LONG-TERM

Central Valley Project

OPERATIONS CRITERIA PLAN

CVP-OCAP

October 1992

U.S. Department of the Interior Bureau of Reclamation

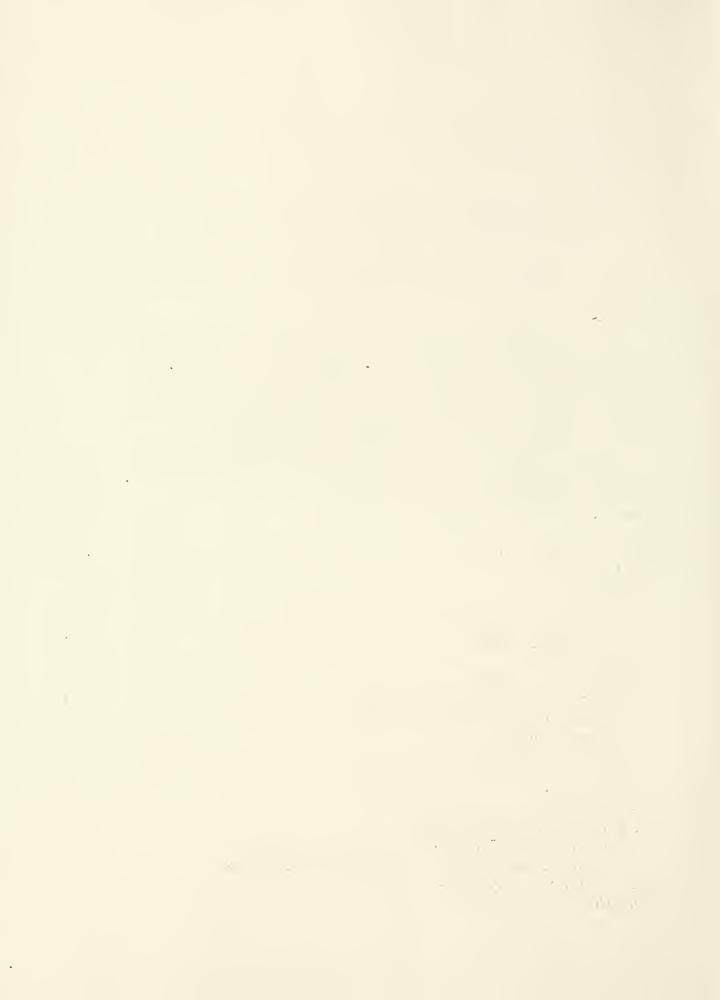
The Control of the Co

Test essent

LONG-TERM CENTRAL VALLEY PROJECT OPERATIONS CRITERIA AND PLAN CVP-OCAP

U.S. Department of the Interior Bureau of Reclamation Mid-Pacific Region Sacramento, California

October 1992


to the second of the second of

A TAN COUNTY SET OF THE CONTROL OF T

MISSION STATEMENT

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public.

As public values related to water use and management have changed since the inception of the Central Valley Project, so have the needs which its operations must address. While continuing to carry out the legislated purposes for which the Central Valley Project was originally authorized and developed, the Bureau of Reclamation is committed to finding ways to respond to issues created by changing priorities for water.

TABLE OF CONTENTS

Summary	vii
Purpose and Use of This Document	vii
List of Abbreviations/Acronyms	ix
Chapter I: Introduction	
Overview of the Central Valley Project	
Background	1
Topography and Climate	1
Components of CVP	
Trinity River Division	6
Shasta Division	6
Sacramento River Division	8
American River Division	
Delta Division	
West San Joaquin Division	
Friant Division	
East Side Division	
San Felipe Division	
Project Management and Organization	9
	1 1
Chapter II: Operations Constraints	
Projectwide Constraints	
Introduction	
CVP Yield	
Intermittent Water Supply	
Interim Water Supply	
Water Rights	
Water Service Contracts	
Definition of Types of Water Delivered	14
Water Shortage Provisions	14
Acreage Limitation	14
Water Conservation	14
Water and Air Pollution Control	15
Ratesetting	
Hydropower	
Coordinated Operations Agreement	
Obligations for Inbasin Uses	
Accounting and Coordination of CVP and SWP Operations	
Objectives of Division Operations	
Introduction	
***************************************	2

Trinity River Division Operations	
Water Supply	22
Water Rights	22
Fish and Wildlife	25
Hydropower	28
Recreation	30
Flood Control	31
Safety of Dams Criteria	32
Shasta and Sacramento River Operation	33
Introduction	33
Fish and Wildlife Requirements	33
Temperature Operations Plans	34
Tools Used for Analyzing Operational Alternatives	34
Temperature Control Alternatives	
Actual Operations for Temperature Control	35
Minimum Instream Flows Provided by 1960 MOA	36
Seasonal Fluctuations Under the 1960 MOA	37
Changes and Ramping	37
Reservoir Fishery Problems	
Recreation Use at Shasta Lake and Sacramento River	
Flood Control Objectives and CriteriaShasta Dam and Lake	39
Navigation and Related "Depth and Head" Issues of the Sacramento River	43
Water Quality Problems Caused by Spring Creek	43
Seepage and Drainage Problems in the Sacramento River	45
Needs of ACID Diversion Dam	47
Requirements for Operating the RBDD	48
American River Operations	49
Fish and Wildlife Requirements	49
Flows and Habitat in the American River	51
Water Temperatures Downstream and at Hatchery (American River)	52
Recreation Use at Folsom Lake and American River	52
Flood Control Objectives and CriteriaFolsom Dam and Lake	53
Delta Operations	
Introduction	56
Water RightsDelta Division	56
SWRCB D-1485Delta Water Quality Standards 58	
Reclamation Facilities in the Delta	
Delta-Mendota Canal and San Luis Operations	
Water DemandsDMC and San Luis Unit	
San Luis Reservoir Operations	
San Luis Unit OperationState and Federal Coordination	

Chapter III: Decision Criteria	67
Reservoir Storage Criteria	67
Flood Control	67
Water Supply for the Upcoming Year	68
Cold Water Pool	69
Lake Recreation	69
Electrical Capacity and Energy	70
Downstream Water Quality	70
Streamflow Criteria	
Criteria for Water Deliveries	75
Decisionmaking Process	75
Water Rights Settlement AgreementsProvision for Shortages in Deliveries .	. 76
Past Water Delivery Decisions (1977 and 1989-92)	
- Water Year 1977	
Water Year 1988	78
Water Year 1989	78
Water Year 1990	79
Water Year 1991	79
Water Year 1992	79
Energy Requirements for the CVP System	
Water Quality in the Delta	
Chapter IV: Operations Forecasting Reservoir Refill Potential Trinity Dam and Clair Engle Reservoir Shasta Dam and Lake	85 88
Folsom Dam and Reservoir	
New Melones Dam and Reservoir	89
Conclusions	89
Runoff Forecasts	90
Use of Multiple Linear Regression Models	
Forecast Confidence Limits	91
Accuracy of Runoff Forecasts	92
Consultations and Coordination	92
Accretions and Depletions	98
Forecasts of Delta Requirements	
12-Month Forecast of CVP Water and Power Operations	101
Chapter V: Water Year Operations Plans	
Objective and Scope	
Pre-1992 and Alternative Operations Criteria	
Pre-1992 Operations	
TEM Alternative Operations	, 103

NMFS B Alternative Operations	106
CVP Water Allocation	107
Water Allocation Criteria Common to All Operations Alternatives	108
Pre-1992 Operations	
TEM Alternative Operations	
NMFS B Alternative	
Assumptions	
Assumptions Common to All CVP-OCAP Water Year Operations Plans	110
Upper Sacramento River Temperature and Survival Analysis	112
Assumptions Common to All Temperature Analyses of Long-Term	
Operations Plans	113
Assumptions Regarding Spawning Distribution for Survival Analysis	113
Summary of Results	114
Conclusions	116
LIST OF FIGURES AND TABLES	
Figure 1. Map - Features of the Central Valley Project	X
Figure 2. Laws, Directives, and Orders Affecting Central Valley Project (CVP)	~
Operation	. 4
Figure 3. Topographic Map - The Central Valley Basin	-
Figure 4. Central Valley Project Facilities by Division	10
Figure 5. Organization Chart - Mid-Pacific Region, Bureau of Reclamation Figure 6. Periods of balanced conditions in the Delta	
Figure 7. Graph - Central Valley Project Divisions	. 41
Figure 8. Map - Upper Sacramento River From Shasta Dam to Red Bluff	22
Diversion Dam	
Figure 10. Map - Sacramento River Division and American River Division	
Figure 11. Diagram - Folsom lake Flood Control	
Figure 12. Map - Delta Division	
Figure 13. Map - West San Joaquin Division and San Felipe Division	
Figure 14. Map - Sacramento/Trinity Water Quality Network	
Figure 15. Delta Water Quality Monitoring Sites	
Figure 16. Graph - Clair Engle Reservoir and Shasta Reservoir Refill Potential .	86
Figure 17. Graph - Folsom Reservoir and New Melones Reservoir Refill Potential	87
Figure 18. Runoff Forecast Data Requirements For Major CVP Water Supply	
Reservoirs	92
Figure 19. Typical Pattern of Precip Accumulation	
Figure 20. Conceptual Depiction of 90% and 10% Exceedance Levels of	
Forecasted and Historially Observed Runoff	97
Figure 21. Summary table in water year operations plan, Pre-1992 and TEM	,
alternatives	119
MANUAL TOUR	

Figure 22. Summary table for water year operations plans, B operations	130
alternative	. 120
Figure 23. Temperature and survival results for long-term CVP-OCAP.	101
Pre-1992 alternative and TEM alternative operations	. 121
Figure 24. Temperature and survival results for long-term CVP-OCAP,	100
R alternative operations	123
Figure 25. Sacramento River winter-run salmon temperature-related survival	105
(Pre-1992 alternative)	125
Figure 26. Sacramento River winter-run salmon temperature-related survival	106
(B alternative)	126
Figure 27. Sacramento River winter-run salmon temperature-related survival	107
(comparison of the Pre-1992 and B alternatives	
Figure 28. Total Delta export	128
Figure 29. Long-term CVP-OCAP alternative comparison: Change in Shasta	
storage	133
Figure 30. Long-term CVP-OCAP alternative comparison: Change in system	
storage	134
Figure 31. Long-term CVP-OCAP Antioch flow condition: Pre-1992 and	
B alternatives	135
Figure 32. Long-term CVP-OCAP Cross Channel gate position: Pre-1992 and	
B alternatives	136
Figure 33. Long-term CVP-OCAP: COA Delta status (periods of balanced and	d
excess conditions)	137
Table II-1. Summary of diversion water rights and storage seasons	
(CVP's onstream storage reservoirs)	13
Table II-2. CVP contractual entitlements (in acre-feet)	13
Table II-3. Minimum flows to Clear Creek (at Whiskeytown Dam)	24
Table II-4. Proposed release schedule (Whiskeytown Dam)	24
Table II-5. General criteria for releases to Trinity River (Lewiston Dam)	27
Table II-6. Temperature objectives for the Trinity River (SWRCB; October 19	91) 28
Table II-7 Target operating levels for Whiskeytown Lake	29
Table II-8. Summary of power pool limitations (Clair Engle Lake)	29
Table II-9. Target storage of Clair Engle Lake	32
Table II-10. Minimum releases into the Sacramento River at Keswick Dam	
for normal years	36
Table II-11. Minimum flow from Keswick Dam for critical years	37
Table II-12. Lag times for CVP and SWP releases to reach Emmaton	59
Table IV-1. Reclamation-forecasted runoff (CVP reservoirs)	90
Table V-1. Characteristics of the five levels of water year runoff used by	
CVP-OCAP	104
OIL OUIX IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

Table V-2. Water year inflow to reservoirs for the five CVP-OCAP water year	
types (Units: MAF)	04
Table V-3. NMFS ALTERNATIVES A THROUGH H Juvenile winter-run	
chinook salmon protective alternatives for the Sacramento-San Joaquin Delta for	
all water year types	07
Table V-4. Annual water demand in CVP-OCAP	
Table V-5. CVP-OCAP annual CVP deliveries by category of use (Units: MAF) 1	08
Table V-6. Comparison of annual water allocations Pre-1992 and	
NMFS B alternatives	11
Glossary	-1
Bibliography	-1
Appendices	
A	-1
В	
· C	
D	
E	

SUMMARY

During the spring of 1991, the Bureau of Reclamation (Reclamation) requested formal consultation with the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (FWS) pursuant to Section 7 of the Endangered Species Act. The consultation with NMFS was requested regarding the effects of long-term Central Valley Project (CVP) operations on winter-run chinook salmon in the Sacramento River and with the FWS regarding the effects of long-term CVP operations on the bald eagle in the Shasta and Trinity Reservoirs. Specifically in question are the long-term operating criteria and procedures for the Trinity, Shasta, and Delta Divisions and the Red Bluff Diversion Dam (under the Sacramento River Division).

As a result of further discussion and a followup meeting between the two agencies on April 18, 1991, a development plan and content outline were prepared by Reclamation for a document to be entitled *Central Valley Project - Long-Term Operations Criteria and Plan (CVP-OCAP)*. The outline and plan were formally transmitted to the NMFS on April 24, 1991.

Although it was Reclamation's intent that this consultation covering long-term CVP operation under a range of hydrologic and storage conditions be completed prior to the finalization of a plan of operations for 1992, late in 1991 NMFS and Reclamation agreed to consult separately regarding 1992 operations. In February 1992, Reclamation issued its Interim Central Valley Project Operations Criteria and Plan (CVP-OCAP) and a Biological Assessment of 1992 operations on the winter-run chinook salmon and bald eagle. NMFS issued a Biological Opinion on 1992 operations on February 14, 1992.

In June 1992, Reclamation issued a plan of study to complete the long-term CVP-OCAP and Biological Assessment of operations of the CVP under a full range of hydrologic and storage conditions. This document was prepared in accordance with that plan of study.

This document was prepared by various technical specialists within Reclamation as well as technical consultants hired by Reclamation. Representatives of other Federal and State agencies also provided review and valuable input to the process.

PURPOSE AND USE OF THIS DOCUMENT

All divisions of the CVP except the East Side and Friant Divisions are covered by this document, including the Trinity River, Shasta, Sacramento River, American River, Delta, San Felipe, and West San Joaquin Divisions. This document serves as a baseline description of the facilities and operating environment of the northern divisions of the CVP (listed above; see figure 1).

The CVP-OCAP identifies the many factors influencing the physical and institutional conditions and decisionmaking processes underlying how the project currently operates.

Regulatory and legal requirements are explained, alternative operating models and strategies described, and the operations plans based on Pre-1992 operations criteria and alternative operations criteria are also provided.

It is envisioned that CVP-OCAP will be used as a reference by technical specialists and policymakers both internally within Reclamation and outside the agency to better understand how the CVP is operated. The CVP-OCAP includes numeric and nonnumeric criteria and operating strategies. Special emphasis is given to explaining the analyses used to develop typical water year operating plans covering a range of four different initial storage conditions (low, low medium, high medium, and high), combined with five different water years covering assumed extreme critical, critical, dry, above-normal, and wet runoff conditions.

LIST OF ABBREVIATIONS/ACRONYMS

ACID Anderson-Cottonwood Irrigation District

AEEA Annual Energy Exchange Account

AF Acre-feet

DCC Delta Cross Channel

COA Coordinated Operations Agreement COE U.S. Army Corps of Engineers

CVOCO Central Valley Operations Coordinating Office

CVP Central Valley Project

CVP-OCAP Central Valley Project - Long-Term Operations Criteria and Plan

D-893 State Water Resources Control Board Decision 893
D-1400 State Water Resources Control Board Decision 1400
D-1485 State Water Resources Control Board Decision 1485

DCCG Delta Cross Channel Gates
Delta Sacramento-San Joaquin Delta

DFG (California) Department of Fish and Game

DMC Delta-Mendota Canal DOI Delta Outflow Index

DWR Department of Water Resources ESA Endangered Species Act of 1973

F Fahrenheit

ft³/s Cubic feet per second

FWS U.S. Fish and Wildlife Service

MAF Millions of acre-feet
M&I Municipal and Industrial
MOA Memorandum of Agreement
MOU Memorandum of Understanding

msl Mean sea level

NEPA National Environmental Policy Act of 1969

NMFS National Marine Fisheries Service

NTE Not to exceed

NWS National Weather Service
O&M Operations and Maintenance
PDC Project Dependable Capacity

PG&E Pacific Gas and Electric Company

RBDD Red Bluff Diversion Dam
Reclamation Bureau of Reclamation
RFC River Forecast Center

RRA Reclamation Reform Act of 1982 RWQCB Regional Water Quality Control Board

SNL Speed No Load

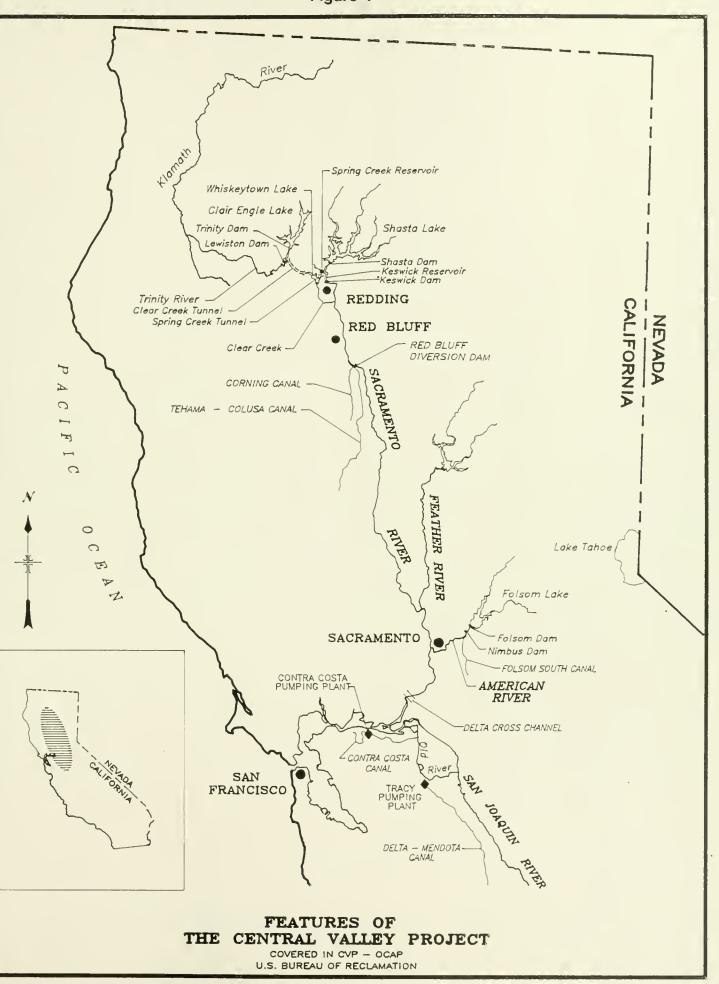
SWP (California) State Water Project

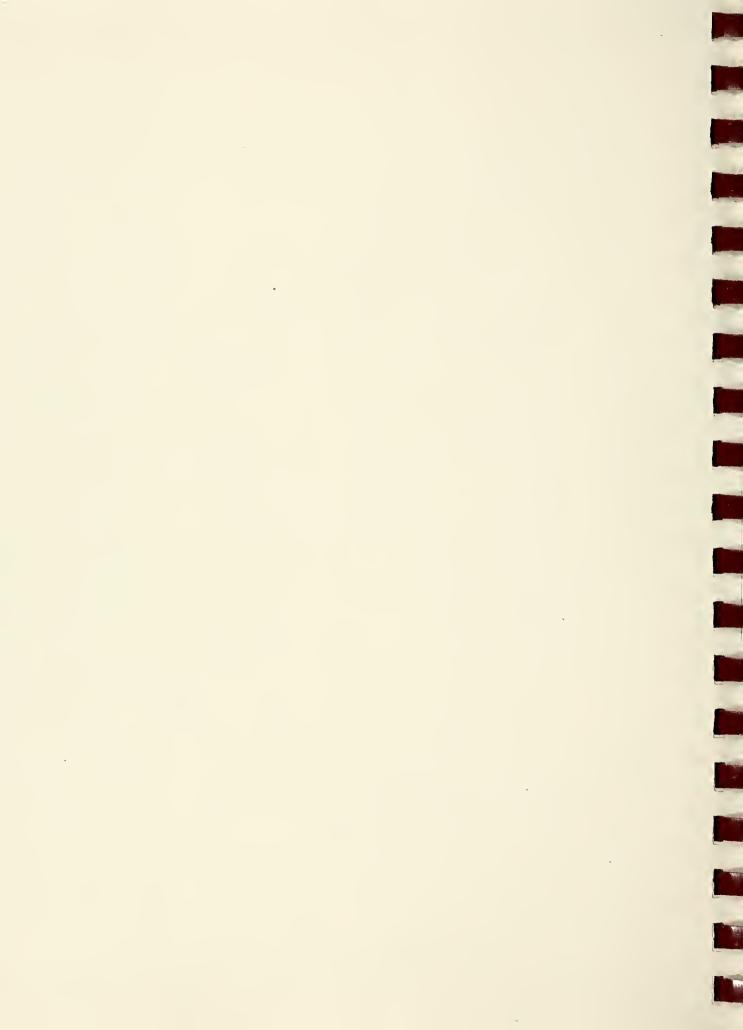
SWRCB California State Water Resources Control Board

SOLA Swamp and Overflow Land Act of 1850
SMSCG Suisun Marsh Salinity Control Gates

TAF Thousands of acre-feet

Task Group Sacramento River Temperature Task Group


Trinity Trinity River Division
USFS U.S. Forest Service


Western Area Power Administration

WR SWRCB Water Rights Order

WY Water Year

Figure 1

CHAPTER I INTRODUCTION

OVERVIEW OF THE CENTRAL VALLEY PROJECT

BACKGROUND

During the 1920's, a period of rapid growth in California, the State's political leaders recognized a need for large-scale water resources development for flood protection and water supply. The legislature authorized a statewide water resources investigation in 1921. In 1922, the legislature, governor, and the electorate approved construction of the State Central Valley Water Project. However, because of difficulty in marketing the bonds, the project could not be undertaken by the State. After repeated attempts by State officials failed to obtain Federal grants or loans to aid in financing the project, the Federal Government was requested to undertake the construction of Central Valley Project (CVP).

The first federal authorization of the CVP was by the Rivers and Harbors Act of August 30, 1935. The CVP was originally reauthorized for construction, operation and maintenance by the Secretary of the Interior pursuant to the Reclamation Act of 1902 as amended and supplemented (the Federal Reclamation laws) by the Rivers and Harbors Act of August 26, 1937. The 1937 act also provided that the dams and reservoirs of the CVP ". . . shall be used, first, for river regulation, improvement of navigation, and flood control; second, for irrigation and domestic uses; and, third, for power." Figure 2 is a list of subsequent laws, directives, and orders affecting CVP operation. In the statutes authorizing the construction, operation and maintenance of the various divisions of the CVP, Congress has consistently included language directing the Secretary to operate the CVP as a single, integrated project.

Major features of the CVP include: 20 reservoirs, with a combined storage capacity of approximately 11 million acre-feet (MAF); 8 powerplants and 2 pumping-generating plants, with a maximum capacity of about 2.0 million kilowatts; and approximately 500 miles of major canals and aqueducts.

TOPOGRAPHY AND CLIMATE

The Central Valley Basin of California extends about 500 miles in a northwest-to-southeast direction, with an average width of about 120 miles (see figure 3). The basin is surrounded by mountains except for a single outlet to the west at the Carquinez Strait. The Central Valley floor occupies about one-third of the basin and is about 400 miles in length and averages about 50 miles in width. The Cascade Range and Sierra Nevadas on the north and east rise in elevation to 14,000 feet and the Coast Ranges on the west to as high as 8,000 feet. Two major watersheds exist in the basin: the Sacramento River system in the north and the San Joaquin River system in the south. The two river systems join at the

Figure 2. Laws, Directives, and Orders
Affecting Central Valley Project (CVP) Operation

Law or Directive	Year	Effect on CVP
Reclamation Act	1902	Formed legal basis for subsequent authorization of the CVP.
Rivers and Harbors Act	1935 1937 1940	First authorization of CVP for construction and provision that dams and reservoirs used first for rivers' regulation, improvement of navigation, and flood control. Second for imgation and domestic users; third for power.
Reclamation Project Act	1939	Provided for the repayment of the construction charges and authorized the sale of CVP water to municipalities and other public corporations and agencies, plant investment, for certain irrigation water deliveries to leased lands.
Water Service Contracts	1944	Provided for the delivery of specific quantities of imigation and municipal and industrial water to contractors.
Flood Control Act	1944	Authorized flood control operations for Shasta, Folsom, and New Melones Dams.
Water Rights Settlement Contracts	1950	Provided diverters holding riparian and senior appropriative rights on the Sacramento and American Rivers with CVP water to supplement water which historically would have been diverted from natural flows.
Grasslands Development Act	1954	Added authority for use of CVP water for fish and wildlife purposes. Also authorized development of works in cooperation with the State for furnishing water to Grasslands for waterfowl conservation.
Trinity River Act	1955	Provided that the operation of the Trinity River Division be integrated and coordinated with operation of other CVP features to allow for the preservation and propagation of fish and wildlife.
Reclamation Project Act	1956	Provided a right of renewal of long-term contracts for agricultural contractors for a term not to exceed 40 years.
Fish and Wildlife Coordination Act	1958	Provided for integration of Fish and Wildlife Conservation programs with Federal water resources developments; authorized Secretary of the Interior to include facilities to mitigate CVP-induced damages to fish and wildlife resources. Required consultation with the U.S. Fish and Wildlife Service.
San Luis Authorization Act	1960	Authorized San Luis Unit and provided for financial participation of Reclamation in development of recreation.
Reclamation Project Act	1963	Provided a right of renewal of long-term contracts for municipal and industrial contractors.
Auburn-Folsom South Unit Authorization Act	1965	Authorized Auburn-Folsom South Unit. Provided for financial participation of Reclamation in development of recreation.

10/92

Figure 2. Laws, Directives, and Orders Affecting Central Valley Project (CVP) Operation (continued)

Law or Directive	Year	Effect on CVP
Power Contract 2948A	1967	Provided banking agreements with the Pacific Gas and Electric Company of California (PG&E), under which excess CVP energy and capacity is sold to the PG&E. The PG&E in return delivers power to CVP customers. Contract now administered by the Western Area Power Administration.
National Environmental Policy Act (NEPA)	1969	Established policy, set goals, and provided means for ensuring scientific analysis, expert agency participation and public scrutiny and input are incorporated into the decisionmaking process regarding the actions of the Federal agencies.
Council on Environmental Quality Regulations	1970	Provided directives for compliance with NEPA.
State Water Resources Control Board Decision 1379	1971	Established Delta water quality standards to be met by both the CVP and the State Water Resources Project (SWP).
Endangered Species Act	1973	Provided protection for animal and plant species that are currently in danger of extinction (endangered) and those that may become so in the foreseeable future (threatened).
State Water Resources Control Board Decision 1485	1978	Ordered the CVP (and the SWP) to guarantee certain conditions for water quality protection for agricultural, municipal and industrial, and fish and wildlife use.
Secretarial Decision on Trinity River Release	1981 Amended 1991	Allocated CVP yield so that releases can be maintained at 340,000 acre-feet in normal water years, 220,000 acre-feet in dry years, and 140,000 acre-feet in critically dry years. Released a minimum of 340,000 acre-feet annually for each dry or wetter water year. During each critically dry water year, 340,000 acre-feet will be released if at all possible.
Corps of Engineers Flood Control Manuals for: Shasta Folsom New Melones	1977 1959 1980	Prescribed regulations for flood control.
Corps of Engineers Flood Control Diagram for: Shasta Folsom New Melones	. 1977 1986 1982	Outlined descriptions and data on flood potential and flood ratings.
Reclamation Reform Act	1982	Introduced the concept of full-cost pricing, including interest on the unpaid pumping plant investment, for certain irrigation water deliveries to leased lands.

Figure 2. Laws, Directives, and Orders Affecting Central Valley Project (CVP) Operation (continued)

Law or Directive	Year	Effect on CVP
Coordinated Operating Agreement (COA)	1986	Agreement between the U.S. government and the State of California. Determined the respective water supplies of the CVP and the SWP while allowing for a negotiated sharing of Sacramento-San Joaquin Delta excess outflows and the satisfaction of in-basin obligations between the two projects.
Public Law 99-546	1986	Ensures repayment of plant-in-servicecosts at the end of FY 1980, by end of FY 2030.
Public Law 99-546	1986	DOI and Reclamation directed to include total costs of water and distributing and servicing it in CVP contracts (both capital and O&M costs).
WR 90-5, 91-1	1990 1991	Water Rights Orders that modified Reclamation water rights to incorporate temperature control objectives in Upper Sacramento River.
National Marine Fisheries Service Biological Opinion	1992	Established operation under the Reasonable Prudent Alternative (RPA) for 1992 operations to protect winter run. Provided for "incidental taking" within the RPA.

4

10/92

Sacramento-San Joaquin Delta (Delta) where the waters are commingled before emerging through the Carquinez Strait into San Francisco Bay and thence to the Pacific Ocean.

The climate in the Central Valley is characterized as Mediterranean, with long, warm, dry summers that provide ideal growing conditions for a wide variety of quality crops under irrigation. The winters are cool and moist. Severely cold weather does not occur, but temperatures drop below freezing occasionally in virtually all parts of the valley. Rainfall on the valley floor is light, and snow almost never occurs. Average annual precipitation decreases from north to south, with precipitation levels much greater in the mountain ranges surrounding the valley. About 80 inches of precipitation, much in the form of snow, occur annually at higher elevations in the northern ranges and about 35 inches occur in the southern mountains. About 85 percent of the precipitation falls from November through April.

COMPONENTS OF CVP

Facilities of the CVP are categorized by divisions and units (see figure 4). Most of the distribution and drainage systems constructed by Reclamation have been transferred to the irrigation and water districts for operation and maintenance (O&M), including some small storage reservoirs and pumping plants. The facilities discussed in this report include the major CVP storage, conveyance, and power facilities operated by Reclamation, the joint-use facilities operated by the California Department of Water Resources (DWR), and some other facilities that routinely affect CVP operations. The nine divisions of the CVP are discussed briefly in the following section.

Trinity River Division

Trinity River water is stored in Clair Engle Lake behind Trinity Dam. Releases from this reservoir are used to generate power at Trinity, Lewiston, Spring Creek, Judge Francis Carr (Carr), and Keswick Powerplants. Lewiston Dam regulates flows in the Trinity River to meet the fishery and temperature downstream requirements of the Trinity River Basin and provides a forebay for the transbasin diversion of flows through Clear Creek Tunnel to the Sacramento Basin. Water from the Trinity River commingles with the Sacramento River's, to provide irrigation service to lands in the Sacramento Valley and other CVP areas.

Shasta Division

Shasta Dam and Shasta Lake on the Sacramento River control floodwater and store surplus winter runoff for irrigation use in the Sacramento and San Joaquin Valleys. They also provide maintenance of navigation flows and conservation of fish in the Sacramento River, protection of the Delta from intrusion of saline ocean water, water for municipal and industrial (M&I) use, and generation of hydroelectric energy.

6

10/92

Figure 4. Central Valley Project Facilities by Division

American River Division

Auburn-Folsom South Unit
Sugar Pine Dam and Reservoir
Folsom South Canal
Folsom Unit
Folsom Dam and Lake
Folsom Powerplant
Nimbus Dam and Powerplant and
Lake Natoma
Sly Park Unit
Jenkinson Lake

Delta Division

Contra Costa Canal Contra Loma Reservoir Delta Cross Channel Delta-Mendota Canal Tracy Pumping Plant

East Side Division

New Melones Unit New Melones Dam, Lake, and Powerplant

Friant Division

Friant Dam and Millerton Lake Friant-Kern Canal Madera Canal

Sacramento River Division

Black Butte Dam and Lake Sacramento Canals Unit Corning Canal Red Bluff Diversion Dam Tehama-Colusa Canal

San Felipe Division

Hollister Conduit
Pacheco Tunnel and Conduit
San Justo Dam and Reservoir
Santa Clara Tunnel

Shasta Division

Keswick Dam and Reservoir Keswick Powerplant Shasta Dam and Lake Shasta Powerplant

Trinity River Division

Buckhorn Dam
Clair A. Hill Whiskeytown Dam and ,
Whiskeytown Lake
Clear Creek South Unit
Clear Creek Tunnel
Cow Creek Unit
Judge Francis Carr Powerhouse
Lewiston Dam, Lake, and Powerhouse
Spring Creek Debris Dam and Reservoir
Spring Creek Power Conduit and Powerplant
Trinity Dam and Powerplant and
Clair Engle Lake

West San Joaquin Division

San Luis Unit
B.F. Sisk San Luis Dam and San Luis
Reservoir*
Coalinga Canal
Dos Amigos Pumping Plant*
Los Banos and Little Panoche Detention
Dams and Reservoirs*
O'Neill Dam and Forebay*
O'Neill Pumping-Generating Plant
Pleasant Valley Pumping Plant
San Luis Canal*
William R. Gianelli PumpingGenerating Plant*

Joint Federal-State Facility

These divisions are not discussed in this document.

7 10/92

Sacramento River Division

The Red Bluff Diversion Dam (RBDD), the Corning Pumping Plant, and the Corning and Tehama-Colusa Canals are features of this division. The Sacramento Canals Unit was authorized to supply irrigation water to land in the Sacramento Valley.

American River Division

The American River Division includes the Folsom, Sly Park, and Auburn-Folsom South Units. Folsom Dam, Lake and Powerplant; Nimbus Dam; Lake Natoma; and Nimbus Powerplant form the Folsom Unit and are located on the American River. Folsom Dam regulates the flow of the American River for irrigation, power, flood control, M&I use, water quality, fish and wildlife, recreation, and other purposes. Jenkinson Lake, formed by Sly Park Dam on Sly Park Creek, is part of the Sly Park Unit. Folsom South Canal, which originates at Lake Natoma, is the only constructed feature of the Auburn-Folsom South Unit. The uncompleted Auburn Dam is also a part of this unit.

Delta Division

Delta Division facilities include the Contra Costa Canal (CCC), the Tracy Pumping Plant, the Delta-Mendota Canal (DMC), and the Delta Cross Channel (DCC), which is a controlled diversion channel between the Sacramento River and Snodgrass Slough. The CCC and the DMC are used to convey water pumped from the Delta to Contra Costa County and the DMC and San Luis service areas of the CVP. The channel provides a supply of water to the intakes of CCC and DMC, improves the irrigation supplies in the Delta, and helps repel ocean salinity.

West San Joaquin Division

The San Luis Unit was authorized to be built and operated jointly with the State of California. The San Luis Unit consists of San Luis Dam and Reservoir (joint Federal-State facilities), O'Neill Dam and forebay (joint Federal-State facilities), O'Neill Pumping-Generating Plant (Federal facility), San Luis Pumping-Generating Plant (joint Federal-State facilities), San Luis Canal (joint Federal-State facilities), Dos Amigos Pumping Plant (joint Federal-State facilities), Coalinga Canal (Federal facility), Pleasant Valley Pumping Plant (Federal facility), and the Los Banos and Little Panoche Detention Dams and Reservoirs (joint Federal-State facilities).

Friant Division

This division is operated separately from the rest of the CVP and thus is not covered by the Central Valley Project - Long-Term Operations Criteria and Plan (CVP-OCAP). Friant Dam and Millerton Lake are located on the San Joaquin River. The reservoir controls the San Joaquin River flows, provides downstream releases to meet requirements above Mendota Pool, and provides conservation storage and diversion into the Madera Canal and the Friant-Kern Canal.

10/92

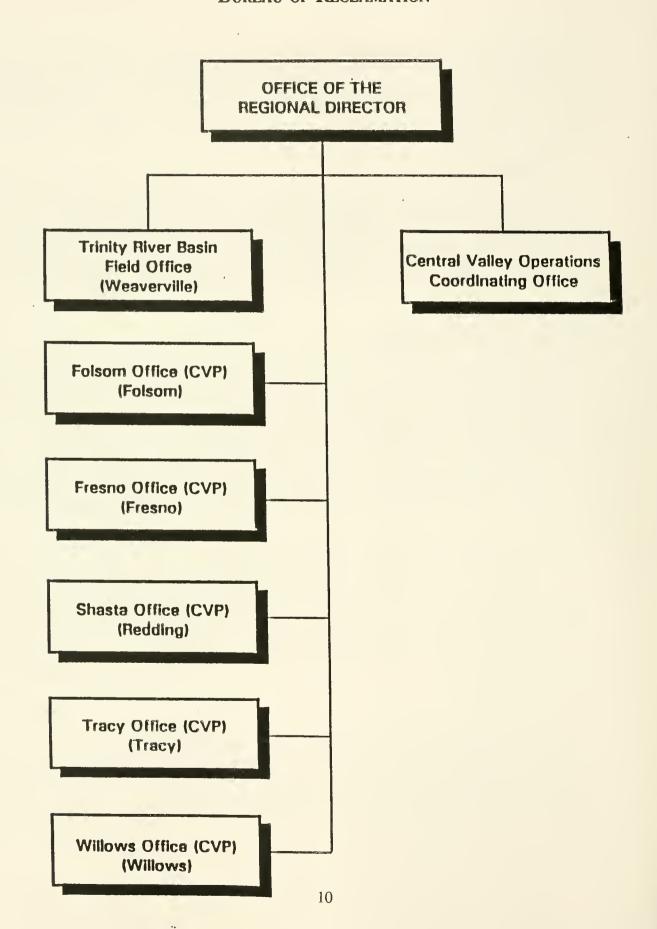
LONG-TERM CVP-OCAP CHAPTER I

East Side Division

The New Melones Unit of this division consists of the New Melones Dam, Lake, and Powerplant on the Stanislaus River. Functions of this unit are flood control, irrigation and M&I water supply, power generation, fishery enhancement, water quality, and recreation. Although this division is a part of the CVP, its operation is not included in the COA and it is operated as a separate feature. It is therefore not discussed in this document.

San Felipe Division

The San Felipe Division includes Pacheco Tunnel and Santa Clara Tunnel, conveyance facilities, pumping plants, power transmission facilities, a regulating reservoir, and distribution facilities in Santa Clara and San Benito Counties. Deliveries to the San Felipe Division are made through San Luis Reservoir. In CVP-OCAP analyses, the operation of the San Felipe Division is treated simply as a water demand in San Luis Reservoir.


PROJECT MANAGEMENT AND ORGANIZATION

The CVP is the Mid-Pacific Region's largest project. Facilities are operated and maintained by local field offices, with operations overseen by the Central Valley Operations Coordinating Office (CVOCO) at the regional office in Sacramento. The CVOCO is responsible for recommending CVP operating policy, developing annual operating plans, coordinating CVP operations with the State Water Project (SWP) and other entities, establishing CVP-wide standards and procedures, and making day-to-day operating decisions. Figure 5 shows the relationship between the CVOCO and the field offices in the Mid-Pacific Region.

9 10/92

Figure 5

MID-PACIFIC REGION BUREAU OF RECLAMATION

CHAPTER II OPERATIONS CONSTRAINTS AND OBJECTIVES

This chapter summarizes the general parameters--physical, contractual, environmental, and political--which affect the projectwide operation of CVP. It first addresses general projectwide constraints and then presents a discussion of project objectives by division.

PROJECTWIDE CONSTRAINTS

INTRODUCTION

The following section discusses constraints on the projectwide operation of the CVP, including: project yield, water rights, water service contracts, and hydropower requirements. This section also discusses obligations under the Coordinated Operations Agreement (COA) between Reclamation and SWP.

CVP YIELD

Yield is a measure of the availability of water to meet authorized purposes of the CVP and has traditionally been defined in terms of the ability to meet project needs within specific time periods. The estimation of firm yield of the CVP was based on the assumed operations of the CVP throughout the simulation of the critically dry 1928-34 period. Experience gained during actual drought operations and operating criteria that evolve as a result of new and previously unforeseen requirements or constraints on CVP operations may eventually affect the estimation of CVP yield. Planning operations during the current drought (which now approximates the 1928-34 period in severity) has required considering factors and requirements not previously treated in CVP yield studies. The Mid-Pacific Region has investigations currently underway to reassess the yield of the CVP.

Intermittent Water Supply

Intermittent water supply denotes a supply of water beyond the firm yield supply, which (when added to the firm yield supply) would constitute the total amount of water that could be contracted. Intermittent water supply would be used in combination with ground water through a conjunctive use program to expand the total supply of water that could be contracted by Reclamation on an annual, short-term (longer than 5 years but less than 10 years), or long-term basis (more than 10 years up to 40 years).

The amount of water that could be delivered under this type of contract would not be as dependable as firm yield since the intermittent supply would depend on the type of water year (wet, normal, or dry), the total amount of water that could be delivered to users, and

the quantity of water delivered each year to firm yield contractors. The probability of delivering an intermittent supply would be calculated on the basis of past hydrology studies and the ability to meet firm yield demands based on the 1928-34 dry period (e.g., 40 years out of 100, 60 years out of 100, 80 years out of 100, etc.).

Interim Water Supply

The interim water supply is the difference between the contracted firm yield of the CVP and the total contractor demand for a firm supply at any future level of development. Interim water supplies have been made available to water contractors in the northern half of the CVP since 1935 and will be made available until demands from contractors reach the maximum amount allowed under their individual contracts. At the level expected to be achieved in 2020, contractual obligations for the CVP are expected to be at or near their maximums; interim water supply, therefore, would be practically zero.

WATER RIGHTS

Other projectwide constraints to operating the CVP are water rights, which are granted by the State Water Resources Control Board (SWRCB) and its predecessors. These rights are permits or licenses issued after applications have been made to the SWRCB. Many of the CVP water rights originated from applications filed by the State in 1927 and 1938 to advance the California Water Plan. After the Federal Government was authorized to build the CVP, those water rights were then transferred to Reclamation, who made applications for the additional water rights needed for the CVP.

In granting water rights, the SWRCB sets certain conditions within the permits to protect prior water rights, fish and wildlife needs, and other prerequisites it deems in the public interest. Conditions requiring minimum flow below CVP dams are contained within these permits. The water rights permits also specify certain periods of the year when water may be directly diverted and periods when water may be stored at CVP facilities. Table II-1 is a summary of diversion water rights and storage seasons for CVP's major storage reservoirs.

Diversion to storage is permitted year round at designated diversion points in the Sacramento River and in the Delta. Minimum flow and other permit conditions are discussed in chapter III. Conditions are imposed on the water rights of the Sacramento River and Delta facilities, including the American and Trinity River facilities, to meet water quality standards in the Delta and to coordinate operations with the SWP. These water quality standards and the releases required to meet them often have a significant influence on how the CVP and the SWP are operated.

10/92

Table II-1. Summary of diversion water rights and storage seasons (CVP's onstream storage reservoirs)				
Reservoir	Reservoir Diversion period amount (ft ³/s) (on or about)			
Shasta	Sep. 1 - Jun. 30	18,000	Oct. 1 - Jun. 30	
Clair Engle	Jan. 1 - Dec. 31	4,500	Jan. 1 - Dec. 31	
Whiskeytown	Nov. 1 - Mar. 31	3,600	Nov. 1 - Mar. 31	
Folsom	Nov. 1 - Sep. 30	8,700	Nov. 1 ~ Jun. 30	
New Melones	Nov. 1 - Jun. 30	2,250	Nov. 1 - Jun. 30	

WATER SERVICE CONTRACTS

Water service contracts for the CVP are between the U.S. and individual water users or districts and provide for an allocated supply of CVP water to be applied for beneficial use. Table II-2 lists some of the contractual entitlements to CVP water. In addition to CVP water supply, a water service contract can include a supply of water that recognizes a previous vested water right (see previous section for detailed discussion).

Table II-2	. CVP contractual en (in acre-feet)	ntitl <mark>e</mark> ments	
			l quantities -feet)
River/division	Water rights (acre-feet)	Project	Total
SACRAMENTO RIVER			
Sacramento River Division	1,829,475	942,258 ¹	2,772,163
Shasta Division	n/a		
Trinity River Division	n/a		
AMERICAN RIVER			
American River Division	344,000	385,750	729,750
DELTA			
Delta Division	887,277	1,056,218	1,943,495
West San Joaquin Division	6,000	1,116,500	1,122,500
SAN FELIPE DIVISION		196,300	196,300

13

Water service contracts for the CVP fall into three categories: (1) Long-term contracts which have a term of more than 10 years. The Acts of July 2, 1956, and June 21, 1963, provide for renewal of such long-term contracts at the request of the contractor; (2) short-term contracts which have a term of more than 5 years but less than 10 years. Federal Reclamation law does not provide for renewing short-term contracts; and (3) temporary contracts which have a term not to exceed 5 years. As with short-term contracts, no provisions exist within Reclamation law for renewing temporary contracts.

The purposes of any water service contract are to stipulate provisions under which a water supply is provided and to produce revenues sufficient to cover an appropriate share of cost to construct the project as well as an appropriate share of the annual cost to operate and maintain the project. Typical contract provisions include:

Definition of Types of Water Delivered

Water service contracts provide for the delivery of irrigation and/or M&I water. Irrigation water is water made available from the CVP that is used primarily in producing agricultural crops, including incidental domestic use and watering livestock. M&I water is water made available from the CVP for drinking water or industrial use in addition to uses such as watering used in landscaping or providing pasture for animals.

Water Shortage Provisions

Each CVP contract stipulates that Reclamation is obligated to make available to the contractor a specified amount of project water subject to the extent that such water is available. The contract further provides that, in the operation of the CVP, Reclamation will use all reasonable means to guard against shortage in the quantity of water to be made available to the contractor. If the total water supply is not reduced because of drought or other unavoidable causes, Reclamation is contractually committed to provide the contractor with the CVP water supply as specified in the contract.

Acreage Limitation

Each contract contains appropriate language requiring the contractor's compliance with the acreage limitation found within Reclamation law, as amended and supplemented, unless the contractor has been exempted from such compliance by the Congress or the Secretary of Interior. The Reclamation Reform Act of 1982 (RRA) increased the maximum size of a landholding receiving project water to 960 acres.

Water Conservation

Pursuant to the RRA, water contracts require the contractor to formulate and institute a water conservation program.

10/92

Water and Air Pollution Control

Water contracts require that the contractor comply with all applicable water and air pollution laws and regulations of the United States and the State of California and obtain all required permits or licenses from the appropriate Federal, State, or local authorities.

Ratesetting

The objective of the irrigation ratesetting policy for the CVP is to recover Federal investment, including any O&M deficits applicable to CVP contracts within a definite 50-year repayment period terminating in the year 2030 (as required by Section 105 of the Act of October 17, 1986). Individual contractor accounting is maintained for repayment accountability, and O&M deficits are accumulated and will be repaid by contractors under the terms of each new or amended contract (as required by Section 106 of the Act of October 17, 1986).

The rate computation procedures are based on cost-of-service with capital costs amortized over a 50-year period. Water rates are based on the "pooled and averaged costs" approach according to the operationally and financially integrated project concept established by Congress and reaffirmed each time the CVP was reauthorized to include a new unit.

The cost-of-service water rates are composed of an assembly of cost components referred to as "cost pools." Each contractor pays a water service rate encompassing a proportionate share of the cost pools associated with the specific service required to provide that contractor with CVP water.

The seven potential cost components that are totaled to determine a contractor's irrigation water rate under the approved Irrigation Ratesetting Policy are: (1) Water marketing, (2) storage, (3) conveyance, (4) conveyance pumping, (5) San Luis Drain, (6) direct pumping, and (7) adjustment for historic individual contractor repayment or deficit balances.

While an approved M&I ratesetting policy is not yet in place, the interim M&I ratesetting policy uses the same cost components (except the San Luis Drain) that are used in calculating the irrigation water rates. In addition, with M&I an interest-bearing function, interest is also calculated on the unpaid capital investment.

Irrigation and M&I supplied from the CVP serve nine divisions; they are:

- Trinity River Division
- Shasta Division
- Sacramento River Division
- American River Division

- Delta Division
- West San Joaquin Division
- Friant Division
- East Side Division
- San Felipe Division

These divisions (except for the Friant, East Side, and San Felipe Divisions) are discussed in detail in the section following the discussion on Hydropower and the COA in this chapter.

HYDROPOWER

Hydropower, as provided in the Rivers and Harbors Act of 1937, is another projectwide constraint to CVP operations. Power production is an authorized CVP function under the Act. While requirements for power operations have remained subordinate to objectives for water operations, the increase in value of energy has demonstrated the benefits of the CVP's hydroelectric system to the Federal Treasury as well as to CVP customers.

Since 1977, when the Western Area Power Administration (Western) was formed under the Department of Energy, Western has had the responsibility for marketing CVP power and energy. Western dispatches power and energy and maintains a portion of the CVP transmission facilities.

The CVP powerplants have a maximum capacity of approximately 2 million kilowatts and have generated an average of 5 billion kilowatthours per year. On a daily and annual basis, CVP's water and power facilities are operated conjunctively to maximize project benefits. Daily generation is scheduled in coordination with the Pacific Gas and Electric Company of California (PG&E) to meet peakloads, while pumping is scheduled for offpeak hours as much as possible. Within other projectwide constraints, seasonal reservoir operations are planned to efficiently use CVP generating facilities and to meet contractual requirements with PG&E.

In 1967, Reclamation contracted with PG&E for the sale, interchange, and transmission of electric capacity and energy. Administered by Western, the contract created a "banking" arrangement under which excess CVP energy and capacity are sold to PG&E; in return, PG&E delivers power to CVP customers. PG&E supplies baseload energy and capacity to CVP power customers, and CVP hydropower is used during the peakload periods to help meet peakload requirements. The contract also provides for transmission of CVP power using PG&E lines and for using energy and capacity imported from the Northwest.

Power generated at CVP powerplants is applied first to meeting CVP load and second to meeting preference customer loads. Any excess power can be sold commercially, primarily to PG&E. CVP load (the energy and capacity required to run CVP facilities) amounts to

10/92

about 30 percent of the energy generated in a normal year. The power sold to preference customers is classified as long-term service, short-term withdrawable power, and interruptible power. The annual preference customer firm load now exceeds 6 billion kilowatt hours, at a maximum capacity of 1,152,000 kilowatts. Over time, the sum of CVP and preference customer loads exceeds the average total power produced by the CVP. To meet preference loads, Western may purchase energy and capacity from PG&E and/or the Pacific Northwest.

By contract with PG&E, CVP is operated to meet project load and to support Project Dependable Capacity (PDC). PDC is defined as the lowest electric capacity available with energy support from CVP powerplants in any given month during the most adverse period of streamflow conditions of record after deducting the estimated capacity required for project load during PG&E's peakload period.

Provisions within CVP contracts encourage the coordination of CVP and PG&E electrical systems to meet the requirements for their combined loads. These provisions furnish: standby service during outages that result from facilities shutting down, transmission services and curtailments, scheduling facility outages, and forecasting requirements. Automatic generation control functions and computer-to-computer links are established with PG&E for data exchange, making it possible for Reclamation and Western to share load and frequency control obligations with PG&E.

Operations staff from Reclamation and Western customarily meet monthly to discuss hydropower operations issues and requirements and to review the CVP forecast of operations as it may affect capacity and energy generation during the upcoming months. The agencies also review compliance with PG&E contract requirements and decide on the next month's requirements for Pacific Northwest import energy and deliveries to or from the Annual Energy Exchange Account (AEEA).

COORDINATED OPERATIONS AGREEMENT

CVP and SWP use the Sacramento River and the Delta as common conveyance facilities. Reservoir releases and Delta exports must be coordinated to ensure that each of the projects retains its portions of the shared water and bears its share of joint obligations to protect beneficial uses.

The COA between the United States of America (Reclamation) and the State of California became effective in November 1986. The agreement defines the rights and responsibilities of the CVP and the SWP regarding Sacramento Valley and Delta water needs and provides a mechanism to measure and account for those responsibilities. The COA includes a provision for its periodic review.

17 . 10/92

Obligations for Inbasin Uses

Inbasin uses are defined in the COA as "legal uses of water in the Sacramento Basin including the water required under the Delta standards found in SWRCB Decision 1485 (D-1485). The CVP and the SWP are obligated to ensure that water is available for these specific uses, but the degree of obligation depends on several factors and changes throughout the year.

Balanced water conditions are defined in the COA as periods when the two projects agree that releases from upstream reservoirs plus unregulated flows approximately equal the water supply needed to meet Sacramento Valley inbasin uses plus exports. Excess water conditions are periods when the CVP and the SWP agree that releases from upstream reservoirs plus unregulated flow exceed Sacramento Valley inbasin uses plus exports.

During excess water conditions, sufficient water is available to meet all beneficial needs; under these conditions, the CVP and the SWP have agreed in the COA to store and export as much water as possible. However, during balanced water conditions, the two projects share in meeting inbasin uses. Balanced water conditions are further defined according to whether water from upstream storage is required to meet Sacramento Valley inbasin use or if unstored water is available for export.

When water must be withdrawn from reservoir storage to meet Sacramento Valley inbasin uses, 75 percent of the responsibility for withdrawing water is borne by the CVP and 25 percent is borne by the SWP. These percentages were derived from reservoir operations studies that simulated CVP operations with and without the interaction of the SWP while preserving the yield of the CVP. When unstored water is available for export (i.e., balanced water conditions plus circumstances when exports exceed storage withdrawals), the sum of CVP stored water, SWP stored water, and the unstored water for export is allocated 55/45 to the CVP and SWP, respectively.

Accounting and Coordination of CVP and SWP Operations

With daily close coordination, Reclamation and the DWR determine the target Delta outflow for water quality, reservoir release levels necessary to meet inbasin demands, and schedules to use each other's facilities for pumping and conveyance.

During balanced water conditions, a daily accounting is maintained according to the sharing form las agreed to in the COA to show CVP and SWP accumulated obligations, which allows flexibility in operations by allowing either party's share to be out of balance for a given day and also avoids the need to make daily changes in reservoir releases that originate several days' travel time from the Delta. During balanced conditions, adjustments can also be made afterwards rather than by predicting the variables of reservoir inflow, storage withdrawals, and inbasin uses on a daily basis.

Although the accounting language of the COA provides the mechanism for determining the responsibilities of the two projects, real-time operations dictate actions. For example,

10/92 · 18

conditions in the Delta can change rapidly. Weather conditions combined with tidal action can quickly affect Delta outflow requirements. If, in this circumstance, the SWP could respond only by increasing its Oroville release, the change would not be seen in the Delta for 3 days (3-day travel time from Oroville to the Delta). In actual operations, releases from CVP's Folsom Reservoir probably would be increased. Similarly, if conditions made it necessary to increase CVP contributions when raising the releases from Keswick Reservoir was desirable, the release from Folsom might be increased temporarily until the water from Keswick arrived (5-day travel time from Keswick to the Delta).

Releases are one means of adjusting to changing inbasin conditions. During balanced water conditions, an increase in Delta outflow can be achieved immediately by reducing project exports.

Standards contained within the D-1485 require that the CVP and the SWP each limit pumping to an average of 3,000 ft³/s during May and June. This condition is particularly strict for operating the CVP since its annual exports are limited by the capacity of the Tracy Pumping Plant and DMC. Because this export limitation was a result of the SWP becoming operational, the SWP compensates by pumping from the Delta as much as 195,000 acre-feet of CVP water annually. If this water is pumped during balanced water conditions, the CVP is responsible for supplying the water in the Delta under the terms of the COA.

When real-time operations dictate CVP and SWP actions, an accounting procedure tracks the water obligations of the two projects. When the difference between obligations is sufficiently great, adjustments may be made in reservoir releases. These adjustments allow the project that has carried more than its obligation to recoup the water while the other project compensates for its deficient contribution in the preceding period.

During the course of any given water year, water conditions can go in and out of balance (see figure 6). Account balances continue from one balanced water condition through the excess water condition and into the next balanced water condition. If, however, the project with a positive balance (that is the party that has provided more than its accumulated share of water) enters into flood control operations, the accounting is reset to zero.

OBJECTIVES OF DIVISION OPERATIONS

INTRODUCTION

The objectives of the CVP divisions are discussed in detail in the following section. These include operations of the Trinity River Division, the Shasta Division, the Sacramento River Division, the American River Division, the Delta Division, and the San Luis Unit of the West San Joaquin Division. (See figure 7 for a graphic representation of how these CVP divisions are interrelated.)

Figure 6. Periods of balanced conditions in the Delta

Water year	Dates in balance	Number of days in balance	Percentage of year in balance
1970	07/02/70 -09/30/70	91	25%
1971	10/01/70 -10/20/70	20	5%
1972	05/06/72 -09/09/72 (levee break 06/22-07/20)	127	35%
1973	06/27/73 -08/31/73	66	18%
1976	02/01/76 -09/30/76	243	66%
1977	10/01/76 -09/30/77	365	100%
1978	10/01/77 - 12/24/77 06/23/78 - 08/31/78	85 70	` 42%
1979	04/20/79 -05/07/79 06/03/79 -09/30/79	18 120	38%
1980	10/01/79 -10/03/79 06/05/80 -08/31/80	3 88	25%
1981	04/17/81 -09/28/81	165	45%
1984	06/14/84 -08/20/84	68	19%
1985	01/30/85 -02/07/85 02/17/85 -03/09/85 04/12/85 -09/30/85	9 21 172	55%
1986	10/01/85 -11/30/85 06/21/86 -08/05/86	61 46	29%
1987	04/06/87 -09/30/87	178	49%
1988	10/01/87 - 12/10/87 02/23/88 - 05/10/88 05/17/88 - 05/23/88 06/01/88 - 09/30/88	71 78 7 122	76%
1989	10/01/88 - 11/26/88 12/03/88 - 01/04/89 01/05/89 - 01/07/89 01/23/89 - 01/24/89 01/31/89 - 03/03/89 05/07/89 - 09/17/89	57 33 3 2 32 134	72%
1990	10/06/89 - 10/25/89 10/31/89 - 01/10/90 02/01/90 - 02/04/90 03/20/90 - 05/26/90 06/08/90 - 09/30/90	20 72 4 68 115	. 76%
1991	10/01/90 -03/04/91 04/15/91 -09/30/91	155 169	89%
1992	10/01/91 -01/08/92 01/14/92 -02/14/92 05/01/92 -09/30/92	100 32 153	78%

10/92

CENTRAL VALLEY PROJECT DIVISIONS SACRAMENTO RIVER SHASTA DIVISION CLAIR ENGLE SPRING CREEK LEWISTON SHASTA WHISKEY TOWN T KESWICK TRINITY DIVISION BENO BRIDGE SACRAMENTO RIVER AMERICAN RIVER DIVISION DIVISION NIMBUS **DELTA DIVISION** FOLSOM-SOUTH DELTA CROSS CONTRA COSTA CANAL **DELTA** EAST SIDE STREAMS WEST SAN JOAQUIN DIVISION DIVERSIONS TO SAN FELIPE DIVISION OOS AMIGOS CROSS VALLEY CANAL

STATE USERS

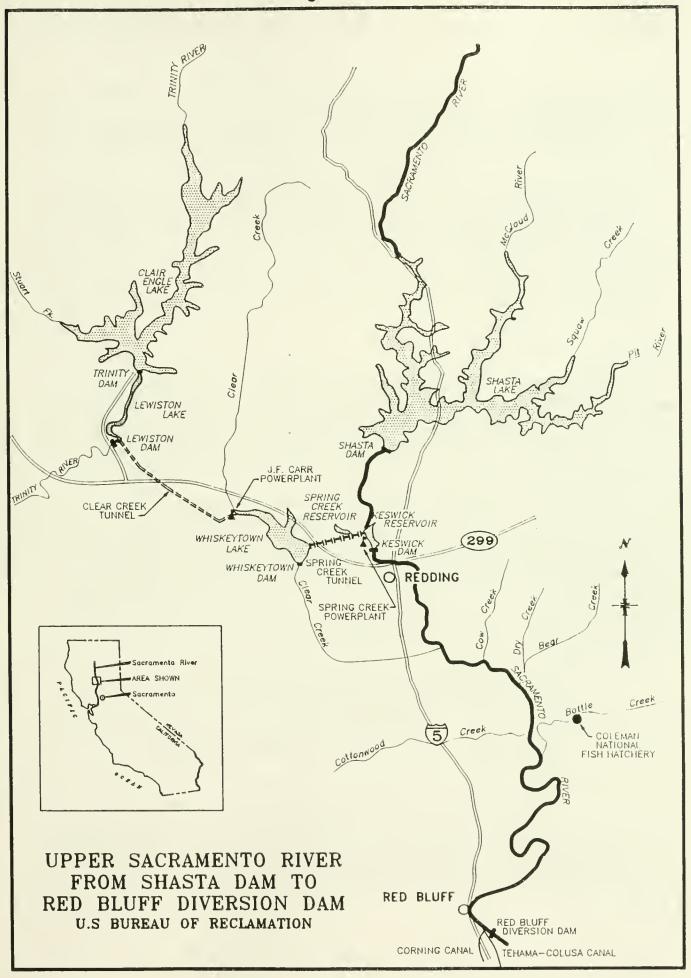
JOINT USE FACILITIES USBR/DWR

TRINITY RIVER DIVISION OPERATIONS

The Trinity River Division (Trinity) was authorized on August 12, 1955, to increase the supply of water available for irrigation and other beneficial uses in the Central Valley. Facilities were authorized for control and storage of water from Clear Creek and Trinity River flows (see figure 8). Hydroelectric powerplants and transmission facilities were authorized to furnish energy to the CVP and to Trinity County. The enacting legislation recognized that the operation of the Trinity facilities would be integrated and coordinated with the operation of other CVP features. The legislation also provided for fish and wildlife preservation and propagation.

Under the Trinity Division, Trinity River water is stored in Clair Engle Lake behind Trinity Dam. Releases from this reservoir are used to generate power at Trinity, Lewiston, Spring Creek, Judge Francis Carr, and Keswick Powerplants. Lewiston Dam regulates flows to meet the downstream requirement of the Trinity River Basin. Water from the Trinity River commingles with the Sacramento River, to provide irrigation service to lands in Sacramento Valley and other areas of the CVP.

Water Supply


The mean annual inflow to Clair Engle Lake from the Trinity River is about 1.2 millions of acre-feet (MAF), a large percentage of which is diverted to the Central Valley. Approximately half of the average annual inflow occurs from April through September as a result of snowmelt runoff. The operation of Clair Engle Lake is influenced by the need for hydroelectric power produced in the cross-basin diversion of water. Clair Engle Lake is operated to minimize releases to the Trinity River in excess of minimum fishery requirements while attempting to fill the lake by the end of June. To avoid excess releases to the river, storage in Clair Engle Lake is reduced to about 1,850,000 acre-feet by November 1. During the winter flood season, storage is regulated within the capacity of the five powerplants (listed above) unless Reclamation Safety of Dams criteria require excess releases.

The mean annual inflow to Whiskeytown Lake from the Trinity River is approximately 270,000 acre-feet. Scheduled annual releases to Clear Creek are about 42,000 acre-feet, and average annual deliveries to the Clear Creek South Unit are 15,000 acre-feet. The remaining water supply is diverted through Spring Creek Powerplant to the Sacramento River. The storage in Whiskeytown Lake is not normally drawn down for water supply purposes. Only in years of severe drought will the storage be drawn upon to meet water demands.

Water Rights

Permits issued by the SWRCB for diverting Trinity River and Clear Creek flows provide for minimum downstream releases at Lewiston and Whiskeytown Dams, respectively. The minimum release schedule at Lewiston has been superseded by a Secretarial Decision. Reclamation has three agreements on Clear Creek that govern the releases from Whiskeytown Lake. A 1960 Memorandum of Agreement (MOA) with California

Figure 8

Department of Fish and Game (DFG) sets the following minimum flows to be releases to Clear Creek at Whiskeytown Dam (shown in table II-3).

Table II-3. Minimum flows to Clear Creek (at Whiskeytown Dam)		
Time period	Time period Minimum flow (ft 3/s)	
Jan. 1 - Feb. 28, 29	50	
Mar. 1 - May 31	30	
Jun. 1 - Sep. 30	0	
Oct. 1 - Oct. 15	10	
Oct. 16 - Oct. 31	30	
Nov. 1 - Dec. 31	100	

The 1960 agreement specifies that releases for fish and wildlife purposes will be added to amounts necessary to satisfy existing or recognized downstream water rights. Under their 1960 water agreement, Townsend Flat claimed a Pre-1914 water right of 55 ft³/s to the natural flows of Clear Creek, and G. E. Oakes claimed a riparian water right of 11 ft³/s. Diversions by both users are made at Saeltzer Dam, which is about 12 miles downstream from Whiskeytown Dam (see figure 8 [shown previously]).

In 1963, Reclamation discussed a tentative release schedule with the U.S. Fish and Wildlife Service (FWS) and the National Park Service to increase the annual releases from Whiskeytown Dam to enhance the recreational and fishery values for the Whiskeytown National Recreation Area (established in 1965 by Act of Congress). The proposed release schedule shown in table II-4 provides for reduced releases in critical dry years as defined by Shasta inflow criteria. Although the release schedule was never formalized, Reclamation has operated according to the proposed schedule since May 1963.

Table II-4. Proposed release schedule (Whiskeytown Dam)		
Period	Normal year (ft 3/s)	Critical year (ft 3/s)
Jan. 1 - Oct. 31	50	30
Nov. 1 - Dec. 31	100	70

At Trinity Dam, a direct diversion of 4,500 ft³/s is permitted throughout the year under CVP water rights. No seasonal storage restriction exists at Clair Engle Lake. From November 1 through March 31, a direct diversion of 3,600 ft³/s is permitted at Whiskeytown Dam. Storage in Whiskeytown Lake from Clear Creek flow is only allowed during that same period.

The CVP water rights on Trinity River and Clear Creek are conditioned to meet water quality standards in the Delta and to meet COA requirements. Imports of Trinity River water at Carr Powerplant are treated as CVP storage withdrawals in order to determine each party's obligations under the COA.

The operation of Whiskeytown Lake is influenced by the kokanee salmon spawning from November 15 through March 31. Before 1980, the water surface elevation was reduced to 1,197.5 feet during the flood season to minimize uncontrolled spills to Clear Creek and, thus, to maximize power production. In 1979 and 1980, DFG reported that kokanee salmon were having difficulty in passing the Whiskey Creek culvert on Whiskeytown Lake because of a small difference in elevation between the culvert and lake level. In 1980, Reclamation agreed to increase the operating level 1 foot (to 1,198.5 feet) to ensure unimpaired kokanee passage.

Fish and Wildlife

The Secretary of the Interior has authority under the Trinity River Act of 1955 to mitigate losses of fish resources and habitat. The legislation mandates that the operation of Trinity be integrated and coordinated with the operation of other CVP features to realize the fullest, most beneficial, and most economic use of the water resources with the following qualification:

Provided, That the Secretary is authorized and directed to adopt appropriate measures to insure the preservation and propagation of fish and wildlife, including, but not limited to, the maintenance of the flow of the Trinity River below the diversion point at not less than one hundred and fifty cubic feet per second for the months July through November and the flow of Clear Creek below diversion point at not less than fifteen cubic feet per second . . .

When Trinity began operations in 1963, total annual releases downstream from Lewiston Dam were to be at a minimum of 120,500 acre-feet. Since 1963, salmon and steelhead runs in the Trinity River system have severely declined for a number of reasons including insufficient streamflow. The DFG then requested increases in releases to the Trinity River; in response, the minimum annual release of 120,500 acre-feet was approximately doubled in 1974 and 1975 as part of a 3-year experiment by Reclamation. The experimental increase release schedule, interrupted by the 1976-77 drought, was extended into 1980.

On January 16, 1981, a Secretarial Decision was signed which provides the following:

Reclamation will allocate CVP yield so that releases can be maintained at 340,000 acre-feet annually in normal years. The Fish and Wildlife Service will prepare a detailed study plan to assess the results of habitat and watershed restoration. Prior to completion of the plan, releases will be 287,000 acre-feet. Releases will be incrementally increased to 340,000 acre-feet as habitat and watershed restoration

measures are implemented. In dry years, releases will be 220,000 acre-feet; 140,000 acre-feet in critically dry years.

(The referenced plan was to be submitted by FWS after 12 years of evaluation and was to recommend the final CVP allocation for releases to the Trinity River.)

In October 1984, the Trinity River Basin Fish and Wildlife Restoration Act was passed. The Act provided for a 10-year program to restore fish and wildlife resources to Pre-CVP levels. The Secretary of the Interior has the ultimate responsibility for completing this program. A Task Force, consisting of representatives from 14 Federal, State, and county entities as well as the Hoopa Valley Tribe, has been assembled to assist and advise the Secretary. A 14-member Technical Coordinating Committee has also been established to assist and advise the local Reclamation field office and the Task Force regarding the restoration program.

On May 8, 1991, the Secretary of the Interior endorsed a position statement developed by the Assistant Secretaries for Fish, Wildlife and Parks; Indian Affairs; and Water and Science. The position statement expands the commitment to release water to the Trinity River as follows:

The Bureau of Reclamation is directed to release into the Trinity River in 1991 between 240,000 acre-feet and 340,000 acre-feet depending on the inflow to Shasta Reservoir and using the ramping formula contained in the attached position statement. The Bureau of Reclamation is also directed to release into the Trinity River, during water year 1992-96, at least 340,000 acre-feet for each dry or wetter water year and 340,000 acre-feet in each critically dry year if at all possible. The Assistant Secretaries for Fish and Wildlife and Parks, Indian Affairs, and Water and Science are directed to formulate the 1992-96 flow release agreement by December 1, 1991.

An annual water quantity from the Trinity River is established, and Reclamation notifies the FWS of the amount available for release below the Trinity Dam. Generally, the first notification is based on the conditions as of February 1. The FWS then provides Reclamation with a desired release schedule from April through March. Updates on annual quantities are then provided to the FWS monthly through May. If conditions change significantly after May 1, a further update on the annual quantity is made. For each change in quantity, the FWS provides a desired release schedule. Reclamation attempts to operate as closely as possible to the proposed FWS schedule. As the year progresses, changes in the schedule are made as needed as long as the annual quantity is not exceeded.

Another fishery concern is the time allowed for changing releases to the river at Lewiston Dam. Acceptable rates depend on a variety of conditions such as time of year, temperatures, and abundance, distribution, and species of fish in the river. The following general criteria in table II-5 has been suggested by the FWS. (Except for emergencies, Reclamation consults the FWS Sacramento Office on deviations from this schedule.)

CHAPTER II

Table II-5. General criteria for releases to Trinity River (Lewiston Dam)		
Rate of change (ft 3/s)		
If existing release is:	When increasing	When decreasing
At or above 4,000	1,000 per 2 hours	500 per 4 hours
2,000 to 4,000	500 per 2 hours	500 per 4 hours
500 to 2,000	250 per 2 hours	200 per 4 hours
300 to 500	100 per 2 hours	100 per 4 hours
150 to 300	75 per 2 hours	50 per 4 hours

DWR and DFG have worked to improve the spawning riffles in the river channel below Lewiston. Because the velocity of flows in excess of 1,200 ft³/s will cause the gravel to be transported in the riffles, Clair Engle Lake is operated to avoid releases that exceed those at Lewiston Dam, unless higher flows are included in the FWS schedule.

The Trinity River Fish Hatchery, operated by the DFG, is used to hatch and rear both salmon and steelhead. The hatchery receives water from Lewiston Lake through an intake structure at Lewiston Dam. Because water temperature is a critical factor to hatchery production, stoplogs are installed around the intake to select warmer water from the surface of Lewiston Lake during the winter. In the summer, the stoplogs are removed as colder water is desired. Sometimes the water temperature in Lewiston may get too warm because of hot weather and low releases from Clair Engle Lake. Then the DFG, which operates the hatchery, will request "slugging" Lewiston Lake--this involves drawdown to the minimum operating level by increasing the release through Clear Creek Tunnel followed by refilling with increased releases from Clair Engle Lake. This procedure can be accomplished within 24 hours and without exceeding powerplant capacities at either Carr or Trinity Powerplants.

