in order to minimize unnecessary 
downstream spills or shortages caused by routing and attenuation of upstream reservoir 
releases.  Another complexity in moving into daily operations is that reservoir discharges now 
become head-dependent, whereas this can usually be ignored on a monthly time scale.  This 
means that the maximum reservoir release in any day will be dependent on the head, and 
should be based on the average head over the day, which introduces the potential for time 
consuming iterative processes to deal with nonlinear relationships in discharge-head curves for 
any reservoir. 
 
3.5   Groundwater model 
 
Groundwater has only limited representation in CALSIM II. This resource is modeled as a 
series of inter-connected lumped-parameter basins. Groundwater pumping, recharge from 
irrigation, stream-aquifer interaction and inter-basin flow are calculated dynamically by the 
model. 
 
The purpose of the multi-cell groundwater model is to better represent groundwater levels in the 
vicinity of the streams to better estimate stream gains and losses to aquifers.   
 
In the Sacramento Valley floor, groundwater is explicitly modeled in CALSIM II using a 
multiple-cell approach based on DSA boundaries.  For the Sacramento Valley, there are a total 
of 14 groundwater cells.   
 
Currently no multi-cell model has been developed for the San Joaquin Valley. Instead stream-
aquifer interaction is estimated from historical stream gage data. These flows are fixed and are 
not dynamically varied according to stream flows or groundwater elevation.  
 
The approach to modeling groundwater in CALSIM II, a lumped-parameter �tank� model 
seems to be a reasonable approach.  However, few details of this implementation were 
provided to the review panel, that it is not possible to assess its accuracy or reliability.  Details 
of the calibration and verification activities performed to date should be carried out and 
reported for the groundwater tank model.  The effect of using large size tanks should be 
assessed and the level of uncertainty in computed results reported.  In addition, the effect of 
these uncertainties on CALSIM II calculations should also be assessed.  The San Joaquin 
valley aquifers are not well represented in the tank model, but it is in the CVGSWM.  The San 
Joaquin valley groundwater should also be modeled in CALSIM II. 
 
Groundwater availability from aquifers is poorly represented in the model.  This results from 
the fact that aquifers in the northern part of the state (Sacramento Valley) have not been 
investigated regarding storage and recharge characteristics.  Thus, in the model, upper bounds 
on potential pumping from aquifers are undefined.  This does not represent reality, since, if 
CALSIM II is used for statewide planning, it would allow pumping of vast quantities of water 
for export to southern parts of the state, something which agency staff claim is unrealistic.  
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Realistic upper bounds to pumping from any of the aquifers represented in the model need to 
be developed and implemented. 
 
In addition, historical groundwater pumping is used to estimate local groundwater sources in 
the model.  However, the information on the historical pumping is very limited, causing these 
pumping rates to be very uncertain.  Better pumping information is needed and an analysis of 
the effect of this uncertainty on model results needs to be conducted.   
 
In general, the level of representation of groundwater in CALSIM II is not reasonable from the 
point of view of the reviewers.  This is due to several factors, perhaps the most important being 
the lack of information presented to the reviewers for their assessment.  Another factor is the 
lack of data collected and analyzed by the State of California to properly account for 
groundwater resources in the Central Valley.  These data are critical to an understanding of the 
availability of water in the state and the operation of the major water systems that supply water 
to agriculture and small municipalities in the Central Valley.  Assumptions of unlimited 
groundwater resources in the Sacramento Valley are unfounded and unbelievable.  Efforts 
should be taken to make reasonable estimates of these resources. 
 
There are other approaches that provide reasonably accurate estimates of river-aquifer 
interactions and groundwater basin response, while not sacrificing computer time.  The 
response function approach is a good example, whereby the CVGSM model is used to develop 
kernel functions describing this response.  A similar approach is described in Fredericks, et al. 
(1998).  These kernels may require readjustment as head conditions change in the basin, but 
they provide a more accurate prediction tool and are easily incorporated in the MIP model 
since they apply a linear superposition assumption and retain the linearity of the constraints in 
the model.  A dynamically linked CALSIM-CVGSM configuration is not necessary for 
reasonably accurate solutions.  If computer run time for CALSIM II is considered excessive 
now, it could only considerably worsen if this type of linkage is incorporated.  

 
Soil moisture is not dealt with in a realistic manner and needs to be improved in applications 
where the model output might be sensitive to these assumptions.   
 
3.6   Dynamic Variation of Priority Weights 
 
A severe restriction in CALSIM II is the inability to dynamically vary the weights used to 
prioritize flow allocation in the system.  It should not only be possible to dynamically vary 
these weights, but this variation should be conditional on the current system state, however that 
state (or states) is defined.  In addition to dynamic variation of weights, more explanation is 
needed of the reservoir operating rules and how these rules are incorporated into CALSIM II.  
The description of operating rules used in the system is not very clear.  For example, what 
kinds of hedging or shortage rules are used to mitigate the effects of drought?  
 
3.7   Expanding Scope of CALSIM II 
 
CALSIM II is a considerable advance on earlier models in that it fully incorporates both the 
State Water Project run by the Department of Water Resources and the Central Valley Project 
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operated by the Bureau of Reclamation. However to be able to examine the full range of 
Californian water issues, it would be desirable that all components of the linked system should 
be incorporated in the model including the Friant system, the larger Tulare Basin,  and southern 
California and its links to the Colorado River. Also because of the very important linkage 
between surface water and groundwater use, improvements should be made in this area 
particularly with regard to how that linkage affects demand for surface water and how access to 
groundwater reduces the economic impact of surface water restrictions. 
 
When expanding the geographical scope of the model to include non CVP-SWP areas, as well 
as Southern California, a hierarchical, decomposition approach would allow development of 
separate models for these areas that can then be linked together through iterative processes.  
Otherwise, the CALSIM II model can become extremely unwieldy.  Again, integration can still 
be achieved through appropriate iterative interaction between the regional models.  In the same 
vein, it is also unnecessary to explicitly integrate water quality and detailed water 
demand/consumptive use models into the model structure.  Iterative schemes involving 
successive estimation of water quality and other parameters can produce comparable accuracy 
at reduced computer run times, while reducing the complexity of the model. 
 
The replacement of DSM2 with a neural network is consistent with reinforcement or machine 
learning methods which are increasingly being used to replace complex, computationally time 
consuming models employed in decision support systems.  The complex models are only used 
to provide the data sets used for training the neural network.  Current research at Colorado 
State University and elsewhere is using neural networks for groundwater surface water 
interaction and return flow computation to replace computationally expensive groundwater 
models. 
 
3.8   Key Model Outputs 
 
In the past, the primary purpose behind the development of CALSIM II and its predecessors 
has been the examination of the reliability of water supplied to the State Water and the Central 
Valley Projects. However it is clear that there is now a demand for a model that will provide a 
wider range of outputs including: 
•  Water supply reliability for all water users 
•  Demand for water by existing users 
•  Outflows to Delta 
•  Use of groundwater and the rate of depletion of aquifers 
•  Water quality in the Delta and in the San Joaquin River 
•  Indicators of ecological health in particular with regard to key fish species 
•  The value of hydroelectric generation. 
 
Although the modules in the CALSIM II package currently address many of these areas, the 
recognition that all these outputs are important may necessitate some further model 
development and a greater degree of testing and calibration of these parameters. 
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3.9   Modeling Allocation, Accounting and Operating Rules 
 
CALSIM II uses a system of weights and constraints to define the water allocation process and 
the operating rules for storage reservoirs. Unfortunately these do not accurately reflect how 
operators of the state and federal water projects behave in managing their complex systems. 
Ideally, CALSIM should both reflect how the operators behave and be accepted by them as a 
useful tool when considering their management alternatives.  The failure to achieve this limits 
the usefulness of CALSIM to investigate the specific operating or accounting rules that are of 
interest to those operators.  For example, CALSIM II was not used to test changes to the 
accounting and allocation rules that have recently been proposed by the Department of Water 
Resources and the US Bureau of Reclamation because the rules that were changed do not exist 
in CALSIM II. 
 
 
 
4.   Options for Improving CALSIM  
 
4.1   Optimization Model and Run Times 
 
Many of the complaints regarding using of CALSIM II relate to long run times, which is not 
conducive to sensitivity or uncertainty analyses.  Since CALSIM II employs a mixed integer 
linear programming (MIP) solver, the usual sensitivity information available in linear 
programming solvers, such as dual variables and right-hand-side ranging, are not available.  
The problem is that small changes in right-hand-side constants or objective coefficients (i.e., 
weights on water allocation priorities) can produce large abrupt changes in model solutions.  In 
this case, dual variables do not provide useful information for MIP problems. Sensitivity 
analysis can only be conducted through trial and error processes involving incremental 
adjustment of important weights, coefficients, and uncertain data inputs with subsequent 
repetitive execution of the model.  In light of this, it is crucial that the MIP solver employed in 
CALSIM II is upgraded.  Significant advances have been made in MIP solvers, as described by 
Bixby, et al. (2000), which are not reflected in the current XA solver utilized in CALSIM II.  
There have been many recent improvements to the branch and bound method which should be 
incorporated, and the LP solver itself can be improved with better sparse matrix analysis.  As 
planned by the CALSIM II developers, removal of the need for use of the FORTRAN 90 
compiler will also improve run times when changes in optimization model structure are 
required.     

4.2   Confidence in the model 
 
The usefulness of a computer model in water resource management is only as good as the 
confidence that the stakeholders have in the accuracy and reliability of the model and the trust 
that they have in the modelers. There are several factors that affect that confidence and a 
number of ways that confidence can be improved. 
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•  Documentation 
 
Producing documentation of models requires considerable resources to do properly and 
ongoing resources to maintain especially when model development is continuing. Typically 
documentation of any water resource model is poorly done. However, where there are external 
model users, as is the case with CALSIM II, it is important. The survey conducted by Ferreira 
et al (2003) indicated that many users of the model thought that documentation of CALSIM II 
was poor. 
 

•  Seminars  
 
In the Murray-Darling Basin, seminars with key users and interest groups in which the 
operation of the model is described and discussed have proved to be useful in increasing 
confidence in models. The practicality of this approach will depend on the number and location 
of the prospective participants and the resources available to support the process. 
 

•  Data 
 
A model can only be as good as the data that is used to develop and calibrate it. The agreement 
over an acceptable set of hydrologic data that occurred during the development of CALSIM II 
is a considerable advance.  However, there appears to be a need to improve the collection and 
use of data on water diversions and return flows. Because of the close links between the 
surface water use and groundwater use there also is a need to have better information on the 
use of groundwater.  
 
The models used to calculate the Local Water Supplies in the Depletion Study Areas depend on 
estimates of surface water use, crop evapotranspiration rates and water use efficiencies 
developed using data from the 1970�s. Confidence would be improved if more recent data were 
available to check these estimates. 
 

•  Calibration 
 
A very good way to improve confidence in a model is to calibrate it against historical data to 
ensure that the model output is able to reproduce the observed data.  Calibration is the process 
of using the model to reproduce the historical behavior of the system and then fine-tuning the 
model so that the match between modeled and observed values improves. The calibration of 
the model assists in detecting errors in the model and the input data. It also enables a 
comparison to be made between the way that the operators actually manage the system and the 
way that the model assumes that the system is managed.  
 
A further consequence of the calibration process is that the statistics of the match between 
modeled and observed values can be used as a reasonable estimate of the absolute accuracy of 
the model output. 
 
It is legitimate in a calibration/validation run to incorporate changes to infrastructure, 
institutional or operational rules as they occurred especially if these changes are specified as 
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input parameters to the model. This was done to a limited extent in the CALSIM II validation 
run with three regulatory periods modeled related to decisions made by the State Water 
Resources Control Board. It is also legitimate to incorporate growth in demand especially if 
that growth is described in a manner that is consistent with the way that demand is specified in 
the production run. Demand north of the Delta was specified in the validation run by inputting 
the historical crop areas. 
 
A Calibration/Validation report should be very useful in demonstrating the accuracy of the 
model. However there are a number of elements in the CALSIM II validation run and the 
validation report which reduce that confidence including: 
 

•  State Water Project (SWP) demands south of the Delta were set at historical deliveries 
in years with no restriction and at the contractor�s request level in restricted years. 
Neither of these pieces of information is available to a production run which calculates 
demand based on crop areas. Therefore the validation run does not provide reliable 
information on how well the model can represent these demands. 

•  The validation run omitted Article 21 deliveries. Although this omission will not affect 
the delivery of �Table A� volumes south of the Delta, it will affect flow in the Delta and 
Delta water quality. Also, in the example model run presented in the paper by Draper 
A.J. et al (2003) which was supplied as part of the review, changes to Article 21 
deliveries constituted the largest impact resulting from a change to the allowable 
pumping capacity at Banks between March and December. This suggests that the 
modeling of these demands is important. 

•  The DWR (2003) report produces estimates of SWP and Central Valley Project (CVP) 
deliveries south of the Delta but then adjusts them for changes in storage before 
presenting comparisons of those results with observed deliveries. This process merely 
checks that the model is preserving a water balance and does not present a legitimate 
validation of model deliveries. 

•  The report provides statistics on long term average deliveries and flows but no statistics 
on the fit for individual years. Additional analysis of the output would assist 
stakeholders to assess whether the estimate of water supply reliability and in particular 
the modeled volumes of water available in the most restricted years are accurate. 

•  In some instances, such as the examination of water quality in the Delta, the ability to 
accurately model monthly flows and deliveries will be important. The validation report 
contains no information that would enable the ability to model monthly flows to be 
assessed.   

•  A key model output is the water quality in the Delta. It would assist the validation of 
the model if a comparison of parameters such as the location of the X2 boundary was 
provided.  

 
The users of CALSIM should recognize that models are a summary of what one believes to be 
true and important about a system.  Validation is then an exercise to test how good that 
summary and understanding really is. 
 
Appendix I contains brief descriptions of calibration modeling in the Murray-Darling Basin in 
Australia and in the State of Texas.    
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4.3   Assessment of the reliability of �delivered� water    
 
An important recent application of CALSIM II which has drawn widespread attention is the 
�State Water Project Delivery Reliability Report.  While this is an important step forward in 
the use of CALSIM for policy purposes, it highlights a number of issues, both conceptual and 
empirical, that need to be resolved in order to provide a more adequate assessment of the 
reliability of water supply in California. 
 
First, it illustrates the need for sound calibration of CALSIM. The question being asked is not a 
comparative one � What are the consequences of changing some aspect of the system from X 
to Y? � but rather an absolute one � How does the system function at present?  How often can 
users expect a shortage in deliveries of Z%?  
 
Second, it highlights the fact any water system model such as CALSIM requires a blend of 
hydrology and behavioral analysis.  To conduct a water balance, the model needs to know what 
deliveries are required by the customers of the given project, and what are the diversions by 
other user groups who extract water from the same surface or groundwater sources. These are 
fundamentally questions of economic and institutional behavior, not matters of hydrology. 
Therefore they cannot be dealt with by hydrologists alone. Like its predecessors, CALSIM 
tends to treat these as black boxes.  The diversions by water users outside the CVP-SWP are 
taken as exogenously given, based on an assumed �level of development� and simplistic 
assumptions about the patterns of water use associated with that level of development.  The 
deliveries required by the water users who are served by CVP-SWP are generally taken as 
given.  For reasons explained below, both of these treatments are simplistic and unsatisfactory. 
 
In CALSIM modeling exercises the level of development plays two different roles depending 
upon the context.  In a simulation context, the level of development is used to represent 
hydrologic variability and uncertainty; in a calibration/validation context, it is used to reflect 
the actual historical demand for water withdrawals.  These are very different purposes and it is 
important to keep them distinct. In most applications of CALSIM prior to the recent reliability 
study, the main focus was simulation and the representation of hydrologic variability.  The 
chief purpose served by using 73 years of adjusted streamflow records was to represent the 
variability and uncertainty in the streamflow that one can expect to observe in any single year. 
Therefore, the calendar date of the record has no substantive significance, the (adjusted) 
streamflows for 1952 or 1982 are not being used to represented what happened historically in 
1952 or 1982, but rather as an indication of the variation in streamflow that could be expected 
to occur next year, or any other year.  In this context of simulating hydrologic variability, it 
makes good sense to apply the same level of development (i.e. the same pattern of water use) 
to every year in the sequence, rather than a series of different levels of development that vary 
with calendar time, because the streamflows represent alternative hydrologies that can occur in 
any given year.1 The situation is different when one is conducting a calibration or validation 

                                            
1 This could be modified to allow for the fact that local weather conditions have a significant impact on irrigation 
(and urban) demands � e.g., farmers plant fewer acres of crops in a drought year. In that case, one could have 
different levels of water demand and extraction in different year types; but, these would all be keyed to the same 
overall level of economic development (e.g. the California economy in the 1990s). CALSIM II does not presently 
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exercise.  In that case, one wants to represent the historical demands in 1952 or 1982 in order 
to compare what the model predicts with what actually happened.  Therefore, in a calibration 
or validation exercise one wants the level of development to change each year in order to 
reflect the demand that occurred historically. 
 
Both simulation and calibration/validation raise some other important technical issues. In the 
context of simulation, there are several different ways to generate a hydrologic sequence that is 
calibrated to a fixed level of development.  One can use all 73 years for which data are 
available.  One could use a subset of those years chosen either according to some deterministic 
rule or randomly. The subset could be oriented, for example, towards the extremes of the 73 
sequence of annual records.  However, the drawback of any approach based on sampling from 
the observed historical record is that it understates the full variability in streamflow that could 
be experienced in the future.  The 73 years of record are drawings from a probability 
distribution the extremes of which extend beyond the minimum and maximum flows observed 
in the historical record.  Relying on this record, therefore, understates the true minimum and 
maximum flows that might be encountered.  In a reliability assessment exercise, one might 
want to take some steps to minimize the potential understatement of streamflow uncertainty. 
This could be accomplished by fitting a (parametric) probability model to the historical 
streamflow record and then sampling from the tails of the fitted distribution (Stedinger, 1981).  
The use of statistical models of streamflow variability could be considered in future 
applications of CALSIM to assess delivery reliability. 
 
The assessment of delivery reliability requires that particular attention be given to the 
definition and measurement of the water users� demands. In this context, the user�s demands 
play two roles: they affect the definition of �deliveries� and they influence the assessment of 
�reliability�. With respect to deliveries, CALSIM II considers water to be delivered whenever 
it has the water irrespective of the ability of a contractor to use the water or to store it; The 
reality is that, if the contractor does not have a demand for the full quantity of water and is not 
able to store the excess, that amount will not be delivered.  Therefore, the calculation of 
deliveries would be flawed.  Furthermore, reliability cannot be assessed without reference to 
demand.  Stating that a water supply system can deliver 100 acre feet in a wet year but only 70 
acre feet in a dry year is useful only if one knows what the demands will be in wet and dry 
years.   The implications are quite different if the user needs 105 acre feet per year than if he or 
she needs 65 acre feet per year.  Thus, the users� demands should serve as the norm against 
which reliability is assessed.  Instead, the recent reliability report uses the so-called �Table A� 
water amounts as the norm for assessing deliveries to SWP contractors.  This does not seem to 
be a satisfactory approach because there is no presumption that the Table A amounts, 
negotiated in 1960, measure the actual demands of SWP contractors in any particular year.  
The actual demands of the individual contractors will be influenced by how much storage they 
have, what access they have to other surface water or groundwater, and the demands of the 
farmers they serve to plant crops and apply water.  Without accounting for these factors, it is 
difficult to generate a meaningful assessment of supply reliability.  
 

                                                                                                                                          
consider the impact of annual weather conditions on demands. In order to model water demands accurately in a 
year, the climate conditions would be linked to the flow conditions to provide an input set for a particular year. 
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The assessment of reliability should ideally go beyond a comparison with quantities demanded 
to incorporate the notion of a loss function.  If a user has a demand for 100 acre feet and can 
only receive 90 acre feet in one scenario and 80 acre feet in another, while the shortfall is twice 
as large in the second scenario the actual consequences of the shortfall to the user, in terms of 
lost profit or higher cost, might be more than twice as large. To assess the economic value of 
reliability, or the economic cost of a lack of reliability, one needs to be able translate shortages 
into monetary losses. To accomplish this, the warning time provided and the delivery shortfalls 
from CALSIM would need to be processed through an economic model of the value of water 
to different SWP contractors.  
 
Because water users face difference demands and have access to different sources of supply, 
when assessing reliability it is unhelpful to aggregate all contractors and simply present the 
results in terms of total annual project deliveries, as was done in the report.  Precisely because 
of the potential non-linearity of the loss function, a given aggregate shortfall can have different 
consequences when distributed differently among the individual contractors.  A similar 
observation applies to the temporal distribution of delivery shortfalls across the year.  It is 
unhelpful to aggregate supply system deliveries into an annual total, as done in the report.  For 
a user to be able to obtain 100% of his or her demands in the period from March to May but 
only 60% in the next three-month period from June to August has different consequences than 
being able to obtain 80% in each of the six months.  Furthermore, for both agricultural users 
and many urban users, major decisions affecting water use have to be made in the spring.  They 
are based on the expectation around March about the amount of water that will subsequently be 
available for delivery during the summer months.  What matters to these users when assessing 
supply reliability is the amount of water they can expect around March to be delivered over the 
summer, rather than the ultimate total delivery.  
 
