湖泊水动力对蓝藻生长的影响

张毅敏,张永春,张龙江,高月香,赵 颖 (国家环境保护总局南京环境科学研究所,江苏 南京 210042)

摘要:对铜绿微囊藻的水动力模拟实验研究表明,流速和温度以及营养盐浓度对藻类生长有着密切影响,且可能存在一定的临界流速.不同 营养状态,临界值不同,在 N:P 为 4.5:1 情况下推测临界流速为 0.50m/s;在 N:P 为 2.7:1 情况下推测临界流速为 0.30m/s.经太湖湖泊水动力过 程的野外实地观测,风速在 2.0~4.0m/s 时,与水中叶绿素 a 浓度呈负相关;当风速 5.0m/s 时,叶绿素 a 浓度降幅最大,并一直维持在该水平. 风力导致的水动力条件变化,影响藻类的生长和聚集状态.水动力因素对蓝藻的生长及聚集有着较大影响. 关键词:湖泊水动力条件;流速;风速;铜绿微囊藻;水华

中图分类号:X143 文献标识码:A 文章编号:1000-6923(2007)05-0707-05

The influence of lake hydrodynamics on blue algal growth. ZHANG Yi-min^{*}, ZHANG Yong-chun, ZHANG Long-jiang, GAO Yue-xiang, ZHAO Ying (Nanjing Institute of Environmental Science, State Environmental Protection Administration, Nanjing 210042, China). *China Environmental Science*, 2007,27(5): 707~711

Abstract: Through hydrodynamic simulated test study of *Microcystis aeruginosa*, flow velocity, water temperature and nutrient had significant impact on the growth of algae. There maybe existed a definite critical flow velocity changed with the nutrient state level. When the ratio of N/P was 4.5 and 2.7, the value of critical flow velocity was estimated 0.50 m/s and 0.30m/s respectively. The field observation of Lake Taihu hydrodynamic process indicated that the concentration of chlorophyll-a was negatively correlated with wind velocity ranging between 2.0 and 4.0m/s. When wind velocity was higher than 5.0m/s, the chlorophyll-a concentration dropped the largest and it maintained at that level. The change of hydrodynamic condition induced by wind force affected the growth and congregation state of algae. The hydrodynamic factor had great influence on the growth and congregation of algae and it had important meaning on inquiring the mechanism of blue algal bloom occurrence.

Key words : lake hydrodynamics conditions ; flow velocity ; wind speed ; microcystis aeruginosa ; algal bloom

湖泊浮游生物的种群演替和数量变化,不仅 受到湖泊环境温度、光照的周期性及本身生长的 生理生态状态的影响,而且受到水体的水动力作 用影响^[1-2].在大型浅水湖泊中,水动力对浮游生 物的数量、分布的影响十分明显.太湖蓝藻水华 的主要浮游生物种类为微囊藻,有研究表明,随风 漂移外来的微囊藻叶绿素 a 的浓度是该水域内 生长的微囊藻叶绿素 a的方倍^[1].太湖梅梁湾水动 力作用过程的研究也表明,当风与湖流状况变化 时,浮游动物数量也随之而变^[3].水动力过程与理 化因子是影响水体富营养化状态和水华的暴发的 重要因素,以往的水动力的研究多侧重在水质模型 的建立和计算,以及理化因子和生物因子的分析 与研究^[4-5],近来有些学者开始关注水动力因素 对于藻类生长的影响^[6-9].为探讨不同水动力过程 对浮游植物数量变动以及对湖泊水环境的作用,进 而揭示蓝藻水华的成因,作者进行了湖泊水动力过 程的实地观测和实验室的模拟实验研究.

- 1 实验室模拟
- 1.1 材料与方法

利用自行研制的水动力模拟旋转试验装置, 于 2005 年 7~8 月,2005 年 10~12 月在宜兴大浦 镇进行实验.

实验材料纯培养的铜绿微囊藻(Microcystis aeruginosa),取自中国科学院武汉水生生物研究 所,采用 MA 培养基培养,藻类浓度达到接种要求

收稿日期:2006-12-28

基金项目:国家"973"项目(2002CB412305)

^{*} 责任作者, 副研究员, Zhangymzym@163.com.

时,接种入实验装置中.