In October 1991, the SWRCB established the following temperature objectives for the Trinity River (see table II-6):

27

Table II-6. Temperature objectives for the Trinity River (SWRCB; October 1991)		
Time period	Daily average temperature NTE ¹	River reach ²
July 1 to September 14	60 °F	Lewiston Dam to Douglas City Bridge
September 15 to October 1	56 °F	Lewiston Dam to Douglas City Bridge
October 1 to December 31	56 °F	Lewiston Dam to the Confluence of North Fork Trinity River
Not to exceed 2 See figure 8		

Hydropower

The cross-basin diversion of Trinity River water through the Trinity powerplants is very efficient in terms of power production. Under normal operating conditions, I acre-foot of water generates about 1,500 kilowatthours when released through Trinity, Carr, and Spring Creek Powerplants. This efficiency is about three to four times that of Shasta or New Melones Powerplants and almost five times that of Folsom Powerplant. Thus, the Trinity is extremely valuable for use in meeting CVP energy demands.

Energy production from Trinity is limited by powerplant capacities and, of course, water availability. For short-term energy needs (i.e., hourly, daily, or monthly), increases may be made in Trinity imports with corresponding decreases at Shasta Powerplant without having to increase the release to the Sacramento River at Keswick Dam.

Annual operation of the Trinity power facilities is dictated to a large degree by contractual requirements with PG&E. Contract 2948A with PG&E specifies minimum monthly energy requirements for support of PDC. The project generation required for project load and support of PDC is especially high from July through October. Therefore, diversions through the Trinity powerplants are increased during that period and Clair Engle Lake is operated to achieve peak storage near July 1 annually.

Both Clair Engle and Whiskeytown Lakes are operated to minimize the need for releases over powerplant capacities. Storage in Clair Engle Lake is drawn down during the November through March flood season for this reason as well as to meet Safety of Dams criteria. A drawdown period also occurs during the flood season at Whiskeytown Lake to avoid spills. Table II-7 summarizes the target operating levels for Whiskeytown Lake.

Table II-7. Target operating levels for Whiskeytown Lake		
Period Elevation (feet) Storage (acre-feet)		
April 1 - April 30	Fill to 1,209.0	238,000
May 1 - Labor Day	1,209.0	238,000
After Labor Day - October 14	Reduce to 1,208.0	234,700
October 15 - November 15	Reduce to 1,198.5	205,700
November 16 - March 31	1,198.5	205,700

All of the elevations shown above are subject to normal fluctuations of ± 0.5 feet. If Spring Creek Powerplant capacity is reduced due to an extended unit outage during the flood season, Whiskeytown Lake may be drawn down to an elevation of 1,193.0 feet (189,900 acre-feet of storage).

Extended outages at Trinity, Carr, and Spring Creek Powerplants can significantly influence reservoir operations. In order to avoid releases in excess of powerplant capacities, outages that last a week or more are usually scheduled in the late fall or spring when full capacities for the three powerplants are least likely to be required.

The capability of the Trinity Powerplant varies considerably according to the water surface elevation in Clair Engle Lake and plant discharge. The two generators have high head and low head runners designed to maximize powerplant capability. The power pool limitations in Clair Engle Lake are summarized in table II-8. Maximum power pool with the high head runner would be limited by high tailwater conditions caused by spills.

Table II-8. Summary of power pool limitations (Clair Engle Lake)		
Minimum	Elevation (feet)	Storage (acre-feet)
Low head runner	2,120.0	221,700
High head runner	2,189.0	524,000
Maximum	Elevation (feet)	Storage (acre-feet)
Low head runner	2,315.3	1,650,000
High head runner	2,375.0 (estimate)	2,530,000

The capacity of the Carr Powerplant is limited by head loss at the Clear Creek Tunnel. With a clean tunnel, the maximum powerplant discharge is approximately 3,600 ft³/s. Lewiston Lake must be operated at elevations above 1,898.0 feet to avoid developing a vortex at the Clear Creek Tunnel inlet. The minimum tailwater elevation in Whiskeytown Lake for Carr Powerplant operation is about 1,190.0 feet. The powerplant efficiency varies with discharge

and Whiskeytown Lake elevation within the range of 500 from 600 kilowatthours per acre-foot.

The capacity of the Spring Creek Powerplant is limited by head loss at the Spring Creek Tunnel. Maximum powerplant discharge is approximately 4,400 ft³/s. The minimum operating elevation in Whiskeytown Lake for Spring Creek Tunnel inlet is 1,100.0 feet. The minimum tailwater elevation in Keswick Reservoir is 576.0 feet, as limited by the cooling water intake to Spring Creek Powerplant. The powerplant efficiency varies within the range of 450 to 560 kilowatthours per acre-foot.

Recreation

Recreation is not an authorized purpose of the Trinity Division; however, recreational use at Clair Engle, Lewiston, and Whiskeytown Lakes and on the Trinity River is significant. Although there are no legal or contractual requirements for water for recreational purposes, recreational use is still considered when making operational decisions that result in abnormal reservoir levels or flows in the river.

As mentioned earlier, the Whiskeytown-Shasta-Trinity National Recreation Area was established by Act of Congress in 1965. The Trinity Unit of the recreation area surrounding Clair Engle and Lewiston Lakes is within the Trinity National Forest and is administered by the U.S. Forest Service (USFS). The Whiskeytown Unit is administered by the National Park Service. Facilities provided in both units include campgrounds, boat launching ramps, and picnic areas. There are also marinas located at all three reservoirs. Private resorts are prevalent along the Trinity River below Lewiston Dam. The primary recreational use along the river is sportfishing, while other uses include camping, picnicking, rafting, canoeing, and gold dredging.

At Clair Engle and Whiskeytown Lakes, the prime recreation season begins on Memorial Day weekend and extends through Labor Day weekend. Most of the facilities at Clair Engle Lake remain in use in the normal operating range of 1,850,000 to 2,447,000 acre-feet or El. 2330.4 to 2370.0 feet. The lowest boat launching ramp is the low water ramp at Minorsville, which operates as low as El. 2,220 feet or 719,868 acre-feet. Because the normal operation of Clair Engle Lake results in favorable water surface elevations during the prime recreation season, recreation only suffers during dry or critically dry conditions.

Lewiston Lake receives fishing use throughout the year. The minimum operational elevation for the Pine Cove Marina is 1,900.0 feet. The normal operating range is 1,900.0 to 1,902.0 feet. Recreation is only affected during spill conditions at Trinity and Lewiston dams.

Whiskeytown Lake receives extensive use because of its location near Redding and its relatively stable operating range during the prime recreation season. As discussed in the next section, some drawdown of storage occurs during the flood season. At the reduced water surface elevation of 1,198.5 feet, most recreation facilities remain in use. If the water

10/92

surface elevation is reduced to 1,193.0 feet because of an extended unit outage at Spring Creek Powerplant, two of the three boat launching ramps are not available. Only in years of severe drought will the storage in Whiskeytown Lake be drawn upon to meet water demands. Thus, conditions for recreation at Whiskeytown Lake may be ideal, while recreational uses at Clair Engle and Shasta Lakes suffer because of low storage levels.

Flood Control

Like recreational uses, flood control is not an authorized function of the Trinity Division; however, incidental flood control benefits are provided through operations for other purposes. As stated previously, Clair Engle and Whiskeytown Lakes are operated to minimize the need for releases in excess of powerplant capacities. Additionally, Clair Engle Lake is operated at reduced storage levels (no more than 2,100,000 acre-feet) during the flood season because of Safety of Dams criteria.

A minimum storage reservation of 348,000 acre-feet in Clair Engle Lake is maintained during November through March (see previous section on CVP yield at the beginning of this chapter). During a major flood, releases from Trinity Dam are restricted to the combined capacity of the powerplant and outlet works until a spill occurs. The release to the river at Lewiston Dam is reduced by the diversion through Clear Creek Tunnel unless flood conditions on Clear Creek or on the Sacramento River require the diversion to be suspended. The surcharge capacity (storage above the spillway crest) of Clair Engle Lake also effectively decreases the peak flows in the Trinity River.

Spills at Whiskeytown Lake are minimized by providing about 35,000 acre-feet of storage space during the flood season. The operation of Whiskeytown Lake during major floods is complicated by its interrelationship with Trinity River and Sacramento River operations. As indicated, hydrologic conditions and forecasts of conditions in both the Trinity and Sacramento basins must be considered when operating Whiskeytown Lake. Some of the guidelines that are followed during floods are listed below.

- Releases from Spring Creek Powerplant and diversions through Carr Powerplant are minimized when releases from Keswick Dam are decreased to meet flood control objectives at Bend Bridge.
- Releases from Spring Creek Powerplant are maximized to maintain the storage in Whiskeytown Lake at target levels except as limited by flood control operations at Keswick Dam.
- Diversions through Carr Powerplant are suspended when flood stages are exceeded at Bend Bridge.
- Diversions through Carr Powerplant are adjusted to avoid releases to Clear Creek from Whiskeytown Dam in excess of natural inflow.

- Diversions through Carr Powerplant are suspended when releases to Clear Creek from Whiskeytown Dam equal or exceed 3,000 ft³/s. At that flow, damages begin to occur to structures downstream from the dam.
- Diversions through Carr Powerplant are maximized when the water would otherwise be released to the Trinity River because of Clair Engle Lake operations. Even at spill or near spill conditions in Whiskeytown Lake, the diversion may be continued to gain generation at Carr and Spring Creek Powerplants.

Safety of Dams Criteria

Studies completed by the Corps of Engineers (COE) in 1974 and Reclamation in 1975 showed that the spillway and outlet works at Trinity Dam are not sufficient to safely pass the inflow design flood. The dam was not authorized for flood control, and the uncontrolledspillway and outlets works were designed to a flood study completed in 1955. A January 1974 storm produced the highest peak inflow of record into Clair Engle Lake, 105,000 ft³/s. The 5-day volume was approximately 340,000 acre-feet. COE and Reclamation studies were initiated and interim operating procedures were adopted for Trinity Dam to restrict storage in Clair Engle Lake to 2,100,000 acre-feet (El. 2347.6 feet) during the flood season from November 1 through March 31. Because of the limited release capacity from Trinity Dam below the spillway crest elevation, drawdown and controlled filling of Clair Engle Lake is necessary to keep the storage from exceeding the limitation of 2,100,000 acre-feet. Additionally, the regulation of storage below that limitation needs to be accomplished with releases that are within Trinity and Carr Powerplant capacities, and releases to the Trinity River beyond the requirements for fisheries also need to be avoided. The following guidelines are used to accomplish these objectives during the November 1 through March 31 flood season:

• Storage in Clair Engle Lake is regulated within powerplant capacity to the target storages shown in table II-9.

Table II-9. Target storage of Clair Engle Lake		
Date Storage (acre-feet)		
November 1 - December 31	1,850,000	
January 31	1,900,000	
February 28, 29	2,000,000	
March 31	2,100,000	

• If the storage approaches 2 MAF and hydrologic conditions indicate a high probability of exceeding that limit, releases to the Trinity River should be increased to 1,200 ft³/s. Releases through the Carr Powerplant should already be at its maximum capacity.

CHAPTER II

- If the storage is at or near 2 MAF with a certainty of exceeding that limit, releases to the Trinity River should be increased to 2,500 ft³/s.
- If the storage is above 2 MAF, releases from Trinity Dam should be increased to the capacities of the inflow or outlet works, whichever is less.
- When considering increases to the Trinity River release, all meteorologic and hydrologic conditions need to be considered. When possible, consideration is given in scheduling release changes to minimize downstream fluctuations in flow.

SHASTA AND SACRAMENTO RIVER OPERATIONS

Introduction

As part of the Shasta Division, Shasta Dam and Shasta Lake on the Sacramento River serve to control floodwater and store surplus winter runoff for irrigation use in the Sacramento and San Joaquin Valleys. The Division provides maintenance of navigation flows and conservation of fish in the Sacramento River, protection of the Delta from intrusion of saline ocean water, water for M&I use, and generation of hydroelectric energy.

As part of the Sacramento River Division, the RBDD the Corning Pumping Plant, and the Corning and Tehama-Colusa Canal were authorized to supply irrigation water to land in the Sacramento Valley.

The following sections discuss the many needs that are met by the operation of the Shasta and Sacramento River Divisions.

Fish and Wildlife Requirements

Combined facilities built under the Shasta and the Sacramento River Divisions of the CVP harness the Sacramento River for delivery of irrigation and M&I water supply, navigation, flood control, power, and recreation. Figure 8 (shown previously) shows the major features of these divisions along the river.

The upper Sacramento River is the largest and most important salmon stream in California and provides more spawning habitat for chinook salmon than any other river in the State. The Sacramento River supports four separate chinook salmon runs--the winter-run, spring, summer, and fall. The population of each of the runs has declined by varying degrees over the past 20 years; the population of the winter-run has declined more than 99 percent since 1967 and is listed as threatened under the Federal Endangered Species Act. Fishery experts have identified water temperature in the upper Sacramento River as the critical factor in the decline of the winter-run. Elevated temperatures (anything above 56 °F) negatively affect spawning adults, egg maturation and viability, and preemergent fry.

Drought conditions from 1987-92 have resulted in lower than normal levels of storage in Shasta Reservoir and subsequently warmer temperatures in the Sacramento River. In

33

response to this situation and the declining winter-run population, Reclamation has made releases from Shasta Dam's low level outlet to access cooler water and to alleviate high water temperature during critical periods of the spawning cycle of the winter-run. Low-level outlet releases have been made every year since 1987 to protect some life stages of chinook salmon runs. Releases through the low-level outlets at Shasta Dam bypass the powerplant, resulting in a loss of hydroelectric generation. In addition, in 1991 and 1992, to help improve winter-run survival, releases were made from upper level outlets to warm the Sacramento River during the upstream migration of the winter-run to induce the winter-run to spawn as far upstream as possible. Generally, the farther upstream the winter-run spawn, the more favorable the temperature conditions will be for their survival.

In 1990 and 1991, the SWRCB issued Water Rights Orders (WR) 90-5 and 91-01 which modify Reclamation's water rights for the Sacramento River. The orders include temperature objectives for the Sacramento River and state that Reclamation shall operate - Keswick and Shasta Dams and the Spring Creek Powerplant to meet a daily average water temperature of 56 °F at RBDD in the Sacramento River during critical periods when higher temperature would be harmful to the fishery. To assure compliance with terms and conditions in the two orders, Reclamation must also monitor water quality.

Under the orders, the compliance point may be changed when the objective cannot be met at the RBDD. Reclamation must report any changes in the location of the temperature control point to the SWRCB Division of Water Rights and file an operation plan showing the strategy to meet the temperature requirement at the new location.

Temperature Operations Plans

In coordination with a multiagency task group (the Sacramento River Temperature Task Group) established to improve and stabilize the chinook population in the Sacramento River Basin, Reclamation has developed temperature operation plans for the Shasta/Trinity Divisions, which consider impacts on the winter-run and other races of chinook salmon and associated costs. The task group meets annually to discuss operational alternatives, new objectives, biological information, and a status report on water temperatures. Once the task group has recommended an operation plan for temperature control, Reclamation then submits a report on the operation plan to the SWRCB (generally on or before June 1 each year).

After implementation of the operation plan, the task group performs additional studies and holds meetings as needed to develop revisions based on updated reservoir and biological data. Reclamation submits a supplemental report showing any changes in the plan for the winterrun and a fall-run plan to the SWRCB before fall-run spawning season begins.

Tools Used for Analyzing Operational Alternatives

Several computer models, including the CVP operations forecast model and a temperature model for the Shasta/Trinity system, are used in analyzing operational alternatives. CVP operations are simulated for a 12-month period for the major reservoirs within the CVP, providing monthly estimates of releases required from each reservoir to meet water and

energy demands for the CVP. Output from the operations forecast is then used as input to the temperature model.

The estimated releases, inflows, evaporation, and storage of the CVP's major reservoirs are used as the temperature model input data. The temperature model predicts monthly temperature versus depth profiles in Clair Engle, Whiskeytown and Shasta Reservoirs. The temperature model uses these profiles, along with projected releases, to estimate the meanmonthly temperature at various locations in the Sacramento and Trinity Rivers. Meanmonthly temperatures for the Trinity are computed from Lewiston to the river's confluence with the North Fork and on the Sacramento from Keswick to Red Bluff. The river temperature calculations are based on the release flows and temperatures from Lewiston and Keswick Dams, normal climatic conditions, and estimates of tributary accretions.

Temperature Control Alternatives

Scheduling of releases from the low-level outlets at Shasta and Trinity Dams and diversions of Trinity River water to Keswick Reservoir where it is discharged into the Sacramento River are part of the operational plan developed by the task group. Depending on conditions, operation plans may be implemented as early as April, with warm water releases from the upper outlets of Shasta Dam used to attract the winter-run salmon to spawn as far upstream as possible in the upper Sacramento River. In addition to drawing the winter-run upstream, this operation conserves cold water in Shasta for the temperature operations during the summer. By coordinating CVP and SWP operations, releases from Shasta can be minimized as the American and Feather River systems are used to meet downstream needs. To conserve as much water as possible in Shasta Lake, the releases to the Sacramento River may be limited to meeting CVP and SWP purposes that cannot be met by these other systems.

When the combination of cold water resources in Shasta Lake and Trinity diversions are insufficient to provide the desired temperatures, releases from Whiskeytown Reservoir may be used to provide additional cold water to protect the fishery resources in the Sacramento River. Since this resource is fairly limited, this plan is generally used as a last option.

Actual Operations for Temperature Control

Reclamation accesses hourly temperature data from the Sacramento and Trinity water quality network. The data are telemetered to the California Data Exchange Center at DWR where, in turn, CVP operators can access it. According to the operation plan developed by the task group, operations can be adjusted as needed to meet the temperature objective at designated control points.

The temperatures on the Sacramento and Trinity River systems are influenced by: the ratio of the Spring Creek Powerplant releases to Shasta releases, relative temperatures of the releases, total storage at Shasta Lake and Clair Engle Reservoir, the depth of releases from Shasta and Trinity Dams, the percent of total releases from each depth, ambient air temperatures and other climatic conditions, tributary accretions and temperatures, and residence time in Keswick and Lewiston Reservoirs and in the Sacramento and Trinity

35

Rivers. During times when project operations are being adjusted to meet critical temperature objectives, the most readily controlled factors are the Shasta low-level outlet release and the use of Trinity diversions; both of these factors can have a significant effect on downstream river temperatures. Reclamation operators may make changes in the ratio of releases between Shasta and Spring Creek Powerplants and also the percentage of Shasta releases that are discharged through the low level outlets.

However, releases for temperature control that bypass the powerplant at Shasta are not considered a long-term solution to the temperature problems on the Sacramento River. If all other options to control river temperatures are exhausted, management in both Reclamation and the DFG would be consulted immediately regarding the potential of using bypass releases from Shasta Dam. Until permanent temperature control measures are adopted, the interim bypass operation will continue as the best temperature control measure available.

Minimum Instream Flows Provided by 1960 MOA

On April 5, 1960, Reclamation and DFG executed an MOA for the protection and preservation of fish and wildlife resources of the Sacramento River as affected by the operation of Shasta and Keswick Dams and their related facilities (see figure 1). The agreement provided for minimum releases into the natural channel of the Sacramento River at Keswick Dam as shown in table II-10.

Table II-10. Minimum releases into the Sacramento River at Keswick Dam for normal years		
Time period Minimum releases (ft 3/s)		
January 1 through February 28	2,600	
March 1 through August 31	2,300	
September 1 through November 30	3,900	
December 1 through December 31 2,600		

Since October 1981 (by agreement between Reclamation and DFG), a minimum release of 3,250 ft³/s from Keswick for a normal year has been used from September 1 through the end of February. The SWRCB included this release schedule in Reclamation's water rights permits for Shasta in its Order WR 90-5 in 1990, which did not change release requirements for critical years. For critically dry calendar years based on Shasta inflow criteria, the minimum flows are shown in table II-11.

When minimum flows for critical years are used, releases are increased at least once daily to provide the flows specified for normal years, beginning about December 1 and extending to about May 1. If extremely critical conditions occur from December 1 through February 28, the flow may be reduced below 2,000 ft³/s (by agreement between Reclamation and the DFG).

Table II-11. Minimum flow from Keswick Dam for critical years		
Time period Minimum releases (ft 3/s)		
January 1 through February 28	2,000	
March 1 through August 31	2,300	
September 1 through November 30	2,800	
December 1 through December 31	2,000	

Seasonal Fluctuations Under the 1960 MOA

To achieve the best possible conditions for salmon reproduction by reducing fluctuations in river stage, the 1960 MOA provides that releases from Keswick Dam from September 1 through December 31 are made with a minimum of fluctuation or change if protecting the salmon is compatible with other operational requirements. Biologists from the DFG have indicated that the fall-run chinook salmon begin migrating about September 15. Usually, releases from Shasta and Keswick Dams are gradually reduced in September and early October during the operational transition that occurs--from meeting Delta export and water quality demands to operating the system for flood control from October through December. Normally, Reclamation attempts to reduce releases from Shasta and Keswick to the minimum fishery release requirement by October 15 each year.

From October 15 to December 31, Reclamation attempts to minimize changes in releases from Keswick. Releases may be increased to meet unexpected downstream needs, such as higher outflows in the Delta to meet water quality requirements or to meet flood control requirements. Decreases to Keswick releases may be made when tributary inflows increase to a level that will allow downstream needs to be met with reduced Keswick releases. A temporary decrease in the release from Keswick Dam occurs around the end of October or first of November for removing boards at the Anderson-Cottonwood Irrigation District's (ACID) Diversion Dam (see detailed discussion at the end of this section on the Shasta and Sacramento River Operations). To avoid release fluctuations, the base flow is carefully selected to achieve the desired target storages in Shasta Lake from October through December.

Changes and Ramping

Under WR 90-5, the following conditions to Reclamation's Shasta water rights permits for release decrease were added: (1) Releases shall not be decreased more than 15 percent in a 12-hour period, and (2) releases shall not be decreased more than 2.5 percent in a 1-hour period.

The WR 90-5 requirements are not in effect during flood control or other emergency operations. The percent reductions are applied to the original release before decreases begin. Whenever possible, decreases are at night to minimize impacts on fishery. Although WR 90-5 was published in early 1990, Reclamation had been following these guidelines since

37

the 1970's. During normal nonemergency operations, no practical maximum rate of increase exists. Large increases are generally scheduled at night to minimize impacts on the public.

Reservoir Fishery Problems

No constraints related to fisheries in the reservoirs exist regarding operating Shasta and Keswick Dams. However, the Central Valley Fish and Wildlife Management Study identified reservoir fishery management problems and possible solutions related to the operation of these reservoirs. One problem common to many CVP storage reservoirs is extreme water level fluctuation that results from flood control and water supply operations. Accomplishing these higher priority purposes prevents an operational means of mitigating this problem.

Recreation Use at Shasta Lake and Sacramento River

A significant amount of recreational use occurs at Shasta Lake and on the Sacramento River. Although recreation is not an expressly authorized purpose for Shasta and Keswick Dams, whenever possible Reclamation considers recreational use when making operational decisions that significantly affect reservoir levels or flows in the river. No legal or contractual obligations exist for maintaining reservoir levels or riverflows to accommodate recreation at the expense of other CVP purposes.

As discussed previously regarding the Trinity River Division, the Whiskeytown-Shasta-Trinity National Recreation Area was established by Act of Congress in 1965. The Shasta Unit, administered by USFS, surrounds Shasta Lake. Facilities provided by the USFS include campgrounds, boat launching ramps, beaches, and picnic areas; also, many resorts and marinas operate under permit and provide a host of recreational facilities and services. Recreation at Shasta Lake provides a major source of income for the Shasta County economy; therefore, drawdown of the water surface in Shasta Lake has many direct and indirect adverse impacts on the area.

The prime recreation season for this recreation area begins on Memorial Day weekend and extends through Labor Day weekend. For recreational interests, it is desirable to have Shasta Lake full on Memorial Day weekend and at no less than El. 1,017.0 on Labor Day weekend. This elevation corresponds to a drawdown of 50 feet below the top of the conservation pool and is just below the bottom of the flood control storage envelope.

The rate at which reservoir drawdown occurs during the prime recreation season affects marina operators, who are concerned about the need to extend access and utilities, while boaters must be wary of being stranded in shallow waters. The maximum rate of drawdown usually occurs in July as irrigation demands peak.

As previously noted, no requirement exists to maintain reservoir levels for recreation. However, customary patterns of storage and release do result in acceptable water levels during the prime recreation season at Shasta Lake during most years. Storage normally peaks in May, and because of D-1485 pumping restrictions during May and June in the

Delta, significant drawdown usually does not occur until July and August. In drought periods, recreation suffers due to the drawdown required to meet CVP uses.

No release requirements exist at Keswick Dam for recreation; however, the releases to meet CVP uses normally provide satisfactory flows for recreation. During flood control operations, little recreational use occurs along the river. In the spring and fall, marinas in the Sacramento area have occasionally reported shallow water problems at low flows.

Flood Control Objectives and Criteria--Shasta Dam and Lake

This discussion of flood control objectives and regulating criteria is based on the *Report on Reservoir Regulation for Flood Control, Shasta Dam and Lake* (COE, April 1962, revised January 1977), and on the current Flood Control Diagram dated July 8, 1977 (COE, figure 9). The report and diagram were prepared by the COE pursuant to the provisions of the Flood Control Act of 1944.

Flood control objectives for Shasta Lake require that releases are restricted to quantities that will not cause downstream flows or stages to exceed (insofar as possible): (1) A flow of 79,000 ft³/s at the tailwater of Keswick Dam, and (2) a stage of 39.2 feet in the Sacramento River at Bend Bridge gauging station (which approximates a flow of 100,000 ft³/s).

Based on the Flood Control Diagram, storage space in Shasta Lake is reserved below El. 1,067.0. The maximum flood space reservation is 1,300,000 acre-feet, with variable storage space requirements based on the current flood hazard (determined from the daily accumulation of seasonal inflow to Shasta Lake). The Flood Control Diagram contains an explanation for its use, and a schedule of releases; one correction to the schedule is that the two references to releases of 39,000 ft³/s should be changed to 36,000 ft³/s, since flows in excess of 36,000 ft³/s begin to cause flooding in Redding. Flood control operations at Shasta Lake require forecasts of flood runoff both upstream and downstream from Shasta as far in advance as possible.

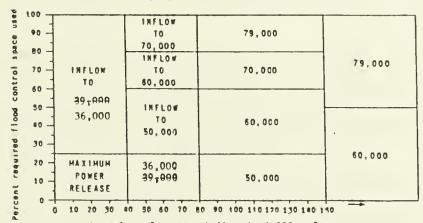
Historically, the most critical CVP forecast for the Sacramento River is that of local runoff entering the Sacramento River between Keswick Dam and Bend Bridge. Travel time required for release changes at Keswick Dam to affect Bend Bridge flows is approximately 8 to 10 hours. Therefore, Reclamation maintains close liaison with the National Weather Service's River Forecast Center (NWSRFC) to obtain timely and accurate forecasts of hydrologic conditions. The RFC issues a forecast of upper Sacramento River conditions at least daily during flood periods. That forecast provides projected stages of the river at stations from Bend Bridge to Colusa.

During flood periods, CVOCO staff maintain close communication with the RFC hydrometeorologists to obtain updated projections for the river stage at Bend Bridge and the inflow to Shasta Lake. The CVOCO staff also monitors hourly flow data and real-time precipitation data to keep apprised of changing conditions. The hourly stages and flows for Cottonwood, Clear, Cow, and Battle Creeks are automatically reported to gauging stations

SHASTA LAKE FLOOD CONTROL DIAGRAM

Figure 9 (continued)

USE OF DIAGRAM


- Beinflood paremeters relate the accumulation of seasonal inflow to the required flood control space reservation on any given day. Perometer values are computed daily, from the accomulation of second inflow by adding the carrent day's inflow in cubic feet persecond icfal to 95% of the parameter value computed through the proceeding day.*
- Eucopt when releases are governed by the emergency apillway release diegrem currently in force (File No. SA-26-P2), water stored in the flood control reservation, defined hereon, shell to released as repidly as possible, subject to the following concitions:

 That releases are made according to the Malesse Schedule

 - That releases are wade according to the nativate Schedulaharaon.
 That flows in Sacramento Miver balow Reswick Oam do not acceed 79,000 cfs.
 That flows in Sacramento River at Band Bridge gage do not exceed 100,000 cfs.
 That releases ere not increased more than 13,000 cfs or decreased more than 8,000 cfs in any 2-hour period.

'Flood Control Diagram is initialized each flood season by sesuming a parameter value of 100,000 c.f.s. day on I October.

RELEASE SCHEDULE

Actual or forecast inflow in 1,000 c.f.s.

SHASTA DAM AND LAKE SACRAMENTÓ RIVER. CALIFORNIA FLOOD CONTROL DIAGRAM Prepared Pursuant to Flood Control Regulations APPROVED' Brigadier General, USA, Division Engineer South Pacific Division APPROVED: Effective Date: 8 JUL 1977 File No. SA-17-26-13 located near the confluences of these tributaries with the Sacramento River just above Bend Bridge. The precipitation is obtained from more than 20 event-reporting stations located in the watershed above Red Bluff, both upstream and downstream from Shasta Dam. Weather data, especially the quantitative precipitation forecasts issued by the National Weather Service, are monitored closely by both staffs.

When necessary, CVOCO staff monitors conditions and direct operations around the clock. During flood operations, the CVOCO staff meteorologist work as liaison at the RFC and DWR flood operations center.

If the flow at Bend Bridge is projected to exceed 100,000 ft³/s, the release from Keswick Dam is decreased so that the 100,000-ft³/s flow at Bend Bridge is not exceeded. As the flow at Bend Bridge is projected to recede, the Keswick Dam release is increased to evacuate water stored in the flood control space at Shasta Lake. Changes to Keswick Dam releases are scheduled to minimize rapid fluctuations in the flow at Bend Bridge. Again, accurate and timely forecasts of local runoff are necessary to achieve the desired control over flows in the upper Sacramento River.

When making release changes at Keswick Dam for flood control purposes, the following release levels are considered:

- The capacity of Keswick Powerplant is about 16,000 ft³/s, which would be a maximum release rate when no flood control space is being used.
- The maximum capacity of Shasta Powerplant is about 18,000 ft³/s, although it varies considerably with the head. The release schedule on the Flood Control Diagram requires maximum powerplant release when Shasta Lake storage is encroached into the flood control space by 25 percent or less, with actual or forecasted inflows of 40,000 ft³/s or less. The Keswick Dam release must include discharge from Spring Creek Powerplant, releases from Spring Creek Debris Dam, and sideflow into Keswick Reservoir.
- Flows in excess of 36,000 ft³/s begin to cause flooding in Redding. The Keswick Dam release needs to be restricted to this level for as long as the release schedule on the Flood Control Diagram allows.

The Flood Control Diagram specifies that releases should not be increased more than 15,000 ft³/s or decreased more than 4,000 ft³/s in any 2-hour period. The restriction on the rate of decrease is intended to prevent sloughing of saturated downstream channel embankments caused by rapid reductions in the river stage. In rare instances, the rate of decrease may have to be accelerated to prevent exceeding the flow of 100,000 ft³/s at Bend Bridge. The CVOCO operational data management system maintains daily Shasta Lake flood control storage requirements. A computer program is used for projecting the flood control storage requirements, given forecasted daily inflows and schedules releases. By projecting the flood control storage requirements, a desired schedule for releases at Keswick Dam can

be developed, which is useful both in anticipating future encroachment problems and in analyzing receding flood control conditions.

Navigation and Related "Depth and Head" Issues of the Sacramento River

Navigation is an expressly authorized function of Shasta and Keswick Dams. The River and Harbors Acts of August 30, 1935, and August 26, 1937, authorized funds for expenditure in accordance with plans set forth in the Rivers and Harbors Committee Document Number 35, 73rd Congress. Document Number 35 recommended providing channel depths of 6 feet between Sacramento and Colusa and 5 feet between Colusa and Chico Landing (see previous figure 2), and a minimum flow of 5,000 ft³/s between Chico Landing and Sacramento. Section 7 of the Flood Control Act of December 22, 1944, provides that it is the duty of the Secretary of War to prescribe regulations for the use of storage allocated for flood control or navigation at all reservoirs constructed wholly or in part with Federal funds. The COE now has this responsibility. In 1952, it was decided not to allocate storage space in Shasta Lake to navigation and that Section 7 would not apply to navigational features. Although the COE is, therefore, without authority to regulate Shasta operations for navigation, the River and Harbors Act of 1937 and subsequent acts obligated Reclamation to operate Shasta Dam to improve navigation.

Recently, no commercial traffic occurs between Sacramento and Chico Landing, and, therefore, the COE has not dredged this reach to preserve channel depths since 1972. Because no detrimental consequences occur to navigational interests, Reclamation does not operate to provide a minimum flow of 5,000 ft³/s at all points below Chico Landing. However, Shasta and Keswick Dams are operated to provide a minimum flow of 5,000 ft³/s at Wilkins Slough in all but extremely dry years.

The navigation requirement of a minimum flow of 5,000 ft³/s has been used as the basis for designing many of the pumping stations along the Sacramento River. At flows below 5,000 ft³/s, diverters have reported increased pump cavitation as well as greater pumping head requirements. Diverters are able to operate for extended periods at flows as low as 4,000 ft³/s at Wilkins Slough, but pumping operations become severely affected, and some pumps become inoperable at flows lower than this. On a daily operating basis, flows may drop as low as 3,500 ft³/s for short periods while changes are made in Keswick releases to reach target levels at Wilkins Slough, but using the 3,500 ft³/s rate as a target level for an extended period would have major impacts on diverters.

No criteria have been established that specifies when the flow criteria will be relaxed. However, the basis for Reclamation's decision to operate at less than 5,000 ft³/s is the increased importance of conserving water in storage when water supplies are not sufficient to meet full contractual delivery and other operational requirements.

Water Quality Problems Caused by Spring Creek

Water quality problems caused by acid mine drainage from Spring Creek into Keswick reservoir and the Sacramento River are a major concern to CVP operations. In the Spring

Creek watershed, concentrated acid mine water from several inactive copper mines and leaching from exposed ore bodies and tailing piles have caused fishkills in the Sacramento River below Keswick Dam. Operating Spring Creek Debris Dam and Shasta Dam with dilution criteria has allowed some control of the toxic wastes, but in January 1980, Reclamation, DFG, and SWRCB executed a Memorandum of Understanding (MOU) to implement actions to further protect the Sacramento River system from heavy metal pollution from Spring Creek and adjacent watersheds. The MOU identifies actions and responsibilities for each agency and established release criteria based on allowable concentrations of total copper and zinc in the Sacramento River below Keswick Dam. The release criteria are summarized below:

- The Iron Mountain Mine area above Spring Creek Debris Dam is currently undergoing cleanup operations as part of the Environmental Protection Agency Superfund. Part of this cleanup includes diverting inflows to Spring Creek Debris Dam that flow throughthe Iron Mountain Mine drainage around the drainage directly into Keswick Reservoir. This results in the inflow into the debris dam being reduced; however, metal concentrations in the inflow may be higher than in previous years. In general, the equations developed for the MOU are only used as a basis for releases. If the threat of a hazardous waste spill is not imminent, releases are generally set at a reduced percentage of the allowable according to the MOU equations. As monitoring data become available, this percentage is adjusted up or down as needed to meet the requirements below Keswick Dam.
- When Spring Creek Reservoir storage exceeds 5,000 acre-feet, the MOU provides for "emergency" relaxation amounting to a 50-percent increase in the specified objective concentrations of copper and zinc. Recently, Reclamation and the DFG have agreed not to use the emergency criteria until a spill actually occurs.

Under the provisions of the MOU, Reclamation agrees to operate according to the above-mentioned criteria and schedules, provided that such operation will not cause flood control parameters on the Sacramento River to be exceeded or interfere unreasonably with other CVP requirements (as determined by Reclamation). The MOU also specified a minimum schedule for monitoring copper and zinc concentrations at Spring Creek Debris Dam and in the Sacramento River below Keswick Dam. Reclamation has primary responsibility for this monitoring, although DFG and the Regional Water Quality Control Board (RWQCB) also collect and analyze samples as needed. After a multilevel intake structure at the debris dam was installed, the monitoring schedule specified in the MOU was modified to sample a minimum of once weekly, regardless of the elevation in the dam.

To minimize the buildup of metal concentrations in the water in the Spring Creek arm of Keswick Reservoir, releases from the debris dam need to be coordinated with releases from Spring Creek Powerplant to keep the arm of the powerplant flushed out. This coordination is not always possible when Spring Creek Powerplant may not be scheduled to operate. During these periods, Spring Creek may be operated at "Speed No Load" (SNL) to meet electrical system needs. Running the units at SNL requires small amounts of water and provides some

flushing of the Spring Creek arm. The number of hours the units at Spring Creek Powerplant may be operated according to this method depend on electrical system needs and the availability of water for release to Spring Creek Powerplant. If releases are made from the debris dam but Spring Creek Powerplant has not operated recently and power generation is scheduled, the units at the Spring Creek Powerplant generally will be run for several hours at SNL before they begin generating. This is done to minimize the slugging effect that might occur if the units at Spring Creek Powerplant were instantly brought to full load. When power generation from Spring Creek Powerplant is needed for electrical system emergencies, it may not be possible to operate the units at SNL before generating.

Operating Spring Creek Debris Dam during major flood events is complicated because releases from Keswick Dam may be reduced to meet flood control objectives at Bend Bridge just when storage and inflow at Spring Creek Reservoir are high. Because Spring Creek releases may have to be reduced when Keswick releases are reduced to maintain the required dilution of copper and zinc, spills can and have occurred from Spring Creek Reservoir. In these situations, the amount and concentrations of the spill must be considered to calculate the allowable Spring Creek Debris Dam release, and the release from the outlet works must be adjusted accordingly. When spills exceed the allowable release, the Spring Creek Powerplant discharge may be curtailed to confine the toxic water in the Spring Creek arm of Keswick Reservoir until Keswick releases can be increased.

In some cases, Reclamation has voluntarily released additional water from Shasta Lake and/or Spring Creek Powerplant to dilute spills to meet ratios of toxic metals below Keswick Dam. No criteria have been established for making these releases, and the releases therefore have been treated on a case-by-case basis. Since water released for diluting spills is likely to be in excess of any other CVP requirements, these releases risk losing the beneficial use of the water for other purposes.

Seepage and Drainage Problems in the Sacramento River

There has been a long history of concern among farmers over seepage from the Sacramento River to adjacent farmlands. Reclamation has shown in numerous studies that high stages in the river can result in seepage flow under levees. While other factors including flood-plain topography and stratigraphy influence seepage, the height and duration of the river stage above the level of adjacent land are major contributors to the extent and severity of the seepage. Because the operations of Shasta and Keswick Dams do regulate a substantial portion of riverflow, these operations can affect seepage potential. In most years, Shasta Dam operations do provide some degree of seepage control; however, Shasta was not authorized specifically for controlling seepage and the impacts of operations on seepage potential are incidental to authorized CVP purposes.

Widespread seepage damage might be expected to occur in those very wet years when inflow to Shasta Lake exceeds the 90-percentile level, particularly those years that have major flood events late in the season. Because of a large amount of storage space that would have to be reserved for seepage control in these wet years, operation for Shasta Lake for that purpose is

not justifiable. However, in less extreme years, Shasta and Keswick Dams may be operated for some control of seepage while not affecting authorized CVP functions. When releases from Keswick Dam can be reduced in March and April to lessen seepage potential during those months, the threat of damage to crops is significantly reduced. (During this period, deciduous fruit and nut trees are coming out of dormancy and annual crops are being planted.)

Another seepage-related concern in the Sacramento River is the diversion of water from the Trinity River to the Sacramento River when stages in the Sacramento River are high. In these situations, the amount of diverted Trinity River water is normally a small percentage of the total flow in the Sacramento River. The impact of this diversion on river stages depends on hydraulic conditions in the river and bypass system. If a spill is already occurring at Moulton and Colusa' weirs, an increase in the release at Keswick Dam will have little impact downstream. If a spill is not occurring, the impact on increased stages will vary, depending on the width of the river channel.

Because power is an authorized purpose of CVP and Trinity in particular, diversions are made when runoff cannot be stored in Clair Engle Lake. During the flood season, the diversion is made to regulate storage in Clair Engle Lake while minimizing the spill to Trinity River. The diversion is suspended whenever the Sacramento River approaches or reaches flood stage. The diversion is normally minimized during the spring as Clair Engle Lake is filled; however, exceptional runoff conditions may require high diversions during this period.

During September and October, farmers in the Sacramento Valley drain their rice fields; and high stages in the Sacramento River can impede this drainage. Drainage from the Colusa Basin Drain, which enters the Sacramento River near Knights Landing, is especially susceptible to capacity problems. Colusa Basin Drain flows are regulated at a Knights Landing outfall structure. Some flow from the drain can also be diverted through the Knights Landing Ridge Cut to the Yolo Bypass when the Sacramento River is high. When river stages are sufficiently high at Knights Landing to restrict flows from the outfall structure, water in the drain backs up and floods land on the west side of the drain if the Ridge Cut is insufficient to release flows during this time of year. Water that is backed up enough to flow through the Ridge Cut causes agricultural damage by flooding farmlands in the Yolo Bypass.

The stage in the Sacramento River at Knights Landing that begins to impede flow from the Colusa Basin Drain varies depending on the magnitude of drainage flows. In September 1982, problems occurred at a stage of 22.8 feet at Knights Landing, which corresponds to a stage of 32.7 feet (or 9,600 ft³/s) at Wilkins Slough. As a general guideline, drainage problems might occur when the stage at Wilkins Slough exceeds 32.0 feet (>9,000 ft³/s) in September and October. At this time of year, the releases from Keswick Dam are being decreased from the level required in August for Delta demands to a base release for salmon spawning. In all but very wet years, the releases at Keswick Dam, combined with minimal accretions or depletions between Keswick and Wilkins Slough, should result in flows less

LONG-TERM CVP-OCAP CHAPTER II

than 9,000 ft³/s. CVP generally operates with enough flexibility during this period to permit adjusting the releases to alleviate severe drainage problems.

The timing and amount of drainage flows entering the Sacramento River during rice field drainage is regulated by the RWQCB to limit the impact of pesticide and other chemical constituents in the drainwater. During the heaviest drainage periods, CVP and SWP operations in the Feather and American Rivers and in the Delta may be adjusted to adequately compensate for changes in Sacramento River flows and control outflows from the Delta.

Needs of ACID Diversion Dam

ACID diverts water from the Sacramento River in Redding. The United States and ACID signed a contract (No. 14-06-200-3346A) providing for CVP water service and an agreed-upon amount of water diversion. The ACID diverts to their main canal on the right bank of the river from a diversion dam located in Redding about 5 miles downstream from Keswick Dam. The diversion dam consists of boards supported by a pinned steel superstructure anchored to a concrete foundation across the river. The boards are manually set from a walkway supported by the steel superstructure. The number of boards set in the dam varies depending upon riverflow and the desired head in the canal.

The contract between the ACID and the United States allows the ACID to notify Reclamation (as far in advance as is reasonably possible) each time it intends to install or remove boards from its diversion dam. Reclamation similarly notifies the ACID each time it intends to change releases at Keswick Dam. In addition, during the irrigation season, the ACID notifies Reclamation of the maximum flow that they believe its diversion dam and its current board setting of boards can safely accommodate. Reclamation notifies the ACID at least 24 hours in advance of any change in releases at Keswick Dam that would exceed the maximum flow designated by the ACID.

The irrigation season for the ACID runs from April through October; therefore, around April 1 of each year, the ACID erects the diversion dam, which consists of raising the steel and installing the walkway and then setting the boards. Around November 1 of each year, the reverse process is accomplished. The dates of installation and removal vary depending upon hydrologic conditions. Removal and installation of the dam cannot be done safely at flows greater than 6,000 ft³/s. Usually, the ACID requests Reclamation to limit the Keswick release to a maximum flow of 5,000 ft³/s for 5 days so they can install or remove the dam. As indicated previously, sometimes during the irrigation season the setting of the boards must be changed due to changes in releases at Keswick Dam. When boards must be removed due to an increase at Keswick, the release may have to be decreased first to allow that work to be done safely. If an emergency exists, personnel from Reclamation's Shasta Office can be dispatched to assist the ACID in removing the boards.

Rates of release decreases required for the ACID operations are limited to 15 percent in a 12-hour period and 2-1/2 percent in any one hour. Therefore, advance notification is

important when scheduling decreases to allow for installation or removal of the ACID dam. Flood control operations and other emergencies are not affected by the release change limitations.

Requirements for Operating the RBDD

The RBDD impounds water in Lake Red Bluff for diversion into the Tehama-Colusa and Corning Canals. Water is passed downstream through a variety of fish facilities and 11 fixed wheel gates. Sacramento River water is diverted into the canals by gravity through a gated intake structure. Since 1988, because the dam gates are raised for the winter-run chinook salmon, winter diversions have been made through 100-horsepower vertical propeller pumps, with a current total capacity of 125 ft³/s.

Flowthrough Fish Facilities at the RBDD. Fish facilities include fish ladders and diffusers on both abutments and a bypass for returning fish diverted into the canal headworks back to the river. At full lake elevation, flows through these facilities total about 870 ft³/s. Additionally, since 1984, gate 6 on the dam has been converted to a center fish ladder from June 1 to December 1 (this period varies according to the weather), which allows an additional 60 to 80 ft³/s of water to pass through.

Gate Operations (December through April) at RBDD. All gates are usually open beginning December 1 for passage of chinook salmon and are closed by about April 1. These dates can change depending on weather conditions and irrigation demands; for instance, gates will be raised sooner than December 1 if runoff from storms is heavy. Also, gates will be closed later than April 1 if irrigation demands do not exceed the pumping capacity of 125 ft³/s and the wheeling capacity available from the Orland Project (up to 70 ft³/s through Orland Lateral 40). Closing the gates at the beginning of the irrigation season usually requires extra releases from Keswick to maintain minimum flows past the dam, while building up the elevation in Lake Red Bluff.

Gate Operations (May through November) at RBDD. Flow downstream of the dam is governed by releases from Keswick Dam; these releases maintain minimum flows downstream of Red Bluff and are determined by the CVOCO staff. Operational control at Red Bluff consists of maintaining a lake elevation of 252.6 by an automated gate, gate 11. If gate 11 cannot pass the flow necessary to maintain the target lake elevation, additional gates are opened incrementally.

Diversions from Red Bluff. Major diversions from Lake Red Bluff that use the gated intake typically start around April or May each year and end when the dam gates open about December 1. The start of the irrigation season can vary significantly based on factors such as water supply, rainfall, weather, and cropping patterns. With the RBDD presently operated solely for the passage of winter-run chinook salmon, water demand between December 1 and April 1 is handled by using alternate water supplies at Black Butte Reservoir and 5 to 100 horsepower permanent pumps (with a total capacity of 125 ft³/s of flow) at the

LONG-TERM CVP-OCAP CHAPTER II

RBDD. Black Butte water is delivered through Orland Lateral 40, whose maximum capacity of 70 ft³/s is subject to reduction by the Orland Project's use of the lateral.

During the irrigation season, two peaks typically occur to the water diversion. These peaks generally occur during the startup of water used to irrigate the rice fields in May and again in July at the peak of the irrigation season. Flow ranges during these peaks are between 1,500 to 2,000 ft³/s. Total annual diversion (again, this depends on various factors) are around 350,000 to 400,000 acre-feet. This amount is the combined amount of water deliveries to the Corning and Tehama-Colusa Canal Water Contractors, the Glenn-Colusa Irrigation District, the Tehama-Colusa Canal Fish Facility, and the Sacramento River Wildlife Refuge.

AMERICAN RIVER OPERATIONS

As part of the American River Division, Folsom Dam, Lake, and Powerplant; Nimbus Dam; Lake Natoma; and Nimbus Powerplant are located on the American River. Folsom Dam regulates the flow of the American River for irrigation, power, flood control, M&I use, fish and wildlife, recreation, and other purposes. Also included in the American River Division is Jenkinson Lake (formed by Sly Park Dam) and the Folsom South Canal, which originates at Lake Natoma. The uncompleted Auburn Dam is also a part of the American River Division.

Folsom Dam and Lake were authorized in 1949 as a feature of the American River Division (see figure 10) to provide water for irrigation, M&I use, hydroelectric power, recreation, water quality, and flood control. Numerous factors are considered when determining operations for this division, including the inbasin water needs of the American River along with water supply needs and power requirements of the CVP as a whole. Other contributing factors that affect operations are current and anticipated hydrologic conditions as well as operator experience and intuition. The following discussion details the analysis behind CVP operations on the American River.

Fish and Wildlife Requirements

When Folsom Dam was completed in 1956, nearly 90 percent of the riverine habitat was isolated from anadromous fish. To mitigate for the loss in habitat, a hatchery was included in the early features of the American River Division. The Nimbus Fish Hatchery, the adjacent American River Trout Hatchery, and the lower American River are now responsible for propagating one of the largest salmon and steelhead fisheries in the Sacramento River watershed. Although the hatcheries have been successful, it is important to maintain a natural anadromous fishery in the remaining habitat of the lower American River; thus, American River operations attempt to aid the needs of both the river and the hatchery fish.

The two principal factors influencing the viability of fish populations in the American River are flow and water temperature. Most resident fish in the lower American River are tolerant of fluctuations in flow and temperature, but nonresident species like salmon, steelhead, and

SACRAMENTO RIVER DIVISION AND AMERICAN RIVER DIVISION

LONG-TERM CVP-OCAP CHAPTER II

shad are more sensitive to changing water conditions. Folsom operations recognize this sensitivity. A discussion of fishery concerns in the American River by season follows.

Flows and Habitat in the American River

About mid-October, lower American River releases are established at a level that can likely be maintained at a minimum through February, which provides stable flows in the river for spawning and incubation of salmon. Typically, the release is fixed at between 1,000 ft³/s and 1,750 ft³/s, depending on Folsom Lake storage at the end of September and expected inflows from upstream reservoirs. If hydrologic conditions in the fall are extremely dry, the established flow may be reduced. An attempt is made to limit the rate and magnitude of release changes because any reduction in flow creates the potential to expose redds. However, short-term increases followed by reductions are sometimes necessary for salinity control in the Delta.

The fall flows described above are probable when sufficient water supplies are available. They are, however, somewhat larger than the minimums currently required of Reclamation. SWRCB Decision 893 (D-893) defines the minimum allowable riverflow as 500 ft³/s from September 15 through December 31. If Auburn Dam and additional reaches of Folsom South Canal are ever completed, SWRCB Decision 1400 (D-1400) will become effective and a riverflow of 1,250 ft³/s will be required from October 15 through July 14. Although it is not required, current Reclamation operations attempt to satisfy criteria similar to those found in D-1400.

Flood operations generally prescribe any release changes during the winter. Typically, this results in a series of release increases for short durations followed by a reduction to the established minimum flow or, in some circumstances, establishing a higher minimum flow. In extremely dry years, it may be necessary to reduce the established minimum release. Reclamation attempts to limit the magnitude and rate of the reduction, and the release is never reduced below the minimums required under D-893. If salmon and steelhead young are in the river, high flows can in effect flush them out into the Sacramento River. Those that remain in the lower American River can be stranded in nonconnecting side channels as the flows are reduced. To avoid stranding these fish, flow reductions are planned with gradual changes that enable the young to return to the main channel.

Steelhead trout are given less consideration than salmon because they are more adaptable to variable water conditions. Unlike salmon, steelhead have the ability to reabsorb their eggs if spawning conditions are not favorable, and steelhead also do not die after spawning. This ability to adapt to changing conditions means they are not as susceptible to American River operations, which differ from conditions that existed before the CVP was established. The various resident fish species are also more adaptable than salmon and require no special consideration from CVP operations.

51

Water Temperatures Downstream and at Hatchery (American River)

Along with flow, proper water temperature must also be maintained to protect the salmon fishery. Water temperature is a function of cold water storages ambient air temperatures and flow. In the winter, source and ambient air temperatures create sufficiently cold water temperatures regardless of flow. During the remainder of the year, the overriding influence on water temperature may be one, two, or all three of the above-mentioned variables. CVP operations can exercise some control over source temperature and flow, but they have no control over ambient air temperature, so Reclamation attempts to preserve cold water in Folsom for release in the fall.

The coldest water is located in the bottom of Folsom Reservoir. To conserve this resource, releases that do not require the coldest water are taken from other levels. Folsom Dam has an intake structure with louvers which allows the selective withdrawal of water. Typically, the warmest water is released until temperatures are too high for successful hatchery operations. Hatchery personnel advise Reclamation of this condition, and, if cold water exists, the louvers are set to allow its removal. Because hatchery needs may require this cold water during the summer, a conflict occurs with the need to retain cold water for release in the fall for salmon spawning in the lower American River.

Recently, temperature operations required for the winter-run chinook salmon in the Sacramento River have reduced the operational flexibility of Folsom to react to fall conditions. This flexibility loss is particularly evident in dry years when efforts to maintain a cold water pool in Shasta through the summer result in lower-than-normal summer Keswick releases and higher-than-normal summer Folsom releases. Thus, Folsom storage in the fall may be lower than normal with a smaller cold water pool and therefore with less capability to provide cold fall flows. The management of Folsom's cold water pool requires constant attention and also receives close scrutiny from the public.

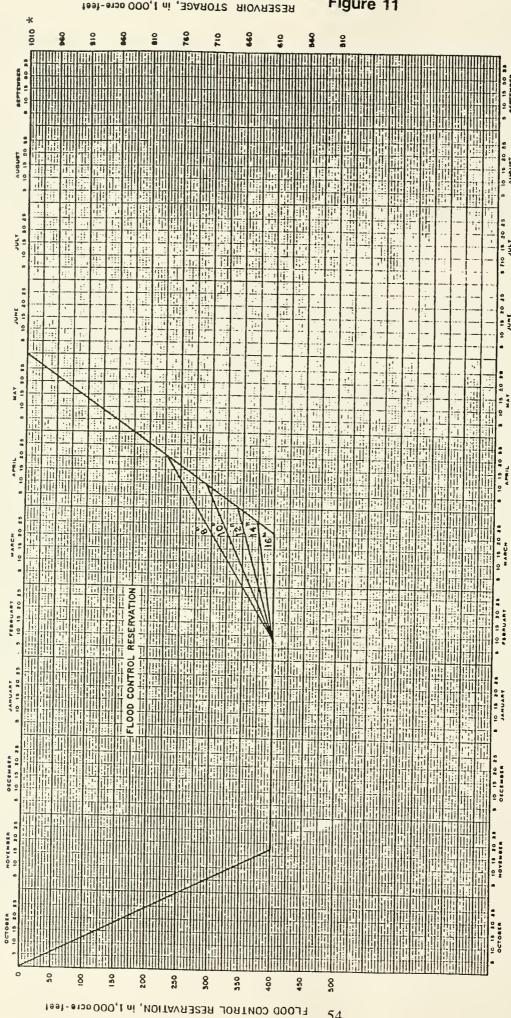
Recreation Use at Folsom Lake and American River

Both the lower American River and the reservoirs behind Folsom and Nimbus provide significant recreation opportunities. The principal reservoir recreation is boating and fishing, while river recreation is primarily rafting and fishing. Folsom Lake is the most popular multiuse year-round unit in the California State Park System.

Recognizing the importance of lake recreation, the elevation of Folsom Lake is a consideration for summer/fall operations. With summer the heaviest use period, as much water as possible must be kept in storage. The summer recreation season extends through the Labor Day holiday in September. Reclamation attempts to keep enough water in storage throughout the summer to maintain access to boat launching and marina facilities; however, recreation is considered subordinate to other demands on Folsom's water. In normal water year, the marinas may be accessible year round, but in extremely dry years, the marinas may be inoperable as early as July. As a regulating reservoir, Lake Natoma fluctuates several feet daily, but does not experience extreme seasonal fluctuations. Lake Natoma is used for boating and fishing.

Rafting on the lower American River accounts for the largest number of recreation days. From spring through summer, ambient air temperature and flow levels are conducive to this type of activity, and although river recreation is not considered when allocating water, it is a safety concern to Reclamation. During the spring of wetter years, releases from Nimbus Dam may have to be sustained at high levels for prolonged periods. Fishing along the lower American River does not receive any special consideration by Reclamation other than that given to protect certain species.

Flood Control Objectives and Criteria--Folsom Dam and Lake


Flood control requirements and regulating criteria are specified by the COE and described in the *Folsom Dam and Lake, American River, California, Water Control Manual* (COE, December 1987). Flood control objectives for Folsom require that the dam and lake are operated to:

- Protect the city of Sacramento and other areas within the lower American River flood plain against reasonably probable rain floods.
- Control flows in the American River downstream from Folsom Dam to existing channel capacities, insofar as practicable, and to reduce flooding along the lower Sacramento River and in the Delta in conjunction with other CVP projects.
- Provide the maximum amount of water conservation storage without impairing the flood control functions of the reservoir.
- Provide the maximum amount of power practicable and be consistent with required flood control operations and the conservation functions of the reservoir.

Allowable flood control storage, as depicted in figure 11, depends on the time of year and wetness of the particular basin. From June 1 through September 30, no flood control storage restrictions exist. From October 1 through February 7 and from April 20 through May 31, reserving storage space for flood control is a function only of the date, with full flood reservation space required from November 17 through February 7. Beginning on February 8 and continuing through April 20, flood reservation space is a function of both date and wetness of the basin. Essentially, if basin conditions are on the dry side, required flood control space is thus reduced. Conversely, if the basin has experienced a considerable amount of precipitation, the flood control space is not reduced until later on in the season.

If the inflow into Folsom causes the storage to encroach into the space reserved for flood control, American River releases are increased. Flood control regulations prescribe the following releases when water is stored within the flood control reservation space:

53

FOLSOM LAKE FLOOD CONTROL DIAGRAM

The storages *Folsom Lake was resurveyed in 1991 and the maximum storage capacity is now 974,000 acre-feet. on this diagram are based on the previous storage capacity of 1,010,000 acre-feet.

Figure 11 (continued)

NOTES

- The objective of the Flood Control Diagram is to provide on increased degree of protection to the Lower American River during the development of a revised flood control operational plan for the American River Basin.
- Flood Control Reservation is the flood control space required under present authorization. When water is stored in this space, reservoir releases must be in accordance with requirements of this diagram.

USE OF DIAGRAM

- Rain flood parameters define the flood control space reservation on any given day and are computed daily from the weighted accumulation of seasonal basis meen precipitation by adding the current day's precipitation in inches to 97% of the parameter computed the preceding day.
- Except when larger releases are required by the accompanying Emergency Spillway Release
 Diagram, water atcred within the Flood Control Reservation; defined hereon, shall be
 released as rapidly as possible subject to the following schedule:
 - Required Flood Control Release Maximum inflow up to 115,000 cfs but not less then 20,000 cfs when inflows are increasing.
 - Releases will not be increased more than 15,000 cfs or decreased more than 10,000 cfs during any 2 hour period.
- 1/ Maximum Inflow is the greatest Inflow since storage entered into Flood Control Reservation

FOLSOM DAM AND LAKE
American River, California

FLOOD CONTROL DIAGRAM

Prepared Pursuant to Flood Control Regulations for Folsom Dam and
Lake in accardance with the Code of Federal Regulations Title 33 Part
208 11

APPROVED

Brigadier General, U.A., Division Engineer
Dath Poching Deviter

Regional Director Mid Pacific Beglan
U.S.B.R.

Effective Date

Thorember 1986

File No. AM-1-26-584

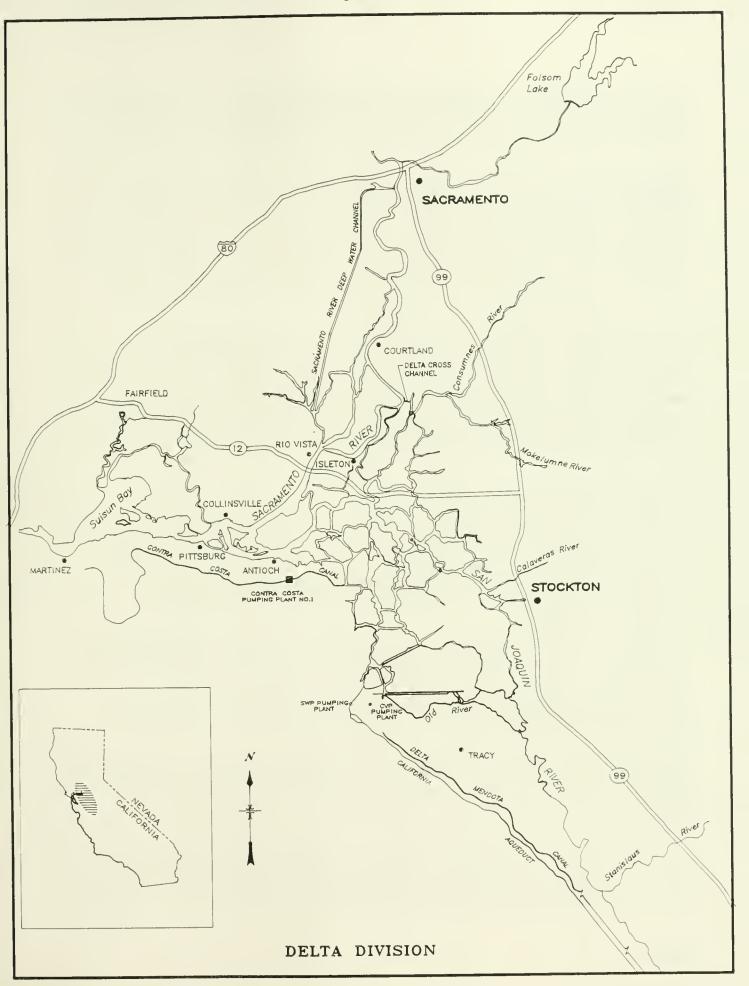
- Maximum inflow (after the storage entered into the flood control reservation space) of as much as 115,000 ft³/s but not less than 20,000 ft³/s when inflows are increasing.
- Releases will not be increased more than 15,000 ft³/s or decreased more than 10,000 ft³/s during any 2-hour period.
- Flood control requirements override other operational considerations in the fall and winter period. Consequently, changes in river releases of short duration may occur. Reclamation attempts to plan operations to avoid minor fluctuations in flow and to maximize the amount of water that can be released for hydropower generation.

In normal years, the focus of Folsom operations is on filling Folsom Lake near the end of May when flood control restrictions are lifted. In drier years, Folsom may be permitted to fill earlier as flood control restrictions are gradually eased.

DELTA OPERATIONS

Introduction

The CVP's Delta Division includes the Delta Cross Channel, the Contra Costa Canal, the Tracy Pumping Plant, and the Delta-Mendota Canal. The Delta Cross Channel is a controlled diversion channel between the Sacramento River and Snodgrass Slough, in the Delta. The channel provides a supply of water to the intakes of the Contra Costa and the Delta-Mendota Canals, improves the irrigation supplies in the Sacramento-San Joaquin Delta, and helps repel ocean salinity. The Tracy Pumping Plant diverts water from the Delta to the head of the Delta-Mendota Canal. The Delta-Mendota Canal is discussed in the section following Delta Operations, with the operations of the San Luis Unit.


The Delta was originally a tidal marsh providing habitat for numerous species of wildlife, fish, and plants. Depending on the time of year, the Delta was either a freshwater wetland or brackish marsh. More than 80 percent of this former marsh was leveed and developed for agriculture between the mid-1800's and early 1900's. Figure 12 depicts the major features of this division of the CVP.

CVP operations for satisfying the requirements of the 735,000 acres encompassed by the Delta consider the requirements of riparian water rights holders, the conditions imposed by D-1485 to protect the environment and water quality, and the export diversions needed by the CVP and the SWP to meet their respective contractual commitments south of the Delta. Export diversion requirements are covered in the following section. Reclamation facilities within the Delta region are DCC, DMC, the Tracy Pumping Plant, and CCC. Responsibility for meeting Delta water quality requirements is currently shared by the CVP and the SWP.

Water Rights--Delta Division

In late 1850, the Swamp and Overflow Land Act (SOLA) conveyed ownership of all swamp and overflow land, including Delta marshes, from the Federal Government to the State of

Figure 12

California. The bulk of water rights in the Delta thus stem from the SOLA. A riparian right was attached to these lands as they passed into private ownership. By 1871, most of California's swampland was in private ownership. Delta water rights have never been formally adjudicated, but typical riparian diversions total approximately 1.3 MAF annually.

Monthly diversion rates generally follow the pattern of minimal diversions during the winter and maximum diversions during the summer. The estimated diversions are assumed to remain the same regardless of the water year type and to peak in July when they total approximately 270,000 acre-feet. Releases from both CVP and SWP reservoirs are required to satisfy these diversions when uncontrolled runoff cannot satisfy the divisions. Extended wet weather minimizes both the quantity and duration of these diversions, while dry weather not only increases the quantity and duration of these diversions but also further depletes upstream storage available from the CVP and the SWP.

Riparian diversions contribute to reverse flows occurring on the San Joaquin River at Antioch; these flows typically occur in mid- to late summer. During reverse flow periods, water in the western Delta can increase in salinity and become brackish. A massive amount of water fluctuates in and out of the Delta due to natural tidal action, overwhelming the volume of freshwater outflow, which complicates the reverse flow phenomenon considerably. The CVP and the SWP are required to keep salinity levels at certain standards in compliance with D-1485 (described in the next section).

SWRCB D-1485--Delta Water Quality Standards

The current Delta water quality standards and the beneficial uses they protect are defined in D-1485, which also addresses minimum Delta flow requirements. The beneficial uses protected by D-1485 include agriculture, M&I, and fish and wildlife needs. The Delta standards apply throughout the year but become more critical whenever "balanced conditions" exist in the Delta, typically from April through November depending on hydrologic conditions.

In addition to D-1485 water quality standards, operators for the CVP and the SWP consider the current water supply and hydrologic conditions and impacts to fisheries, recreation, and power when making their operational decisions. The uncontrollable variables of tides, winds, barometric pressure, river depletions, and agricultural drainage largely define the operators' abilities to comply with the water quality standards.

Operational actions initiated to maintain Delta water quality are based on past experience and empirical studies, which are used as guides for determining initial responses to existing Delta conditions. Changes in operations are made according to varying Delta conditions and provide a reasonable level of protection against noncompliance with the standards.

Complying with the water quality portion of the Delta standards requires from 3.0 MAF to 5.5 MAF annually, as measured by the Delta outflow index (DOI), depending on the water year type (D-1485 defines the classification of the water year type).

Because of the hydraulic characteristics of the Delta, some standards are managed more efficiently through export curtailments, while others are managed more efficiently through flow increases. For example, the Contra Costa and Jersey Point standards are managed more efficiently by export curtailments. While complying with these standards, CVP and SWP operators also target a DOI and salinity levels in the western Delta. These levels are expected to provide a reasonable margin of error against noncompliance with D-1485 should adverse or unforeseen conditions arise. In typical or full delivery years, curtailments will likely have an adverse impact on CVP water supply availability south of the Delta. Therefore, during typical years, curtailments are usually made by the SWP as their ability to recover from curtailments is significantly greater than that of the CVP. In deficiency years, both projects will likely have much flexibility in their ability to curtail exports.

In contrast, the D-1485 Emmaton water quality standard is more efficiently managed by flow increases. In most instances, salinity levels at Emmaton will react proportionately to increases in flow in the Sacramento River. Closing the Delta Cross Channel Gates (DCCG) increases the flow on the Sacramento River. However, this action diverts freshwater passing through DCC to the San Joaquin River side of the Delta. Without this additional carriage water, reverse flow conditions on the San Joaquin River side of the Delta increase salinity intrusion near the Tracy Pumping Plant. For this reason, the DCCG can usually only be closed for a couple of days before deteriorating water quality on the San Joaquin River side of the Delta requires that the DCCG be reopened.

Another way to increase flows on the Sacramento River is to increase the releases from the CVP and the SWP. The approximate lag times for releases from the two projects to reach Emmaton are shown in table II-12.

Table II-12. Lag times for CVP and SWP releases to reach Emmaton		
Dam	River	Lag time
Nimbus	American	1 day
Oroville	Feather	3 days
Keswick	Sacramento	5 days

In a typical water year, releases may be increased simultaneously on all three rivers, with the largest initial release increase occurring on the American River. Then, as the increases from the Feather River and Sacramento River reach the Delta, the release on the American River is decreased accordingly.

D-1485 water quality standards for the Suisun Marsh that require a specific minimum DOI for 60 consecutive days in below normal and wetter year types are straightforward in terms of their implementation. However, deciding when and if project operations should be initiated to achieve this standard objective is difficult when the preceding year-type classification is below normal or wetter but the runoff between January and April is

insufficient to keep the DOI greater than the minimum level for 60 consecutive days, as required.

The above situation presents a dilemma to the operators of the two projects because dry and critical year types do not have this minimum DOI requirement; satisfying this objective during dry and critical year types is not identified by D-1485 as a beneficial use of water. If natural runoff became available in the Delta under the above scenario, operators would have to decide whether the water should be exported or used to assist in satisfying the minimum DOI requirement (in anticipation of a below normal or wetter year type).

This very situation arose in 1987--water year (WY) 1986 was a wet year type; however, the runoff between January and April in 1987 was insufficient to keep the DOI greater than 12,000 ft³/s for 60 consecutive days (as called for in D-1485). Operators for the CVP and the SWP took a risk and projected that 1987 would be a dry or critical year type. 1987 was indeed classified as a critical year type. Had the operators not taken the risk that the 12,000 ft³/s would not be required, not only would 330,000 acre-feet have been sent through the Delta without being tied to any beneficial use identified in D-1485, but also the water would not have been available for WY 1988 which was another critical year.

Reclamation Facilities in the Delta

The DCCG are operated for water quality, fishery, recreation, and flood control purposes. However, the original and primary purpose of the DCC was to provide passage for a fresh supply of Sacramento River "carriage water" in order to assist in repelling ocean saline waters near the Tracy Pumping Plant. In addition to operations for the D-1485 Emmaton standard previously described, the gates are operated to meet D-1485 standards in the spring to reduce adverse impacts to the striped bass. The gates are also closed in order to reduce scour on the downstream side of the gate structure when flow in the Sacramento River at Sacramento is expected to exceed 20,000 ft³/s to 25,000 ft³/s.

The Tracy Pumping Plant, consisting of six constant speed units is operated to meet water demands south of the Delta. Changes in pump operations are typically performed early in the day to allow adequate time for O&M personnel to adjust check gates on the DMC during daylight hours. Partly due to the time involved in changing pump operations and the additional wear on the pumping units, frequently cycling the units is normally avoided.

The Suisun Marsh Salinity Control Gates (SMSCG) are not a CVP facility, but are described here because of their significant effect on coordinated operations in the Delta by DWR and Reclamation. Phase II of the *Plan of Protection for the Suisun Marsh* was completed in November 1988 (Reclamation, 1988), with the SMSCG operating for the first time. The SMSCG, operated by the State of California, are located about 2 miles northwest of the confluence of the eastern end of Montezuma Slough and the Sacramento River near Collinsville (see figure 12). The primary objective of Phase II is to help meet channel water salinity standards established by D-1485 at control sites at Collinsville, the SMSCG, National Steel, and Beldons Landing.

10/92 . 60

LONG-TERM CVP-OCAP CHAPTER II

The SMSCG is operated from October 1 through May 31 (the control season) to: (1) Divert less saline water from the Sacramento River near Collinsville into Montezuma Slough, and (2) prevent higher salinity water originating in Grizzly Bay from entering the western end of Montezuma Slough. Its operation is necessary during control seasons of below normal, dry, and critical water year types. The SMSCG can either be operated full time to divert the maximum quantity of water from the Sacramento River at Collinsville into the eastern end of Montezuma Slough or intermittently to divert the quantity needed to meet D-1485 standards.

During full operation, the SMSCG gates open and close twice each tidal day (which is approximately 25 hours long). The gates are opened during the ebbing portion of the tide when the water level is higher on the Collinsville (upstream) side and remain open about 7 hours each cycle. The gates are closed during the flood tide when water in Montezuma Slough begins to flow upstream toward Collinsville.