For both reliability assessment and also model calibration/validation, it is important to avoid 
excessive aggregation when describing shortfalls between demand and supply, or deviations 
between model predictions and actual outcomes. In regression analysis, it is the convention to 
measure the goodness of fit of a regression equation not by the average deviation but rather by 
the sum of the squared deviations. In ordinary least squares regression, by definition the 
average deviation is always zero (that is to say, the average of the predicted values of the 
dependent variable always equals the average of the actual values) regardless of how well or 
badly the regression equation fits the data. The average deviation thus provides no information 
regarding the goodness of fit; by contrast, the sum of squared deviations or the sum of the 
absolute values of the deviations are sensitive measures of goodness of fit.  Although the 
calibration of CALSIM is not an exercise in least squares regression, the same general 
principle applies.  To judge whether the model is doing a good job, the goodness of fit should 
be measured by reference to the disaggregate results and not simply by the overall average 
deviation.   
 
Additional comments on the 2003 CALSIM II Validation Report are contained in Appendix F.  
 
 
 
 



  

   35

5.   Managing CALSIM Development and Applications 

The costs of not continuously and substantially improving our analytical capabilities are 
political (in terms of continued controversy and diminished agency credibility), economic (as 
inferior system performance for agricultural and urban water users), environmental (in terms of 
inferior environmental system performance), and financial (lawyers and policy consultants are 
more expensive than engineers and scientists). 
 
CALSIM II is a substantial improvement over its predecessor models, DWRSIM and 
PROSIM, with a great deal more flexibility, transparency, and potential than these earlier 
models.  The modeling team for CALSIM has identified an exciting and relevant vision of how 
modeling should be done for this complex and difficult system in the coming years.  However, 
implementation of this vision in a coherent technical manner that leads to both technical and 
stakeholder credibility will be a difficult process, requiring financial and institutional support if 
this kind of capability is to be developed and sustained.   
 
To accomplish these objectives CALSIM II developers need to be in an institutional position 
where they can see the model more as �outsiders� view it.  This would allow them to be more 
responsive in supporting the credibility of their work and the relevancy of their tools and 
results to the broad range of current water management problems.  As such CALSIM II should 
no longer be solely responsible to CVP-SWP managers, but should be responsible to a broader 
range of technical managers from additional interests, reflecting its current and prospective 
uses. 
 
It would be imprudent to manage a state�s finances, a business, or a retirement plan without 
quantification � quantification in such matters is necessarily imperfect, but necessary 
nonetheless.  While shortcomings have been identified in CALSIM II, it would be similarly 
irresponsible to manage California�s water budget without carefully-interpreted quantification.  
Progressive and continuous improvement in our quantitative understanding of California�s 
water system provides a common basis for improving its performance for all interests.  
 
One possible means of maintaining control of the quality of particular versions of CALSIM II 
and accompanying models used for SWP-CVP planning and management decisions is to create 
an interagency modeling consortium (IMC) consisting of DWR, USBR, and persons from 
other stakeholder organizations if they are interested and want to participate.  This consortium 
would be responsible for maintaining a toolbox of �acceptable� models for �official� use by the 
agencies and contractors.      
 
IMC responsibilities and authority could include: 
 

•  Prioritize, coordinate, and provide consistency, technical guidance and oversight for all 
modeling applications,  

•  Approve model selection and insure that each requested application is carried out using 
the most appropriate model(s) and input data,  

•  Provide or otherwise insure documentation of the modeling process itself as well as the 
modeling results,  
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•  Insure that the results are expressed and made available in a way such that others can 
understand and benefit from that modeling application, as applicable.    

•  Implement peer reviews of models and their applications as deemed appropriate. 
 
 

To help meet their responsibilities the IMC will need to establish, publish and implement some 
procedures for insuring the quality of the entire model development and application process.   
They will need to identify among all the models that might be used, which are the most 
appropriate to address each of these separate groups of model applications.  They must identify 
various models, i.e., establish a model toolbox, from which clients can choose the one that best 
meets their needs (or perhaps argue that another model should be added to the toolbox). The 
IMC will also need to maintain model documentation and provide for peer reviews of any 
model, its documentation, and/or its use in a project.    
 
Further suggestions and discussion on the creation and operation of a possible IMC for model 
development and application, as well as for managing peer reviews of both the models and 
their applications, are contained in Appendix E.  
 
 
 
6.   Recommendations for Future Use, Development, and Application  
 of CALSIM II  
 
The most concise recommendation we might make would be to fix the shortcomings beginning 
with what are considered the most serious, and proceeding to those that are less serious, taking 
into account the time and other resources needed to address each weakness.  However, we 
believe it is more useful to suggest ideas on how to systematically address both present 
shortcomings and those likely to emerge as stakeholders� quantitative understanding of 
California�s water system and its problems continue to evolve. 
 
6.1   Model development and support consortium 

 
As discussed in the previous section and in Appendix E, it might be useful to explore creation 
of a broader interagency modeling consortium for developing operations planning models for 
California.  The joint DWR-USBR development strategy used for CALSIM II has shown some 
notable successes, and should be expanded to include additional parties and sources of 
expertise.  Such a consortium might include staffs from several agencies (DWR and USBR, as 
well as potential members from MWD, KCWA, CCWD, and other agencies), NGOs, some 
consultants, and universities.  Such a model development forum would: 

a. Bring a wider range of expertise to bear on model development problems. 
b. Facilitate having more agencies involved in supporting model development with 

expertise and financial resources. 
c. Better enable model developers to see the model as �outsiders� see it. 
d. Potentially improve contracting for model development and testing. 
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e. Take model development and testing outside of the explicit agency framework; a 
broader consortium should be more conducive to self-critical and transparent technical 
practices. 

f. Provide a common training ground for agency, NGO, and consulting staffs to become 
effective modelers, broadening the talent base for technical work in California. 

g. Reduce impediments to model development and testing arising from current State 
budgetary and personnel hiring problems. 

 
Many of the questions, concerns, and problems mentioned in the user community interviews 
could be addressed well in such a distributed model development, testing, and support 
framework.  It would still be necessary for each stakeholder group and agency to maintain its 
own modeling staff, but these would be partially shared in an interagency modeling 
consortium.  
 
The governance and finance of such a consortium would be difficult and would probably 
require a steering committee or governing board, but any resulting model(s) would have 
broader credibility and a broader and deeper technical base.   
 
In the immediate term, a users� group should be formed and the formal listing of model 
development activities should be posted on the web, including short descriptions of each 
development activity and contact information. 

 
6.2   Quality Control Program 

 
The DWR and USBR modeling team (or a broader model development consortium) need an 
explicit quality control program.  Such a program should include a variety of activities:  

a. periodic external reviews on the broad modeling program  
b. specialized external reviews of model products and applications 
c. a standing (or sitting) external technical advisory body 
d. software engineering and maintenance 
e. a regime of model testing 
f. model and data documentation 
g. data development and management 
h. user group activities 
i. local agency and interest involvement 
j. model, data, and documentation accessibility (including web site use).   
k.  

Such a quality control program would benefit from deep consultation with stakeholders and the 
broad community of water technical people, perhaps via the California Water and Environment 
Modeling Forum (www.cwemf.org). 

 
6.3   A Training Program 
 
DWR, USBR, and assorted agencies and consultants should establish a more formal common 
regimen to train new CALSIM II users in both CALSIM software and the complexities of 
actual system operation.  All these groups currently rely on a relatively small pool of perhaps a 
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dozen knowledgeable CALSIM II users and all proclaim a need for many more capable users.  
A training regimen consisting of current CALSIM II training classes, supplemented by 
additional training in software application and system operation and apprenticeships or 
rotations through operations and model development shops would be useful to all concerned.  
The entire water community would benefit from having such expertise being widespread.  
Having widespread CALSIM II modeling expertise also makes explaining CALSIM II and its 
results easier.  This might be an appropriate activity for a model development consortium. 
 
6.4   Extend Improvements in Modeling Practice to Supporting Models 
 
CALSIM II is at the center of a web of additional models used by DWR, USBR, and other 
agencies to prepare inputs for CALSIM II and post-process outputs from CALSIM II.   
 
Delta controversies and difficulties of representation seem endemic to problems of modeling 
Central Valley operations.  The technical basis for representations of Delta operations and 
water quality performance requires a similar level of transparency and testing to avoid this 
becoming a �weak link� in the Valley-wide operations planning model.  Since so much is 
based on the DSM2 Delta model, documentation of fairly strenuous tests of the DSM2 model 
are highly desirable.  This would provide a firm foundation for the use of ANN or other 
approaches for summarizing DSM2 behavior in an operations model.  Similar documentation, 
testing, and development are desirable for the other models mentioned above which provide 
data for CALSIM II (CVGSM/IGSM, CVPM/CALAG, IWR-MAIN, LCPSIM, CU model, and 
SIMETAW). 
 
6.5   Hydrologic Data and Data Development 
 
An effort should be made to step back and perhaps re-define a more systematic and solid basis 
for developing hydrology for water management models of California�s inter-tied water 
system. Currently, several efforts exist to develop surface or groundwater hydrologies for parts 
of the Central Valley (sponsored by DWR-USBR, USACE-Sacramento District, USEPA, 
USGS, CALFED, local agencies, etc.).  An effort should be made to broaden the range of 
hydrologic expertise involved in hydrology data development for management modeling of 
California�s inter-tied water system, and establish a consistent and high, but reasonable, 
standard of documentation and testing for developed data and any underlying hydrologic 
models.  Establishing such a standard of documentation and testing would make existing 
hydrologic studies more accessible and useful for future studies and encourage the comparison 
and further development of existing representations of the system�s hydrology. 
 
6.7   Performance-Based Optimization 
 
Performance-based optimization should be added to CALSIM�s capabilities; it would not be 
difficult in terms of software or data, and would add much greater ability to explore and seek 
improvements in management within a complex system.  The multi-period optimization 
approach being developed (CAM) is an operations-oriented first step in this direction, but 
could be expanded without great difficulty. 
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For large-scale water resource systems of great complexity and many options for system 
management, it is often difficult to find �optimal� operations with simulation modeling.  There 
are simply many myriads of decision options and combinations of options, which theoretically 
each require a simulation model run � which would be prohibitive in terms of analysis cost and 
time.  In such situations, performance-based optimization models, such as those seeking 
maximum economic performance, can offer useful insights as to where to look for improving 
system operations and management.  Metropolitan Water District of Southern California 
(MWD) and San Diego County Water Authority (SDCWA) employ performance-based 
optimization modeling of parts of California�s water system to gain strategic insights for 
planning and management.  An economic-engineering optimization model has been developed 
for California and, despite significant limitations, shows several insights for California 
(CALVIN), suitable for identifying promising operational and management strategies worthy 
of more detailed analysis (Jenkins et al. 2001; Draper et al. 2003; Jenkins et al. 2004).  The 
CALSIM II modeling approach could easily be adapted to provide greater functionality to this 
type of performance optimization.  Having performance-based optimization capability together 
with a compatible simulation model for more detailed analysis and trade-off evaluation could 
greatly improve the capability of California�s water community to explore and develop 
promising and creative options for improving operations, facilities, and overall system 
management.  
 
6.8   Modular and Layered Versions of CALSIM II 
 
Speedier versions of CALSIM II are needed for operations planning and integrated water 
planning studies.  Such versions would be regional modules of CALSIM II (for regional 
studies) or explicitly aggregated system-wide models from the most detailed CALSIM II 
schematic for system-wide or statewide studies.  Both approaches would simplify the model 
for particular purposes, yet be tied to a common detailed schematic and detailed hydrologic, 
operations, and water demand data sets.   
 
Geographically modular or aggregated system-wide versions would allow additional local and 
regional water management options to be represented for particular operations and policy 
planning purposes and allow users to more quickly explore and develop operating policies.  
The final runs from such integrated or exploratory studies could then be evaluated using a more 
detailed and complete version of CALSIM II.   
 
Modular regional models might represent regions with relatively few inter-ties, such as: 
Sacramento Valley, Delta and eastside streams, San Joaquin Valley, San Francisco Bay Area, 
Tulare Basin, and Southern California (DWR�s South Coast and Colorado River hydrologic 
regions).  (We have had good success with the CALVIN model of California with 5 modular 
regional models, which combine to form a system-wide model.  These geographic sub-models 
greatly improved quality control in model development, work flow and data checking, and 
identification of problems in the model.) 
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6.9   Model Calibration and Testing 
 
Many approaches exist for model calibration and testing (Modeling Forum 2000).  Calibrating 
a planning model oriented to operations in an uncertain and distant future is always 
challenging.    For a model that serves many uses (including policy-urgent uses unforeseen by 
developers), use-specific testing will often be impossible within a responsive time frame and 
budget.  Such unavoidable situations call for more thorough, general, and well-documented 
model calibration and testing than would otherwise be needed. 
 
For the model to have technical credibility, stakeholder credibility, and to serve the kind of 
training and reference function needed for the water management community, a systematic and 
coherent means of setting parameter values in the model and documenting these values is 
needed.  Similarly, a systematic self-critical means of testing is needed for a model to establish 
and retain credibility, and have defined limitations, for a range of applications.   
 
A potentially excellent resource for model testing is comparisons of seasonal operations 
planning CALSIM II model runs with recent years� seasonal operations, as done by actual 
operators.  Similarly, system operators could scrutinize historical simulations, such as those in 
the recent November report, for systematic differences from operating practice.  Such 
comparison with operator policies and philosophy could also be performed with SWP or CVP 
delivery reliability estimates.  Such comparative analyses would both help define the likely 
(and unavoidable) differences between actual and modeled operations and water deliveries and 
identify potential opportunities to narrow such differences. 
 
Credibility arises, in part, from demonstration that problems and limitations are systematically 
identified and addressed or considered in model development and in making and interpreting 
model runs.  This can be accomplished by use of documentation, metadata, written guidance, 
and protocols and logs for identifying model problems and recording model improvements. 
 
Given present and anticipated uses of CALSIM II, the model should be calibrated, tested, and 
documented for �absolute� or non-comparative uses.  This is what many applications require 
today and will be increasingly desired and required in the future.  Maintaining the traditional 
�comparative-only� use of CALSIM II is undesirable if the model is to be useful for the CVP 
and SWP systems, the operations of water contractors, or for statewide planning purposes. 
 
6.10   Documentation of Model Improvements 
 
Along with better documentation of model versions, logs of data and model improvements and 
�bug fixes� should be maintained.  Explicit protocols and records for identifying and correcting 
modeling errors and problems would enhance the credibility of the modeling effort with 
technical people and policy makers.  Such protocols also provide an internal aid to staff and 
staff development in modeling. I understand that this kind of record-keeping is done, but the 
precise form of, nature, and extent of this record-keeping is unclear.  It would be useful and 
reassuring to stakeholders and policy makers to know that this kind of record-keeping of the 
software and data was being done. 
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6.11   Better Model Integration in Decision-Processes and Stakeholder Education  

 
Greater aid should be given to interested parties and decision-makers who must work with the 
unavoidable limitations of any model.  If possible, a document should be prepared for 
stakeholders and interested parties outlining the model, summarizing the model�s primary 
limitations, and providing guidelines for interpreting model results.  Those developing policy-
making forums and processes should thoughtfully incorporate computer models in these 
processes in ways that do not assume model omniscience, or otherwise place too great or 
exclusive a reliance on model results.   
 
Models and model results will never be perfect.  If models are to be important for planning and 
policy-making, they be must be presented and used in ways that enlighten policy-makers more 
than they add confusion and controversy to already difficult situations, if possible.   
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Appendix A:   CALSIM II Science Review 
 
Dates:     Nov 13-14th 
Location:       Bay-Delta Room, CBDA Offices 
  650 Capitol Mall, 5th Floor 
  Sacramento, CA 
 
Day 1: The Management Context, Model and Application Details 
 
9:00 Welcome � Kim Taylor 

•  Overview of the CALFED Bay Delta Program -  
•  Introduction of the Panel  

 
9:15 Water issues in California � Francis Chung 

•  General Hydrology 
•  SWP/CVP 
•  Operational challenges 
•  Sacramento-San Joaquin Delta � Ron Ott (5 min.) 
 

9:35 Panel Q&A 
 
9:45 Planning Models � Andy Draper 

•  CALSIM  software 
•  CALSIM II application overview 
•  Interaction with other models 
 

10:10 Panel Q&A 
 
10:20 Break 
 
10:30 Summary of CALSIM Applications 

•  DPLA/CalFed/US Bureau of Reclamation: Integrated Storage Investigations 
� Steve Roberts 

•  Bay Delta Office (DWR): SWP Delivery Reliability Report - Kathy Kelly 
•  USBR: Multi-layered modeling to simulate CVPIA (b)(2) water and 

Environmental Water Account Operations  � Nancy Parker 
•  Operations Control Office (DWR): Oroville Relicensing, SWP Allocation 

decision procedure � Curtis Creel 
•  Department of Planning and Local Assistance (DWR): California Water Plan 

Update � Kamyar Guivetchi/Ken Kirby 
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12:15 Panel Q&A 
 
12:30 Lunch 
 
1:15 Summary of User and Stakeholder Interviews 

1:15 Interview Summary and Findings � UC Davis 
1:35 Panel Q&A 
1:50 Public Comment 

 
2:15 CalSim II Details 

•  Development philosophy � Francis Chung 
•  Operation priorities, constraints, common assumptions � Erik Reyes 
•  Hydrology development � Andy Draper 
•  Delta water quality constraints � Ryan Wilbur 

 
3:15 CalSim Evaluation 

•  Historical Operations Study / Sensitivity Analysis � Sushil Arora 
 

3:30 Panel Q&A 
 
3:45 Break 
 
4:00 Future Directions 

•  Data Structure / Version Control / Multi-Period Prescriptive 
Optimization � Ryan Wilbur 

•  Daily Time Step - Dan Easton 
•  CalSim II � CVGSM Integration � Tariq Kadir  
•  Water Quality / Upstream Models � Nancy Parker 

 
5:00 Panel organizational meeting (additional information needs, questions of 

specific staff, discussion plan) 
 
Day 2�Panel Deliberations and Preliminary Report 
 
8:30 Panel Q&A with specific DWR and USBR staff on request 
 
9:30 Panel in camera discussions 
 
11:00 Panel presentation of draft main findings�Pete Loucks 
 
12:00 Wrap up and next steps - Kim Taylor 
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Appendix B:   Briefing Material for CALSIM II Peer Review 
 
California Water 
Averting a California Water Crisis (3 pages) 
California Water Today, Bulletin 160-0, Chapter 2 (20 pages) 
Water Supplies, California Water Plan Update, Bulletin 160-98, Chapter 3 (11pages) 
Urban, Agricultural and Environmental Water Use, California Water Plan Update, 
Bulletin 160-98, Chapter 4 (17 pages) 
California�s Major Water Projects (map) (1 page) 

CVP and SWP 
State Water Project Operations (6 pages) 
Central Valley Project Operations (16 pages) 

CalSim and CalSim II Overview 
CalSim: A Generalized Model for Reservoir System Analysis (19 pages) 

CalSim Software Details 
CalSim water resources simulation model: Users guide (18 pages) 
CalSim water resources simulation model: Wresl language reference (11 pages) 

CalSim II Details 
Network Representation (1 page) 
Sacramento-San Joaquin Delta Operations (9 pages) 
Coordinated Operating Agreement (3 pages) 
Reservoir Rule Curves (2 pages) 
CalSim ANN Implementation (8 pages) 
CVPIA (b)(2) Management and Operations (6 pages).ii 
EWA Management and Operations (8 pages) 
Multi-Cell Groundwater Model (2 pages) 
SWP and CVP Delivery Allocation Logic (3 pages) 

Hydrology Development 
Surface Water Hydrology Development for CalSim II (8 pages) 

Supporting Computer Models 
Model Interaction (1 page) 
CALAG (2 pages) 
CU Model (2 pages) 
DSM2 (2 pages) 
IGSM2 � CVGSM (4 pages) 
LCPSIM (5 pages) 

CalSim II Evaluation 
Planned Sensitivity Analysis (7 pages) 
CalSim II Simulation of Historical SWP-CVP Operations - Extracts (61 pages) 
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CalSim II Applications 
CalSim II Project Applications Summary (not completed) 
SWP Delivery Reliability Report � Extracts (25 pages) 
North of Delta Offstream Storage Investigations (3 pages) 
In-Delta Storage Investigations (3 pages) 
California Water Plan Update 2003 (3 pages) 
CalSim II and SWP Operations Control Office (1 page).iii 

Future Model Development 

(a) CalSim Software 
CalSimMulti-period Prescriptive Optimization (not completed) 
CalSim Daily Time Step Model (not completed) 
CalSim Water Quality Module (not completed) 
Data Structure / Version Control (not completed) 
CalSim Graphical User Interface (not completed) 

(b) CalSim II Applications 
CalSim II � CVGSM Integration (not completed) 
CalSim II Geographical Expansion (not completed) 
Global Climate Change (not completed) 
Refined Spatial Resolution (not completed) 
Expansion of Land Use Based Demands (not completed) 
CalSim II � CALVIN Integration (not completed) 
Revision of Urban Water Demands (not completed) 

(c) Supporting Models 
Replacement of Consumptive Use Model (not completed) 
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Appendix C:       CALSIM II Review Process and Timeline 
 
Establishing the Peer Review Panel  

Dr. Pete Loucks (Cornell University and South Florida Water Management 
District) has accepted the CALFED Science Program�s invitation to chair the panel. 
Other members are being currently being contacted by the Science Program staff 
 
Organization of Briefing Material 
 Science Program and key agency staff, in consultation with the review panel 
chair, are identifying and organizing briefing material for panel members. Target date 
for completion is Sept 1, 2003.   (This was extended to December 8, 2003) 
 
Public Meeting of Review Panel 
 Target: 2-day session in November, 2003 in Sacramento area 
 Review workshop structure will include: 

- Presentation overviews of California hydrology, water management, 
current issues, and the development of CALSIM II 

- Presentations on the range of different current and potential 
applications of CALSIM for planning, operations, and supply reliability 
projects 

- A summary of an independent interview project by Dr. Jay Lund of 
users and stakeholders explaining the major questions people are 
trying to answer with CALSIM II and other models 

- Public comment to the panel 
- Detail discussion of the model, including assumptions used in 

different applications, verification studies, and sensitivity analyses 
- Opportunity for panel members to ask follow up questions of CALSIM 

developers and users 
- An in camera session for panelists to discuss and begin compiling 

review comments 
- A public presentation of the panel�s draft findings 

 
Panel Chair Provides Final Report to CALFED Lead Scientist 
 The panelists will be asked to finalize their review comments within 3 weeks of 
the public meeting and to transmit those directly to the Lead Scientist. The Science 
Program will transmit the completed review to CBDA and the CALFED community. 
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Appendix  D:  Panelists  CALSIM II Review, Nov. 13-14, 2003 
 
Name      Affiliation  Position  Address/Phone/E-mail 
 
Andy Close Murray Darling Basin Commission  
    Lead Modeler and System Manager  
       GPO Box 409 Canberra ACT 2601, 
       AUSTRALIA 
       (02)62790102    
       andy.close@mdbc.gov.au 
 
Michael Haneman UC Berkeley "Senior Economist, Professor"  
       327 Giannini Hall,    
       Berkeley, CA 94720-3310     
       (510)642-2670   
       hanemann@are.berkeley.edu 
 
John Labadie Colorado State University  
     Professor B211 Engineering, Fort Collins, CO 
       80523 
       (970)491-6898   
       John.Labadie@colostate.edu 
 
Pete Loucks Cornell University Professor "Civil and Environmental Engineering, 
       311 Hollister Hall, Ithaca, NY 14853 "
       (607) 255-4896   DPL3@cornell.edu 
 
Jay Lund UC Davis  Professor Civil and Environmental Engineering  
       3109 Engineering III, Davis, CA  
       95616"  
       (530)752-5671   jrlund@ucdavis.edu 
 
Daene McKinney University of Texas at Austin  
     Professor Civil  and Environmental Engineering  
       Campus Mail Code: C1786,  
       Austin, TX 78712   
       (512)471-8772 
       daene_mckinney@mail.utexas.edu 
 
Jery Stedinger Cornell University  
     Professor Civil and Environmental Engineering, 
       Hollister Hall, Ithaca, NY 14853   
       (607) 255 2351    JRS5@Cornell.edu 
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Appendix E:  Managing Model Development, Application,   
  Documentation and Communication.  
 