实验用水取自宜兴大浦镇林庄港河口的西 太湖水.实验前先将湖水用 33μm 浮游生物网过 滤,再用 0.45μm 定性滤膜过滤,加入实验装置内. 用去离子水补充蒸发的水量.

实验装置采用自行研制的旋转式动态水 力模拟装置(图 1).由轴承驱动装置中的底座, 再由底座带动圆桶转动,桶内装有实验水.水 流速度由圆桶转速确定,这可由面板上的数字 控制仪控制.圆桶直径为 0.6m,高 0.55m.转速 范围 0~150r/min,平均稳定流速范围 0~75m/s,温 度 范围 (-10 ± 0.5)~(50 ± 0.5) .光强范围 0~500001x.

图 1 实验装置示意 Fig.1 Mechanism of the hydrodynamics simulated device

1.2 实验方法

实验分 2 个阶段(实验 I 和实验)进行, 分别设立 8 组实验组,其中 2 组为静态对照组, 每组设置 2 个平行.设计时考虑了藻类生长的 最佳光照条件(3300lx),最充分的营养盐水平 以保证藻类能正常生长.实验方案设计见表 1. 测试参数:初始水质中 pH 值、叶绿素 a、总氮 (TN)、氨氮(NH4⁺-N)、硝酸 - 亚硝酸盐、总磷 (TP)、正磷酸盐、DO、ORP.隔天测定浮游植物 种类和数量.采用荷兰的 SCARLARSAN⁺型流动 分析仪测定水质化学指标;采用美国 YSI6600 型 水质测定仪测定 pH 值、DO、ORP 等理化指标. 采用 722 型分光光度计测定叶绿素 a.利用显微 镜计数藻类数量.实验用水的初始(未投加藻类 前)水质参数见表 2.

表 1 各实验组的有关参数

Table 1 The parameters of experimental groups

·····································	组别	流速	温度	光照	初始藻类浓
坝日	编号	(m/s)	()	(lx)	度 (个/mL)
	1#	0.10	35	3300	10 ⁵
	2#	组别 流速 温度 光照 初始薄 编号 (m/s) ((1x) 度(个 1# 0.10 35 3300 10 2# 0.25 35 3300 10 3# 0.50 35 3300 10 4# 0.10 25 3300 10 5# 0.25 25 3300 10 6# 0.50 35 3300 10 CK 1# 0 35 3300 10 CK 3# 0 25 3300 10 CK 4# 0 25 3000 10 2# 0.30 25 3000 10 3# 0.40 25 3000 10 4# 0.50 25 3000 10 5# 0.60 25 3000 10 5# 0.60 25 3000 10 5# 0.60 25	10 ⁵		
	项目 组別 编号 流速 (m/s) 温度 (m/s) 光照 (1x) 1# 0.10 35 3300 2# 0.25 35 3300 2# 0.25 35 3300 3# 0.50 35 3300 4# 0.10 25 3300 5# 0.25 25 3300 6# 0.50 35 3300 CK 1# 0 35 3300 CK 2# 0 25 3300 CK 3# 0 25 3300 CK 4# 0 25 3000 2# 0.30 25 3000 2# 0.30 25 3000 3# 0.40 25 3000 3# 0.40 25 3000 5# 0.60 25 3000 6# 0.75 25 3000	10 ⁵			
	4#	0.10	25	3300	10 ⁵
京陸ェ	5#	0.25	25	3300	10 ⁵
头短1	6#	0.50	35	3300	10 ⁵
	CK 1#	0	35	3300	10 ⁵
	CK 2#	0	25	3300	0
	CK 3#	0	25	3300	10 ⁵
	CK 4#	0	25	3300	0
	1#	0.15	25	3000	10 ⁵
	2#	0.30	25	3000	 初始藻类浓 度(个/mL) 300 10⁵ 300 300
	3#	0.40	25	3000	10^{5}
京陸田	4#	0.50	25	3000	10^{5}
<u> 关</u> 视 II	5#	0.60	25	3000	10^{5}
	6#	0.75	25	3000	10^{5}
	CK 1#	0	25	3000	10 ⁵
	CK 2#	0	25	3000	0

注:1#~6#实验组,容积直径 0.39m,水的高度为 0.23m,容积 约为 27.5L.CK 1#~CK4#为对照组,容积为 2L

比增长率(μ)是在某一时间间隔内藻类生长的速率, μ =ln(X_2/X_1)/(t_2 - t_1);式中, X_2 为某一时间间隔结束时的藻类现存量; X_1 为某一时间间隔开始时的藻类现存量; t_2 - t_1 为某一时间间隔的天数.