The quantity of flow pumped by the SMSCG according to the tides is primarily a function of the shape and sequence of ocean tides and hydrologic conditions in the Delta. When the gates are in operation, flows past the SMSCG recorded on a 15-minute basis vary from no flow when the gates are closed to several thousand cubic feet per second with the three gates open. During round-the-clock operation of the gate, the net flow through the SMSCG is about 1,800 ft³/s when averaged over one tidal day period. When the gates are not operated from June through September and the flashboards in the gates are removed, the net flow in Montezuma Slough over one tidal day period is low and often in the upstream direction (as estimated by hydrodynamic model simulations). Water is diverted from Montezuma Slough at individual diversion points onto private ownerships along the slough and at the Roaring River Distribution System intake (one of the initial facilities of the *Plan of Protection*). The intake to the Roaring River intake is currently screened to prevent fish eggs and larvae from being entrapped.

More than 30 private owners along Montezuma Slough divert water from the slough through more than 60 culvert pipes of varying diameters. Most of these diversions are used to convert adjacent areas to ponds for waterfowl management and hunting. Maximum diversion rates usually occur during October when the managed wetlands are flooded for the first time that year. On the average, initial flooding requires approximately 2 weeks.

Annual water management practices vary greatly in Suisun Marsh, but the Suisun Resource Conservation District is working to establish and enforce efficient management schedules for the private owners. During the control season, diversions from Montezuma Slough occur during initial flooding in October, water circulation from November through mid-January, and leach cycles from February through May. Currently, the privately owned diversions are not screened.

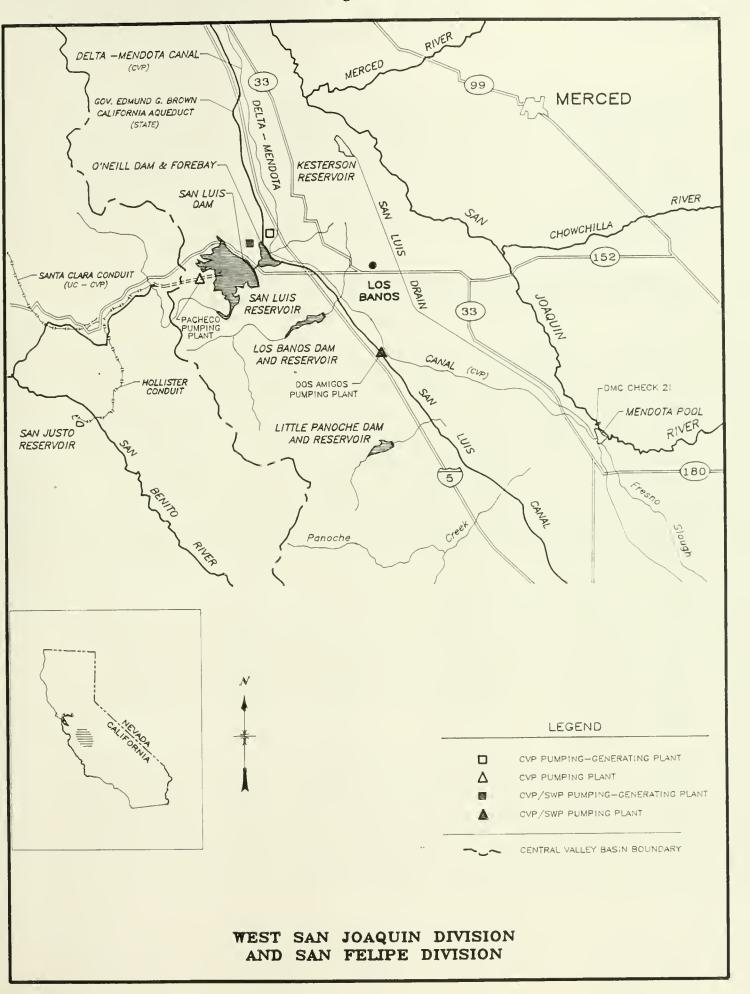
DELTA-MENDOTA CANAL AND SAN LUIS OPERATIONS

As part of the West San Joaquin Division, the San Luis Unit was authorized in 1960 to be built and operated jointly with the State of California. The San Luis Unit consists of San

Luis Dam and Reservoir (joint Federal-State facilities), O'Neill Dam and forebay (joint Federal-State facilities), O'Neill Pumping-Generating Plant (Federal facility), San Luis Pumping-Generating Plant (joint Federal-State facilities), San Luis Canal (joint Federal-State facilities), Dos Amigos Pumping Plant (joint Federal-State facilities), Coalinga Canal (Federal facility), Pleasant Valley Pumping Plant (Federal facility), and the Los Banos and Little Panoche Detention Dams and Reservoirs (joint Federal-State facilities).

The management of the San Luis Unit (see figure 13) depends on the operation of the northern features of the CVP while simultaneously influencing the operation of the northern CVP system. This relationship results from the need to deliver about half of the CVP's annual water supply through the DMC and San Luis Unit, while essentially all of the water must originate from the northern CVP. To accomplish the objective of providing water to CVP contractors in the San Joaquin Valley, three conditions must be considered: (1) Water demands for CVP water service contractors and exchange contractors must be determined, (2) a plan to fill and draw down San Luis Reservoir must be made, and (3) coordinating Delta pumping and utilizing San Luis Reservoir must be established. Only after these three conditions are made can the CVP operators incorporate the DMC and San Luis operations into plans for operating the northern CVP system.

Water Demands--DMC and San Luis Unit


Water demands for the DMC and San Luis Unit are primarily composed of two separate types--CVP water service contractors and exchange contractors. A significantly different relationship exists between Reclamation and these two groups. Exchange contractors "exchanged" their senior rights to water in the San Joaquin River for a CVP water supply from the Delta. Reclamation thus guaranteed the exchange contractors a firm water supply of 840,000 acre-feet per annum, with a maximum reduction in water-short years of 25 percent. Conversely, water service contractors did not have water rights to "exchange." Water service contractors also receive their supply from the Delta, but their supplies are subject to reductions that <u>can</u> exceed 25 percent.

Combining the supply entitlements of these two types of contractors with the pattern of requests for water is necessary to achieve the best operation of the CVP. In many years, full water supplies and sufficient Delta pumping capability are available to meet all demands. In some years, water deliveries are limited because of insufficient supply or lack of conveyance capacity. The scheduling of water demands, together with the scheduling of the releases of supplies from the northern CVP to meet those demands, is a CVP operational objective intertwined with the Trinity, Sacramento, and American River operations.

San Luis Reservoir Operations

Two means of moving water from its source in the Delta are available for the DMC and the San Luis Unit. The first is Reclamation's Tracy Pumping Plant, which pumps water into the DMC. The second is the State's Banks Pumping Plant, which pumps water into the State Aqueduct (see figure 12). During the spring and summer, water demands are greater than

Figure 13

Reclamation's and DWR's capability to pump water at these two facilities, and water stored in San Luis Reservoir must be used to make up the difference.

However, San Luis Reservoir has very little natural inflow. Therefore, if it is to be used for a water supply, the water must be stored when the two pumping plants (mentioned above) can export more water from the Delta than is needed for contracted water needs. Because the amount of water that can be exported from the Delta is limited by available water supply, Delta constraints, and the capacities of the two pumping plants, the fill and drawdown cycle of San Luis Reservoir is an extremely important element of CVP operations.

Adequate storage in San Luis Reservoir must be maintained to ensure delivery capacity through Pacheco Pumping Plant to the San Felipe Division. Lower reservoir elevations can also result in turbidity problems for the San Felipe Division.

A typical San Luis Reservoir operation starts with the CVP's share of the reservoir storage nearly empty at the end of August. Irrigation demands decrease in September and the opportunity to begin refilling San Luis Reservoir depends on the available water supply in the Delta and the pumping capability at Tracy Pumping Plant that exceeds water demands. Tracy pumping continues at the maximum until the end of April, unless San Luis Reservoir is filled or the Delta water supply is not available. In May and June, export pumping from the Delta is limited by D-1485 standards and irrigation demands are also increasing. Consequently, San Luis Reservoir begins to lose storage. In July and August, Tracy pumping is again at the maximum, and some CVP water is exported at Banks Pumping Plant as payback for the water not pumped at Tracy during the May-June pumping restriction. Irrigation demands are still high during this period, and San Luis continues to decrease in storage capability until it bottoms out late in August and the cycle begins anew.

San Luis Unit Operation-State and Federal Coordination

The CVP operation of the San Luis Unit requires coordination with the SWP since some of its facilities are entirely owned by the State and others are joint State and Federal facilities. Similar to the CVP, the SWP also has water demands it must meet with limited water supplies and facilities. Coordinating the operations of the two projects avoids inefficient situations; for example, one entity pumping water at San Luis Reservoir at the same time the other is releasing water.

Other San Luis Unit water problems are also coordination matters. When the SWP pumps D-1485 water for the CVP, it may be of little consequence to SWP operations but extremely critical to CVP operations. The amount of water in the shares of San Luis Reservoir may make it possible to "exchange" space or water to aid either the operations of the CVP or the SWP. Additionally, close coordination is required to ensure that water pumped into O'Neill Forebay by the two projects does not exceed the CVP's capability to pump into San Luis Reservoir or into the San Luis Canal at the Dos Amigos Pumping Plant.

Although secondary to water concerns, power scheduling at the joint facilities is also a joint coordination concern. Because of time-of-use power cost differentials, both entities will likely want to schedule pumping and generation simultaneously. When facility capabilities of the two projects are limited, equitable solutions can be achieved between the operators of the SWP and the CVP.

65

blank page

CHAPTER III DECISION CRITERIA

The CVP is operated as an integrated unit. Many demands for both water and power may be met by releases from any one of several CVP reservoirs. Demands in the Delta and south of the Delta may be met by releases from any northern CVP reservoirs. Decisions for filling and withdrawing storage from CVP reservoirs are typically based on a number of physical and hydrological factors as well as the overall objectives of the project (see chapter II for a detailed discussion of CVP objectives by division). Many of the factors and the relative priority of operational objectives tend to change depending on existing conditions. This chapter presents a discussion of the many competing and/or interdependent factors that influence operations decisions.

RESERVOIR STORAGE CRITERIA

Inflow and releases are the principal elements influencing reservoir storage. Operators must maximize the capability of the reservoir to store inflow, while simultaneously maximizing the amount of water stored to meet multipurpose project objectives.

CVP operators must make decisions on reservoir storage not only regarding an individual reservoir but also must consider the other reservoirs included in the project. Of course, some water requirements can only be served by specific reservoirs, but other requirements can be satisfied by water from one of several reservoirs or from a combination of reservoirs. The added possibility of using multiple water sources for some requirements adds complexity to operations decisions.

Another major consideration governing CVP operations decisions is the CVP storage space south of the Delta that can only be filled with water exported from the Delta. Discussions then occur about the geographic distribution of water in storage and whether or not the water should be moved from upstream storage to downstream storage. Other considerations influencing CVP operations in their decisions are flood control, lake recreation, power production, and cold water reserves. Long-term CVP operations (annual) are guided by past strategies and policies. The following discussion is based on that long-term context.

Flood Control

Shasta and Folsom Dams were identified as facilities providing flood protection in the 1935 legislation that authorized CVP. Trinity and Whiskeytown Dams were not authorized for flood control. However, Safety of Dams criteria at Trinity Dam and regulation criteria at Whiskeytown Dam cause storage at the two reservoirs to be lowered to less than full levels during flood periods, thus providing incidental flood protection to downstream areas.

As stated earlier, the COE is responsible for determining flood control needs at CVP reservoirs. At Shasta and Folsom Lakes, a minimum amount of vacant storage space is reserved for flood control, depending on the time of year and estimates of the relative wetness of the upstream area draining into the reservoirs. Typically, some flood control limitation on reservoir storage occurs from October through May. If CVP reservoir storage exceeds what the COE prescribes, water must be released at rates of flow defined in COE's Flood Control Manuals.

Major inflow to CVP reservoirs occurs in the fall and winter as a result of rain and in the spring and early summer as a result of snowmelt. Since rainfall cannot be predicted with any certainty beyond a few days, flood control regulations require reservoir levels to be lowered in the fall of the year. With this in mind, the CVOCO staff attempts to schedule reservoir releases during the summer; thus, when fall arrives, large releases are not necessary to reach the level for flood control storage. In some cases, the storage level is reduced below that required for flood control so space is available to regulate reservoir inflows. Release changes thus do not have to be made with every inflow fluctuation.

Water Supply for the Upcoming Year

No reliable forecasts exist which are capable of predicting hydrologic conditions for the upcoming water year. Operators must assume that conditions may range from drought to flood. For this reason, reservoir's must be operated with consideration for some degree of protection for future supplies in the event of dry conditions. The volume of water or carryover storage that CVP operators attempt to retain in the reservoirs at the end of September forms the initial basis for the water supply for the upcoming year. During years when water is scarce, the objectives for carryover storage influence the amount of water available to meet water requests. Reclamation does not have a standing policy on carryover storage; rather, it has established annual carryover storage objectives as part of the process of allocating CVP water supplies. Carryover objectives consider existing water demands, forecasted water supply, cold water supplies, power system requirements and other CVP capabilities. Carryover storage objectives also consider the risks of continued droughts and possible impacts beyond the end of the current water year. In carrying out CVP operations, carryover storage is considered flexible. Early in the water year (October-November), a carryover storage objective may be used to help determine CVP capabilities. Once the rainy season is over (in May), objectives for CVP operations are generally fixed and CVP storage may vary as necessary to meet these objectives. Actual carryover storage may be affected by contingencies affecting CVP operations, unforeseen hydrologic events, and variations from forecasted inflows.

If carryover storage is expected to be anything less than the maximum allowed by flood control or Safety of Dams criteria, water distributed among CVP reservoirs is then necessary. In this situation, it is unlikely that one reservoir will be empty and another full; rather, a balance is achieved among all reservoirs. Part of determining the balance may be the potential of a given reservoir to refill, which depends on other variables affecting the operations of the coordinated systems.

LONG-TERM CVP-OCAP CHAPTER III

Cold Water Pool

Another criteria affecting CVP reservoir storage is water temperature, which is a significant factor affecting fisheries downstream of reservoirs. Water stored in CVP reservoirs is not always at a uniform temperature because of each reservoir's unique geographical and physical location, and characteristic of its stratified water temperature profile. Thus, the availability of water at a suitable temperature and its depth in the reservoir are factors that CVP operators must consider.

As stated above, a reservoir's geographical location affects the temperature of its stored water. For example, Clair Engle Lake is situated in mountain surroundings at an elevation of about 2,200 feet above sea level, while Shasta Lake is located at about 1,000 feet above sea level and Folsom Lake is at about 425 feet above sea level in a chaparral environment. Typically, ambient air temperature cools as the elevation increases; thus, the effect on reservoir warming is less at Clair Engle Lake than at Folsom Lake. Another physical attribute that contributes to differences in water temperature is the amount of reservoir surface area compared to the volume of water; that is, with less surface area, less warming occurs.

As stated in the beginning of this section, large reservoirs tend to have stratified water temperatures. Typically, water at the deepest reach of the reservoir is cooler than water at or nearer the surface. In CVP reservoirs, this condition is generally present during the summer and fall. During the winter and spring, water at all reservoir levels mixes as a result of the dynamics of cooler weather and reservoir turbulence caused by higher inflows.

CVP reservoirs need cooler water more during the summer and fall. Consequently, CVP operators attempt to preserve a cold water pool in Clair Engle, Shasta, and Folsom Lakes for salmon and steelhead in the Trinity, Sacramento, and American Rivers. Water from both Clair Engle and Shasta Lakes can be used for cooling the Sacramento River. However, under most storage and runoff conditions, cold water supplies must be carefully managed to meet fishery management objectives together with other CVP objectives.

At Folsom Lake, however, a large cold water pool is not available for either the instream fishery or the Nimbus River Hatchery and the American River Trout Hatchery that receive water from Nimbus Dam downstream of Folsom Dam. In some years, water temperatures in the American River are too high in the fall for instream salmon spawning or hatchery production. During these years, hatchery eggs are transported to other State hatcheries for propagation.

Lake Recreation

Lake recreation is another criteria influencing CVP reservoir storage. CVP reservoirs need to be kept as full as possible to provide the best opportunities for recreation. Since CVP reservoir storage is used throughout a typical water year, the CVOCO staff attempts to achieve reservoir levels that maintain prime recreation at least through the Labor Day weekend in September. Normally, Folsom Lake is most likely to be closest to the limits

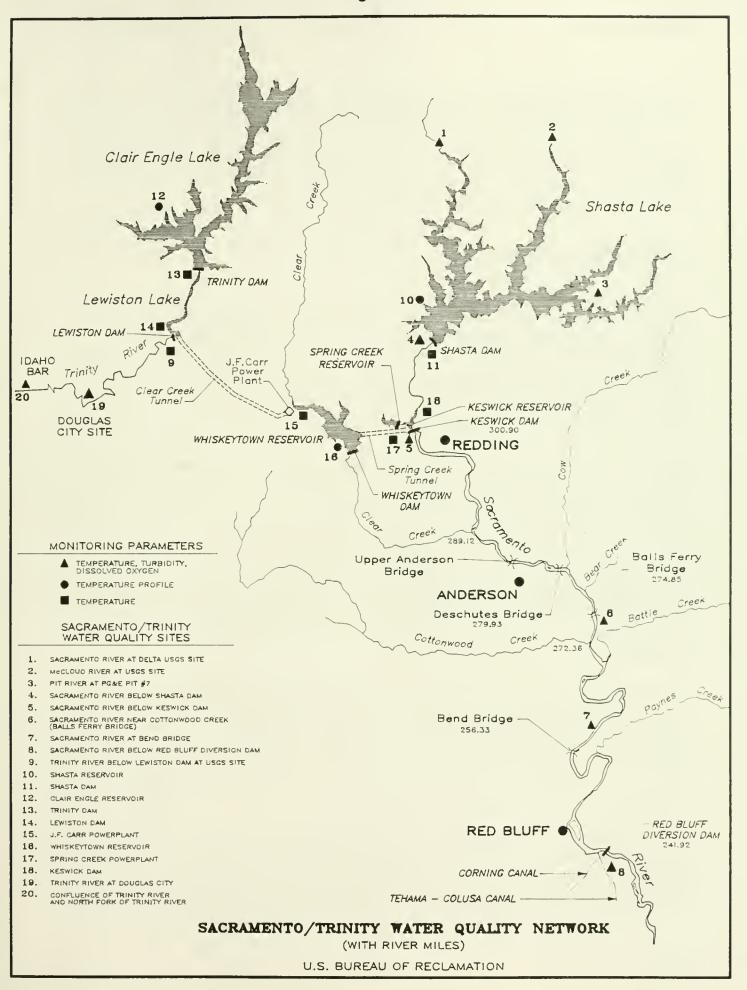
needed for lake recreation because it is small. In past years, an attempt was made to maintain the lake at a storage of at least 576,000 acre-feet (at 426 feet elevation) through Labor Day to sustain a sufficient water depth in the Brown's Ravine Marina. In 1990, the reservoir was excavated near the marina so that the marina can be used until the reservoir storage is reduced to 455,000 acre-feet (411 feet elevation).

Electrical Capacity and Energy

Another criteria influencing CVP reservoir storage is electrical capacity and energy. To maximize electrical energy produced at CVP reservoirs, reservoir releases must be small enough to be discharged through the powerplants. At the same time, reservoir storage needs to be at the highest level allowable to increase hydraulic head and produce the most energy per acre-foot of water released.

At CVP reservoirs, electrical capacity partly depends on the amount of storage available in the reservoir; that is, more storage means greater available electrical capacity and less storage means reduced electrical capacity. Energy production is a function of electrical capacity and the volume of water released through the individual powerplant. To the greatest extent possible, the CVOCO attempts to make all releases pass through the powerplants. However, sometimes releases must exceed the limits of the powerplants. This condition usually occurs during CVP flood operations when reservoir storage exceeds allowable flood control limits and water must be quickly removed from storage.

Often during CVP operations, flood releases can be avoided or diminished by keeping reservoir levels low enough that the water may be controlled. While this type of operation would minimize spills and increase energy production, it would reduce electrical capacity and would increase problems related to cold water conservation, carryover storage, recreation, and other CVP uses. Since power is subordinate to some other project uses, CVP operators can only shape operations for power when no impact occurs to water operations. This shaping is most evident in scheduling water from the Trinity River through Whiskeytown Lake and into Keswick Reservoir.


Operating characteristics related to contracts and the CVP system place a premium on power generated in the summer and fall. As a result, water remains in storage at Clair Engle Lake until the latter half of the year so that it can be used when it is most needed to generate power at the Trinity, Carr, and Spring Creek Powerplants. Since this CVP operation affects Keswick, it also affects Shasta operations, and in turn, a balance must be reached between Clair Engle and Shasta. Except for flood control operations, Folsom Lake is not governed by any special power generation considerations.

Downstream Water Quality

Yet another criteria governing CVP reservoir storage is downstream water quality. The quality of water released from CVP reservoirs is normally excellent, at the Spring Creek Debris Dam (see figure 14), however, highly polluted mine drainage is intercepted and stored. Through an agreement with the DFG and the RWQCB, January 1980 MOU, the

10/92

Figure 14

polluted water is released from the dam in small enough quantities that it is not toxic to fish downstream of Keswick Dam when diluted by water in Keswick Reservoir.

Because storage space is limited in Spring Creek Reservoir, the reservoir may spill during high runoff. Diluting spills at Spring Creek Debris Dam is not a responsibility or authorized CVP function, but in the past, Reclamation has voluntarily provided dilution water from Shasta Lake during spills when sufficient storage was available.

STREAMFLOW CRITERIA

Managing CVP reservoir releases, an important factor governing operational decisions, depends on reservoir storage, downstream needs, and instream controls. This section describes the instream controls that influence CVP operations. At least seven separate elements are considered during the operation of one water year, other conditions may also be imposed because of special fishery needs, regulatory requirements, or other related actions. The seven elements are discussed in detail in the following sections.

1: Water Fluctuations for Fishery Needs

Streams below CVP dams support both resident and anadromous fisheries. While resident fisheries are slightly affected by release fluctuations, the anadromous fisheries are the most sensitive and are present year round in CVP streams.

Maintaining water conditions favorable to spawning and later outmigration of the young anadromous fish is one of the main concerns of CVP operators. During the spawning period, care is taken to attempt to establish project releases that can be sustained until the eggs hatch. If releases are reduced and the redds are dewatered, the eggs die. Conversely, if releases are too low and large increases are required, the redds can be washed away and the eggs will die. CVP activities need to be coordinated to anticipate and avoid streamflow fluctuations during spawning wherever possible.

Once the eggs have hatched and the young are ready to begin the outmigration to the ocean, CVP operators can assist their migration with release fluctuations. By coordinating with the DFG and the FWS, operators sometimes increase releases to "push" the fish downstream. This extra push helps reduce predation and minimizes fish being entrained at river diverter pumps.

2: Water Fluctuations for Flood Control Requirements

Another element considered during yearly CVP operations is flood control. Flood control operations are prescribed by the COE; however, CVP operators do have some latitude regarding the magnitude and duration of releases, with public safety and levee stability two important issues. When releases are increased because of flood control requirements, they are usually accomplished through a series of stepped increases which are defined by such

CHAPTER III

things as powerplant capability, minor flooding of adjacent lands, erosion, and channel capacity. The operators attempt to establish flood releases at the lowest step of the progression that will satisfy the requirements for removing storage that has encroached upon the flood space. Through this method, the public's safety is maximized both from the threat of flood and from the effect of flood releases.

Once the threat of flood is past and the reservoir storage approaches allowable, releases are decreased. During this procedure, levee stability becomes a concern. If the water level on the levees is reduced too quickly, material will slough off the embankment, which ultimately leads to levee failures. Thus, the COE identifies specific rates at which the flows can be reduced.

3: Seepage

Seepage is another element considered during yearly CVP operations; it can be a problem on the Sacramento River but is not likely on the Trinity or American Rivers. In very wet years on the Sacramento, prolonged midlevel releases from Keswick Dam may be required for flood control to remove floodwaters in Shasta Lake. Because a large release of short duration would compromise public safety and possibly cause property damage, midlevel releases of longer duration are specified.

With midlevel releases extended for a longer duration, downstream subsurface water radiates from the Sacramento River channel, causing high ground-water levels and, in some cases, surface-water flooding. In agricultural areas, prolonged periods of ground water in the crop root zone can diminish crop yields and in severe cases actually drown a crop.

In most years when conditions are so wet that they cause seepage, CVP operators have little or no opportunity to avoid this problem. To avoid exacerbating the condition, however, water is imported during these periods from the Trinity Basin only when public safety is threatened on the Trinity River.

4: Water Temperature

Until recently, water temperature concerns (another element considered during yearly CVP operations) in CVP streams were more frequently the result of water that was too cold. At the Lewiston Hatchery below Trinity Dam, a cold water virus was an annual problem for hatchery managers resulting in modifications to the Lewiston Dam control works to aid diverting warmer water to the hatchery. Also, special operations for the filling and drawdown of Lewiston Lake were established to mix the stratified warm and cold waters.

Since the advent of the current drought, conservation of cold water has gained more emphasis in CVP operations. On both the Trinity and Sacramento Rivers, warm water downstream of the two dams has become a concern because of temperature effects on salmon reproduction. In 1990, the SWRCB ordered the CVP to meet certain water temperature criteria in the Sacramento River between Keswick Dam and RBDD. On the Trinity River,

73

the RWQCB has established water temperature criteria between Lewiston Dam and the confluence of the North Fork of the Trinity River.

CVP operators meet the temperature criteria on the Sacramento River by mixing waters of differing temperatures from Shasta Lake and Whiskeytown Lake and/or regulating quantities to be released. For example, in September and October of 1991, low-level outlet releases from Trinity Dam were made to cool releases to the Trinity River below Lewiston Dam and to cool exports to the Sacramento River Basin.

5: Recreation on Instream Rivers

The fifth element considered during yearly CVP operations is river recreation. This element is considered more during periods of high releases than during low releases and is a direct consequence of public safety since both the Trinity and American Rivers are heavily used by weekend recreationists--anglers on the Trinity and anglers and rafters on the American. CVP operators are concerned about riverflows that are too high for safe rafting or which are so high they prohibit access to the river for fishing. As stated previously, flood control operations or other constraints can restrict changes in CVP operations for recreationists.

6: ACID Diversion Dam and Nimbus Fishracks

Unique operations that cause streamflow fluctuations and other elements considered during yearly CVP operations are for the required insertion and removal of both the ACID Diversion Dam on the Sacramento River and the Nimbus fishracks on the American River.

Each spring ACID installs a diversion dam in the Sacramento River channel below Keswick Dam, which requires several days' work in the river to erect steel bents and place wooden stoplogs. Because the dam is fragile and cannot withstand high flows with the stoplogs in place, CVP operators coordinate release changes with the ACID so more stoplogs can be added when releases are reduced or stoplogs can be removed with increasing releases. Each fall after the irrigation season, releases are reduced to accommodate removing the dam. Although the spring and fall operations do not affect annual CVP operations, these operations can affect other instream flow needs. The CVP is obligated by contract with ACID to cooperate with their efforts.

On the American River, fishracks are installed across the river to divert salmon into the Nimbus Hatchery in early fall; they may require a reduction in Nimbus releases during the installation. During the installation, Reclamation schedules repair work on the rock sill below the fishracks; the sill is constructed of rock cobbles that can be washed downstream by high Nimbus releases. Repairs and installation of the fishracks are usually accomplished from 3 to 5 days with little or no effect on instream water uses.

7: Pump Intake Levels

The seventh element considered during yearly CVP operations are pump intake levels. In the past, many barges traversed the Sacramento River. Recognizing this important transportation

10/92 . 74

LONG-TERM CVP-OCAP CHAPTER III

corridor, CVP was required in 1935 to maintain minimum flows in the Sacramento River near Chico Landing (Wilkins Slough). Because the water was held at a year-round minimum flow for navigation, water users that diverted from the river located their pump intakes accordingly.

Recently, as barge traffic has diminished, so has the need to maintain minimum navigation flows. However, navigation flows cannot be eliminated without affecting the pumping capability of the water users so CVP operators continue to maintain the navigation flow requirements under all but the most critical water supply conditions.

CRITERIA FOR WATER DELIVERIES

Except in times of water shortage, the CVP makes available the amounts of water specified in the terms of its water service contracts and water rights settlement agreements. In the water rights agreements, shortage conditions are defined to permit reduced availability based on the "Shasta Criteria", as discussed later in this section under the "Decisionmaking Process." For all other CVP water contractors, water availability during shortages are determined by hydrologic and storage conditions. A number of different numeric shortage provisions exist within CVP water contracts; however, for planning purposes, all contracts are grouped as agricultural, M&I, or water rights settlements. Reclamation is required to allocate shortages equally among contractors from the same service area if individual contracts and CVP capabilities permit. In practice, agricultural contractors and some M&I contractors have received equal reductions in allocations during years of water shortage. Some M&I contracts prohibit imposing of shortages until agricultural contractors have their allocations reduced by at least 25 percent.

Decisionmaking Process

The decisionmaking process for allocating the water supply available to CVP contractors involves runoff and operations forecasting and reservoir carryover storage needs. That is, the decision involves comparing the forecasted conditions resulting from drawing on storage during the existing water year to satisfy the allocated water supply with the risks of potential impacts in the following water year or years. No current set rule curve or formal risk analysis has been established to make that comparison and decision. However, the current process, which has evolved through 6 years of constant drought conditions, forms a basis for the allocation decision.

Soon after the beginning of the water year, the upcoming year's operations are forecasted on the basis of a range of assumed hydrologic and operations conditions. Because of widely varying weather conditions from year to year, no reliable forecasts of seasonal runoff are available before February. Thus, earlier (in the water year) operations forecasts are based on current storage conditions and runoff quantities derived from the range of conditions that have occurred historically. The purpose of developing these early operations forecasts is to provide some initial direction for forecasting and a method of assessing current and future

LONG-TERM CVP-OCAP

conditions and preliminary implications of alternative decisions. The operations forecasts yield monthly information on water allocations, reservoir storage, releases, electrical generation and capacity, Delta exports and inflows, and Delta outflow requirements. By developing an array of possible conditions, CVP operators and managers can evaluate potential problems well in advance of the first official water allocations announcement on February 15. Usually, the CVOCO staff consolidates and presents an initial array of operations forecasts to Reclamation managers in December, and updates that array in January. These early forecasts may or may not include assumed water supply shortages, depending on the reservoir storages existing at the time and the severity of the assumed hydrology of each forecast. The number of early forecasts developed may vary depending on the scope and complexity of the possible responses of the CVP to the range of operations conditions being examined.

The February 15 forecasts of runoff and CVP operations are used to determine the first water allocations announcement for the current year. Water rights contracts contain shortage provisions based on inflow to Shasta Lake, and those contracts require notice of shortages to be given to the water contractors no later than February 15. All of the agricultural contractors need to know about their water allocation as soon as possible so that they can make timely decisions and appropriate plans for using their allocated water supply. Therefore, when shortages because of drought are imminent, they have been declared in February and are based on a conservative forecast. This strategy minimizes the likelihood of imposing a greater shortage later on in the water year when substantial investments have already been made. The shortages can and have been relaxed after the February announcement when improved hydrologic conditions increase the projections for runoff and reservoir carryover storage. The shortages to water rights contractors are rescinded when the forecasted Shasta inflow exceeds the specific contractual provisions, while other water contractors may be subject to shortages based on insufficient water availability.

The February 15 water allocation decision reflects assessments of both total CVP reservoir storage upstream of the Delta and individual CVP reservoir storages. Because the integrated CVP operations focus on requirements in the Delta, the total storage available to meet these requirements is one measurement of water supply. And because the Delta requirements include CVP exports to satisfy allocated water deliveries, the forecasting process can be iterative to achieve the balance between storage and water delivery requirements. Storage levels in individual reservoirs are subject not only to Delta water requirements but also to the geographical distribution of precipitation and runoff during the year, local demands, and minimum streamflow needs below each reservoir. Monthly operations forecasts after the initial February 15 forecasts ar used to identify both total and individual reservoir storage needs and impacts.

Water Rights Settlement Agreements--Provision for Shortages in Deliveries

As mentioned at the beginning of this section (Criteria for Water Deliveries), the "Shasta Criteria" are included in water rights settlement agreements for the Sacramento River and the San Joaquin River exchange contractors. These contractors receive water in the Mendota

LONG-TERM CVP-OCAP CHAPTER III

Pool (see figure 13) via the DMC. Both Sacramento River and San Joaquin River exchange contractors must be notified of any shortages in their water supplies by February 15 each year. (Sacramento River contractors are limited to 25 percent supply reductions, while San Joaquin River contractors are limited to a deficiency schedule that approximates 25 percent reductions.) The shortages may not be imposed later than that date but may be rescinded at any time if the conditions mentioned at the beginning of this chapter warrant. According to the "Shasta Criteria," when forecasted inflows to Shasta Lake fall below the defined threshold, a water year is defined as "critical," and water deliveries to the water rights contractors mentioned above may be reduced. The criteria are as follows:

- The forecasted full natural inflow to Shasta Lake for the current water year (the forecast made by the United States [Reclamation] on or before February 15 and reviewed as frequently thereafter as conditions and information warrant) is equal to or less than 3.2 MAF; or
- The total accumulated actual deficiencies below 4 MAF in the immediately prior water year (each of which had inflows of less than 4 MAF), together with the forecasted deficiency for the current water year, exceed 800,000 acre-feet.

Normally, a median forecast (that is, based on an exceedance probability of 50 percent) is used to determine the water allocations to water rights settlement contractors and other CVP contractors. More conservative forecasts are used simultaneously to assess the effect to CVP operations of subsequent dry conditions possibly occurring. In years of reduced storage and more flexibility for CVP operations, a very conservative forecast (based on a 90-percent exceedance probability) has been used to reduce the risk of subsequent conditions being drier than the initial February forecast. The conservative approach may result in allocating deficiencies in deliveries to contractors in February that are rescinded later; however, the risk of not imposing deficiencies in February that may be warranted in later forecasts is substantially reduced. Conservative forecasts have been used in water allocation decisionmaking from 1989 to 1992.

Past Water Delivery Decisions (1977 and 1989-92)

Water deliveries under long-term contracts were reduced in 1977 and from 1990-92. In 1977, 1991, and 1992, contract deliveries for water rights settlements were also reduced. In 1989, water delivery reductions were announced for all long-term contractors and water rights contractors but were later restored. Interim water delivery and deliveries under some temporary contracts were suspended in 1989.

The rationale for each year's water allocation decisions may vary depending on current hydrologic and storage conditions, operations objectives, economic factors, and the availability of alternative water sources. The process employed in making this decision, the factors considered, and the timing of the decisions still have similarities from year to year. The water allocation decision has been made for the last 5 years (1987-92) by a management team. The CVP operators have presented their recommendations, and management have then

LONG-TERM CVP-OCAP

made the final decision based on forecasted information. Past decisions have been considered each year, including the outcome of those decisions.

Water Year 1977

WY 1977 was the driest year of record for the CVP, and water deliveries were reduced to all contractors for the first time in CVP history. Water rights holders received their minimum supplies, 75 percent; agricultural users received 25 percent, and M&I uses, 25-50 percent. Despite the delivery reductions, reservoir storages had to be drawn down during the water year from 3.6 MAF to 1.3 MAF, also the lowest in CVP history. The reservoir drawdown in WY 1977 was not so much discretionary as it was the combined result of the low runoff and numerous, inflexible CVP operational requirements. By the end of WY 1977, the major CVP reservoirs were at or near their minimum levels for multipurpose operations. Fortunately, very wet conditions in WY 1978 ended that drought and CVP water allocations to long-term contractors were not reduced again until WY 1990 (the fourth year of the current drought).

Water Year 1988

WY 1988 was the last water year when CVP contractor water deliveries were not limited. The February most probable water supply forecast that year was only slightly below normal. Based on the forecasted conditions, Reclamation committed to full water deliveries early in the year. Unfortunately, the months of February and March were extraordinarily dry. The actual runoff in WY 1988 equaled about the 95-percent exceedance level of the February forecast. Storage was reduced from 6.2 MAF at the beginning of the year to 4.6 MAF at the end of WY 1988.

Water Year 1989

In February 1989, with the water supply forecasts indicating a high probability of another "critical" runoff year, Reclamation adopted a strategy for assessing CVP's water delivery capability. The main elements of this strategy included:

- Adopting forecasted inflows with a 90-percent chance of exceedance for determining the CVP water available for delivery.
- Adopting an objective for system carryover storage for the end of WY 1989. The 3.6-MAF figure was adopted as an initial objective because it would enable the CVP to operate in WY 1990 under hydrologic conditions similar to WY 1977, with similar reductions in deliveries, i.e., the carryover storage of 3.6 MAF would provide a protection level for project capabilities for the next year even if it repeated the historical worst-case conditions.

Using this approach with forecasts based on February 1 conditions, water deliveries in 1989 were announced as 75 percent for water rights contractors, 50 percent for agricultural users, and 50 to 75 percent for M&I uses. These allocations were confirmed based on March 1

LONG-TERM CVP-OCAP CHAPTER III

conditions. During March 1989, the entire Central Valley experienced extremely wet weather, and forecasted conditions changed accordingly. Full water deliveries were restored, except for interim and temporary water contracts. Reservoir storage increased during WY 1989 from 4.6 MAF to 5.1 MAF.

Water Year 1990

The same as in the previous year, the water supply forecast in February 1990 was for a "critical" runoff year. Using the same criteria as used in 1989 for assessing water delivery capability, Reclamation announced in February that 1990 water deliveries would be 75 percent of contractual supplies for water rights holders, 50 percent for agricultural contractors, and 50-75 percent for M&I uses.

Subsequent conditions in 1990 were so dry that even the 90-percent exceedance runoff forecasts were reduced, in updates performed in March, April, and May. Reclamation confirmed the planned water deliveries for those months, although projected carryover storage was reduced to about 2.9 MAF to support the announced water deliveries. The extraordinary and unseasonal storms of late May 1990 provided a major boost to CVP capabilities. Water deliveries for water rights contractors were restored to 100 percent, based on the Shasta inflow criteria (see previous discussion under Water Rights Settlement Agreements). Other contractors' supplies were not equally increased; however, a large amount of additional water was retained as carryover storage, and some additional deliveries were made available under hardship criteria. Carryover storage at the end of WY 1990 was 4.0 MAF, reduced from the previous year's storage of 5.1 MAF, but a major recovery from the conditions forecasted in May.

Water Year 1991

Until March 1 of 1991, WY 1991 was even drier than WY 1977. The 90-percent exceedance forecasts (based on February 1 conditions) indicated that the CVP could only support water deliveries of the type allocated in 1977 (75 percent to water rights holders, 25 percent to agriculture users, and 25-50 percent to M&I uses), and then only by drawing storage down to 0.6 MAF. By March 1, forecasted conditions were unimproved until several consecutive storms greatly improved the water supply forecast during one of the wettest March's on record. Despite the wet March, WY 1991 was the driest year of the then 5-year drought. Water deliveries were not generally increased, though a substantial amount of hardship deliveries were approved. Carryover storage at year's end was 3.3 MAF, reduced from the 4.0 MAF of storage the previous year.

Water Year 1992

Again, in WY 1992, 90 percent exceedance probability forecasts based on February 1 conditions were for a year similar to WY 1977. Reclamation's initial water allocation announcement (in February) was made in consideration of the National Marine Fisheries Service's (NMFS) Biological Opinion that called for reasonable and prudent alternative (RPA) operations to avoid jeopardizing the winter-run chinook salmon (a threatened species)

in the Sacramento River. The initial allocation in February, consistent with the implementation of the RPA, was 0 percent for project agriculture, 50 percent for Sacramento River water rights, the deficiency schedule for San Joaquin River water rights, and 50 percent of the lesser of contract amount or recent years demand for M&I. During February 1992, a series of significant storms provided 200 percent or more of normal February precipitation in many northern California locations. As a result, operations plans were quickly reconfigured under the substantially improved forecast for water year runoff. On March 5, 1992, water allocations were increased to 15 percent for project agriculture, 75 percent for Sacramento River water rights, 50 percent plus demonstrated hardship for M&I, and 50 percent of needs for wildlife refuges. On March 20, on the basis of increased confidence in March 1 forecasted conditions, allocations were increased to 25 percent for project agriculture, and 75 percent of historical use for M&I. The increases in allocations were made only after discussions with NMFS and were consistent with the provisions of the RPA. Operations were demonstrated to provide improved conditions for winter run, in addition to increased water delivery. System carryover storage during WY 1992 fell from 3.3 to 3.1 MAF. However, both Shasta and Clair Engle Reservoirs increased in storage.

ENERGY REQUIREMENTS FOR THE CVP SYSTEM

Although power generation is not a priority use of CVP water, it is a project function that is watched extremely closely by operators who carefully consider power in all long-range operational plans. Short-range operational decisions normally do not have multiple options that can be chosen based on power needs. This lack of flexibility in the short term emphasizes the need for sound long-range planning since the consequences of using CVP for power needs can affect CVP's ability to repay its debt to the Federal Treasury.

CVP powerplants are operated in conjunction with the water demands on CVP storage and regulating reservoirs. Thus, power is generated according to irrigation, M&I, and other demands for project water. Recognizing that these water demands would be seasonal (with much larger releases during the summer), CVP powerplants were designed to generate peaking power whenever possible while still meeting other project objectives. Since peaking power (intended to meet the highest electrical demands during the day) alone cannot satisfy the power requirements of CVP power customers and peaking is more efficiently used when integrated with baseload power (intended to meet some minimum threshold of electrical demand), the United States entered into a support contract (Contract 2948A) with PG&E in 1967. Western now administers this contract and delivers peaking power from CVP powerplants in the PG&E system; PG&E in return delivers power as required to Western's preference power customers and CVP facilities.

Power generated from the CVP system is dedicated first to meeting the project's power requirements (called project use power), primarily for pumping facilities. The remaining capability of the project's power facilities is used to provide commercial power to the various

preferred customers (irrigation districts, municipalities, military installations, and various Federal and State government installations) in northern California.

Some of the power operator's problems are illustrated by looking at energy production and energy requirements by seasons. During the fall (September through November), reservoir releases are at the lowest levels of the year; thus, proportionately less energy is being produced than at other times of the year. Water is being pumped simultaneously at Tracy, O'Neill, and San Luis Pumping Plants to prepare for the water supply for the upcoming year in the San Joaquin Valley.

To increase energy production in the fall, Reclamation may meet Sacramento River release requirements by providing some or all of the Keswick release from water exported from the Trinity Basin (the Keswick releases produce power at the Trinity, Carr, and Spring Creek Powerplants). The energy produced this way is more than 3.5 times the amount produced by an equivalent amount of water from the Shasta releases. Despite these efforts, insufficient energy is often produced to meet all contractual demands, and CVP must purchase energy from other sources, typically utilities in the Pacific Northwest and from PG&E.

During the winter (December through February), pumping demands are high until San Luis Reservoir fills (although San Luis does not fill in all years), and preference customer use remains constant. Power generation may increase beyond fall levels if flood control operations require additional releases from reservoirs. In a typical year, CVP generation is usually insufficient to satisfy contract requirements for these months and additional energy must be purchased from other sources in the winter.

During the spring (March through May), exports from the Delta may be limited as a result of filling San Luis Reservoir or D-1485 export limitations in May; thus, pumping loads may be less. Preference customers' loads remain fairly constant. Power generation is also governed by temperatures that influence releases required for irrigation demands and flood control releases necessary to control the melting snowpack. Spring is a transitional period for power demand when the purchase of additional energy is sometimes but not always required.

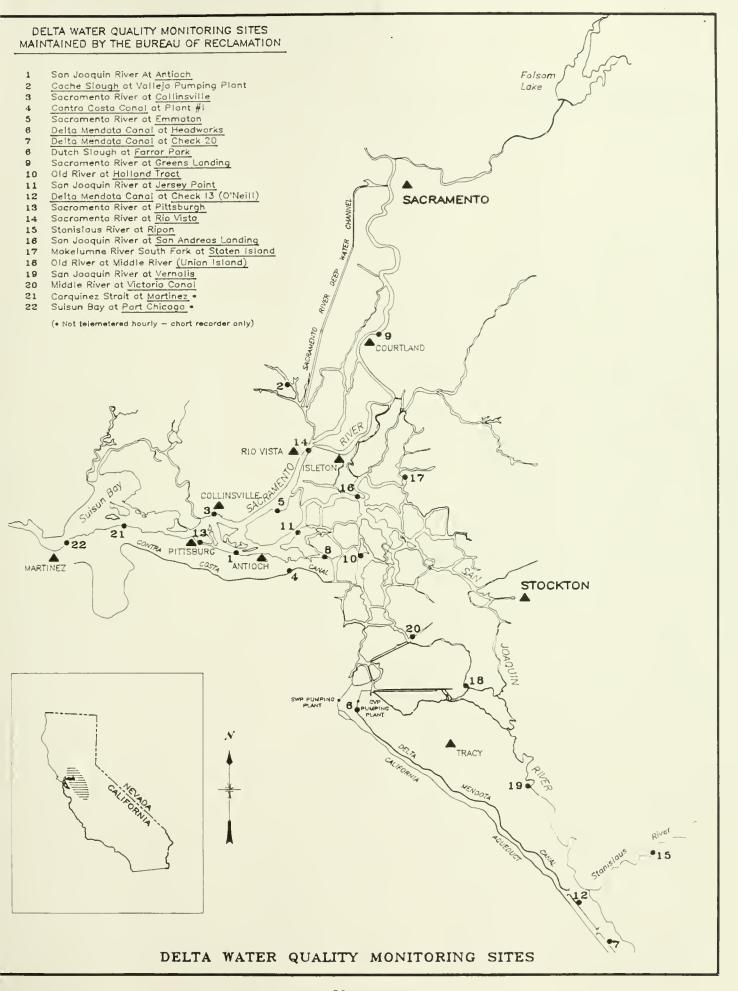
Water demands are at their highest during the summer (June through August). Energy is being produced by releases at the upstream reservoirs and at San Luis as water is drawn from storage. Additional energy is imported from the Pacific Northwest, but some energy may also be "banked" with PG&E.

During certain months, the CVP produces more electric capacity and energy than it needs for its own and preference customer use. When this occurs, PG&E buys the power and credits (or "banks") the capacity or energy to account for CVP's later use. If the power is needed later, CVP pays PG&E to withdraw it from the bank. For many years, CVP produced significant quantities of surplus electric capacity and energy that were placed into the bank accounts. Recently, much of the energy has been withdrawn, but several years' supply still remains for the CVP to use at the current withdrawal rate.

81 10/92

As discussed in chapter II, PG&E also agreed, in a 1967 contract with Reclamation, to supply an amount of electrical capacity equal to the difference between 1,152 megawatts and the PDC currently 1,010 megawatts. The CVP receives this support capacity either by withdrawing it from the bank or by purchasing it from PG&E. Power operators strive to maintain as high a PDC value as possible to avoid purchases.

Maintaining PDC is a function of energy production; that is, for every megawatt of electrical capacity, a certain amount of energy must be produced. As pointed out previously, during certain times of the year, energy production is not very high. If the energy production is too low, the PDC will then be reduced, and additional capacity purchases must be made monthly for 5 years.


WATER QUALITY IN THE DELTA

Another important factor that influences CVP operational decisions is water quality in the Delta. Delta water quality decisions are shaped by two separate mechanisms: (1) It is a CVP obligation to its water contractors to provide water of a defined minimum quality, and (2) it is a requirement of D-1485 that water quality standards for various purposes be met at locations throughout the Delta. D-1485 standards are more stringent than CVP contractual standards (CVP contractual standards are also known as the "Tracy Standards"), and, therefore, D-1485 standards control water quality conditions in the Delta. Deciding on how to meet these requirements can be straightforward in extremely wet years, but may be risky and require balancing objectives in dry and extremely dry years. Under either scenario, the decisions on water quality standards are made jointly with the SWP, who shares responsibility with the CVP for Delta water quality.

As just stated, maintaining water quality in the Delta is a shared responsibility between the CVP and SWP, who are charged with ensuring that D-1485 water quality standards are always met, regardless of adverse hydrologic or other conditions. (A more complete discussion of D-1485 and CVP and SWP coordination is found in chapter I, under Projectwide Constraints [COA].) Typically, water quality objectives are met by increasing the amount of freshwater that flows to the ocean through the Delta. Since the D-1485 standards must always be met, the CVP strives to reserve sufficient water supplies in its system to provide the outflow necessary to meet its obligations in the Delta.

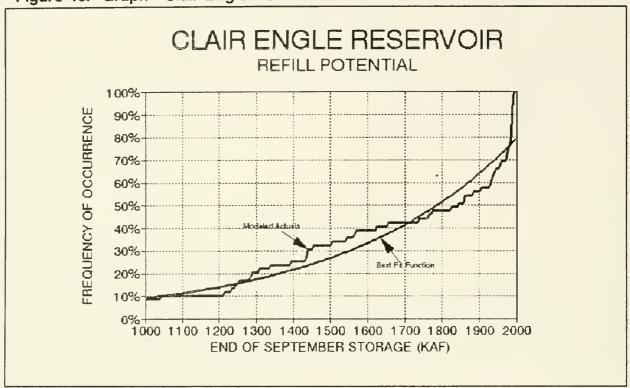
In real time, operating decisions are required to meet Delta water quality daily and a comprehensive monitoring system in the Delta provides the operators with real-time information on water conditions. This system consists of 20 water-quality monitoring stations located throughout the Delta (see figure 15). In consultation with the SWP operators, CVP staff analyze effects of the tides, meteorological conditions, existing daily Delta outflow, antecedent water conditions, pumping schedules, and existing reservoir releases to estimate upcoming water quality conditions. If operational changes are needed to reduce daily Delta outflow, a decision is made by the two agencies to either increase releases or decrease pumping. Once the decision is made, CVP and SWP staff determine who will

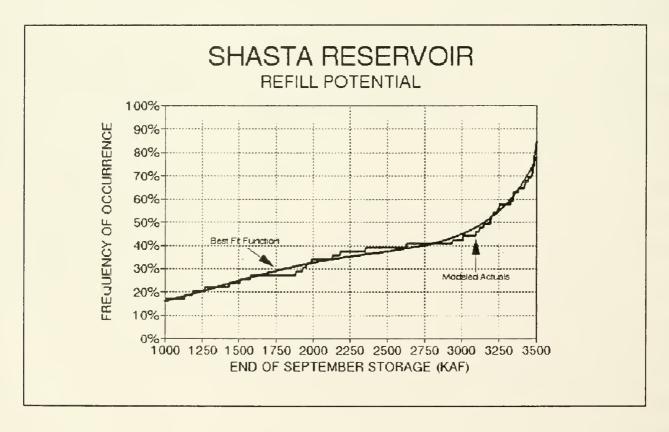
Figure 15

increase releases and by what quantity and/or who will decrease pumping by what quantity (see discussion in chapter II under the COA section).

CHAPTER IV OPERATIONS FORECASTING

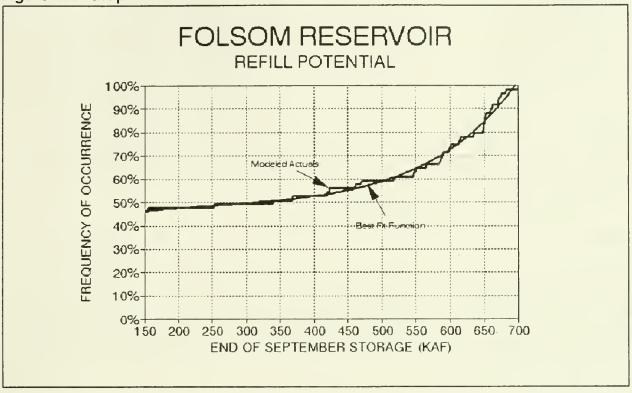
Operations forecasting is performed by the CVOCO staff to determine how the current and anticipated water and power resources available to the CVP can best be used to meet project objectives. Operations forecasting encompasses many processes, including data collection and analysis, review, and communication. It may be conducted seasonally, monthly, weekly, or daily, depending on the existing needs and on the uncertainty of the quantities being forecasted. This chapter discusses the principal steps taken in the forecasting process.

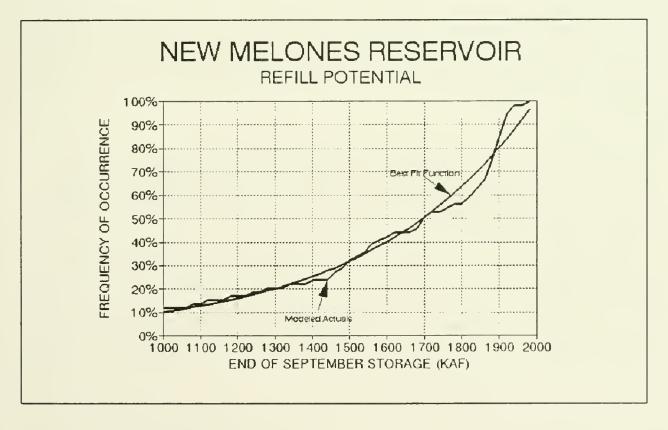

RESERVOIR REFILL POTENTIAL


Each river basin has its own distinguishing runoff characteristics. As discussed in chapter I under Topography and Climate, the Central Valley Basin of California has two major watersheds--the Sacramento River system in the north and the San Joaquin River system in the south. When CVP reservoir operations, which are defined by storage capacity and downstream demands, are superimposed on the basin characteristics, a relationship between runoff, reservoir releases, and annual reservoir carryover storage emerges. A certain amount of carryover storage (water in storage at the end of September each year) is desirable for all CVP reservoirs. The amount varies at each reservoir, but it can be loosely defined as the storage level where it will be possible to regularly meet water demands and constraints without jeopardizing the carryover storage in the upcoming year.

In the CVP system, a combination of reservoirs is used to meet downstream demands. When more than one water source is available, it is advantageous to use the reservoir with the greatest refill potential. Refill potential describes the probability that a reservoir will, over the course of a year's inflows and releases, return to its beginning state or (desirable carryover storage).

Figures 16 through 17 present the refill potential for the major storage reservoirs within the northern system of the CVP--Clair Engle, Shasta, Folsom, and New Melones. Not included are Whiskeytown Lake, which is not generally operated as a storage reservoir; San Luis Reservoir, an offstream pumped storage reservoir; and Millerton Lake, which is part of the Friant Division and is operated separately from the remainder of the CVP. The figures are based on results from a simulation of 57 years of CVP operations (1922-78). Each reservoir is considered to be at its desirable carryover storage on October 1. The reservoir inflow for the first month (October) is added to the storage, and an assumed release from the reservoir is subtracted. If the resulting storage is at or above the allowable flood control storage, the reservoir is considered to have refilled. If the reservoir has not reached or has exceeded flood control but at the end of September it is at or above the desirable carryover storage, it is also considered to have refilled. The storage level is reset to the desirable carryover storage and the process then begins for the water year.


Figure 16. Graph - Clair Engle Reservoir and Shasta Reservoir Refill Potential



86

Figure 17. Graph - Folsom Reservoir and New Melones Reservoir Refill Potential

87 10/92

Two assumptions are required for this analysis of reservoir refill potential. (1) The first is the determination of the desirable carryover storage, which is determined through a trial-and-error procedure wherein a desirable storage is selected and the results of the analysis suggest a change. Past operations of CVP reservoirs also provide valuable input to this determination, as do physical constraints associated with the individual reservoir. (2) The second assumption required for this analysis is an estimate of the releases from the reservoir. In figures 16 and 17, the storages are derived from an operational study of the CVP that assumes current (1990) reservoir level demands and conditions, while also meeting all obligations of the CVP and the SWP. First, the median release for each month for each of the four reservoirs was determined. The 12 monthly values were then adjusted with a constant multiplier to equilibrate the sum of the monthly medians with the median of the annual release totals.

TRINITY DAM AND CLAIR ENGLE RESERVOIR

The Trinity River at Trinity Dam has an average annual runoff of about 1,250,000 acre-feet, and Clair Engle Reservoir has a storage capacity of 2,447,000 acre-feet. Flood control is not an authorized function of this reservoir. However, under Safety of Dams criteria, limitations are imposed that are similar to flood control regulations. These criteria are substituted for allowable flood control storage to determine if refill has occurred. Experience has shown that the desirable carryover storage is about 1,850,000 acre-feet (see figure 16).

Looking at the smoothed curve ("best fit function") in figure 16, it can be predicted that there is a 57-percent chance that the reservoir will refill with 1,850,000 acre-feet of carryover storage. As the carryover storage is reduced, the ability of the reservoir to refill in 1 year is diminished. When the carryover storage is reduced to one-half of storage capacity (1,225,000 acre-feet), the refill potential has fallen to 15 percent.

SHASTA DAM AND LAKE

The Sacramento River at Shasta Dam has an average annual runoff of about 5,675,000 acrefeet, and Lake Shasta has a storage capacity of 4,552,000 acrefeet. Flood control is an authorized function of this CVP reservoir, and allowable flood control storage figures are used to determine if refill has occurred. Experience has shown that the desirable carryover storage is about 3,175,000 acre-feet.

Looking at the smoothed curve ("best fit function") in figure 16, it can be predicted that there is a 52-percent chance that the reservoir will refill with 3,175,000 acre-feet of carryover storage. As the carryover storage is reduced, the ability of the reservoir to refill in 1 year is diminished. When carryover storage is reduced to one-half of the reservoir's storage capacity (2,276,000 acre-feet), the refill potential has fallen to 36 percent.

FOLSOM DAM AND RESERVOIR

The American River at Folsom Dam has an average annual runoff of about 2,800,000 acrefeet, and Folsom Reservoir has a storage capacity of 974,000 acre-feet. Flood control is an authorized function of this CVP reservoir, and allowable flood control storage figures are used to determine if refill has occurred. Experience has shown that the desirable carryover storage is about 620,000 acre-feet.

Studying the smoothed curve ("best fit function") in figure 17, it can be predicted that there is about an 80-percent chance that the reservoir will refill with 620,000 acre-feet of carryover storage. As the carryover storage is reduced, the ability of the reservoir to refill in 1 year is diminished. When carryover storage is reduced to one-half of the reservoir's storage capacity (487,000 acre-feet), the refill potential has fallen to about 60 percent.

NEW MELONES DAM AND RESERVOIR¹

The Stanislaus River at New Melones Dam has an average annual runoff of about 1,100,000 acre-feet, and New Melones Reservoir has a storage capacity of 2,420,000 acre-feet. Flood control is an authorized function of this CVP reservoir, and allowable flood control storage figures are used to determine if refill has occurred. Experience has shown that the desirable carryover storage is about 1,800,000 acre-feet.

Studying the smoothed curve ("best fit function") in figure 17, it can be predicted that there is a 64-percent chance that the reservoir will refill with 1,800,000 acre-feet of carryover storage. As the carryover storage is reduced, the ability of the reservoir to refill in 1 year is diminished. When carryover storage is reduced to one-half of the reservoir's storage capacity (1,210,000 acre-feet), the refill potential has been reduced to 17 percent.

CONCLUSIONS

The information contained in these figures can be used to select which reservoir CVP releases should originate from. Folsom Reservoir has a high potential for refilling, as results show that even when Folsom is drawn down to 200,000 acre-feet, there is nearly a 50-percent chance that the reservoir will refill. By contrast, a decrease in carryover storage at Clair Engle or New Melones Reservoirs can severely affect their chances for refilling. It is therefore logical to assume that in the absence of other constraints, Folsom would always be the likely source when more then one water source is available because of its high refill potential.

Reservoirs are designed to use their carryover storage to meet demands in dry years. Prudent operations require that carryover storage be high enough to provide protection for dry years but low enough that water is not needlessly spilled in normal or wet years. The

89

¹ New Melones is discussed in this chapter because of its refill potential but is not discussed in other chapters of this document.

ability of each CVP reservoir to refill is not the only factor to consider when determining CVP releases, but it is an important factor.

RUNOFF FORECASTS

The purpose of developing seasonal runoff forecasts is to gain as accurate as possible an assessment of the potential for runoff into each major CVP reservoir. This assessment includes the probable range of the total runoff for the particular water year and the distribution of runoff over time. The accurate estimation of runoff is probably the single most important factor in planning CVP operations.

Reclamation, DWR, and NWSRFC independently prepare forecasts of seasonal runoff for various streams in the Central Valley. Reclamation forecasts runoff into the following reservoirs shown in table IV-1.

Table IV-1. Reclamation-forecasted runoff (CVP reservoirs)					
Reservoir River					
Clair Engle	Trinity				
Shasta	Sacramento				
Folsom	American				
New Melones	Stanislaus				
Millerton	San Joaquin				

USE OF MULTIPLE LINEAR REGRESSION MODELS

The system Reclamation uses for forecasting runoff for CVP reservoirs is sets of multiple linear regression models. Those models were developed by analyzing historical data sets, which consisted of measured monthly amounts of precipitation, measured snow water content, and calculated monthly amounts of runoff at the five reservoirs. The general form of the multiple linear regression models used to predict the runoff is an equation in which the estimate of runoff from the beginning of the current month through the remainder of the water year is a function of antecedent runoff, seasonal precipitation to date, and observed snow water content. No estimates of future precipitation or other predictive inputs are used in this process.

Under the forecasting procedures, an array of about 40 multiple linear regression models in the form of equations based on various combinations of the data inputs are developed. Each equation provides one forecast of runoff for the remainder of the water year. Each of these 40 forecasts will have approximately the same potential for error as measured by statistical

parameters. A "most probable" forecast is computed by taking the mean of the 40 estimates. This forecast is assumed to have a 50-percent exceedance probability.

Forecast Confidence Limits

Confidence limits quantify the uncertainty of an estimate, such as the runoff forecast, by defining the upper and lower limit of a range of values that is expected with a given probability, to include the actual runoff. Confidence limits on the seasonal runoff forecast are estimated by analyzing the error potential of the multiple linear regression models used. This analysis develops a probabilistic distribution based on the errors obtained by hindcasting the runoff of each historical year, using the same multiple linear regression models as were used to obtain the "most probable" forecast. This distribution of historical errors is assumed to adequately represent the probable accuracy of the current year's runoff forecast. However, in extremely wet or dry years, further special analyses may be warranted to more accurately define the confidence limits.

Customarily, the 90-percent and 10 percent exceedance forecasts are computed in order to define reasonable upper and lower bounds within which the actual runoff should fall 80 percent of the time. The estimation of runoff outside these limits becomes increasingly subject to error based on the limitations of the length of record for the historical data as well as the properties of the multiple linear regression models themselves.

Because of low reservoir storage conditions, the 90-percent exceedance forecast of runoff for the CVP reservoirs has been used as a basis for decisionmaking on annual water allocation since 1989. A conservative estimate of runoff potential translates to a relatively low risk that CVP's initial water allocations would be later reduced, even if subsequent precipitation is well below normal. This approach to risk management is important to water users and other resource managers who must make a substantial commitment early in the year on the basis of estimates of the minimum water supply available. However, in conditions of high reservoir storage, a less conservative forecast would provide a more practical basis for operations decisionmaking.

Depending on prevailing hydrologic and storage conditions, one or more runoff forecasts will be developed for use as input data to Reclamation's operations forecasting model. Reclamation's current forecast procedures develop a total volumetric runoff forecast for the remainder of the water year, for each major water supply reservoir. Typically, confidence limits will be computed for each reservoir's forecast so that a water year runoff will be estimated at the 90-percent, 50-percent, and 10-percent levels of exceedance probability. These water year forecasts are then distributed into monthly amounts, generally by using a pattern wherein each month's forecasted runoff has the same historical probability of exceedance. This pattern may be altered if factors such as antecedent runoff conditions or snowmelt potential indicate a different distribution should be used.

Runoff forecasts are initially computed in February. They are based on precipitation and runoff conditions through January 31 plus February snow course measurements, which will

91 10/92

normally be taken within a few days of the end of January. If necessary, these snow course measurements are then adjusted to represent end-of-the-month conditions of the snow water content. Forecasts are recomputed in March, April, and May, using the same process but with different multiple linear regression equations and updated data inputs. Figure 18 lists the precipitation sites and snow courses used in forecasting CVP reservoir runoff.

Forecasts may be performed earlier than February, but the potential inaccuracy of such early forecasts raises the possibility of large forecasting errors. For many water management purposes, it is less risky to use assessments of runoff potential that are derived simply from the statistical properties and the rankings of the historical runoff data. As shown in Figure 19, slightly more than 50 percent of the rainy season is past by February 1, and knowledge of runoff potential sufficiently, outweighs the risks of inaccurate forecasts.

The final forecasts are computed in May of each water year, although adjustments to these forecasts will be made in subsequent months based on observed runoff, the actual timing of the peak of snowmelt runoff, and the shape of the recession of snowmelt runoff hydrography. Furthermore, in the American, Stanislaus, and San Joaquin River Basins, the forecast of natural runoff must be converted to "operational reservoir inflow" by adjusting for the effects of regulation by upstream reservoirs, imports and exports from the basins, and consumptive use (if appropriate).

Accuracy of Runoff Forecasts

The accuracy of the runoff forecasts in any given year is highly dependent on the pattern of the precipitation in that year, a factor that cannot be well predicted. However, the patterns of precipitation and runoff in the Central Valley over many years have exhibited two important tendencies--the rainy season generally occurs between November and April and snowmelt runoff typically occurs between April and July.

Because of these generalized tendencies (see figure 20), the accuracy, or, conversely, the error potential of the water year runoff forecasts, can be depicted as a "funnel diagram." The general tendency for forecast errors over time is that they tend to get smaller as the year proceeds and more information becomes "observed" and less remains to be "estimated."

Although no forecasts of runoff are developed past the end of each current water year, the characteristics of the baseflow runoff persist into the next water year, a particularly important factor during water year that depart significantly from the average. In these cases, expected amounts of runoff for October through January may be adjusted to account for the persistence of the previous water year's characteristics.

Consultations and Coordination

Reclamation, DWR, and NWSRFC in Sacramento all prepare independent forecasts of runoff for each CVP water supply reservoirs. Before final adoption of the runoff forecast for use in operations planning, Reclamation consults with and compares forecasts with personnel from these two agencies. Based on those consultations, Reclamation may decide to adjust its

Figure 18. Runoff Forecast Data Requirements For Major CVP Water Supply Reservoirs

Data point location	Data type	Elevation (in feet)	Mon Feb	ths use Mar	d in for Apr	ecast May		
Reservoir: Clair Engle Historical Data Set: 1946-1991								
Clair Engle Lake	Inflow	2370	×	Х	X	X		
Fort Jones	Precipitation	2725	X	Χ	Х	X		
Mt. Shasta City	**	3540	×	Х	X	×		
Weaverville	69	2050	Х	Χ	Х	X		
Callahan	н	3185	X	Х	Х	Х		
Big Flat	Snow Water Content	5100	X	X	Х	X		
Middle Boulder 1	п	6600	X	X	X	X		
Middle Boulder 2	49	6200	Х	Χ		X		
Sand Flat	95	6800	Х	Х		×		
Deadfall Lakes	63	7200			Χ			
Red Rock Mountain	11	6700			Х			
Shimmy Lake	**	6200			X			
Mumbo Basin	11	5700			Х			
Parks Creek	H _e	6700			X			
Dynamite Meadows .	н	5700				×		
Reservoir: Shasta Historical Data Set: 1945-1991								
Shasta Lake	Runoff	1067	X	X	X	X		
Alturas	Precipitation	4400	×	X	X	×		
Bumey	"	3140	Х	X	Х	Χ .		
Mt. Shasta City		3540	X	Х	X	×		
Shasta Dam	"	1075	Х	X	X	Х		
Mt. Shasta	Snow Water Content	7900	Х	Х	Х	Х		
Sand Flat	"	6800	Х	X	X	X		
Cedar Pass	"	7100	Х	X	X	Х		
Adin Mountains	,,	6150	Х	X	X			
Lower Lassen	"	8250	×	×	X	Χ		
Stouts Meadow	"	5250	Х			×		

Figure 18. Runoff Forecast Data Requirements For Major CVP Water Supply Reservoirs (continued)

	, , , , , , , , , , , , , , , , , , , ,	iniucu,	1			
Data point location	Data type	Elevation (in feet)	Mon Feb	ths use Mar	d in for Apr	ecast May
New Manzanita	"	5900	X			
Thousand Lakes	"	6500	×			
Dead Horse Canyon	17	4500			Х	
Reservoir: Folsom Historical Data Set: 1930-1991						,
Folsom Lake	Runoff	466	×	X	X	X
Placerville	Precipitation	1890	X	X	X	X
Twin Lakes	"	8000	X	Х	X	X
Colfax	"	2410	X	Х	Х	X
Soda Springs	"	6500	X	Х	Х	X
Lake Spaulding	n	5150	×	Х	Х	X
Donner Summit	Snow Water Content	6900	X	Х	Х	X
Upper Carson Pass	n	8500	X	Х	Х	Х
Silver Lake	11	7100	х	Х	Х	
Ice House	"	5300	X			
Huysink	10	6600 🔩		Х		
Bear Valley Ridge 1	"	6700		Х		X
Lake Lucile	"	8200			Х	
Rubicon 1	"	8100			Х	
Ward Creek	"	7000			Х	
Cicso	"	5900			X	
Sixmile Valley	"	5750			Х	
Blue Lakes	"	8000				X
Reservoir: New Melones Historical Data Set: 1948-1991						
New Melones Lake	Runoff	1088	Х	Х	Х	X
Calaveras Big Trees	Precipitation	4695	Х	X	Х	X
Hetch Hetchy	"	3870	Х	X	Х	X
Salt Springs	"	3700	Х	Χ	X	X

Figure 18. Runoff Forecast Data Requirements
For Major CVP Water Supply Reservoirs
(continued)

(continued)							
Data point location	Data type	Elevation (in feet)	Mon Feb	ths use Mar	d in for Apr	ecast May	
Tiger Creek	10	2355	Х	X	X	X	
Yosemite	79	3966	X	Х	X	X	
Herring Creek	Snow Water Content	7300	×	X	X	×	
Bear Valley Ridge 1	"	6700	×	X			
Soda Creek	"	7800			X	X	
Eagle Meadow	"	7500			X	×	
Lower Relief Valley	"	8100			X	×	
Stanislaus Meadow	н	7750			Х	X	
Reservoir: Millerton Historical Data Set: 1941-1991							
Millerton Lake	Runoff	578	Х	Х	Х	X	
Yosemite	Precipitation	3966	Х	Х	Х	X	
Huntington	"	7020	X	Х	X	X	
Auberry	"	2140	×	X	X	×	
Crane	81	2410	X	X	Х	X	
Kaiser Pass	Snow Water Content	9100	×	Х	X	X	
Chilikoot Lake	"	7450	X	Х	X	X	
Chilikoot Meadow	"	7150	Х	Х	X	X	
Florence Lake	"	7200		X	X	×	
Huntington Lake	H	7000	X	×	X	X	
Peregoy Meadow	"	7000		X		X	
Snow Flat	**	8700		Х			
Piute Pass	"	11300			X		
Agnew Pass	19	9450			Х		
Blackcap Basin	e e	10300			Х		
Mammoth Pass	19	9500			X		
Dutch Lake	**	9100			Х		
Upper Burnt Corral	te .	9700			Х		
Ostrander Lake	67	8200				X	

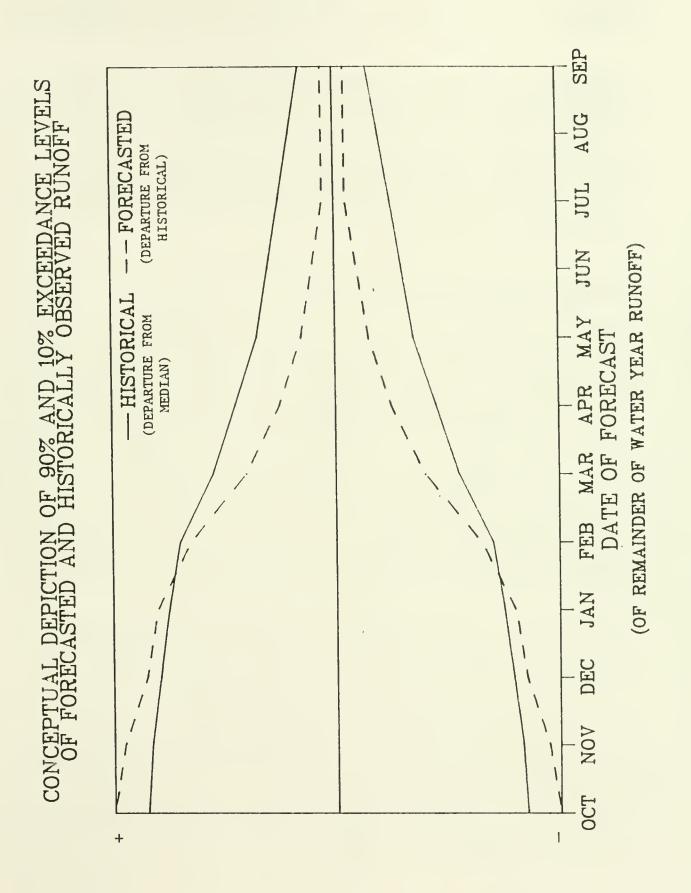



Figure 20

original forecast. An important element of the forecast consultations is the discussion of any unique conditions of the current water year and how those conditions may affect the accuracy of the runoff forecasts.