One possible means of maintaining control of the quality of particular versions of CALSIM II 
and accompanying models used for SWP-CVP planning and management decisions is to create 
an interagency modeling consortium (IMC) consisting of DWR, USBR, and persons from 
other stakeholder organizations, including NGOs and universities, if they are interested and 
want to participate.  This consortium would be responsible for maintaining a toolbox of 
�acceptable� models for �official� use by the agencies and contractors.      
 
IMC responsibilities and authority could include: 
 

•  Prioritize, coordinate, and provide consistency, technical guidance and oversight for all 
modeling applications,  

•  Approve model selection and insure that each requested application is carried out using 
the most appropriate model(s) and input data,  

•  Provide or otherwise insure documentation of the modeling process itself as well as the 
modeling results,  

•  Insure that the results are expressed and made available in a way such that others can 
understand and benefit from that modeling application, as applicable.    

•  Implement peer reviews of models and their applications as deemed appropriate. 
 
 

To help meet their responsibilities the IMC will need to establish, publish and implement some 
procedures for insuring the quality of the entire model development and application process.   
They will need to identify among all the models that might be used, which are the most 
appropriate to address each of these separate groups of model applications.  They must identify 
various models, i.e., establish a model toolbox, from which clients can choose the one that best 
meets their needs (or perhaps argue that another model should be added to the toolbox). The 
IMC will also need to maintain model documentation and provide for peer reviews of any 
model, its documentation, and/or its use in a project.    
 
CMM Level 3 Performance Expectations 
 
 Firms that develop professional software are typically required to meet certain software 
standards.   One such standard is defined in a book from Carnegie Mellon University.  These so 
called Capability Maturity Model (CMM 1994) standards have various levels.  For example, 
the South Florida Water Management District, that develops hydrologic models used as inputs 
to major investment decisions, strives to meet Level 3 standards.  To meet such standards in 
software development and peer review, one needs to show that   
 

•  Modeling related problems are anticipated and prevented 
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•  Model development and application groups work together as an integrated product 
team. 

•  Model use training is planned and provided as is needed. 
•  New modeling methodologies are identified and evaluated for possible implementation 

on a qualitative basis. 
•  Data are collected and used in all defined processes.   
•  Data are systematically shared across various projects.  
•  Both the models and their applications are evaluated and judged satisfactory by 

independent reviewers.   
 
It seems to this panel that CALFED could without too much difficulty meet such standards if it 
chose to.  Clearly planning for, conducting, and documenting these activities will require 
additional time and money.   The expectation is that in the long run, such documentation and 
review will save time and money by redirecting misguided initiatives, identifying alternative 
approaches, or providing valuable technical support for a potentially controversial decision.    
 
  Model Toolbox 
 
The IMC in collaboration with all agencies involved in water resources planning could be 
responsible for creating and maintaining a collection of models that agencies can use to meet 
their needs.  As shown in Figure 1, this collection of models might be called the model 
toolbox.   The criteria to be used as a basis for deciding whether a proposed model should or 
should not be included in the toolbox will depend in part on an assessment of the attributes of 
that model compared to alternative models and the suitability of the model to meet the needs of 
the project.   Associated with the model toolbox is a library of completed model application 
documents and data bases for use by anyone who could benefit from them.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Model Toolbox consisting of approved models for use and Applications Library 
consisting of documentation and model data bases.   

Proposed Model for CALFED

Model Applications

Model Toolbox 

Model acceptance based on: theory, 
code, tests, doc., and suitability for  
                      CALFED 

Applications Library    
         Documentation and  
         Data Bases 
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Everyone would agree that all modeling applications should be performed with the �best� 
models available.  But �best� does not mean that all models used should be the most detailed, 
complex, realistic and thus usually the most expensive models available.  The decision 
regarding the �best� or most appropriate model should be based on the particular issues or 
questions being addressed, on the quantity and quality of the available input data, and on the 
time, personnel, and money available to perform the modeling application.   The central 
question to be answered before initiating any modeling application is just what model output 
information (and precision) is needed to meet the needs of the decision making process.  
Expressed in other words, just how sensitive will the decision be to the type, amount and 
precision of the model output?   
 
IMC in consultation with the other agencies could provide guidance on the adequacy of a 
particular version of CALSIM II or other associated model requested by each client with 
respect to the theory upon which it is based, its data requirements, its spatial and temporal 
resolutions, its documentation and status with respect to peer reviews, its capabilities, and its 
limitations.   Similar considerations must be given to the proposed input data.   To provide 
these services to each client requesting services from the IMC would require IMC to be staffed 
with personnel acquainted with the models in the toolbox, as well as be able to perform or 
review the simulations requested by various agencies.   
 
There will likely be requests to use models not yet included in the model toolbox.  IMC 
together with others from the DWR and/or USBR will need to judge the merits of such 
requests and if deemed beneficial, consider including such models in the toolbox.   
Undoubtedly the extent and quality of the documentation, testing, and peer review of various 
models in the toolbox will vary.  However, a model�s inclusion in the toolbox should signify 
that the model has been judged to be the best available for meeting the goals for which it was 
designed and is applicable to conditions in California.       
 
  Information Flows and Documentation 
 
The IMC will probably be devoting a substantial amount of time giving guidance to clients 
and, when applicable, to the public.  They will need to be working with the clients who are 
requesting model applications, and in situations where they are not doing this work, they will 
need to be reviewing and approving the work of the agencies or contractors who are 
performing the modeling services.   IMC would provide technical assistance as well as 
oversight and coordination among all CALSIM II modeling activities.    
 
Requests for modeling are easy to make, and time and money are required to carry them out.  
Requests sent to this proposed IMC should reflect some thought by those requesting such 
model runs  as to just why the model application is desired, and just how the results are to be 
used.   We would propose that requests include such items as: 
 
 

•  Reason for modeling, 
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•  Type of modeling (e.g., event based or continuous), 
•  Particular model preference if any, and why, and possible alternatives, 
•  Model output information (data) needed and why and when it is needed, 

o What questions are the model results going to answer? 
o What issues are being studied? 
o What decisions are to be made, or at least to be informed, based on these 

model results? 
o When are the model results needed? 
o What formats are desired for presenting the model results? 

•  Location or site being modeled and the spatial and temporal scales desired, 
•  Particular input data assumptions, boundary conditions and other regional assumptions 

required, 
•  Source of input data, and format required or desired for the output data, 
•  Model calibration and verification needs and preferred procedures if any, 
•  Money and time available for modeling,  
•  Extent (duration) of the simulations to be performed, 
•  Desired performance measures, other than variables being simulated, if any, 
•  Alternative scenarios to be modeled (i.e., number of simulation runs needed), 
•  Other analyses or model applications that may or will need the output from this model 

application, 
•  Sensitivity and uncertainty analyses needed, and for which decision variables and 

why, 
•  Client contact person,  
•  Requirements for intermediate reviews of results or needs for periodic review of 

modeling application process logs and documents, and 
•  Other particular requirements or needs. 

 
The use of a model nearly always takes place within a broader context. The model itself can 
also be part of a larger whole, such as a network of models in which some are using the outputs 
of other models.  These conditions may impose constraints on the simulation modeling project.  
All these considerations need to be specified in the modeling application request.    
 
Along with the proposal, there should also be a simple order-of-magnitude estimate of the 
expected values of all relevant decision variables based on simple mass-balance analytical 
solution methods that can be used without requiring a computer.  These estimated values 
should be used to validate (check the reasonableness of) selected portions of the model runs.   
If there are any serious discrepancies, it may signify a major problem in the model output. 
 
Is all this paperwork useful?   It is to the extent it leads to a more effective and efficient use of 
personnel, money and time.   Preparing a formal modeling application request requires some 
serious thought as to just why this is necessary and just what information is needed to further 
the project or analysis.  It involves defining the objectives that are to be accomplished.   
Writing this down in some detail helps reduce the differences in perception that can exist 
between those who need information and those who are going to provide that information 
(IMC or a contractor).  The problem as stated is often not the problem as understood, by either 
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the client or the model user.  In addition, problem perceptions and modeling objectives can 
change over the duration of a project.   One should ask and answer the question of whether or 
not modeling in general is the right way to obtain the needed information.  What are the 
alternatives to modeling? 
 
The objective of any modeling project should be clearly understood with respect to the domain 
and the problem area, the reason for using a particular model, the questions to be answered by 
the model, the model assumptions and limitations, and the scenarios to be modeled.  
Throughout the project these objective components should be checked to see if any have 
changed and if they are being met.  
 
If IMC is to serve as a central point to coordinate CALSIM II-related modeling activities, and 
to provide modeling services, it needs to have the authority to do so.  This authority extends to 
giving advice on issues related to model and input data selection, and for reviewing, approving 
and prioritizing requests for services.  Should contractors be involved in particular model 
applications, IMC must be authorized to specify the technical terms to be met and oversee the 
work done by the contractor.   Finally IMC will need the financial and human resources needed 
to do this in a timely manner.    
 
   Modeling Application Documentation   

 
One common problem of model studies once they are underway occurs when one wishes to go 
back over a series of simulation results to see what was changed or why a particular simulation 
was made or what was learned.   It is also commonly difficult if not impossible for third parties 
to continue from the point at which any previous modeling project was terminated, especially if 
some time has passed.   These problems are caused by a lack of information on how the study 
was carried out.  What was the pattern of thought that took place?  Which actions and activities 
were carried out?   Who carried out what work and why?   What choices were made?  How 
reliable are the end results?  These questions should be answerable if a model journal is kept.  
Just like computer programming documentation, modeling project documentation is often 
neglected under the pressure of time and perhaps because writing it is not as interesting as 
running the models themselves.  
 
The paper trail of what has happened, what assumptions have been made, how calibration and 
verification were carried out, what results were obtained, why changes, if any, were made, 
what sensitivity analysis procedures were used and their results, and so on, could be contained 
in a modeling application documentation (MAD).  Once the model application is completed, a 
copy of the MAD should be given to the requesting agency, as applicable and a copy should 
remain in IMC.  These reports, or at least a summary of them, should be available for 
downloading from the web.  Should further model applications be requested and approved, the 
requester as well as the IMC can refer to this previously prepared documentation to better 
understand what was done previously that pertains to the current request.   
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Model Calibration 
 
Once a model is tested satisfactorily, it can be calibrated.  Calibration of models such as 
CALSIM II are difficult because there are no historical observations of future scenarios to 
compare with model results.  Historical runs, such as have been made, can provide some basis 
for calibration.  In general the smaller the deviation between the calculated model results and 
the field observations, the better the model. This is true to a certain extent, as the deviations in 
a perfect model are only due to measurement errors.  In practice, however, a good fit is by no 
means a guarantee of a good model.  
 
The deviations between the model results and the field observations can be due to a number of 
factors. These factors include possible software errors, inappropriate modeling assumptions 
such as the (conscious) simplification of complex structures, neglecting certain processes, 
errors in the mathematical description or in the numerical method applied, inappropriate 
parameter values, errors in input data and boundary conditions, and measurement errors in the 
field observations. 
 
To determine whether or not a calibrated model is a �good� predictor, it should be validated or 
verified.  Calibrated models should be able to reproduce field observations not used in 
calibration. Validation can be carried out for calibrated models if an independent data set has 
been kept aside for this purpose.  If all available data are used in the calibration process in 
order to arrive at the best possible results, validation will not be possible.  A decision to leave 
out validation may be a justifiable one especially when data are limited. 
 
Philosophically it is impossible to know if a simulation model of a complex system is �correct�. 
There is no way to prove it.  Experimenting with a model, such as by carrying out multiple 
validation tests, can increase confidence in that model.   After a sufficient number of successful 
tests, one might be willing to state that the model is �good enough�, based on the modeling 
project requirements. The model can then be regarded as having been validated, at least for the 
ranges of input data and field observations used in the validation.     
 
If model predictions are to be made for situations or conditions for which the model has been 
validated, there may be some confidence in the reliability of those predictions.  Yet one cannot 
be certain.  Much less confidence can be placed on model predictions for conditions outside the 
range for which the model was validated.   
 
While a model should not be used for extrapolations as commonly applied in predictions and in 
scenario analyses, this is often exactly the reason for the modeling project. What is likely to 
happen given events we have not yet experienced?  A model�s answer to this question should 
also include the uncertainties attached to these predictions.  Depending on the type of model 
selected and used, one might end up predicting an incorrect future with great accuracy, or 
predicting the correct future with great uncertainty�.  We don�t yet know how to predict the 
correct future with great accuracy � so we do �what ifs�.   One can then argue about what 
scenarios � the ifs � are the most reasonable or probable, or about the impacts from improbable 
scenarios that you want to avoid should such scenarios occur.    
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Use the model 
 
Once the model has been judged �good enough,� the model may be used to obtain the 
information desired.    Close communication between the client and the modeler during the 
modeling application process is essential to avoid any unnecessary misunderstandings about 
what information is wanted and the assumptions on which that information is to be based.  
 
Before the end of this model-use step one should determine whether all the necessary 
simulations have been performed and whether they have been performed well.  Questions to 
ask include 
 

•  did the model fulfill its purpose? 
•  are the results valid? 
•  are the quality requirements met? 
•  was the discretization of space and time chosen well? 
•  was the choice of the model restrictions correct? 
•  was the correct model and/or model program chosen? 
•  was the numerical approach appropriate? 
•  was the implementation performed correctly? 
•  what are the sensitive parameters (and other factors)? 
•  was an uncertainty analysis performed? 

 
If any of the answers to these questions is no, then the situation should be corrected.  If it 
cannot, the reason(s) for why it cannot be corrected should be documented in the model 
application document (MAD).    
 

Interpret model results 
 
Interpreting the information resulting from models is a crucial step in the modeling application 
process, especially in situations in which the client may only be interested in those results and 
not the way they were obtained.  The model results can be compared to those of other similar 
studies.  Are the results consistent?   IMC must make that judgment.  Any unanticipated results 
should be discussed and explained.  The results should be judged with respect to the modeling 
project objectives.   
 
The results of any modeling project typically include large files of time-series data.  Only the 
most dedicated of clients will want to read those files.  Thus these data must be presented in a 
more concise form.  Statistical summaries should explicitly include any restrictions and 
uncertainties in the results.  They should identify any gaps in the domain knowledge, thus 
generating new research questions or identifying the need for more field observations and 
measurements.   
 

Report model results 
 
Once the modeling application is completed, the organization doing the modeling will be 
responsible for preparing a report.  The contents of this report should conform to the agreement 
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made between modeling organization and the client prior to the initiation of the modeling 
application (see above).  Although the results of a model are very rarely used as the sole basis 
for policy decisions, those requesting model applications may have a responsibility to translate 
their model results into policy recommendations.  Policymakers, managers, and indeed the 
participating stakeholders typically want simple and clear unambiguous answers to complex 
questions.  Much of the scientifically justified discussion, say regarding the uncertainties 
associated with some of the data, included in the main body of a report are not included in the 
executive summary of that report.  This executive summary is often the only part read by those 
responsible for making decisions.  Therefore, the conclusions of the model study must not only 
be scientifically correct, but also concisely formulated, without jargon, and fully 
understandable by managers and policymakers.   When preparing or reviewing contractor 
model results reports, the IMC should consider this need.   
 
These model application and model results reports should include sufficient detail to allow 
others to reproduce the model study (including its results) and/or to proceed from the point 
where this study ended.   The report therefore requires a clear indication of the validity, 
usability and any restrictions of the model results. 
 
 Data Management 
 
CALSIM II and its associated or linked models will require data.  They will also produce data.  
Many of these data will have spatial and temporal dimensions.  This information must be 
documented (meta data), preserved, and made accessible to IMC customers, coordination 
agencies and others.   IMC should participate in data management strategic development, 
storage, documentation and dissemination.  It should work with data base managers of various 
agencies to help them satisfy the IMC�s data management requirements.      
 
The availability of quality assured data is a critical dependency that must be met to facilitate 
timely completion of model development, implementation and application.  To mitigate the 
impact of the availability of data on the timeline for the major model completion deadlines, the 
following issues should be addressed.  : 
 

•  Updating land use / land cover data at regular and timely intervals. 
•  Developing and maintaining a common modeling database.  This data base should 

include infrastructure design and operating policy data as well as water quality, 
ecological, land use, economic and of course hydrological data.  Many of these data 
sets will have spatial as well as temporal dimensions.   Each data set should have an 
associated metadata file.   

•  Pre-processed and post-processed datasets from previous model runs should be 
archived along with its metadata file in a central location for ease of access and 
availability. 

•  Measures to insure the consistency and quality of the input data.  
•  Measures to insure adequate communication among model developers, users and 

stakeholders.   This includes measures to assist in developing documentation 
appropriate for each type of stakeholder.    
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  Support of IMC activities 
   
      Common failures of IMC type organizations are typically due to:  

•  Insufficient staff to enable cross-training.  This may lead to the dependency on one 
person or a very small group of employees for each sub module or the overall 
effort. 

•  Inadequate funding to institute good project management discipline. 
•  Inadequate funding to contract for technical writers and software engineers. 
•  Inadequate funding to contract for peer reviews. 

 

 Risk assessments 
 
A risk assessment of CALSIM II and its associated models and data should be completed.  The 
timely availability of quality assured data for example, is a risk.  Project risk management 
includes the processes concerned with identifying, analyzing, and responding to uncertainties.  
Risk management attempts to minimize the results of adverse events.  As a guide, the template, 
such as shown at the end of this Appendix, may be used to facilitate the assessment of risks. 
 
 Problem Management  
 
Given the high visibility and criticality of the CALSIM II modeling effort an issue or problem 
management process should be developed within IMC.  Issue/problem management includes 
the process for identifying, communicating, and resolving issues and problems.    
 
The purpose of this procedure is to ensure that: 

•  Issues are identified, reported, managed, and resolved in a timely and effective manner.  
Responsibility is assigned to an owner for reporting, managing and resolving each issue 

•  All affected stakeholders are aware of the status of the issues 

•  Escalation of unresolved issues take place according to a defined procedure 
In order to ensure that project issues and problems are appropriately managed various 
issue/problem management steps should be identified and followed to track the actions taken to 
resolve the issue or problem throughout the life of a modeling project. 