表 2 实验初始水质理化指标

Table 2	Physical and	chemical	index	of the	water	quality	at the	beginnin	g
---------	--------------	----------	-------	--------	-------	---------	--------	----------	---

项目	TN (mg/L)	TP (mg/L)	N/P	NH ₄ ⁺ – N (mg/L)	ORP (mV)	$\frac{NO_{3}^{-} - NO_{2}^{-}}{(mg/L)}$	DO (mg/L)	PO4 ³⁻ (mg/L)	pH 值
实验 Ⅰ	3.91	0.87	4.5:1	0.28	53	1.26	6.3	0.78	8.12
实验 II	1.75	0.65	2.7:1	0.37	54	0.36	6.0	0.033	7.84

5期

2 实验室模拟结果与分析

2.1 温度与流速的协同作用影响(实验 I)

图 2a 表明,当流速为 0.50m/s 时,藻类在 8~10d 达到生长高峰,其µ最大,为 0.07d⁻¹.流速为 0.10, 0.25m/s 实验组藻类的数量明显低于流速 为 0.50m/s组.在图 2b 中,25 时,也出现类似的现 象,在藻类对数生长期藻类的µ最大,为 0.20d⁻¹. 由图 2 还可见,25 条件下藻类的数量明显高于 35 时的藻类数量,且先行达到最大值;而 35 时出现滞后现象.由此可见,温度 25 ;流速 0.50m/s 对藻类的生长较为有利.

2.2 不同流速的影响(实验)

将流速范围进一步细分,分为 0.15,0.30, 0.40,0.50, 0.60,0.75m/s 等 6 个流速段,在 25 条 件下进行实验,如图 3 所示.在 0.30m/s 的流速条 件下,4~6d 后藻类增长的数量最大,低于 0.30m/s 或者高于 0.30m/s 的实验组的生长情况不佳.经 计算,在对数生长期,流速为 0.30m/s 的实验组藻 类的μ最大,为 0.46d⁻¹.

Fig. 3 Change of algae biomass at different flow velocity

at 25 (Test II)

→ 0.15m/s - - 0.30m/s → 0.40m/s → 0.60m/s - - 0.50m/s → 0.75m/s → 0m/s 无藻 → 0m/s 有藻

2.3 讨论

2 次实验表明,不同温度下,同一流速对于藻 类生长的影响不同,25 条件下流速为 0.50m/s 组的藻类数量明显高于 35 情况,且先行达到最 大值.说明藻类的生长适宜温度为 25 .在此温 度下,铜绿微囊藻类对营养盐的吸收有促进作 用^[10].在 35~40 高温下,μ急剧下降,生长受 阻,μ最大时,藻类易死亡沉淀^[11].

同一温度下,不同流速对于藻类生长的影响 也不同,在实验 I(N:P=4.5:1)中出现了当流速为 0.50m/s 时藻类在 8~10d 达到生长高峰,其他实验 组藻类的数量明显低于流速为 0.50m/s 组.而在 实验 (N:P=2.7:1)中则发现在 0.30m/s 的流速条 件下,4~6d 后藻类增长的数量最大,在藻类生长 对数期,流速为 0.30m/s 的实验组藻类的比增长 率最大,μ为 0.46d⁻¹.低于 0.30m/s 或者高于 0.30m/s 实验组的生长情况不佳.从实验结果推 测流速对藻类生长的影响可能存在一定临界速 度.而本研究的 2 次实验在不同的氮、磷比条件 下出现了不同的数值,推测这个临界值可能与营 养条件密切相关. 通常认为流速逐渐变小对藻类生长有利.然 而,在对流水的藻类研究中发现,除嫌流水藻类外, 急流水藻类和中流水藻类都可以在流水中生长. 水流对藻类的生长和繁殖是有利的,可使藻类不 断得到新的营养物质供应.本实验中流速< 30cm/s时,适量的水动力条件有利于改变铜绿微 囊藻胶质群体的大小和微生态系,从而增强其吸 收营养物质的能力^[12],还有利于实验装置中溶解 氧的增加和氧化还原电位的改变^[13].当流速 >30cm/s时,藻类数量的增长受到抑制.这是因为流 速过大时,水流的冲刷作用使藻类的生长、繁殖环 境受到破坏,有效地抑制藻类的增长和聚集^[8,14].