Most of the precipitation data used by Reclamation is collected or reported by either the DWR or the NWSRFC. All of the snow water content data is collected and reported by DWR's California Cooperative Snow Surveys. Reclamation has entered into annual agreements with each of these agencies, which help support data collection, processing and reporting, and runoff forecasting efforts.

ACCRETIONS AND DEPLETIONS

Another step in the forecasting process is determining Sacramento River accretions and depletions. This term refers to the difference between the amounts of water released to the Sacramento and its tributaries by the CVP and the SWP and the amount that flows past the city of Sacramento and into the Delta. Depending on the time of year and hydrologic conditions, this amount may represent a net gain (accretion) or a net loss (depletion). Accretions and depletions are forecasted for both short-term and long-term operational planning purposes.

Short-term forecasts (about 7 days or less in the future) are used to estimate inflows to the Delta at key points on the Sacramento River and to provide guidance to CVP operators on predicting release requirement from 5 to 7 days in advance (the maximum travel time from Keswick Dam to the Delta). Such short-term predictions of accretions and depletions may make use of: real-time flow data, temperature and weather forecasts, travel time, non-CVP reservoir releases, existing trends in accretions and depletions, and advice and input from some of the major irrigation districts using water on the Sacramento River.

Long-term forecasts of accretions and depletions are made to plan monthly or seasonal operations. For long-term forecasts, accretions and depletions are treated as monthly quantities and are customarily forecasted or estimated for 12 months into the future. The following discussion focuses on the long-term range forecasts of accretions and depletions.

Over a 12-month period, Sacramento River accretions and depletions are a function of countless natural phenomena, decisions made by CVP reservoir operators, and individual water user requirements. Some of these phenomena have an element of predictability, but a great deal of variability and uncertainty is associated with the long-term forecasts of accretions and depletions. When estimating beyond the end of the current irrigation season, historical patterns and the correlation between accretions and the upstream water supply provide almost the entire basis for the estimate.

One major hindrance in forecasting accretions and depletions is the relatively short historical period of records available which is representative of the present level of development and streamflow regulation in the Sacramento Valley. The construction and subsequent operation of the Tehama-Colusa Canal and New Bullards Bar Dam on the Yuba River have each had a major influence on the quantity and pattern of accretions and depletions in the Sacramento River. These facilities, which began operation during the 1970's, have left less than a 20-year period of record from which to base comparisons and to formulate estimates of future accretions and depletions.

The net annual accretions and depletions have ranged from about 1.0 MAF in 1977 to more than 20 MAF in 1983. The range of these quantities, in addition to the scope and complexity of the other hydrologic processes affecting it within the Sacramento Valley, add to the problems of accurately forecasting accretions and depletions. Fortunately, certain predictable tendencies help to characterize the accretions and depletions. Furthermore, CVP operational considerations limit the range of accretions that have any practical effect on CVP operations to periods when the Delta has "balanced" conditions. When "excess" conditions exist, the projects are storing and exporting as much water as possible. Thus, the accuracy of the estimate of accretions and depletions is significant to CVP operations only within the range that is associated with the CVP's capability to respond operationally. During winter months, this excludes the wetter one-half to three-fourths of all historical accretions, simply because these accretions are large enough to result in "excess" conditions.

The characteristics used in estimating accretions and depletions include:

- The predictability of the rainy season (accretion) and the growing season (depletion),
- The quantifiable nature of reservoir regulation effects (including New Bullards Bar, South Yuba system, Black Butte and Bear River),
- Physical limits to rates of depletion that are tied to the aggregate diversion capability and the irrigated acreage in the Sacramento Valley,
- Contractual or water rights limitations to the overall water use of the Sacramento River during the course of a growing season, and
- Predictability of the timing and quantities of water associated with flooding and draining of rice fields.

In the Sacramento Valley, irrigation is generally limited to the months April through October. This complements the rainy season, November through March, although there may be significant overlap in many years. The irrigation season is dominated by depletions and usually results in a net depletion to the Sacramento River as a whole, although the influence of accretions from tributary inflow may still be significant.

99

The months November through March are almost totally dominated by accretions in the Sacramento River. In estimating accretions and depletions, it is helpful to treat the irrigation season or the irrigation component of the accretions and depletions separate from the other hydrologic inputs. Early in the water year, the basis for estimating accretions and depletions is to select (using historical data) amounts and patterns that are consistent with the assumed water supply upstream of the reservoirs. History shows a high correlation between headwaters runoff and accretions. Early in the water year, historical patterns and amounts may adequately represent net depletion as well unless water use limitations or deficiencies are anticipated. In the Sacramento Valley during a normal year, about 4 MAF are used for irrigation. Later in the water year, as the overall characteristics of the water year become better known, estimates may be refined by the knowledge of tributary runoff forecasts, current inflow conditions, basin saturation, and reservoir releases on the Yuba and possibly other streams.

Once the irrigation season begins, the estimating of accretions and depletions for the remainder of the season becomes a process of verification and adjustment of the expected quantities. In the absence of rainfall runoff, actual accretions and depletions become more predictable but remain a source of some uncertainty even during the summer when monthly estimates may frequently be in error by 20 percent or more.

FORECASTS OF DELTA REQUIREMENTS

Forecasts of Delta requirements are perhaps the most difficult to make within the forecasting process for CVP operations. So many factors can influence conditions in the Delta that it is unlikely that any forecast will succeed in correctly identifying them all. For example, four major water diversion points are located in the Delta, with literally hundreds of minor water diverters. There are forecasted tide tables, but no long-term forecasts of barometric pressure that can affect the magnitude of the tides. Also, no long-term forecasts of daily meteorological events are made. Despite these limitations, forecasts of Delta requirements are necessary. Without the forecasts, planning for upstream reservoir operations and water deliveries south of the Delta would be impossible and the reliability of the projects would be compromised.

Every month throughout the year has Delta water quality standards that must be met. Investigations by the CVP and SWP operators have provided estimates of the required daily Delta outflow necessary to meet these standards. Estimates of daily consumptive use by unmonitored diversions, evaporation, and consumptive use by riparian vegetation have also been established. This information, along with forecasted Delta inflows from sources other than the Sacramento and San Joaquin Rivers and informed guesses about tidal influences, provide the operators of the two projects with a baseline condition of Delta water needs.

With the baseline needs established, CVP Delta exports are then added to the total. Depending on the amount of CVP Delta exports and water quality conditions in the Delta, some amount of water in excess of exports, known as carriage water, may be required. Carriage water is that quantity necessary to counteract a degradation in Delta water quality caused by operating the export pumps. Thus, the Delta water requirements are equal to the baseline needs plus exports plus carriage water.

Once the Delta water requirements are established, the operators of the two projects then estimate how much water must be released from CVP and SWP reservoirs to meet both the Delta requirements and the intervening depletions along the Sacramento and San Joaquin Rivers as they flow into the Delta.

12-MONTH FORECAST OF CVP WATER AND POWER OPERATIONS

Another important step in the CVP forecasting process is forecasting monthly water and power operations. A computer model of the CVP is used which simulates the operation of key CVP water and power facilities, as well as some SWP facilities operated in coordination with the CVP. The model is also used each month to provide to Western a forecast of operations, capacity, and energy available to PG&E for the next 12 months. Additionally, the model can be used at any time to simulate operations under any set of assumed conditions from 1 to 12 months or more.

The program provides interactive control of CVP and SWP exports in the Delta and releases from Goodwin, Nimbus, Keswick, and Shasta Dams, the Oroville Complex, and Trinity River diversions. Other data, such as initial storage conditions, monthly inflows, and water and power demands, are entered into an input file before running the model. The program also provides for interactive changes to AEEA at the end of the calendar year and at the end of the chosen forecast period.

The model has built-in logic; with the input data, it forms the basis for an initial CVP operation plan. This plan may then be modified interactively by overriding certain inputs or computed values. Storages at Shasta, Folsom, New Melones, and Oroville Reservoirs are limited by flood control reservations. The program computes allowable CVP and SWP exports from the Delta according to accounting provisions of the COA. During balanced conditions in the Delta, CVP and SWP reservoir releases are automatically adjusted by the model to meet those COA requirements. The program also automatically checks minimum energy requirements and for generation in excess of CVP and preference loads (the program provides messages during the interactive phase when more or less generation is needed). Then, the operator can change the releases or pumping to affect the energy or can wait to use AEEA to balance energy needs.

101 10/92

Forecasting water and power operations not only is useful in planning operations to meet CVP operational objectives, it also serves to identify potential problems that may arise under assumed conditions and chosen operations.

Chapter V WATER YEAR OPERATIONS PLANS

OBJECTIVE AND SCOPE

The objective of these operations plans within the framework of CVP-OCAP, is to assist in identifying and quantifying the extent of operations capabilities encompassing a range of hydrologic and storage conditions, to expose operational concerns or problems, and to serve as a basis for developing and evaluating alternative operations, especially for the protection of winter run.

The scope of these 12-month operations plans includes the major CVP and SWP reservoir operations, coordinated CVP/SWP operations to meet Delta requirements, releases to the American, Feather, Sacramento, and Trinity Rivers; and flows in the Sacramento River.

CVP-OCAP operations plans and analyses portray operations of the CVP under five distinct levels of water year runoff covering a wide range of possible hydrologic conditions coupled with four initial reservoir carryover conditions. The plans are given titles associated with the State of California's Sacramento River water year classification system, starting storage, and nominal percent of allocated CVP agricultural water delivery. The plans are in ascending order of assumed water supply: Extreme Critical, Critical, Dry, Above Normal, and Wet; ascending order of starting storage, low (LO), low middle (LM), high middle (HM), and high (HI); level of agriculture delivery, 0 percent, 25 percent, 50 percent, 75 percent, 100 percent. Characteristics associated with each of the operating plans are displayed in the summary tables for the water year operations plans (see figures 21 and 22). Starting storage level HI represents multipurpose maximum end-of-water-year storage targets for each reservoir. Starting storage LO represents approximate storage levels anticipated for end of WY 1992. Storage levels LM and HM are intermediate storage levels selected to provide adequate representation of a full range of storage conditions for CVP-OCAP. Tables V-1 and V-2 summarize, respectively, the overall water supply and the annual reservoir inflow associated with the five water year types that form the hydrology of the operations plans.

CVP-OCAP water year operations plans presented here include numerical, graphical, and descriptive summaries of the forecasted operations data, including forecasted Sacramento River temperature conditions, and estimates of temperature-related winter-run survival deriving from each of the different year types. Also included in this chapter are brief discussions of the special assumptions, strategic approach, significant operations highlights, and conclusions drawn from the 18 plans comprising each of the Pre-1992 and NMFS B alternatives and the five plans investigated under the Upper Sacramento temperature control (TEM) alternative.

Table V-1. Characteristics of the five levels of water year runoff used by CVP-OCAP					
Estimated probability of Designation SRI ¹ nonexceedence for SRI ²					
Wet (W)	23.8	75%			
Above Normal (A)	15.8	50%			
Dry (D)	12.5	30%			
Critical (C)	8.8	10%			
Extreme Critical (E)	5.7	2%			
Annual unimpaired flow (in M	MAF) of Sacramento	, Feather, Yuba, and American Rivers			

²Based on natural flow records for 1906-90

Table V-2. Water year inflow to reservoirs for the five CVP-OCAP water year types (Units: MAF)						
Water year designation	Trinity	Shasta	Folsom	Oroville		
Wet (W)	1.6	7.0	3.7	5.4		
Above Normal (A)	1.05	5.1	2.6	3.3		
Dry (D)	.86	4.1	1.7	2.8		
Critical (C)	.60	3.5	1.2	1.8		
Extreme Critical (E)	.26	2.5	.60	1.3		

CVP-OCAP operations studies were performed using a spreadsheet model of CVP and SWP reservoir operations, Delta, and San Luis operations. The spreadsheet incorporated minimum releases, maximum storages, project and nonproject demands, COA and Delta requirements while accounting for water coming into and out of project facilities and the Delta. Otherwise, selection of releases, exports, and satisfaction of operations objectives is left up to user discretion, thus allowing the maximum flexibility in exploring alternative operations and criteria.

PRE-1992 AND ALTERNATIVE OPERATIONS CRITERIA

For CVP-OCAP, operations plans were prepared representing three different sets of criteria. These are designated: Pre-1992, referring to criteria for CVP operations absent the special measures and protection provided under ESA; TEM referring to special operations criteria intended to provide improved Sacramento River temperature control; and B referring to the NMFS alternative B for protection of winter-run juveniles in the Delta. As portrayed in CVP-OCAP, the B alternative operations also include modified upstream operations intended to equal or improve on temperature and survival achieved in the Pre-1992 and TEM alternative operations.

All of the CVP-OCAP operations alternatives are assumed to take place in an operations environment that includes only project features, demands, and capabilities that could be expected to be in place in 1993. Each of alternative operations rely primarily on the criteria described in chapters I through IV of this document, although special assumptions are listed separately for each alternative in this section.

Pre-1992 Operations

The Pre-1992 operations analyses were performed first. These were intended to represent a point of reference for comparison with subsequent operations alternatives. The Pre-1992 alternative relies almost exclusively on the operations criteria described in chapters I-IV. Initially, 20 operations cases were identified for analysis under this alternative (five water year types W, A, D, C, E; combined with four different starting storages HI, HM, LM, LO). Two of the 20 Pre-1992 operations cases were deleted from further analysis: cases E-LM-000 and E-LO-000. In these two cases, based on the Extreme Critical hydrology, CVP ran out of water, and would need to operate for health, safety, hardship, and survival. These cases are not irrelevant by any means, but were deemed unmeaningful within the scope of CVP-OCAP. The remaining 18 cases comprise the Pre-1992 operations alternative presented here. The operations results for these 18 cases went on to receive temperature and survival analysis. Although Shasta powerplant bypass is assumed to be a part of the Pre-1992 alternative operations, results are presented for Pre-1992 operations both with Bypass and No Bypass. This is done to portray the significance to temperature control of that aspect of operations and to provide a basis for comparison of the relative significance of the changes to temperature and survival attributable to other, alternative operations. Both the TEM and B alternatives assume operations incorporate Shasta powerplant bypass.

TEM Alternative Operations

The second set of operations criteria analyzed were the TEM alternative. The TEM alternative was devised as a followup to the Pre-1992 operations for cases in which it appeared that upper Sacramento River temperatures and winter run survival might benefit

105

from a more restrictive water allocation strategy, or other modified operation criteria. After the temperature and survival analyses were performed on the 18 Pre-1992 operations cases, any case where overall survival was estimated to be significantly below 100 percent, were candidates for TEM alternative operations analysis. Six of the 18 cases were selected for the additional analysis. One of the six, E-HM-000, was deleted from the TEM alternative because it required the arbitrary reallocation of CVP water, deemed to be outside the scope of CVP-OCAP. For the remaining five cases, a TEM alternative operation strategy was developed and analyzed. A significant aspect of the TEM alternative operation was the assumption that the RBDD gates would be raised from November 1 through April 30. The distribution of spawning of winter run resulting from the gates being up during April has a significant effect on overall winter-run survival. In some cases this effect is more significant than the other major aspect of the TEM alternative which was the reduction of water allocation.

NMFS B Alternative Operations

For the B alternative, all 18 of the cases comprising the Pre-1992 alternative were modified to incorporate the criteria of NMFS alternative B (see table V-3) as submitted to the SWRCB in the Interim Delta Hearings in July 1992. Among the eight alternatives A through H presented in that table, CVP-OCAP presents only alternative B for detailed analysis of operations, temperatures and winter run survival. By preliminary screening, alternatives A and C were determined to be more restrictive of operations than alternative B. Since none of these alternatives was implied to provide more or less protection, alternative B was selected for detailed analysis because of its less restrictive criteria. Alternatives D through H assume a barrier in Georgiana Slough. This was also deemed outside the scope of CVP-OCAP. DWR is investigating alternative operations for 1993 that include the temporary rock barrier for Georgiana Slough. The criteria specified by NMFS for alternative B require the DCC to be closed from February through April. They further require a positive flow at Jersey Point (or Antioch) during that same period. The B alternative operations presented in CVP-OCAP meet the Antioch flow criterion on an average monthly basis. Additionally, for CVP-OCAP alternative B, CVP water allocations and reservoir operations were configured with the objective to equal or better temperature and survival conditions achieved in the Pre-1992 and TEM cases representing the same hydrologic and starting storage conditions.

In alternative B, during February, March, and April, CVP and SWP pumping was curtailed, if necessary, to provide positive Antioch flow. If Delta balanced conditions existed, COA sharing formulas determined the respective amounts of CVP and SWP Delta export pumping. If Delta excess conditions existed, the total amount of combined Tracy and Banks pumping allowed within the Antioch flow constraint, was calculated and split equally between Tracy and Banks. If Tracy allowable pumping exceeded Tracy capability, then SWP pumped the excess. If either party's share of San Luis Reservoir was full, any excess in the allowable pumping by that party was shifted to the other party's export pumping.

Table V-3. NMFS ALTERNATIVES A THROUGH H

Juvenile winter-run chinook salmon protective alternatives for the Sacramento-SanJoaquin Delta for all water year types

Alternative	Close Delta Cross Channel	Close Georgiana Slough	Maximum total daily CVP/SWP exports
Α .	2/1 thru 4/30	Open	2/1 thru 3/31 Vernalis Q 4/1 thru 4/30 75% Vernalis Q Plus 10% DOF when DOF > 50,000 ft ³/s
В	2/1 thru 4/30	Open	SJR Jersey Pt. Q 0 to +1,000 ft 3/s 2/1 thru 4/30
С	2/1 thru 4/30	Open	3,000 ft ³ /s 2/1 thru 4/30
D	2/1 thru 4/30	2/1 thru 4/30	2/1 thru 3/31 Vernalis Q 4/1 thru 4/30 75% Vernalis Q Plus 10% DOF when DOF \geq 50,000 ft 3 /s
Ε	2/1 thru 4/30	2/1 thru 4/30	D-1485 Salinity
F	11/1 thru 4/30	2/1 thru 4/30	D-1485 Salinity
。 G	1/1 thru 4/30	3/1 thru 4/30	3,000 ft ³ /s 2/1 thru 2/29
Н	2/1 thru 4/30	2/1 thru 4/30	SJR Jersey Pt. Q 0 to $-2,000$ ft $^3/s$ 2/1 thru 4/30

CVP WATER ALLOCATION

Beneficial uses of CVP water are many and varied. In most years, the combination of carryover storage and runoff into the reservoirs is sufficient to provide both the quantity of water necessary for these uses and the operational flexibility to deliver the water. In this context, operational flexibility refers to: the availability of supply at the time it is needed; physical storage and conveyance capacity; and, sufficient supplies and ability to control cold/warm water releases. It is the combination of these factors which define the limits of water allocation, and it is the operator's perception of the diverse water needs and their interrelationship that identify the specific water allocation.

Meeting the water needs for beneficial uses requires a strategy that gives recognition to two competing requirements: (1) CVP needs to retain sufficient carryover storage to ensure temperature control capability and reduce risks of shortages in future years, and (2) CVP may need to draw from available storage in a given year in order to support sufficient water deliveries to avert adverse health, safety, and economic hardship conditions.

Usually, it is possible to satisfy competing needs in years when water supplies are above normal or wetter. Even in drier years, if normal carryover storage is available at the beginning of the year, the probability is good that 100 percent water allocations will be available. However, all beneficial uses of CVP water are adversely affected during prolonged periods of insufficient water supply. Both environmental and economic systems

107

are stressed by the cumulative impacts of dry conditions to a point where tolerance of continued drought is significantly weakened. When storage in CVP reservoirs at the beginning of the water year is diminished, there is limited capability in the system to mitigate the impact of continuing drought. It is significant that these studies display deficiencies on water deliveries at least as severe as those that have occurred historically and in some cases, CVP agricultural allocations are reduced to zero.

The operations alternatives portrayed in this plan combine water deliveries with five separate water year runoff levels and four initial reservoir carryover conditions. Certain assumptions regarding the water allocations apply in all cases, others are specific to the objectives and criteria of a particular alternative operation. Table V-4 portray annual CVP and SWP annual demands assumed for CVP-OCAP operations studies. Table V-5 displays a breakdown of CVP demands by category of use.

Table V-4. Annual water demand in CVP-OCAP					
SWP	Delta	3.8	MAF		
	Feather River Service Area	1.0	MAF		
CVP ·	Delta	3.4	MAF		
	Sacramento Basin	2.9	MAF		

Table V-5. CVP-OCAP annual CVP deliveries by category of use (Units: MAF)						
	Water rights	Project agriculture	M&I	Refuge		
Delta	.9	2.1	.3	.1		
Sacramento Basin	2.2	.4	.2	.1		
Total	3.1	2.5	.5	.2		
NOTE: Water rights CVP-OCAP	NOTE: Water rights and M&I subject to maximum 25% reduction in CVP-OCAP					

Water Allocation Criteria Common to All Operations Alternatives

 CVP Water allocations are described only for 25 percent increments (0 percent, 25 percent, 50 percent, 75 percent, 100 percent). Intermediate levels of allocation are not considered.

• CVP water allocations are determined for two time periods in each year, October through February, and March through September. Allocations are fixed and not modified during those periods. For the October through February period, water allocations are based on antecedent water year conditions implied by storage available at the start of the water year. There is no attempt to simulate the uncertainty in the water year runoff that exists when allocations are fixed, except insofar as a conservative approach was adopted in the selection of amounts of end of water year storage retained in conjunction with the water allocation in each case.

- Water rights allocations are determined by the Shasta Criteria. An assumption is made regarding the previous years Shasta inflow, on the basis of the starting storage condition. This results in accumulated deficiency in inflow triggering reduction in allocations to water rights in some cases.
- M&I allocations are 100 percent if project agricultural allocations are 75 percent or more.
- SWP water allocation is based on water supply available for Delta export, consistent with end of water year objective for Oroville storage.
- Feather River Service Area deliveries are not reduced in any of the operations plans.

Pre-1992 Operations

The water allocation strategy in the Pre-1992 operations alternative attempts to balance storage and water delivery objectives with consideration for other operations objectives, including river temperatures and CVP power and energy production.

- CVP deliveries are supported at least at the levels allocated in WY 1992, i.e.,
 25 percent to agricultural contractors. M&I allocations are a minimum of 75 percent of WY 1987 to WY 1989 use. If necessary, carryover storage may be used to continue deliveries at these levels of allocation.
- Under extremely adverse runoff conditions, even the above minimum levels of allocation may not be supportable. In this case, water deliveries may be further reduced as needed to preserve carryover storage sufficient to provide continued capability to deliver water for health and safety and to maintain minimal instream flows and Delta water quality.
- In dry and critical years, CVP agricultural water allocations are increased above the nominal 25 percent, if possible while providing for end of water year reservoir storage above the defined LO storage level.

109

• In the above normal and wet year type (50th percentile and greater), it appears that the only limits on water deliveries would be physical capability of the CVP facilities to export, convey, and regulate water for delivery south of the Delta.

TEM Alternative Operations

After temperature and winter-run survival analysis were completed for the 18 Pre-1992 cases, if overall survival results fell below 98 percent, a TEM alternative was devised with the objective of decreasing temperature related mortality. Five of the 18 Pre-1992 cases were given this additional analysis. Water allocations were reduced by 25 percent in the March-September period to test the effect of this change on estimated temperatures and survival. Reductions in the minimum objective flow at Wilkins Slough were made in order to permit further flexibility with timing of Keswick release. In one case, C-LO-25.TEM, a reduction in Sacramento River water rights allocation to 50 percent, was tested. In this same case, COA borrowing from Oroville was used to retain more water in Shasta through August 31, with repayment of COA borrowing in September.

NMFS B Alternative

Water allocations for the NMFS B alternative operations were initially selected for each case to be the same as they were for Pre-1992 operations. They were then reduced as necessary to meet two objectives: (1) Eliminate reverse flow at Antioch in February, March, and April; (2) equal or exceed temperature control and survival in upper Sacramento that was achieved in the Pre-1992 or TEM alternative operations.

ASSUMPTIONS

Assumptions Common to All CVP-OCAP Water Year Operations Plans

- All cases portray one 12-month period, October-September.
- COA provisions are met regarding sharing of CVP/SWP responsibilities during balanced conditions (exception C-LO-25.TEM).
- D-1485 Standards for Delta are met, as appropriate to "year type."
- CVP annual Delta Export is 3.4 MAF (for 100 percent supply). Tracy pumping maximum 4,600 ft³/s, but limited by conveyance in DMC during nonirrigation season. D-1485 limit of 3,000 ft³/s in May and June. D-1485 replacement pumping at Banks up to 195,000 acre-feet in July and August if needed. Cross Valley pumping at Banks up to 128,000 acre-feet per year.

CHAPTER V

Table V-6. Comparison of annual water allocations Pre-1992 and NMFS B alternatives							
Water Year Designation	Starting Storage	CVP (Project AG) Pre-1992	CVP (Project AG) "B"	SWP Pre-1992	SWP "B"		
Wet (W)	Н	100%	100%	100%	100%		
	НМ	100%	100%	100%	95%		
	LM	100%	100%	100%	95%		
	LO	100%	100%	80%	85%		
Above Normal (A)	н	100%	100%	100%	90%		
	НМ	100%	100%	95%	80%		
	- LM	100%	100%	90%	75%		
	LO	100%	100%	80%	70%		
Dry (D)	н	100%	75%	95%	80%		
	НМ	100%	75%	90%	75%		
	LM	75%	75%	80%	65%		
	LO	50%	50%	65%	60%		
Critical (C)	н	100%	75%	80%	70%		
	НМ	75%	50%	65%	60%		
	LM	50%	25%	50%	50%		
	LO	25%	0%	35%	35%		
Extreme Critical (E)	Н	50%	25%	45%	40%		
	НМ	0%	0%	25%	25%		

- SWP annual Delta Export is 3.8 MAF (100 percent requests) maximum pumping per Corps permit is 6,680 ft³/s, except December 15 to March 15, when it is 6,680 ft³/s, plus one-third of the Vernalis flow if greater than 1,000 ft³/s, but may not exceed 7,300 ft³/s. D-1485 limit of 3,000 ft³/s in May and June, and 4,600 ft³/s in July. DFG limit of 2,000 ft³/s or 3,000 ft³/s in May and June.
- No waterbank or other transfers affect CVP and SWP operations.
- Delta Cross Channel closed in accordance with D-1485, or if Freeport flow is greater than 25,000 ft³/s.

- Sacramento River accretions/depletions are modified in accordance with CVP water allocations.
- Trinity River flow allocations for all years are 340,000 acre-feet.

Upper Sacramento River Temperature and Survival Analysis

The temperature analysis of upper Sacramento River operations was performed with the Reclamation's temperature model. The model simulates monthly temperature conditions in CVP reservoirs and at locations downstream from their discharge points. Model inputs include initial storage and temperature conditions, inflow, outflow, evaporation, solar radiation, and average air temperature. Release temperatures from Whiskeytown, Shasta, and Clair Engle are computed for each outlet level. Mean monthly river temperatures are computed on the Sacramento from Keswick to Red Bluff. River temperatures are based on the quantity and temperature of the Keswick release, normal climactic conditions, and tributary accretions similar to dry year (1976) conditions.

Survival analysis, or conversely, temperature-related mortality analysis was performed using the model provided to Reclamation by CH2M Hill and described in the Biological Assessment (October 1992). The Sacramento River reaches are: Reach 1 - Keswick to Balls Ferry, Reach 2 - Balls Ferry to RBDD, and Reach 3 - below RBDD. In the survival model analysis, estimated survival in each reach is computed using average monthly temperatures from April through September. Average temperature in Reach 1 is represented by temperature below Clear Creek, Reach 2 average temperature is represented by Bend, and Reach 3 average temperature is represented by Red Bluff.

For the Pre-1992 operations criteria, temperature and mortality results were computed for both the Bypass and No-Bypass versions of the operation. In the No-Bypass version, all Shasta releases were assumed to be made through the powerplant penstock intakes at El. 815 feet. Also, in the No-Bypass version, selection of releases from Shasta, Whiskeytown, and Clair Engle were made primarily on the basis of storage targets, refill probability, and seasonal energy requirements; not necessarily for temperature control. For the Bypass version of the Pre-1992 operations, Keswick releases were the same as in the No-Bypass case. However, the Bypass case used Shasta cold water bypass (742-foot level outlets), and warm water Bypass (942-foot level outlets) to meet the temperature objectives in the Sacramento River that were established as 56 °F at either Red Bluff, Bend, or Balls Ferry. In some cases, the bypass operation modified the proportions of Shasta and Spring Creek Powerplants release to better accomplish temperature objectives.

The presentation of the Bypass and No-Bypass versions of the Pre-1992 operations is done to portray the significance to temperature control of the use of bypass and selective reservoir withdrawals. It is assumed that bypass operations are part of Pre-1992 operations criteria, as well as all the cases investigated under the TEM and NMFS B alternative operations.

LONG-TERM CVP-OCAP CHAPTER V

Assumptions Common to All Temperature Analyses of Long-Term Operations Plans

• January 1 forecasted storage conditions were used to initiate temperature analyses of each of the Long-Term Operations Plans.

- Cold water bypass at Shasta was used to meet temperature objectives. Warm water bypass was used when possible to conserve the cold water in Shasta for later use. Both cold and warm water are released in some months because of difference in reservoir temperature profile between beginning and end of month.
- Monthly operational temperature objectives and a control point were selected for each
 case to either meet the biological criteria for winter run, or to maximize survival in
 cases where relaxed temperature criteria permitted best use of temperature control
 capabilities.
- No cold water bypass at Trinity was assumed.

Assumptions Regarding Spawning Distribution for Survival Analysis

Pre-1992 Operations:

- RBDD gates up December through March
- Spawning Distribution:

	Water Year Type	
	Wet/Above Norm	Dry/Critical
Reach 1	50%	60%
Reach 2	40%	35%
Reach 3	10%	5 %

TEM and NMFS B Alternative Operations:

- RBDD gates up November through April
- Spawning Distribution:

113

	Water Year Type	
	Wet/Above Norm	Dry/Critical
Reach 1	60%	90%
Reach 2	35%	7%
Reach 3	5%	3%

SUMMARY OF RESULTS

Because of the large amount of information generated by the CVP-OCAP water year operations plans, several summary graphics have been prepared to allow both a numeric and visual comparison of results. Figures 21 through 33, at the end of Chapter V, are provided to summarize the CVP-OCAP water year operations plans and to highlight some of the most significant results and conclusions.

Supplemental appendices of graphs and tables, Appendices A through C of this report, provide further information on the results of the CVP-OCAP water year operations studies, and also the results of all the temperature analyses completed for each of the Pre-1992, TEM, and NMFS B operations alternatives.

The following is a description of the CVP-OCAP water year operations plans and results as portrayed in figures 21-33.

Figure 21

Summary table in water year operations plan, Pre-1992 and TEM alternatives. This table summarizes the assumed hydrologic conditions and year types, operations study nomenclature, storage conditions at beginning and end of water year, and the CVP and SWP water allocations assumed to occur in the Pre-1992 and TEM water year operations plans.

Figure 22

Summary table for water year operations plans, B operations alternative. This table provides the same information as figure 17, but for the B alternative operations plans.

Figure 23 (2 pages)

Temperature and survival results for long-term CVP-OCAP. Pre-1992 alternative and TEM alternative operations. This figure summarizes the Sacramento River

10/92

LONG-TERM CVP-OCAP CHAPTER V

temperature and temperature-related survival estimated to result from each of the Pre-1992 and TEM operations plans. Target and achieved temperatures listed are for the assumed temperature control point: either RBDD (Red Bluff Diversion Dam), BB (Bend Bridge), or BSF (Balls Ferry). Estimated survival is given by river "reach" and overall based on the spawning distributions given in the "Assumptions" section of Chapter V.

Figure 24 (2 pages)

Temperature and survival results for long-term CVP-OCAP, B alternative operations. This figure provides the same information as figure 20, but for the B alternative operations.

Figure 25

Sacramento River winter-run salmon temperature-related survival (Pre-1992 alternative). This figure is a plot of estimated overall survival for each water year plan in the Pre-1992 alternative as a function of Shasta storage illustrating the difference in survival achieved when Shasta Powerplant bypasses (both cold and warm water), and selective storage withdrawal) for temperature control are used to improve on the basic "no-bypass" operation.

Figure 26

Sacramento River winter-run salmon temperature-related survival (B alternative). This figure is a plot of estimated overall survival versus Shasta storage for the B alternative water year operations plans.

Figure 27

Sacramento River winter-run salmon temperature-related survival (comparison of the Pre-1992 and B alternatives. This plot compares the estimated survival for each of the 18 water year plans analyzed in the Pre-1992 and B alternatives. The differences in overall estimated survival may be attributable to spawning distributions assumed, or to other factors. Comparison of individual reach survivals between alternative eliminates the effect of assumed spawning distribution.

Figure 28 (5 pages)

Total Delta export. Figure 25 compares monthly total Delta export (Tracy plus Banks) for each of the 18 water year plans in the Pre-1992 and B alternative operations. From these plots, the significance to Delta exports of the February through April constraint on reverse flow is demonstrated, for the various hydrologic and storage conditions. This figure also illustrates when and to what extent it was possible to increase Delta pumping in alternative B, to compensate for the February through April constraint.

115

Figure 29

Long-term CVP-OCAP alternative comparison: Change in Shasta storage. This figures presents a comparison of the water year change in Shasta storage for each of the 18 Pre-1992 and B alternative water year operations plans.

Figure 30

Long-term CVP-OCAP alternative comparison: Change in system storage. This figures presents a comparison of water year change in CVP system storage for each of the 18 Pre-1992 and B alternative water year operations plans. CVP system storage is the sum of Shasta, Clair Engle, and Folsom.

Figure 31

Long-term CVP-OCAP Antioch flow condition: Pre-1992 and B alternatives. This figure portrays computed monthly average Antioch flow for each water year operation plan of the Pre-1992 and B alternative. The Antioch flow is displayed as one of four categories, with darkest shading indicative of the most reverse flow. The relative frequency of the flow categories is evident in these plots.

Figure 32

Long-term CVP-OCAP Cross Channel gate position: Pre-1992 and B alternatives. This figure portrays the status of the Delta Cross Channel Gates for each month of each of the water year operations plans in the Pre-1992 and B alternatives. The "gates open or closed" status refers to the D-1485 provision for CDFG requested closures during April 15 to May 31 when Delta outflow exceeds 12,000 ft³/s. During those months Antioch flows were computed assuming the Delta Cross Channel gates were open.

Figure 33

Long-term CVP-OCAP: COA Delta status (periods of balanced and excess conditions). This figure portrays on a monthly basis the Pre-1992 and B alternative water year operations plans whether "balanced" or "excess" conditions exist in the Delta as defined in the COA.

CONCLUSIONS

• Pre-1992 operations criteria provide at least 99 percent temperature-related survival in all wet and above normal years, and some dry and critical years if starting storage is high enough.

10/92

LONG-TERM CVP-OCAP CHAPTER V

• Pre-1992 water allocation policy is generally protective of winter-run temperature conditions in Sacramento River, with a few significant exceptions.

- Spawning distribution assumed for Dry and Critical years, combined with the assumed RBDD gate operation in the TEM and B alternatives confines 90 percent of spawning to Reach 1, making the effectiveness of temperature control capability significantly greater.
- Reduced water allocations and other operations measures taken in TEM alternatives are less significant in their effect on overall survival than: (1) Cold and warm water bypass, and (2) operation of RBDD gates.
- Increasing carryover storage by decreasing release may adversely affect temperaturerelated survival when effect of downstream warming exceeds the effect of cooler release temperatures.
- It is not possible in any of the CVP-OCAP operations cases to meet the 56 °F criterion at RBDD.
- At Bend Bridge, with the exception of September, all Above Normal and Wet year cases effectively provide 56 °F in both the Pre-1992 and B alternative operations. In Dry, Critical, and Extreme Critical years, the 56° objective seems unachievable at Bend, to varying degrees.
- At the Below Clear Creek site, all operations cases in all alternatives meet the 56° objective, with some minor exceptions. There are some September exceedances in the driest cases.
- When comparing the survival results of the B or TEM alternative with those of the Pre-1992, individual reach survivals must be compared in order to isolate the effects of the assumed spawning distribution from the other differences in the operations criteria. (The assumed spawning distribution is tied to the operation assumption for the RBDD gates; and is different for the Pre-1992 versus the TEM and B alternatives.) When comparing Reach 1 survivals for the Pre-1992, TEM, and B alternatives, there are no significant differences. For Reach 2 survival, differences among alternative versions of the operations are no more than a few percent with the exceptions of the cases D-LO, C-HM, C-LM, C-LO, and E-H1.
- Measures such as use of Folsom withdrawals in lieu of Shasta and reduction of the flow objective at Wilkins Slough, have less effect on upper Sacramento River temperature operations than Shasta bypass, and Shasta/Trinity/Whiskeytown reoperation. However, those measures may be more effective and significant in years where distribution of runoff is not geographically uniform.
- Alternative B Antioch flow criteria cause significant reduction in both CVP and SWP water delivery capability (see table V-6). The relative effects on the CVP and SWP

117

LONG-TERM CVP-OCAP

depend on the methodology assumed for sharing available exports. Operations portrayed here under alternative B result in CVP agricultural water allocations that are reduced 25 percent (about 650,000 acre-feet) in 7 of the 18 water years, when compared with the Pre-1992 operations cases. SWP deliveries are reduced 5 percent to 15 percent (about 200,000 to 600,000 acre-feet) in 13 of the 18 water years, when compared with the Pre-1992 operations.

10/92

SUMMARY TABLE FOR WATER YEAR OPERATIONS PLANS

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

PRE-1992 OPERATIONS ALTERNATIVE (WITH BYPASS OPERATION)

State Contact Contac	Prior Year Wet Below Normal Critical Critical Critical Wet Below Normal al Critical				ISSUIDY STORAGES (MAP): BEGINNING OF YEAR / END OF YEAR	MAFI: B	EGINNII	GOFY	AH/EN	DOFYE	AH				CVP-Water Allocation	diocation	SWP
SHOTOMIRA SINDARA SINDARA Colase Forder Striken	SRI Critena Study Year Wet Wet Wet Wet Wet Critical Wet Above Normal Above Normal Above Normal Above Normal Above Normal Above Normal Critical Critical Critical Dry Critical				,										Percent of A	g Supply	Allocation
SAH CIMENTA Prince Author SAH CIMENTA Prince Author SAH CIMENTA Fine Author SAH CIMENTA SAH	Study Year Wet Wet Wet Wet Wet Above Normal Critical Dry Critical Critical Dry Critical Critica	Charte Crite				Clar Enc		hasta	H.	Slsom	Š	Total	Oro	ville			Percent
Study Year Finol Year Study Year	Study Year Wet Wet Wet Below Normal Wet Critical Wet Critical Wet Above Normal Above Normal Above Normal Critical Critical Critical Dry Critical Dry Critical Critica	Slidsid Cilic		Contraction	Category	Red	Fnd	Bed	End	L	-		-			Mar-Sep	Delivery
West Cinical Action of Memal <	Wet Wet Wet Critical Wet Critical Wet Critical Above Normal Below Normal Above Normal Critical Above Normal Critical Critical Dry Critical Critical Dry Critical	Study Year	rnor red	Tay III soo DOE	4011	10	200	3.2	1	L	Ļ	L	Ļ			100%	
Well Bellow Normal Normal W-HH-100 PRE High Modele 113 2.0 3.1 5.0 3.2 5.0 1.2 2.4 55% 1.0% Well Citical Normal W-H-100 PRE Low Modele 1.1 1.0 1.0 0.0 6 3.5 1.2 2.4 55% 1.00% Well Citical Normal Chical W-LO-100 PRE High Modele 1.5 1.0 1.0 6 6.0 6 3.7 2.1 2.4 50% 1.00% Above Normal Dornal W-H-100 PRE High Modele 1.1 1.7 2.5 0.0 6.0 6.7 2.7 1.2 1.0	Wet Below Normal Wet Critical Wet Critical Above Normal Below Normal Above Normal Critical Above Normal Critical Above Normal Critical Above Normal Critical Critical Dry Below Normal Critical Dry Critical	Normal	Normal		ngin	2	200	3	,	1	-	L	L	L		100%	
Welt Critical Normal Writh-HotoPRE Low Middle 1.1 1.9 2.0 3.1 3.5 5.0 1.7 2.4 5.0 Welt Cinical Normal Critical Low Middle 1.1 1.9 2.0 0.0 0.6 2.6 2.4 5.0 1.0 2.4 5.0 1.0 2.4 5.0 1.0 2.4 5.0 1.0 2.4 5.0 1.0 2.4 5.0 1.0 2.4 5.0 2.4 5.0 1.0 2.4 5.0 2.4 5.0 1.0 2.4 5.0 2.4 5.0 1.0 3.2 2.9 0.6 0.6 2.6 </td <td>Wet Critical Wet Crutical Above Normal Wet Above Normal Below Normal Above Normal Critical Above Normal Critical Dry Below Normal Dry Critical Dry Critical Ory Critical Criti</td> <td>Normal</td> <td>Normal</td> <td></td> <td>High Middle</td> <td>3.5</td> <td>2.0</td> <td>5.5</td> <td>2.5</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td>	Wet Critical Wet Crutical Above Normal Wet Above Normal Below Normal Above Normal Critical Above Normal Critical Dry Below Normal Dry Critical Dry Critical Ory Critical Criti	Normal	Normal		High Middle	3.5	2.0	5.5	2.5	1	1	1	1	1			
West Critical Normal Critical WLO-100 PRE Low 07 1.7 1.7 3.0 0.2 0.6 5.5 5.3 1.2 2.4 SONA 100 NA Above Normal West Normal A-HI-100 PRE High 1.9 1.9 2.2 2.9 0.6 5.7 5.5 2.7 1.9 100% 100% Above Normal Below Normal Normal Normal A-HI-100 PRE High Middle 1.5 2.2 0.6 5.7 5.5 2.7 1.9 1.00%	Wet Critical Above Normal Wet Above Normal Below Normal Above Normal Critical Above Normal Critical Above Normal Critical Dry Below Normal Critical Dry Critical Crit	Normal	Normal	W-LM-100.PRE	Low Middle	1.1	1.9	2.0	3.1	4	4	4	4	1			
Above Normal West Normal A-HH-100 PRE High 15 12 2 2 6 6 5 5 5 2 10 100%	Above Normal Wet Above Normal Below Normal Above Normal Critical Above Normal Critical Dry Below Normal Dry Critical Ornical Critical Critical C	Normal	Critical		Low	0.7	1.7	1.7	3.0	4	_	_		4			
Above Normal West Normal Normal A-HI-100 PRE High H	Above Normal Wet Above Normal Below Normal Above Normal Critical Above Normal Critical Above Normal Critical Dry Wet Critical Dry Critical										_						
Above Normal Normal Normal A-LH-100 PRE High Middle 1.5 1.6 2.5 2.6 4.4 5.1 2.2 1.9 100% 100% Above Normal Andrew Normal Normal A-LH-100 PRE Low Middle 1.1 1.5 2.6 0.5 3.4 5.1 1.6 100% 100% Above Normal Critical Normal A-LH-100 PRE Low Middle 1.1 1.7 2.5 0.2 0.5 3.7 4.7 1.5 1.6 1.0 Above Normal Critical Normal D-LH-100 PRE High Middle 1.5 1.2 2.5 0.5 0.5 3.7 4.7 2.7 1.0 1.0 Dry Bolow Normal Normal D-LH-100 PRE High Middle 1.5 1.2 2.5 0.5 4.6 2.7 2.7 1.6 1.0 1.0 2.0 0.5 0.5 4.6 1.7 1.6 1.0 1.7 1.7 2.0 0.5	Above Normal Wet Above Normal Below Normal Above Normal Critical Dry Below Normal Dry Below Normal Dry Critical Dry Critical Critical Critical Dry Critical Critical Critical Critical Critical Dry Critical Criti	None	Mormal		High	1.9	1.9	3.2	2.9		L	L	L	L		100%	
Above Normal Description Ordinal A-LH motor OPER Low Middle 1.1 1.5 2.0 2.5 0.2 0.5 1.5 1.0 1.5 1.0 1.5 1.0	Above Normal Below Normal Above Normal Critical Dry Met Dry Gelow Normal Dry Critical Dry Critical Dry Critical Dry Critical Critical Dry Critical Critical Critical Critical Critical Critical Dry Critical	MOLLING	Morning		High Middle	1.5	1 8	2.5	2.8	L		L	-	_			
Above Normal Critical Normal Critical Normal A-LO-100-PRE Low 0 7 1 1 7 5 6 4 2 1 2 1 5 5 0 9 100 9 100 9 Dy Wet Normal Normal D-H-100-PRE High Middle 1 5 2 5 0 6 4 7 2 7 2 0 100 9 100 9 Dy Balow Normal Normal D-H-100-PRE High Middle 1 5 2 5 2 6 4 6 2 7 1 7 1 5 1 00 9 100 9 Dy Critical Normal D-H-100-PRE High Middle 1 7 2 6 2 6 4 2 1 6 1 7 1 6 2 6 2 7 1 7 1 5 1 5 1 6 1 0 6 2 6 4 1 2 6 4 1 4 1 2 6 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 <t< td=""><td>Above Normal Critical Above Normal Critical Dry Below Normal Dry Critical Dry Critical Critical</td><td>NOTHER</td><td>Mornia</td><td></td><td>low Middle</td><td>-</td><td>15</td><td>2.0</td><td>2.5</td><td>L</td><td>L</td><td>L</td><td></td><td>L</td><td></td><td></td><td></td></t<>	Above Normal Critical Above Normal Critical Dry Below Normal Dry Critical Dry Critical	NOTHER	Mornia		low Middle	-	15	2.0	2.5	L	L	L		L			
Above Normal Critical Normal Critical ALO-100.PRE High 1.9 1.7 3.2 2.5 0.6 0.5 5.7 4.7 2.7 2.0 100% Dry Balow Normal Normal D-HM-100.PRE High 1.5 1.2 2.5 2.0 0.5 4.4 2.7 2.7 2.0 100% Dry Balow Normal Normal D-HM-100.PRE High Middle 1.5 1.2 2.5 0.0 0.5 4.4 0.2 1.6 1.0%	Above Normal Critical Dry Wet Dry Critical Dry Critical	Norman	Norman	A-LM-TOOLFINE				17	25	L	L	L	L	L			
Dry West Normal D-HL-100 PRE High 1.5 1.2 2.5 2.5 0.6 0.5 5.7 4.7 2.7 2.0 100% 100% Dry Below Normal Normal D-HM-100 PRE High Middle 1.5 1.2 2.3 0.4 4.4 4.0 2.2 1.6 100% 100% 100% Dry Critical Normal D-LM-100 PRE High Middle 1.1 1.0 2.0 2.1 0.2 0.4 4.4 4.0 2.2 1.6 100% 1.0 2.0 2.1 0.2 0.4 4.4 4.0 2.2 1.6 1.0 2.0 1.1 1.0 2.0 0.4 2.0 1.2 1.0 2.0 1.1 1.0 2.0 1.1 1.0 2.0 1.1 1.0 2.0 1.1 1.0 2.0 1.0 2.0 1.1 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0	Dry Wet Dry Below Normal Dry Critical Critical Wet Critical Wet Critical Critical Critical Critical Critical Wet Critical Gelow Normal Critical Critical Critical Critical Critical Critical Critical Critical Critical Grit	Normal	Critical		Low		-	-	2.3	\downarrow	1	\downarrow	-	L			
Dry Wet Normal Normal D-HI-100-PHE High Middle 1.9 1.7 3.2 2.5 6.6 0.5 5.7 4.7 2.7 2.0 1.0 4.9 1.7 2.0 2.1 4.4 4.0 2.0 1.2 2.0 1.0 2.0 2.1 6.0 0.0 2.2 1.0 2.0 2.1 6.0 0.0 2.0 1.0 2.0 2.1 0.0 2.0 1.0 2.0 0.1 0.2 0.4 0.2 0.2 0.2 0.2 </td <td>Dry Wet Dry Below Normal Dry Critical Dry Critical Critical Wet Critical Below Normal Critical Extreme Critical Extreme Critical Critical Critical Critical Extreme Critical Critical</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>ļ</td> <td>1</td> <td>Į.</td> <td>1</td> <td></td> <td>-</td> <td></td>	Dry Wet Dry Below Normal Dry Critical Dry Critical Critical Wet Critical Below Normal Critical Extreme Critical Extreme Critical Critical Critical Critical Extreme Critical									4	ļ	1	Į.	1		-	
Ory Below Normal Normal D-HM-100 PRE High Middle 1.5 1.2 2.5 2.3 0.4 0.5 4.4 4.0 2.2 1.6 100% 100% 100% Dry Critical Normal D-LM-075.PRE Low Middle 1.1 1.0 2.0 0.4 3.3 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.7 1.5 3.5 1.0 3.5 3.5 3.7 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	Dry Below Normal Dry Critical Dry Critical Dry Critical Critical Wet Critical Below Normal Critical Extreme Critical Wet Extreme Critical Gritical Extreme Critical Critical Extreme Critical	Normal	Normal		High	1.9	1.7	3.2	2.5				-	1			
DIV Critical Normal DLM-075.PRE Low Middle 1.1 1.0 2.0 0.4 3.3 3.5 1.7 1.5 1.5 3.5 75% 75% Dry Critical Normal Critical DLO-050.PRE Low Middle 1.1 1.0 2.0 0.4 2.6 3.2 1.2 1.5 1.5 1.5 1.5 1.5 1.0 1.5 1.7 2.0 0.6 0.3 5.7 3.7 1.5	Dry Critical Dry Critical Critical Wet Critical Below Normal Critical Critical Critical Critical Critical Critical Critical Critical Critical Wet Extreme Critical Wet Extreme Critical Gritical Extreme Critical Gritical Extreme Critical Critical Extreme Critical Critical Extreme Critical Critical	Normal	Normal	D-HM-100 PRE	High Middle	1.5	1.2	2.5	2.3	_	_	_					
Critical Normal Critical DLO-050 PRE High LOS 0.7 1.7 2.0 0.2 0.4 2.6 3.2 1.5 1.7 2.0 0.2 0.4 2.6 1.5 1.6 0.7 1.7 1.7 2.0 0.6 0.3 5.7 3.7 1.6 1.00% 1.00% cical Below Normal Normal C-LH-00 PRE High Middle 1.1 0.8 2.0 0.6 0.2 4.4 2.8 2.7 1.5 1.00% 1.5% ical Critical Critical C-LM-050 PRE High Middle 1.1 0.8 2.0 0.2	critical Critical Ceal Wet Ceal Below Normal Cortical Critical	Nossa	Nomel	D.I M.075 PRF	Low Middle	-	1.0	2.0	2.1	_	_		5				
Critical Normal Critical Low Middle 1.9 1.4 3.2 2.0 0.6 0.3 5.7 3.7 2.7 1.6 100% 100% rical Wet Normal C-LM-050-PRE High Middle 1.5 1.0 2.5 1.6 0.4 0.2 4.4 2.8 2.2 1.5 100% 75% rical Chrical Chrical C-LM-050-PRE Low Middle 1.1 0.8 2.0 1.6 0.2 3.3 2.6 1.7 1.5 7.9 7.8 50% scale Critical Critical C-LM-050-PRE Low Middle 1.1 0.8 2.0 0.2 2.6 2.5 1.2 1.5 1.5 1.0 0.2 2.6 2.5 1.6 0.2 2.6 2.5 1.5 1.5 1.0 2.5 1.5 1.5 1.5 1.0 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 <t< td=""><td>cal Wet ical Wet ical Below Normal cial Critical ceme Critical Wet eme Critical Gritical eme Critical ceme Critical Critical eme Critical Critical eme Critical Critical</td><td>Nomina</td><td>THE STATE OF</td><td>010060000</td><td>100</td><td>0.7</td><td>0.7</td><td>17</td><td>2.0</td><td>L</td><td>L</td><td></td><td>_</td><td>_</td><td></td><td></td><td></td></t<>	cal Wet ical Wet ical Below Normal cial Critical ceme Critical Wet eme Critical Gritical eme Critical ceme Critical Critical eme Critical Critical eme Critical Critical	Nomina	THE STATE OF	010060000	100	0.7	0.7	17	2.0	L	L		_	_			
Centreal West Normal CFH-100 PRE High 1.9 1.4 3.2 2.0 6.6 0.3 5.7 3.7 2.7 1.6 100%	Critical Wet Critical Below Normal Critical Critical Critical Critical Critical Wet Extreme Critical Below Normal Extreme Critical Extreme Critical Critical Critical Critical Critical Critical Critical	Norman	Craca		FOM	,			-	Ļ	-	-		-			
Critical Wet Normal C-H-100 PRE High 1.9 1.4 3.2 2.0 0.0 0.3 3.1 2.1 1.5 1.0 2.5 1.0 0.0	Critical Wet Critical Below Normal Critical Critical Critical Critical Critical Critical Critical Extreme Critical Extreme Critical Extreme Critical Critical Critical Extreme Critical Critical Critical Critical Critical							00		1	Ţ	1	L				
Critical Contical	Critical Below Normal Critical Critical Critical Critical Critical Wet Extreme Critical Below Normal Extreme Critical Critical Extreme Critical Critical Extreme Critical Critical	Normal	Normal	C-HI-100 PRE	High	2	4	3.5	2.0	1	1	1	1				
Cntical Cntical Cntical Normal C-LM-050 PRE Low Middle 1.1 1.6 0.2 0.2 0.2 3.3 2.5 1.7 1.2 1.2 1.2 1.5 50% 25% Cntical Critical Critical Critical Critical Critical Low Middle 1.3 0.7 0.5 0.2 0.2 2.5 2.7 1.2 </td <td>Critical Critical Critical Critical Extreme Critical Wet Extreme Critical Bellow Normal Extreme Critical Critical Extreme Critical Critical</td> <td>Normal</td> <td>Normal</td> <td>C-HM-075.PRE</td> <td>High Middle</td> <td>1.5</td> <td>1.0</td> <td>2.5</td> <td>16</td> <td>4</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td>	Critical Critical Critical Critical Extreme Critical Wet Extreme Critical Bellow Normal Extreme Critical Critical Extreme Critical Critical	Normal	Normal	C-HM-075.PRE	High Middle	1.5	1.0	2.5	16	4		1	1	1			
Cntcal Critical <	Critical Critical Extreme Critical Wet Extreme Critical Gelow Normal Extreme Critical Critical Extreme Critical Critical	Cntical	Normal		Low Middle		0.8	2.0	9	1	-	1		1			
Extreme Critical Wet Critical Normal E-H-050 PRE High 1.9 0.7 3.2 1.3 0.6 0.2 5.7 2.2 2.7 1.2 1.0 0.9 50.4 1.7 2.2 1.2 1.2 1.0 0.9 50.4 1.7 2.2 1.2 1.2 1.0 0.9 2.5 1.0 0.4 0.2 4.4 1.7 2.2 1.2 1.0 0.9 2.5 1.0 0.4 0.2 4.4 1.7 2.2 1.2 1.0 0.9 4.4 1.7 2.2 1.2 1.0 0.9 2.5 1.0 0.4 0.2 4.4 1.7 2.2 1.2 1.0 0.9 4.4 1.7 2.2 1.2 1.0 0.9 4.4 1.7 2.2 1.2 1.0 0.9 4.4 1.7 2.2 1.2 1.0 0.9 4.4 1.7 2.2 1.2 1.0 0.9 4.4 1.7 2.2	Extreme Critical Wet Extreme Critical Below Normal Extreme Critical Critical Extreme Critical Critical	Critical	Critical	C-LO-025 PRE	Low	0.7	9.0	1.7	1.5	4	_	1	1	1			
Extreme Critical Wet Critical Normal E-H-D50-PRE High Middle 1.9 0.7 3.2 1.3 0.6 0.2 5.7 2.2 2.7 1.2 100% 0.9d Extreme Critical Below Normal Critical E-HM-000-PRE High Middle 1.5 0.6 2.5 1.0 0.4 0.2 4.4 1.7 2.2 1.2 100% 0/4 Extreme Critical Critical E-LM-000-PRE Low Middle N/A N/A <t< td=""><td>Extreme Critical Wet Extreme Critical Below Normal Extreme Critical Critical Extreme Critical Critical</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_!</td><td>-</td><td>ļ</td><td></td><td></td><td></td><td></td></t<>	Extreme Critical Wet Extreme Critical Below Normal Extreme Critical Critical Extreme Critical Critical										_!	-	ļ				
Extreme Critical	Extreme Critical Below Normal Extreme Critical Critical Extreme Critical Critical	Conteal	Normal	E-HI-050 PRE	High	1.9	0.7	3.2	1.3			_					
Extreme Critical Critical Critical E-LM-000 PRE Low Middle N/A	Extreme Critical Critical Extreme Critical Critical	Crihcal	Normal	E-HM-000 PRE	High Middle	1.5	90	2.5	1.0	0.4	_		4				
Extreme Critical Crit	Extreme Critical Critical	Jen de la contraction de la co	Critical	E.I M.OOO PRF	Low Middle	A/A	N/A	N/A	A/A	L		_	_	_		N/A	V/N
EXTORNO CHUCAL CHUCAL CHUCAL	Extreme Chical	Cruca	Critical	E-LO-000 PRF	NO.	N/A	A/X	A/N	N/A	L	L			Ш		N/A	A/N
		Cinca						-					_				

"TEM" OPERATIONS ALTERNATIVE

(INVESTIGATED TO IMPROVE SACRAMENTO RIVER TEMPERATURE CONTROL)

H							-	_				- 1	4				0.50
								۱Ļ		000	60	36	36			25/H	00.74
40	. De.	Legister 1	Plormai	Critical	D-1 0-025 TEM	Low	7 0	0.7					╛	1			1000
5.3	OLY	Citical	TACILLIAN .	100000				ļ	L		L	7 7	3.0	22	15 100%	₹ 93	90,0
0	1000	Longith Mornal	Normal	Mormal	C.HM-050 TFM	High Middle	-	60	2.5	2.1 0.4	700	*	=	١			
0	Culica	Delice Notified	NO ING					ļ	L			, ,	000		15 75%	25%	7. 2. 3.
0	O-Min-1	Contract	Control	Normal	CLIMANS TEM	I ow Middle	_	08	2.0 2	2.0 0.2	7.0	2,5	_	1			
0	- Concar	Sinca Care	CHICA	MOINIGH	O C. III OCO. 1 C. III				ı	I		3	00		2005	25.64	32.8
0			-	100,000	NET SCOOL	100	0.7	90	17	1.8 11 0.2	2 0.2	7.9	2.0	7.			
9	Cutical	Cutical	CURCAR	Critical	C-LO-023.12.IM			ļ	1	l	l	L	000	7 7	1000	25%	45%
57	Indiana Company	13/00	Cottool	Normal	F-HI-025 TFM	High	1 9	0.7	3.2	1.8 0.6	20 9	2.7	2.0				
0.0	Extreme Critical	MAGI	Clinca	The state of the s	: 1						-				_	_	
										_							

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

"B" OPERATIONS ALTERNATIVE

(BASED ON NMFS DELTA ALTERNATIVE "B", AND TO PROVIDE SACRAMENTO RIVER TEMPERATURE CONTROL)

Clair Engle
Category Beg End
19 2.0
High Middle 1.5 2.0
Low Middle 1.1 2.0
7.1 1.7
1.9
High Middle 1.5 1.8
Low Middle 1.1 1.5
0.7 1.0
1.9 1.7
High Middle 1.5 1.4
Low Middle 1.1 1.0
0.7 0.8
4.1
High Middle 1.5 1.1
Low Middle 1.1 0.9
0.7 0.6
1.9 0.7
High Middle 1.5 0.5
4/Z
A/N

10/26/92

UNITED STATES BUREAU OF RECLAMATION TEMPERATURE AND SURVIVAL RESULTS FOR LONG-TERM CVP-OCAP "PRE-1992" ALTERNATIVE

page 1 of 2

					peretu	re		5urviv	ra.i					lot		asta R	ereas	e		
WATER YEAR	CO	NTROL POINT		(F)			(%)							(TA	(F)				
OPERATIONS	1						Reach 1	Reach 2		Overall		_							_	
PLAN			Jun	Jul	Aug	Sep	(BCL)	(BB)	(RB)		Jan	Feb	Mar	Apr			-	Aug		Tota
W-HI-100.PRE	RB	No Bypass- N01	55.6	56.7	58.5	59.6	100.0	98.4	88.2	98.2	700	750	580	517	652	558	742	609	414	5,522
	1	Target	58.0	56.0	56.0	57.0														
		Bypass- B01	58.0	56.2	56.2	57.3	100.0	99.9	99.9	100.0	700	750	580			558	742		536	5,644
W-HM-100.PRE	RB	No Bypass- NO2	54.8	57.8	58.2	60.9	100.0	93.1	87.3	96.0	700	750	580	517	652	710	624	668	323	5,524
		Target	58.0	56.0	57.0	58.0														
		Bypass- B02	56.0	56.3	56.7	57.9	100.0	99.9	99.4	99.9	700	750	580	517		710	624		430	5,631
W-LM-100.PRE	BB	No Bypass- NO3	55.0	55.8	56.8	61.2	99.9	94.5	88.9	96.6	169	750	580	517	652	558	755	768	313	5,062
	1	Target	56.0	56.0	56.0	56.0														
		Bypass- B03	56.0	58.0	56.0	58.5	100.0	99.9	99.9	100.0	169	750	580	517		558	755	768	358	5,107
W-LO-100.PRE	88	No Bypass- N04	55.1	55.3	57.1	61.1	99.9	94.5	88.9	96.6	140	575	580	517	652	558	830	771	327	4,950
		Target	56.0	56.0	56.0	56.0														
_		Bypass- B04	56.0	58.0	56.0	56.4	100.0	100.0	90.3	99.0	140	575	580	517		558	830		358	4,981
A-HI-100.PRE	BB	No Bypass- N05	54.5	55.5	55.8	60.9	99.9	94.7	89.0	96.7	340	430	410	217	535	536	718	759	265	4,210
	1	Target	56.0	56.0	56.0	57.0														
	1	Bypass- B05	56.0	56.2	56.1	56.6	100.0	99.9	90.3	99.0	340	430	410	217	535	536	718	759	355	4,300
A-HM-100.PRE	BB	No Bypass- N06	54.4	54.5	56.6	60.8	99.9	94.5	92.3	97.0	155	213	410	217	560	574	823	721	327	4,000
		Target	56.0	56.0	56.0	56.0														
		Bypass- B06	56.0	56.0	56.1	56.5	100.0	99.9	90.3	99.0	155	213	410	217	560	574	823	721	357	4,030
A-LM-100.PRE	BB	No Bypess- N07	54.2	54.8	57.9	61.8	99.9	92.3	66.2	95.5	168	136	140	193	560	616	868	710	328	3,719
		Target	56.0	56.0	56.0	57.0														
		Bypass- B07	56.0	56.0	56.1	56.7	100.0	99.9	90.3	99.0	168	136	140	193	560	616	868	710	328	3,719
A-LO-100.PRE	BB	No Bypass- N08	54.2	54.8	58.0	61.8	99.9	92.3	85.5	95.4	168	138	149	193	559	619	868	700	331	3,725
		Target	56.0	56.0	56.0	57.0	l													
		Bypass- B08	56.0	56.0	56.0	56.9	100.0	99.9	90.3	99.0	168	138	149	193	559	619	868	700	331	3,725
D-HI-100.PRE	BB	No Bypass- N09	54.6	55.6	56.7	62.7	99.9	90.2	86.9	95.9	200	171	210	413	493	569	726	700	193	3,675
•		Target	56.0	56.0	56.0	59.0														
		Bypass- B09	56.0	56 0	56.0	58 9	100.0	98.8	87.8	99.0	200	171	210	413	493	569	726	700	268	3,750
D-HM-100.PRE	BB	No Bypass- N10	54.3	56.2	58.0	62.8	97.9	90.2	83.2	94.5	183	153	160	403	493	599	703	699	288	3,681
		Target	56.0	56.0	57.0	58.0														
•	1	Bypess- B10	56.1	56.3	57.3	58.2	100.0	99.4	85.2	99.1	183	153	160	403	493	599	703	699	288	3,681
D-LM-075.PRE	ВВ	No Bypess- N11	54.9	56.6	59.6	63.6	94.8	77.8	68.2	87.5	180	151	155	343	421	537	696	576	324	3,383
		Target	56.0	56.0	58.0	59.0														
		Bypass- B11	56.0	56.0	57.8	58.9	100.0	97.9	81.1	98.3	180	151	155	343	421	537	696	576	354	3,413
D-LO-050.PRE	BB	No Bypass- N12	55.4	57.6	60.9	63.6	92.3	68.2	47.2	81.6	180	151	155	283	405	498	614	488	331	3,105
	'	Target	56.0	56.0	58.0	61.0														
	1	Bypass- B12	56.0	56.0	58.1	60.9	99.9	94.3	78.0	96.8	180	151	155	283	405	498	614	488	358	3,132
C-HI-100.PRE	BB	No Bypass- N13	54.9	55.9	57.8	62.9	94.8	90.2	83.2	92.6	200	181	185	386	529	532	699	752	389	3,853
	"	Target	56.0	56.0	57.0	58.0														-,
		Bypass- B13	55.9	55.6	57.1	57.9	100.0	99.4	88.8	99 2	200	181	185	386	529	532	699	752	389	3,853
C-HM-075 PRE	BB	No Bypass- N14	55.1	57.1	60.1	64.7	89.0	77.8	68.2	84.0	200	181	185	338	496	497	673		314	3,533
0 11111 07017 112	00	Target	56.0	56.0	58.0	60.0	33.5	,,,,												
		Bypass- B14	56.0	56.1	58.0	60.5	99.9	94.3	79.6	96.9	200	181	185	338	496	497	673	649	314	3,533
C-LM-050.PRE	вв	No Bypass- N15	55.6	59.0	61.8	65.7	90.0	50.3	32.4	73.2	200	181	185	339		500	520		358	3,239
C-EIVI-050.1 11E	100	Target	56.0	57.0	58.0	62.0	30.0	50.5	32.4	10.2	200	101		000		500	020	505	000	0.200
		Bypass- B15	56.1	57.0	58.1	62.2	97 7	88.9	73.5	93.4	200	181	186	330	447	500	520	509	358	3,239
C.I.O.025 DDE	-00		-				-		16.5		-									3,034
C-LO-025.PRE	1 00	No Bypass- N16		59.6			73.6	32.4	10.5	56.3	200	101	100	200	553	-03	001	7/3	520	3,03
		Target		59.0			00.7	60.4	24.0	90.4	200	101	105	250	300	400	55+	475	300	3.00
E ULOSO DOS	00	Bypess- B16	57.7		59.1	60.9	99.7	60.1	31.2	82.4	-			_		463				3.03
E-H1-050.PRE	BB	No Bypass- N17	1	56.8			70.8	50.7	49 5	62.7	170	167	193	2/5	510	549	/10	693	358	3,62
		Target		57.0												=				
	-	Bypass- B17	56.1		58.1		98.1	88.9	75 4	93 7						549				3,59
E-HM-000.PRE	BSF	No Bypess- N18	53.2				37.2	29.4	17.4	33.5	170	195	251	281	471	524	633	606	318	3,449
		Target	1	56.0																
		Bypass- B18	56.0	56.1	58.0	61.5	96.0	55.3	29.5	78.4	170	195	251	281	471	524	633	606	288	3,419

TEM ALTERNATIVE .