 
 B.   Managing Peer Reviews 
 
One means of quality control involves peer reviews of the models, their associated software, 
and their applications.  One possible means of facilitating the peer review processes and for 
maintaining control on the particular versions of CALSIM II and accompanying models used 
for SWP-CVP planning and management decisions is another reason to create an interagency 
modeling consortium (IMC) consisting of DWR, USBR, and other stakeholder organization 
personnel if they are interested and want to participate.  As suggested above, this consortium 
could be responsible for maintaining a toolbox of �acceptable� peer-reviewed models for use by 
the agencies and contractors.    The peer reviews should be of the theory underlying each 
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model, the model�s software, the documentation of that software, the model�s functions and 
capabilities including those pertaining to model data input and output, model calibration and 
verification, sensitivity analyses, uncertainty analyses, user control (GUIs), spatial and 
temporal resolutions, limiting assumptions, and on the model (as opposed to code) 
documentation. 
 
Just having evidence of published articles about a particular model in peer reviewed journals is 
not a substitute for a peer review of the model software and its applicability or suitability for 
certain types of analyses for SWP-CVP.   Peer reviews of all models, their software, and their 
use should be accomplished by experts both within and outside of the originating agencies.  
�Inside� agency (or internal) reviews may uncover some needed changes and identify other 
issues or problems that external reviewers could be asked to specifically examine and address.   
Internal reviews can make the external review process more effective, less costly and less time 
consuming.  
 
Peer reviews are considered a key process area for Level 3 and higher of the Capability 
Maturity Model guidelines for improving the software process (Carnegie Mellon University, 
1994).   The purpose of peer review evaluations is to find defects in the model formulation and 
software and in its use, i.e., model application.  Peer reviewers can also identify possible ways 
of correcting those defects, if any.   If there are no defects, or after all known defects have been 
corrected, both the developers and users of any model and its software can have a stronger 
basis for believing that their product and its output are reliable.    
 
Peer reviews serve the same function as accountants.   Once a firm�s financial records have 
been peer reviewed by accountants (assuming they are qualified, objective and honest) the 
board of directors as well as the stockholders will have more assurance of the liabilities and net 
worth of their firm, and just how well it is being managed.   In this case it is the assurance of 
the quality of the models, their software, and on their use in project evaluations, that actual and 
potential users of the model results depend upon.   
 
The types of problems and issues for which a model, its software, and its documentation are 
designed to address are called the model�s �application niche�.  Peer review of model 
development should include the evaluation of the intended application niche along with 
consideration of other aspects of model performance.  Users of any model should be aware of 
the types of analyses for which the model is best suited and those for which the model is not 
well suited.   This, along with the results of a peer review of any model application, should 
help the potential model user, or the user of the model results, better understand the limitations 
of the scientific basis of the model and just how much confidence can be placed on the model 
output.    
 
 Peer review triggers  
 
Clearly judgment will have to be exercised as to just when and in what detail a peer review 
needs to be implemented.  However the triggers on when a decision about a peer review needs 
to be made can be defined.    
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As shown in Figure 2, decisions regarding peer review are needed when models are proposed 
for the tool box and when model applications are completed.  Should IMC decide a peer review 
is warranted when either of those events takes place, they will have to decide on the type of 
review and its level of detail.  They will also need to identify the individuals to be asked to 
carry out that peer review.   
 
Peer reviews are going to take time and cost money.   They will also require IMC time to 
prepare the documentation needed for the peer reviewers and to read and act on reports 
prepared by the peer reviewers.  This will apply if the peer review is internal or external.   
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

Figure 2.   Schematic showing events where a peer review decision can be made.   

 
The particular models and their associated software and documentation to be peer reviewed 
should be identified by the individuals or departments or agencies.  This can include model 
process descriptions, software source code, documents, test results, and other supporting 
materials, as needed, for an adequate peer review of the entire model and its software. These 
products to be reviewed should be identified in writing and a written history of the review of 
different versions of each item should be maintained.    
 
Events that take place in the progression of model development and use and subsequent 
modifications that warrant a peer review should be identified and specified in a written 
document.  (This fits in to the model development and use documentation that should be 
maintained for Level 3 or higher CMM)   When these events take place a peer review process 
should be considered, and if warranted, implemented.   Depending on the event, the review can 
be solely internal, or it can involve an independent external review team as well.    

Proposed Model for CALFED 

Model Application 

Model Toolbox 

Model Peer Review? 
       Theory and code? 
       Suitability for CALFED 

Application Peer Review? 
 Internal? 
 External? 
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Model application reviews should include an evaluation of the intended model application 
niche, and its applicability to current needs.  Peer review may be appropriate for existing 
models when new information becomes available that could negate some or all of the 
conclusions of previous reviews or suggest a change in the currently specified application 
niche.  Peer review of a model�s applicability to a particular study should be planned well in 
advance of when model results are needed.  The results of application reviews can influence 
the decisions made based on the model outputs.  Once a peer review has been conducted for a 
particular model and its input data, peer reviews of subsequent applications of a model with 
similar inputs might be unnecessary.  However, any time the model results may be 
controversial, or end up in litigation, another peer review may be justified.     
 
 Peer Review Process 
 
The extent and process of performing and responding to peer reviews can vary in any 
organization.  The ones discussed in this section attempt to follow the processes recommended 
by the Capability Maturity Model Level 3 guidelines.    
 
Project peer review process should be specified in writing.   A first step in this process should 
be to identify the particular modeling products and processes that will undergo peer review.  
This includes the models (i.e. the processes being modeled and the assumptions built into the 
models for describing these processes), their supporting software, the documentation of the 
model and its software, as well as all the written guidelines on how the models are to be used.   
 
A second step is to perform an internal peer review prior to a model�s use for project 
evaluation.  It should be peer reviewed for accuracy, its suitability for use, and for identifying 
any possible errors in its logic, its coding, or in its documentation.   Following an internal 
review, an external peer review can be performed.   
 
Following the successful conclusion of internal and external peer reviews of a model and its 
documentation, the model can be applied to evaluate alternative projects.  After the model has 
been applied to a particular project, the modeling process and its results should be peer 
reviewed to insure that the model has been applied properly, that the input data were 
appropriate, and that the conclusions drawn were valid.   
 
Peer review teams should be selected, along with a peer review team leader.  The particular 
personnel on the team will depend on the particular model and its software and documentation 
being reviewed.   CALFED should have a list of qualified peer reviewers representing all 
applicable disciplines, both internal and external, that it can call upon to perform these reviews.     
The peer reviews are to be of the models and their use, not of the people who developed or 
used them.   The reviews are to be used to evaluate the quality of modeling products and 
processes, not of the personnel involved.    
 
Establishing and carrying out ongoing peer review processes costs money.  Adequate funding 
must be made available to  
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1. identify and recruit a peer review team and team leader 
2. prepare and distribute the peer review materials to the peer review team 
3. support the time required for the team to review the materials prior to a team meeting  
4. support the team meeting and to participate in it as appropriate (e.g., answering 

questions, conducting model experiments and sensitivity analyses, etc. ) 
5. reproduce and distribute the team report and to take actions as needed 
6. monitor the modifications or changes being made to the model, its software, and its 

documentation, or redoing the model application, as needed.   
7. prepare and distribute to model developers and potential users a report on the results of 

the peer review and the actions taken. 
 
The particular peer review process may depend on just what is being peer reviewed and the 
resources and time available to perform the review.  In general, however, the steps of a peer 
review could include the following: 
 

1. DWR or CALFED should identify and establish a pool of possible reviewers 
representing various disciplines, with sufficient redundancy to allow for scheduling 
conflicts when ever some subset of those reviewers are needed.  This includes both 
internal as well as external reviewers.  What ever administrative work is need to 
establish this pool should be completed prior to when these reviewers will be needed.   

 
2. At particular milestones in any new model development or in model application an 

internal peer review process could be initiated, to examine the modeling assumptions, 
the software that implements those assumptions in the case of model development or 
the data being used for model inputs in the case of model applications, and the 
documentation being prepared to describe the processes, to document the software 
code, and to document the tests that were run to test the code, or to document the results 
of the model application.   If deemed appropriate, an external peer review could also be 
performed.  If an external review is to take place, the particular reviewers need to be 
selected, notified, sent supporting documents, and be scheduled for one or more 
meetings, as needed.  They should be issued contracts specifying the requirements (the 
checklist of items to be reviewed) and products expected.  

 
3. Recommendations made by the peer review team need to be addressed and the actions 

taken along with the rationale for those actions should be documented. 
 
4. The peer review team should review the actions taken and the results obtained from 

these actions.  If not judged acceptable new recommendations should be made and 
submitted.   A final report should be prepared by the peer review team when all 
recommendations have been successfully implemented or addressed, or if no further 
actions based on review team�s recommendations will be taken by the model 
developers or users.    

 
The time and effort required for various levels of review should also be assessed and provided 
to the review team so that they can carry out the level of review requested of them.   Otherwise 
the reviews may be superficial and while appearing to be peer reviewed, a model and its 
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associated products may in fact be inadequately reviewed.  Peer review teams have the 
responsibility to specify in writing the scope and limitations of their reviews.   
 
As was the case for this peer review panel, the materials to be sent to the review team to allow 
them to prepare for their meeting should include the statement of review objectives and the 
level of detail desired, the applicable requirements and standards upon which to judge the 
adequacy of the products being reviewed, and of course the material that is to be reviewed.  
There should be a list of questions for the reviewers to address.  Each review team member 
should be assigned and given responsibility for answering specific questions and for 
completing specific aspects of the overall review.  All team members should be given specific 
review standards or requirements, including the expected completion dates.  Checklists should 
be provided the review team that are applicable to the specific type of product being reviewed 
and the level of detail to be examined.  These checklists will contain the criteria for judging the 
product, such as compliance with any standards and procedures, completeness, correctness, 
rules of construction, and maintainability. 
 
 Peer Review Issues and Questions 
 
Each model development or application review will dictate its own special set of questions to 
be addressed.   Some of these questions could relate to: 
 

•  Model Purpose and Objective 
o Use of model related to decisions being considered. 
o Model application niche, and why. 
o Model strengths and weaknesses �is it the best model? 

•  Model Processes and Limitations 
o Model processes, spatial and temporal scales, grid resolution. 
o Model variables and level of aggregation.   

•  Model Theoretical Basis 
o Model algorithms, numerical or analytical methods,  
o Model process formulation 
o Modeling approach in comparison with other models 
o Any shortcomings in relation to application niche 

•  Model Parameter Estimation 
o Methods used 
o Data available for parameter estimation 
o Parameter estimate reliabilities 
o Boundary conditions and appropriateness. 

•  Model Input Data Quantity/Quality 
o Data used in design of model 
o Data adequacy (quantity, quality, resolution) for model purpose and application 
o Data necessary for application of model 
o Key data gaps in model application 
o Additional data needs and why 

•  Model Key Assumptions 
o Basis for major assumptions 
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o Sensitivity of model outputs to key assumptions 
o Sensitivity of potential decisions to key assumptions 
o Ease in modifying key assumptions 

•  Model Performance Measures 
o Criteria for assessing model performance 
o Correspondence of model output with measured observed data 
o Any model bias throughout range of model predictions 
o Variability and uncertainty analyses and representations in model results 
o What determines model�s variability and uncertainty. 
o Model performance relative to others in application niche 

•  Model Documentation and User�s Guide 
o Clarity of documentation, comprehensiveness of user�s guide 
o Model applicability and limitations 
o Input data requirements for calibration, verification, model runs 
o Post modeling analyses, display and interpretation of results 
o Model code documentation 
o Model application documentation examples for prospective users. 

•  Review Retrospective   
o How well model and its application meet objectives and needs of project 
o Possible changes in the model to improve model performance 
o Robustness of model solutions to small changes in uncertain parameters, etc.   
o Ease of including uncertainty analyses associated with uncertain input data. 
o Key research needs for model improvement.    

   
 Peer Review Completion Reports 
 
Procedures need to be established to track and confirm actions based on suggested changes or 
modifications in the material being reviewed.   Once these actions are taken and completed, 
and documented, the peer review process for that particular product is completed.   Peer review 
completion reports should contain data on what was reviewed and the results of the review.  
These data should include a description of the products that were reviewed, the level of detail 
of the review, any review limitations or qualifications, the number and backgrounds of the 
reviewers, the time spent preparing for and during review team meetings, the defects found and 
recommendations made, and the actions taken to address these recommendations.    
 
 Overall Peer Review Evaluations 
 
The IMC or initiating agency should document the planning for and scheduling of peer 
reviews.  The products to be reviewed and the level of detail to be examined also need to be 
specified.   The procedures to be followed for selecting peer review team members, and the 
team leader, should also be determined and documented.  Procedures for training potential 
reviewers, if such training is needed, should be identified and implemented, as required.    
 
Periodically the IMC or applicable agency should assess just how well the plan described in the 
preceding paragraph is being carried out, and just how beneficial these peer reviews are to the 
overall modeling effort.   Measures should be identified and used to determine the status of the 
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peer review activities.   These measures could include the number of completed peer reviews 
performed compared to the number expected to be performed, the overall effort expended on 
peer reviews compared to that expected, and the number and extent of peer review 
recommendations requiring actions.   
 
At a minimum these periodic reviews should verify that 

1. The planned peer reviews and/or audits are conducted. 
2. The peer review leaders are adequately trained for their roles. 
3. The reviewers are properly trained or experienced in their roles. 
4. The processes for preparing for and conducting peer reviews, and for following up on 

reviewer�s recommendations are adequate and are being followed. 
5. The reporting of peer review results is complete, accurate, timely and is being made 

available to model users.   
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Risk Management Template 
 
 
Risk Definition Name Enter a short name that uniquely defines the risk 
Risk # Enter a unique number assigned to the risk.  Range starts with 1 and continues. 
Date Risk Identified Enter the date the risk was identified 
Risk Identification  
Source 

Enter the source of the risk identification.  In example, meeting name, group, or person.

Risk Owner Enter the name of the person who will be responsible for ensuring the risk is approved, 
managed, periodically assessed, communicated, and tracked through closed or 
 transfer. 

Risk Detailed  
Description 

Enter a detailed description of the risk so that a reader clearly understands the risk. 

Probable Impact  
of Risk on Project  
(H, M, L) 

Enter the impact on the project.   
o High = the risk will most likely occur and the impact could prevent the project from  
achieving its purpose.  
o Medium = there is a 50/50 change the risk would occur and the impact is serious but 
the project could still achieve its purpose if appropriately managed.  
o Low = there is a low probability that the risk would occur and minimal impact to the  
project�s purpose. 

Probable Impact of 
 Risk on Project  
Costs  

Enter the impact on the project in dollars.  Determine what the potential cost to the  
project would be if the risk occurs. 

Probable Impact of  
Risk on Project  
Schedule  

Enter the schedule impact on the project.  Determine how the schedule would be  
potentially impacted if the risk occurs. 

Probable Impact of  
Risk on Project  
Results 

Enter the impact on the project.  Determine how the overall project purpose and results
 will be potentially impacted if the risk occurs. 

Detailed Plan to  
Mitigate or Transfer  
Risk 

Enter the detailed plan to mitigate the risk or a statement that the risk will be accepted. 
Mitigation could include ways to minimize, avoid, or transfer the risk to another party or 
group.  Risk transfer would include evidence of agreement by the accepting party. 

Detailed Project  
Action Items  
Required to Mitigate 
or Transfer Risk 

Enter the detailed action items required to mitigate the risk.  These items will be  
summarized and assigned within the project Action Log, along with an action item  
owner, and target completion date.   

Detailed Project  
Plan Tasks  
 Required to  
Mitigate Risk  

Enter the detailed project plan task required to mitigate the risk.  These items will be  
summarized and contained within the MS Project Schedule along with the effort,  
duration, schedule, and assigned resources. 

Comments Enter any permanent comments that cannot be included in the above items. 
Referenced  
Documents 

Enter any documents that a reader should consider in understanding, analyzing,  
mitigating, or accepting this risk. 

Date Risk Closed Enter the date this risk was closed.  This would include when all action items or project 
 tasks were completed, or the risk was transferred to another party or group. 
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Appendix F:  Analysis of the November 2003 CALSIM II 
Validation Report 
 
The following comments come from an analysis of the model results presented in the 
validation report �CALSIM II Simulation of Historical SWP/CVP Operations�, DWR (2003). 
The observations relate to the formulation of the model at November 2003. Changes might be 
made to that formulation which could resolve these issues.  
 
Overestimation of Project Deliveries  
 
The validation run suggests that the modeled demands included in CALSIM II overestimate the 
actual demands. CVP demands south of the Delta are assumed to be always equal to the 
contract entitlement whereas the observed deliveries in unrestricted years are consistently less 
than this amount. The modeled North of Delta deliveries are also consistently higher than 
observed. The modeled and observed CVP deliveries from the validation report are listed in 
Table 1. 
 
Table 1. Comparison of modelled and observed CVP deliveries (1975-1998) 
 
Project Simulated 

Delivery 
(Taf/yr) 

Historical 
Delivery 
(taf/yr) 

Difference 
(taf/yr) 

% 
Difference 

CVP North of Delta 1960 1750 210 12 
CVP South of Delta 2650 2490 160 6.4 
 
Because the SWP south of delta demands were set to historical deliveries in many years, 
comparison with the historical deliveries in the validation report is of limited validity. However 
the fact that the historical SWP deliveries over the last ten years have averaged only 2385 
taf/year while the modeled �year 2001 development� SWP Delta deliveries reported in the 2002 
State Water Project Delivery Reliability Report average 3090 taf/year, suggests that modeled 
SWP deliveries may also be too high.  
 
Allocations to Project Contractors 
 
Seasonal allocations to SWP and CVP contractors are made on the basis of water in storage, 
forecast inflows, projected carryover storage requirements and in-Basin and Delta regulatory 
requirements. The allocation processes used by the operators and those used by CALSIM II, 
are not identical. An examination of the way that CALSIM II has restricted project deliveries 
during the dry period of 1987-1992 (Figures 10, 16, 17 and 24 of the validation report) 
suggests that CALSIM II has allocated less water in the early years of the dry sequence than 
occurred in practice and consequently had more water available in 1991 and 1992 when the 
most severe restrictions were experienced. The carryover storage rules adopted can have a 
significant impact on the expected frequency and severity of water supply restrictions. The 
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model rules need to be examined to ensure that the accurately reflect the way the system will 
be managed in the future. 
 
San Luis Reservoir Operation 
 
The rules used by the system operators for transferring water from headwater storages to the 
San Luis Reservoir can have a significant impact on: 
•  the pattern of flow in the Delta,  
•  the operation of accounting rules between the SWP and the CVP and 
•  opportunities for SWP wheeling of CVP water and possibly the availability of Article 21 

water to SWP contractors.  
 
A comparison of the modeled and observed storage behavior of the SWP component of San 
Luis (Figure 15) reveals that the model consistently underestimates the volume in storage. A 
comparison of the CVP component of the storage (Figure 23) indicates that the actual storage 
is filled earlier in the season and that the actual storage is also slightly higher than the modeled. 
 
Users of CALSIM II output need to be confident that the rules adopted by the model for 
determining these transfers reflect the way this component of the system will be operated in 
the future. 
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Appendix G:   Some Principles for Strategic Water Analysis  
 for the California Water Plan Bulletin 160-03 (from the  
 stakeholder review Draft,  Sept. 30, 2003) 
 
Strategy: 
1) A frequently amended strategic document will lay out DWR�s strategic analysis 

framework and identify the technical objectives, roles, and responsibilities of major 
DWR data collection efforts and analytical tools and their interactions and their 
responsible managers. 

 
Transparency: 
2) All data and models should be in the public domain and available on the web.  
3) All data and models should have significant documentation. 
4) Known limitations should be documented. 
 
Longer-term viability: 
5) Modularity:  Major analytical tools will be designed and implemented to fit 

modularly and explicitly within the larger strategic analysis framework. 
6) Adaptive data management framework:  Major data efforts will fall within a larger 

data management framework, including protocols for data documentation and 
updating, and documentation of limitations. 

7) A frequently-updated document will outline short-term and long-term efforts, 
budgets, and responsibilities for continuous improvement of analytical tools and 
data, with policy for continued user, local agency, and stakeholder involvement. 

 
Coverage: 
8) Spatial coverage for the basic data and analytical framework will be statewide. 
9) Local and regional water management and resources will be explicitly represented. 
 
Accountability and Quality Control: 
10) In developing analytical tools, systematic efforts should be made to involve local 

agencies and stakeholders. 
11) Major analytical products will undergo external review by a) external unaffiliated 

experts and b) local agencies whose systems are included in the model.  User 
groups will exist for all major analytical products.  

12) DWR�s strategic analysis framework will undergo periodic internal and external 
review. 
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Appendix H:   Model Sensitivity and Uncertainty Analysis  
(This is a draft of a book chapter by DPL/JRS that may be useful for CALSIM II developers) 
 
1.  Introduction 

2.  Issues, concerns, and terminology 

3.  Variability and uncertainty in model output  
3.1  Natural variability  

 3.2  Knowledge uncertainty  
 3.3  Decision uncertainty 

4.  Sensitivity and uncertainty analyses 
4.1   Sensitivity Analyses 
4.2   Uncertainty Analyses 

5.  Performance indicator uncertainties 
 5.1  Performance measure target uncertainty 

5.2  Distinguishing differences between performance indicator distributions  

6.  Communicating model output uncertainty 

7.  Conclusions 

8.  References 

 
 
 
The usefulness of any model is in part dependent on the accuracy and reliability of its 
output data.  Yet, because all models are imperfect abstractions of reality, and because 
precise input data are rarely if ever available, all output values are subject to 
imprecision.  The input data and modeling uncertainties are not independent of each 
other.  They can interact in various ways.  The end result is imprecision and uncertainty 
associated with model output.  This chapter focuses on ways of identifying, quantifying, 
and communicating the uncertainties in model outputs.   
 