临界流速的研究对富营养化防治和控制水 华发生有着重要的意义^[7].由于不同种属藻类生 长对环境因子的要求都不同,因此临界流速在 理论上是可能存在的,而且在实际监测中也得 到初步证实^[9].廖平安等^[6]认为增加水体流速确 实可以抑制藻类生长,延缓水华发生.他的研究是 基于自然水体的多种藻类,选用的流速为 0.05m/s 和 0.20m/s.与本研究推测 0.30~0.50m/s 的临界流速有所不同,这主要由于本研究采用的 是单一的铜绿微囊藻,而且实验条件和初始的营 养状态不同.在水华的发展发生过程中,在生物学 上表现为几种优势藻类演替,因此把临界流速作 为研究流速对单一藻类生长影响的指标可能更 有意义.

尽管微囊藻在自然状态下主要以群体形态 存在,但本次室内培养中,微囊藻生长状况最好的 实验组最多也仅形成十几个细胞的小群体,难以 堆积在表面,在水体中分布相对均匀,这可能由于 室内培养照度较小且均匀,单细胞和小群体可减 少相互之间的光遮蔽,使得微囊藻单细胞可利用 更多的光能生长,使微囊藻单细胞难以形成大群 体.不过实验进行到 8d 左右,实验组中出现藻类 死亡,实验装置底部出现一定量褐色团块状物体 (死亡的藻类).本实验讨论蓝藻数量时,未将此计 算在内.

3 野外现场测试与结果分析

2004年9月与2005年8月在太湖梅梁湖进

行定位观测,观测因子包括气象因子及生物因子 等^[15].采用美国 YSI6600 型水质测定仪,原位自动 监测叶绿素 a 等水质参数,并进行统计分析,风速 由手持风向风速仪测定.由于太湖为浅水型湖泊, 风生流对湖泊水体流态的影响很大,许多研究证 实风力可导致湖泊水动力条件的改变^[4,16].

经现场观测,不同风速条件下太湖梅梁湖 不同深度(表层 S 层:离水面 0.5m,底层 B 层离 湖底 0.5m,中层 M 层)的叶绿素浓度分布情况 如图 4 所示.

图 4 太湖不同水层叶绿素 a 随风速变化趋势 Fig.4 Chlorophyll a concentration with the change of wind speed at different water layer in Lake Taihu

由图 4 可见,风速与水体中的叶绿素 a 浓度 基本上成负相关.水中叶绿素浓度随风速的增 加而迅速递减;当风速达到 5.0m/s 左右时,降幅 最大;风速再增加,叶绿素 a 浓度基本维持在较 低水平,变化很小.从不同水层中叶绿素 a 浓度 变化看,叶绿素 a 浓度差异较大,表层水叶绿素 a 浓度递减的幅度远大于底层,随着风速的增强, 水体中叶绿素 a 浓度降至最低,同时垂直方向不 同水层间的差异减小.

风速的变化带来了水动力条件的改变,影响 浮游动物的分布情况^[17],直接和间接地影响藻类 的生长和聚集状态.有野外研究资料表明,水华暴 发与风力搅动的过程相符^[18],湖底沉积物的再悬 浮为水华暴发创造了一定的条件.野外现场观测 进一步说明,风力导致间接的水动力条件变化对 藻类生长,以及水华发生有着重要的影响.

4 结论

4.1 流速与温度直接影响了蓝藻的生长,推测 可能存在临界流速,临界流速可能与营养状态有 关.在本研究的实验中,当 N:P 为 4.5:1 时,推测临 界流速为 0.50m/s;在 N:P 为 2.7:1 时,推测临界流 速为 0.30m/s,有关临界流速的确定及影响因素 还有待于深入探讨.