D-LO-025.TEM	BB	Target	56.0	57.0	57.0	60.0														
		Achieved- BT12	56.3	57.3	57 2	59.6	100.0	91.2	58.5	98.1	180	151	155	193	296	416	528	527	358	2,804
C-HM-050.TEM	88	Target	56.0	56.0	57.0	59.0														
		Achieved- BT14	56.1	58.0	57.2	59.0	100.0	98.3	85.6	99.4	200	181	185	299	438	488	620	771	388	3,570
C-LM-025.TEM	BB	Target	56.0	56.0	58.0	61.0														
		Achieved- BT15	56.1	56.1	58.0	61.4	100.0	94.3	73.6	98.8	200	181	185	253	358	438	656	629	178	3.078
C-LO-025.TEM	BB	Target	57.0	58.0	59.0	60.0														
		Achieved- BT16	57.0	57.5	59.0	61.8	99.6	77.4	49.9	96.6	200	181	185	223	344	388	510	464	328	2,823
E-HI-025.TEM	BB	Target	56.0	56.0	57.0	60.0														
		Achieved- BT17	56.0	56.0	56.6	60.1	99.8	96.7	85.5	99.2	170	121	130	234	489	537	645	633	328	3,287

Results based on assumption of "dry" water year spawning distributions and Red Bluff Diversion Dam gates raised until May 1

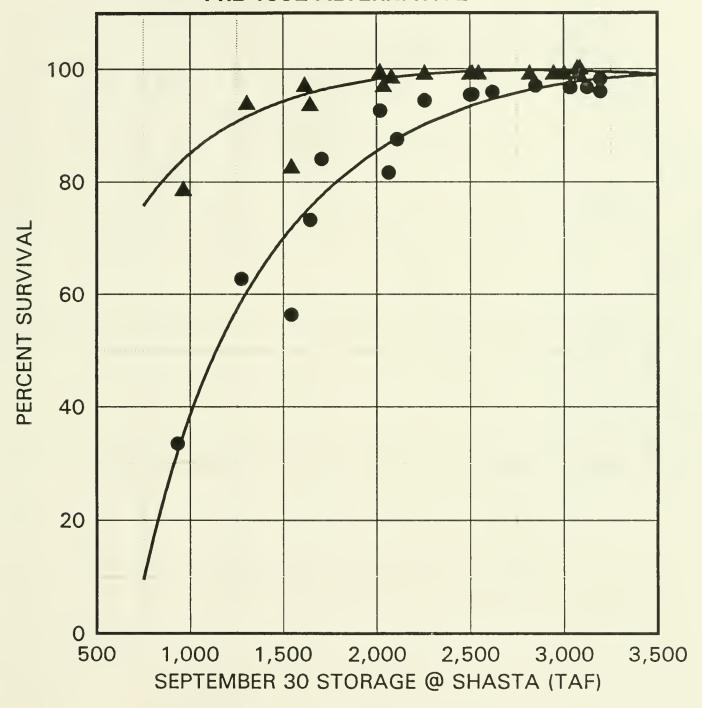
Figure 23 (continued)

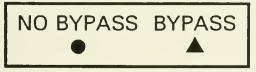
PRE-1992" ALTE		UNITED STATES E TEMPERATURE A	ND SL	IRVIV	AL RE	SUL	rs FO	R LOI	NG TE	RM C	VP-O	CAP				page 2 d	of 2	
THE-1332 ACTO	T							Shas	ta By	Dass							September	30
WATER VEAR	ا دما	NTROL POINT							AF)								Shasta Store	age (MAF
WATER YEAR OPERATIONS		VIRUL POINT					/arm			A	May	Jun	Jul	Cold	- 1	Total	No Bypass	Bypass
PLAN			Jan		_			Jun	O O	Aug	IVICAY	Jun	0	0	0	0	110 0) pass	- / [
W-HI-100.PRE	RB	No Bypass- N01	0	0	0	0	0	U	Ů									
		Bypass- B01	700	750	580	517	652	226	137	0			0	301	536	4,399	3.2	3.1
W-HM-100.PRE	RB	No Bypass- N02	0	0	0	0	0	0	0	0			0	0	0	0		
		Bypass- B02	700	750	580	517	652	476	0	41			371	90	430	4,607	3.2	3.1
W-LM-100.PRE	ВВ	No Bypass- NO3	0	0	0	0	0	0	0	0			0	0	0	0		
		Bypass- B03	169	750	580	517	652	343	268	153			0	0	358	3,790	3.1	3.1
W-LO-100.PRE	вв	No Bypass- N04	0	0	0	0	0	0	0	0			0	0	0	0		
		Bypass- B04	140	575	580	517	652	337	367	148			0	0	358	3,674	3.0	3.0
A-HI-100.PRE	ВВ	No Bypass- N05	0	0	0	0	0	0	0	0			0	0	0	0		
		Bypass- 805	340	430	410	217	535	536	265	181			0	0	355	3,269	3.0	2.9
A-HM-100.PRE	ВВ	No Bypass- N06	0	0	0	0	0	0	0	0			0	0	0	0		
		Bypass- 806	155	213	410	217	560	574	399	130			0	0	357	3,015	2.8	2.8
A-LM-100.PRE	BB	No Bypass- N07	0	0	0	0	0	0	0	0			0	0	0	0		
		Bypass- 807	168	136	140	193	560	494	320	78			0	11	328	2,428	2.5	2.5
A-LO-100.PRE	88	No Bypass- N08	0	0	0	0	0	0	0	0			0	0	0	0		
		Bypass- 808	168	138	149	193	559	491	314	69			0	45	331	2,457	2.5	2.5
D-HI-100.PRE	BB	No Bypass- N09	0	0	0	0	0	0	0	0			0	0	0	0		
		Bypass- B09	200	171	210	413	493	441	144	71			0	16	268	2,427	2.6	2.5
D-HM-100.PRE	BB	No Bypass- N10	0	0	0	0	0	0	0	0			0	0	0	0	<u> </u>	
		, , , , , , , , , , , , , , , , , , ,	-															
		Bypass- B10	183	153	160	403	493	396	117	102			0	37	288	2,332	2.3	2.0
D-LM-075.PRE	88	No Bypass- N11	0	0	0	0	0	0	0	0			0	0	0	0		
		Bypass- B11	180	151	155	343	277	190	54	12			36	108	354	1,860	2.1	2.
D-LO-050.PRE	ВВ	No Bypass- N12	0	0	0	0	0	0	0	0			0	0	0	0		
		Bypass- B12	180	151	155	283	138	98	. 2	0_			295	488	358	2,148	2.1	2.0
C-HI-100.PRE	ВВ	No Bypass- N13	Ö	0	0	0	0	0	0	0			0	0	0	0		
		Bypass- B13	200	181	185	386	529	226	43	66			0	59	389	2,264	2.0	2.0
C-HM-075.PRE	BB	No Bypass- N14	0	0	0	0	0	0	0	0			0	0	0	0		
		Bypass- B14	200	181	185	338	431	115	38	28			14	140	314	1,984	1.7	1.0
C-LM-050.PRE	вв	No Bypass- N15	0	0	0	0		0	0	0			0	0	0	0	+	
		Bypass- B15	200	181	185	339	192	71	0	0			271	397	358	2,194	1.6	1.6
C-LO-025.PRE	BB	No Bypass- N16	0	0	0	0		0	0	0			0	0	0	0		
		Bypass- B16	200	181	185	208	176	101	41	3			22	196	328	1,641	1.5	1.5
E-HI-050.PRE	ВВ	No Bypass- N17	0	0	0		0	0	0	0			0	0	0	0	1.5	1.
		Bypass- B17	170	167	193	275	510	157	85	25			0	212	328	2,128	1.3	1.3
E-HM-000.PRE	BSF	No Bypass- N18	0		0			0	0	0			0	0	0	0		1.
		Bypass- B18	170	195	251	281	380	137	71	0			0	200	288	1,982	.9	1.
			1 . , 5	. 00			-00			-			- 0	500	200	1,002		

TEM ALTERNATIVE

D-LO-025.TEM	BB	Achieved- BT12	180	151	155	193	0	16	0	0	296	0	528	527	358	2,404	N/A	2.3
C-HM-050.TEM	BB	Achieved- BT14	200	181	185	299	363	166	13	52	0	0	66	97	388	2,010	N/A	1.9
C-LM-025.TEM	BB	Achieved- BT15	200	181	185	253	11	15	2	0	0	0	283	434	178	1,742	N/A	19
C-LO-025.TEM	BB	Achieved- BT16	200	181	185	223	0	0	0	0	344	388	510	464	328	2,823	N/A	2.2
E-H1-025, TEM	BB	Achieved- BT17	170	121	130	234	489	212	23	11	0	0	2	183	328	1,903	N/A	2.2

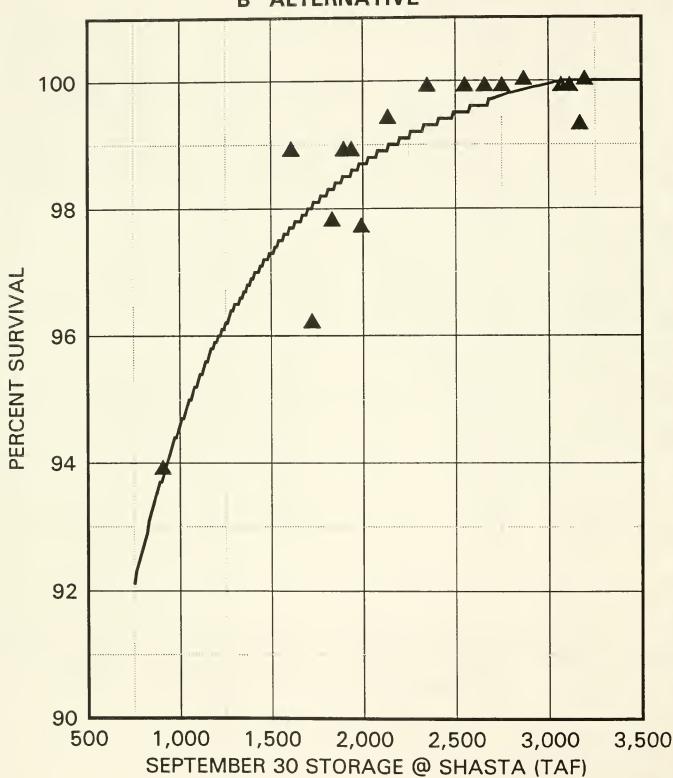
Figure 24

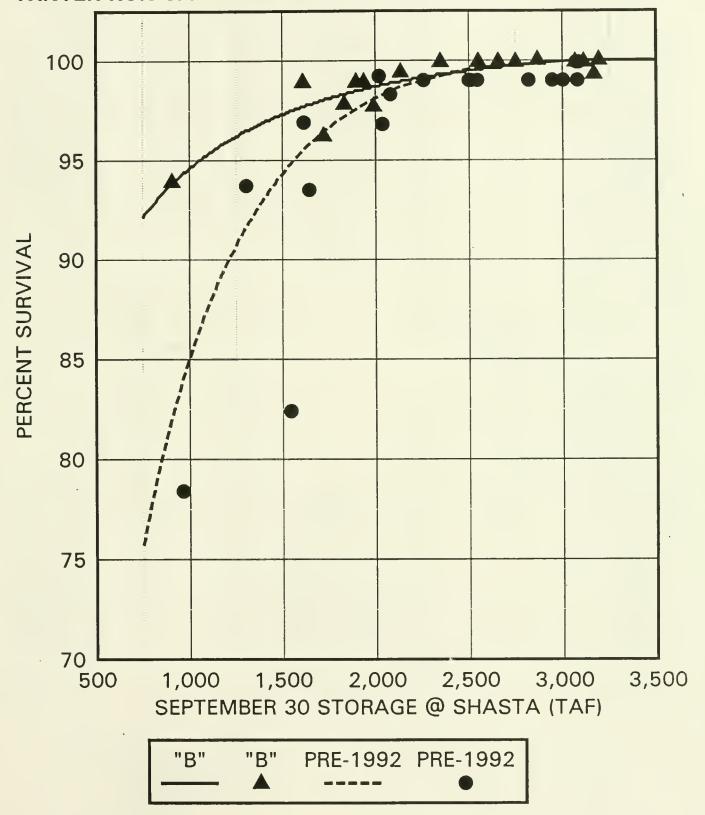

UNITED STATES BUREAU OF RECLAMATION TEMPERATURE AND SURVIVAL RESULTS FOR LONG TERM CVP-OCAP page 1 of 2 "B" ALTERNATIVE Tempereture Total Shesta Release Survival WATER YEAR CONTROL POINT (F) (%) **OPERATIONS** Reach 1 Reach 2 Reach 3 Overall **PLAN** Jun Jul Aug Sep (BCL) (BB) (RB) Jan Feb Mar Apr May Jun Jul Aug Sep Total W-HI-100.B RB Target 56.0 56.0 56.0 58.0 55.9 56.1 57.8 100.0 100.0 Achieved- B19 100.0 99.9 56.0 700 750 580 517 652 558 742 609 536 5,644 W-HM-100.B RB Target 56.0 56.0 56.0 58.0 100.0 100.0 56.0 56.0 56.4 58.2 99.9 100.0 Achieved- B20 700 750 580 517 652 558 742 609 521 5,629 Target W-LM-100.B RB 56.0 56.0 58.0 60.0 56.1 56.2 56.1 60.2 100.0 98.4 97.1 210 750 580 517 652 558 847 738 331 Achieved- B21 99.3 5,183 W-LO-100.B RB Target 56.0 56.0 56.0 59.0 100.0 140 519 580 517 652 558 827 738 327 Achieved- B22 56.2 56.1 56.1 59.4 99.9 98.8 99.9 4,858 A-HI-100.B RB Target 58.0 58.0 56.0 59.0 Achieved- B23 56.1 59.3 100.0 99.9 98.8 99.9 340 430 410 217 534 452 687 659 325 4.054 A-HM-100.B RB Target 56.0 56.0 58.0 59.0 Achieved- B24 56.1 56.1 56.0 59.0 100.0 99.9 98.8 99.9 155 213 410 253 471 581 774 814 323 3,994 A-LM-100.B RB Target 56.0 56.0 56.0 59.0 Achieved- B25 56.2 56.0 59.1 100.0 99.9 98.8 56.0 99.9 168 136 155 193 563 619 819 814 328 3,795 A-LO-100.B RB Target 56.0 56.0 57.0 59.0 Achieved- B26 56.2 56.0 57.1 59.3 100.0 99.9 98.4 99.9 168 138 165 193 572 619 819 783 232 3,689 D-HI-075.B RB 56.0 56.0 57.0 Target 59.0 Achieved- B27 56.4 56.2 57.1 100.0 99.9 59.0 98.4 99.9 180 170 230 269 481 509 721 676 352 3,588 D-HM-075.B RB Target 56.0 56.0 58.0 59.0 56.3 56.3 Achieved- B28 58.3 59.4 100.0 99 9 99.4 97.9 183 153 190 293 490 511 784 625 352 3,581 Target D-LM-075.B вв 56.0 56.0 58.0 60.0 Achieved- B29 56.1 58.0 99.8 56.3 60.4 96.4 76.9 98.9 180 151 170 500 489 471 709 570 329 3,569 D-LO-050.B BB Target 56.0 57.0 58.0 61.0 61.7 Achieved- B30 56.2 57.0 58.3 99.8 88.9 55.7 97.7 180 151 170 443 486 419 522 479 331 3,181 C-HI-075.B BB Target 56.0 56.0 58.0 58.0 Achieved- B31 56.2 56.2 57.9 57.9 100.0 98.8 84.0 99.4 200 181 200 409 513 452 670 730 327 3,682 C-HM-050.B 56.0 58.0 88 56.0 60.0 Target Achieved- B32 56.2 56.2 58.0 60.2 99.8 96.4 76.9 98.9 200 181 200 382 509 508 706 451 295 3,432 C-LM-025.B вв Target 56.0 57.0 58.0 61.0 Achieved- 833 56.1 57.4 58.3 61.7 99.8 88.9 58.8 97.8 200 181 200 283 418 468 626 520 259 3,155 C-LO-000.B вв 57.0 58.0 58.0 60.0 Target Achieved- B34 57.0 58.1 58.4 61.8 99.6 80.5 30.9 96 2 200 181 200 223 340 386 543 461 338 2,872 E-HI-025.B вв Target 56.0 56.0 57.0 60.0 Achieved- B35 56.1 56.2 57.3 60.4 99.6 96.7 83.6 98.9 214 166 192 203 430 486 646 604 357 3,298 E-HM-000.B BSF Target 56.0 56.0 58.0 59.0 Achieved- B36 56.2 56.3 58.3 59.2 99.2 54.0 29.5 93.9 170 195 251 251 431 534 703 476 295 3,306

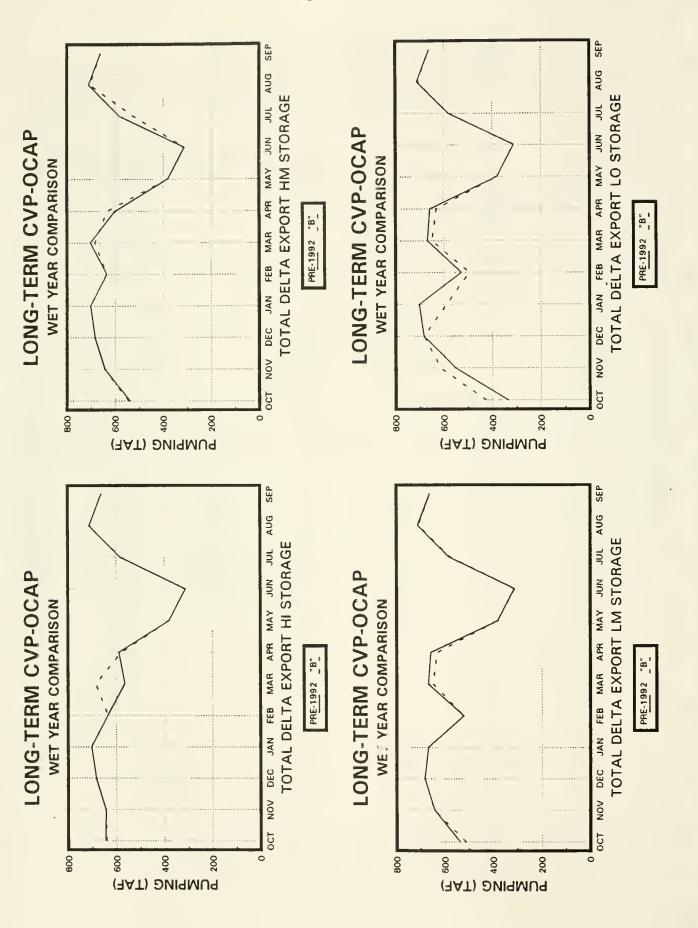

Figure 24 (continued)

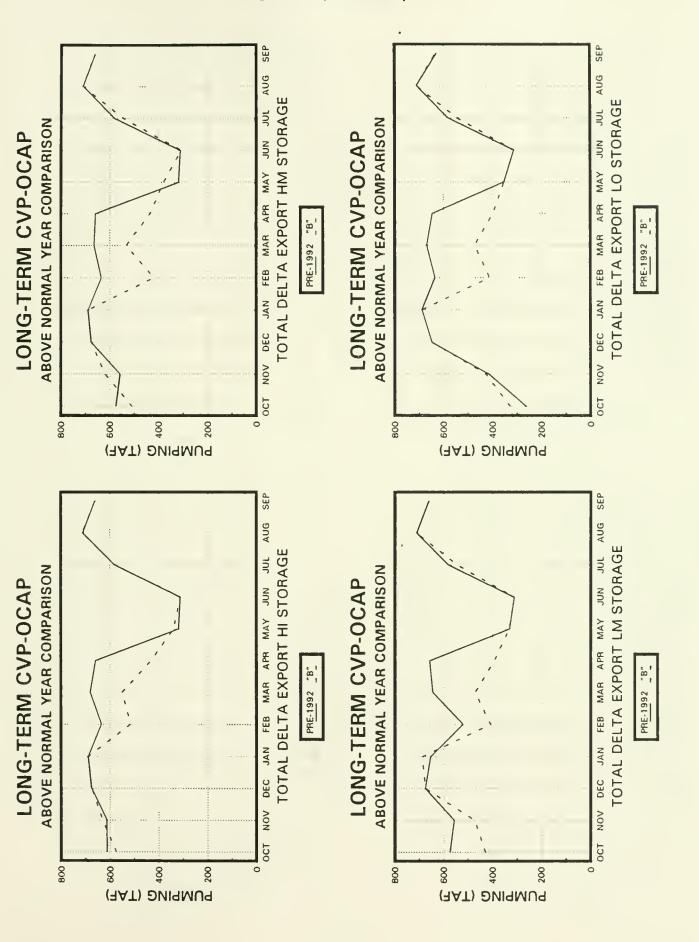
"B" ALTERNATIV		UNITED STATES I TEMPERATURE A							NG TI	ERM C	CVP-O	CAP				page 2 (of 2
	1							Shas	ta By	pess						-	
WATER YEAR	CON	NTROL POINT						(T	AF)								September 30
OPERATIONS						٧	/arm							Cold	d	Total	Shesta Storage
PLAN			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	May	Jun	Jul	Aug	Sep		(MAF)
W-HI-100.B	RB	Achieved- B19	700	750	580	517	652	226	84	0	0	0	0	505	536	4,550	3.1
W-HM-100.B	RB	Achieved- B20	700	750	580	517	652	92	71	0	0	0	17	609	521	4,509	3.1
W-LM-100.B	RB	Achieved- B21	210	750	580	517	652	108	197	19	0	0	0	256	331	3,620	3.0
W-LO-100.B	RB	Achieved- B22	140	519	580	517	652	124	181	14	0	0	0	192	327	3,246	3.1
A-HI-100.B	RB	Achieved- B23	340	430	410	217	534	0	8	6	0	0	162	298	325	2,730	3.2
A-HM-100.B	RB	Achieved- B24	155	213	410	253	471	282	123	50	0	0	0	96	323	2,376	2.9
A-LM-100.B	RB	Achieved- B25	168	136	155	193	563	304	134	49	0	0	0	157	328	2,187	2.7
A-LO-100.B	RB	Achieved- B26	168	138	165	193	572	225	94	27	0	0	0	145	323	2,050	2.4
D-HI-075.B	RB	Achieved- B27	180	170	230	269	481	0	0	44	0	509	721	78	352	3,034	2.8
D-HM-075.B	RB	Achieved- B28	183	153	190	293	490	0	59	22	0	511	68	71	352	2,392	2.4
D-LM-075.B	ВВ	Achieved- B29	180	151	170	500	376	85	66	4	0	0	37	173	329	2,071	1.9
D-LO-050.B	ВВ	Achieved- B30	180	151	170	443	272	10	2	0	0	0	239	479	331	2,277	1.9
C-H1-075.B	88	Achieved- B31	200	181	200	409	513	85	74	114	0	0	0	34	327	2,137	2.2
C-HM=050.B	BB	Achieved- B32	200	181	200	382	442	127	32	0	0	0	40	220	295	2,119	1.8
C-LM-025.B	BB	Achieved- B33	200	181	200	283	129	43	28	0	0	0	91	520	259	1,934	1.7
C-LO-000.B	BB	Achieved- B34	200	181	200	223	0	0	18	0	246	386	59	410	338	2,261	1.7
E-HI-025.B	BB	Achieved- B35	214	166	192	203	116	34	11	0	0	0	2	206	357	1,501	1.6
E-HM-000.B	BSF	Achieved- B36	170	195	251	251	357	162	99	0	0	0	0	136	295	1,916	1.1

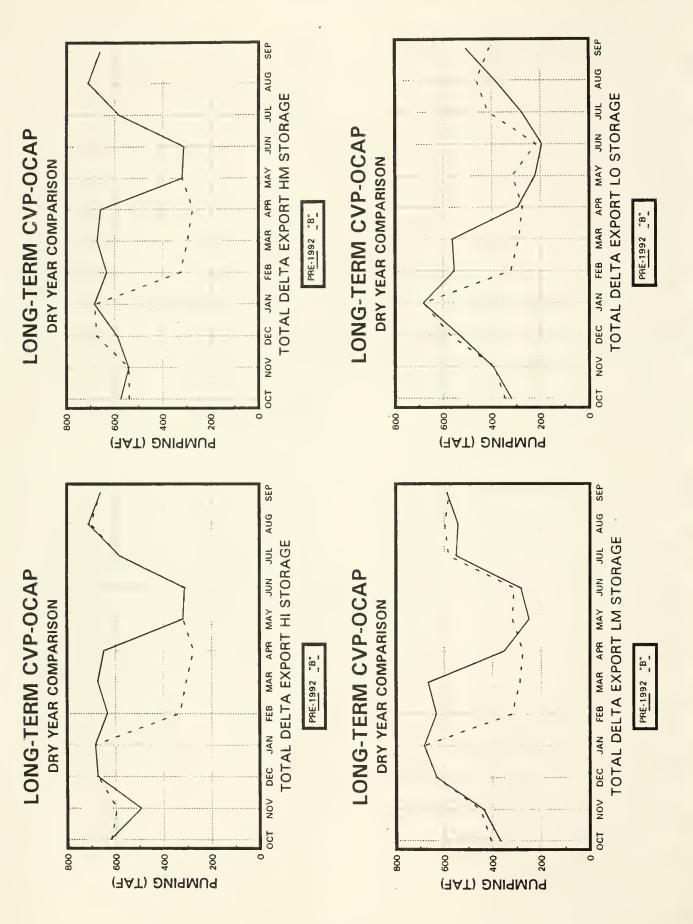
SACRAMENTO RIVER

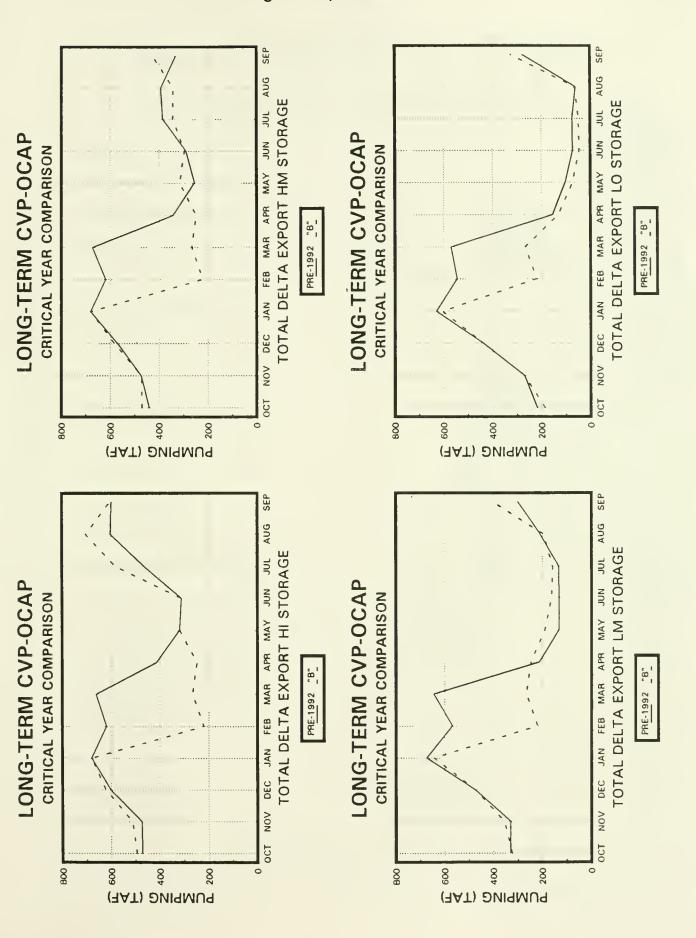

WINTER RUN SALMON TEMPERATURE RELATED SURVIVAL PRE-1992 ALTERNATIVE

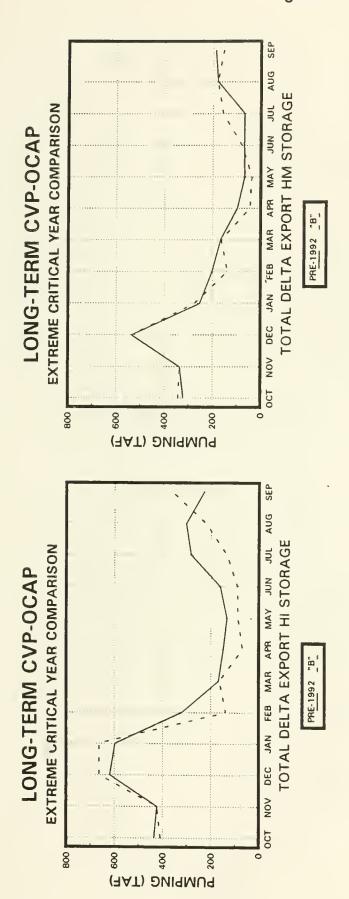

SACRAMENTO RIVER

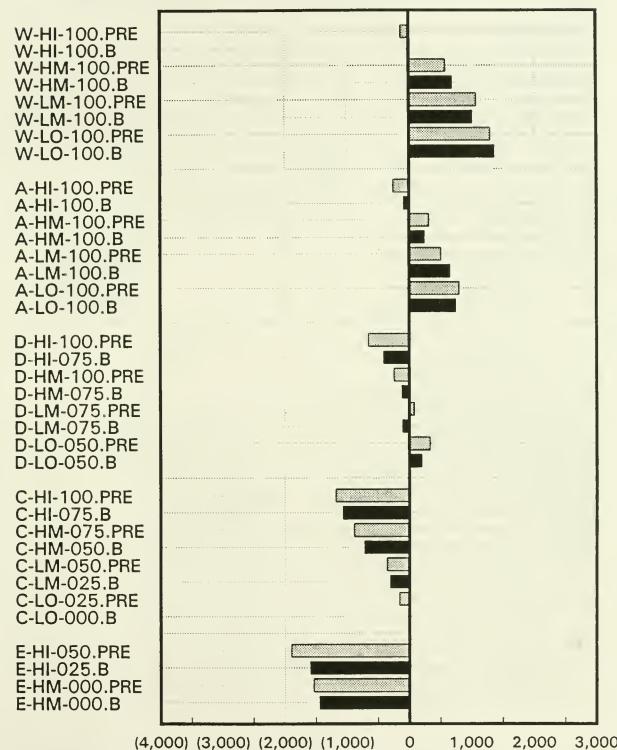

WINTER RUN SALMON TEMPERATURE-RELATED SURVIVAL
"B" ALTERNATIVE




SACRAMENTO RIVER


WINTER RUN SALMON TEMPERATURE-RELATED SURVIVAL





LONG-TERM CVP-OCAP

ALTERNATIVE COMPARISON

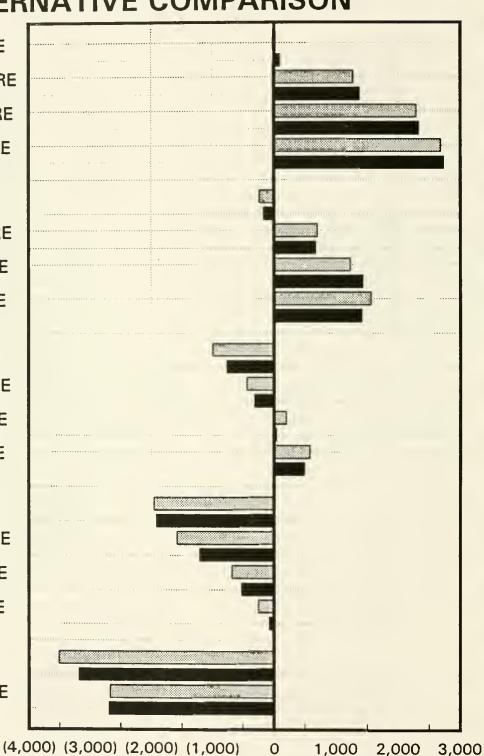


CHANGE IN SHASTA STORAGE (TAF)

ALTERNATIVE DESIGNATOR

LONG-TERM CVP-OCAP

ALTERNATIVE COMPARISON



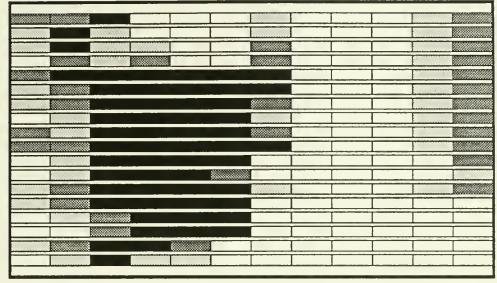
A-HI-100.PRE A-HI-100.B A-HM-100.B A-LM-100.PRE A-LM-100.B A-LO-100.PRE A-LO-100.B

D-HI-100.PRE D-HI-075.B D-HM-100.PRE D-HM-075.B D-LM-075.B D-LM-075.B D-LO-050.PRE D-LO-050.B

C-HI-100.PRE C-HI-075.B C-HM-075.PRE C-HM-050.B C-LM-050.PRE C-LM-025.B C-LO-025.PRE C-LO-000.B

E-HI-050.PRE E-HI-025.B E-HM-000.PRE E-HM-000.B

CHANGE IN SYSTEM STORAGE (TAF)


(SYSTEM = CLE + SHA + FOL)

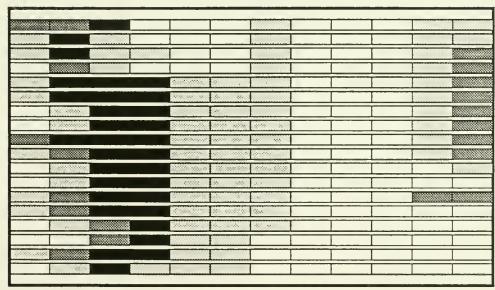
ALTERNATIVE DESIGNATOR

LONG-TERM CVP-OCAP

PRE-1992 ALTERNATIVE

W-HI-100.PRE W-HM-100.PRE W-LM-100.PRE W-LO-100.PRE A-HI-100.PRE A-HM-100.PRE A-LM-100.PRE A-LO-100.PRE D-HI-100.PRE D-HM-100.PRE **D-LM-075.PRE** D-LO-050.PRE C-HI-100.PRE C-HM-075.PRE C-LM-050.PRE C-LO-025.PRE E-HI-050.PRE E-HM-000.PRE

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP


ANTIOCH FLOW CONDITION

NEGATIVE 1,000 CFS OR LESS ZERO TO NEGATIVE 1,000 CFS

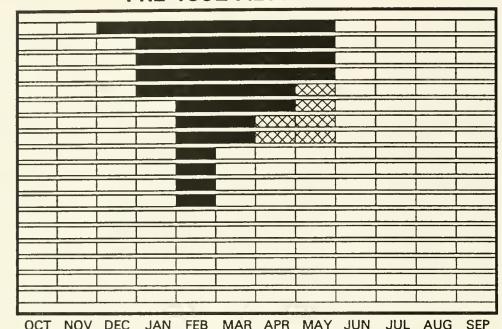
ZERO TO POSITIVE 1,000 CFS MORE THAN 1,000 CFS

"B" ALTERNATIVE

W-HI-100.B W-HM-100.B W-LM-100.B W-LO-100.B A-HI-100.B A-HM-100.B A-LM-100.B A-LO-100.B D-HI-075.B D-HM-075.B D-LM-075.B D-LO-050.B C-HI-075.B C-HM-050.B C-LM-025.B C-LO-000.B E-HI-025.B E-HM-000.B

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

ANTIOCH FLOW CONDITION


- NEGATIVE 1,000 CFS OR LESS ZERO TO NEGATIVE 1,000 CFS
- ZERO TO POSITIVE 1,000 CFS MORE THAN 1,000 CFS

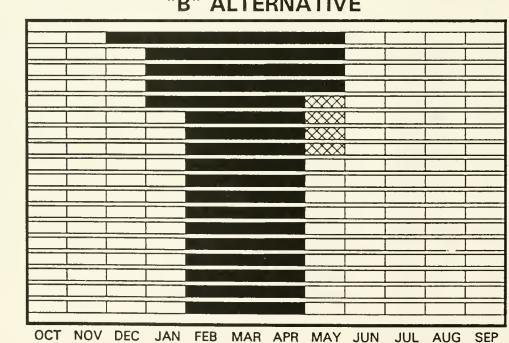
LONG-TERM CVP-OCAP

PRE-1992 ALTERNATIVE

ALTERNATIVE DESIGNATOR W-HI-100.PRE W-HM-100.PRE W-LM-100.PRE W-LO-100.PRE A-HI-100.PRE A-HM-100.PRE A-LM-100.PRE A-LO-100.PRE D-HI-100.PRE **D-HM-100.PRE** D-LM-075.PRE D-LO-050.PRE C-HI-100.PRE C-HM-075.PRE C-LM-050.PRE C-LO-025.PRE E-HI-050.PRE E-HM-000.PRE

> W-HI-100.B W-HM-100.B W-LM-100.B W-LO-100.B A-HI-100.B A-HM-100.B A-LM-100.B A-LO-100.B D-HI-075.B D-HM-075.B D-LM-075.B D-LO-050.B C-HI-075.B C-HM-050.B C-LM-025.B C-LO-000.B E-HI-025.B E-HM-000.B

CROSS CHANNEL GATE POSITION

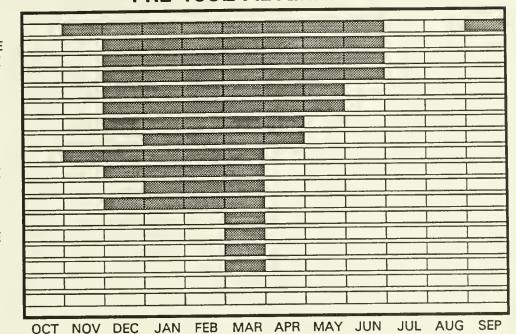

GATES OPEN

GATES OPEN OR CLOSED

GATES CLOSED

"B" ALTERNATIVE

ALTERNATIVE DESIGNATOR

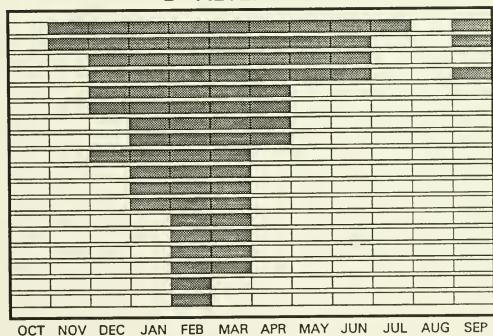

CROSS CHANNEL GATE POSITION

GATES OPEN OR CLOSED **GATES OPEN** GATES CLOSED

ALTERNATIVE DESIGNATOR W-HI-100.PRE W-HM-100.PRE W-LM-100.PRE W-LO-100.PRE A-HI-100.PRE A-HM-100.PRE A-LM-100.PRE A-LO-100.PRE **D-HI-100.PRE** D-HM-100.PRE D-LM-075.PRE D-LO-050.PRE C-HI-100.PRE C-HM-075.PRE C-LM-050.PRE C-LO-025.PRE E-HI-050.PRE E-HM-000.PRE

LONG-TERM CVP-OCAP

PRE-1992 ALTERNATIVE



COA-DELTA STATUS

IN BALANCE

EXCESS

"B" ALTERNATIVE

W-HI-100.B W-HM-100.B W-LM-100.B W-LO-100.B A-HI-100.B A-HM-100.B A-LM-100.B A-LO-100.B D-HI-075.B D-HM-075.B D-LM-075.B D-LO-050.B C-HI-075.B C-HM-050.B C-LM-025.B C-LO-000.B E-HI-025.B E-HM-000.B

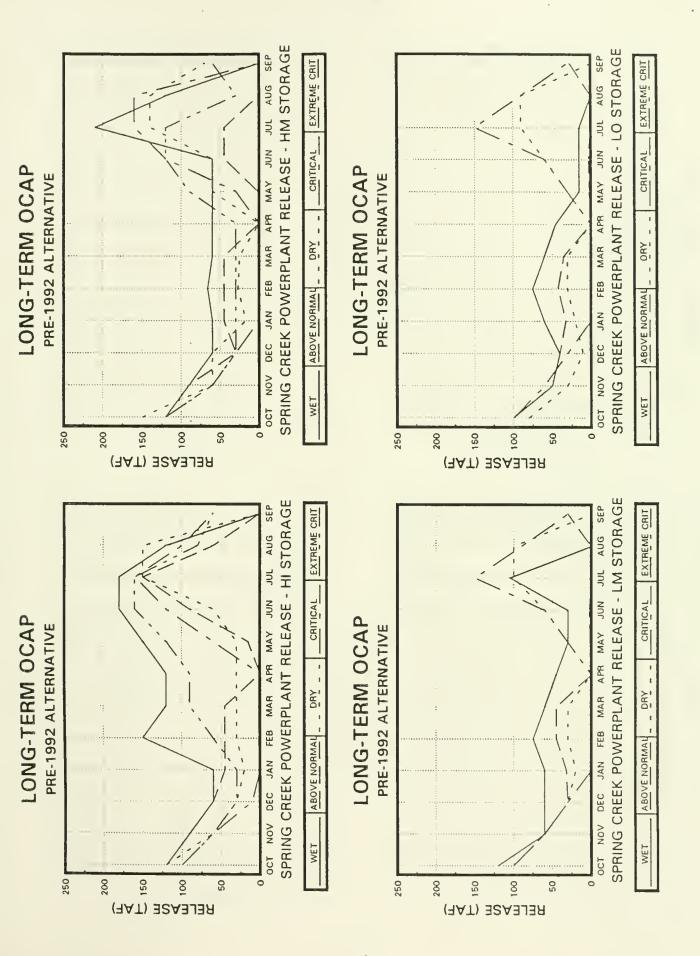
ALTERNATIVE DESIGNATOR

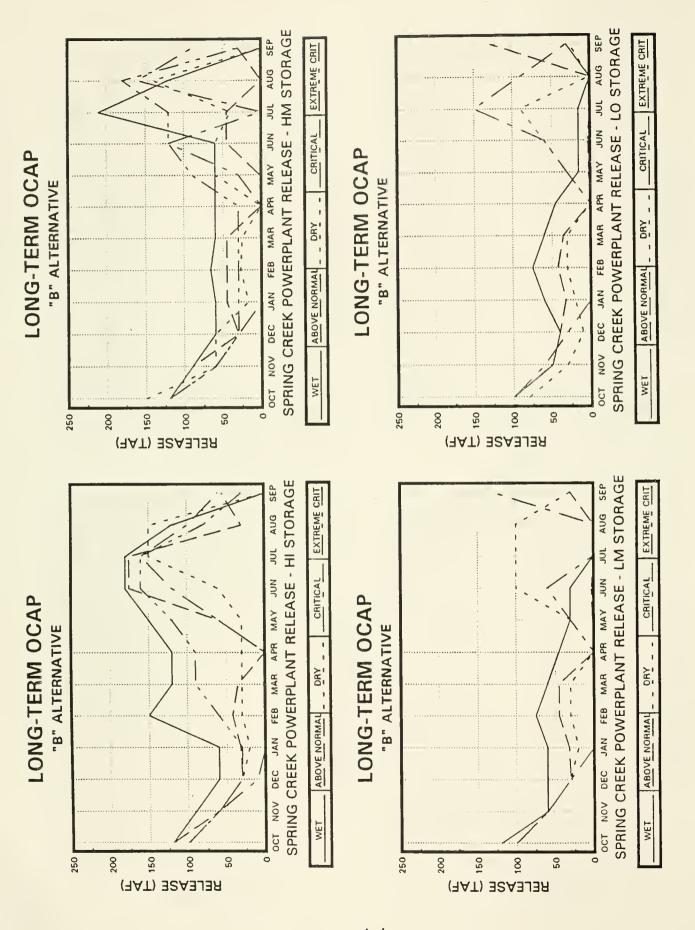
COA-DELTA STATUS

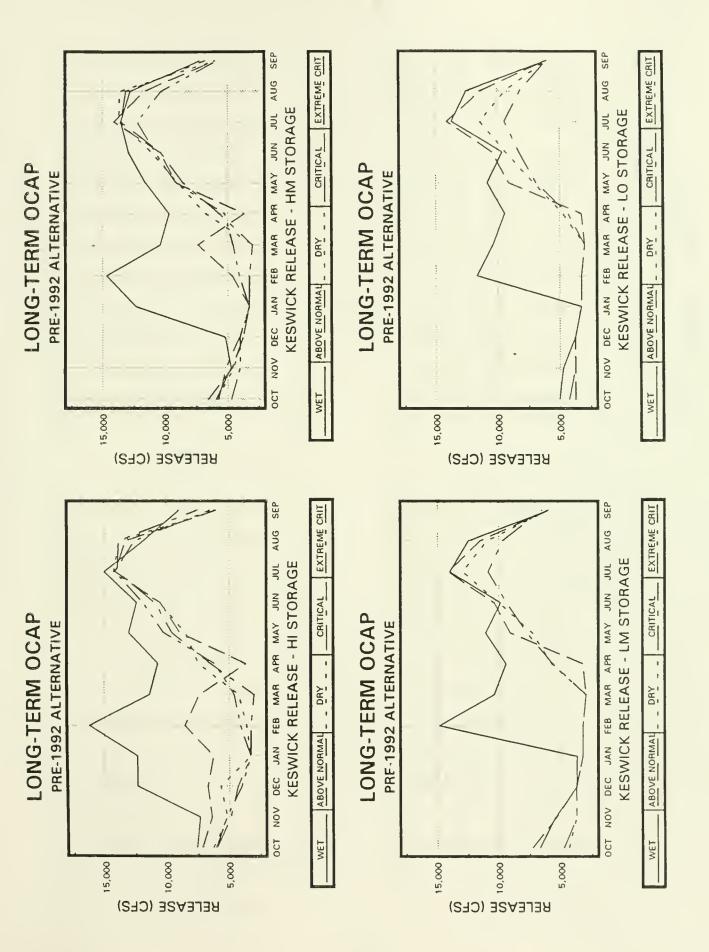
	IN	BAI	_AN	CE
--	----	-----	-----	----

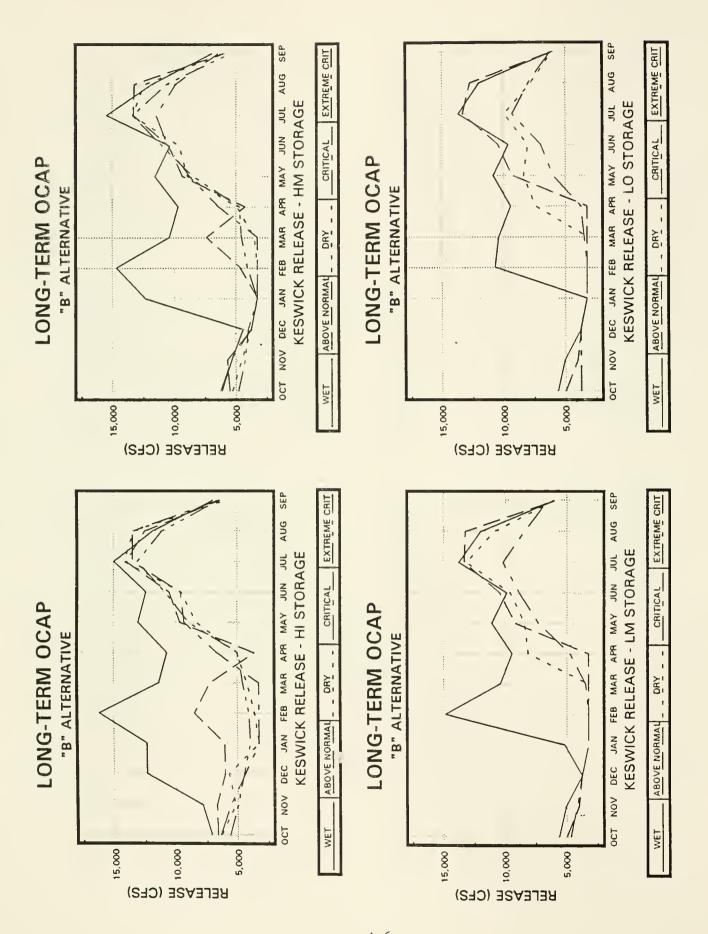
EXCESS

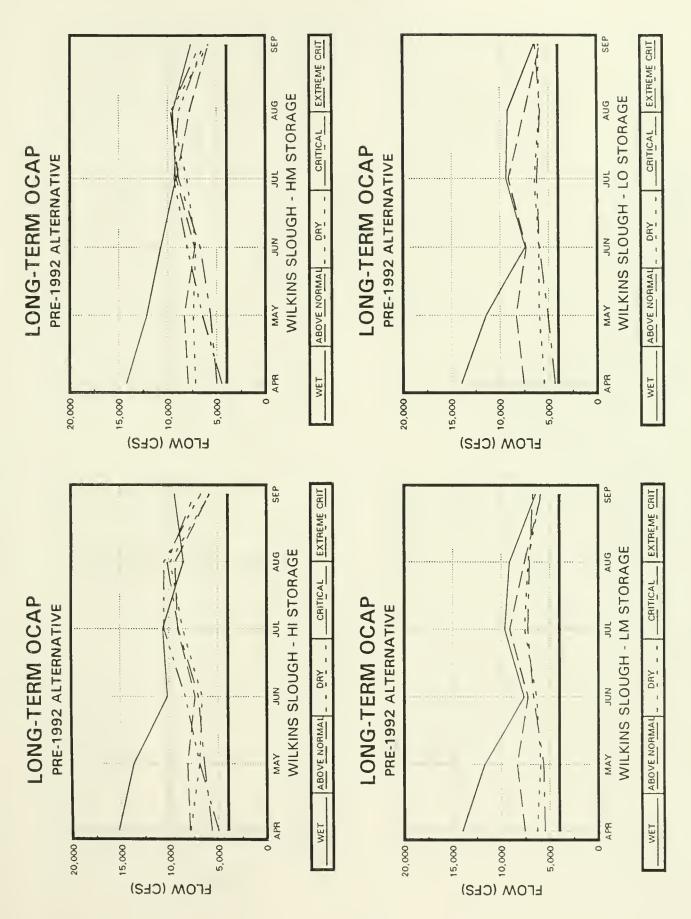
Appendix A

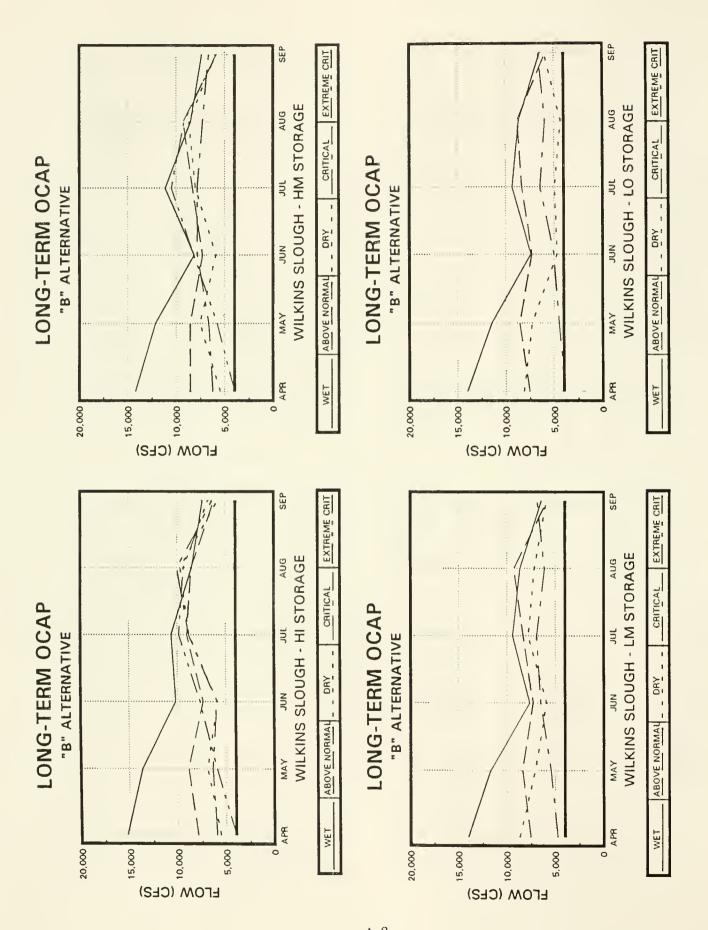

Graphical Results of CVP-OCAP Water Year Operations Studies

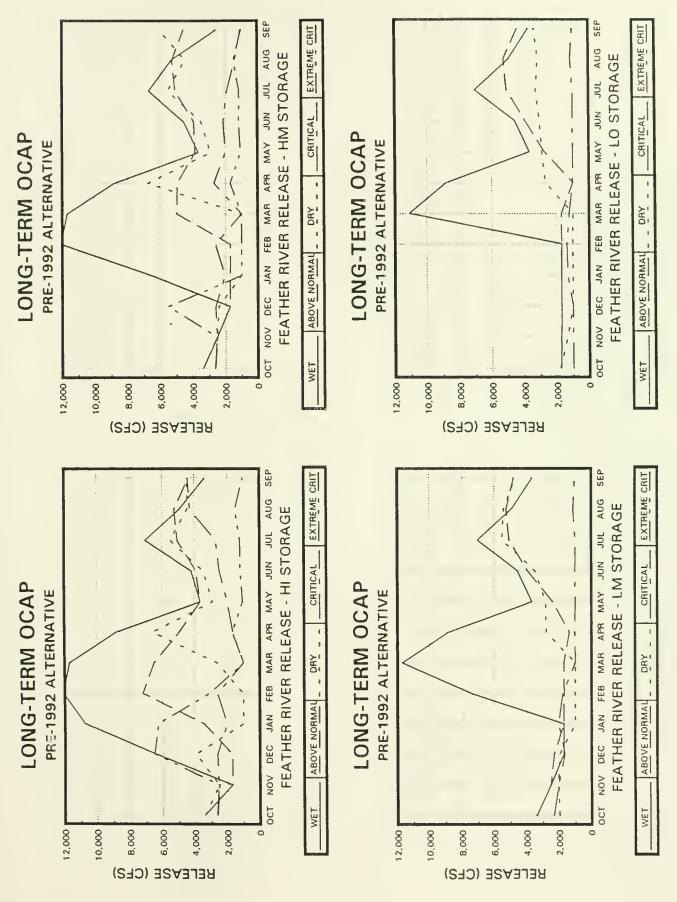

Appendix A

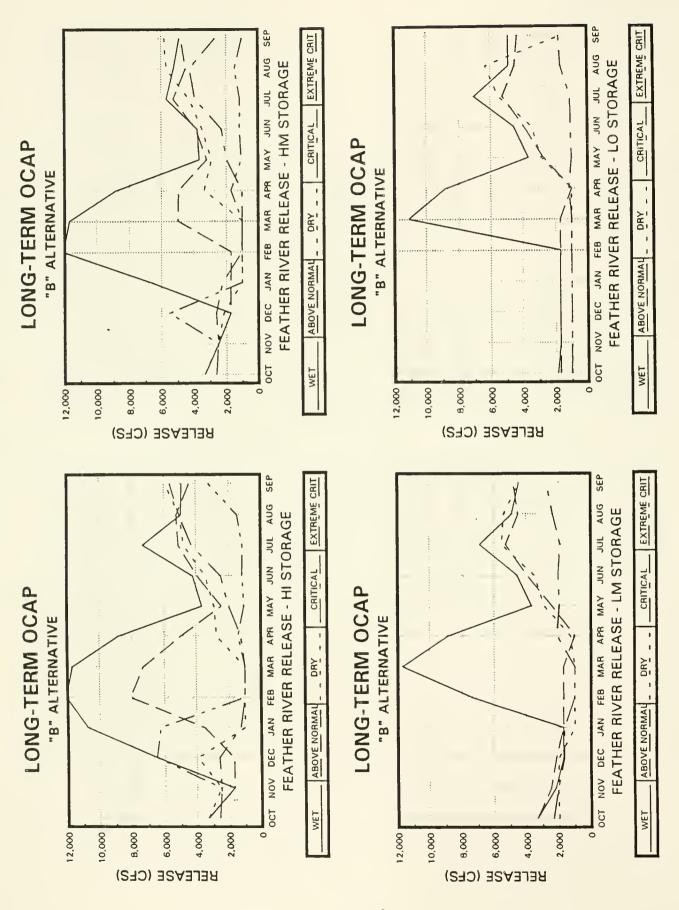

Table of Contents

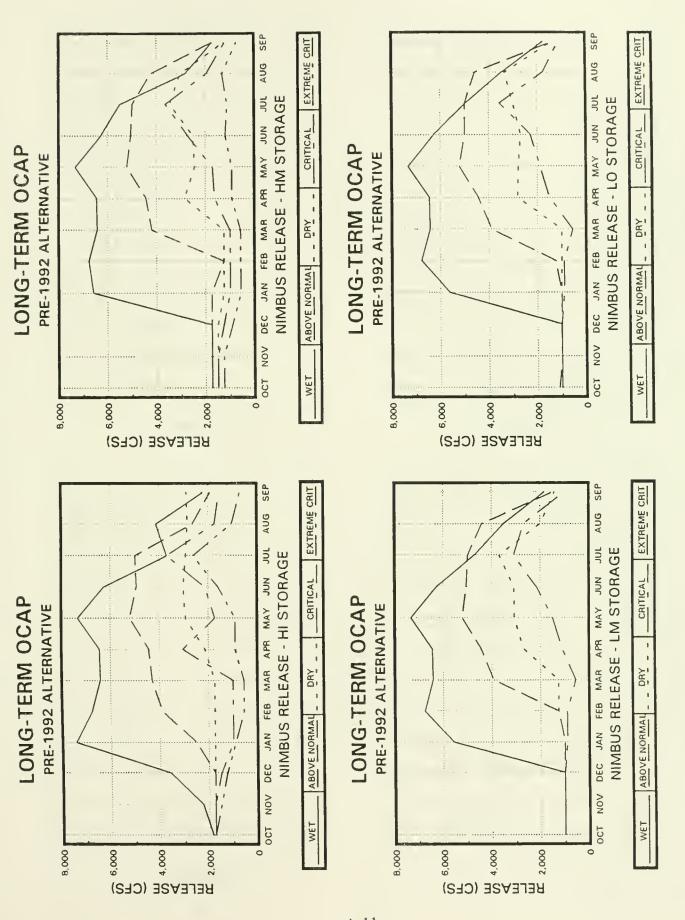

Spring Creek Powerplant Release (Plots)	A-3 - A-4
Keswick Release (Plots)	A-5 - A-6
Wilkins Slough (Plots)	A-7 - A-8
Feather River Release (Plots)	A-9 - A-10
Nimbus Release (Plots)	A-11 - A-12
Clair Engle Storage (Plots)	A-13 - A-14
Shasta Storage (Plots)	A-15 - A-16
Oroville Storage (Plots)	A-17 - A-18
Folsom Storage (Plots)	A-19 - A-20
Federal San Luis Storage (Plots)	A-21 - A-22
Shasta Storage Comparison (Plots) Pre-1992 Versus B	A-23 - A-27
CVP System Storage Comparison (Plots) Pre-1992 Versus B	A-28 - A-32
Tracy Pumping Comparison (Plots) Pre-1992 Versus B	A-33 - A-37
Banks Pumping Comparison (Plots) Pre-1992 Versus B	A-38 - A-42