 
1. Introduction 
Models are the primary way we have to estimate the multiple affects of alternative water 
resource system design and operating policies.  Models predict the values of various system 
performance indicators.   Model outputs are based on model structure, hydrologic and other 
time-series inputs and a host of parameters whose values describe the system being simulated.  
Even if these assumptions and input data reflect, or are at least representative of, conditions 
believed to be true, we know they will be wrong.  Our models are always simplifications of the 
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real systems we are studying.  Furthermore, we simply cannot forecast the future with 
precision.  So we know the model outputs of future conditions are uncertain estimates, at best.  
 

Some prediction uncertainties can be reduced by additional research and data collection and 
analysis.  Before undertaking expensive studies to gather and analyze additional data it is 
reasonable to ask what improvement in estimates of system performance or what reduction in 
the uncertainty associated with those estimates would result if all data and model uncertainties 
could be reduced.   Such information helps determine how much one would be willing to �pay� 
to reduce prediction uncertainty.   If prediction uncertainty on average is costing a lot, it may 
pay to invest in additional data collection, more studies, or in better models all aimed at 
reducing that prediction uncertainty.  If that uncertainty has no, or only a very modest, impact 
on the likely decision that is to be made, one should find other issues to worry about.   
 
If it appears that reducing prediction uncertainty is worthwhile, then one should consider how 
best to do it.  If doing this involves obtaining additional information, then it is clear that the 
value of this additional information, however measured, should exceed the cost of obtaining it.  
The value of such information will be the increase in system performance, or the reduction in 
its variance, that one can expect from obtaining such information.  If additional information is 
to be obtained, it should be that information which reduces the uncertainties considered 
important, not the unimportant ones.   
 
This chapter reviews some methods for identifying and communicating model prediction 
uncertainty.   The discussion begins with a review of the causes of risk and uncertainty in 
model output.  It then examines ways of measuring or quantifying uncertainty and model 
output sensitivity to model input imprecision, concentrating on methods that seem most 
relevant or practical for large-scale regional simulation modeling.    It builds on some of the 
statistical methods reviewed in Chapter III and the modeling of risk and uncertainty in Chapter 
VI.  
 
2.  Issues, concerns, and terminology 
 
Outcomes or events that cannot be predicted with certainty are often called risky or uncertain.  
Some individuals draw a special and interesting distinction between risk and uncertainty. In 
particular, the term risk is often reserved to describe situations for which probabilities are 
available to describe the likelihood of various events or outcomes.  If probabilities of various 
events or outcomes cannot be quantified, or if the events themselves are unpredictable, some 
would say the problem is then one of uncertainty, and not of risk.  In this chapter what is not 
certain is considered uncertain, and uncertainty is often described by a probability distribution.  
When the ranges of possible events are known and their probabilities are measurable, risk is 
called objective risk.  If the probabilities are based solely on human judgment, the risk is called 
subjective risk.   
 
Such distinctions between objective and subjective risk, and between risk and uncertainty, 
rarely serve any useful purpose to those developing and using models.  Likewise the 
distinctions are often unimportant to those who should be aware of the risks or uncertainties 
associated with system performance indicator values.  
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Uncertainty in information is inherent in future-oriented planning efforts.  Uncertainty stems 
from inadequate information and incorrect assumptions, as well as from the variability of 
natural processes. Water managers often need to identify both the uncertainty as well as the 
sensitivity of, or changes in, system performance indicator values due to the any changes in 
possible input data and parameter values from what were predicted.  They need to reduce this 
level of uncertainty to the extent practicable.  Finally, they need to communicate the residual 
uncertainties clearly so that decisions can be made with this knowledge and understanding.   

 

Sensitivity analysis can be distinguished from uncertainty analysis.  Sensitivity analysis 
procedures explore and quantify the impact of possible errors in input data on predicted model 
outputs and system performance indices.  Simple sensitivity analysis procedures can be used to 
illustrate either graphically or numerically the consequences of alternative assumptions about 
the future.  Uncertainty analyses employing probabilistic descriptions of model inputs can be 
used to derive probability distributions of model outputs and system performance indices.  
Figure 1 illustrates the impact of both input data sensitivity and input data uncertainty on 
model output uncertainty. 

 

 
 

Figure 1.  Schematic diagram showing relationship among model input parameter uncertainty 
and sensitivity to model output variable uncertainty (Lal, 1995).    

 

It is worthwhile to explore the transformation of uncertainties in model inputs and parameters 
into uncertainty in model outputs when conditions differ from those reflected by the model 
inputs.  Historical records of system characteristics are typically used as a basis for model 
inputs.  Yet conditions in the future may change.  There may be changes in the frequency and 
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amounts of precipitation, changes in land cover and topography, and changes in the design and 
operation of control structures, all resulting in changes of water stages and flows, and their 
qualities, and consequently changes in the impacted ecosystems. 
 
If asked how the system would operate with inputs similar to those in the historical database, 
the model should be able to interpolate within the available knowledge base to provide a fairly 
precise estimate.  Still that estimate will not be perfect.  This is because our ability to reproduce 
current and recent operations is not perfect, though it should be fairly good.  If asked to predict 
system performance for situations very different from those in the historical knowledge base, 
or when the historical data are not considered representative of what might happen in the 
future, say due to climate change, such predictions become much less precise.  There are two 
reasons why.   First, our description of the characteristics of those different situations or 
conditions may be imprecise.  Second, our knowledge base may not be sufficient for 
calibrating model parameters in ways that would enable us to reliably predict how the system 
will operate under conditions unlike those that have been experienced historically.   The more 
conditions of interest are unlike those in the historical knowledge base, the less confidence we 
have that the model is providing a reliable description of systems operation.    Figure 2 
illustrates this issue.   

 

 

 
 
 
 
Figure 2.  The precision of model predictions is affected by the difference between the 
conditions or scenarios of interest and the conditions or scenarios for which the model was 
calibrated. 

 
 

Clearly a sensitivity analysis needs to consider how well a model can replicate current 
operations, and how similar the target conditions or scenarios are to those described in the 
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historical record.  The greater the required extrapolation from what has been observed, the 
greater will be the importance of parameter and model uncertainties.   
 
The relative and absolute importance of different parameters will depend on the system 
performance indicators of interest.  Seepage rates may have a very large local effect, but a 
small global effect.  Changes in system-wide evapotranspiration rates will likely impact 
system-wide flows.  The precision of model projections and the relative importance of errors in 
different parameters will depend upon the: 

(1) precision with which the model can reproduce observed conditions, 
(2) difference between the conditions predicted and the historical experience  
 included in the knowledge base, and the 
(3) system performance characteristics of interest.   
 

Errors and approximations in input data measurement, parameter values, model structure and 
model solution algorithms, are all sources of uncertainty.  While there are reasonable ways of 
quantifying and reducing these errors and the resulting range of uncertainty of various system 
performance indicator values they are impossible to eliminate.  Decisions will still have to be 
made in the face of a risky and uncertain future.   Decisions can be modified as new data and 
knowledge are obtained in a process of adaptive management.   

 
There is also uncertainty with respect to human behavior and reaction related to particular 
outcomes and their likelihoods, i.e., to their risks and uncertainties.  As important as risks and 
uncertainties associated with human reactions are to particular outcomes, they are not usually 
part of the models themselves.  Social uncertainty may often be the most significant component 
of the total uncertainty associated with just how a water resource system will perform.  For this 
reason we should seek designs and operating policies that are flexible and adaptable.   

 

When uncertainties associated with system operation under a new operating regime are large, 
one should anticipate the need to make changes and improvements as experience is gained and 
new information accumulates.  When predictions are highly unreliable, responsible managers 
should favor actions that are robust (e.g., good under a wide range of situations), gain 
information through research and experimentation, monitor results to provide feedback for the 
next decision, update assessments and modify policies in the light of new information, and 
avoid irreversible actions and commitments.   

 
3.  Variability and uncertainty in model output  
 
Differences between model output and observed values can result from either natural 
variability, say caused by unpredictable rainfall, evapotranspiration, water consumption, and 
the like, and/or by both known and unknown errors in the input data, the model parameters, or 
the model itself.   The later is sometimes called knowledge uncertainty but it isn�t always due 
to a lack of knowledge.  Models are always simplifications of reality and hence �imprecision� 
can result.  Sometimes imprecision occurs because of a lack of knowledge, such as just how a 
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particular species will react to various environmental and other habitat conditions.   Other 
times known errors are introduced simply for practical reasons.   
 
Imperfect representation of processes in a model constitutes model structural uncertainty.  
Imperfect knowledge of the values of parameters associated with these processes constitutes 
model parameter uncertainty.  Natural variability includes both temporal variability and spatial 
variability, to which model input values may be subject.   

 

 
 

Figure 3.   One way of classifying types of uncertainty.   

 

Figure 3 illustrates these different types of uncertainty.  For example, the rainfall measured at a 
weather station within a particular model grid cell may be used as an input value for that cell, 
but the rainfall may actually vary at different points within that cell and its mean value will 
vary across the landscape.  Knowledge uncertainty can be reduced through further 
measurement and/or research.  Natural variability is a property of the natural system, and is 
usually not reducible at the scale being used.  Decision uncertainty is simply an 
acknowledgement that we cannot predict ahead of time just what decisions individuals and 
organizations will make, or even just what particular set of goals or objectives will be 
considered and the relative importance of each.    

 

Rather than contrasting �knowledge� uncertainty vs. natural variability vs. decision uncertainty, 
one can classify uncertainty in another way based on specific sources of uncertainty, such as 
those listed below, and address ways of identifying and dealing with each source of 
uncertainty.   
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Informational Uncertainties:  
•  imprecision in specifying the boundary and initial conditions that impact the output 

variable values 
•  imprecision in measuring observed output variable values  
 
Model Uncertainties: 

 
•  uncertain model structure and parameter values 
•  variability of observed input and output values over a region smaller than the spatial 

scale of the model   
•  variability of observed model input and output values within a time smaller than the 

temporal scale of the model. (e.g., rainfall and depths and flows within a day)  
•  errors in linking models of different spatial and temporal scales  
 
Numerical Errors: 
 
•  errors in the model solution algorithm 

 
3.1  Natural variability  
 
The main source of hydrologic model output value variability is the natural variability in 
hydrological and meteorological input series.  Periods of normal precipitation and temperature 
can be interrupted by periods of extended drought and intense meteorological events such as 
hurricanes and tornadoes.   There is no reason to think such events will not continue to occur 
and become even more frequent and extreme.  Research has demonstrated that climate has 
been variable in the past and concerns about anthropogenic activities that may increase that 
variability increase each year.   Sensitivity analysis can help assess the affect of errors in 
predictions if those predictions are based only on past records of historical time-series data 
describing precipitation, temperature and other exogenous forces across and on the border of 
the regions being studied. 

 
Time series input data are often actual, or at least based on, historical data.  The time-series 
values typically describe historical conditions including droughts and wet periods.  What is 
distinctive about natural uncertainty, as opposed to errors and uncertainty due to modeling 
limitations, is that natural variability in meteorological forces cannot be reduced by improving 
the model�s structure, increasing the resolution of the simulation, or by better calibration of 
model parameters. 
 
Errors result if meteorological values are not measured or recorded accurately, or if mistakes 
are made in the generation of computer data files.  Furthermore, there is no assurance the 
statistical properties of historical data will accurately represent the statistical properties of 
future data.  Actual future precipitation and temperature scenarios will be different from those 
in the past, and this difference in many cases may have a larger affect than the uncertainty due 
to incorrect parameter values.  However, the affects of uncertainties in the parameter values 



 78

used in stochastic generation models are often much more significant than the affects of using 
different stochastic generation models (Stedinger and Taylor, 1982). 

 
While variability of model output is a direct result of variability of model input (e.g., 
hydrologic and meteorological data), the extent of the variability, and the lower and upper 
limits of that variability, may also be affected by errors in the inputs, the values of parameters, 
initial boundary conditions, model structure, processes and solution algorithms.  

 
Figure 4 illustrates the distinction between the variability of a system performance indicator 
due to input data variability, and the extended range of variability due to the total uncertainty 
associated with any combination of the causes listed in the previous section.  This extended 
range is what is of interest to water resource planners and managers. 

          

 
 

Figure 4.   Time-series of model output or system performance showing variability over time.   
Range "a" results from the natural variability of input data over time.  The extended range "b" 
results from the variability of natural input data as well as from imprecision in input data 
measurement, parameter value estimation, model structure and errors in model solution 
algorithms.  The extent of this range will depend on the confidence level associated with that 
range. 

 
What can occur in practice is a time-series of system performance indicator values that can 
range anywhere within or even outside the extended range, assuming the confidence level of 
that extended range is less than 100%.  The confidence one can have that some future value of 
a time series will be within a given range is dependent on two factors.  The first is the number 
of measurements used to compute the confidence limits.  The second is on the assumption that 
those measurements are representative of - come from the same statistical or stochastic process 
yielding - future measurements.   Figure 5 illustrates this point.   Note that the time series may 
even contain values outside the range "b" defined in Figure 4 if the confidence level of that 
range is less than 100%.  Confidence intervals associated with less than 100% certainty will 
not include every possible value that might occur.        
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Figure 5.  Typical time series of model output or system performance indicator values that are 
the result of input data variability and possible imprecision in input data measurement, 
parameter value estimation, model structure and errors in model solution algorithms.   

  
 
3.2  Knowledge uncertainty  
 
Referring to Figure 3, knowledge uncertainty includes model structure and parameter value 
uncertainties.   First we consider parameter value uncertainty including boundary condition 
uncertainty, and then model and solution algorithm uncertainty.   
 
3.2.1  Parameter value uncertainty   
 
A possible source of uncertainty in model output results from uncertain estimates of various 
model parameter values.  If the model calibration procedure were repeated using different data 
sets, different parameter values would result.  Those values would yield different simulated 
system behavior, and thus different predictions.  We can call this parameter uncertainty in the 
predictions because it is caused by imprecise parameter values.  If such parameter value 
imprecision were eliminated, then the prediction would always be the same and so the 
parameter value uncertainty in the predictions would be zero.   But this does not mean that 
predictions would be perfectly accurate.   
 
In addition to parameter value imprecision, uncertainty in model output can result from 
imprecise specification of boundary conditions.  These boundary conditions can be either fixed 
or variable.  However, because they are not being computed based on the state of the system, 
their values can be uncertain.  These uncertainties can affect the model output, especially in the 
vicinity of the boundary, in each time step of the simulation.    
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3.2.2  Model structural and computational errors   
 
Uncertainty in model output can also result from errors in the model structure compared to the 
real system, and approximations made by numerical methods employed in the simulation.  No 
matter how good our parameter value estimates, our models are not perfect and there is a 
residual model error.  Increasing model complexity to more closely represent the complexity of 
the real system may not only add to the cost of data collection, but also introduce even more 
parameters, and thus even more potential sources of error in model output.  It is not an easy 
task to judge the appropriate level of model complexity, and to estimate the resulting levels of 
uncertainty associated with various assumptions regarding model structure and solution 
methods.    Kuczera (1988) provides an example of a conceptual hydrologic modeling exercise 
with daily time steps where model uncertainty dominated parameter value uncertainty. 

 

 
3.3  Decision uncertainty  
 
Uncertainty in model predictions can result from unanticipated changes in what is being 
modeled.  These can include changes in nature, human goals, interests, activities, demands, and 
impacts.  An example of this is the deviation from standard or published operating policies by 
operators of infrastructure such as canal gates, pumps, and reservoirs in the field, as compared 
to what is specified in documents and incorporated into the water systems models.   Comparing 
field data with model data for model calibration may yield incorrect calibrations if operating 
policies actually implemented in the field differ significantly from those built into the models.   
What do operators do in times of stress?  And can anyone identify a place where deviations 
from published policies do not occur?     

 

What humans will want to achieve in the future may not be the same as what they want today.  
Predictions of what people will want in the future are clearly sources of uncertainty.  A perfect 
example of this is in the very flat Greater Everglades region of south Florida in the US.   Fifty 
years ago folks wanted the swampy region protected from floods and drained for agricultural 
and urban development.   Today many want just the opposite at least where there are no human 
settlements.  They want to return to a more natural hydrologic system with more wetlands and 
unobstructed flows, but now for ecological restoration objectives that were not a major concern 
or much appreciated some half a century ago.  Once the mosquitoes return and if the sea level 
continues to rise, future populations who live there may want more flood control and drainage 
again.  Who knows?  Complex changing social and economic processes influence human 
activities and their demands for water resources and environmental amenities over time.  Some 
of these processes reflect changes in local concerns, interests and activities, but population 
migration and many economic activities and social attitudes can also reflect changing national 
and international trends.   
 
Sensitivity scenarios that include human activities can help define the affects of those activities 
within an area.   It is important that careful attention go into the development of these 
alternative scenarios so that they realistically capture the forces or stresses that the system may 
face.  The history of systems studies are full of examples where the issues studied were rapidly 
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overwhelmed by much larger social forces resulting from, for example, the relocation of major 
economic activities, an oil embargo, changes in national demand for natural resources, 
economic recession, sea-level rise, an act of terrorism, or even war.   One thing is sure; the 
future will be different than the past, and no one is certain just how.   

 
3.3.1  Surprises   
 
Water resource managers may also want to consider how vulnerable a system is to undesirable 
environmental surprises.  What havoc might an introduced species like the zebra mussel 
invading the Great Lakes of North America have in a particular watershed?  Might some 
introduced disease suddenly threaten key plant or animal species?  Might management plans 
have to be restructured to address the survival of some species such as salmon in the Rhine 
River in Europe or in the Columbia River in North America?  Such uncertainties are hard to 
anticipate when by their nature they are truly surprises.  But surprises should be expected.   
Hence system flexibility  and adaptability should be sought to deal with changing management 
demands, objectives, and constraints.   

 
 
4.  Sensitivity and uncertainty analyses 
 
An uncertainty analysis is not the same as a sensitivity analysis.  An uncertainty analysis 
attempts to describe the entire set of possible outcomes, together with their associated 
probabilities of occurrence.  A sensitivity analysis attempts to determine the relative change in 
model output values given modest changes in model input values.  A sensitivity analysis thus 
measures the change in the model output in a localized region of the space of inputs. However, 
one can often use the same set of model runs for both uncertainty analyses and sensitivity 
analyses. It is possible to carry out a sensitivity analysis of the model around a current solution 
and then use it as part of a first order uncertainty analysis.    
 
This discussion begins by focusing on some methods of uncertainty analysis.  Then various 
ways of performing and displaying sensitivity analyses are reviewed.   
 
4.1   Uncertainty Analyses 
 
Recall that uncertainty involves the notion of randomness.   If a value of a performance 
indicator or performance measure, or in fact any variable, like the phosphorus concentration or 
the depth of water at a particular location varies and this variation over space and time cannot 
be predicted with certainty, it is called a random variable.  One cannot say with certainty what 
the value of a random variable will be but only the likelihood or probability that it will be 
within some specified range of values.  The probabilities of observing particular ranges of 
values of a random variable are described or defined by a probability distribution.   There are 
many types of distributions and each can be expressed in several ways as presented in Chapter 
III. 
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Suppose the random variable is X.  If the observed values of this random variable can be only 
discrete values, the probability distribution of X can be expressed as a histogram, as shown in 
Figure 6a.   The sum of the probabilities for all possible outcomes must equal 1.   If the random 
variable is a continuous variable that can assume any real value over a range of values, the 
probability distribution of X can be expressed as a continuous distribution as shown in Figure 
6b.  The shaded area under the density function for the continuous distribution is 1.  The area 
between two values of the continuous random variable, such as between u and v in Figure 6c, 
represents the probability that the observed value x of the random variable value X will be 
within that range of values.     
 
The probability distribution, PX(x) shown in Figure 6 (a) is called a probability mass function.  
The probability distributions shown in Figure 6 (b and c) are called a probability density 
functions (pdf) and are denoted by fX(x).  The subscript X of PX and fX represents the random 
variable, and the variable x is some value of that random variable X.   
 

 
 
 
Figure 6.   Probability distributions for a discrete or continuous random variable X.  The area 
under the distributions (shaded areas in a and b) is 1, and the shaded area in c is the probability 
that the observed value x of the random variable X will be between u and v.    
 
 
Uncertainty analyses involve identifying characteristics of various probability distributions of 
model input and output variables, and subsequently functions of those random output variables 
that are performance indicators or measures.  Often targets associated with these indicators or 
measures are themselves uncertain.   
 
A complete uncertainty analysis would involve a comprehensive identification of all sources of 
uncertainty that contribute to the joint probability distributions of each input or output variable.  
Assume such analyses were performed for two alternative project plans, A and B, and that the 
resulting probability density distributions for a specified performance measure were as shown 
in Figure 7.  Figure 7 also identifies the costs of these two projects.  The introduction of two 
performance criteria, cost and probability of exceeding a performance measure target (e.g., a 
pollutant concentration standard) introduces a conflict where a tradeoff must be made.   
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Figure 7.   Tradeoffs involving cost and the probability that a maximum desired target value 
will be exceeded.  In this illustration we want the lowest cost (B is best) and the lowest 
probability of exceedance (A is best).   
 