4.2 风力导致的水动力条件变化影响了藻类的 生长和聚集状态.风速在 2.0~4.0m/s 时与水中叶 绿素 a 浓度呈负相关,当风速 5.0m/s 时,叶绿素 a 浓度降幅最大,并维持在此水平,变幅很小.

4.3 实验室模拟与野外现场测试结果表明,除 了营养状态外,水动力因素对蓝藻的生长及聚集 有着较大影响,这也是影响水华发生的重要因素.

参考文献:

- [1] 蔡后建,陈伟民.微囊藻水华的漂移和降解对太湖水环境的影响
 [A]. 蔡启铭.太湖环境生态研究(一) [C]. 北京:气象出版社,
 1998.149-157.
- [2] Verkhozina V A., Kozhova O M, Kusner Yu S. Hydrodynamics as a limiting factor in the Lake Baikal ecosystem, [J]. Aquatic Ecosystem Health and Management, 2000,3:203–210.
- [3] 陈伟民,秦伯强.太湖梅梁湾冬末春初浮游动物时空变化及其环境意义[J]. 湖泊科学, 1998,10(4):10-16.
- [4] 胡维平,濮培民,秦伯强.太湖水动力学三维数值试验研究——1.
 风生流和风涌增减水的三维数值模拟[J].湖泊科学.
 1998,10(4):17-25.
- [5] 陈宇炜,秦伯强,高锡云.太湖梅梁湾藻类及相关环境因子逐步
 回归统计和蓝藻水华的初步预测 [J]. 湖泊科学, 2001,13(1):
 63-71.
- [6] 廖平安,胡秀琳.流速对藻类生长影响的试验研究 [J]. 北京水

利,2005,2:12-14.

- [7] 焦世珺,钟成华,邓春光.浅谈流速对三峡库区藻类生长的影响[J]. 微量元素与健康研究, 2006,23(2):48-50.
- [8] 李锦秀,杜 斌,孙以三.水动力条件对富营养化影响规律探讨
 [J]. 水利水电技术, 2005,36(5):15-18.
- [9] 黄 程,钟成华,邓春光,等.三峡水库蓄水初期大宁河回水区流 速与藻类生长关系的初步研究 [J]. 农业环境科学学报, 2006,25(2):453-455.
- [10] 高学庆,任久长,宗志祥,等.铜绿微囊藻营养动力学研究 [J]. 北 京大学学报(自然科学版), 1997,30(4):461-469.
- [11] 林毅雄,韩梅.滇池富营养化的铜绿微囊藻生长因素的研究 [J].环境科学进展, 1998,6(3):82-87.
- [12] 史小丽,王凤平,蒋丽娟,等.扰动对外源性磷在模拟水生态系统 中迁移的影响 [J]. 中国环境科学, 2002,22(6):537-541.
- [13] 张 民,史小丽,蒋丽娟,等.两种外源性磷及振荡对铜绿微囊藻 (*Microcystis aeruginosa*)生长的影响 [J]. 应用与环境生物学报, 2002,8(5):507-510.
- [14] Reynolds C S. The ecology of freshwater phytoplankton [M]. London: Cambridge University Press, 1984.132-133.
- [15] 黄祥飞.湖泊生态调查观测与分析 [M]. 北京:中国标准出版社, 1999.
- [16] 王谦谦.太湖风成流的数值模拟 [J]. 河海大学学报, 1987,(增 刊 2):11-18.
- [17] Osami Kawara, Eisaku Yura, Shinobu Fujii Toyohisa Matsumoto. A study on the role of hydraulic retention time in eutrophication of the Asahi river dam reservoir [J]. Wat. Sci. Tech., 1998,37(2): 245-252.
- [18] Reynolds C S. The ecology of the planktonic blue-green algae in the north Shropshire meres [J]. Ftd., Stud., 1971,3:409-432.

作者简介:张毅敏(1965-),女,黑龙江省齐齐哈尔人,副研究员,博士, 从事水污染控制与水生态修复研究,发表论文20余篇.

告读者

为了适应我国环境保护科学事业的发展,缩短环境保护科研人员科技成果发表的周期,《中国环境科学》编辑 委员会决定 2008 年《中国环境科学》由双月刊改为月刊,页码由双月刊的 144 页改为 96 页,定价由双月刊的 23.80 元/本改为 19.80 元/本.

> 《中国环境科学》编辑部 2007年8月3日