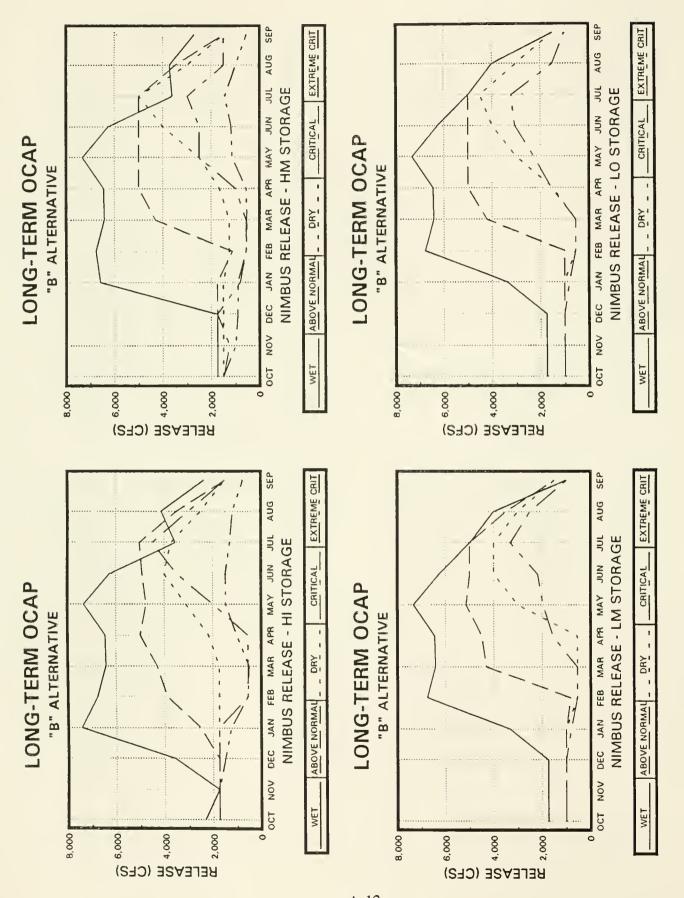


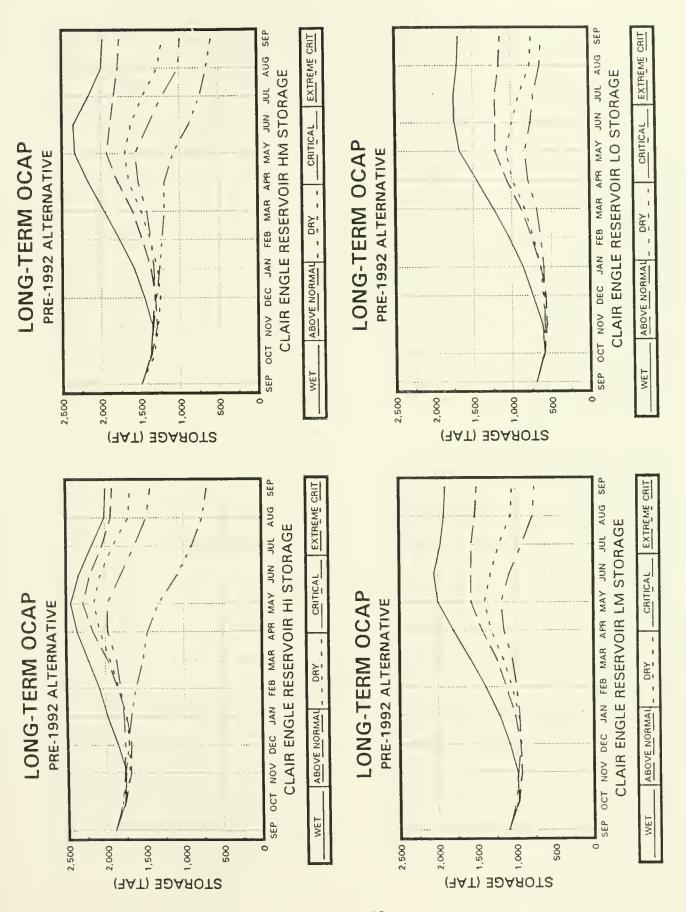


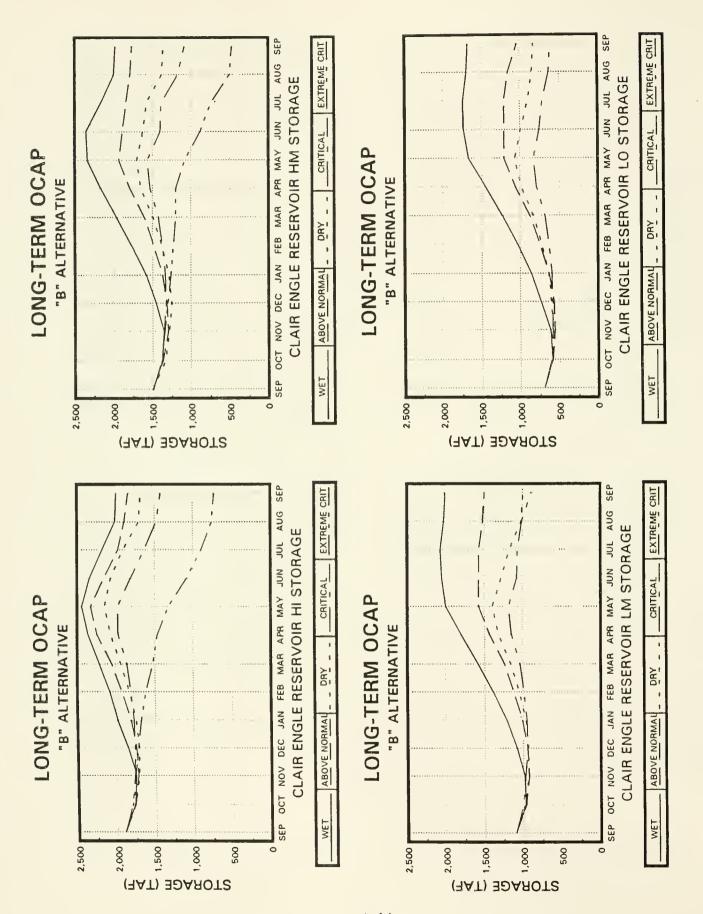


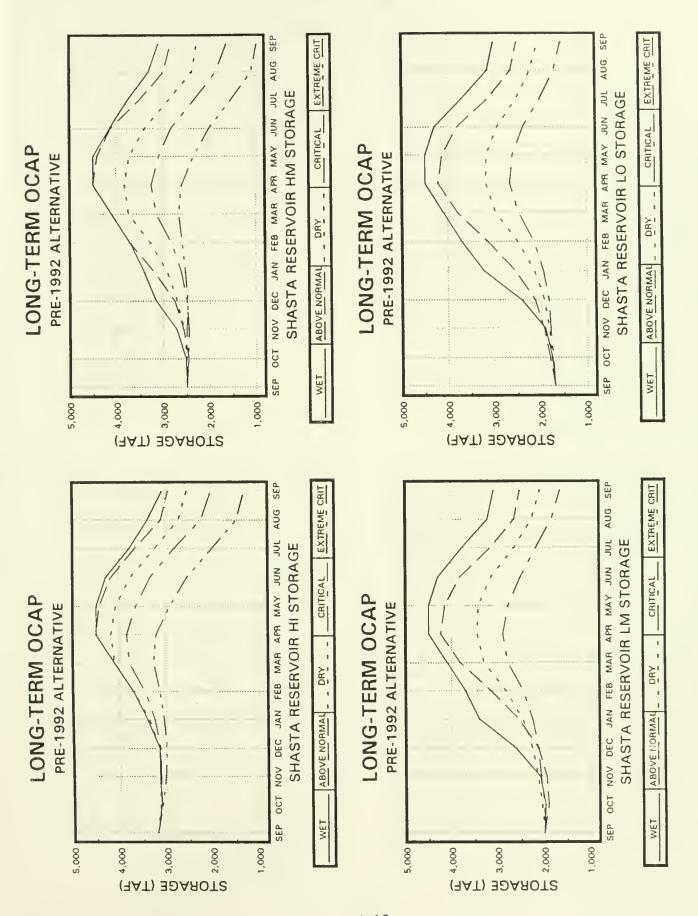


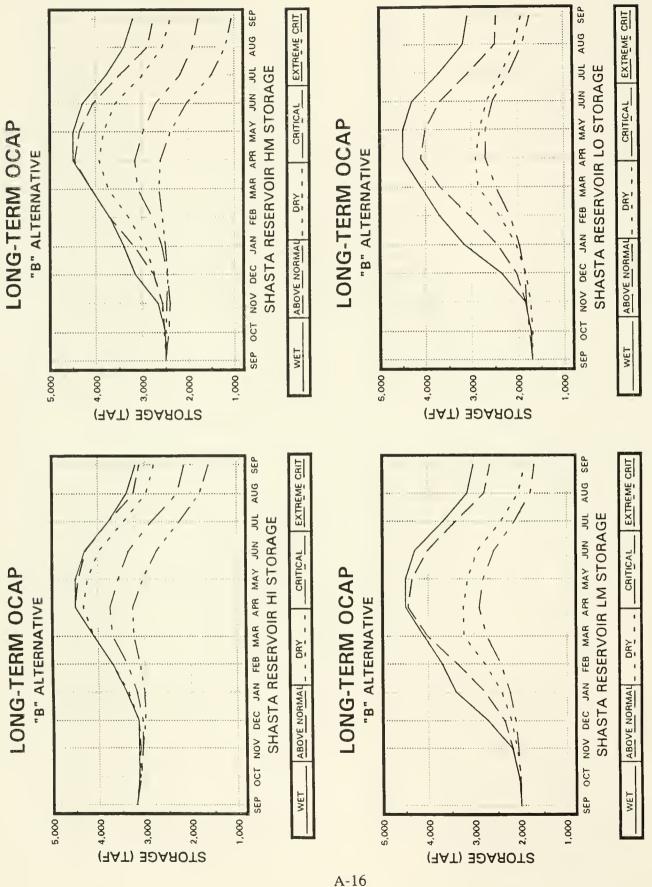


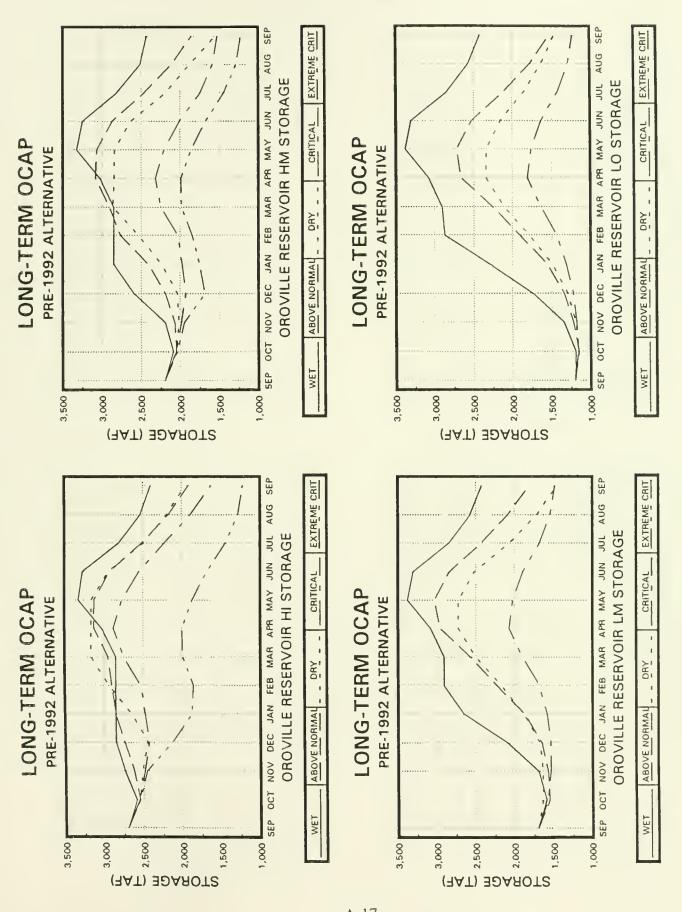


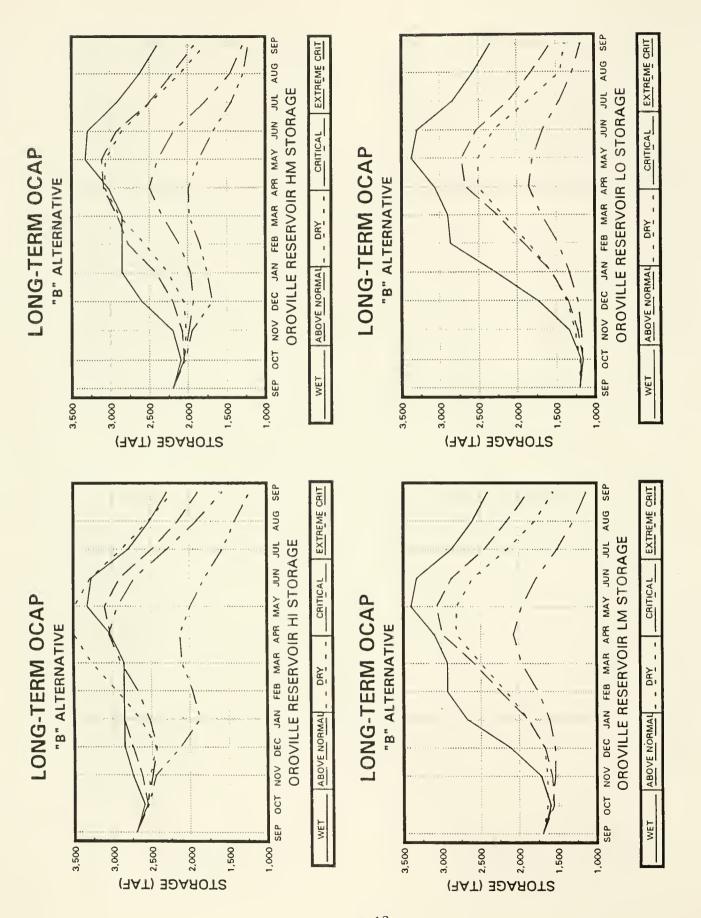


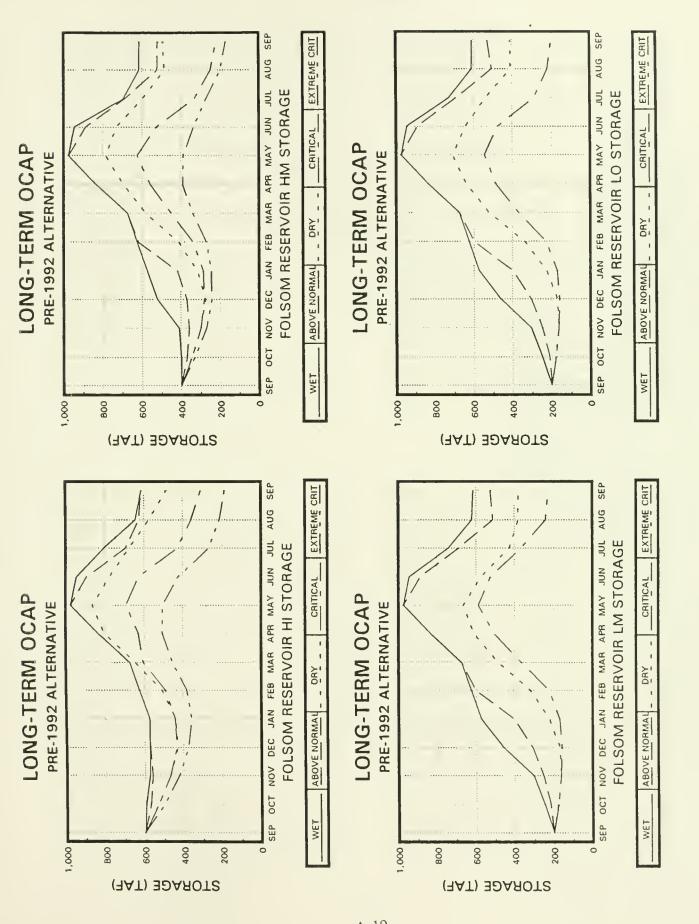


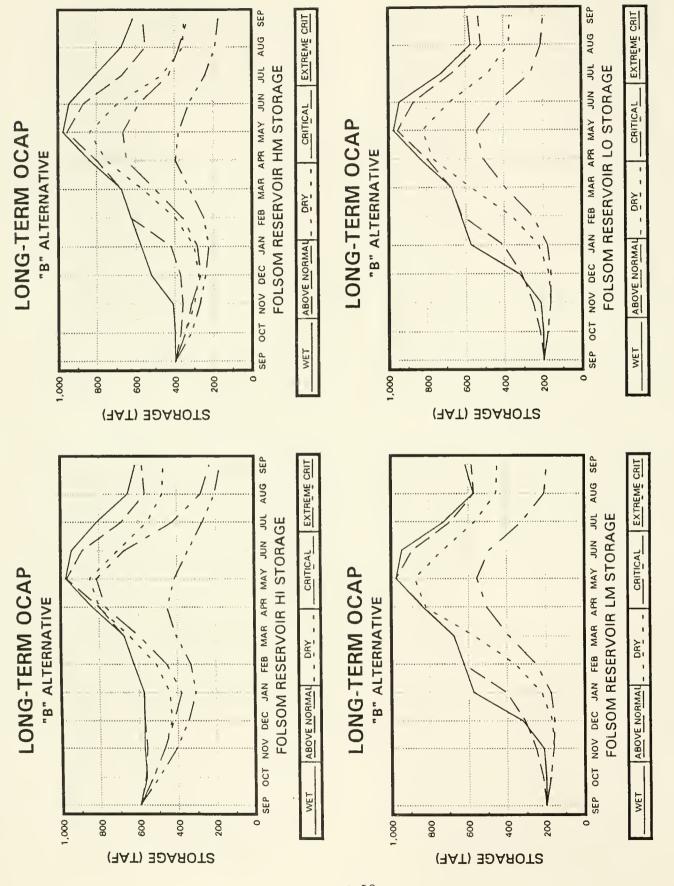


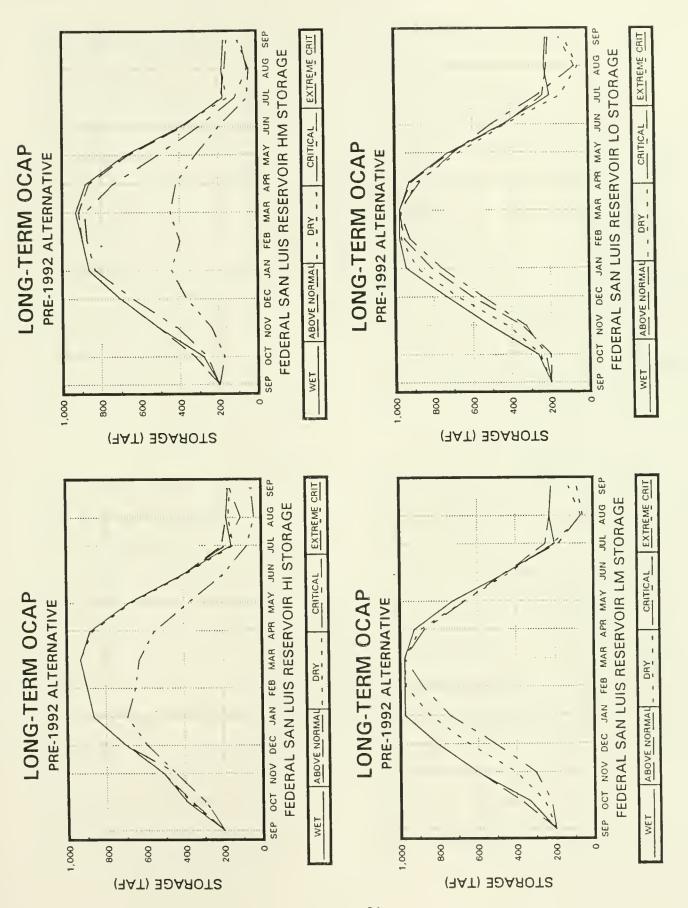


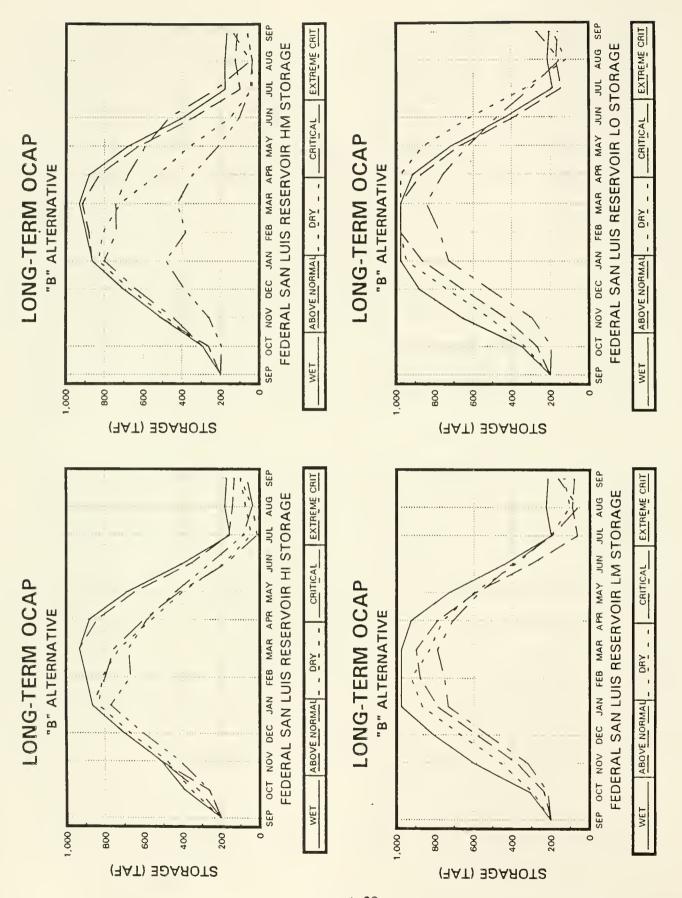

A-12

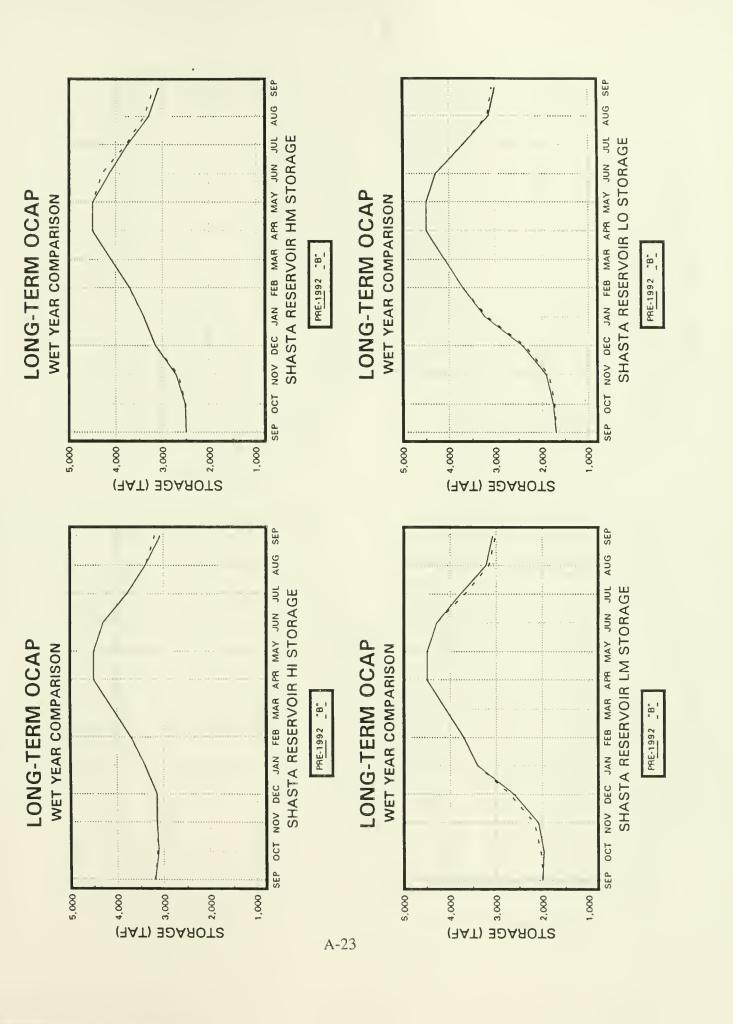


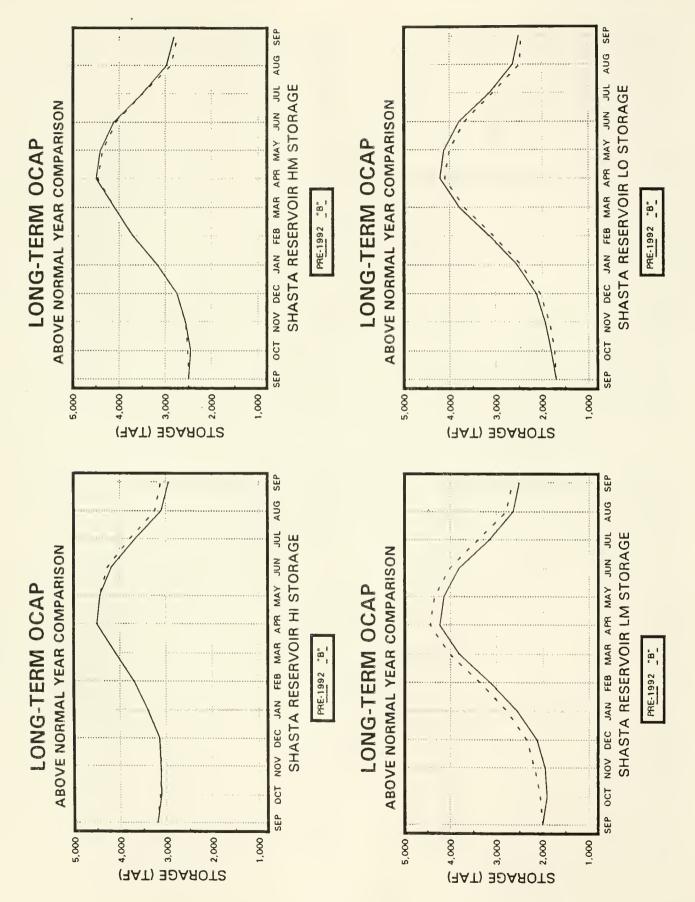


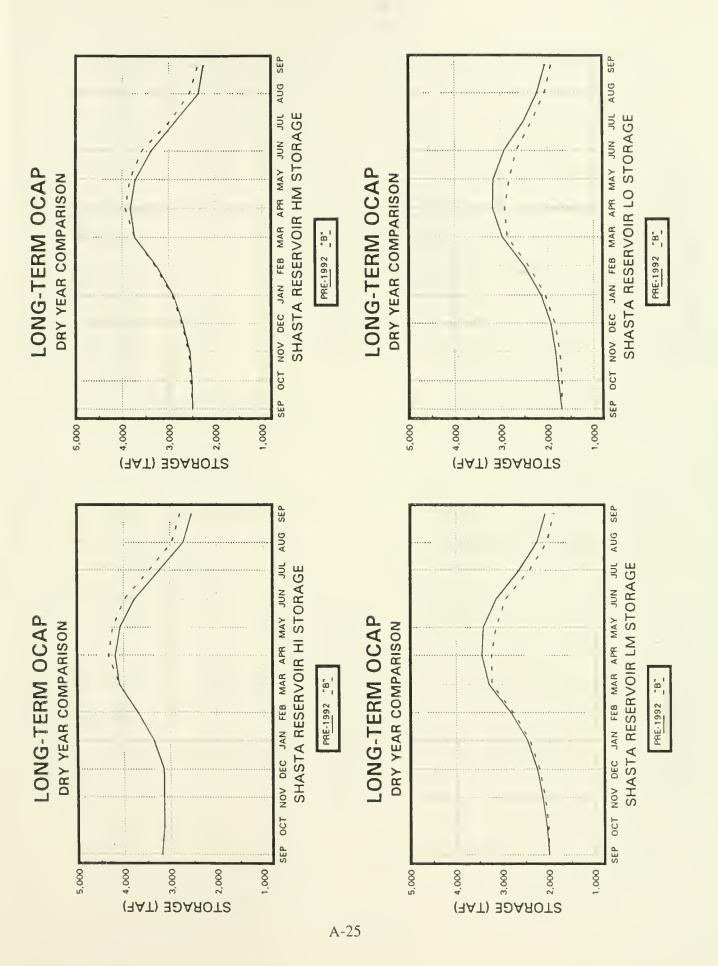


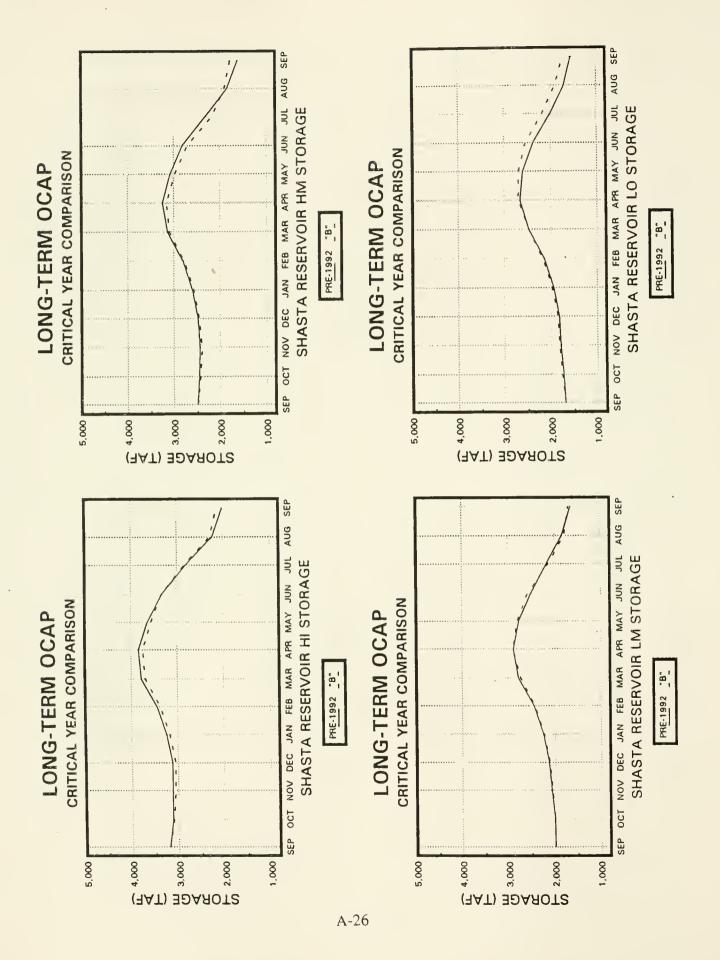


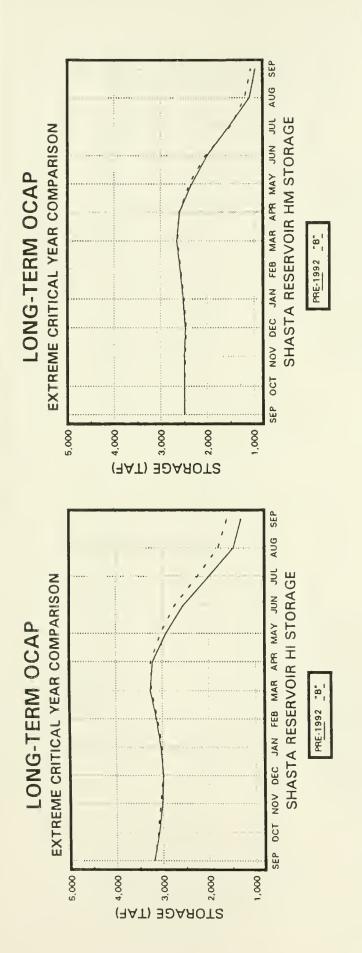


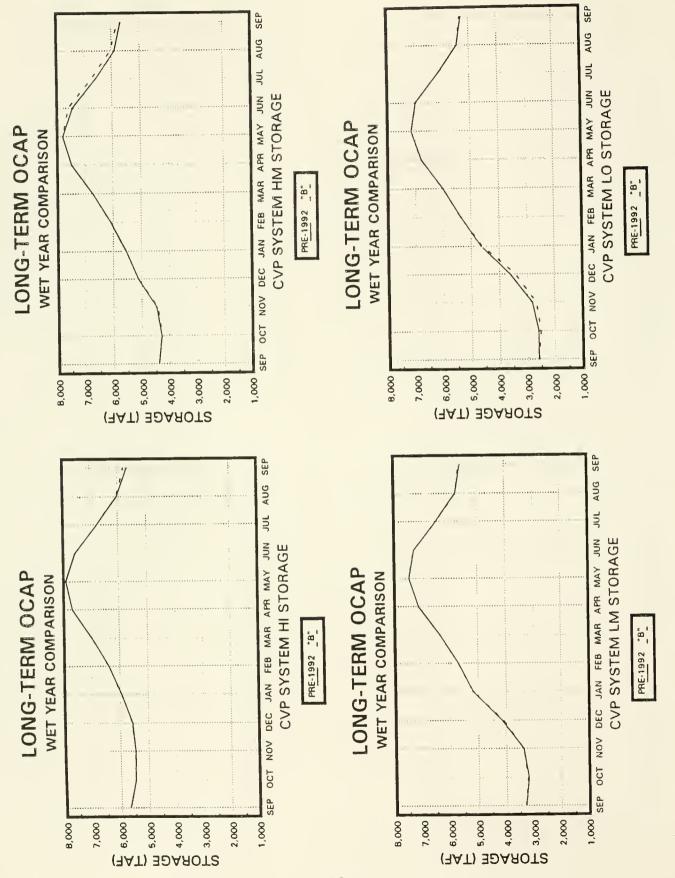

A-19

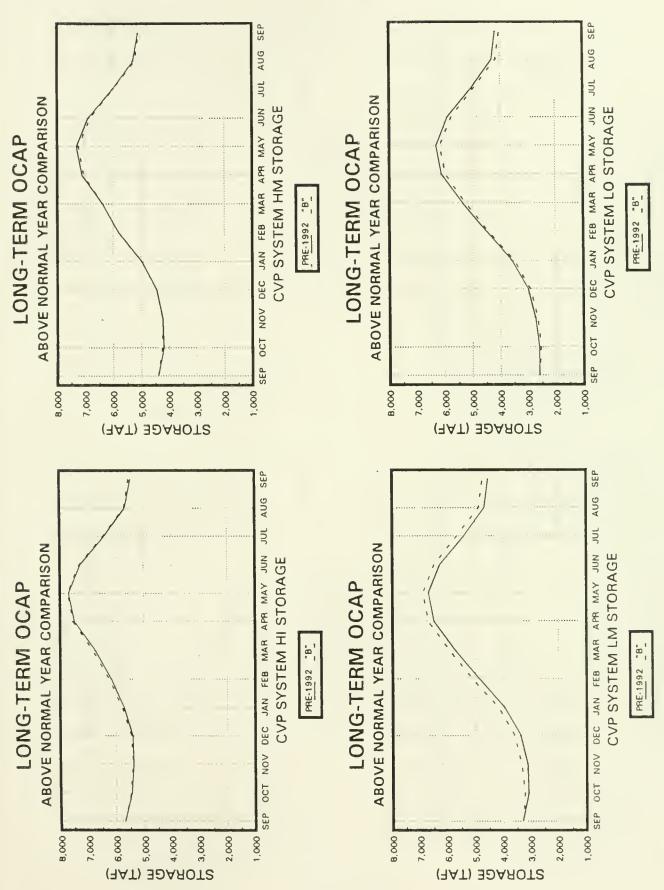


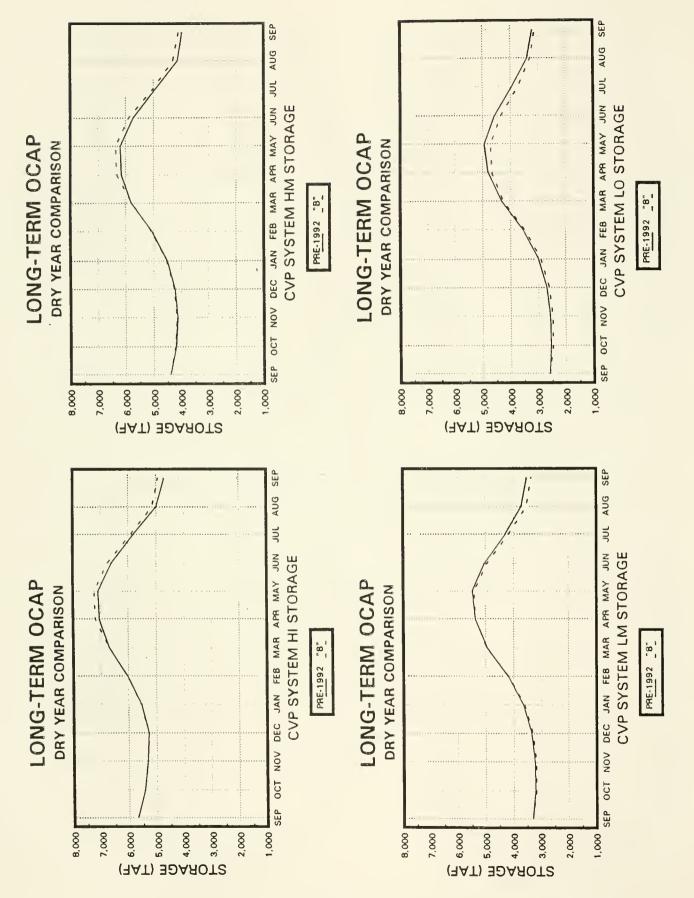


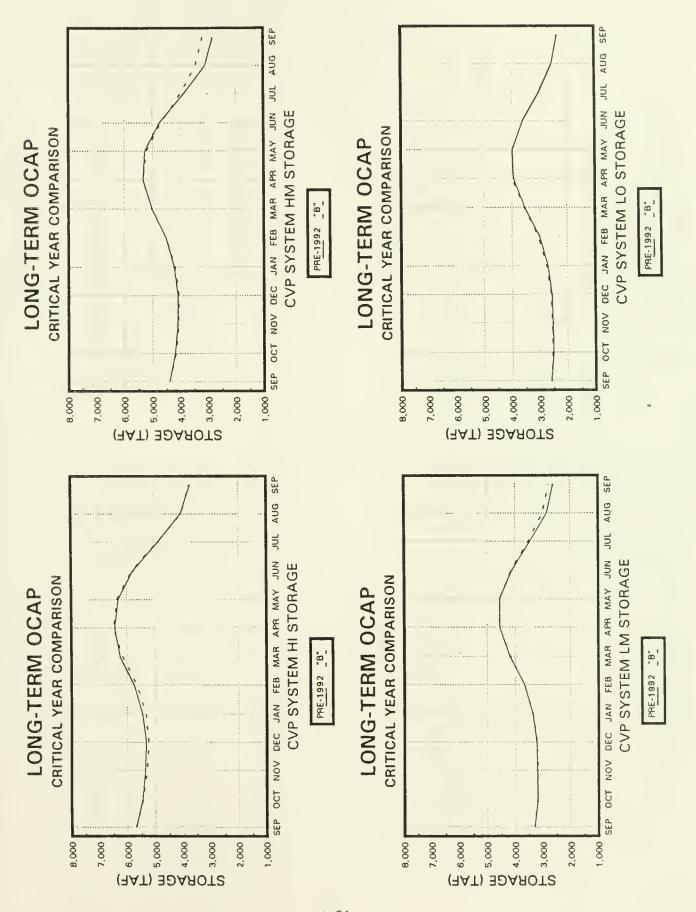


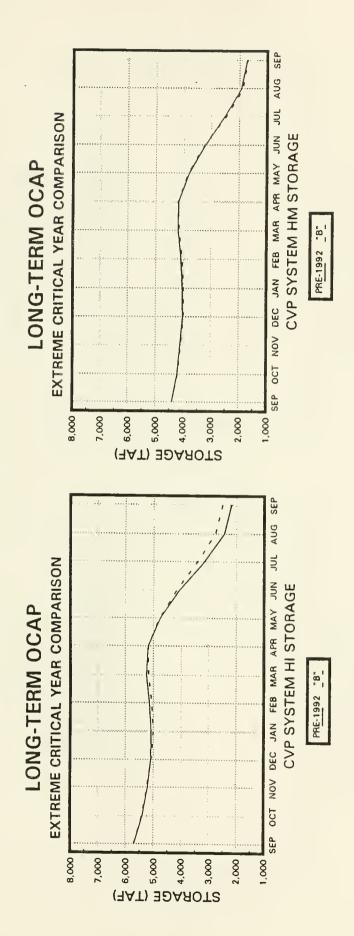

A-22

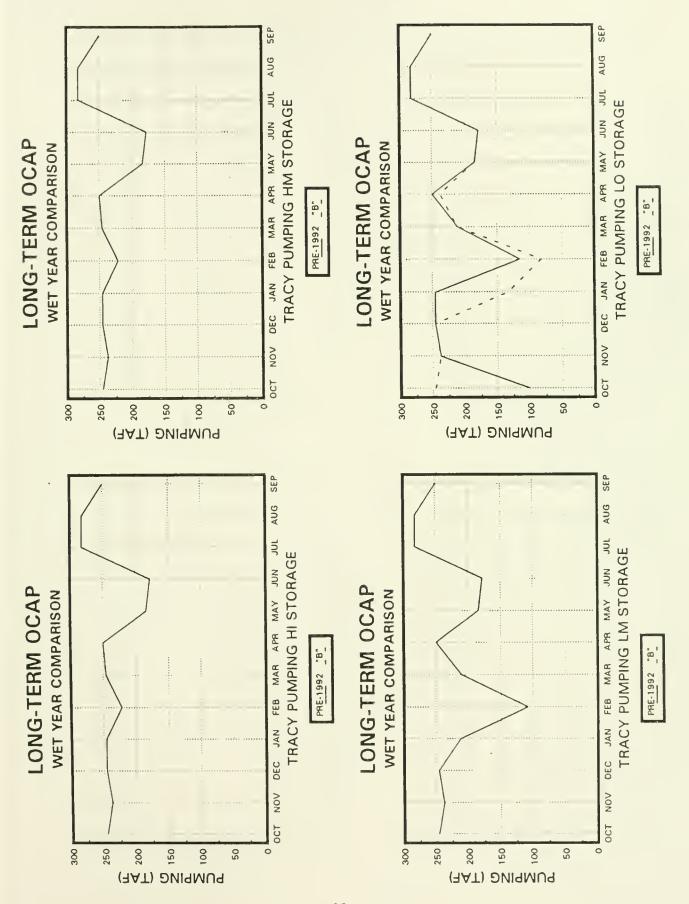


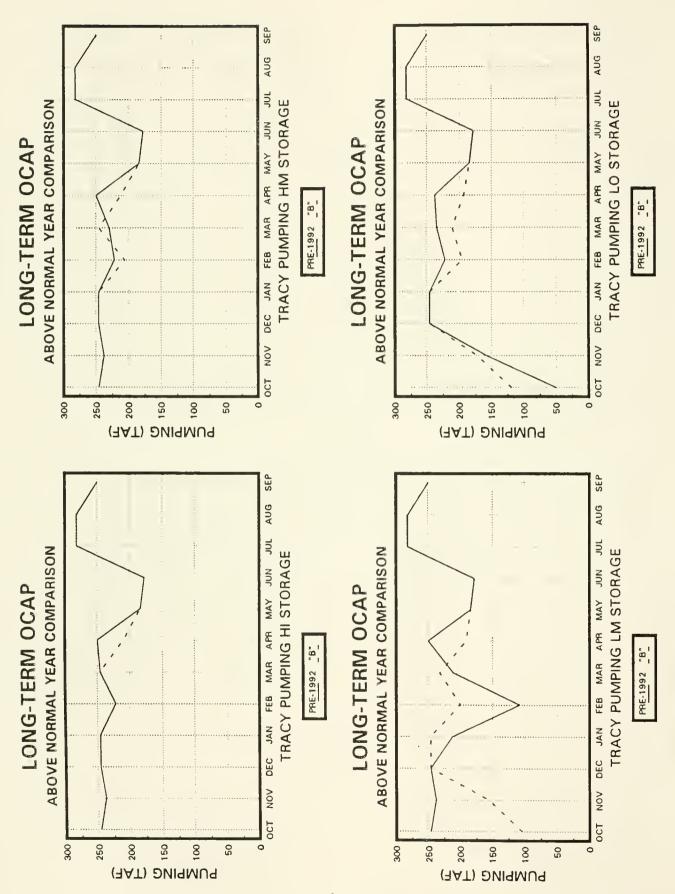


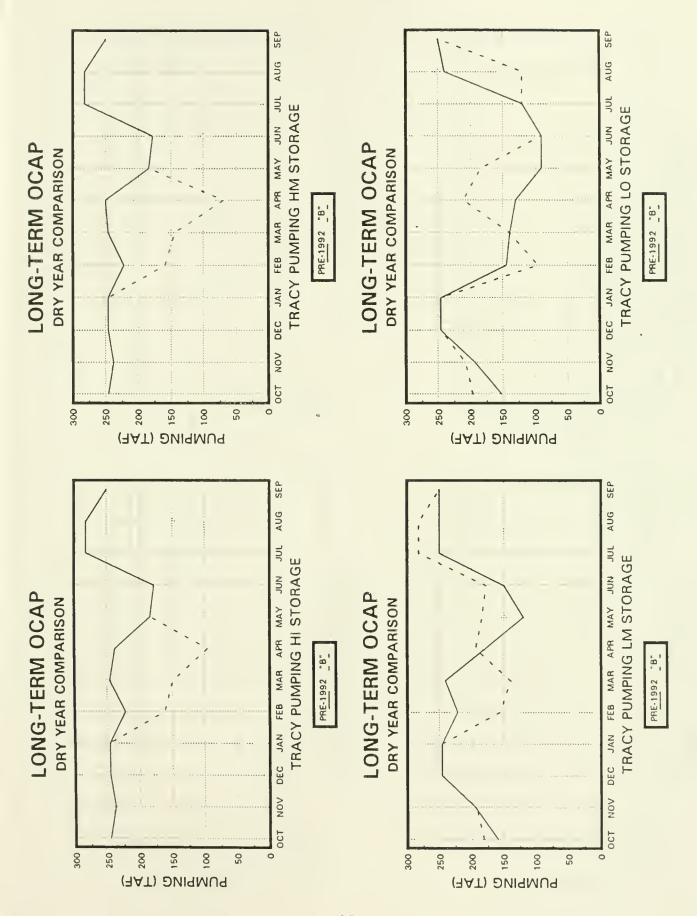


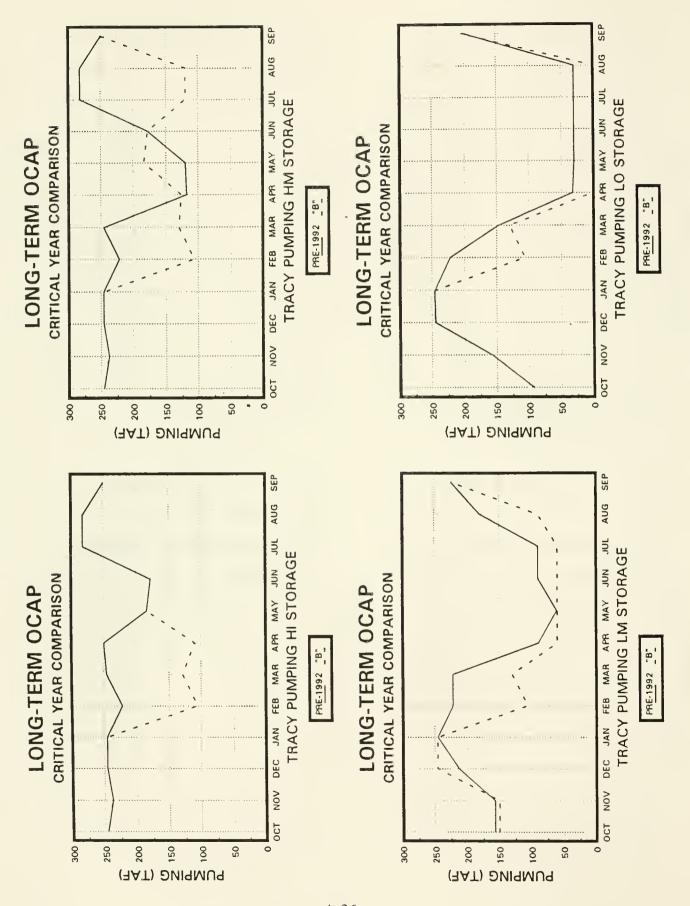


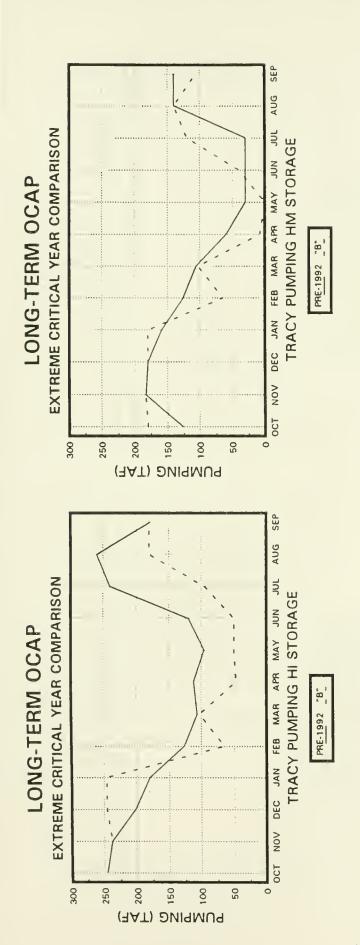


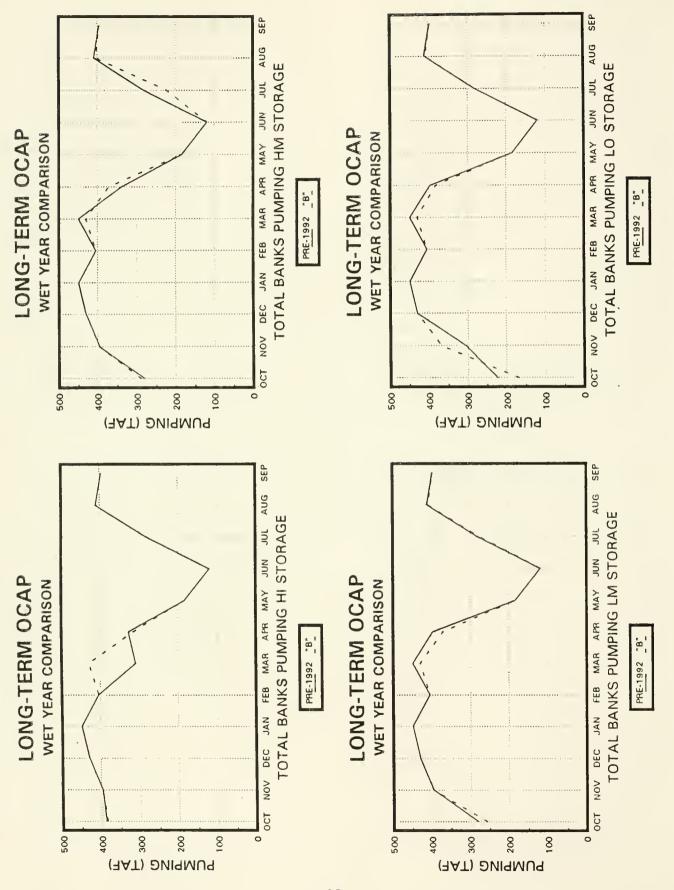

A-28

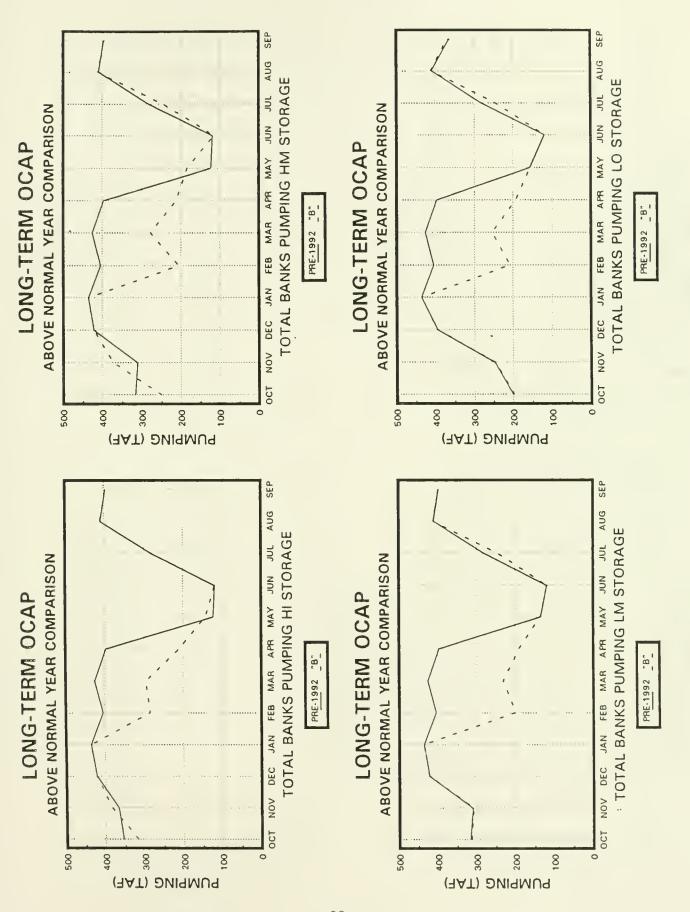


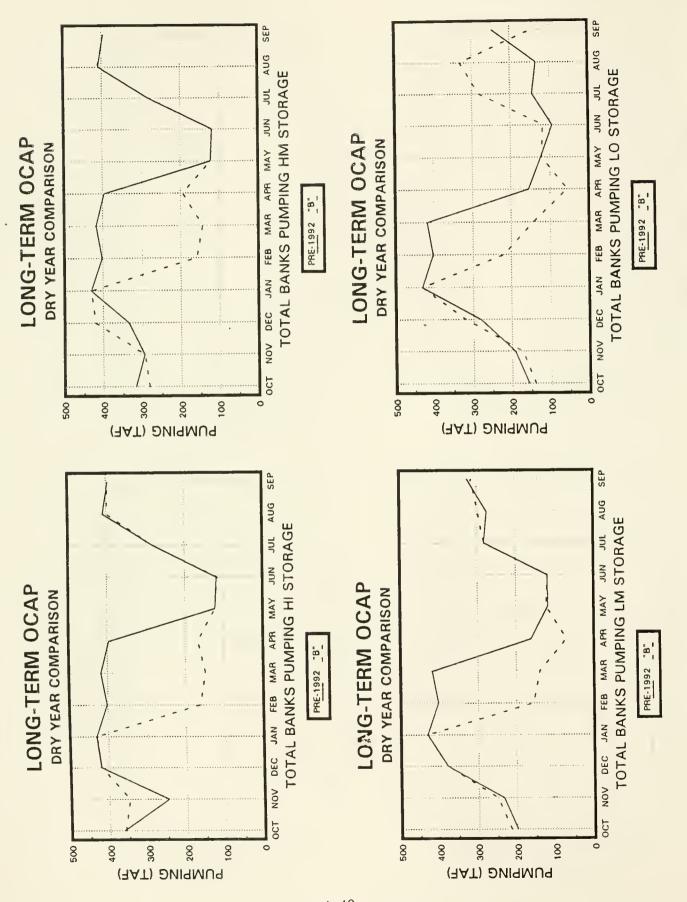


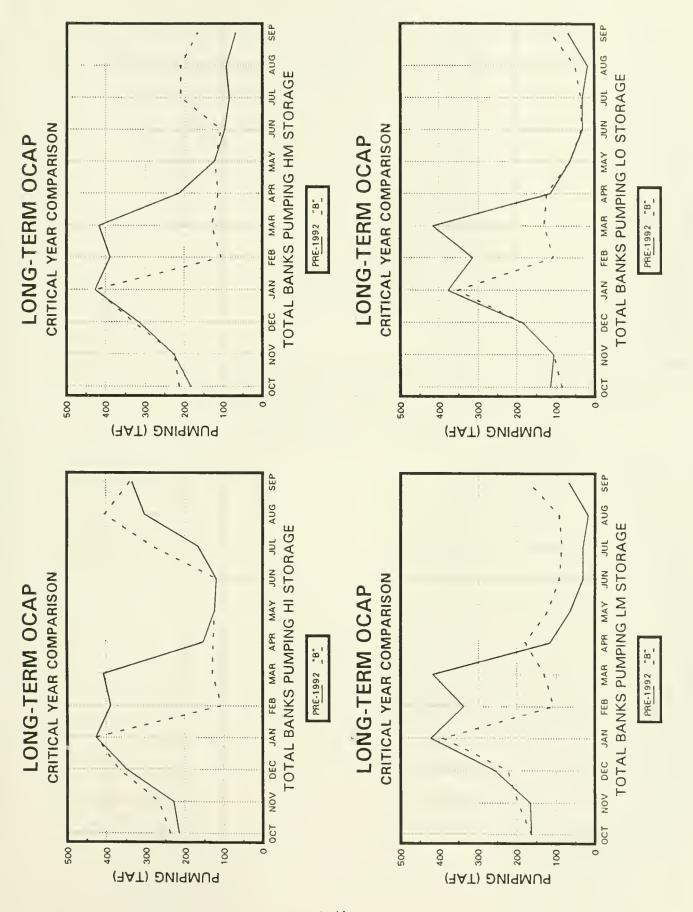


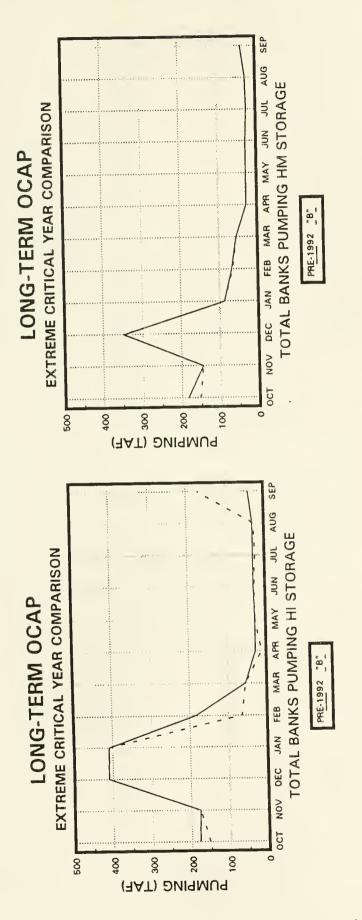











A-38

A-40

Appendix B

Tabular Results of CVP-OCAP Water Year Operations Studies

٠			
	-		

Appendix B

Table of Contents

Pre-1992 Alternative Operation Study Results (18 Cases)	B-3 - B-21
TEM Alternative Operations Study Results (5 Cases)	B-22 - B-27
B Alternative Operations Study Results (18 Cases)	B-28 - B-46

LONG-TERM OPERATIONS CRITERIA AND PLAN OPERATIONS STUDIES

PRE-1992 ALTERNATIVE

UNITED STATES BUREAU OF RECLAMATION

		•	
			•
			-
			1

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

100 DATE: 10/13 TIME: 14:06		10/13				LONG-LEH	M OPERA	IONS CHI	LONG-TERM OPERATIONS CRITERIA AND PLAN	Plan				
Jan-Sep (%) Water Rights Deliveries (100-75-50-25-0)	100	BYPASS												
ATT VALUES IN KAP	INITIAL	1100	NOV	DEC 1	JAN	FEB	MAH	APR	MAY	NOC	JOE	AUG	SEP)[TOTAL
Daminy EDM STORAGE	1.900	1,773	1,753	1,854	1,982	2,082	2,218	2,358	2,441	2,339	2,178	2,011	1,992	
WHISKEYTOWN FOM STORAGE	506	206	506	506	506	506	206	230	240	240	240	240	240	
SHASTA FOM STORAGE	3,200	3,118	3,150	3,150	3,400	3,700	4,100	4,496	4,494	4,291	3,787	3,390	3.072	
DROVILLE FOM STORAGE	2,700	2,590	2,740	2,850	2,850	2,851	2,850	3,025	3,322	3,268	2,812	2,535	2,401	
FOI SOM FOM STORAGE	009	594	574	573	573	624	674	834	974	944	808	644	614	
WHISKEYTOWN STORAGE WITHDRAWAL		116	78	21	3	84	65	64	128	170	176	119	0	1,024
SHASTA STORAGE WITHDRAWAL		78	(32)	0	(250)	(300)	(400)	(403)	(e)		482	379	306	40
DROVILLE STORAGE WITHDRAWAL		107	(149)	(106)	2	0	0	(177)	(305)		445	569	127	260
FOI SOM STORAGE WITHDRAWAL		3	50	4	1	(20)	(50)	(162)	(145)		130	154	56	(46)
SPRING CREEK POWERPLANT		120	8	09	09	150	120	120	150	180	180	120	0	1,350
		468	438	760	760	900	700	637	805	738	325	729	536	8,390
		209	101	394	662	029	719	525	225	251	433	304	200	4,693
		113	134	220	457	376	395	384	451	373	228	254	132	3,516
		110	145	215	300	350	340	255	210	180	85	06	95	2,375
FEATHER RIVER DEMANDS		58	0	0	0	0	1	58	193		232	145	87	967
TUBA RIVER ACCRETIONS		85	110	210	410	425	335	165	115		97	115	130	2,297
SACRAMENTO RIVER ACCRETIONS		140	285	830	2,155	2,315	1,485	630	205		(203)	(110)	205	7,902
WILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4.000	4,000	
WILKINS SLOUGH ACTUAL (CFS)		7,785	8,931	18,056	26,550	33,220	20,736	15,238	13,619	10,182	10,638	8,529	9,421	
PREFPORT FLOW (CFS)		15,122	16,101	35,849	65,610	76,716	53,652	36,566	27,365	22,301	22,436	19,151	18,025	
ACTUAL DELTA OUTFLOW		277	405	1,735	3,689	4,013	3,085	1,779	1,391	1,004	615	305	333	18,630
REQUIRED DELTA OUTFLOW		277	268	277	277	555	615	595	821	783	615	305	149	5,537
		(617)	(651)		1,931	4,337	3,398	701	2,503	6,980	2,938	397	(28)	20,371
CROSS CHANNEL GATES		OPEN	OPEN	CLOSED	CLOSED	CLOSED	CLOSED	CLOSED	CLOSED	OPEN	OPEN	OPEN	OPEN	
SWP BANKS PUMPING		260	397	430	449	405	310	328	184	=	282	216	397	3,777
SVP BANKS PUMPING		128	0	0	0	0	0	0	0		0	195	0	323
		246	238	246	246	222	246	250	184		282	282	250	2,870
CONTRA COSTA PUMPING		11	80	7	7	8	8	=	12		18		14	135
		0	0	0	0	0	0		0	٥	(O)		0	,
		85	57	28	57	113	70	140	154		225	169	211	1,400
		250	217	569	234	566	295	306	298		477	401	251	3,660
OVP SAN LUIS EOM STORAGE	200	390	510	702	864	896	931	880	681	398	155	181	171	
SWP SAN LUIS EOM STORAGE	300	296	466	620	824	952	953	954	817		295	986	216	
BINITY FOM ELEVATION (FT)	2,333	2,323	2,322	2,329	2,339	2,346	2,356	2,366	2,372		2,353	2,341	2,340	
PRINITY SURFACE AREA (ACRES)	13,991	13,322	13,217	13,748	14,423	14,943	15,653	16,377	16,803	16,276	15,444	14,572	14,472	
WHISKEYTOWN FOM FLEVATION (FT)	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,207	1,210		1,210	1.210	1.210	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,964	2,964	2,964	2,964	2,964	2,964	3,167	3,250		3,250	3,250	3,253	
SHASTA EOM ELEVATION (FT)	1,015	1.011	1012	1 012	1 024	1 036	1.053	1 069	1.068	1,060	1.040	1.023	1,009	
				1	, 10,)					

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

UNITED STATES BUREAU OF RECLAMATION

Study Year Hydrologic Type (W-A-D-C-E)	M					UNITED ST	ATES BUR	EAU OF RE	UNITED STATES BUREAU OF RECLAMATION	z				
Charles Charles I and (HI-HM. I M. I O)	Δ-				_	ONG-TERM	A OPERAT	IONS CRIT	LONG-TERM OPERATIONS CRITERIA AND PLAN	LAN				
Oct. Est. (%) Project Deliveres (100-75-50-25-0)	75													
Corred (%) right Delivered (100-12-00-10)	3	DATE	10/13											
Mar-Sep (%) Project Delivenes (100-75-50-25-0)	3	THE STATE OF	10/13											
Oct-Dec (%) Water Rights Delivenes (100-75-50-25-0)	100	IME	14:2/											
Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	100	BYPASS												
Alternative Extension	PRE													
ALL VALUES IN KAF	INITIAL	100	NOV	DEC	JAN	PEB	MAH	APH	MAY	NOC	JOL	AUG	SEP	JOINE
ITHINITY EOM STORAGE	1,100		984	1,085	1,213	1,388	1,584	1,800	2,003	2.052	1,968	1.921	1.902	
WHISKEYTOWN EOM STORAGE	206	206	506	506	506	506	506	230	240	240	240	240	240	
SHASTA EOM STORAGE	2,000	1,975	2,089	2,619	3,400	3,700	4,100	4,496	4,494	4,291	3,775	3,219	3,079	
OROVILLE EOM STORAGE	1,700	1,591	1,692	2,090	2,647	2,907	2,906	3,081	3,378	3,304	2,848	2.570	2,420	
FOLSOM EOM STORAGE	200	247	305	458	573	624	674	834	974	944	743	621	614	
WHISKEYTOWN STORAGE WITHDRAWAL		116	48	21	3	6	5	0	8	50	101	0	0	331
SHASTA STORAGE WITHDRAWAL		22	(114)	(223)	(781)	(300)	(400)	(403)	(8)	188	495	538	128	(1,165)
OROVILLE STORAGE WITHDRAWAL		107	(100)	(382)	(555)	(528)	0	(177)	(305)	64	445	569	144	(760)
FOLSOM STORAGE WITHDRAWAL		(49)	(55)	(155)	(114)	(20)	(20)	(162)	(145)	23	192	115	3	(445)
SPRING CREEK POWERPLANT		120	09	09	09	75	09	45	30	30	105	0	0	645
KESWICK RELEASE		412	326	231	229	825	640	295	682	588	860	768	358	6,480
OROVILLE RELEASE		509	150	105	105	411	719	525	225	271	433	304	217	3,673
NIMBLIS RELEASE		19	09	61	342	375	395	384	451	373	230	216	109	3,117
VERNALIS FLOW		110	145	215	300	350	340	255	210	180	85	8	95	2,375
FEATHER RIVER DEMANDS		28	0	0	0	0	-	58	193	193	232	145	87	196
YUBA RIVER ACCRETIONS		85	110	210	410	425	335	165	115	100	26	115	130	2,297
SACRAMENTO RIVER ACCRETIONS		140	285	830	2,155	2,315	1,485	630	205	(32)	(203)	(110)	205	7,902
WILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
WILKINS SLOUGH ACTUAL (CFS)		6,911	7,068	9,451	17,910	31,870	19,760	13,978	11,667	7,661	9,627	9,155	6,430	
FREEPORT FLOW (CFS)		13,365	13,782	19,956	46,042	669'02	52,676	35,306	25,413	20,116	22,436	19,151	14,932	
ACTUAL DELTA OUTFLOW		277	268	757	2,519	3,792	2,921	1,635	1,271	874	615	305	149	15,385
REQUIRED DELTA OUTFLOW		277	268	277	277	555	615	295	821	783	615	305	149	5,537
ANTIOCH FLOW		367	(1,194)	409	339	5,353	1,944	(358)	2,300	6,456	2,938	397	(171)	18,180
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	CLOSED	CLOSED	CLOSED	CLOSED	CLOSED	OPEN	OPEN	OPEN	OPEN	
SWP BANKS PUMPING		260	288	430	449	405	449	397	184	119	282	216	397	3,876
CVP BANKS PUMPING		20	108	0	0	0	0	0	0	0	0	195	0	323
TRACY PUMPING		246	238	246	212	108	211	250	184	178	282	282	250	2.687
CONTRA COSTA PUMPING		11	80	7	7	8	8	=	12	15	18	18	14	135
CVP COA BALANCE		0	0	0	0	0	0	0	0	0	(0)	0	79	
CVP DOS AMIGOS		43	21	11	21	43	70	140	154	197	225	169	112	1.206
SWP DOS AMIGOS		250	230	264	234	264	295	295	295	391	474	418	251	3,661
CVP SAN LUIS EOM STORAGE	200	332	009	810	926	926	926	925	726	443	200	526	216	
SWP SAN LUIS EOM STORAGE	100	96	144	303	205	637	777	858	724	428	212	(13)	117	
TRINITY EOM ELEVATION (FT)	2,264	2,251	2,252	2,263	2,275	2,291	2,308	2,325	2,341	2,344	2,338	2,334	2,333	
TRINITY SURFACE AREA (ACRES)	9,620	8,879	8,940	9,531	10,268	11,242	12,312	13,461	14,530	14,786	14,345	14,100	14,001	
WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,207	1,210	1.210	1,210	1,210	1,210	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,964	2,964	2,964	2,964	2,964	2,964	3,167	3,250	3,250	3,250	3,250	3,253	
SHASTA EOM ELEVATION (FT)	955	954	096	988	1,024	1,036	1,053	1,069	1,068	1,060	1,039	1,016	1,009	
SHASTA SURFACE AREA (ACRES)	17,119	16,979	17,621	20,501	24,548	26,063	28,060	30,019	30,009	29,007	26,437	23,626	22,909	

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

						TOTAL	ſ			T		168	(1 387)	(1.257)	(438)	475	800	0,000	2 0	3,129	2,3/5	2967	2,297	7,902				14,760	5,537	19,222		3,729	323	2,582	135	1	1,160	3,157								
						SEP	1.677	240	3.002	2415	607	0	128	149	(2)		35.0	2000	777	104	95	87	130	205	4.000	6,430	14,932	=	149	(771)	OPEN	397	0	250	14	75	112	211	216	497	2,315	12,807	1,210	3,253	1,006	22,508
						AUGT	1.695	240	3.141	2 570	609		2	569	112		114		40%	213	8	145	115	(110)	4,000	9,204	19,151	305	305	397	OPEN	216	195	282	9	0	169	337	526	324	2,317	12,905	1,210	3,250	1,012	23,227
						300	1.741	240	3 700	2 84B	728	2 =	570	445	207	1	2 9	040	433	305	85	232	97	(503)	4,000	9,383	22,436	615	615	2,938	OPEN	282	0	282	28	ē	225	408	200	466	2,321	13,150	1,210	3,250	1,036	26,061
Z						JUNI	1.734	240	4 291	3 304	044	2	000	94	23	2 4	2 5 2	5/3	2/1	373	180	193	100	(32)	4,000	7,409		859	783	966,3	OPEN	119	0	178	15	0	197	334	443	614	2,320	13,114	1,210	3,250	1,060	29,007
UNITED STATES BUREAU OF RECLAMATION LONG: TERM OPERATIONS CRITERIA AND PLAN			~			MAY	1 669	240	4 494	3 370	074		0 (6	(302)	(145)	1	2 5	200	cz	451	210.	193	115	205	4,000	11,423	25,169	1,256	821	2,275	CLOSED	184	0	184	12	0	154	152	726	851	2,315	12,769	1,210	3,250	4	30,009
UNITED STATES BUREAU OF RECLAMATION LONG: TERM OPERATIONS CRITERIA AND PL						APHI	1 450	230	\downarrow	1	200	500	1000	1777	(462)	1001	40	292	525	384	255	58	165	630	4,000	13,978	1	1,635	595	(358)	CLOSED CL	397	0	250	=	0	140	257	925	938		11,587	1,207	3,167		30,019
S BUREAU PERATION						MARI	1 235	208	1	1	1	20/4	2000	(36)	(20)	100	00	640	683	395	340	-	335	1,485	L	19.760	╄	2.885	615	1,883	CLOSED CLO	449	0	211	8	0	70	253	926	816	2,277	10,389	1,199	2,964	1,053	28,060
ED STATE G-TERM O						FFRT		1	1	1	1	670	2 (2)	(4/0)	(2/2)	102	0	649	94	376	350	0	425	2.315	L	L	L	L	L	L	+	405	0	115	8	0	58	529	976	633	2,258	9,259			1,036	26,063 2
LIND I						INAL		1	1	1	1	2/3	2 (3	(010)	(2000)		09	200	105	346	300	0	410	2.155		Ľ	╀	L			ਹ	449	0	246	7	0	14	210	943	467	2,239	8,207	_	L	1,016	23,653 2
						וובע ו		500	1	4	1	40,	- 3	(600)			40	231	105	61	215	0	210	L	\downarrow	Ļ	+	L	1	_	010	0	0	246	7	0	7	243	732	238	L	L	L	L	1 226	19,406 23
		,	2 7	31		NOW I	1	-	1	_	_							282	102	09	145	0	L	L	4	L	\perp	╀	L		OPF	-	L	238	80	0	14			57	2	L	L	L	950	
				14:31	n	-			Į.				1							61	110	58				_	1				do	0		100	=	(O)		L			L	L	L	L		20 16,576
	J	_	_	$\overline{}$	BYPASS				\downarrow	4		~	5	9	1	٤	2	310	108		=	4		-	4 000	5 421	10.080	277	777	2 206	OPFN	1		Š				~			2	-	-	1	-	15,720
M	318	3	3 1	22	100	PRE	N I N	300	2002	1.78	1,200	000							-																				200	1001	2218	7 162	1 199	2.964	937	15,384
Study Year Hydrologic Type (W.A-D-C-E)	Starting Storage Level (HI-HM-LM-LO)	Oct-Feb (%) Project Delivenes (100-75-50-25-0)	Mar-Sep (%) Project Delivenes (100-75-50-25-0)	Oct-Dec (%) Water Rights Deliveries (100-75-50-25-0)	Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	Alternative Extension	ALL VALUES IN KAP	TRINITY EOM STORAGE	WHISKEYTOWN EOM STORAGE	SHASTA EOM STORAGE	OROVILLE EOM STORAGE	FOLSOM EOM STORAGE	WHISKEYTOWN STORAGE WITHDRAWAL	SHASTA STORAGE WITHDRAWAL	OROVILLE STORAGE WITHDRAWAL	FOLSOM STORAGE WITHDRAWAL	SPRING CREEK POWERPLANT	KESWICK BELEASE	OROVILLE RELEASE	MIMABLIS BEI FASE	WEDNATIC FLOW	VENTALIO DIVED DEMANDS	KAIDA DIVER ACCRETIONS	TUBA RIVER ACCRETIONS	SACHAMENIO RIVER ACCHETIONS	WILKINS SLOUGH IARGET (CFS)	WILKINS SLOUGH ACTUAL (CFS)	FREEFORI FLOW (CF3)	ACTUAL DELIA DUTFLOW	REDUKED DELIA DOLITION	ANTIOCH FLOW	CAOSS CHAINEL GAILES	CVD DANKS DIMBING	TOACY DIMADING	CONTRA COSTA PLIMPING	CVP COA BALANCE	CVP DOS AMIGOS	CAL DOS AMBGOS	CVB CAN LINE FOM STORAGE	CAMP CAN THE COM STORAGE	TOWNEY COM ELEVATION (FD)	TOINITY STIDENCE ABEA (ACRES)	MHISKEYTOWN FOWER FAMILIES (FOR	WHISKEYTOWN SUBFACE AREA (ACRES)	SHASTA FOM FI EVATION (FD	SHASTA SURFACE AREA (ACRES)

UNITED STATES BUREAU OF RECLAMATION

Study Year Hydrologic Type (W-A-D-C-E)	×				_	JNITED ST	ATES BUH	EAU OF HE	UNITED STATES BUREAU OF RECLAMATION	2				
Cleared Charge (HI-HM.I M.I O)	Ī				_	ONG-TER	M OPERAT	IONS CRIT	LONG-TERM OPERATIONS CRITERIA AND PLAN	PLAN				
Oct Ear (4) Depart Deliveres (100-75-50-25-0)	180													
Oct-Peo (%) Project Lienveries (100-10-50-23-0)	2	OATE.	10/13											
Mar-Sep (%) Project Delivenes (100-75-50-25-0)	3	DAIE	51/01											
Oct-Dec (%) Water Rights Delivenes (100-75-50-25-0)	18	TIME:	14:44											
Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	100	BYPASS												
Alternative Extension	PAE													
ALL VALUES IN KAF	INITIAL)	100	NOV	DEC	JAN	FEB	MAH	APR	MAY	NOC	JUL	AUG	SEP	IOIAL
TRINITY FOM STORAGE	1,900	1,765	1,696	1,686	1,739	1,850	1.971	2,157	2,286	2,197	2,043	1,929	1.507	
WHISKEYTOWN FOM STORAGE	206	506	506	206	206	506	506	230	240	240	240	240	237	
SHASTA FOM STORAGE	3,200	3,115	3,124	3,150	3,400	3,700	4,100	4,496	4,431	4,180	3,671	3,105	2,946	
OBOVILLE FOM STORAGE	2,700	2,550	2,620	2,740	2,850	2,901	2,949	3,124	3,121	2,925	2,521	2,174	1,921	
FOI SOM FOM STORAGE	909	570	260	571	573	624	674	834	974	893	695	929	614	
WHISKEYTOWN STORAGE WITHDRAWAL		120	68	S	13	3	10	0	2	85	150	61	-	284
SHASTA STORAGE WITHDRAWAL		81	6)	(56)	(250)	(300)	(400)	(403)	55	237	488	248	148	169
OROVILLE STORAGE WITHDRAWAL		146	(69)	(115)	(108)	(20)	(49)	(177)		187	394	338	247	742
FOI SOM STORAGE WITHDRAWAL		27	9	(8)	(1)	(20)	(20)	(162)	(145)	74	189	ß	80	(45)
SPRING CREEK POWERPLANT		120	8	09	45	45	45	0	15	8	150	09	0	28
KESWICK RELEASE		441	381	414	385	475	455	217	550	627	898	818	358	5,989
DROVILLE RELEASE		208	101	105	212	400	400	295	225	234	312	323	560	3,075
NIMBIS BEI FASE		108	104	108	155	216	265	264	321	294	307	163	114	2,417
VERNATIS FLOW	-	110	125	130	135	185	150	145	130	6	82	06	95	1,470
CEATHER RIVER DEMANDS		58	0	0	0	0	-	58	193	193	232	145	87	296
VIIBA RIVER ACCRETIONS		85	75	100	105	110	335	165	115	100	26	115	130	1,532
SACRAMENTO RIVER ACCRETIONS		140	225	400	909	1,160	1,485	605	06	(105)	(248)	(155)	155	4,357
WILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
WILKINS SLOUGH ACTUAL (CFS)		7,343	7,694	9,556	10,958	18,006	16,751	7,947	8,163	7,361	9,123	9,367	5,832	
FREEPORT FLOW (CFS)		14,585	13,634	16,696	22,062	40,525	42,365	23,206	19,277	17,626	20,143	18,695	14,915	
ACTUAL DELTA OUTFLOW		277	268	479	829	1,838	2,085	805	875	636	474	278	148	9,023
REQUIRED DELTA OUTFLOW		277	268	277	277	250	277	453	797	636	474	278	148	4,412
ANTIOCH FLOW		(316)	(1,111)	(1,380)	(4.569)	\equiv	(1,753)	(3,095)	4,904	4,648	2,388	301	(775)	(2,562)
CROSS CHANNEL GATES		OPEN	OPEN	OPEN (-+	-	CLOSED	CLOSED	0/0	OPEN	OPEN	OPEN	OPEN	0.00
SWP BANKS PUMPING		253	341	422	436	405	426	397	123	119	234	263	766	3,610
CVP BANKS PUMPING		102	56	0	0	0	0	0	0	0	8	147	0 0	323
TRACY PUMPING		246	238	246	246	222	246	250	184	1/8	282	797	nc>	0/0/2
CONTRA COSTA PUMPING		=	8	7	_	8	80	=	12	2	81	91	14	25
CVP COA BALANCE		0	144	0	0	0	0	0	0	2	0	0 5	7	30,
CVP DOS AMIGOS		82	22	28	57	113	70	140	154	197	CZZ :	169	211	004.6
SWP DOS AMIGOS		250	230	262	234	564	295	294	967	391	6/5	438	231	3,000
CVP SAN LUIS EOM STORAGE	200	364	510	702	864	968	931	880	681	398	502	181	1/1	
SWP SAN LUIS EOM STORAGE	300	289	390	544	734	864	981	1,062	866	999	304	105	255	
TRINITY EOM ELEVATION (FT)	2,333	2,322	2,317	2,316	2,320	2,329	2,338	2,352	2,361	2,355	2,343	2,335	2,333	
TRINITY SURFACE AREA (ACRES)	13,991	13,280	12,914	12,857	13,142	13,727	14,365	15,336	16,004	15,539	14,738	14,141	14,026	
WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,207	1,210	1,210	1,210	1,210	1,209	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,964	2,964	2,964	2,964	2,964	2,964	3,167	3,250	3,250	3,250	3,250	3,228	T
SHASTA EOM ELEVATION (FT)	1,015	1,011	1,011	1,012	1,024	1,036	1,053	1,069	1,066	1,056	1,035	1,010	1,003	T
SHASTA SURFACE AREA (ACRES)	23,529	23,093	23,139	23,272	24,548	26,063	28,060	30,019	29,700	28,457	25,917	23,042	717.77	

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

										2				
Starting Storage Level (HI-HM-LM-LO)	¥ I				-	CONG-1EN	LONG-IERM OPERATIONS UNITENIA AND FLAN							
Oct-Feb (%) Project Deliveries (100-75-50-25-0)	100													
Asr. Soc (%) Project Delivenes (100-75-50-25-0)	100	DATE:	10/13											
ar-out (%) Figlett Delivered (100 75 50-25.0)	005	TIME	14:50											
Oct-Dec (%) Weter Rights Delivenes (100-70-50-20-0)	3 8	DVDVC												
an-Sep (%) Water Rights Delivenes (100-75-50-25-0)	3 2	017733												
Alternetive Extension	PAE						T CLASS	LOGY	TOXII	THE STATE OF	T 11.11	ATTEL	J. day	TATAL
ALL VALUES IN KAF	INITIAL	000	NOV	UEC	JAN	L	MAN.	002	T CO	NOC .	300	202	1754	
RINITY FOM STORAGE	1,500	1,366	1,297	1,316	1,370	1,480	700.	1.700	158,1	1,00,1	500	007.	100	T
WHISKEYTOWN FOM STORAGE	206	206	206	506	206	506	506	230	240	240	240	240	787	
WHISHELLOWIN COM STORAGE	2,500	2,454	2,568	2,748	3,183	3,700	4,100	4,496	4,408	4,119	3,505	2,978	2,819	
TASTA EOM STORAGE	2200	2 051	2.071	2,190	2,407	2,764	2,906	3,080	3,066	2,869	2,465	2,119	1,856	
OROVILLE EOM STORAGE	400	370	360	371	420	617	674	834	974	886	688	522	520	
FOLSOM EOM STORAGE	3	000	000	20	13	3	10	c	0	40	45	-	-	342
WHISKEYTOWN STORAGE WITHDRAWAL		071	60	1024/	(425)	(517)	(400)	(403)	78	275	593	510	148	(403)
SHASTA STORAGE WITHDRAWAL		43	(011)	6/1	(45.0)	(356)	(443)	477	ç	187	394	338	257	307
OROVILLE STORAGE WITHDRAWAL		146	60	(611)	(612)	(305)	(57)	(162)	(145)	2	189	161	(0)	(151)
FOLSOM STORAGE WITHDRAWAL		17	2 8	100	104	1	45	30.	2	45	45	6	c	467
SPRING CREEK POWERPLANT		021	08	000	3 6	030	244	217	2,092	620	RAR	720	358	5 164
KESWICK RELEASE		403	2/5	731	2002	800	500	112	200	020	200	200	270	2640
OROVILLE RELEASE		208	151	105	102	94	300	262	152	400	312	363	2077	2311
VIMBUS RELEASE		108	104	108	108	69	258	264	321	(N)	705	107	3 3	4,311
VERNALIS FLOW		110	125	130	135	185	150	145	130	8	82	36	C E	0/4/1
FEATHER RIVER DEMANDS		58	0	0	0	0	-	28	193	193	232	145	/8	8
VIIRA RIVER ACCRETIONS		85	75	100	105	110	335	165	115	8		115	130	1,532
SACDAMENTO RIVER ACCRETIONS		140	225	400	605	1,160	1,485	605	8	(105)		(155)	155	4,357
SACIONALISMOST AND TABLET (CES)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000		4,000	4,000	
ANTIKINS STOLIGH ACTUAL (CES)		6,725	5,917	6,573	7,946	14,097	16,751	7.947	8,326	7,243		7,773	5,832	
WICHING SCOOT FOR (CES)		13,967	12,690	13,713	16,547	28,474	40,723	23,206	19,635	17,626	20,143	18,695	14,915	
ACTUAL DELTA CUITELOW		277	268	296	520	1,168	2,000	805	897	636	474	278	148	7,768
ACTUAL DELIA COTTECTIVA		277	268	277	277	250	277	453	797	636		278	148	4,412
TOCH FLOW		30	(583)	(2.096)	(2,025)	(3,057)	(1,716)	(3.095)	4,989	4,648	2,388	301	(775)	(066)
AN HOUR FLOW		OPEN	OPEN	OPEN	OPEN	CLOSED	+	CLOSED	0/0	OPEN	OPEN	OPEN	OPEN	
CHOSS CHANNEL GATES		253	247	422	436	405	426	397	123	119	234	263	397	3,722
SWE BANKS FUNETIVE		64	64	0	0	0	0	0	0	0	48	147	0	323
DACK DIMPING		246	238	246	246	222	230	250	184	178	282	282	250	2,854
CONTRA COSTA PLIMPING		=	80	7	7	8	8	11	12	15	18	18	14	135
VIVE COA BALANCE		0	0	0	0	0	0	0	0	(0)		<u>(</u>)	24	
OVE DOS AMIGOS		85	57	28	57	113	20	140	154	197		169	112	1,406
CAT DOS AMIGOS		243	200	256	225	255	282	286	283	375	454	380	238	3,477
SWE DOS AMILIES FOR STORAGE	200	326	510	702	864	968	915	864	999	382		165	155	
CAP SAIN EDIS COM STORAGE	200	196	234	393	593	732	862	952	770	490	246	107	251	
PRINTY FOM ELEVATION (FD.	2.301	2.289	2,283	2,285	2,290	2,299	2,309	2,324	2,335	2,332	\perp	2,324	2,322	
DIMITY SUBFACE AREA (ACRES)	11.857	11.121	10,739	10,847	11,143	11,750	12,407	13,401	14,152	13,921			13,273	
MHISKEYTOWN FOM FI EVATION (FI)	1.199	1.199	1,199	1,199	1,199	1,199	1,199	1,207	1,210				1,209	
WHISKEYTOWN SURFACE ABEA (ACRES)	2.964	2,964	2,964	2,964	2,964	2,964	2,964	3,167	3,250				3,228	
CHASTA FOM ELEVATION (FT)	982	979	985	994	1,014	1,036	1,053	1,069	1,065	Ц	1,028	1,005	266	
ASIA COM CECTATION (1.1)														