4.1.1  Model and model parameter uncertainties  
 
Consider a situation as shown in Figure 8, in which for a specific set of model inputs, the 
model outputs differ from the observed values, and for those model inputs, the observed values 
are always the same.   Here nothing randomly occurs.  The model parameter values or model 
structure needs to be changed.   This is typically done in a model calibration process.   
 
Given specific inputs, the outputs of deterministic models are always going to be the same each 
time those inputs are simulated.   If for specified inputs to any simulation model the predicted 
output does not agree with the observed value, as shown in Figure 8, this could result from 
imprecision in the measurement of observed data.  It could also result from imprecision in the 
model parameter values, the model structure, or the algorithm used to solve the model.   
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Figure 8.    A deterministic system and a simulation model of that system needing calibration 
or modification in its structure.   There is no randomness, only parameter value or model 
structure errors to be identified and corrected.   
 
 
Next consider the same deterministic simulation model but now assume at least some of the 
inputs are random, i.e., not predictable, as may be case when random outputs of one model are 
used as inputs into another model.   Random inputs will yield random outputs.  The model 
input and output values can be described by probability distributions.   If the uncertainty in the 
output is due only to the uncertainty in the input, the situation is similar to that shown in Figure 
8.   If the distribution of performance measure output values does not fit or is not identical to 
the distribution of observed performance measure values, then calibration of model parameter 
values or modification of model structure may be needed.   
 
If a model calibration or �identification� exercise finds the �best� values of the parameters to be 
outside reasonable ranges of values based on scientific knowledge, then the model structure or 
algorithm might be in error.   Assuming the algorithms used to solve the models are correct and 
observed measurements of system performance vary for the same model inputs, as shown in 
Figure 9, it can be assumed that the model structure does not capture all the processes that are 
taking place that impact the value of the performance measures.  This is often the case when 
relatively simple and low-resolution models are used to estimate the hydrological and 
ecological impacts of water and land management policies.  However, even large and complex 
models can fail to include or adequately describe important phenomena.    
 
 In the presence of informational uncertainties there may be considerable uncertainty about the 
values of the �best� parameters during calibration.  This problem becomes even more 
pronounced with increases in model complexity.   
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Figure    A deterministic simulation model of a �random or stochastic� system.   To produce the 
variability in the model output that is observed in the real system, even given the same input 
values, the model�s parameter values may need to vary over distributions of values and/or the 
model structure may need modification along with additional model inputs.   
 
An example:   Consider the prediction of a pollutant concentration at some site downstream 
of a pollutant discharge site.   Given a streamflow Q (in units of 1000 m3/day), the distance 
between the discharge site and the monitoring site, X (m), the pollutant decay rate constant k 
(day-1), and the pollutant discharge W (Kg/day), we can use the following simplified model 
to predict the concentration of the pollutant C (g/m3 = mg/l) at the downstream monitoring 
site: 
 
  C = (W/Q) exp{-k(X/U)} 
 
In the above equation assume the velocity U (m/day) is a known function of the streamflow 
Q.   
 
In this case the observed value of the pollutant concentration C may differ from the 
computed value of C even for the same inputs of W, Q, k, X, and U.   Furthermore, this 
difference varies in different time periods.   This apparent variability, as illustrated in Figure 
9, can be simulated using the same model but by assuming a distribution of values for the 
decay rate constant k.  Alternatively the model structure can be modified to include the 
impact of streamflow temperature T on the prediction of C.  
 
  C = (W/Q) exp{-kθΤ−2 (X/U)} 
 
Now there are two model parameters, the decay rate constant k and the dimensionless 
temperature correction factor � and an additional model input, the streamflow temperature, 
T.  It could be that the variation in streamflow temperature was the sole cause of the first 
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equation�s �uncertainty� and that the assumed parameter distribution of k was simply the 
result of the distribution of streamflow temperatures on the term kθΤ−20.      
 
If the output were still random given constant values of all the inputs, then another source of 
uncertainty exists.  This uncertainty might be due to additional random loadings of the 
pollutant, possibly from non-point sources.   Once again the model could be modified to 
include these additional loadings if they are knowable.  Assuming these additional loadings 
are not known, a new random parameter could be added to the input variable W or to the 
right hand side of the equations above that would attempt to capture the impact on C of 
these additional loadings.  A potential problem, however, might be the likely correlation 
between those additional loadings and the streamflow Q.     
 
 
While adding model detail removed some �uncertainty� in the above example, increasing 
model complexity will not always eliminate or reduce uncertainty in model output.  Adding 
complexity is generally not a good idea when the increased complexity is based on processes 
whose parameters are difficult to measure, the right equations are not known at the scale of 
application, or the amount of data for calibration is small compared to the number of 
parameters.   
 
Even if more detailed models requiring more input data and more parameter values were to be 
developed, the likelihood of capturing all the processes occurring in a complex system is small.   
Hence those involved will have to make decisions taking this uncertainty into account.  
Imprecision will always exist due to less than a complete understanding of the system and the 
hydrologic processes being modeled.  A number of studies have addressed model 
simplification, but only in some simple cases have statisticians been able to identify just how 
one might minimize modeling related errors in model output values.  
 
The problem of determining the "optimal" level of modeling detail is particularly important 
when simulating the hydrologic events at many sites over large areas.  Perhaps the best 
approach for these simulations is to establish confidence levels for alternative sets of models 
and then statistically compare simulation results.  But even this is not a trivial or costless task.   
Increases in the temporal or spatial resolution typically require considerable data collection 
and/or processing, model recalibrations, and possibly the solution of stability problems 
resulting from the numerical methods used in the models.  Obtaining and implementing 
alternative hydrologic simulation models will typically involve considerable investments of 
money and time for data preparation and model calibration.   
 
What is needed is a way to predict the variability evident in the system shown in Figure 9.  
Instead of a fixed output vector for each fixed input vector, a distribution of outputs are needed 
for each performance measure based on fixed inputs (Figure 9) or a distribution of inputs 
(Figure 10.).  Furthermore the model output distribution for each performance measure should 
�match� as well as possible the observed distribution of that performance measure.  
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Figure 10.   Simulating variable inputs to obtain probability distributions of predicted 
performance indices that match the probability distributions of observed performance values.   
 
 
 
4.1.2   What uncertainty analysis can provide 
 
 
An uncertainty analysis takes a set of randomly chosen input values (that can include 
parameter values), passes them through a model (or transfer function) to obtain the 
distributions (or statistical measures of the distributions) of the resulting outputs.  As illustrated 
in Figure 11, the output distributions can be used to  
 

•  Describe the range of potential outputs of the system at some probability level. 
•  Estimate the probability that the output will exceed a specific threshold or 

performance measure target value. 
 
 

 
 
 
Figure 11.  The distribution of performance measures defines range of potential values and the 
likelihood that a specified target value will be exceeded.  The shaded area under the density 
function on the left represents the probability that the target value will be exceeded.  This 
probability is shown in the probability of exceedance plot on the right.       
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Common uses for uncertainty analyses are to make general inferences, such as the following: 
 

•  Estimating the mean and standard deviation of the outputs. 
•  Estimating the probability the performance measure will exceed a specific threshold. 
•  Putting a reliability level on a function of the outputs, e.g., the range of function values 

that is likely to occur with some probability.   
•  Describing the likelihood of different potential outputs of the system.  

 
Implicit in any uncertainty analysis are the assumptions that statistical distributions for the 
input values are correct and that the model is a sufficiently realistic description of the processes 
taking place in the system.  Neither of these assumptions is likely to be entirely correct.   
 
4.2   Sensitivity analyses 
 
�Sensitivity analysis� is aimed at describing how much model output values are affected by 
changes in model input values.   It is the investigation of the importance of imprecision or 
uncertainty in model inputs in a decision making or modeling process.  The exact character of 
sensitivity analysis depends upon the particular context and the questions of concern.  
Sensitivity studies can provide a general assessment of model precision when used to assess 
system performance for alternative scenarios, as well as detailed information addressing the 
relative significance of errors in various parameters.  As a result, sensitivity results should be 
of interest to the general public, federal and state management agencies, local watershed 
planners and managers, model users, and model developers.   
 
Clearly, upper level management and the public may be interested in more general statements 
of model precision, and should be provided such information along with model predictions.  
On the other hand, detailed studies addressing the significance and interactions among 
individual parameters would likely be meaningful to model developers and some model users.  
They can use such data to interpret model results and to identify where efforts to improve 
models and their input values should be directed.   
 
Initial sensitivity analysis studies could focus on two products: 

(1) detailed results to guide research and assist model development efforts, and  
(2) calculation of general descriptions of uncertainty associated with model predictions 
so that policy decisions can reflect both the modeling efforts best prediction of system 
performance and the precision of such predictions. 

 
In the first case, knowing the relative uncertainty in model projections due to possible errors in 
different sets of parameters and input data should assist in efforts to improve the precision of 
model projections.  This knowledge should also contribute to a better understanding of the 
relationships between model assumptions, parameters, data and model predictions. 

 
For the second case, knowing the relative precision associated with model predictions should 
have a significant effect on policy development.  For example, the analysis may show that, 
given data inadequacies, there are very large error bands associated with some model variables.  
When such large uncertainties exist, predictions should be used with appropriate skepticism.  
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Incremental strategies should be explored along with monitoring so that greater experience can 
accumulate to resolve some of those uncertainties.   

 
Sensitivity analysis features are available in many linear and nonlinear programming 
(optimization) packages.  They identify the changes in the values of the objective function and 
unknown decision variables given a change in the model input values, and a change in levels 
set for various constraints (Chapter V).  Thus sensitivity analysis addresses the change in 
�optimal� system performance associated with changes in various parameter values, and also 
how �optimal� decisions would change with changes in resource constraint levels, or target 
output requirements.  This kind of sensitivity analysis provides estimates of how much another 
unit of resource would be worth, or what �cost� a proposed change in a constraint places on the 
optimal solution.  This information is of value to those making design decisions. 
 
Various techniques have been developed to determine how sensitive model outputs are to 
changes in model inputs.   Most approaches examine the affects of changes in a single 
parameter value or input variable assuming no changes in all the other inputs.  Sensitivity 
analyses can be extended to examine the combined effects of multiple sources of error, as well.   
 
Changes in particular model input values can affect model output values in different ways.   It 
is generally true that only a relatively few input variables dominate or substantially influence 
the values of a particular output variable or performance indicator at a particular location and 
time.   If the range of uncertainty of only some of the output data is of interest, then 
undoubtedly only those input data that significantly impact on the values of those output data 
need be included in the sensitivity analysis.     

 
If input data estimates are based on repeated measurements, a frequency distribution can be 
estimated that characterizes natural variability. The shorter the record of measurements, the 
greater will be the uncertainty regarding the long-term statistical characteristics of that 
variability.   If obtaining a sufficient number of replicate measurements is not possible, 
subjective estimates of input data ranges and probability distributions are often made.  Using a 
mixture of subjective estimates and actual measurements does not affect the application of 
various sensitivity analysis methods that can use these sets or distributions of input values, but 
it may affect the conclusions that can be drawn from the results of these analyses.   
 
It would be nice to have available accurate and easy-to-use analytical methods for relating 
errors in input data to errors in model outputs, and to errors in system performance indicator 
values that are derived from model output.  Such analytical methods do not exist for complex 
simulation models.  However methods based on simplifying assumptions and approximations 
can be used to yield useful sensitivity information.   Some of these are reviewed in the 
remainder of this chapter.     
 
4.2.1  Sensitivity coefficients 
 
One measure of sensitivity is the sensitivity coefficient.   This is the derivative of a model 
output variable with respect to an input variable or parameter.   A number of sensitivity 
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analysis methods use these coefficients.  First-order and approximate first-order sensitivity 
analyses are two such methods that will be discussed later.  The difficulty of  

1. obtaining the derivatives for many models, 
2. needing to assume mathematical (usually linear) relationships when obtaining estimates of 

derivatives by making small changes of input data values near their nominal or most likely 
values, and 

3. having large variances associated with most hydrologic process models have motivated the 
replacement of analytical methods by numerical and statistical approaches to sensitivity 
analysis.   

 

Implicit in any sensitivity analysis are the assumptions that statistical distributions for the input 
values are correct and that the model is a sufficiently realistic description of the processes 
taking place in the system.  Neither of these assumptions is likely to be entirely correct.   
 
The importance of the assumption that the statistical distributions for the input values are 
correct is easy to check by using different distributions for the input parameters.  If the outputs 
vary significantly, then the output is sensitive to the specification of the input distributions and 
hence they should be defined with care.   A relatively simple deterministic sensitivity analysis 
can be of value here (Benaman, 2002).  A sensitivity coefficient can be used to measure the 
magnitude of change in an output variable Q per unit change in the magnitude of an input 
parameter value P from its base value Po.   Let SIPQ be the sensitivity index for an output 
variable Q with respect to a change ∆P in the value of the input variable P from its base value 
Po.  Noting that the value of the output Q(P) is a function of P, the sensitivity index could be 
defined as 
 
  SIPQ = [ Q(Po + ∆P) �  Q(Po � ∆P) ] / 2 ∆P    (1) 
 
Other sensitivity indices could be defined (McCuen 1973).  Letting the index i represent a 
decrease and j represent an increase in the parameter value from its base value Po, the 
sensitivity index SIPQ for parameter P and output variable Q is could be defined as 
 
         SIPQ = { | (Qo � Qi) / (Po � Pi ) | +  | (Qo � Qj) / (Po � Pj ) | } / 2    (2) 
 
 or 
 
 SIPQ = max { | (Qo � Qi) / (Po � Pi ) | ,  | (Qo � Qj) / (Po � Pj ) | }  (3)         
 
 
A dimensionless expression of sensitivity is the elasticity index, EIPQ, that measures the 
relative change in output Q for a relative change in input P could be defined as   
 
  EIPQ = [Po / Q(Po)] SIPQ       (4) 
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4.2.2  A simple deterministic sensitivity analysis procedure   
 

This deterministic sensitivity analysis approach is very similar those most often employed in 
the engineering economics literature.  It is based on the idea of varying one uncertain 
parameter value, or set of parameter values, at a time.  The ideas are applied to a water quality 
example to illustrate their use.   
 
The output variable of interest can be any performance measure or indicator.  Thus one does 
not know if more or less of a given variable is better or worse.  Perhaps too much and/or too 
little is undesirable.   The key idea is that, whether employing physical measures or economic 
metrics of performance, various parameters (or sets of associated parameters) are assigned high 
and low values.  Such ranges may reflect either the differences between the minimum and 
maximum values for each parameter, the 5 and 95 percentiles of a parameters distribution, or 
points corresponding to some other criteria.  The system model is then run with the various 
alternatives, one at a time, to evaluate the impact of those errors in various sets of parameter 
values on the output variable.    
 
Table 1 illustrates the character of the results that one would obtain.  Here Y0 is the nominal 
value of the model output when all parameters assume the estimated best values, and Yi,L and 
Yi,H are the values obtained by increasing or decreasing the values of the ith set of parameters. 
 
 
Table 1. Sensitivity of model output Y to possible errors in four parameter sets containing a 
single parameter or a group of parameters that vary together. 
 

 
 
 
                                                                                                                  
A simple water quality example is employed to illustrate this deterministic approach to 
sensitivity analysis.  The analysis techniques illustrated here are just as applicable to complex 
models.  The primary difference is that more work would be required to evaluate the various 
alternatives with a more complex model, and the model responses might be more complicated.  
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The simple water quality model is provided by Vollenweider�s empirical relationship for the 
average phosphorus concentration in lakes (Vollenweider, 1976).  He found that the 
phosphorus concentration, P (mg/m3), is a function of the annual phosphorus loading rate, L 
(mg/m2�a), the annual hydraulic loading, q (m/a or more exactly m3/m2�a), and the mean water 
depth, z (m). 
 
 P  =  (L/q) / [ 1 + (z/q)0.5 ]       (5) 
 
 
L/q and P have the same units; the denominator is an empirical factor that compensates for 
nutrient recycling and elimination within the aquatic lake environment. 
 
Data for Lake Ontario in North America would suggest that reasonable values of the 
parameters are  L = 680 mg/m3; q = 10.6 m/a; and z = 84 m, yielding  P = 16.8 mg/m3.  Values 
of phosphorus concentrations less than 10 mg/m3 are considered oligotrophic, whereas values 
greater than 20 mg/m3 generally correspond to eutrophic conditions.  Reasonable ranges 
reflecting possible errors in the three parameters yield the values in Table 2. 
 
Table 2.   Sensitivity of estimates of phosphorus concentration (mg/m3) to model parameter 
values.  The two right most values in each row correspond to the Low and High values of the 
parameter, respectively 
 
 
 

 
 
 
 
One may want to display these results so they can be readily visualized and understood.  A 
tornado diagram (Eschenbach, 1992) would show the lower and upper values of P obtained 
from variation of each parameter, with the parameter with the widest limits displayed on top, 
and the parameter having smallest limits on the bottom.   Tornado diagrams (Figure 12) are 
easy to construct and can include a large number of parameters without becoming crowded. 
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Figure 12.  A Tornado diagram showing the range of the output variable representing 
phosphorus concentrations for high and low values of each of the parameter sets.  Parameters 
are sorted so that the largest range is on top, and the smallest on the bottom. 

 
 
An alternative to tornado diagrams is a Pareto chart showing the width of the uncertainty range 
associated with each variable, ordered from largest to smallest.  A Pareto chart is illustrated in 
Figure 13. 
 

 
 
 
Figure 13. A Pareto Chart showing the range of the output variable representing phosphorus 
concentrations resulting from high and low values of each parameter set considered. 

 

Another visual presentation is a spider plot showing the impact of uncertainty in each 
parameter on the variable in question, all on the same graph (Eschenback, 1992; DeGarmo, 
1993, p. 401).   A spider plot, Figure 14, shows the particular functional response of the output 
to each parameter on a common scale, so one needs a common metric to represent changes in 
all of the parameters.  Here we use percentage change from the nominal or best values. 
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Spider plots are a little harder to construct than tornado diagrams, and can generally include 
only 4 - 5 variables without becoming crowded.  However, they provide a more complete view 
of the relationships between each parameter and the performance measure.  In particular, a 
spider plot reveals nonlinear relationships and the relative sensitivity of the performance 
measure to (percentage) changes in each variable. 
 

 
 
Figure 14.   Spider Plot illustrates the relationships between model output describing 
phosphorus concentrations and variations in each of the parameter sets, expressed as a 
percentage deviation from their nominal values.   
 
In the spider plot, the linear relationship between P and L and the gentle nonlinear relationship 
between P and q is illustrated.  The range for z has been kept small given the limited 
uncertainty associated with that parameter.  
 
4.2.3  Multiple errors and interactions   
 
An important issue that should not be ignored is the impact of simultaneous errors in more than 
one parameter.  Probabilistic methods directly address the occurrence of simultaneous errors, 
but the correct joint distribution needs to be employed.  With simple sensitivity analysis 
procedures, errors in parameters are generally investigated one at a time, or in groups.  The 
idea of considering pairs or sets of parameters is discussed here. 

 
Groups of factors.  It is often the case that reasonable error scenarios would have several 
parameters changing together.  For this reason, the alternatives have been called parameter 
sets.  For example, possible errors in water depth would be accompanied with corresponding 
variations in aquatic vegetation and chemical parameters.  Likewise, alternatives related to 
changes in model structure might be accompanied with variations in several parameters.   In 
other cases, there may be no causal relationship among possible errors (such as model structure 
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versus inflows at the boundary of the modeled region), but they might still interact to effect the 
precision of model predictions. 
 
Combinations.  If one or more non-grouped parameters interact in significant ways, then 
combinations of one or more errors should be investigated.  However, one immediately runs 
into a combinatorial problem.  If each of m parameters can have 3 values (high, nominal, and 
low) there are 3m combinations, as opposed to 2m + 1 if each parameter is varied separately.  
[For m = 5, the differences are 35 = 243 versus 2(5)+1 = 11.]  These numbers can be reduced 
by considering instead only combinations of extremes so that only 2m + 1 cases need be 
considered [25 + 1 = 33], which is a more manageable number.  However, all of the parameters 
would be at one extreme or the other, and such situations would be very unusual.   
 
Two factors at a time.  A compromise is to consider all pairs of two parameters at a time.  
There are m(m-1)/2 possible pairs of m parameters.  Each parameter has a high and low value.  
Since there are 4 combinations of high and low values for each pair, there are a total of 2m(m-
1) combinations.   [For m = 5 there are 40 combinations of two parameters each having two 
values.]   
 
The presentation of these results could be simplified by displaying for each case only the 
maximum error, which would result in m(m-1)/2 cases that might be displayed in a Pareto 
diagram.  This would allow identification of those combinations of two parameters that might 
yield the largest errors and thus are of most concern.   
 
For the water quality example, if one plots the absolute value of the error for all four 
combinations of high (+) and low (-) values for each pair of parameters, they obtain Figure 15. 
 
 

 
 
Figure 15.  Pareto diagram showing errors in phosphorus concentrations for all combinations 
of pairs of input parameters errors.  A + indicates a high value, and a - indicates a low value for 
indicated parameter.  L is the phosphorus loading rate, q is the hydraulic loading, and z is the 
mean lake depth.   
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Considering only the worst error for each pair of variables yields Figure 16. 
 
 

 
 
Figure 16.   Pareto diagram showing worst error combinations for each pair of input 
parameters. A �+� indicates a high value, and a ���  indicates a low value for indicated 
parameter.  

 
Here we see, as is no surprise, that the worst error results from the most unfavorable 
combination of L and q values.  If both parameters have their most unfavorable values, the 
predicted phosphorus concentration would be 27 mg/m3. 
 
Looking for non-linearities.  One might also display in a Pareto diagram the maximum error 
for each pair as a percentage of the sum of the absolute values of the maximum error from each 
parameter separately.   The ratio of the joint error to the individual errors would illustrate 
potentially important nonlinear interactions.  If the model of the system and the physical 
measure or economic metric were strictly linear, then the individual ratios should add to one. 
 
4.2.4   First-order sensitivity analysis  
 
The above deterministic analysis has trouble representing reasonable combinations of errors in 
several parameter sets.  If the errors are independent, it is highly unlikely that any two sets 
would actually be at their extreme ranges at the same time.  By defining probability 
distributions of the values of the various parameter sets, and specifying their joint distributions, 
a probabilistic error analysis can be conducted.  In particular, for a given performance 
indicator, one can use multivariate linear analyses to evaluate the approximate impact on the 
performance indices of uncertainty in various parameters.  As shown below, the impact 
depends upon the square of the sensitivity coefficients (partial derivatives) and the variances 
and covariances of the parameter sets.   
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For a performance indicator  I = F(Y), which is a function F(�) of model outputs Y, that are in 
turn a function g(P) of input parameters P, one can use a multivariate Taylor series 
approximation of F to obtain the expected value and variance of the indicator: 

 
E[I]  =  F( based on mean values of input parameters)       

  + (1/2) {Σi Σj [∂F2/∂Pi∂Pj] Cov [Pi, Pj] }    (6) 
and 

Var[I]  =  Σi Σj (∂F/ ∂Pi)(∂F/ ∂Pj) Cov [Pi, Pj]     (7) 
 
where (∂F/∂Pi) are the partial derivative of the function F with respect to Pi evaluated at the 
mean value of the input parameters Pi, and ∂F2/∂Pi∂Pj are the second partial derivatives.  The 
covariance of two random input parameters Pi and Pj is the expected value of the product of 
differences between the values and their means.    
 

Cov[Pi, Pj] = Ε[(Pi � E[Pi])( Pj � E[Pj])]      (8)   
 
If all the parameters are independent of each other, and the second-order terms in the 
expression for the mean E[I] are neglected, one obtains 
 

E[I]  =  F( based on mean values of input parameters)    (9) 
and 

Var [I]   =   Σi [∂F/ ∂Pi]2 Var [Pi]       (10) 
 
(Benjamin and Cornell, 1970).  Equation 6 for E[I] shows that in the presence of substantial 
uncertainty, the mean of the output from nonlinear systems is not simply the system output 
corresponding to the mean of the parameters  (Gaven and Burges, 1981, p. 1523).  This is true 
for any nonlinear function.    
 
Of interest in the analysis of uncertainty is the approximation for the variance Var[I] of 
indicator I.   In Equation 10 the contribution of Pi to the variance of I equals Var[Pi] times [∂F/ 
∂Pi]2, which are the squares of the sensitivity coefficients for indicator I with respect to each 
input parameter value Pi. 
 
4.2.4.1   An example of first-order sensitivity analysis 
 
It may appear that first-order analysis is difficult because the partial derivatives of the 
performance indicator I are needed with respect to the various parameters.  However, 
reasonable approximations of these sensitivity coefficients can be obtained from the simple 
sensitivity analysis described in Table 3, as shown below.  In that table, three different 
parameter sets, Pi, are defined in which one parameter of the set is at its high value, PiH, and 
one is at its low value, PiL, to produce corresponding values (called high, IiH, and low, IiL) of a 
system performance indicator I.  
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Table 3.  Approximate parameter sensitivity coefficients. 
 

 
 

 
It is then necessary to estimate some representation of the variances of the various parameters 
with some consistent procedure.  For a normal distribution, the distance between the 5 and 95 
percentiles is 1.645 standard deviations on each side of the mean, or 2(1.645) = 3.3 standard 
deviations.  Thus, if the high/low range is thought of as approximately a 5-95 percentile range 
for a normally distributed variate, a reasonable approximation of the variance might be  
 
 Var[Pi] = { [PiH�PiL]/3.3 }2.       (11) 
 
 
This is all that is needed.  Use of these average sensitivity coefficients is very reasonable for 
modeling the behavior of the system performance indicator I over the indicated ranges. 
 
As an illustration of the method of first-order uncertainty analysis, consider the lake quality 
problem described above.  The "system performance indicator" in this case is the model output, 
the phosphorus concentration P, and the input parameters, now denoted as X = L, q, and z.  The 
standard deviation of each parameter is assumed to be the specified range divided by 3.3.  
Average sensitivity coefficients ∂P/∂X were calculated.  The results are reported in the table 
below. 
 

Table 4.    Calculation of approximate parameter sensitivity coefficients. 
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Assuming the parameter errors are independent: 
 
  Var[P]  = 9.18 + 2.92 + 0.02 = 12.12     (12) 
 
The square root of 12.12 is the standard deviation and equals 3.48.  This agrees well with a 
Monte Carlo analysis reported below. 
 
Note that 100*(9.18/12.12), or about 76% of the total parameter error variance in the 
phosphorus concentration P is associated in the phosphorus loading rate L and the remaining 
24% is associated with the hydrologic loading q.   Eliminating the uncertainty in z would have 
a negligible impact on the overall model error.  Likewise, reducing the error in q would at best 
have a modest impact on the total error.   
 
Due to these uncertainties, the estimated phosphorus concentration has a standard deviation of 
3.48.  Assuming the errors are normally distributed, and recalling that ± 1.645 standard 
deviations around the mean define a 5-95 percentile interval, the 5-95 percentile interval would 
be about  
 
 16.8 ± 1.645 (3.48) mg/m3  =  16.8 ± 5.7 mg/m3 = 11.1 to 22.5 mg/m3.    (13) 
 
These error bars indicate there is substantial uncertainty associated with the phosphorus 
concentration P, primarily due to uncertainty in the loading rate L.   
 
The upper bound of 22.6 mg/m3 is considerably less than the 27 mg/m3 that would be obtained 
if both L and q had their most unfavorable values.  In a probabilistic analysis with independent 
errors, such a combination is highly unlikely.   
 
4.2.4.2   Warning on accuracy.   
 
First-order uncertainty analysis is indeed an approximate method based upon a linearization of 
the response function represented by the full simulation model.  It may provide inaccurate 
estimates of the variance of the response variable for nonlinear systems with large uncertainty 
in the parameters.  In such cases Monte Carlo simulation (discussed below and in Chapter VII) 
or the use of higher-order approximation may be required.  Beck (1987, p. 1426) cites studies 
that found that Monte Carlo and first-order variances were not appreciably different, and a few 
studies that found specific differences.  Differences are likely to arise when the distributions 
used for the parameters are bimodal (or otherwise unusual), or some rejection algorithm is used 
in the Monte Carlo analysis to exclude some parameter combinations.  Such errors can result in 
a distortion in the ranking of predominant sources of uncertainty.  However, in most cases very 
similar results were obtained.   
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4.2.5   Fractional factorial design method 
 
An extension of first-order sensitivity analysis would be a more complete exploration of the 
response surface using a careful statistical design.  First consider a complete factorial design.  
Input data are divided into discrete "levels'.  The simplest case is two levels.  These two levels 
can be defined as a nominal value, and a high (low) value.  Simulation runs are made for all 
combinations of parameter levels.  For n different inputs, this would require 2n simulation runs.  
Hence for a three-input variable or parameter problem, 8 runs would be required.  If 4 discrete 
levels of each input variable or parameter were allowed to provide a more reasonable 
description of a continuous variable, the three-input data problem would require 43 or 64 
simulation runs.  Clearly this is not a useful tool for large regional water resources simulation 
models.   
 
A fractional factorial design involves simulating only a fraction of what is required from a full 
factorial design method.  The loss of information prevents a complete analysis of the impacts 
of each input variable or parameter on the output.   
 
To illustrate the fractional factorial design method, consider the two-level with three-input 
variable or parameter problem.  Table 5 below shows the 8 simulations required for a full 
factorial design method.  The �+� and the ��� show the upper and lower levels of each input 
variable or parameter Pi  where i = 1, 2, 3.  If all 8 simulations were performed, seven possible 
effects could be estimated.  These are the individual effects of the three inputs P1, P2, and P3, 
the three two-input variable or parameter interactions, (P1)(P2), (P1)(P3), and (P2)(P3), and the 
one three-input variable or parameter interaction (P1)(P2)( P3).  
 

Table 5.    A three-input factorial design. 
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Consider an output variable Y, where Yj is the value of Y in the jth simulation run. Then an 
estimate of the effect, denoted δ(Y|Pi), that input variable or parameter Pi has on the output 
variable Y, is the average of the four separate effects of varying Pi:    
 
For i = 1: 
  δ(Y | P1) =  0.25 [ (Y2-Y1)+(Y4-Y3)+(Y6-Y5)+(Y8-Y7) ]   (14) 
 
Each difference in parentheses is the difference between a run in which P1 is at its upper level 
and a run in which P1 is at its lower level, but the other two parameter values, P2 and P3, are 
unchanged.  If the effect is equal to 0, then, in this case, P1 has no impact on the output 
variable Y.   
 
Similarly the effects of P2 and P3, on variable Y can be estimated as: 
 
  δ(Y | P2) =  0.25 { (Y3-Y1)+(Y4-Y2)+(Y7-Y5)+(Y8-Y6) }   (15) 
and 
 
  δ(Y | P3) =  0.25 { (Y5-Y1)+(Y6-Y2)+(Y7-Y3)+(Y8-Y4) }   (16) 
 
 
Consider next the interaction effects between P1 and P2.  This is estimated as the average of the 
difference between the average P1 effect at the upper level of P2, and the average P1 effect at 
the lower level of P2.  This is the same as the difference between the average P2 effect at the 
upper level of P1 and the average P2 effect at the lower level of P1: 
 
  δ(Y | P1, P2) = (1/2) { [ (Y8-Y7) + (Y4-Y3)]/2 � [ (Y2-Y1) + (Y6-Y5)]/2 } 
 
              =  (1/4) { [ (Y8-Y6)+(Y4-Y2)] - [ (Y3-Y1) + (Y7-Y5)] }  (17) 
 
Similar equations can be derived for looking at the interaction effects between P1 and P3, and 
between P2 and P3 and the interaction effects among all three inputs P1, P2, and P3.  
 
Now assume only half of the simulation runs were performed, perhaps runs 2, 3, 5 and 8 in this 
example.  If only outputs Y2, Y3, Y5, and Y8 are available, for our example: 
 
  δ(Y | P3) = �(Y | P1, P2) =  0.5 { (Y8 - Y3) - (Y2 - Y5) }   (18) 
 
The separate effects of P3 and of P1P2 are not available from the output.  This is the loss in 
information resulting from fractional instead of complete factorial design.  
 
4.2.6  Monte Carlo sampling methods 
 
The Monte Carlo method of performing sensitivity analyses, illustrated in Figure 16, first 
selects a random set of input data values drawn from their individual probability distributions.  
These values are then used in the simulation model to obtain some model output variable 
values.  This process is repeated many times, each time making sure the model calibration is 
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valid for the input data values chosen.  The end result is a probability distribution of model 
output variables and system performance indices that results from variations and possible 
errors in all of the input values.   
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Figure 16.   Monte Carlo sampling and simulation procedure for finding distributions of output 
variable values based on distributions, for specified reliability levels, of input data values.   
This technique can be applied to one or more uncertain input variables at a time.  The output 
distributions will reflect the combined effects of this input uncertainty over the specified 
ranges.   

 

 

Using a simple Monte Carlo analysis, values of all of the parameter sets are selected randomly 
from distributions describing the individual and joint uncertainty in each, and then the modeled 
system is simulated to obtain estimates of the selected performance indices.  This must be done 
many times (often well over 100) to obtain a statistical description of system performance 
variability.  The number of replications needed is generally not dependent on the number of 
parameters whose errors are to be analyzed.  One can include in the simulation the uncertainty 
in parameters as well as natural variability.  This method can evaluate the impact of single or 
multiple uncertain parameters.   

 
A significant problem that arises in such simulations is that some combinations of parameter 
values result in unreasonable models.  For example, model performance with calibration data 
sets might be inconsistent with available data sets.  The calibration process places interesting 
constraints on different sets of parameter values.  Thus, such Monte Carlo experiments often 
contain checks that exclude combinations of parameter values that are unreasonable.  In these 
cases the generated results are conditioned on this validity check. 

 
Whenever sampling methods are used, one must consider possible correlations among input 
data values.  Sampling methods can handle spatial and temporal correlations that may exist 
among input data values, but the existence of correlation requires defining appropriate 
conditional distributions.   

 
One major limitation of applying Monte Carlo methods to estimate ranges of risk and 
uncertainty for model output variable values, and system performance indicator values based 
on these output variable values, is the computing time required.  To reduce the computing 
times needed to perform sensitivity analyses using sampling methods, some tricks and as well 
as stratified sampling methods are available.  The discussion below illustrates the idea of a 
simple modification (or trick) using a �standardized� Monte Carlo analysis.  The more general 
Latin Hypercube Sampling procedure is also discussed. 
 
4.2.6.1  Simple Monte Carlo sampling 
 
To illustrate the use of Monte Carlo sampling methods consider again Vollenweider�s 
empirical relationship, Equation 5, for the average phosphorus concentration in lakes 
(Vollenweider, 1976).  Two hundred values of each parameter were generated independently 
from normal distributions with the means and variances as shown in Table 6.  
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The table contains the specified means and variances for the generated values of L, q and z, and 
also the actual values of the means and variances of the 200 generated values of L, q, z and also 
of the 200 corresponding generated output phosphorus concentrations, P.  Figure 17 displays 
the distribution of the generated values of P. 
  

Table 6.  Monte Carlo analysis of lake phosphorus levels. 
 

 
 
 
 
 

 
 
 
Figure  17.    Distribution of lake phosphorus concentrations from Monte Carlo analysis 
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One can see that given the estimated levels of uncertainty, phosphorus levels could reasonably 
range from below 10 to above 25.  The probability of generating a value greater than 20 mg/m3 
was 12.5%.  The 5% to 95 percentile range was 11.1 to 23.4 mg/m3.  In the figure, the 
cumulative probability curve is rough because only 200 values of the phosphorus concentration 
were generated, but these are clearly enough to give a good impression of the overall impact of 
the errors. 
 
4.2.6.2  Sampling uncertainty.   
 
In this example, the mean of the 200 generated values of the phosphorus concentration, P, was 
17.07.  However a different set of random values would have generated a different set of P 
values as well.  Thus it is appropriate to estimate the standard error, SE, of this average.  The 
standard error equals the standard deviation � of the P values divided by the square root of the 
sample size n:   
 
 SE  =   �/(n)0.5  = 3.61/(200)0.5 = 0.25.       (19) 
 
 
From the central limit theorem of mathematical statistics, the average of a large number of 
independent values should have very nearly a normal distribution.  Thus, 95% of the time, the 
true mean of P should be in the interval 17.1 ± 1.96 (0.25),  or  16.6 to 17.6 mg/m3 .  This level 
of uncertainty reflects the observed variability of P and the fact that only 200 values were 
generated. 
 
4.2.6.3   Making sense of the results.   
 
A significant challenge with complex models is to determine from the Monte Carlo simulation 
which parameter errors are important.  Calculating the correlation between each generated 
input parameter value and the output variable value is one way of doing this.  As Table 7 below 
shows, based upon the magnitudes of the correlation coefficients, errors in L were most 
important, and those in q second in importance. 
 
 

Table 7.  Correlation analysis of Monte Carlo results. 
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One can also use regression to develop a linear model defining variations in the output based 
on errors in the various parameters.   The results are shown in the Table 8.  The fit is very 
good, and R2 = 98%.  If the model for P had been linear, a R2 value of 100% should have 
resulted.  All of the coefficients are significantly different from zero.   
 
Note that the correlation between P and z was positive in Table 7, but the regression coefficient 
for z is negative.  This occurred because there is a modest negative correlation between the 
generated z and q values.  Use of partial correlation coefficients can also correct for such 
spurious correlations among input parameters. 
 

Table 8.   Results of Regression Analysis on Monte Carlo Results 
 
 

 
    

                                                                                                             
 
Finally we display a plot, Figure 18, based on this regression model illustrating the reduction in 
the variance of P that is due to dropping each variable individually. Clearly L has the biggest 
impact on the uncertainty in P, and z the least. 

 

 



 107

 

Figure 18. Reduction in the variance of P that is due to dropping from the regression model 
each variable individually.  Clearly L has the biggest impact on the uncertainty in P, and z the 
least. 

 

4.2.6.4  Standardized Monte Carlo analysis 
 
Using a �standardized� Monte Carlo analysis, one could adjust the generated values of L, q and 
z above so that the generated samples actually have the desired mean and variance.  While 
making that correction, one can also shuffle their values so that the correlations among the 
generated values for the different parameters are near zero, as is desired.  This was done for the 
200 generated values to obtain the statistics shown in Table 9. 
 

Table 9.   Standardized Monte Carlo analysis of lake phosphorus levels 
 

 
 
 
 
Repeating the correlation analysis from before (shown in Table 10) now yields much clearer 
results that are in agreement with the regression analysis.  The correlation between P and both 
q and z are now negative as they should be.  Because the generated values of the three 
parameters have been adjusted to be uncorrelated, the signal from one is not confused with the 
signal from another. 
 

 
 
 

 
. 
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Table 10.   Correlation analysis of standardized Monte Carlo results 
 

 
 
 
 
The mean phosphorus concentration changed very little.  It is now 17.0 instead of 17.1 mg/m3.   
 
Using control variates with a linear predictive model in conjunction with the standardized 
Monte Carlo variates, the standard deviation of the errors associated with the 200 observations 
is only 0.45.  Thus the standard error for this estimate of the mean of P is 0.45/(200)0.5  or just 
0.03.  Thus this is a highly accurate result.  The regressions were also repeated and yielded 
very similar results.  The only real difference was that the parameter estimates had small 
standard errors and were more significant because of the elimination of correlation between the 
generated parameters. 
 
4.2.6.5  Generalized likelihood estimation 
 
Beven (1993) and Binley and Beven (1991) suggest a Generalized Likelihood Uncertainty 
Estimation (GLUE) technique for assessment of parameter error uncertainty using Monte Carlo 
simulation.  It is described as a �formal methodology for some of the subjective elements of 
model calibration� (Beven, 1989, p. 47).  The basic idea is to begin by assigning reasonable 
ranges for the various parameters and then to draw parameter sets from those ranges using a 
uniform or some similar (and flat) distribution.  These generated parameter sets are then used 
on a calibration data set so that unreasonable combinations can be rejected, while reasonable 
values are assigned a posterior probability based upon a likelihood measure which may reflect 
several dimensions and characteristics of model performance.   

 
Let L(Pi) > 0 be the value of the likelihood measure assigned to the ith parameter set�s 
calibration sequence.  Then the model predictions generated with parameter set/combination Pi 
are assigned posterior probability, p(Pi).  
 
  p(Pi)  =  L(Pi) / Σj L(Pj)      (20) 
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These probabilities reflect the form of Bayes theorem, which is well supported by probability 
theory (Devore, 1991).  This procedure should capture reasonably well the dependence or 
correlation among parameters, because reasonable sequences will all be assigned larger 
probabilities, whereas sequences that are unable to reproduce the system response over the 
calibration period will be rejected or assigned small probabilities.   
 
However, in a rigorous probabilistic framework, the L would be the likelihood function for the 
calibration series for particular error distributions. (This could be checked with available 
goodness-of-fit procedures; for example, Kuczera, 1988.)  When relatively ad hoc measures are 
adopted for the likelihood measure with little statistical validity, the p(Pi) probabilities are best 
described as pseudo probabilities or �likelihood� weights.    
 
Another concern with this method is the potential efficiency.  If the parameter ranges are too 
wide, a large number of unreasonable or very unlikely parameter combinations will be 
generated.  These will either be rejected or else will have small probabilities and thus little 
effect on the analysis.  In this case the associated processing would be a waste of effort.  A 
compromise is to use some data to calibrate the model and to generate a prior or initial 
distribution for the parameters that is at least centered in the best range (Beven 1993, p. 48).  
Then use of a different calibration period to generate the p(Pi) allows an updating of those 
initial probabilities to reflect the information provided by the additional calibration period with 
the adopted likelihood measures. 
 
After the accepted sequences are used to generate sets of predictions, the likelihood weights 
would be used in the calculation of means, variances and quantiles, rather than the customary 
procedure of giving all the generated realizations equal weight.  The resulting conditional 
distribution of system output reflects the initial probability distributions assigned to 
parameters, the rejection criteria, and the likelihood measure adopted to assign �likelihood� 
weights. 

 
4.2.7  Latin hypercube sampling 
 
For the simple Monte Carlo simulations described above, with independent errors, a 
probability distribution is assumed for each input parameter or variable.  In each simulation 
run, values of all input data are obtained from sampling those individual and independent 
distributions.  The value generated for an input parameter or variable is usually independent of 
what that value was in any previous run, or what other input parameter or variable values are in 
the same run.  This simple sampling approach can result in a clustering of parameter values and 
hence both redundancy of information from repeated sampling in the same regions of a 
distribution and lack of information from no sampling in other regions of the distributions.   