UNITED STATES BUREAU OF RECLAMATION

	F				>	NITED STA	VIES BURE	UNITED STATES BUREAU OF HECLAMATION	SWATC:					
Etido Vear Hydrologic Type (W-A-D-C-E)					7	ADD TERM	4 OPERATI	LONG TERM OPERATIONS CRITERIA AND PLAN	RIA AND PI	AN				
Starting Storage Level (HI-HM-LM-LO)					í.									
Starting Starting Calvanas (100-75-50-25-0)	75													
Oct-red (%) Project Deliveres (100-75-50-25-0)	100	DATE:	10/13											
Mar-340 (%) Mara Bights Delivenes (100-75-50-25-0)	100	TIME:	14:56											
Jen Son (%) Water Rights Deliveres (100-75-50-25-0)	100	BYPASS												
Alternative Extension	PRE			1,1,1,1	LAKLI	1 8 3 3	MAH	APHT	MAYI	NOC	JUL	AUG	SEP	TOTAL
ALL VALUES IN KAF	INITIAL	ı	NON	מבני	2000	100	1 2/45	4 432	1575	1,574	1,572	1,520	1,496	
MENDITY FOLK STORAGE	1,100		927	740	210,	300	900	230	240	240	240	240	210	
WHISKFYTOWN FOM STORAGE	506	506	506	957	9)	375	1845	4 235	4 146	3.816	3,158	2,642	2,513	
SHASTA FOM STORAGE	2,000	1,908	1,948	2,12/	2,330	2000	0.000	9.000	3 033	2 836	2.432	2,086	1,808	
OPOVILLE FOM STORAGE	1,700	1,551	1,572	1,652	1,869	2,220	600.7	2,330 834	974	887	689	512	525	
COLOM FOM STORAGE	200	217	252	308	404	3	7/0	5	,	c	o	-	31	244
MALISKEYTOWN STORAGE WITHDRAWAL		120	59	50	0	2 (3	01/2/3/	2000	2	316	638	88	118	(595)
CHASTA STORAGE WITHDRAWAI		83	(40)	(179)	(422)	(250)	0	(304)	(80)	187	394	338	272	(145)
COOMILE STORAGE WITHORAWAI		146	(19)	(78)	(215)	(326)	(344)	(1967)	(145)	16	189	171	(17)	(356)
COLONICE STORAGE WITHORAWAI		(19)	(35)	(55)	(32)	280	(/4)	1001		6	0	c	8	367
POLSOM STORAGE WITHOUTH		120	09	30	32	45	45	0 0	7 5	003	BAB	710	358	4.875
SPRING CREEN POWENT CAN		449	320	231	200	8	184	193	100	020	3	202	285	2 188
KESWICK HELEASE		208	151	142	105	94	105	81	14/	200	200	27.5	80	2 106
OROVILLE RELEASE		61	09	61	61	69	241	264	321	300	70%	100	50	1 470
NIMBUS RELEASE		110	125	130	135	185	150	145	130	8	CS CS	3	20	290
VERNALIS FLOW		88	0	0	0	0	-	28	193	193	232	145	6	200
FEATHER RIVER DEMANDS		28.0	75	100	105	110	335	165	115	100	16	CLL	130	1,332
YUBA RIVER ACCRETIONS		140	225	400	605	1,160	1,485	605	8	(105)	(248)	(155)	133	4,00
SACRAMENTO RIVER ACCRETIONS		000	622	200	4 000	4 000	4,000	4,000	4,000	4,000	4,000	4,000	000.	
WILKINS SLOUGH TARGET (CFS)		4,000	2004	5,580	7 946	12.703	12,351	7,550	8,348	7,243	9,123	7,610	5,832	
WILKINS SLOUGH ACTUAL (CFS)		010'/	00000	13 565	15 797	97 0 79	32.781	19,211	18,201	17,626	20,143	18,695	14,915	
FREEPORT FLOW (CFS)		13,307	050	790	805	1 205	1.531	567	797	636	474	278	148	6,976
ACTUAL DELTA OUTFLOW		1/2	200	722	277	250	777	453	797	636	474	278	148	4,412
REQUIRED DELTA OUTFLOW		7/7	007	1/2	14 7651	(1 561)	(066 6)	(31)	4,489	4,648	2,388	301	(775)	2,720
ANTIOCH FLOW		30	(283)	(2,132)	-1-	CI OSED	CLOSED	0/0	0/0	OPEN	OPEN	OPEN	OPEN	
CROSS CHANNEL GATES		OPEN	OPEN	OFFIN	ď	405	426	397	135	119	234	263	397	3,734
SWP BANKS PUMPING	-	202	147	777	3	0	0	0	0	0	48	147	0	323
CVP BANKS PUMPING		40	000	246	242	108	211	250	184	178	282	282	250	2,687
TRACY PUMPING		240	007 8	27		80	80	=	12	15	18	18	14	135
CONTRA COSTA PUMPING					C	0	0	0	(0)	0	0	0	ח ו	000
CVP COA BALANCE		2	2	-	21	43	70	140	154	197	225	169	715	007.
CVP DOS AMIGOS		231	180	244	214	242	267	271	267	355	431	328	577	0,234
SWP DOS AMIGOS	500		909	810	976	976	926	925	726	443	248	226	210	
CVP SAN LUIS EOM STORAGE	3 5		158	330	541	694	840	946	793	534	314	197	330	
SWP SAN LUIS EOM STORAGE	3 3	1	9700	2 248	2 255	2 267	2.278	2,295	2,307	2,307	2,307	2,303	2,301	
TRINITY EOM ELEVATION (FT)	2,264		0.502	2,240	0 112	9 757	10 449	11,487	12,264	12,256	12,247	11,963	11,836	
TRINITY SURFACE AREA (ACRES)	9,620		160'9	0,70	3.1.2	100	1 100	1 207	1,210	1,210	1,210	1,210	1,200	
WHISKEYTOWN EOM ELEVATION (FT)	1,199		1,199	1,199	1,133	661,1	2 064	3 167	3 250	3.250	3,250	3,250	2,998	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2	2,964	2,964	2,304	4,304	1 041	1 058	1.055	1,041	1,013	686	982	
SHASTA EOM ELEVATION (FT)	955	-	325	706	30433	23 242	26.637	28.727	28.288	26,643	23,313	20,623	19,939	
SHASTA SURFACE AREA (ACRES)	17,119	16,596	10,824	17.004	20,133	20,272								

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

Study Year Hydrologic Type (W-A-D-C-E) Starting Storage Level (HI-HM-LM-LO)

Oct. Feb (%) Project Deliveries (100-75-50-25-0) Mar-Sep (%) Project Deliveries (100-75-50-25-0) Oct. Dec (%) Water Rights Deliveries (100-75-50-25-0) Alternative Extension ALL VALUES IN KAF TRINITY EOM STORAGE	3 5 1	DATE:	10/13											
25-0) 25-0)	8	DATE:	10/13											
	25	THAKE	45.40											
	0	IIMF.	13, 10											
S IN KAF	9	BYPASS												
SINKAF	PRE												- 1	
THINITY EOM STORAGE WHISKEYTOWN FOM STORAGE	INITIAL	100	NOV	DEC	JAN	FEB	MAH	APR	MAY	NOC	JUL	AUG	-	TOTAL
WHISKEYTOWN FOM STORAGE	700	586	558	267	634	147	878	1,066	1,210	1,209	1,209	1,158	1,138	
	506	206	506	506	506	506	506	230	240	240	240	240	210	
SHASTA EOM STORAGE	1,700	1,807	1,934	2,123	2,545	3,137	3,797	4,217	4,129	3,796	3,138	2,632	2,501	
OROVILLE FOM STORAGE	1,200	1,152	1,220	1,337	1,554	1,910	2,254	2,664	2,718	2,523	2,119	1.774	1,520	
FOLSOM EOM STORAGE	500	211	247	304	400	282	674	834	974	889	691	202	527	
WHISKEYTOWN STORAGE WITHDRAWAL		100	49	30	0	0	0	0	0	0	0	-	28	509
SHASTA STORAGE WITHDRAWAL		(109)	(127)	(189)	(422)	(265)	(099)	(427)	62	319	638	490	121	(880)
OBOVILLE STORAGE WITHDRAWAL		46	(67)	(115)	(215)	(326)	(344)	(412)	(69)	187	394	338	549	(354)
FOI SOM STORAGE WITHDRAWAL		(13)	(32)	(55)	(36)	(197)	(11)	(162)	(145)	78	189	181	(56)	(358)
SPRING CREEK POWERPLANT		100	20	40	32	42	35	0	2	£	0	0	27	332
KFSWICK RELEASE		231	223	231	200	180	184	193	199	623	898	2007	358	4,552
OBOVI I F REI FASE		108	103	105	105	94	105	09	168	234	312	323	262	1,979
NIMBLIS RELEASE		68	09	61	19	69	239	264	321	297	307	281	80	2,109
VERNALIS FLOW		110	125	130	135	185	150	145	130	8	85	06	95	1,470
FEATHER RIVER DEMANDS		58	0	0	0	0	-	58	193	193	232	145	87	296
YUBA RIVER ACCRETIONS		85	75	100	105	110	335	165	115	100	26	115	130	1,532
SACRAMENTO RIVER ACCRETIONS	-	140	225	400	605	1,160	1,485	605	06	(105)	(248)	(155)	155	4,357
WII KINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4.000	4,000	4,000	
WILKINS SLOUGH ACTUAL (CFS)		4,124	5,132	6,607	7,946	12,703	12,351	7,550	8,342	7,294	9,123	7,448	5,833	
FREEPORT FLOW (CFS)		8,893	10,265	12,963	15,797	27,079	32,740	18,852	18,542	17,626	20,143	18,695	14,360	
ACTUAL DELTA OUTFLOW		277	268	277	474	1,091	1,504	558	797	636		278	148	6,782
REQUIRED DELTA OUTFLOW		277	268	277	277	250	277	453	197	636	474	278	148	4,412
ANTIOCH FLOW		2,871	775	(1,924)	(2,205)	(3,202)	(2,615)	44	4,298	4,648	2,388	301	(464)	4,917
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	OPEN (CLOSED	CLOSED	0/C	2/0	OPEN	OPEN	OPEN	OPEN	
SWP BANKS PUMPING		153	200	363	436	405	426	397	156	119	234	263	364	3,516
CVP BANKS PUMPING		48	48	32	0	0	0	0	0	0	48	147	0	323
TRACY PUMPING		20	157	246	246	222	235	238	184	178	282	282	250	2,570
CONTRA COSTA PUMPING		- 11	8	7	7	80	80	Ξ	12	15		92	14	135
CVP COA BALANCE		(0)	0	38	0	0	٥	0	(0)	<u>(</u>)		0	(0)	
CVP DOS AMIGOS		29	14	7	14	59	20	140	154	197	225	169	112	1,160
SWP DOS AMIGOS		201	192	232	204	217	238	242	235	313		316	198	2,973
CVP SAN LUIS EOM STORAGE	200	201	349	601	812	951	926	913	714	431	236	214	204	
SWP SAN LUIS EOM STORAGE	100	41	42	168	390	568	743	881	782	292	395	323	476	
TRINITY EOM ELEVATION (FT)	2,218	2,202	2,197	2,199	2,209	2,224	2,240	2,261	2,275	2,275	2,275	2,270	2,268	
TRINITY SURFACE AREA (ACRES)	7,162	6,388	6,183	6,250	6,715	7,469	8,299	9,422	10,249	10,246	10,245	9,953	9,839	
WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,207	1,210	1,210		1,210	1,200	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,964	2,964	2,964	2,964	2,964	2,964	3,167	3,250	3,250		3,250	2,998	
SHASTA EOM ELEVATION (FT)	937	944	951	962	984	1,012	1,040	1,058	1,054	1,040		988	982	
SHASTA SURFACE AREA (ACRES)	15,384	16,011	16,742	17,810	20,110	23,205	26,551	28,642	28,204	26,544	23,211	20,572	19,873	

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

Et de Vess Huden one June 700.4. P.C.F.	0	_				UNITED ST	UNITED STATES BUREAU OF RECLAMATION	EAU OF RE	CLAMATIC	NO				
Starton Storage Level (HI-HM-LM-LO)	Ī					LONG-TER	LONG-TERM OPERATIONS CRITERIA AND PLAN	IONS CRIT	ERIA AND	PLAN				
Dct-Feb (%) Project Delivenes (100-75-50-25-0)	100													
Mar-Sep (%) Project Deliveres (100-75-50-25-0)	180	DATE	10/13											
Dct-Dec (%) Water Bights Deliveries (100-75-50-25-0)	100	TIME:	15:16											
Jan-Sep (%) Water Rights Deliveries (100-75-50-25-0)	100	BYPASS												
Alternative Extension	PRE													
ALL VALUES IN KAP	INITIAL	120	NOV	DEC	JAN	FEB	MAH	APR	MAY	NOC	JOL	AUG	SEP	TOTAL
THINITY EOM STORAGE	1,900	1,763	1,713	1,713	1,746	1,832	1,941	2,066	2,147	2,067	1,909	1,703	1,680	П
WHISKEYTOWN EOM STORAGE	206	206	506	506	506	506	506	230	240	240	240	240	236	
SHASTA EOM STORAGE	3,200	3,148	3,150	3,150	3,360	3,700	4,100	4,180	4,077	3,764	3,239	2,723	2,545	
OROVILLE EOM STORAGE	2,700	2,550	2,521	2,443	2,643	2,938	3,163	3,160	3,153	2,944	2,502	2,195	1,958	
FOLSOM EOM STORAGE	009	530	470	431	440	209	646	803	863	777	677	575	486	
WHISKEYTOWN STORAGE WITHDRAWAL		120	09	23	3	3	5	6	20	92	150	151	2	602
SHASTA STORAGE WITHDRAWAL		48	(2)	0	(210)	(340)	(400)	(87)	93	533	909	499	168	575
OROVILLE STORAGE WITHDRAWAL		146	30	83	(199)	(584)	(526)	-	2	200	431	299	231	705
FOLSOM STORAGE WITHDRAWAL		29	09	42	(8)	(89)	(138)	(158)	(65)	90	95	95	85	2
SPRING CREEK POWERPLANT		120	09	30	50	30	30	30	30	09	150	150	0	710
KESWICK RELEASE		388	308	350	200	500	560	443	523	629	876	849	358	5,385
OROVILLE RELEASE		208	150	243	61	82	163	393	179	207	339	274	264	2,538
NIMBUS RELEASE		108	104	108	108	97	108	128	180	180	180	175	171	1,646
VERNALIS FLOW		110	105	115	120	150	105	80	75	80	85	8	95	1,210
FEATHER RIVER DEMANDS		58	0	0	0	0	-	88	193	193	232	145	87	296
YUBA RIVER ACCRETIONS		85	75	100	66	95	62	42	40	33	49	62	70	826
SACRAMENTO RIVER ACCRETIONS		140	190	320	549	807	684	117	(20)	(227)	(341)	(208)	95	2,076
WILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
WILKINS SLOUGH ACTUAL (CFS)		6,483	6,064	7,693	7,502	10,712	9,804	7,869	6,927	6,638	8,602	9,871	5,832	
FREEPORT FLOW (CFS)		13,727	12,641	16,598	14,928	20,893	19,753	18,163	13,533	13,257	17,134	17,736	14,932	
ACTUAL DELTA OUTFLOW		215	309	461	411	715	657	452	467	366	289	219	149	4.710
REQUIRED DELTA OUTFLOW		215	208	215	277	250	277	452	467	366	289	219	149	3,384
ANTIOCH FLOW		(642)	(0)	(1,566)	6	(4,313)	(1,039)	(366)	2,810	3,465	1,666	7.1	(771)	(3,858)
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	OPEN	CLOSED	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	
SWP BANKS PUMPING		254	229	420	431	403	418	397	123	119	282	215	397	3,687
CVP BANKS PUMPING		110	18	0	0	0	0	0	0	0	0	195	0	323
TRACY PUMPING		246	238	246	246	222	246	238	184	178	282	282	250	2,858
CONTRA COSTA PUMPING		11	8	7	7	80	8	=	12	15	18	18	14	135
CVP COA BALANCE		0	0	0	0	0	0	0	0	<u>(</u>)	0	0	87	
CVP DOS AMIGOS		85	22	28	25	113	70	140	154	197	225	169	112	1,406
SWP DOS AMIGOS		243	200	256	225	255	282	286	283	375	454	380	238	3,477
CVP SAN LUIS EOM STORAGE	200	373	510	702	864	988	931	868	699	386	143	169	159	
SWP SAN LUIS EOM STORAGE	300	297	317	474	699	805	927	1,018	836	256	360	173	316	
TRINITY EOM ELEVATION (FT)	2,333	2,322	2,318	2,318	2,321	2,328	2,336	2,345	2,351	2,345	2,334	2,318	2,316	
TRINITY SURFACE AREA (ACRES)	13,991	13,269	13,004	13,001	13,179	13,632	14,208	14,862	15,284	14,865	14,036	12,949	12,824	
WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,207	1,210	1,210	1,210	1,210	1,209	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,964	2,964	2,964	2,964	2,964	2,964	3,167	3,250	3,250	3,250	3,250	3,220	
SHASTA EOM ELEVATION (FT)	1,015	1,012	1,012	1,012	1,022	1,036	1,053	1,056	1,052	1,039	1,016	993	984	T
SHASTA SURFACE AREA (ACRES)	23,529	23,262	23,272	23,272	24,346	26,063	28,060	28,455	27,946	26,384	23,727	21,054	20,107	
				-										

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

DATE: 1013 PAPA PAPA DATA D							INITED ST	ATES RIIR	FALLOF RE	CLAMATIC	Z				
Control September Cont	Study Year Hydrologic Type (W-A-U-C-E)						ONG.TER	MOPERAT	IONS CRIT	FRIA AND	PIAN				
The control of the	Starting Storage Level (HI-HM-LM-LU)	MIL				•	3))		: :				
The control of the	Oct.Feb (%) Project Deliveries (100-75-50-25-0)	8													
10 10 10 10 10 10 10 10	Mar-Sep (%) Project Delivenes (100-75-50-25-0)	8	DATE:	10/13											
Fig. 1997 Fig.	Oct. Dec (%) Water Rights Delivenes (100-75-50-25-0)	100	TIME:	15:22											
Fig. 1962 Fig. 1962 Fig. 1964 Fig.	Jan-Seo (%) Water Rights Delivenes (100-75-50-25-0)	100	BYPASS												
The control	Alternative Extension	PRE													
Table Tabl	И	INITIAL	100	NOV	DEC	JAN	FEB	MAH	APH	MAY	JUN	JUL	AUG	SEP	IOIAL
EE 206	TRINITY FOM STORAGE	1,500	1,334	1.284	1,253	1.290	1,378	1,493	1,648	1,700	1,621	1,474	1,280	1,214	
C 2000 2 5.0 2 5.0 2 0	WHISKEYTOWN EOM STORAGE	206	206	206	506	506	506	506	230	240	240	240	240	210	
Harring Color Co	SHASTA FOM STORAGE	2,500	2,510	2,550	2,699	2,906	3,263	3,734	3,824	3,722	3,380	2,878	2,365	2,258	
Harriage Application App	OROVII I F FOM STORAGE	2,200	2,051	2,022	2.037	2,237	2,532	2,859	2,846	2,840	2,631	2,190	1,884	1,551	
NALL MALL MALL MALL MALL MALL MALL MALL	FOI SOM FOM STORAGE	400	346	300	276	316	413	581	969	785	729	265	485	493	
MANIMAL 146 300 (149) (290) (234) (290) (190) (291) (290) (291) (290) (291) (290) (291) (290) (291) (290) (291) (290) (291) (290) (291) (290) (291) (290) (291) (290) (291) (290) (291) (290) (291)	WHISKEYTOWN STORAGE WITHDRAWAL		150	09	53	0	0	0	0	20	99	140	141	72	722
NAME 146 30 (12) (12	SHASTA STORAGE WITHDRAWAL		(13)	(40)	(149)	(201)	(357)	(470)	(97)	93	329	483	498	98	168
NAME Section	OROVILLE STORAGE WITHDRAWAL		146	30	(12)	(199)	(594)	(328)	2	2	200	431	239	328	614
Fig. 150 Fig. 150 Fig. 151	FOLSOM STORAGE WITHDRAWAL		52	45	26	(39)	(96)	(168)	(115)	(35)	20	125	106	(12)	(121)
Fig. 10 Fig.	SPRING CREEK POWERPLANT		150	09	09	17	27	25	0	09	09	140	140	70	808
Fig. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	KFSWICK RELEASE		357	270	231	200	180	184	403	553	629	843	838	358	5,077
Fig. 100	OROVILLE RELEASE		208	150	148	61	98	61	402	179	207	339	274	361	2,447
Fig. 100 Fig. 120 Fig. 120 Fig. 150	NIMBLIS RELEASE		92	89	92	77	69	77	170	150	150	213	186	74	1,441
Fig. 100	VERNALIS FLOW		110	105	115	120	150	105	80	15	90	85	06	95	1,210
Fig. 10 Fig.	FEATHER RIVER DEMANDS		58	0	0	0	0	-	28	193	193	232	145	87	296
FS	VIJBA RIVER ACCRETIONS		85	75	100	66	92	79	42	40	33	49	62	70	826
F5j 4,000 4	SACRAMENTO RIVER ACCRETIONS		140	190	320	549	807	684	117	(20)	(227)	(341)	(208)	95	2,076
FS SS 10,360 1,570 7,502 10,358 8,776 7,147 7,150 7,502 10,358 16,374 1,415 7,148 1,736 1,49 1,49 2,81 3,66 2,89 2,81 3,66 2,89 2,81 3,66 2,89 2,19 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,49 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40 <t< td=""><td>WII KINS SLOUGH TABGET (CES)</td><td></td><td>4,000</td><td>4,000</td><td>4,000</td><td>4,000</td><td>4,000</td><td>4,000</td><td>4,000</td><td>4,000</td><td>4,000</td><td>4,000</td><td>4,000</td><td>4,000</td><td></td></t<>	WII KINS SLOUGH TABGET (CES)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
12,975 11,745 12,861 14,428 20,039 16,374 18,365 13,537 17,134 17,736 14,932 14,912 12,861 14,402 14,402 14,672 1	WILKINS SLOUGH ACTUAL (CFS)		5,981	5,417	5,750	7,502	10,358	8,576	7,197	7,415	7,143	8,066	9,692	5,832	
Continue	FREEPORT FLOW (CFS)		12,975	11,745	12,861	14,428	20,039	16,374	18,365	13,533	13,257	17,134	17,736	14,932	
Color Colo	ACTUAL DELTA OUTFLOW		215	208	316	380	299	450	452	467	366	585	219	149	4,178
Common C	REQUIRED DELTA OUTFLOW		215	208	215	277	250	277	452	467	396	583	219	149	3,384
Colored Colo	ANTIOCH FLOW		(221)	(860)	(1,359)	(5,663)	(4,402)	(1,850)	(1,108)	2,810	3,465	1,666	71	(171)	(5,223)
Color Colo	CROSS CHANNEL GATES		OPEN	OPEN	OPEN	-	CLOSED	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	
Color Colo	SWP BANKS PUMPING		254	231	335	431	403	418	397	123	119	282	215	397	3,604
ES) 246 236 246 226 246 250 184 178 282 250 250 1 1 1 1 1 1 1 15 18 19 18 <td< td=""><td>CVP BANKS PUMPING</td><td></td><td>64</td><td>64</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>195</td><td>0</td><td>323</td></td<>	CVP BANKS PUMPING		64	64	0	0	0	0	0	0	0	0	195	0	323
1 0 0 0 0 0 0 0 0 0	TRACY PUMPING		246	238	246	246	222	246	250	184	178	282	282	250	2,870
ESTANCE STATE STAT	CONTRA COSTA PUMPING		11	8	7	7	8	80	=	12	15	18	18	14	135
ES 57 28 57 113 70 140 154 197 225 169 112 112 221 221 189 244 214 224 267 267 267 267 355 431 359 1224 12 200 210 224 224 2282 2289 864 896 931 880 681 358 153 167 171 12 200 210 226 2282 2289 2289 764 505 131 171	CVP COA BALANCE		0	0	0	0	0	0	0	0	0	<u>(</u>)	0	(10)	
ESSISTANCIAL STATES STA	CVP DOS AMIGOS		85	25	28	25	113	70	140	154	197	225	169	112	1,406
ES) 326 510 702 864 896 931 880 681 398 155 181 ES) 200 210 242 328 533 684 822 929 764 505 333 167 ES) 2,301 2,286 2,286 2,282 2,282 2,282 2,282 2,282 11,390 1,199 1,190 1,190 1,190 1,191 1,190 1,191 1,191 1,190 1,200 3,250	SWP DOS AMIGOS		231	189	244	214	242	267	271	267	355	431	329	224	3,294
E 200 210 222 328 533 684 822 929 764 505 333 167 167 168 17 17 17 17 17 17 17 17 17 17 17 17 17	CVP SAN LUIS EOM STORAGE	200	326	210	702	864	988	931	880	681	398	155	181	171	
(ES) 2,301 2,286 2,282 2,289 2,300 2,313 2,317 2,311 2,299 2,281 2,281 (ES) 11,857 10,944 10,666 10,495 10,699 11,190 11,817 12,656 12,932 12,508 11,714 10,643 1 ON (FT) 1,199 1,199 1,199 1,199 1,199 1,199 1,207 1,210 1,210 1,210 EA (ACRES) 2,964 2,964 2,964 2,964 2,964 3,56 3,250 3,250 3,250 3,250 982 984 991 1,001 1,017 1,036 1,042 1,023 1,023 1,000 975 1ES) 19,868 19,919 20,928 22,013 23,852 26,231 26,683 26,172 24,444 21,868 19,141 1	SWP SAN LUIS EOM STORAGE	200	210	242	328	533	684	822	929	764	505	333	167	326	
(ES) (1) <td>TRINITY EOM ELEVATION (FT)</td> <td>2,301</td> <td>2,286</td> <td>2,282</td> <td>2,279</td> <td>2,282</td> <td>2,290</td> <td>2,300</td> <td>2,313</td> <td>2,317</td> <td>2,311</td> <td>2,299</td> <td>2,281</td> <td>2,275</td> <td></td>	TRINITY EOM ELEVATION (FT)	2,301	2,286	2,282	2,279	2,282	2,290	2,300	2,313	2,317	2,311	2,299	2,281	2,275	
ON (FT) 1,199 1,210 <	TRINITY SURFACE AREA (ACRES)	11,857	10,944	10,666	10,495	10,699	11,190	11,817	12,656	12,932	12,508	11,714	10,643	10,272	Ī
EA (ACRES) 2,964 2,964 2,964 2,964 2,964 2,964 2,964 2,964 2,964 3,167 3,167 3,250	WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,207	1,210	1,210	1,210	1,210	1,200	•
982 984 991 1,001 1,017 1,038 1,042 1,037 1,023 1,020 1,000 975 1ES 19,868 19,919 20,135 20,928 22,013 23,852 26,231 26,683 26,172 24,444 21,868 19,141 18	WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,964	2,964	2,964	2,964	2,964	2,964	3,167	3,250	3,250	3,250	3,250	2,998	Ī
19,868 19,919 20,135 20,928 22,013 23,852 26,231 26,683 26,172 24,444 21,868 19,141	SHASTA EOM ELEVATION (FT)	985	982	984	991	1,001	1.017	1,038	1,042	1,037	1,023	1,000	975	696	
	SHASTA SURFACE AREA (ACRES)	19,868	19,919	20,135	20,928	22,013	23,852	26,231	26,683	26,172	24,444	21,868	19,141	18,554	

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

10 10 10 10 10 10 10 10	وروم المرا المرام والمرابع المرابع المرابع المرابع								1 1 1 1 1	1	: :				
The converse of the converse	Starting Storage Level (HI-HM-! M-! O)	M					CONG-TER	M OPERAT	IONS CHI	ERIA AND	Z S				
Part	(C 9C 03 2C 000)	27													
Difference (100775-5025-0) TIME	Oct-rep (%) Project Deliveres (100-13-0-23-0)	7	1												
Particular 10 Particular 15 Particular	Mar-Sep (%) Project Deliveries (100-75-50-25-0)	75	DATE:	10/13											
COMMUNICATION INTO THE TOTAL SECRETARY SECRETARY INTO THE TOTAL SECRETARY SECRETARY INTO THE TOTAL SECRETARY SECR	Oct-Dec (%) Water Bights Delivenes (100-75-50-25-0)	100	TIME:	15:27											
Marche M	Lan. Son (%) Water Bights Deliveres (100-75, 50-25-0)	100	BYPASS												
MATCHES WARTH WATHH WA	Alleman Education	PBE													
MAIUES IN NAME	- 11			The state of the s	1 11 11	11.0	1011	TOXIO	ABB	LAY A	TITIE	THUL	XXIV	CED	CIVICI
Paragraphic	ALL VALUES IN KAP	INIIAL	100	NON	DEC	NAC	LEB	MAH	AFR	MAT	NOC	JUL	AUG	SEL	10175
POPAGE 200<	TRINITY EOM STORAGE	1,100	984	934	934	967	1,053	1,162	1,318	1.400	1,322	1,216	1,063	1.041	
EWIHODRAWAL 17000 2046 2154 2254 2254 2254 2354 3450 3450 3451 3141 256 170 1630	WHISKEYTOWN EOM STORAGE	506	206	206	206	506	206	506	230	240	240	240	240	236	
EE 1770 1639 1637 1639 1637 1639 1637 1639 2173 2504 2724 2	SHASTA FOM STORAGE	2.000	2.048	2,135	2,254	2,464	2,824	3,299	3,450	3,421	3,141	2,647	2,258	2,080	
MANAL Color Lica Lica Color	OBOVILLE FOM STORAGE	1,700	1,639	1,637	1.678	1.879	2.173	2,500	2.724	2,723	2,514	2,073	1,709	1,458	
100 100	FOI SOM FOM STORAGE	200	177	162	168	223	319	487	611	665	575	429	382	381	
10 10 10 10 10 10 10 10	WILLION OF TORREST WITHORAWAI		15	9	23		6	5	0	20	56	100	101	2	473
10	CHASTA STODACE MITUDOMMAI		(51)	(87)	(110)	(010)	(360)	(476)	(157)	21	267	476	376	168	(150)
100 100	SHASIA SIOHAGE WITHURAWAL		(10)	100	1007	(400)	(000)	1000	1900)	(0)	500	424	350	346	30g
All the color of	OROVILLE STORAGE WITHDHAWAL		80	7	(36)	(651)	(234)	(320)	(077)	(6)	3	100	000	100	200
100 60 30 20 30 30 30 30 30 3	FOLSOM STORAGE WITHDRAWAL		21	15	(2)	(55)	96	168	(125)	()()	84	139	42	(6)	(40/1
10 10 10 10 10 10 10 10	SPRING CREEK POWERPLANT		100	09	30	20	30	30	0	30	09	100	100	0	260
121 122 123 61 56 61 166 174 207 39 161 160 161 150 150 150 168 184 24 161 162 162 150 163 163 183	KESWICK RELEASE		269	223	231	200	180	184	343	451	265	962	929	358	4,510
Color	DROVIII F REI FASE		121	122	122	61	56	61	166	174	207	339	333	279	2,041
ONS ONS ONS ONS ONS ONS ONS ONS	ALIMATIC DELEASE		19	9	61	61	04	77	160	188	184	707	122	84	1.355
ONS	NIMBUS NELEASE		5	3				300		37	0	30	8	20	1 240
Signature	VERNALIS FLOW		011	COL	CLI	120	061	103	00	67	00	200	S !	33	1,610
ONIS BS 75 100 98 92 79 42 40 33 ONIS 4,100 4,100 4,000 <td>FEATHER RIVER DEMANDS</td> <td></td> <td>28</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>88</td> <td>193</td> <td>193</td> <td>232</td> <td>145</td> <td>18/</td> <td>200</td>	FEATHER RIVER DEMANDS		28	0	0	0	0	-	88	193	193	232	145	18/	200
ONS 140 190 320 549 607 6684 117 (50) (227) (327) (328) (328) (328) (328) (328) (328) (328) (328) (328) (328) (328) (328) (328) (328) (4000) 4,000	NUBA RIVER ACCRETIONS		85	75	100	88	92	79	42	40	33	49	62	70	826
Sj 4,000 4,	SACRAMENTO RIVER ACCRETIONS		140	190	320	549	807	684	117	(20)	(227)	(341)	(208)	95	2,076
Sj 4,587 4,659 5,758 7,508 10,364 8,583 6,307 5,952 6,335 7,58 215 208 215 208 11,338 14,178 20,039 16,374 13,222 12,411 12,786 16,68 215 208 215 208 215 277 452 467 366 2 1,639 11,938 12,178 20,039 16,374 13,222 12,411 12,786 16,68 1,639 11,639 11,639 11,98 21,5 277 452 467 366 2 1,628 109EN OPEN CLOSEO OPEN	MILKINS SLOUGH TARGET ICFS!		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
1,000 1,00	MILKINS SLOUGH ACTUAL (CFS)		4,587	4,659	5,758	7,508	10,364	8,583	6,307	5,952	6,353	7,578	7,253	5,916	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	FREEPORT FLOW (CFS)		9,618	9,997	11,938	14,178	20,039	16,374	13,222	12,411	12,786		15,004	13,705	
1,659 119 (2,157) (2,723) (4,402) (1,778) (1,788)	ACTUAL DELTA OUTFLOW		215	208	215	365	299	455	452	467	396	289	219	149	4,067
1,659 119 (2,157) (2,723) (4,402) (1,776) 1,772 3,439 3,729 1,9	REQUIRED DELTA OUTFLOW		215	208	215	277	250	277	452	467	366	289	219	149	3,384
OPEN	ANTIOCH FLOW		1,659	119	(2,157)	(2,723),	(4,402)	(1,778)	1,772	3,438	3,729	1,957	1,601	(84)	3,130
167 203 347 431 403 418 161 118 119 2 32 32 32 0 0 0 0 0 0 0 0 0	CROSS CHANNEL GATES		OPEN	OPEN	OPEN	OPEN	CLOSED	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	
159 154 246 222 241 180 120 150 22 241 180 120 150 22 241 180 120 150 22 241 180 120 150 22 241 180 120 150 22 241 180 120 150 22 241 180 120 150 22 241 180 120 150 22 241 180 120 150 22 241 180 120 150 22 241 180 148 111 12 15 15 15 15 15 1	SWP BANKS PUMPING		167	203	347	431	403	418	161	118	119	282	274	324	3,246
159 194 246 222 241 180 120 150 22 24 180 120 150 22 24 180 120 150 22 24 180 120 150 24 24 24 24 24 24 24 2	CVP BANKS PUMPING		32	32	32	0	0	0	0	0	0	0	0	0	96
11 8 7 7 8 8 11 12 15 15 12 13 14 15 15 15 13 14 15 15 15 14 15 15 15 15 15 15 15	TRACY PUMPING		159	194	246	246	222	241	180	120	150	250	250	250	2,508
10	CONTRA COSTA PUMPING		11	8	7	7	8	8	11	12	15		18	14	135
43 21 11 21 43 106 117 138 148	CVP COA BALANCE		0	0	38	0	0	0	0	(O)	0		<u>(</u>)	(0)	
200 156 166 219 191 217 238 242 235 313 313 210 210 210 210 210 210 210 210 210 210	CVP DOS AMIGOS		43	21	11	21	43	106	117	138	148	180	148	85	1,061
200 257 405 647 847 969 976 893 667 427 427 21247 2.250 2.259 2.270 2.285 2.28	SWP DOS AMIGOS		206	166	219	191	217	238	242	235	313	385	316	198	2,926
100 49 79 203 432 608 776 677 540 326 326 2.252 2.293 2.293 2.293 2.295	CVP SAN LUIS EOM STORAGE	200	257	405	647	847	696	9/6	893	299	427	209	53	83	
Sylvate Property (Sylvater) (Sylv	SWP SAN LUIS EOM STORAGE	100	49	79	203	432	608	776	229	540	326	202	140	254	
9,620 8,939 8,640 8,636 8,838 9,344 9,978 10,858 11,312 10,878 10 1,199 1,199 1,199 1,199 1,199 1,199 1,199 1,199 1,199 1,199 1,210 1,210 1,210 1 2,964 2,964 2,964 2,964 2,964 2,964 3,167 3,250 3,250 3 960 990 990 1,019 1,018 1,	TRINITY EOM ELEVATION (FT)	2,264	2,252	2,247	2.247	2,250	2,259	2,270	2,285	2,292	2,285	2.276	2,260	2,258	
1,199 1,199 <th< td=""><td>TRINITY SURFACE AREA (ACRES)</td><td>9,620</td><td>8,939</td><td>8,640</td><td>8,636</td><td>8,838</td><td>9,344</td><td>9,978</td><td>10,858</td><td>11,312</td><td>10,878</td><td>10,285</td><td>9,404</td><td>9.277</td><td></td></th<>	TRINITY SURFACE AREA (ACRES)	9,620	8,939	8,640	8,636	8,838	9,344	9,978	10,858	11,312	10,878	10,285	9,404	9.277	
2,964 2,964 2,964 2,964 2,964 2,964 3,167 3,250 3,250 3 955 958 963 969 997 1,019 1,026 1,024 1,012	WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,207	1,210	1,210	1,210	1,210	1,209	
955 958 963 969 990 997 1,019 1,026 1,024 1,012	WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,964	2,964	2,964	2,964	2,964	2,964	3,167	3,250	3,250	3,250	3,250	3,220	
300 00 10 20 100 10 100 100 100 100 100 1	SHASTA EOM ELEVATION IFTI	955	928	963	696	980	266	1,019	1,026	1,024	1,012	686	696	096	
17.119 17.391 17.875 18.535 19.677 21.583 24.037 24.802 24.653 23.225	SHASTA SURFACE AREA (ACRES)	17.119	17.391	17.875	18.535	19,677	21,583	24,037	24,802	24,653	23,225	20,652	18,554	17,570	

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

10/13

DATE: TIME:

0 8 8 K

Starting Storage Level (HI-HM-LM-LD)

Oct-Feb (%) Project Deliveries (100-75-50-25-0)

Mar-Sep (%) Project Deliveries (100-75-50-25-0)

Oct-Dec (%) Water Rights Deliveries (100-75-50-25-0)

tudy Year Hydrologic Type (W-A-D-C-E)

7	:		5											
Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	100	BYPASS												
Alternative Extension	PRE													
ALL VALUES IN KAF	INITIAL	130	NOV	DEC	JAN	FEB	MAR	APR	MAY	MILL		Y VIIV	61.0	
ITRINITY EOM STORAGE	2007	604	585	604	637	723	833	989	1 079	100	100	SOC S	SEL	IOIAL
WHISKEYTOWN FOM STORAGE	206	506	206	206	206	206	200	230	240	240	240	000	15/	
SHASTA EOM STORAGE	1,700	1,767	1,824	1,923	2,133	2,493	2.968	3 179	3 166	2 927	2546	2 244	2000	
OROVILLE EOM STORAGE	1,200	1,149	1,190	1,291	1,491	1,785	2.112	2.342	2,336	2 155	1 853	1 620	1 456	T
FOLSOM EOM STORAGE	200	178	164	170	226	337	521	638	708	642	538	40R	410	T
WHISKEYTOWN STORAGE WITHDRAWAL		80	30	3	3	က	5	0	20	82	8	6	0	383
SHASTA STORAGE WITHDRAWAL		(69)	(22)	(66)	(210)	(360)	(476)	(217)	5	228	394	288	168	(404)
OROVILLE STORAGE WITHDRAWAL		49	(40)	(66)	(199)	(294)	(328)	(232)	2	174	293	218	168	(287)
FOLSOM STORAGE WITHDRAWAL		20	15	(2)	(55)	(111)	(184)	(118)	(75)	8	97	125	(5)	(936)
SPRING CREEK POWERPLANT		80	30	10	50	30	30	0	S	8	06	8	C	470
KESWICK MELEASE		231	223	231	200	180	184	283	435	558	704	578	358	4.166
OROVILLE MELEASE		Ξ	80	61	61	26	61	160	179	181	201	193	201	1.546
MIMBOS MELEASE		62	09	61	19	26	61	167	171	160	185	205	81	1,330
VERIVALIS FLOW		110	105	115	120	150	105	80	75	98	85	8	95	1.210
CALIFIER RIVER DEMANDS		28	0	0	0	0	1	58	193	193	232	145	87	296
TOBA HIVEH ACCRETIONS		82	75	100	8	92	79	42	40	33	49	62	70	826
SACHAMENIO RIVER ACCHE IIONS		140	190	320	549	807	684	117	(20)	(227)	(341)	(208)	95	2.076
WILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4.000	4,000	4,000	4,000	4,000	4,000	4,000	4.000	4 000	
WILKINS SLUUGH ACTUAL (CFS)		4,124	4,732	5,787	7,516	10,371	8,593	5,457	5,952	6,017	6,439	5,952	6.014	T
FREEDHI FLOW (CFS)		8,833	9,287	10,954	14,178	19,789	16,124	12,236	11,955	11,279	12,184	12,493	12,337	
ACTUAL DELIA DUTILOW		215	508	254	365	731	543	452	467	366	289	219	149	4,258
ANTIOCH ELOW		215	508	215	277	250	277	452	467	366	289	219	149	3,384
CROSS CHANNEL CATES		2,098	517	(1,101)	<u>e</u>	(3,305)	(491)	2,325	3,693	4,573	4,438	3,007	682	13,712
KWP BANKS DIMONS		OPEN	OPEN	OPEN	-	CLOSED	OPEN							
CVP RANKS PIMPING		2	161	248	431	403	418	155	123	93	144	134	246	2,713
TRACY PIMPING		٥	32	32	0	0	0	0	0	0	0	0	0	64
CONTRA COSTA PLIMPING		725	193	246	246	144	139	130	8	8	120	240	250	2,041
CVP COA BALANCE		= 6	0	1	7	8	9	80	6	=	13	13	10	111
CVP DOS AMIGOS		0 8	5;	5	0		0	0	0	0	0	(0)	(0)	
SWP DOS AMIGOS		S)	14		4	29	25	79	180	107	129	100	25	716
CVP SANTING FOM CTOBACE	- 00	516	132	181	157	178	194	199	187	251	317	252	158	2,422
SWD SAN HIS COM STORAGE	2002	255	424	929	988	996	965	884	- 673	425	143	51	121	
TRINITY FOW OF PAYON OF THE	190	33	29	119	384	599	813	753	672	496	305	171	248	
TRINITY CLIDEACE AREA (ACRES)	2,218	2,205	2,202	2,205	2,209	2,221	2,235	2,253	2,261	2,253	2,243	2,226	2,223	
MHISKEYTOWN CON CLOVATION (FE	7,162	6,514	6,375	6,511	6,742	7,314	8,014	8,969	9,457	8,999	8,431	7,540	7,406	
WHISKEYTOWN SUBSACE ABEA (ACRES)	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,207	1,210	1,210	1,210	1,210	1,209	
SHASTA FOW FIEVATION (FD.	2,964	2,964	2,964	2,964	2,964	2,964	2,964	3,167	3,250	3,250	3,250	3,250	3,220	
SHASTA SURFACE AREA (ACRES)	156	1 24 1	945	951	362	981	1,80	1,014	1,013	1,002	982	296	957	
STAGES SOLIT ACE AND A (ACRES)	15,384	15,777	16,109	16,682	17,867	19,829	22,335	23,423	23,355	22,119	19,953	18,315	17,329	

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

	-						ONG: I FEM OPERALIONS CHIERIA AND PAN	5	222 222					
Starting Storage Level (HI-HM-LM-LO)	Ē				,									
Oct-Feb (%) Project Delivenes (100-75-50-25-0)	8	i i												
Mar-Sep (%) Project Delivenes (100-75-50-25-0)	100	DATE:	10/13											
Oct-Dec (%) Water Rights Delivenes (100-75-50-25-0)	200	TIME:	15:50											
Pan-Sep (%) Water Rights Deliveries (100-75-50-25-0)	100	BYPASS												
Alternative Extension	PRE										1.11.11	Y STILLY	1000	TATAL
ALL VALUES IN KAF	INITIAL	100	NOV	DEC	JAN	FEB	MAH	APH	MAY	NOC	JOC	SOC.	35.7	1017
DINITY EDIA STORAGE	1,900	1,805	1,773	1,765	1.774	1.812	1,862	1.970	1,9/6	1.808	1,024	1,4/0	0.4.0	T
MINITEREST OWN STORAGE	206	180	150	150	160	170	206	230	240	240	240	240	210	
WHISher LOWIN COM STORMS	3 200	3.127	3,125	3,130	3,250	3,450	3,785	3,843	3,646	3,340	2,824	2,237	2,019	
I A EOM STORAGE	2 700	2.556	2.485	2.428	2,476	2,531	2,748	2,879	2,768	2,548	2,231	1,894	1,629	
OROVILLE EUM STURAGE	900	530	470	436	442	492	909	628	692	628	431	359	310	
OLSOM EOM STURAGE	3	101	3	12	0	0	0	0	55	119	161	102	62	929
WHISKEY TOWN STORAGE WITHDRAWAL		69	0	(3)	(120)	(200)	(336)	(64)	189	292	499	572	209	1,106
SHASTA STORAGE WITHDRAWAL		141	71	61	(45)	(55)	(218)	(133)	106	211	308	329	260	1,037
OROVILLE STORAGE WITHDRAWAL		67	9	36	(5)	(50)	(114)	(23)	(69)	58	190	29	46	265
FOLSOM STORAGE WITHDRAWAL		100	9	9	0	0	0	0	09	120	160	100	09	029
SPRING CREEK POWER CAN		369	292	265	200	180	184	386	589	652	859	852	449	5,276
KESWICH HELEASE		163	151	161	125	145	61	66	123	148	166	264	263	1,870
ILLE MELEASE		108	104	8	62	26	61	182	107	128	228	108	93	1,327
VIMBUS RELEASE		70	8	8	110	110	100	80	09	25		S	09	006
PENALIS PLOW		58	0	0	0	0	1	58	193	193		145	87	èg :
LATINE MINE ACCRETIONS		40	8	40	65	8	48	22	18				31	412
TOBA RIVER ACCORTIONS		95	110	210	405	341	553	(3)	(192)				26	/8/
SACRAMENTO RIVER ACCHE HONS		4 000	4,000	4,000	4,000	4,000	4,000	4,000	4,000			_	4,000	
WILKING SLOUGH PATINI (CES)		6.175	5,378	5,777	6,468	6,208	7,740	5,681	6,439				7,361	
WICKING SCOOL ACIDAL (CL. C)		11,950	11,043	11,852	12,863	13,006	13,994	11,155	10,183	11,509	15,166	9	14,461	.00
ONI LOW (CI S)		215	208	215	277	250	309	268	246			195	149	2,804
ACTUAL DELIA DUTTELOW		215	208	215	277	250	277	268	246				149	2,772
REDUIRED DELLA DOTITION		352	(467)	(2,108)	(3,126)	(2,882)	(2,341)	456	1,810		\Box	-	(507)	(3,444)
ANIIOCH FLOW		OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	1
CHOSS CHAINNEL CAILS		183	196	285	427	389	407	152	123	119		"	269	2,897
TAP BANKS PHAPING		32	32	2	0	0	0	0	0	0			62	515
BACY PLIMPING		246	238	246	246	222	246	250	184		7	N	062	2,870
CONTRA COSTA PLIMPING		=	8	7	7	80	8	=	12				14	2
TVP COA BALANCE		0	0	0	06	28	0	0	9				(0)	400
VP DOS AMIGOS		85	57	28	57	113	70	140	154				711	004,
SOS MISOS		205	166	219	191	217	238	242	235				198	CZ6'Z
SAN THE FOLL STORAGE	200	294	446	702	864	968	931	880	681	398		106	161	
OW SAN LOIS COM STORAGE	300	267	290	351	577	740	968	789	657	442	_		90	
DOWN SAIN LOIS EDIM STORAGE	2 333	2.326	2,323	2,322	2,323	2,326	2,330	2,338	2,339		4	_	2,294	
FRINITY STIDEACE ABEA (ACRES)	13 991	13 492	13,323	13,277	13,328	13,526	13,793	14,356	14,388	13,504			11,415	
HINNEY SOME COME CONTINUED	1 199	1 189	1,178	1.178	1,182	1,185	1,199	1,207	1,210				1,200	
WHISKEY TOWN BOM BLEVATION (FT)	2 964	2 736	2.459	2.459	2.553	2,646	2,964	3,167	3,250	3,250	3	3	2,998	
VALISACTA COVER SOM FOR AND ACCOUNTS	1015	1011	1.011	1.012	1,017	1,026	1,040	1,042		1,021	997	968	926	

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

Study Year Hydrologic Type (W-A-D-C-)					CONTRE	2000	2000	UNITED STATES BUMEAU OF RECLAMATION	5				
Starting Storage Level (HI-HM-LM-LO)	¥H					LONG-TEF	IM OPERA	LONG-TERM OPERATIONS CRITERIA AND PLAN	TERIA AND	PLAN				
Oct-Feb (%) Project Deliveries (100-75-50-25-0)	100													
Mar-Sep (%) Project Delivenes (100-75-50-25-0)	75	DATE:	10/13											
Oct-Dec (%) Water Rights Delivenes (100-75-50-25-0)	100	TIME:	15:56											
Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	100	BYPASS												
Alternative Extension	PRE													
ALL VALUES IN KAF	INITIAL	200	NOV	DEC	JAN	FEB	MAH	APR	MAY	NOC	200	AUG	SEP	TOTAL
RINITY EOM STORAGE	1,500	1,386	1,354	1,325	1,335	1,372	1,423	1,530	1,567	1,400	1,228	1,012	989	
WHISKEYTOWN EOM STORAGE	206	180	150	150	160	170	506	230	240	240	240	240	236	
SHASTA FOM STORAGE	2,500	2,464	2,448	2,489	2,609	2,809	3,144	3,250	3,086	2,817	2,329	1,847	1,615	
OBOVII I FOM STORAGE	2.200	2,056	1,987	1,930	1,977	2,032	2,249	2,319	2,210	L	1,747	1,590	1,526	
FOI SOM FOM STORAGE	400	346	300	282	287	337	451	558	624	526	333	249	220	
WHISKEYTOWN STORAGE WITHDRAWAL		121	64	32	0	0	0	0	25	119	161	162	2	989
SHASTA STORAGE WITHDRAWAL		32	17	(42)	(120)	(200)	(336)	(112)	156	257	473	469	224	820
OROVILLE STORAGE WITHDRAWAL		141	20	09	(45)	(55)	(218)	(72)	106	189	258	150	09	645
FOLSOM STORAGE WITHDRAWAL		52	45	21	(5)	(20)	(114)	(108)	(07)	93	186	8	56	157
SPRING CREEK POWERPLANT		120	9	30	0	0	0	0	8	120	160	160	0	680
KESWICK RELEASE		352	307	248	200	180	184	338	526	617	833	808	404	5,000
OROVILLE RELEASE		163	150	160	125	145	61	160	123	126	116	85	63	1,478
NIMBUS RELEASE		92	89	77	62	98	61	97	106		224	120	72	1,219
JERNALIS FLOW		70	80	06	110	110	100	80	09	20	40	SS	09	906
FEATHER RIVER DEMANDS		58	0	0	0	0	-	58	193	193	232	145	87	296
YUBA RIVER ACCRETIONS		40	30	40	65	26	48	22	18	17	8	25	31	412
SACRAMENTO RIVER ACCRETIONS		95	110	210	405	341	553	(3)	(192)	(243)	(320)	(222)	26	787
WILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4.000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
WILKINS SLOUGH ACTUAL (CFS)		5,905	5,628	5,507	6,475	6,216	7,748	5,008	5,626	689'9	8,879	9,692	6,689	
FREEPORT FLOW (CFS)		11,430	11,026	11,315	12,863	13,006	13,994	9,962	6	11,139	13,865	12,841	10,008	
ACTUAL DELTA OUTFLOW		215	208	215	277	250	599	268	246	232	240	195	149	2,794
REQUIRED DELTA OUTFLOW		215	208	215	277	250	277	268	246		240	195	149	2,772
		644	(458)	(1,808)	(3, 126)	(2,882)	(2,476)	1,124	Ш	2,850	2,859	2,500	1,987	3,606
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	
SWP BANKS PUMPING		183	195	284	395	389	417	213	123	97	82	ಜ	69	2,484
CVP BANKS PUMPING		0	32	32	32	0	0	0	°	٥	0	8	0	156
FRACY PUMPING		246	238	246	246	222	246	118	120	178	282	282	250	2,674
CONTRA COSTA PUMPING		11	8	7	7	8	8	11	12	15	18	18	14	135
CVP COA BALANCE		0	0	0	58	28	0	<u> </u>				<u>0</u>	0	
CVP DOS AMIGOS		85	57	28	25	113	106	117	138		180	148	82	1,262
SWP DOS AMIGOS		168	132	181	157	178	194	199	187		317	252	158	2,374
OVP SAN LUIS EOM STORAGE	200	262	414	638	832	872	884	739	513	302	115	52	82	
SWP SAN LUIS EOM STORAGE	200	207	264	363	265	795	1,007	1,005	924		503	267	168	
TRINITY EOM ELEVATION (FT)	2,301	2,291	2,288	2,286	2,286	2,290	2,294	2,303	2,307	2,292	2,277	2,255	2,253	
FRINITY SURFACE AREA (ACRES)	11,857	11,231	11,056	10,897	10,950	11,158	11,435	12,022	12,221	11,312	10,354	9,105	8,972	
WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,189	1,178	1,178	1,182	1,185	1,199	1,207	1,210		1,210	1,210	1.209	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,736	2,459	2,459	2,553	2,646	2,964	3,167	3,250			3,250	3,220	
SHASTA EOM ELEVATION (FT)	985	980	979	981	987	997	1,012	1,017	1,010	266	973	946	932	

UNITED STATES BUREAU OF RECLAMATION IONG-TERM OPERATIONS CRITERIA AND PLAN

					⊃	NITED STA	TES BUME	AU O'T HE	UNITED STATES BUREAU OF RECLAMATION	_				
Study Year Hydrologic Type (W-A-U-C-E)					-	ONG.TERN	OPFRATI	ONS CRITE	LONG. TERM OPERATIONS CRITERIA AND PLAN	NA				
Starting Storage Level (HI-HM-LM-LO)	Z				,		j							
Oct-Feb (%) Project Delivenes (100-75-50-25-0)	75		;											
Mar. Seo (%) Project Deliveries (100-75-50-25-0)	20	DATE:	10/13											
Oct-Dec (%) Water Rights Delivenes (100-75-50-25-0)	100	TIME:	16;03											
Jan. Seo (%) Water Rights Deliveries (100-75-50-25-0)	75	BYPASS												
Alternative Extension	PRE							1000	TOXIL	T LINE	1 1111	ATTE	CEP.	TOTAL
ALL VALUES IN KAF	INITIAL	OCL	NOV	DEC	JAN	PEB	MAR	ALU		1000	200	1111	ᆉ	
THE STORAGE	1,100	1.006	974	946	955	993	1.043	101.1	501,1	2007	325	0,00	240	T
WHISKEYTOWN FOM STORAGE	506	180	150	150	<u>8</u>	170	506	230	240	240	240	040	4 643	T
CHASTA FOM STORAGE	2,000	2,003	2,070	2,129	2,249	2,449	2,784	2,890	2,773	2,503	2,103	1,020	207	T
STASTA COM STORAGE	1,700	1,577	1,536	1,538	1,584	1,686	1,903	2,072	2.024	1,894	1,683	245	104	T
COUNTY COM CTODAGE	200	1771	162	158	169	224	367	202	588	525	368	241	177	000
FOLSOM STORAGE WITHORAWAI		101	64	32	0	0	0	0	52	29	151	26	35	000
WHISher LOWIN STORAGE WITHOUTS WAI		(9)	(67)	(65)	(120)	(200)	(336)	(111)	107	260	320	329	8/2	8
SHASIA SICHAGE WITHORAWAL		121	17	-	(42)	(101)	(218)	(171)	44	123	203	134	/2	5
CHOVILLE STORAGE WITHOUTS		21	15	5	(11)	(55)	(142)	(141)	(82)	28	150	122	77	(43)
FOISOM STURAGE WITHOUSAWAL		100	09	99	0	0	0	0	30	9	150	8	g	220
SPRING CREEK POWEHPLANI		294	223	231	2002	180	184	339	477	260	670	599	888	4,346
KESWICK RELEASE		143	121	101	125	66	61	61	19	09	61	69	9	1,024
OROVILLE HELEASE		2.4	9	6.1	5.5	05	34	65	95	129	190	165	09	1,023
NIMBUS RELEASE		300	8	8	110	110	100	80	9	22	40	25	9	006
VERNALIS FLOW		2 0	3	2	0	c	-	28	193	193	232	145	87	196
FEATHER RIVER DEMANDS		000	2	0 0	9	95	48	22	18	17	50	52	31	412
YUBA RIVER ACCRETIONS		9	3	2,0	405	341	553	(3)	(192)	(243)	(320)	(225)	95	787
SACRAMENTO RIVER ACCRETIONS		Ch Co	01-00	0.00	3 5	200	4 000	4 000	4.000	4 000	4,000	4,000	4,000	
WILKINS SLOUGH TARGET (CFS)		4,000	000	30.4	3 5	6.247	7.780	5.512	5.634	6,689	7,253	2,090	6,724	
WILKINS SLOUGH ACTUAL (CFS)		4,930	0 640	808 0	1277.1	12 073	13.544	7.774	7,141	8,494	9.788	9.879	9,476	
FREEPORT FLOW (CFS)		3,037	0,000 a000	215	277	250	297	268	246	232	240	195	149	2,793
ACTUAL DELTA OUTFLOW		245	208	215	777	250	277	268	246	232	240	195	149	2,772
REQUIRED DELTA OUTFLOW		612	079	(12/0)	(3 074)	(098 6)	(2.243)	2.349	3,514	4,331	5,142	4,158	2,284	15,654
ANTIOCH FLOW		1000	ODEN	OPEN	OPFN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	
CROSS CHANNEL GATES		163	166	225	390	337	417	115	63	31	31	17	67	2,021
SWP BANKS PUMPING		200	2	35	32	0	0	0	0	0	0	0	0	64
CVP BANKS PUMPING		157	157	213	246	222	222	89	61	96	8	180	224	1,950
CONTRA COSTA DIMPING			8	7	7	8	9	8	6	=	13	13	01	
CONTRA COOL TOTAL		0	0	0	52	23	0	0	0	0	(0)	0	9	100
CVP COA BALANCE		43	21	=	21	43	20	79	100	107	129	8	57	79/
CVP DOS AMIGOS		130	86	143	123	139	150	155	139	188	248	189	11	218,1
SWP DUS AMIGUS	200	223	302	511	745	881	926	873	664	451	180	83	125	T
CVP SAN LUIS ECIM STORAGE	100	128	192	272	530	721	979	926	836	664	432	247	189	T
TOWN SAN LOIS EOM STORAGE	2.264	2.254	2,251	2,248	2,249	2,253	2,258	2,269	2,273	2,262	2,245	2,228	2,225	T
TOINITY SUBSECT ABEA (ACRES)	9.620	9.070	8,880	8,708	8,766	8,990	9,289	9,916	10,130	9,521	8,566	7,663	200	T
ININITY SURFACE AREA (ACRES)	1 199	1,189	1,178	1,178	1,182	1,185	1,199	1,207	1,210	1,210	1,210	1,210	1,200	T
WHISKEY LOWN BOM BLEVATION (FT)	2.964	2,736	2,459	2,459	2,553	2,646	2,964	3,167	3,250	3,250	3,250	3,250	2,998	
CHASTA FOW I SURFACE AREA (ACRES)	955	955	959	962	696	979	966	1,000	995	982	964	945	45.034	T
SHASIA EUM ELEVAIION (FI)	17,119	17,135	17,511	17,843	18,507	19,592	21,375	21,926	21,326	19,892	18,067	16,136	15,041	
DHADIA SURFACE AREA (ACTICS)														

UNITED STATES BUREAU OF RECLAMATION

Starting Storage Level (H-HALLM-LO)	DATE: TIME: BYPASS DCT 606 1,735 1,159 1,159 1,159 1,159 1,169 1,1	16: 10 NOV NOV 1,792 1,792 1,793 1,673 1,773	DEC 586 150 1,821 1,220 159	LOJ	LONG-TERM OPERATIONS CRITERIA AND PLAN	ERATIONS C	RITERIA AL	to PLAN				
75 : 25-0) 50 75-50-25-0) 25 (100-75-50-25-0) 75 (100-75-50-25-0) 75 IN KAF INTIAL TOO 206 1,200 206 1,200 1,200 1,200 1,200 1,200 201 1,200 201 1,200 201 1,200 201 1,200 201 1,200 201 1,200	DATE: TIME: BYPASS 0CT 0CT 0CT 1,735 1,159 1,735 1,159 101 101 20 100 263 61	16:10 NOV NOV 150 1,792 1,792 1,792 1,793 1	DEC 586 150 1,821 1,220									
1200 1200	DATE: TIME: BYPASS BYPASS DCI 101 1.735 1.159 1.159 1.159 1.159 1.159 1.159 1.169 1.169 1.178 1.	16:10 NOV NOV 585 585 1,792 1,179 163 163 (57) (57	DEC 586 150 1,821 1,220	JAN								
10-75-50-25-0) 25 (100-75-50-25-0) 75 (100-75-50-25-0) PRE IN KAF NOTO 1,200 1,200 RAWAL 1,200	DATE: TIME: BYPASS OCT 001 1,735 1,159 1,159 1,159 1,159 1,169	10/13 16:10 NOV NOV 1,792 1,1792 1,1793 1,17	DEC 586 150 1,821 1,220 159	JAN								
(100-75-50-25-0) 75 (100-75-50-25-0) 75 IN KAF INITIAL 200 206 1,200 PREWAL 200	TIME: 001 001 606 180 1,735 1,159 1,169 1,735 1,169 1,735 1,169 1,01 1,	16:10 NOV NOV 1,792 1,179	DEC 586 150 1,821 1,220 159	JAN								
(100-75-50-25-0) 75 IN KAP NITIAL IN KAP 700 700 1,700 1,200 200 IRAWAL	BYPASS 001 001 1,735 1,159 1,159 1,159 1,159 1,159 1,169	NOV 585 150 1,792 1,179 163 163 (57) (20) (20) (20) (20) 60 60 60	DEC 586 150 1,220 159	JAN								
IN KAF	0C1 180 1,735 1,153 1,15	885 585 1,792 1,179 163 163 (57) (20) (20) (20) (20) 60 60 60	DEC 586 150 1,821 1,220 159	JAN								
IN KAF	0001 606 1,735 1,159 1,159 1,159 1,159 1,159 1,159 1,159 1,100 2,00 1,000 2,000 1,00	585 585 1,792 1,179 163 54 (57) (20) (20) 15 50 223 60 60	DEC 586 150 1,220 159	JAN								
RAWAL	(37) (37) (37) (37) (37) (37) (37) (37)	585 150 1,792 1,179 1,17	586 150 1,821 1,220 159							AUG	SEP	UIAL
RAWAL IL	1,735 1,159 1,159 101 (37) 39 20 100 100 100 100 100 100 100 100 100	150 1,792 1,792 1,179 163 50 (20) (20) (20) 15 60 60 60	1,821 1,220 1,59	595						632	209	
RAWAL IL	1,735 1,159 1,78 1,78 1,01 1,00 1,00 1,00 1,00 1,00 1,00 1,0	1,792 1,179 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63	1,821	160	170	206 23	230 240	10 240		240	210	
RAWAL IL	1,159 178 101 (37) 39 20 100 100 61 61	(57) (20) (20) (20) (20) (20) (20) (20) (20	1,220	1,941		2,478 2,663	63 2,603		2,004	1,697	1,542	Ì
RAWAL IL	178 101 (37) 39 20 100 263 61	(57) (57) (20) (20) 15 50 223 60 60	159	1,310	1,435 1,	1,638 1,809	1,761	1,632	1,421	1,282	1,22,1	
WHISKEYTOWN STORAGE WITHDRAWAL SHASTA STORAGE WITHDRAWAL OROVILLE STORAGE WITHDRAWAL	101 (37) 39 20 100 263 61	(57) (20) (20) 15 50 50 60 60		171	228	370 48	486 544	44 475	2	219	198	
SHASTA STORAGE WITHDRAWAL OROVILLE STORAGE WITHDRAWAL	(37) 39 20 100 100 61 61	(57) (20) (50) 50 50 60 60	2	0	0	0	0			32	32	306
OROVILLE STORAGE WITHDRAWAL	39 20 100 263 61	(20) 15 50 50 223 60 60	(53)	(120)		(336) (18	(192)			295	148	8
	20 100 263 61 61	15 50 223 60 60	(66)	(68)	(124)	(204) (17	(172)			134	25	(46)
TO SOM STORAGE WITH SHAWA	100 263 61 61	50 223 60 60	5	(11)		(142) (1.	(117) (6		64 179	99	18	(19)
COUNTY OF THE POWERPL ANT	263	223	0	0	0	0	0	30	30 30	30	30	88
KESWICK RELEASE	61	09	231	200	180	184 2	258 42	423 493	3 581	505	358	3,900
OBOVILLE RELEASE	61	09	61	81	76	75 (9 09	61 6	60 61	69	09	787
NIMBLIS DELEASE			62	55	8	34	11 89	116 13	136 219	109	99	1,057
VERNATIS FLOW	02	80	8	110	110	100	80		50 40		09	906
CCATUCD DIVER DEMANDS	58	0	0	0	0	-	58 19	193 193	33 232	145	87	296
YING RIVER ACCRETIONS	40	30	40	65	29	48	22		17 20		31	412
SACRAMENTO BIVER ACCRETIONS	95	110	210	405	341	553	(3) (192)	92) (243)	(320)		95	787
WILKINS SLOUGH TARGET (CFS)	4,000	4,000	4,000	4,000	4,000 4	4,000 4,000					4,000	
WILKINS SLOUGH ACTUAL (CFS)	4,647	4,324	5,253	6,509	6,259 7,	7,792 4,344	44 5,057	57 5,933	33 6,196		6,340	
FREEDORT FLOW (CFS)	7,818	7,616	9,175	12,054		9	9	_	°		9,073	
ACTUAL DELTA OUTFLOW	215	208	215	277							149	2,881
REQUIRED DELTA OUTFLOW	215	208									149	2,772
ANTIOCH FLOW	2,667	1,452	(610)	(2.672)	(2,128) (1,	2	2	_	φ	-	2,510	22,797
CROSS CHANNEL GATES	OPEN	OPEN	OPEN O	\dashv	OPEN OPEN	g	OPE	OPE	OPE	OPEN	OPEN	100,
SWP BANKS PUMPING	82	105	185	377	314						/9	1,804
CVP BANKS PUMPING	32	0	0	0	0						0	35
TRACY PUMPING	93	157	245	246	222						300	704.1
CONTRA COSTA PUMPING	=	00	7	7	80	9	80 0			2 6	2 6	
CVP COA BALANCE	0	0	0	84	22			\downarrow	0 5		2 5	117
CVP DOS AMIGOS	53	4	700	4 6	8 3	50	41	25 20	126 180		2 12	1317
SWP DOS AMIGOS	141	200	103	260	200						147	
	077	320	74.7	1,00	777						2005	
	300.0	2000	2000	2 203	_	10	0	ľ	_	^	2.205	
PRINTY EUR ELEVATION (F1)	6,528	6 375	6 385	6.452	\perp	Ļ	L	L	L	L	6,533	
TS)	1 189	1 178	1 178	1 182	L		L	L	L	L	1,200	
BES)	2.736	2.459	2.459	2,553	L	2,964 3,167	67 3,250	50 3,250	50 3,250	9	2,998	
	939	943	945	952	L	L	Ш	Ц	Ш		927	
RFS) 15	15,589	15,922	16,093			19,740 20,735	35 20,415	15 19,164	54 17,139	15,367	14,432	

					ŀ	SEP TOTAL	669	210	1,304	1.222	_		-	-1	-	_	-	-			87 959		30 (800)	4,000	6,724			-	2,687 15,078	-	=	+	7	10 111		57 962	20,	35	97	2,218	7,159	10	1.200
								240		1,285 1.	214	83	523	158	52	90	773	93	64	50	145	5	(500)			11,875 8	195		3,041 2,	OPEN OPEN	8	0	260	13	0	100	101	٥/	4			1 210 1	
						JUL	006	240	2,004	1,448	569	162	230	227	151	160	870	75	191	20	232	5	(332)	Ц	Ц	Ц	240	240	3,600	-	8	0	240	13	(o)	129	977	/4	317	2,243	8,431	1 210	21
, ×						JON	1.083	240	2,549	1,682	426	160	329	184	74	160	709	71	95	20	193	6	(311)	4,000	8,369	9,481	232	232	6	-	8	0	120	Ξ	0	107	200	194	526	2,262	9,519	1210)
UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN						MAY	1,323	240	2,919	1,873	505	117	230	128	(2)	120	630	65	55	40	193	10	(290)	4,000	6,927	7,480	246	246	3,324	OPEN	28		96	6	(0)	8	123	3//	678	2,285	10,884	1.210	
EAU OF REIONS CRITI						APH	1,468	230	3,216	2,004	202	90	45	(11)	(53)	8	365	101	54	20	28	10	(06)	4,000	5,008	7,215	268	268	2,663	OPEN	28	0	112	8	0	79	140	255	786	2,298	11,683	1,207	
TATES BUR IM OPERAT						MAH	1,528	206	3,267	1,995	455	77	(127)	(138)	(72)	06	283	19	34	09	-	12	(6)	4,000	4,000	6,102	277	277	1,658	OPEN	55	0	107	9	(0)	50	136	631	606	2,303	12,011	1,199	
UNITED ST						reB	1,620	170	3,140	1,859	383	55	(63)	22	(25)	9	227	172	31	9	0	12	42	4,000	4,000	8,490	250	250	(353)	OPEN	184	0	127	8	0	113	126	651	666	2,311	12,504	1,185	
						JAN	1.681	160	3,047	1,880	358	27	(20)	254	19	30	200	384	55	8	0	14	119	4,000	4,032	12,330	277	277	(2,827)	OPEN	410	0	180	7	0	57	112	693	949	2,316	12,833	1,182	
						DEC	1,722	150	2,997	2,132	376	33	56	330	51	30	246	400	77	20	0	23	63	4,000	4,005	12,787	215	215	(2,632)	OPEN	411	0	202	7	0	28	130	594	657	2,319	13,049	1,178	
		10/13	16:21			NON	1,761	150	3,023	2,458	424	64	70	88	75.	09	310	149	68	20	0	28	88	4,000	5,451	10,695	208	208	(272)	OPEN	145	32	238	8	0	57	87	446	378	2,322	13,259	1.178	
		DATE:	TIME:	BYPASS		120	1,800	180	3,093	2,546	200	102	103	151	97	100	373	161	108	40	20	32	87	4,000	6,235	11,845	215	215	411	OPEN	147	32	246	=	0	85	118	294	324	2,325	13,465	1.189	
ᄪᄛ	100	20	100	75	PRE	INITIAL	1,900	206	3,200	2,700	009																											200	300	2,333	13,991	1.199	
Study Year Hydrologic Type (W-A-D-C-E) Starting Storage Level (H-HM-LM-LD)	Datum Strange Level (1707-75-50-25-0)	Mar-Sep (%) Project Delivenes (100-75-50-25-0)	Oct. Dec (%) Water Rights Delivenes (100-75-50-25-0)	Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	Alternative Extension	ALL VALUES IN KAF	TRINITY FOM STORAGE	WHISKEYTOWN FOM STORAGE	SHASTA FOM STORAGE	OROVILLE FOM STORAGE	FOLSOM EOM STORAGE	WHISKEYTOWN STORAGE WITHDRAWAL	SHASTA STORAGE WITHDRAWAL	OROVILLE STORAGE WITHDRAWAL	FOLSOM STORAGE WITHDRAWAL	SPRING CREEK POWERPLANT	KESWICK RELEASE	OBOVILLE RELEASE	NIMBLIS REI FASE	VERNALIS FLOW	FEATHER RIVER DEMANDS	YUBA RIVER ACCRETIONS	SACRAMENTO RIVER ACCRETIONS	WILKINS SLOUGH TARGET ICES!	WILKINS SLOUGH ACTUAL (CFS)	FREEPORT FLOW (CFS)	ACTUAL DELTA OUTFLOW	REQUIRED DELTA OUTFLOW	ANTIOCH FLOW	CROSS CHANNEL GATES	SWP BANKS PUMPING	CVP BANKS PUMPING	TRACY PUMPING	CONTRA COSTA PUMPING	CVP COA BALANCE	CVP DOS AMIGOS	SWP DOS AMIGOS	CVP SAN LUIS EOM STORAGE	SWP SAN LUIS EOM STORAGE	TRINITY EOM ELEVATION (FT)	TRINITY SURFACE AREA (ACRES)	WHISKEYTOWN EOM ELEVATION (FT)	