 
A stratified sampling approach ensures more even coverage of the range of input parameter or 
variable values with the same number of simulation runs.  This can be accomplished by 
dividing the input parameter or variable space into sections and sampling from each section 
with the appropriate probability.   
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One such approach, Latin hypercube sampling (LHS), divides each input distribution into 
sections of equal probability for the specified the probability distribution, and draws one 
observation randomly from each range.  Hence the ranges of input values within each section 
actually occur with equal frequency in the experiment. These values from each interval for 
each distribution are randomly assigned to those from other intervals to construct sets of input 
values for the simulation analysis.   Figure 19 shows the steps in constructing a LHS for six 
simulations involving three inputs Pj (P1, P2, and P3) and six intervals of their respective 
normal, uniform and triangular probability distributions. 
 

 
 

Figure 19.  Schematic representation of a Latin hypercube sampling procedure for six 
simulation runs. 
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5.  Performance indicator uncertainties 
 
5.1  Performance measure target uncertainty 
 
Another possible source of uncertainty is the selection of performance measure target values.  
For example, consider a target value for a pollutant concentration based on the effect of 
exceeding it in an ecosystem.  Which target value is best or correct?   When this is not clear, 
there are various ways of expressing the uncertainty associated with any target value.  One 
such method is the use of fuzzy sets (Chapter VI). Use of �grey� numbers or intervals instead of 
�white� or fixed target values is another.   When some uncertainty or disagreement exists over 
the selection of the best target value for a particular performance measure it seems to us the 
most direct and transparent way to do this is to subjectively assume a distribution over a range 
of possible target values.  Then this subjective probability distribution can be factored into the 
tradeoff analysis, as outlined in Figure 20. 
 

 
 
Figure 20.  Combining the probability distribution of performance measure values with the 
probability distribution of performance measure target values to estimate the confidence one 
has in the probability of exceeding a maximum desired target value.    
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One of the challenges associated with defining and including in an analysis the uncertainty 
associated with a target or threshold value for a performance measure is that of communicating 
just what the result of such an analysis means.   Referring to Figure 20, suppose the target 
value represents some maximum limit of a pollutant, say phosphorus, concentration in the flow 
during a given period of time at a given site or region, and it is not certain just what that 
maximum limit should be.  Subjectively defining the distribution of that maximum limit, and 
considering that uncertainty along with the uncertainty (probability of exceedance function) of 
pollutant concentrations � the performance measure � one can attach a confidence to any 
probability of exceeding the maximum desired concentration value. 
 
The 95% probability of exceedance shown on Figure 20, say P0.95, should be interpreted as �we 
can be 95% confident that the probability of the maximum desired pollutant concentration 
being exceeded will be no greater than P0.95.�   We can be only 5% confident that the 
probability of exceeding the desired maximum concentration will be no greater than the lower 
P0.05 value.  Depending on whether the middle line through the subjective distribution of target 
values in Figure 20 represents the most likely or median target value, the associated probability 
of exceedance is either the most likely, as indicated in Figure 20, or that for which we are only 
50% confident.   
 
Figure 21 attempts to show how to interpret the reliabilities when the uncertain performance 
targets are  
 

•  minimum acceptable levels that are to be maximized,  
•  maximum acceptable levels that are to be minimized or  
•  optimum levels.     

 
An example of a minimum acceptable target level might be the population of wading birds in 
an area.  An example of a maximum acceptable target level might be, again, the phosphorus 
concentration of the flow in a specific wetland or lake.  An example of an optimum target level 
might be the depth of water most suitable for selected species of aquatic vegetation during a 
particular period of the year.    
 
For performance measure targets that are not expressed as minimum or maximum limits but 
that are the �best� values, referring to Figure 21, one can state that one is 90% confident that 
the probability of achieving the desired target is no more than B.  The 90% confidence level 
probability of not achieving the desired target is at least A+C.  The probability of the 
performance measure being too low is at least A and the probability of the performance 
measure being too high is at least C, again at the 90% confidence levels.  As the confidence 
level decreases the bandwidth decreases, and the probability of not meeting the target 
increases.   
 
Now, clearly there is uncertainty associated with each of these uncertainty estimations, and this 
raises the question of how valuable is the quantification of the uncertainty of each additional 
component of the plan in an evaluation process.   Will plan evaluators and decision makers 
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benefit from this additional information, and just how much additional uncertainty information 
is useful?  
 

 
 
Figure 21.    Interpreting the results of combining performance measure probabilities with 
performance measure target probabilities depends on the type of performance measure.  The 
letters A, B, and C represent proportions of the probability density function of performance 
measure values.  (Hence probabilities A + B + C = 1.)    
 
 
Now consider again the tradeoffs that need to be made as illustrated in Figure 7.   Instead of 
considering a single target value as shown on Figure 7, assume there is a 90% confidence range 
associated with that single performance measure target value.  Also assume that the target is a 
maximum desired upper limit (e.g., of some pollutant concentration).    
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Figure 22.   Two plans showing ranges of probabilities, depending on one�s confidence, that an 
uncertain desired maximum (upper limit) performance target value will be exceeded.  The 95% 
confidence levels are associated with the higher probabilities of exceeding the desired 
maximum target.  The 5% confident levels are associated with the more desirable lower 
probabilities of exceeding the desired maximum target.   Plan A with reduced probabilities of 
exceeding the upper limit costs more than Plan B.   
 
In the case shown in Figure 22, the tradeoff is clearly between cost and reliability.   In this 
example, no matter what confidence one chooses, Plan A is preferred to Plan B with respect to 
reliability, but Plan B is preferred to Plan A with respect to cost.   The tradeoff is only between 
these two performance indicators or measures.   
 
Consider however a third plan, as shown in Figure 23.   This situation adds to the complexity 
of making appropriate tradeoffs.  Now there are three criteria:  cost, probability of exceedance 
(reliability) and the confidence in those reliabilities or probabilities.  Add to this the fact that 
there will be multiple performance measure targets, each expressed in terms of their maximum 
probabilities of exceedance and the confidence in those probabilities.  
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Figure 23.  Tradeoffs among cost, reliabilities, and the confidence level of those reliabilities. 
The relative ranking of plans with respect to the probability of exceeding the desired 
(maximum limit) target may depend on the confidence given to that probability.    
 
In Figure 23, in terms of cost the plans are ranked, from best to worst, B, C, and A.  In terms of 
reliability at the 90 percent confidence level, they are ranked A, B, and C but at the 50 percent 
confidence level the ranking is A, C and B.    
 
If the plan evaluation process has difficulty handling all this it may indicate the need to focus 
the uncertainty analysis effort on just what is deemed important, achievable, and beneficial.  
Then when the number of alternatives has been narrowed down to only a few that appear to be 
the better ones, a more complete uncertainty analysis can be performed.  There is no need nor 
benefit in performing sensitivity and uncertainty analyses on all possible management 
alternatives.  Rather one can focus on those alternatives that look the most promising, and then 
carry out additional uncertainty and sensitivity analyses only when important uncertain 
performance indicator values demands more scrutiny.   Otherwise the work is not likely to 
affect the decision anyway.   
 
 
5.2  Distinguishing differences between performance indicator distributions 
 
Simulations of alternative water management infrastructure designs and operating policies 
require a comparison of the simulation outputs � the performance measures or indicators � 
associated with each alternative.  A reasonable question to ask is are the observed differences 
statistically significant.  Can one really tell if one alternative is better than another or are the 
observed differences explainable by random variations attributable to variations in the inputs 
and how the system responds? 

 
This is a common statistical issue that is addressed by standard hypothesis tests (Devore, 1991; 
Benjamin and Cornell, 1970).  Selection of an appropriate test requires that one first resolve 
what type of change one expects in the variables.  To illustrate, consider the comparison of two 
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different operating policies.  Let Y1 denote the set of output performance variable values with 
the first policy, and Y2 the set of output performance variable values of the second policy.  In 
many cases, one would expect one policy to be better than the other.  One measure might be 
the difference in the mean of the variables; for example is E[Y1] < E[Y2]?.   Alternatively one 
could check the difference in the median (50 percentile) of the two distributions.   
 
In addition, one could look for a change in the variability or variance, or a shift in both the 
mean and the variance.  Changes described by a difference in the mean or median often make 
the most sense and many statistical tests are available that are sensitive to such changes.  For 
such investigations parametric and non-parametric tests for paired and unpaired data can be 
employed. 

 
Consider the differences between �paired� and �unpaired� data.  Suppose that the 
meteorological data for 1941-1990 is used to drive a simulation model generating data as 
described in Table 11: 
 

Table 11.   Possible flow data from a 50-year simulation 
 

 
                                                                                 
 
                                                                                   

 
Here there is one sample, Y1(1) through Y1(50), for policy 1, and another sample, Y2(1) through 
Y2(50), for policy 2.   However, the two sets of observations are not independent.  For example, 
if 1943 was a very dry year, then we would expect both Y1(3) for policy 1 in that year and Y2(3) 
for policy 2 to be unusually small.  With such paired data, one can use a paired hypothesis test 
to check for differences.  Paired tests are usually easier than the corresponding unpaired tests 
that are appropriate in other cases.  (For example, if one were checking for a difference in 
average rainfall depth between 1941-1960, and 1961-1990, they would have two sets of 
independent measurements for the two periods.  With such data, one should use a two-sample 
unpaired test.)   
 
Paired tests are generally based on the differences between the two sets of output, Y1(i) � Y2(i).  
These are viewed as a single independent sample.  The question is then are the differences 
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positive (say Y1 tends to be larger then Y2), or negative (Y1 tends to be smaller), or are positive 
and negative differences are equally likely (there is no difference between Y1 and Y2). 
 
Both parametric and non-parametric families of statistical tests are available for paired data.  
The common parametric test for paired data (a one-sample t test) assumes that the mean of the 
differences  

 
 X(i) = Y1(i) � Y2(i)          (21) 
 
are normally distributed.  Then the hypothesis of no difference is rejected if the t statistic is 
sufficiently large, given the sample size n. 

 
Alternatively, one can employ a nonparametric test and avoid the assumption that the 
differences X(i) are normally distributed.  In such a case, one can use the Wilcoxon Signed 
Rank test.  This nonparametric test ranks the absolute values |X(i)| of the differences.  If the 
sum S of the ranks of the positive differences deviates sufficiently from its expected value, 
n(n+1)/4 (were there no difference between the two distributions), one can conclude that there 
is a statistically significant difference between the Y1(i) and Y2(i) series.  Standard statistical 
texts have tables of the distribution of the sum S as a function of the sample size n, and provide 
a good analytical approximation for n > 20  (for example, Devore, 1991).  Both the parametric 
t test and the nonparametric Wilcoxon Signed Rank test require that the differences between 
the simulated values for each year be computed. 
 
6.  Communicating model output uncertainty 
 
Spending money on reducing uncertainty would seem preferable to spending it on ways of 
calculating and describing it better.  Yet attention to uncertainty communication is critically 
important if uncertainty analyses and characterizations are to be of value in a decision making 
process. In spite considerable efforts by those involved in risk assessment and management, we 
know very little about how to ensure effective risk communication to gain the confidence of 
stakeholders, incorporate their views and knowledge, and influence favorably the acceptability 
of risk assessments and risk-management decisions.    
 
The best way to communicate concepts of uncertainty may well depend on what the audiences 
already know about risk and the various types of probability distributions (e.g., density, 
cumulative, exceedance) based on objective and subjective data, and the distinction between 
mean or average values and the most likely values.  Undoubtedly graphical representations of 
these ways of describing uncertainty considerably facilitate communication.   
 
The National Research Council (NRC 1994) addressed the extensive uncertainty and 
variability associated with estimating risk and concluded that risk characterizations should not 
be reduced to a single number or even to a range of numbers intended to portray uncertainty.  
Instead, the report recommended managers and the interested public should be given risk 
characterizations that are both qualitative and quantitative and both verbal and mathematical.  
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In some cases communicating qualitative information about uncertainty to stakeholders and the 
public in general may be more effective than quantitative information.  There are, of course, 
situations in which quantitative uncertainty analyses are likely to provide information that is 
useful in a decision-making process.  How else can tradeoffs such as illustrated in Figures 10 
and 27 be identified?   Quantitative uncertainty analysis often can be used as the basis of 
qualitative information about uncertainty, even if the quantitative information is not what is 
communicated to the public.  
 
One should acknowledge to the public the widespread confusion regarding the differences 
between variability and uncertainty.  Variability does not change through further measurement 
or study, although better sampling can improve our knowledge about variability.  Uncertainty 
reflects gaps in information about scientifically observable phenomena.   
 
While it is important to communicate uncertainties and confidence in predictions, it is equally 
important to clarify who or what is at risk, possible consequences, and the severity and 
irreversibility of an adverse effect should a target value, for example, not be met.  This 
qualitative information is often critical to informed decision-making.  Risk and uncertainty 
communication is always complicated by the reliability and amounts of available relevant 
information as well as how that information is presented.  Effective communication between 
people receiving information about who or what is at risk, or what might happen and just how 
severe and irreversible an adverse effect might be should a target value not be met, is just as 
important as the level of uncertainty and the confidence associated with such predictions.    A 
two-way dialog between those receiving such information and those giving it can help identify 
just what seems best for a particular audience.    
 
Risk and uncertainty communication is a two-way street,  It involves learning and teaching.   
Communicators dealing with uncertainty should learn about the concerns and values of their 
audience, their relevant knowledge, and their experience with uncertainty issues. Stakeholders� 
knowledge of the sources and reasons for uncertainty needs to be incorporated into assessment 
and management and communication decisions. By listening, communicators can craft risk 
messages that better reflect the perspectives, technical knowledge, and concerns of the 
audience. 
 
Effective communication should begin before important decisions have been made. It can be 
facilitated in communities by citizen advisory panels.   Citizen advisory panels can give 
planners and decision makers a better understanding of the questions and concerns of the 
community and an opportunity to test its effectiveness in communicating concepts and specific 
issues regarding uncertainty.   
 
One approach to make uncertainty more meaningful is to make risk comparisons.  For 
example, a ten parts per billion target for a particular pollutant concentration is equivalent to 10 
seconds in over 31 years.   If this is an average daily concentration target that is to be satisfied 
"99 percent," of the time, this is equivalent to an expected violation of less than one day every 
three months.    
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Many perceive the reduction of risk by an order of magnitude as though it were a linear 
reduction. A better way to illustrate orders of magnitude of risk reduction is shown in Figure 
24, in which a bar graph depicts better than words that a reduction in risk from one in a 1,000 
(10-3) to one in 10,000 (10-4) is a reduction of 90% and that a further reduction to one in 
100,000 (10-5) is a reduction 10-fold less than the first reduction of 90%. The percent of the 
risk that is reduced by whatever measures is a much easier concept to communicate than 
reductions expressed in terms of estimated absolute risk levels, such as 10-5.  
 
 

 
 

Figure 24.  Reducing risk by orders of magnitude is not equivalent to linear reductions. 
 
Risk comparisons can be helpful, but they should be used cautiously and tested if possible. 
There are dangers in comparing risks of diverse character, especially when the intent of the 
comparison is seen as minimizing a risk (NRC 1989).  One difficulty in using risk comparisons 
is that it is not always easy to find risks that are sufficiently similar to make a comparison 
meaningful.  How is someone able to compare two alternatives having two different costs and 
two different risk levels, for example, as is shown in Figure 7?   One way is to perform an 
indifference analysis (Chapter X), but that can lead to different results depending who 
performs it.   Another way is to develop utility functions using weights, where, for example 
reduced phosphorus load by half is equivalent to a 25 percent shorter hydroperiod in that area, 
but again each person�s utility or tradeoff may differ.    
 
At a minimum, graphical displays of uncertainty can be helpful.  Consider the common system 
performance indicators that include: 

•  Time-series plots for continuous time-dependent indicators (Figure 25 upper left) 
•  Probability exceedance distributions for continuous indicators (Figure 25 upper right),  
•  Histograms for discrete event indicators (Figure 25 lower left), and 
•  Overlays on maps for space-dependent discrete events (Figure 25 lower right). 
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Figure 25.   Different types of displays used to show model output Y or system performance 
indicator values F(Y). 
 
The first three graphs in Figure 25 could show, in addition to the single curve or bar that 
represents the most likely output, a range of outcomes associated with a given confidence 
interval.  For overlays of information on maps, different colors could represent the spatial 
extents of events associated with different ranges of risk or uncertainty.  Figure 26, 
corresponding to Figure 25, illustrates these approaches for displaying these ranges.  
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Figure 26.   Plots of ranges of possible model output Y or system indicator values F(Y) for 
different types of displays. 
 
 
7.  Conclusions 
 
This chapter provides an overview of uncertainty and sensitivity analyses in the context of 
hydrologic or water resources systems simulation modeling.  A broad range of tools are 
available to explore, display, and quantify the sensitivity and uncertainty in predictions of key 
output variables and system performance indices with respect to imprecise and random model 
inputs and to assumptions concerning model structure.  They range from relatively simple 
deterministic sensitivity analysis methods to more involved first-order analyses and Monte 
Carlo sampling methods.  

  
Because of the complexity of many watersheds or river basins, Monte Carlo methods for 
uncertainty analyses may be a very major and unattractive undertaking.  Therefore it is often 
prudent begin with the relatively simple deterministic procedures.  This coupled with a 
probabilistically based first-order uncertainty analysis method can help quantify the uncertainty 
in key output variables and system performance indices, and the relative contributions of 
uncertainty in different input variables to the uncertainty in different output variables and 
system performance indices.  These relative contributions may differ depending upon which 
output variables and indices are of interest. 
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A sensitivity analysis can provide a systematic assessment of the impact of parameter value 
imprecision on output variable values and performance indices, and of the relative contribution 
of errors in different parameter values to that output uncertainty.  Once the key variables are 
identified, it should be possible to determine the extent to which parameter value uncertainty 
can be reduced through field investigations, development of better models, and other efforts.   

 
Model calibration procedures can be applied to individual catchments and subsystems, as well 
as to composite systems.  Automated calibration procedures have several advantages including 
the explicit use of an appropriate statistical objective function, identification of those 
parameters that best reproduce the calibration data set with the given objective function, and 
the estimations of the statistical precision of the estimated parameters. 

 
All of these tasks together can represent a formidable effort.  However, knowledge of the 
uncertainty associated with model predictions can be as important to management decision and 
policy formulation as are the predictions themselves.   

 
No matter how much attention is given to quantifying and reducing uncertainties in model 
outputs, uncertainties will remain.  Professionals who analyze risk, managers and decision 
makers who must manage risk, and the public who must live with risk and uncertainty, have 
different information needs and attitudes regarding risk and uncertainty.  It is clear that 
information needs differ among those who model or use models, those who make substantial 
investment  or social decisions, and those who are likely to be impacted by those decisions.  
Meeting those needs should result in more informed decision making.  But it comes at a cost 
that should be considered along with the benefits of having this sensitivity and uncertainty 
information.   
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Appendix I:   Model Calibration Examples 

 
•  Calibration of models in the Murray-Darling Basin 

 
In the Murray-Darling Basin, in order to preserve water quality, water reliability and the 
environment, a decision was made in 1995 to restrict water use to the 1993/94 level of 
development. Computer models of the major tributary streams are now used at the end of each 
year to determine the annual use target for the previous season based on that level of 
development. Rules are in place to ensure that long term usage is maintained at the agreed 
level. Because the models now define the overall water rights of each valley, there are legal 
requirements to calibrate models and each model is independently audited and certified as 
being unbiased before being approved as fit for purpose. The key model output of interest is 
water use but emphasis is also placed on the modeling of downstream flow which impacts the 
rights of downstream regions. Each model must be calibrated over at least ten years and this 
often means that changes in infrastructure, operating rules and growth in demand have to be 
incorporated into the calibration run. Calibration reports contain plots of modeled and observed 
water use, storage behavior and flow and statistics such as mean error, correlation coefficients 
and standard errors. The aim of calibration is to ensure that the model is unbiased and to give 
confidence to stakeholders.  
 
An issue that is sometimes raised with model development is the role of calibration, where the 
model is fine-tuned to match the observed data, and validation where the model is tested 
against data that was not used in the calibration process to get an independent assessment of 
the model�s accuracy. For the Murray River, because of the variability of our climate, we like 
to calibrate our model against a long period of data including the most recent years when the 
current operating rules were being used and the historical data is generally the most reliable. 
Validation is considered to be less important and is typically carried out using the two or three 
years of data available following the completion of model calibration.  
 

•  Use of models for Allocating Water in Texas 
 
Recent legislation in Texas revised the State Water Planning process and mandated the 
development of water allocation models for every river basin in the state 
(http://www.tnrcc.state.tx.us/permitting/waterperm/wrpa/permits.html).  Similar to the Murray 
� Darling situation, these models are used to provide estimates of reliability for all permitted 
water diversions in the state as well as analysis of the effects of all permit applications.  
Naturalized, or predevelopment, time series of flows were constructed for the basins, and then 
the effects of developments were added in to achieve models of the current situation.  The 
process of developing the basin models was an iterative, peer reviewed calibration process 
subject to stakeholder comment at several critical junctures.  The naturalized flows and 
subsequent development of the basins now form an accepted and legal basis for future water 
allocations.  Currently, similar activities are ongoing to provide calibrated and verified models 
of the state�s groundwater aquifers and usage. 
 