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

Starting Storage Level (HI-HM-LM-LO)	HM					ONG-LER	LONG-TERM OPERATIONS CRITERIA AND PLAN	IONS CHI	EKIA AND	2				
Oct-Feb (%) Project Delivenes (100-75-50-25-0)	100													
Mar-Sep (%) Project Delivenes (100-75-50-25-0)	0	DATE:	10/13											
Oct-Dec (%) Water Rights Delivenes (100-75-50-25-0)	100	TIME:	16:25											
Jan-Sep (%) Water Rights Deliveries (100-75-50-25-0)	75	BYPASS												
Alternative Extension	PRE													
ALL VALUES IN KAF	INITIAL	100	NOV	DEC	JAN	FEB	MAH	APR	MAY	NOC	JOE	AUG	SEP	TOTAL
TRINITY EOM STORAGE	1,500	1,381	1,342	1,302	1,262	1,230	1,199	1,199	1,084	884	743	653	593	
WHISKEYTOWN EOM STORAGE	206	180	150	150	160	170	506	230	240	240	240	240	210	
SHASTA EOM STORAGE	2,500	2,497	2,499	2,473	2,523	2,588	2,657	2,600	2,341	1,998	1,532	1,087	963	
OROVILLE FOM STORAGE	2,200	2,038	1,950	1,685	1,755	1,849	1,986	1,995	1,864	1,675	1,446	1,286	1,225	
FOLSOM EOM STORAGE	400	331	271	243	246	270	341	392	389	336	272	199	171	
WHISKEYTOWN STORAGE WITHDRAWAL		122	64	33	27	25	17	20	87	120	122	33	62	732
SHASTA STORAGE WITHDRAWAL		(1)	(2)	56	(20)	(65)	(69)	51	252	334	453	436	118	1,483
OROVILLE STORAGE WITHDRAWAL		129	89	569	(69)	(94)	(138)	(11)	128	182	222	155	57	950
FOLSOM STORAGE WITHDRAWAL		29	09	53	(2)	(24)	(71)	(52)	(0)	67	29	69	26	211
SPRING CREEK POWERPLANT		120	09	30	30	30	30	30	06	120	120	30	99	250
K ESWICK RELEASE		588	238	246	200	225	281	311	295	644	753	969	348	4,733
OROVILLE RELEASE		161	149	339	61	99	. 61	101	65	69	102	06	99	1,283
NIMBUS RELEASE		11	74	55	8	31	32	55	22	0/	69	81	44	683
VERNALIS FLOW		40	20	20	09	09	9	20	40	20	20	20	8	200
EATHER RIVER DEMANDS		28	0	0	0	0	- Pom	58	193	193	232	145	87	296
YUBA RIVER ACCRETIONS		32	28	23	14	12	12	10	10	6	5	5	5	165
SACRAMENTO RIVER ACCRETIONS		87	88	63	119	45	(3)	(06)	(530)	(311)		(200)	30	(800)
WILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
WILKINS SLOUGH ACTUAL (CFS)		4,881	4,239	4,000	4,054	4,000	4,000	4,505	6,466	8,033	9,367	8,879	6,292	
FREEPORT FLOW (CFS)		9,991	9,233	11,440	6,739	6,390	980'9	6,345	6,410	7,935	9,048	9,871	8,093	
ACTUAL DELTA OUTFLOW		215	208	215	277	250	277	268	246	232	240	195	149	2,772
REQUIRED DELTA OUTFLOW		215	208	215	277	250	277	268	246	232	240	195	149	2,772
ANTIOCH FLOW	V	1,450	547	(1.878)	304	822	1,667	3,150	3,923	4,644	5,556	4,163	3,059	27,407
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	
SWP BANKS PUMPING		153	145	349	88	89	55	28	28	58	25	27	88	1,033
CVP BANKS PUMPING		32	0	0	0	0	0	0	0	0	0	0	0	35
TRACY PUMPING		126	183	180	159	126	106	09	30	8	8	140	140	1,310
CONTRA COSTA PUMPING		=	80	7	7	80	9	80	6	=	13	13	9	=
CVP COA BALANCE		0	0	0	0	0	0	0	0	0	(O)	(O)	(O)	
CVP DOS AMIGOS		85	57	28	22	113	2	3	4	4	2	4	2	364
SWP DOS AMIGOS		68	41	8	29	75	77	82	29	82	134	82	SS	8
CVP SAN LUIS EOM STORAGE	200	174	239	365	443	400	447	419	319	199	જ	42	<u>\$</u>	
SWP SAN LUIS EOM STORAGE	200	282	385	654	699	929	627	565	524	457	338	275	260	
TRINITY EOM ELEVATION (FT)	2,301	2,291	2,287	2,284	2,280	2,277	2,274	2,274	2,263	2,241	2.224	2,212	2,203	
TRINITY SURFACE AREA (ACRES)	11,857	11,204	10,989	10,769	10,542	10,365	10,187	10,187	9,528	8,336	7,442	6,849	6,436	
WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,189	1,178	1,178	1,182	1,185	1,199	1,207	1,210	1,210	1,210	1,210	1,200	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,736	2,459	2,459	2,553	2,646	2,964	3,167	3,250	3,250	3,250	3,250	2,998	
SHASTA EOM ELEVATION (FT)	982	981	985	980	983	986	989	987	974	955	927	894	883	
SHASTA SURFACE AREA (ACRES)	19,868	19,853	19,863	19,723	19,992	20,337	20,705	20,404	19,011	17,107	14,373	11,489	10,616	

LONG-TERM OPERATIONS CRITERIA AND PLAN OPERATIONS STUDIES

TEM ALTERNATIVE

UNITED STATES BUREAU OF RECLAMATION

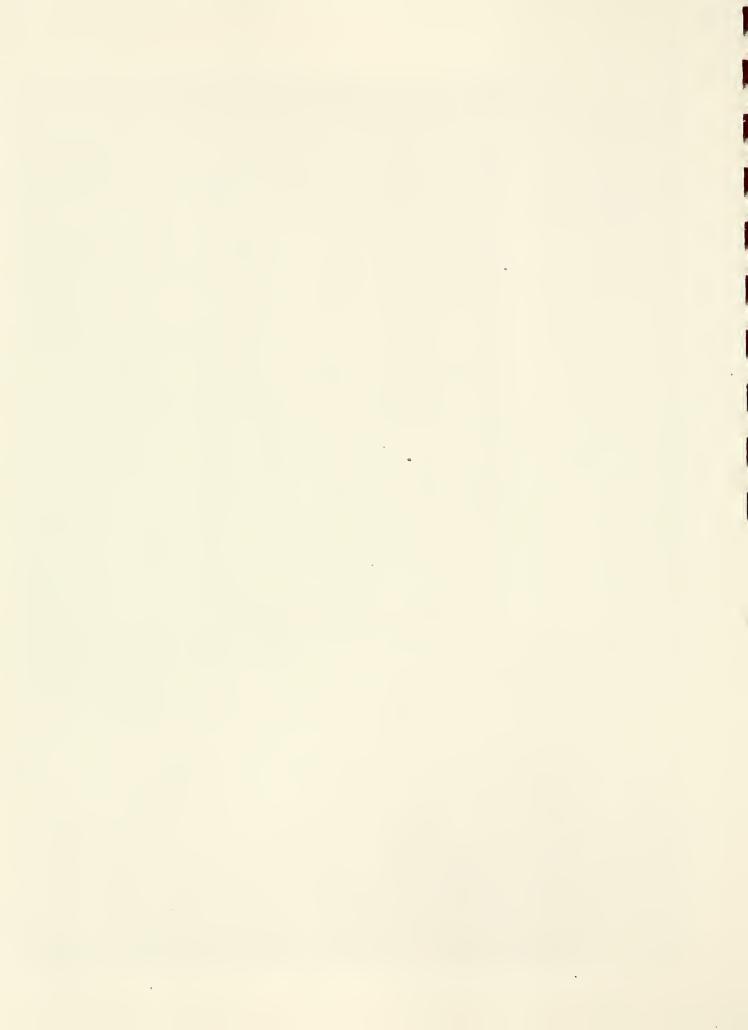
UNITED STATES BUREAU OF RECLAMATION

Study Year Hydrologic Type (W-A-D-C-E)	٥					UNITEDS	Ales BO	KEAU CT	UNITED STATES BUREAU OF RECLAMATION	202				
Starting Storage Level (HI-HM-LM-LO)	07					LONG-TERM OPERATIONS CRITERIA AND PLAN	M OPER	TIONS C	RITERIA A	ND PLAN				
Oct-Feb (%) Project Delivenes (100-75-50-25-0)	20													
Mar-Sep (%) Project Delivenes (100-75-50-25-0)	25	DATE:	10/15											
Oct-Dec (%) Water Rights Deliveries (100-75-50-25-0)	75	TIME:	09:25											
Jan-Sep (%) Water Rights Deliveries (100-75-50-25-0)	100													
Alternative Extension	TEM													
ALL VALUES IN TAF	INITIAL	120	NOV	DEC	JAN	FEB	MAH	APR	MAY	NOC	JUL	AUG	SEP	TOTAL
TRINITY EOM STORAGE	700	604	585	604	637	723	833	989	1,072	994	900	758	737	
WHISKEYTOWN EOM STORAGE	206	506	206	506	506	506	506	230	240	240	240	240	210	
SHASTA EOM STORAGE	1,700	1,735	1,792	1,891	2,102	2,461	2,937	3,238	3,333	3,175	2,938	2,687	2,535	
CROVILLE EOM STORAGE	1,200	1,146	1,189	1,290	1,490	1,784	2,111	2,343	2,339	2,159	1,860	1,637	1,468	
FOLSOM EOM STORAGE	200	178	163	170	226	337	521	627	629	225	314	282	286	
WHISKEYTOWN STORAGE WITHDHAWAL		80	30	3	3	3	5	0	20	99	90	91	28	410
SHASTA STORAGE WITHDRAWAL		(38)	(57)	(66)	(210)	(360)	(476)	(307)	(104)	146	219	236	141	(907)
OROVILLE STORAGE WITHDRAWAL		52	(42)	(66)	(199)	(294)	(328)	(234)	0	172	291	216	165	(583)
FOLSOM STORAGE WITHDRAWAL		20	15	(2)	(55)	(111)	(184)	(108)	(9)	102	202	27	(9)	(109)
SPRING CREEK POWERPLANT		08	30	10	20	30	30		8	9	26	06	26	496
KESWICK RELEASE		262	223	231	200	180	184	193	326	476	529	979	358	3,690
OROVILLE RELEASE		114	78	61	61	99	61	158	177	179	199	191	198	1,534
NIMBUS RELEASE		19	09	61	61	99	61	178	240	201	290	108	80	1,457
VERNALIS FLOW		110	105	115	120	150	105	80	15/	80	85	33	95	1,210
FEATHER RIVER DEMANDS		88	0	0	0	0	-	88	193	193	232	145	87	296
YUBA RIVER ACCRETIONS		85	75	100	66	95	79	45	40	33	49	62	70	826
SACRAMENTO RIVER ACCRETIONS		140	190	320	549	807	684	117	(20)	(227)	(341)	(208)	95	2,076
WILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4.000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
WILKINS SLOUGH ACTUAL (CFS)		4,640	4,732	5,787	7,525	10,380	8,605	4,125	4,472	5,025	4,000	5,415	6,135	
FREEPORT FLOW (CFS)		9,397	9,261	10,954	14,178	19,789	16,124	10,858	11,272	10,573	11,013	10,021	12,287	
ACTUAL DELTA OUTFLOW		215	208	286	365	731	995	452	467	366	289	219	149	4,314
REQUIRED DELTA OUTFLOW		215	208	215	277	250	277	452	467	366	289	219	149	3,384
ANTIOCH FLOW		1,782	531	(684)	(2,717)	(3,305)	(190)	3,096	4,076	4,968	5,093	4,391	710	17,753
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	-	CLOSED	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	
SWP BANKS PUMPING		160	159	248	430	403	418	153	121	91	142	132	243	2,700
CVP BANKS PUMPING		32	0	0	0	0	0	0	0	0	0	0	0	32
TRACY PUMPING		152	226	246	246	144	116	20	S	20	S	8	250	1,670
CONTRA COSTA PUMPING		11	8	7	7	80	9	8	6	11	13	13	10	111
CVP COA BALANCE		(0)	(0)	0	0	ο	0	0	(0)	(0)	O	(0)	(0)	
CVP DOS AMIGOS		29	14	7	14	53	56	4	52	8	29	52	8	417
SWP DOS AMIGOS		216	132	181	157	178	194	199	187	251	317	252	158	2,422
CVP SAN LUIS EOM STORAGE	200	287	456	929	887	996	926	867	989	475	214	45	155	
SWP SAN LUIS EOM STORAGE	100	36	57	120	384	009	813	751	899	490	298	161	236	
TRINITY EOM ELEVATION (FT)	2,218	2,205	2,202	2,205	2,209	2,221	2,235	2,253	2,261	2,253	2,243	2,226	2,223	
TRINITY SURFACE AREA (ACRES)	7,162	6,514	6,375	6,511	6,742	7,314	8,014	8,969	9,457	8,999	8,431	7,540	7.406	
WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,207	1,210	1,210	1,210	1,210	1,200	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,964	2,964	2,964	2,964	2,964	2,964	3,167	3,250	3,250	3,250	3,250	2,998	
SHASTA EOM ELEVATION (FT)	937	940	943	949	98.1	980	1,003	1,016	1,021	1,014	1,003	8	983	
SHASTA SURFACE AREA (ACRES)	15,384	15,591	15,924	16,500	17,690	19,659	22,170	23,721	24,209	23,400	22,177	20,865	20,058	

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

776 293 640 192 770 4,563 1,254 1,25	2EP 926 927 1,531 1,531 1,631 1			LONG-TERM OPERATIONS CRITERIA AND PLAN LONG-TERM OPERATIONS CRITERIA AND PLAN 1.372 1.423 1.530 1.567 1.400 1.70 2.06 2.30 2.40 2.40 3.032 3.368 3.513 3.406 3.146 1.961 2.378 2.308 2.200 2.007 3.37 4.51 5.48 5.91 5.15 (2.007 3.37 4.51 5.48 5.91 5.15 (2.007 3.37 4.51 5.48 5.91 5.15 (2.007 3.30 (1.14) (9.9) (4.7) 7.1 (2.18) (1.14) (9.9) (4.7) 7.1 (2.18) (1.14) (9.9) (4.7) 7.1 (2.18) (1.14) (9.9) (4.7) 7.1 (2.18) (1.14) (9.9) (4.7) 7.1 (2.18) (1.14) (9.9) (4.7) 7.1 (2.18) (1.14) (9.9) (4.7) 7.1 (2.18) (1.14) (9.9) (4.7) 7.1 (2.18) (1.14) (9.9) (4.7) 7.1 (2.18) (1.14) (9.9) (4.7) 7.1 (2.18) (1.14) (9.9) (4.7) 7.1 (2.18) (1.14) (9.9) (1.17) (1	Peb	ERATIONS (ERATIONS) (E	1.1 ERM OPER MARH MARH MARH MARH MARH MARH MARH MAR						2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	2,998	3,250	3,250	11,		11,	11'	111	_ _ _		2,459	2,736	
	1,200	1,210	1,210	+-	+-	+		-	+-	+	_	1,731	+-
T	2,440	6,633	6,611	+	4	4	4	4	+	1	_[2	7
	501	117	244	╽	ľ	-	4	4		-		31	
	2 5	3	5	1	1	1	4	\downarrow	\downarrow	1	1	21.	_
2,374	8 3	707	110	1	\downarrow			4		1		ωl	_
362	57	9	129	_	\downarrow			4				2	8
	(0)	0	0									0	
111	10	13	13						7	7		-	
2,256	225	240	240			Ц				L		1	12
162	0	86	0										0
2,425	99	30	80		Ц			38			193		181
	OPEN		OPEN	o	g	9	-	ဝ	Ö	g	OPEN		OPEN
8,548	2,282	4	3,327		\Box					Ц	344	Н	1,773
2,772	149	195	240	Ц	Ц	_					208	H	215
2,883	149	195	240								208	-	215
	9.480	12,655	13,029		Ц	Ц		Ĺ			9,603	-	9,413
	6,518	9,351	8,375		_						4,227		3,923
	4,000	4,000	\$,000			L	L	L	L	igspace	L		4.000
787	95	(225)	(320)	L	L				4				95
412	31	25	20		L				L	L	L	10	4
296	87	145	232		L	- 28	-					IΦ	5
900	60	20	40									р	
1,254	09	150	230									2	0.
1,473	09	82	111									19	
4,563	388	771	780									5	2
770	90	160	160									8	
192	14	110	192									22	
640	57	147	253									39	1
293	118	431	420		_							(89	_
776	92	162	161								L	121	
	186	202	316		5							346	
	1,531	1,592	1,746									8	
	2,136	2.263	2,708				L	L	L	L	L	586	
	210	240	240			Ц	Ц				L	8	
	926	1,012	1,228			Ц	Ц			L	L	386	1,500 1.
TOTAL	SEP	AUG	JOC	NOC		Ц	Ц	Ш	Ц	Ц	Ц	51	Ц
	•												1 1
												¥	_
												Ë	
												-	
				AND PLAN	CRITERIA	RATIONS	rerm ope	L-DNO-1					- -
				MATION	OF RECLAI	BUREAUC	STATES	UNITED					<u></u>

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN


						THE STATE OF THE S	Ser		1	1		212 197	32	148	60	12	3	328	62	60	60	87		(225) 56 787	Ц		Ц		149	2	OPEN	69 2	0	191 1,		(0)	52 30 463	189 117 1.819	177 246			7,663 7,500		2		
								325	4	4	\downarrow	275	151	305	208	125	150	655	99	165	40	232	20	(320)	4,000		9,208	240		7		35	0	20	13	(0)	29	248	254		2.245	8,566	1,210	3,250	981	4 74 01
UNITED STATES BUREAU OF RECLAMATION									_		-	4		\downarrow				4			60 50	193 193	18 17	(192) (243)	4	4,488 6,017	L	246 232		3,787 4,776	OPE	63 34	0 0	30 40	9 11	(0)	52 56	139 188	658 472	826 657	2,273 2,262	10,130 9,521	_	3	1,006 996	
UNITED STATES BUREAU OF RECLAMATION	IIONS CALLE							4	_	_	2,058 2,0	457	o	(197)	(171)	(114)		253	61	93	80	L	22		4	4,260 4.	-	268	268	2,900 3	OPEN OP	115	0	30	8	0	41	155	828	916	2,269 2	-	_	L	L	+
ED STATES BU	- I ERM OFER							993 1,043	170 206	2,512 2,848	1,687 1,889	224 345	0 0	(200) (336)	(101) (203)	(55) (121)		180 184	92 66	50 55	110 100	0	56 48	341 553	4	6.259 7.792	r	250 309	250 277	(2,354) (2,417)	F	337 417	0	222 246	8	23 0		ľ	L		2	1	\perp	Ļ	Ļ	
TINO	LONG							955	160	2,313 2,5	1,585 1,6	168	0	(120) (2	(45)	(11)		200	125	55		0	65	L	1	L	r	L	L	-	L	-	0	L	7	0	22	-		_	1	\perp	\perp	-	L	4
			č.	61			N DEC	4 946	150 150	L	L	161 157	64 32	(62) (29)	41 1	16 6	60 30	223 231		60 62		0			4	L	1	\perp	L		Ö	₩		24		10)	ľ	ľ	_	\downarrow	1	1	1	\perp	\perp	
				TIME: 09:39			OCT NOV	1,006 974	180 1	2,067 2,133	1,577 1,536	177 16	101	(69)		21	1001	231 2	L					95	4	╀	1	_	L	L	g			ļ					1		C	\perp	- -	\perp	1	_
0	LM	7.5	25	100	75	TEM	INITIAL	1.100	206	2,000	1,700	200																											200	3 5	200	70777	9,020	2 964	2,301	2000
Study Year Hydrologic Type (W-A-D-C-E)	Starting Storage Level (HI-HM-LM-LO)	Oct-Feb (%) Project Deliveries (100-75-50-25-0)	Mar.Seq (%) Project Delivenes (100-75-50-25-0)	Oct-Dec (%) Water Rights Deliveries (100-75-50-25-0)	Lap. Sep (%) Water Bights Deliveries (100-75-50-25-0)	Miscrative Extension	ALL VALUES IN TAF	OBINITY FOR STORAGE	MHISKEYTOWN FOM STORAGE	CLASTA FOM STORAGE	DEDOVITE FOR STORAGE	COLSOM STORAGE	MODEST COMMENTATION OF THE WITHING WAT	WHISTEL TOWN STORAGE WITHORAWAI	OBOVILLE STORAGE WITHDRAWAL	COLSOM STORAGE WITHORAWAI	POLSOWI STOCKED WITH STOCKED AND	STRING CHELCA CHEST CANA	AESWICH RELEASE	UNUNILLE MELEASE	NIMBUS HELEASE	VERNALIS FLOW	FEATHER RIVER DEMANDS	YUBA HIVER ACCRETIONS	SACRAMENTO RIVER ACCHETIONS	WILKINS SLOUGH TARGET (Crs)	WILKINS SLOUGH ACTUAL (CFS)	FREEFORI FLOW (CrS)	ACTUAL DELIA OUTFLOW	REQUIRED DELIA OUTFLOW	ANIIOCH FLOW	CROSS CHANNEL GALES	SWY BARAS FUMPING	CVP BANKS PUMPING	IHACY PUMPING	CONTRA CUSTA PUMPING	CVP COA BALANCE	CVP DOS AMIGOS	SWP DOS AMIGOS	CVP SAN LUIS EOM STOHAGE	SWP SAN LUIS EOM STOHAGE	TRINITY EOM ELEVATION (F.1)	TRINITY SURFACE AREA (ACRES)	WHISKEYTOWN EOM ELEVATION (F1)	WHISKEY IOWN SUHFACE AREA (ACHES)	SHASTA FOM ELEVATION (F1)

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

					_	UNITED STATES BUREAU OF RECLAMATION	ATES BUI	REAU OF	RECLAMA	TION				
Study Year Hydrologic Type (W-A-L-C-E)					ر	LONG-TERM OPERATIONS CRITERIA AND PLAN	M OPERA	TIONS CF	ITERIA AL	ID PLAN				
Starting Storaga Laver (FILTIM-LIM-LO)	2													
Oct-Feb (%) Project Dalivenes (100-73-50-25-0)	3,5	DATE	10/15											
Mar-Sep (%) Project Oelivenes (100-75-50-25-0)	2	TIME	00.45											
Oct-Dec (%) Water Rights Delivenas (100-75-50-25-0)	2 3		2											
Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	00.													
Alternative Extension	IEM	L. W	NOV	DEC. 1	INAL	FFRT	MAH	APRI	MAY	NOC	2000	AUG	SEP	TOTAL
ALL VALUES IN IAF	INITIAL	3	101	202	404	623	KRA	707	830	756	716	632	607	
TRINITY EOM STORAGE	00/	909	200	150	160	170	200	230	240	240	240	240	210	
WHISKEYTOWN EOM STORAGE	200	190	100	1 853	1 073	2 173	2508	2 730	2719	2.560	2.235	1.939	1,783	
SHASTA EOM STORAGE	2007	1,707	1,024	1 220	1 266	1 368	1 571	1 742	1 694	1.565	1.355	1.215	1,155	
OROVILLE EOM STORAGE	000	17B	163	160	172	228	37.1	545	8	480	275	202	193	
FOLSOM EOM STORAGE	200	4/14	2 2	3			0	0	25	23	31	32	32	306
WHISKEY LOWN STORAGE WITHDRAWAL		(69)	(57)	(29)	(120)	(200)	(336)	(227)	4	148	310	284	148	(144)
SHASIA SIORAGE WII DURAWAL		39	(20)	(39)	(45)	(101)	(204)	(172)	44	123	203	134	25	21
CALCALLES TORAGE WITHDRAWAL		20	15	5	3	(26)	(143)	(175)	(63)	119	199	99	10	(14)
POLSOM STORAGE WITHOUSAWAC		100	20						30	30	30	30	33	300
SPRING CHEEN TOWER CAME		231	223	231	200	180	184	223	374	418	240	494	358	3,656
NEOWICK HELENDE		61	9	61	125	66	75	09	61	09	61	69	09	854
CHOVICLE MELENDE		62	9	62	55	S	34	33	115	192	241	110	09	1,073
NIMBUS HELEASE		0/	BO	06	110	110	100	80	03	20	40	20	60	900
VEHNALIS FLOW		8,7	3		c	c	-	28	193	193	232	145	87	296
FEATHER RIVER DEMANDS		8	3	AO A	92	95	48	22	18	17	20	25	31	412
YUBA HIVEH ACCHETIONS		90	110	210	405	341	553	(5)	(192)	(243)	(320)	(522)	25	787
SACRAMENTO HIVEH ACCHE HONS		4 000	4 000	4 000	000	4 000	4,000	4,000	4,000	4.000	4,000	4,000	4,000	
WILKING SLOUGH PARKET (CES)		4 124	4324	5 253	6.532	6.287	7,821	4,191	4,960	5,512	6,407	6,407	6,620	
WILKINS SLOUGH ACTUAL (ors)		7 299	7,614	9,168	12.769	12,073	13,763	5,262	5,840	7,161	8,492	7,289	8,962	
ACTUAL DELTA CUITELOW		215	208	215	341	293	380	268	246	232	240	195	149	2,983
RECILIED DELTA OUTELOW		215	208	215	277	250	277	268	246	232	240	195	149	2,772
ANTIOCH FLOW		2,957	1,453	(909)	(2,235)	(1,735)	(1,295)	3,756	4,242	5,077	5,868	5,609	2,574	55,666
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	
SWP BANKS PUMPING		82	105	185	357	294	417	24	13	12		mo I	230	1,738
CVP BANKS PUMPING		0	32	0	0	0	0	0	0	0	0	0 9	0 8	35
TRACY PUMPING		93	125	245	246	222	153	8	8	8	S :	05	3	1,204
CONTRA COSTA PUMPING		11	8	7	7	8	9	80	0		13	13	2	
CVP COA BALANCE		0	(0)	(O)	0	3	2	(<u>S</u>)	8	100	(60)	000	3 6	417
CVP DOS AMIGOS		29	4	7	14	82	8 5	4	7 5	8 5	Va Ca	105	32	1 317
SWP DOS AMIGOS		141	64	105	8	5	2 3	- 5	2 2	071	001	796	100	
CVP SAN LUIS EOM STORAGE	200	196	296	515	230	382	ŝ	2/8	9	000	255	101	201	
SWP SAN LUIS EOM STORAGE	100	38	77	156	416	603	906	808	02/	294	413	700	7	
TRINITY EOM ELEVATION (FT)	2,218	2,205	2,202	2,202	2,203	2,209	2,216	2,230	2,235	2,223	2,220	2,203	2,203	
TRINITY SURFACE AREA (ACRES)	7,162	6,528	6,375	6,385	6,452	6,712	7,053	7,761	8.001	7,525	7,270	60/'9	6,533	
WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,189	1,178	1,178	1,182	1,185	1,199	1,207	1,210	1,210	1,210	1,210	1,200	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,736	2,459	2,459	2,553	2,646	2,964	3,167	3,250	3,250	3,250	3,250	2,998	
SHASTA EOM ELEVATION (FT)	937	941	945	947	954	365	382	993	266	285	805	208	342	
SHASTA SURFACE AREA (ACRES)	15,384	15,777	16,109	16,279	16,967	18,086	19,912	21,089	21,030	20,191	18,431	16,7/3	12,0/1	

UNITED STATES BUREAU OF RECLAMATION

_	Ī				_	0100			LONG-IERM OFERALIONS ON EARLY AND FON	5				
-	8													
	25	DATE:	10/15											
	100	TIME:	10:00											
	75													
	TEM						TOXII.	TOOX	MAN	1 NIII	1 100	ATTEST	JEPPI	TOTAL
	INITIAL	200	NON	חבר	JAIN	27.	MAN.	7 40	1 272	4 633	A ST	77.5	680	
1	006.	2/20	1.711	1,0/2	180	270	206	230	240	240	240	240	210	
+	902	200	000	3 5	400	3 220	1510	3 500	3 231	2874	2 392	1.916	1.750	
+	3,200	3,140	001.0	2,139	2, 103	1 850	1 995	2004	1 873	1684	1,455	1,295	1,234	
+	20,700	2,340	2,430	251.2	25.8	263	420	471	455	383	251	136	179	
	3	2 5	2 2	215	200	2		BO		160	162	23	32	1,042
+	1	707	5 0	3 =	(50)	(140)	(190)	4	269	345	465	463	158	1,382
+	1	151	3 08	330	254	3	(138)	3	128	182	222	155	57	1,441
+		. CB	75	99	19	(5)	(57)	(52)	13	88	126	52	15	402
	Î	150	202	OF.	30	09	86	96	120	160	160	80	30	1,060
+		368	238	231	200	180	220	324	609	695	805	713	358	4,942
+		161	149	400	384	172	61	101	65	69	70	06	9	1,782
+		8	80	6	55	82	22	54	70	89	136	29	33	874
		35	3 4	1 12	209	109	909	20	40	20	20	20	30	200
+		2 5	3	3	3	3 0	-	28	193	193	232	145	87	959
+		200	200	2,5	7	12	12	9	2	6	5	5	5	165
+		25 a	2 8	63	119	42	(5)	6	(230)	(311)	(335)	(200)	30	(800)
+		000	8 8	8 00 8	4 000	4 000	4 000	4 000	4.000	4,000	4,000	4,000	4,000	
+		4,000 6 158	4 239	3.755	4.043	3,168	2,995	4,520	6,911	8,521	9,838	9,838	6,340	
<u>JL</u>	Î	11.518	9 485	12.787	12,330	7,996	5,336	6,539	7,385	9,111	10,997	10,850	8.075	
╄		215	208	215	277	250	277	268	246	232	240	195	149	2,773
┝		215	208	215	277	\$ 250	277	268	246	232	240	195	149	2,772
┝		595	405	(2,626)	(2,827)	(77)	2,087	3,041	3,377	3,986	4,465	3,614	3,074	19,115
H		OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	OPEN	
		152	145	410	410	183	55	30	28	28	25	72	38	1,532
H		32	0	0	0	0	0	0	0	0	0	0	0	32
+		220	198	202	180	100	09	70	06	18	150	200	139	1,709
-		=	8	7	7	60	9	80	6	=	13	13	2	
ľ		9	(0)	(0)	(0)	(1)	(0)	2	(O)	(0)	(0)	0	(0)	
-		85	57	28	57	113	56	41	52	8	67	52	30	663
+		118	87	130	112	126	136	140	123	168	526	167	104	1,637
+	200	268	348	496	262	526	493	424	314	187	69	45	62	
+	300	330	384	663	954	1,004	914	792	684	230	316	163	91	
	2 333	2321	2.318	2.315	2.312	2,307	2,299	2,294	2,281	2,257	2,237	2.220	2,215	
+	13 991	13 200	12 994	12.782	12,566	12,235	11,739	11,410	10,606	9,228	8,126	7,232	7,032	
+	1 199	1,189	1,178	1,178	1,182	1,185	1,199	1,207	1,210	1,210	1,210	1,210	1,200	
+	2.964	2.736	2,459	2,459	2,553	2,646	2,964	3,167	3,250	3,250	3,250	3,250	2,998	
+	1,015	1,012	1,012	1,012	1,014	1,020	1,029	1,028	1,016	1.000	926	950	940	

LONG-TERM OPERATIONS CRITERIA AND PLAN OPERATIONS STUDIES

"B" ALTERNATIVE

UNITED STATES BUREAU OF RECLAMATION

•

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

					AUG 1 SEPT TOTAL	2.011 1.992	240 240	3,390 3,194	2.518 2,294	653 614	119 0 1,024	379 184 (81)	269 218 367	35	120 0 1,350	729 414 8,269	291	141	2			(110) 205 7,902	4.000 4.000	8,529 7,381	19,151 17,668	305 312 18,512	149	397 (114) 18,953	OPEN	397 3,	0	250 2,		0 9	112							3,250 3,253		24,499 23,496
3					1 300	ſ	L	(L	\perp		8 482		23 121	0 180	8 922			0 85	3 232		(35) (203)	4,000	-	11 22,554	04 622	783 615	30 2,966	N OPEN	119 282		2	15 18	0								50 3,250	Ш	07 26,501
IA AND PLA					MOL. LAW		+	4	Ļ	\downarrow	1		L	L	150 180	802 738	225 251	451 373	210 180	193 193	115 100	205 (3	4	13,619 10,182	27 365 22 301	1,391 1,004	L	2,503 6,980	SED OPEN	184	0	184	12	٥	154 1	295 3		_	2,372 2,365	16,803 16,276	1,210 1,210	3,250 3,250	_	20
LONG-TERM OPERATIONS CRITERIA AND PLAN					A T PR	1	1	1	1	<u>'</u>	1		L				_	384 4		L		_	ļ.,	F	#-	╄	-	L	CLOSED CLOSED	316	0	250	11	0	140	294			2,366 2.	16,377 16,	-	\vdash	-	Ľ
M OPERATION					1 OVA	#	1	+	\downarrow	1	210	0000	0	(20)	120	700	719	395	340	-	335	1.485	Ļ	Ľ	#-	╁	Ł	1.837	1=	430	0	246	8	0	70	295	931	1,064	2,356	┡	1	2 964	1.	+-
LONG-TERM OPERATIONS CRITERI						2000	2007	2007	2,78	100,2	*20	1000	(000)	(50)	150	006	670	376	350		425	2315	4 000	33 220	76.716	4 013	555	4 337	CLOSED	405	0	222	8	0	113	264	968	944	2	ľ	+	1	\perp	10
								1	4	,,	2/2	2030	1		KU		\downarrow	\downarrow	1		4	1	1	1	#	+	1	-	ļ.	-44-		24	7 7	0	28 57	4 233			1	Ţ	+	1	1	10
	4	9 9	11:09				-	1	4	2			1	(148)			1	1	1	143	7			1	#	+	403 1,736	1	7	-11-	-	24	L		-	ľ	L		r		+	1	2,964 2,964	- 6
				BYPASS				_	4	_			1	\downarrow	22	1	1	1		010		1	1	1	1	٩	117		Ğ	-#-				C	85	1	1		r	Ľ		\perp	4	1,012
ΣĪ		_	=		8	Ц	\dashv	_	_	4	009															-											200	2005	300	+	+	1,199	2.964	1,015
Study Year Hydrologic Type (W-A-D-C-E) Starting Storage Level (HI-HM-LM-LO)	Oct-Feb (%) Project Deliveries (100-75-50-25-0)	Mar-Sep (%) Project Delivenes (100-75-50-25-0)	Oct. Dec (%) Water Rights Deliveres (100-75-50-25-0)	(197. Sep. (%) Water Rights Deliveries (100-75-50-25-0)	Alternative Extension	ALL VALUES IN TAF	TRINITY EOM STORAGE	WHISKEYTOWN EOM STORAGE	SHASTA FOM STORAGE	OROVILLE EOM STORAGE	FOLSOM EOM STORAGE	WHISKEYTOWN STORAGE WITHDRAWAL	SHASTA STORAGE WITHDRAWAL	OROVILLE STORAGE WITHDRAWAL	FOLSOM STORAGE WITHDRAWAL	SPRING CHEEK POWERPLANT	KESWICK RELEASE	OROVILLE RELEASE	NIMBUS RELEASE	VERNALIS FLOW	FEATHER RIVER DEMANDS	YUBA RIVER ACCRETIONS	SACRAMENTO RIVER ACCRETIONS	WILKINS SLOUGH TARGET (CFS)	WILKINS SLOUGH ACTUAL (CFS)	FREEPORT FLOW (CFS)	ACTUAL DELTA OUTFLOW	REQUIRED DELTA OUTFLOW	ANTIOCH FLOW	CROSS CHANNEL GATES	SWP BANKS PUMPING	CVP BANKS PUMPING	TRACY PUMPING	CONTRA COSTA PUMPING	CVP COA BALANCE	CVP DOS AMIGOS	SWP DOS AMIGOS	CVP SAN LUIS EOM STORAGE	SWP SAN LUIS EOM STORAGE	TRINITY EOM ELEVATION (FT)	TRINITY SURFACE AREA (ACRES)	WHISKEYTOWN EOM ELEVATION (FT)	WHISKEYTOWN SURFACE AREA (ACRES)	SHASTA EOM ELEVATION (FT)

UNITED STATES BUREAU OF RECLAMATION

Study Year Hydrologic Type (W-A-D-C-E)	M				_	UNITED STATES BUREAU OF RECLAMATION	AIES BU	HEAU OF	HECLAM	NO.				
Starting Storage Level (HI-HM-LM-LO)	MH					LONG-TERM OPERATIONS CRITERIA AND PLAN	M OPER	TIONS CI	RITERIA A	ND PLAN				
Oct. Feb (%) Project Deliveres (100-75-50-25-0)	100													
Mar-Sep (%) Project Delivenes (100-75-50-25-0)	100	DATE:	10/16											
Oct. Dec (%) Water Rights Deliveries (100-75-50-25-0)	100	TIME:	11:13							٠				
Jan-Sep (%) Water Rights Deliveries (100-75-50-25-0)	100	BYPASS												
Alternative Extension	В													
ALL VALUES IN TAF	INITIAL	120	NON	DEC	JAN	FEB	MAH	APH	MAY	NOC	JUL	AUG	SEP	IOIAL
THINITY EOM STORAGE	1 500	1.374	1,354	1,454	1,583	1,766	1,963	2,163	2,335	2,354	2,163	1,996	1,977	
WHISKEYTOWN EOM STORAGE	206	506	506	506	506	506	506	230	240	240	240	240	240	
SHASTA FOM STORAGE	2,500	2,509	2,661	3,150	3,400	3,700	4,100	4,496	4,494	4,291	3,787	3,390	3,194	
OROVILLE FOM STORAGE	2,200	2,094	2,197	2,596	2,850	2,851	2,850	3,025	3,322	3,294	2,921	2,625	2,400	
FOLSOM EOM STORAGE	400	400	410	521	573	624	674	834	974	944	810	674	614	
WHISKEYTOWN STORAGE WITHDRAWAL		116	18/	21	3	0	S	4	38	50	206	119	0	640
SHASTA STORAGE WITHDRAWAL		(12)	(152)	(489)	(250)	(300)	(400)	(403)	(8)	188	482	379	184	(780)
DROVILLE STORAGE WITHDRAWAL		103	(102)	(395)	(252)	0	0	(177)	(305)	18	362	287	218	(240)
OI SOM STORAGE WITHDRAWAL		(2)	(10)	(108)	(51)	(20)	(20)	(162)	(145)	23	125	129	55	(246)
SPRING CREEK POWERPLANT		120	86	9	9	99	9	09	09	09	210	120	ال ٥	996
KESWICK RELEASE		378	318	271	760	816	640	577	712	618	952	729	414	7,186
OROVILLE RELEASE	I I	205	148	105	408	670	719	525	225	225	350	322	291	4,193
WIMBUS RELEASE		108	104	108	405	376	395	384	451	373	223	229	162	3,316
VERNALIS FLOW		110	145	215	300	350	340	255	210	180	82	90	95	2,375
FEATHER RIVER DEMANDS		58	0	0	0	0	-	88	193	193	232	145	87	296
NUBA RIVER ACCRETIONS		85	110	210	410	425	335	. 165	115	100	6	115	130	2,297
SACRAMENTO RIVER ACCRETIONS		140	285	830	2,155	2,315	1,485	630	205	(32)	(203)	(110)	205	7,902
WILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4.000	
WILKINS SLOUGH ACTUAL (CFS)		6,314	6,917	10,102	26,550	31,712	19,760	14,230	12,155	8,165	11,126	8,529	7,381	
FREEPORT FLOW (CFS)		13,503	14.373	21,362	60,625	75,206	52,676	35,558	25,901	19,847	21,496	19,042	18,016	
ACTUAL DELTA OUTFLOW		277	305	844	3,382	3,929	2,905	1,675	1,301	858	615	305	333	16,726
REQUIRED DELTA OUTFLOW		277	268	277	277	555	615	595	821	783	615	305	149	5,537
ANTIOCH FLOW		289	(1,066)	747	1,413	4,180	1,735		2,351	6,391	3,464	458	(31)	19,937
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	-	CLOSED	CLOSED	_	CLOSED	OPEN	OPEN	OPEN	OPEN	
SWP BANKS PUMPING		257	301	430	449	405	430	372	184	119	199	234	397	3,777
CVP BANKS PUMPING		32	96	0	0	0	0	0	0	0	52	170	0	323
TRACY PUMPING		246	238	246	246	222	246	250	184	178	282	282	250	2.870
CONTRA COSTA PUMPING		11	80	7	7	80	8	11	12	12	18	18	14	135
CVP COA BALANCE		0	0	0	0	0	0	0	0	0	(0)	(0)	0	
CVP DOS AMIGOS		85	25	28	25	113	20	140	154	197	225	169	112	1,406
SWP DOS AMIGOS		238	506	256	222	253	280	293	283	376	453	381	238	3,479
CVP SAN LUIS EOM STORAGE	200	294	510	702	864	968	931	880	681	398	180	181	171	
SWP SAN LUIS EOM STORAGE	200	205	290	457	674	815	951	1,010	889	809	331	161	305	
TRINITY EOM ELEVATION (FT)	2,301	2,290	2,288	2,297	2,308	2,323	2,338	2,352	2,364	2,366	2,352	2,340	2,339	
TRINITY SURFACE AREA (ACRES)	11,857	11,165	11,056	11,608	12,304	13,283	14,319	15,363	16,259	16,353	15,366	14,493	14,393	
WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,207	1,210	1,210	1,210	1,210	1,210	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,964	2,964	2,964	2,964		2.964	3,167	3,250	3,250	3,250	3,250	3,253	
SHASTA EOM ELEVATION (FT)	982	985	066	1,012	1,024	-	1,053	1,069	1,068	1,060	1,040	1,023	1,014	
SHASTA SURFACE AREA (ACRES)	19,868	19,916	20,725	23,272	24,548	26,063	28,060	30.019	30,009	29,007	26,501	24,499	23,496	

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

					רועזעד ורפסט		1,0,1	210	3,068	2,342	586		=	=		30 202				2	87 967		205 7,902	4,000	6,430	Ц		4	(551) 20,457	OPEN	4	4	2	14 135	1	\downarrow	751,6	204	467	2,315	12,807	1,200	2,998	1,009	22,851
					ATTES 1	200	080	240	3,177	2,567	573	0	508	266	146	0	738	301	246	06	145	115	(110)	4,000	8,664	19,104	305	305	424	OPEN	213	195	282	18	٥	169	33/	214	294	2,317	12,905	1,210	3,250	1,014	23,412
						100	1,/41	240	3,702	2,842	725	11	292	445	210	15	845	433	307	85	232	97	(203)	4,000	6,339	22,436	615	615	2,938	OPEN	282	0	282	18	(0)	225	408	188	439	2,321	13,150	1,210	3,250	1,036	26,074
AND PLAN					NU	100	1,734	240	4,291	3,298	944	5	188	64	23	15	573	271	373	180	193	100	(32)	4,000		19			_	징	119	٥	1/8	15	٥	197	334	431		Ш	13,114	Ц	Ц	\rightarrow	29,007
F RECLAM					NY N		500'L	240	4,494	3,372	974		(8)	(302)	(145)	15	299	225	451	210	193	115	205	4,000	11,423	25,169	1,256	821		CLO	184		184	12	٥	154	251			2,315	12,769	1,210	3,250	-	30,009
UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN					NO.	1		4	_	3	834	D	(403)	(177)	(162)	45	295	525		255	28	165	630	4,000	13,978	3	1	295	_	CLO	3	_	238	=		4				Н	11,587	1,207	3,167	Н	30.019
UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PL					D V II	-		_	_	2	674	2	(400)	(36)	(20)	09	640	683		340	_	335	1,485	4,000	19,760	Ľ	2,904	Ц		S S	4	\perp	21		0					-	10,389	1,199		$\vdash \vdash$	3 28,060
UNITED LONG-T								4	_	2		9	(531)	(576)	(50)		594	94	376	350	0	425	5 2,315	<u> </u>	117,72	60,844	3	7 555	\vdash	UU.	405		3 82	7	0 0			976		3 2,258	_	1,199			26,063
								4	4	2,	4 573	1	(810)	5) (555)	9) (248)	09 0	1 200	5 105	8 209	300	0	0 410	0 2,155	0 4,000	3 17,440	6 43,397	3 2,435	7 277	1,089	ClC	0 449		6 133	7	0		6 203	976 8	8 474	3 2,239	2 8,207	9 1,199			6 23,370
		_ا	9			-		4		-	3 324	8	(605) (8	(395)	(109)	0 40	2 231	Ļ	4 108	5 215		0 210	5 830	4	4 9,473	1	8 803		9) 589	g	0 430		8 246	8	(0)		2 236	L	49 238	6 2,223	5 7,392	L	4 2,964	6 974	8 19,106
			19:26	S				4	_	1,334	2 213	96 38	(24) (128)	14 (149)	(4) (11)	0 20	6 302		8 104		58	=	0 285	4	5 6,734	4 13,308	7 268	7 268	(929)	g			6 238		(0)		6 222	9 658	40 4	3 2,206	L	_	4 2,964	9 946	9 16,258
ام اح			$\overline{}$	BYPASS	8			4	1,721	1,184	0 202	5	(2)	_		100	346	116	108	100	2	8	140	4,000	6,005	11,544	277	277	1,387	OPEN	168		246			2	216	0 349		8 2,203	L	-	2,964	7 939	4 15,509
■ 의	90	100	75	9		INITIAL	700	206	1,700	1,200	200																								_			200	100	2,218	7,162	1,199	2,964	937	15,384
Study Year Hydrologic Type (W-A-D-C-E) Starting Storage Level (HI-HM-LM-LO)	Oct-Feb (%) Project Deliveries (100-75-50-25-0)	Mar-Sep (%) Project Delivenes (100-75-50-25-0)	Oct-Dec (%) Water Rights Deliveries (100-75-50-25-0)	Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	Alternative Extension	ALL VALUES IN TAF	THINITY EOM STORAGE	WHISKEYTOWN EOM STORAGE	SHASTA EOM STORAGE	OROVILLE EOM STORAGE	FOLSOM EOM STORAGE	WHISKEY TOWN STORAGE WITHDRAWAL	SHASTA STORAGE WITHDRAWAL	OROVILLE STORAGE WITHDRAWAL	FOLSOM STORAGE WITHDRAWAL	SPRING CREEK POWERPLANT	KESWICK BELEASE	OBOVII I BEI FASE	NIMBLIS RELEASE	DEHNATIS FLOW	FFATHER RIVER DEMANDS	VIBA RIVER ACCRETIONS	SACRAMENTO BIVER ACCRETIONS	WII KINS SLOUGH TARGET (CES)	WII KINS SLOUGH ACTUAL (CFS)	FREEPORT FLOW (CFS)	ACTUAL DELTA OUTFLOW	REQUIRED DELTA OUTFLOW	ANTIOCH FLOW	CROSS CHANNEL GATES	SWP BANKS PUMPING	CVP BANKS PUMPING	TRACY PUMPING	CONTRA COSTA PUMPING	CVP COA BALANCE	CVP DOS AMIGOS	SWP DOS AMIGOS	CVP SAN LUIS EOM STORAGE	SWP SAN LUIS EOM STORAGE	TRINITY EOM ELEVATION (FT)	TRINITY SURFACE AREA (ACRES)	WHISKEYTOWN EOM ELEVATION (FT)	WHISKEYTOWN SURFACE AREA (ACRES)	SHASTA EOM ELEVATION (FT)	SHASTA SURFACE AREA (ACRES)

UNITED STATES BUREAU OF RECLAMATION

	(=	INTED ST	ATES BUI	EAUCE	INITED STATES BUREAU OF RECLAMATION	202				
Study Year Hydrologic Type (W-A-D-C-E)	(_	ONG TERM OPERATIONS CRITERIA AND PLAN	AGGGGA	TIONS OF	ITERIA AL	AD PLAN				
Starting Storage Level (HI-HM-LM-LO)	Ī				_	ONG. FED.								
Oct-Feb (%) Project Delivenes (100-75-50-25-0)	100													
Mar-Sep (%) Project Deliveries (100-75-50-25-0)	100	DATE:	10/13											
Oct-Dec (%) Water Rights Deliveries (100-75-50-25-0)	100	TIME	19:51											
Ing. Sep (%) Water Rights Deliveries (100-75-50-25-0)	100	BYPASS												
Alternative Extension	8							100	TOXIL	TIME	1 1111	ATTENT	SEPT	TOTAL
ALL VALUES IN TAF	NITIAL)	100	NOV	DEC	JAN	LEB	MAH	AFR	WA A	2001	4 87.4	P PCV	1840	
TRINITY FOW STORAGE	1,900	1,765	1,726	1,746	1,812	1,926	2,05/	2,243	775'5	2,132	070	240	210	T
WHISKEYTOWN FOM STORAGE	206	206	506	506	506	506	506	082	240	200	2 707	3 240	3 113	
CHASTA FOM STOBAGE	3,200	3,148	3,110	3,150	3,400	3,700	4,100	4,430	4,432	4,200	201.0	2,5,0	1 804	T
OBOVILLE FOM STORAGE	2,700	2,556	2,626	2,745	2,850	2,851	2,850	3.025	3,097	2,300	4647	2,130	570	
COLON EOM STORAGE	009	570	260	571	573	624	674	800	998	999	199	200	6/0	278
MULICIPE STORM STORMS WITH DRAWAI		120	59	50	0	0	٥	0	4	0/1	6/1	100	8 4	000
WHISKET LOWIN STORAGE WITHOUT WAY		48	88	(40)	(250)	(300)	(400)	(403)	\$	152	457	529	CLL	
SOCIAL PETODA OF WITHOUS WAL		141	(69)	(115)	(103)	0	0	(177)	2	187	336	336	055	50/
OROVILLE STORAGE WITHORAWAL		27	10	(8)	Ξ	(20)	(20)	(128)	(173)	74	191	115	100	
FOLSOM STURGE WITHDRAWAL		120	9	08	32	42	35	0	9	175	175	30	55	814
SPRING CREEK POWEHPLANI		AOB.	30R	370	372	472	445	217	594	627	862	692	380	5,914
KESWICK RELEASE		202	101	105	217	450	449	295	151	234	314	321	263	3,102
OROVILLE RELEASE		207	2	a G	15.5	216	265	298	293	293	309	215	89	2.452
NIMBUS RELEASE		90.	104	200	33.5	185	150	145	130	96	85	86	95	1,470
VERNACIS FLOW		2 8	3	3		c	-	58	193	193	232	145	87	2967
FEATHER RIVER DEMANDS		00 4	75	3	105	110	335	165	115	100	97	115	130	1,532
YUBA RIVER ACCRETIONS		3	300	3 8	505	1 160	1 485	605	8	(105)	(248)	(155)	155	4,357
SACRAMENTO RIVER ACCRETIONS		040	4 000	4 000	4 000	4 000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
WILKINS SLOUGH TARGET (CFS)		3	2000	C V a	10 74E	+	16 588	7.947	8,879	7,361	9,029	8,568	6.208	
WILKINS SLOUGH ACTUAL (CFS)		0000	17.016	15 082	21 Q3B	+	42 999	23,772	18,331	17,626	20,127	18,712	14,915	
FREEPORT FLOW (CFS)		13,304	0 5°C	130 Y	A52	₩	2 254	1.066	797	636	474	278	148	9,489
ACTUAL DELTA OUTFLOW		117	007	277	277	250	277	453	797	636	474	278	148	4.412
REGUIRED DELTA OUTFLOW		117	007	117	(4 592)	3 5	c	16	4.416	4,648	2,397	292	(5/1)	3,636
ANTIOCH FLOW		32	11,2/0]	1,332	-+-	1=	CLOSED	CLOSED	0/0	OPEN	OPEN	OPEN	OPEN	
CROSS CHANNEL GATES		OF EN	OPEN	-#-			796	210	143	119	236	261	397	3,378
SWP BANKS PUMPING		75	907	422	200	3	0	0	0	0	45	150	0	323
CVP BANKS PUMPING			071	246	246	222	246	210	184	178	282	282	250	2,830
TRACY PUMPING		047	2007	7	27	8	80	=	12	15	18	18	14	135
CONTRA COSTA PUMPING		- 1	0 0		.	C	0	0	0	(0)	(0)	0	32	
CVP COA BALANCE		60 0	57	280	57	113	70	140	154	197	225	169	112	1,406
CVP DOS AMIGOS		200	105	244	212	240	266	277	267	355	431	359	224	3,295
SWP DOS AMIGOS	000	26.2	510	707	864	896	931	840	641	358	160	141	131	
CVP SAN LUIS EOM STORAGE	888	278	430	603	816	851	868	781	636	377	160	40	199	
SWP SAN LUIS EOM STORAGE	300	37.0	5 210	2 3 2 4	2326	2 335	2,345	2,358	2,364	2,351	2,338	2,332	2,328	
TRIMITY EOM ELEVATION (F.1)	2,333	2,326	42,013	42 476	12 520	14 126	14 814	15.782	16,216	15,309	14,376	13,937	13,676	
TRINITY SURFACE AREA (ACRES)	188.51	13,200	13,073	100	1 199	1 199	1.199	1,207	1,210	1,210	1,210	1,210	1,200	
WHISKEYTOWN EOM ELEVATION (FI)	1,199	1 20 0	0.064	2 064	2 964	2 966	2.965	3,167	3,250	3,250	3,250	3,250	2,998	
WHISKEYTOWN SURFACE AREA (ACHES)	4,015	\perp	1 011	1 012	1.024	1.036	1,053	1,069	1,066	1,059	1,040	1,016	1,011	
SHASIA EOM ELEVATION (F1)	200,000	10	23.067	23 272	24 54B	26.063	28,060	30,019	29,705	28,883	26,502	23,736	23,083	
SHASTA SURFACE AREA (ACRES)	53,323	╣.	20,00	40,412										

UNITED STATES BUREAU OF RECLAMATION

Study Year Hydrologic Type (W-A-D-C-E)	<						1		UNITED STATES BUNCAU OF ACCESSIVATION					
Starting Storage Level (HI-HM-LM-LO)	Σ					LONG-TE	RM OPER	ATIONS C	RITERIA	LONG-TERM OPERATIONS CRITERIA AND PLAN				
Oct-Feb (%) Project Delivenes (100-75-50-25-0)	100													
Mar-Sep (%) Project Delivenes (100-75-50-25-0)	100	DATE:	10/13											
Oct-Dec (%) Water Rights Delivenes (100-75-50-25-0)	100	TIME:	50:06											
Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	100	BYPASS												
	8													
ALL VALUES IN TAF	INITIAL	100	NOV	DEC	JAN	FEB	MAR	APR	MAY	NOC	JOE	AUG	SEP	TOTAL
RINITY FOM STORAGE	1,500	1,366	1,297	1,316	1,370	1.480	1,602	1,788	1,931	1,887	1,839	1,786	1,762	
WHISKEYTOWN FOM STORAGE	206	506	506	206	506	506	506	230	240	240	240	240	210	
SHASTA FOM STORAGE	2,500	2,518	2,568	2,748	3,183	3,700	4,100	4,460	4,357	4,065	3,500	2,879	2,750	
OBOVILLE FOM STORAGE	2,200	2,054	2,077	2,196	2,413	2,770	2,911	3,086	3,112	2,919	2,503	2,204	1,926	
FOLSOM FOM STORAGE	400	370	360	371	420	624	674	800	954	869	671	250	563	
WHISKEYTOWN STORAGE WITHDHAWAL		120	68	20	13	3	10	0	0	40	45	1	31	372
SHASTA STORAGE WITHDRAWAL		(21)	(51)	(179)	(435)	(517)	(400)	(367)	26	278	544	604	118	(333)
OBOVILLE STORAGE WITHDRAWAL		143	(22)	(115)	(215)	(356)	(143)	(177)	(31)	183	406	291	272	237
FOI SOM STORAGE WITHDRAWAL		27	2	(8)	(48)	(203)	(20)	(128)	(158)	8/	190	115	(11)	(193)
SPRING CREEK POWERPLANT		120	86	30	45	45	45	0	2	45	45	0	30	497
		339	339	231	200	258	455	253	574	623	819	814	358	5,264
		205	148	105	105	94	306	295	197	230	324	276	285	2,570
		108	104	108	108	63	265	298	307	298	307	215	89	2,269
		110	125	130	135	185	150	145	130	8	85	06	95	1,470
FATHER RIVER DEMANDS		58	0	0	0	0	-	58	193	193	232	145	87	296
CHRA RIVER ACCRETIONS		85	75	100	105	110	335	165	115	8	97	115	130	1,532
SACRAMENTO RIVER ACCRETIONS		140	225	400	605	1,160	1,485	605	8	(105)	(248)	(155)	155	4,357
WILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
WILKINS SLOUGH ACTUAL (CFS)		5,685	6,993	6,573	7,946	14,096	16,751	8,559	8,562	7,297	8,333	9,297	5,837	
- REEPORT FLOW (CFS)		12,872	13,723	13,713	16,547	28,349	40,834	24,383	18,998	17,566	19,557	18,712	14,915	
ACTUAL DELTA OUTFLOW		277	268	296	520	1,376	2,139	1,098	797	929	474	278	148	8,308
REQUIRED DELTA OUTFLOW		277	268	277	277	250	277	453	797	636	474	278	148	4,412
		643	(1,161)	(2,096)	(2,025)	27	6	25	4,043	4,682	2,715	292	(775)	6,380
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	OPEN	CLOSED	CLOSED	CLO	0/0	OPEN	OPEN	OPEN	OPEN	
		250	245	422	436	506	278	212	184	115	246	216	397	3,207
		0	128	0	0	0	0	0	0	0	0	195	0	323
		246	238	246	246	506	246	212	184	178	282	282	250	2,816
CONTRA COSTA PUMPING		=	80	7	7	8	8	11	12	15	18	18	14	135
		0	0	0	0	0	0	0	(0)	0	(0)	0	10	
		85	57	28	25	113	70	140	154	197	225	169	112	1,406
	 -	206	176	209	191	217	238	242	235	322	367	326	198	2,927
CVP SAN LUIS EOM STORAGE	200	262	510	702	864	880	915	826	627	344	101	127	117	
SWP SAN LUIS EOM STORAGE	200	232	294	503	737	716	744	269	929	398	256	127	313	
BINITY EOM ELEVATION (FT)	2.301	2.289	2.283	2.285	2,290	2,299	2,309	2,324	2,335	2,332	2,328	2,324	2,322	
BINITY SURFACE AREA (ACRES)	11,857	11.121	10,739	10,847	11,143	11,750	12,407	13,401	14,152	13,921	13,670	13,388	13,260	
WHISKEYTOWN FOM ELEVATION (FI)	1,199	1.199	1,199	1,199	1,199	1,199	1,199	1,207	1,210	1,210	1,210	1,210	1,200	
WHISKEYTOWN SURFACE AREA (ACRES)	2.964	2.964	2 964	2.964	2.964	2,964	2,964	3,167	3,250	3,250	3,250	3,250	2,998	
SHASTA FOM FLEVATION (FD.	982	OBO	985	700	1 014	1 036	1.053	1 067	1.063	1 051	1 028	200	400	
		2	200	r			1000	3	200		0.30.	3		

UNITED STATES BUREAU OF RECLAMATION

		TOTAL	T					244	(739)	(217)	2	200	9,720	2040		2 2 2	1 522	4 357		T	1	7 481	4 4 12	8.613		3,089	323	2,551	135		1.206	2,790			T			T			
		SEP	1,496	210	2,657	1,879	582	31	118	272		3	800	202	3	200	6	35,5	3 5	5,832	43.035	148	148	(577)	OPEN	397	0	250	14	on	112	184	000	0.57	2,301	11,836	1,200	2,998	20 704	101.02	
		AUGI	1.520	240	2,786	2,157	570	-	604	231	113	0	814	9/7	513	3	140	113	(200	200,00	3,536	27.10	270	2000	+-	100	195	282	18	0	169	295	8	40	2,303	11,963	1,210	3,250	24 282	200,12	
		1 101	1.572	240	L	2,456	691	0	589	406	190	0	819	324	307	2	232	16	(248)	200,4	0,000	19,007	4/4	2715	+	10	0	282	18	(0)	225	363	64	137	2,307	12,247	1,210	3,250	1,024	24,300	
PLAN		T NITH	15/4	240	4,016	2,872	889	0	319	187	78	3	622	234	298	90	193	100	(cor)	4,000	062.7	979./1	020	030	+	+	0	178	15	0	197	292	307	274	2,307	12,256	1,210	3,250	-	27,544	
IERIA AND		IXAV	1475	240	↓	L	974	P	83	(67)	(149)	2	265	149	317	130	193	115	8	4,000	8.411	18,217	/6/	16/	4,480	15	0	184	12	(0)	154	219	290	467	Ц	-	1,210	3,250	1,063	29.297	
LONG-TERM OPERATIONS CRITERIA AND PLAN		1004	A 4.25	230	4.443	2.995	830	0	(427)	(412)	(158)	0	193	09	268	145	58	165	605	4,000	7,550	18,917	815	453	22	10350	20	191	=	0	140	228	789	999	2,295	11,487	1,207	3,167	1,066	29,755	
UNITED STATES BUREAS OF		1 (1)	MAIN	206	4 023	2 585	674	02	(655)	(344)	(20)	45	200	105	265	150	-	335	1,485	4,000	12,601	33,415	1,743	277		CLUSED	200	232	8	0	70	223	668	622	2,278	10,449	1,199	2,964	1,050	27,676	
ONG-TER			100	2000	3.368	2 242	624	F7	(595)	(356)	(213)	45	180	94	46	185	0	110	1,160	4,000	12,703	26,653	1,294	250	_	_ #	3	200	8	0	43	204	878	625	2,267	9,757	1,199	2,964	1,022	24,384	
			JAN	200.	2773	1 RR5	404	c	(422)	(215)	(36)	32	200	105	19	135	0	105	605	4,000	7,946	15,797	474	277	(2,205)	OPEN	430	246	7	0	21	180	786	638	2.255	9,112	1,199	2,964	995	21,317	
			DEC	947	2000	1 669	308	2000	/179/	(88)	(55)	30	231	132	19	130	0	100	400	4,000	6,580	13,404	277	277	(2,170)	OPEN	422	246	240		=	208	587	393	1	1	1	\downarrow	_	19,064	
10/13	61.02		NOV	927	206	2,11,2	1/0,1	202	(400)	(22)	(35)	60	238	148	09	125	0	75	225	4,000	5,308	11,269	268	268	-	OPEN	245		000						1	\perp	\perp	1	1	18,080	
DATE:	BYPASS		OCI	996	206	2,050	1,555	717	021	143	(19)		307	205	62	100	58	85	140	4,000	5,213	11,610	277	277	1,349	OPEN	250	04	104		2 2	20.0	1	-		+	\perp	\downarrow	╄	17.	
100 100	18	8	INITIAL	1.100	8	2,000	00/1	33																									200	100	5 264	9 620	1 100	2 964	955	17,119	
Study Year Hydrologic Type (W-A-D-C-E) Starting Storage Level (HI-HM-LM-LO) Oct-Feb (%) Project Delivenes (100-75-50-25-0) Mar-Sep (%) Project Delivenes (100-75-50-25-0)	Oct-Dec (%) Water Rights Deliveries (100-75-50-25-0)	Alternative Extension	ALL VALUES IN TAF	TRINITY EOM STORAGE	WHISKEYTOWN EOM STORAGE	SHASTA EOM STORAGE	OROVILLE FOM STORAGE	FOLSOM EOM STORAGE	WHISKEYTOWN STORAGE WITHDRAWAL	SHASTA STORAGE WITHDRAWAL	OROVILLE STORAGE WITHURAWAL	FOLSOM STORAGE WITHDRAWAL	SPRING CREEK POWEHPLANI	KESWICK HELEASE	OROVILLE RELEASE	NIMBUS HELEASE	VERNALIS FLOW	FEATHER RIVER DEMANDS	TOBA HIVEN ACCRETIONS	MACHINE STOLIGH TARGET (CES)	WILKING SLOUGH ACTINI (CES)	WILNIES SECOND ACTION (CLS)	ACTUAL DELTA OLITELOW	RECILIBED DELTA CUTTELOW	ANTIOCH FLOW	CROSS CHANNEL GATES	SWP BANKS PUMPING	CVP BANKS PUMPING	TRACY PUMPING	CONTRA COSTA PUMPING	CVP COA BALANCE	CVP DOS AMIGOS	SWP DOS AMIGOS	CVP SAN LUIS EOM STORAGE	SWP SAN LUIS EOM STORAGE	TRINITY EOM ELEVATION (F.1)	THINITY SURFACE AREA (ACRES)	WHISKEYTOWN EOM ELEVATION (F1)	WHISKEYTOWN SUMFACE AREA (ACRES)	SHASTA SURFACE ARFA (ACRES)	

Study Year Hydrologic Type (W-A-D-C-E)	V				_	UNITED STATES BUREAU OF RECLAMATION	ATES BU	REAU OF	RECLAM	TION				
Station Strange Level (HI-HM-LM-LO)	0					LONG-TERM OPERATIONS CRITERIA AND PLAN	M OPER/	TIONS C	RITERIA A	ND PLAN				
Oct-Feb (%) Project Deliveries (100-75-50-25-0)	35													
Mar-Sep (%) Project Deliveries (100-75-50-25-0)	100	DATE:	10/16											
Oct-Dec (%) Water Rights Delivenes (100-75-50-25-0)	75	TIME:	12:12											
Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	100	BYPASS												
Alternative Extension	8													
ALL VALUES IN TAF	INITIAL	120	NOV	DEC	JAN	FEB	MAR	APR	MAY	NOC	JOL	AUG	SEP	TOTAL
TRINITY FOM STORAGE	700	586	558	267	634	747	878	1,066	1,210	1,209	1,209	1,158	1,038	
WHISKEYTOWN EOM STORAGE	206	506	506	506	206	506	206	230	240	240	240	240	210	
SHASTA EOM STORAGE	1,700	1,731	1,843	2,032	2,454	3,046	3,691	4,111	4,009	3,677	3,068	2,479	2,448	
OROVILLE EOM STORAGE	1,200	1,155	1,225	1,342	1,559	1,915	2,258	2,669	2,723	2,527	2,112	1,814	1,565	
FOLSOM EOM STORAGE	200	218	254	311	407	618	674	800	954	869	671	519	532	
WHISKEYTOWN STORAGE WITHDRAWAL		100	49	30	0	0	0	0	0	0	0	1	128	303
SHASTA STORAGE WITHDRAWAL		(33)	(112)	(189)	(422)	(265)	(645)	(427)	95	319	589	573	22	(825)
OROVILLE STORAGE WITHDRAWAL		43	(69)	(115)	(212)	(356)	(344)	(412)	(69)	187	406	291	244	(399)
FOLSOM STORAGE WITHDRAWAL		(20)	(32)	(55)	(66)	(211)	(99)	(128)	(158)	78	190	146	(17)	(362)
SPRING CREEK POWEHPLANI		100	20	40	32	42	35	0	2	3	0	0	127	432
KESWICK RELEASE		307	238	231	200	180	200	193	574	622	819	783	359	4,707
OROVILLE RELEASE		105	101	105	105	94	105	09	169	234	324	276	257	1,934
NIMBUS RELEASE		61	99	61	19	26	260	298	307	298	307	246	88	2,104
VEHNALIS FLOW		140	125	130	135	185	150	145	130	90	85	06	95	1,470
FEATHER RIVER DEMANDS		28	0	0	0	0	-	28	193	193	232	145	87	296
YUBA RIVER ACCRETIONS		85	75	100	105	110	335	165	115	100	97	115	130	1,532
SACRAMENTO RIVER ACCRETIONS		140	225	400	605	1,160	1,485	605	06	(105)	(248)	(155)	155	4,357
WILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
WILKINS SLOUGH ACTUAL (CFS)		5,361	5,383	6,607	7,946		12,601	7,550	8,562	7,290	8,333	8,796	5,848	
FREEPOHT FLOW (CFS)		9.971	10,480	12,963	15,797	-	33,330	19,417	18,543	17,626	19,557	18,712	14,456	
ACTUAL DELTA OUTFLOW		277	268	277	474	1,301	1,737	841	797	636	474	278	148	7,508
REQUIRED DELTA OUTFLOW		27.7	268	277	277	250	277	453	797	636	474	278	148	4,412
ANTIOCH FLOW		2,267	655	(1,924)	ㅋ		_	2	4,298	4,649	2,715	292	(518)	10,255
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	-	=	CLOSED	CLOSED	၁/၀	OPEN	OPEN	OPEN	OPEN	
SWP BANKS PUMPING		150	198	395	436	208	254	193	132	119	246	216	3/0	2,941
CVP BANKS PUMPING		48	48	0	0	0	0	0	0	0	0	195	0	152
TRACY PUMPING		119	172	246	246	195	211	193	184	178	282	282	250	2,557
CONTRA COSTA PUMPING		-	8	7	7	8	8	=	12	15	18	18	14	135
CVP COA BALANCE		(0)	0	7.0	0	0	0	0	(0)	0	(o)	(0)	10	
CVP DOS AMIGOS		59	14	7	14	53	20	140	±2.	197	225	169	112	1.160
SWP DOS AMIGOS		181	143	193	169	191	508	213	203	2/2	340	274	5	2,559
CVP SAN LUIS EOM STORAGE	200	270	433	653	864	926	926	868	699	386	143	169	159	
SWP SAN LUIS EOM STORAGE	100	09	109	307	565	573	209	570	202	334	221	145	333	
TRINITY EOM ELEVATION (FT)	2,218	2,202	2,197	2,199	5,209	2,224	2,240	2,261	2,275	2,275	2,275	2,270	2,258	
TRINITY SURFACE AREA (ACRES)	7,162	6,388	6,183	6,250	6,715	7,469	8,299	9,422	10,249	10,246	10,245	9,953	9,258	
WHISKEYTOWN FOM ELEVATION (FT)	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,207	1,210	1,210	1,210	1,210	1,200	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,964	2,964	2,964	2,964	2,964	2,964	3,167	3.250	3,250	3,250	3,250	2,998	
SHASTA EOM ELEVATION (FT)	937	939	946	957	979	1.008	1,036	1,053	1,049	1,035	1,009	981	979	
SHASTA SURFACE AREA (ACRES)	15,384	15,566	16,219	17,300	19,622	22,736	26,018	28,115	27,610	25,946	22,850	19,757	19,587	

UNITED STATES BUREAU OF RECLAMATION

Starting Storage Level (HI-HM-LM-LO) Oct-Feb (%) Project Delivenes (100-75-50-25-0)	I					2								
of Deliveres (100-75-50-25-0)						LONG-IE	AM OPER	LONG-IEHM OPERATIONS CRITERIA AND PLAN	KILEKIA	AND PLAN				
Ct Deliveres (100-75-50-25-0)	Ŝ.													
	75	DATE:	10/16											
Oct-Dec (%) Water Rights Deliveries (100-75-50-25-0)	8	TIME:	12:16											
Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	100	BYPASS												
Alternative Extension	В													
ALL VALUES IN TAF	INITIAL	100	NON	DEC	JAN	FEB	MAK	APH	MAY	NOC	JUL	AUG	SEP	IOIAL
HINITY EOM STORAGE	1 900	1.763	1,713	1,713	1,746	1,832	1.941	2,066	2,147	2,067	1,909	1,703	1,680	
WHISKEYTOWN EOM STORAGE	206	206	206	506	506	206	206	230	240	240	240	240	236	
SHASTA EOM STORAGE	3,200	3,148	3,150	3,150	3,360	3,700	4,100	4,324	4,233	3,979	3,457	2,965	2,792	
PROVILLE FOM STORAGE	2,700	2,554	2,525	2,446	2,646	2,942	3,268	3,493	3,486	3,278	2,881	2,537	2,212	
OLSOM EOM STORAGE	009	530	470	431	440	509	646	801	850	704	554	475	468	
WHISKEYTOWN STOHAGE WITHDHAWAL		120	29	23	n	3	5	6	20	8	150	151	7	602
HASTA STORAGE WITHDRAWAL		48	(2)	0	(210)	(340)	(400)	(231)	81	239	501	476	162	325
BOVILLE STORAGE WITHDRAWAI		143	30	83	(199)	(294)	(328)	(228)	2	198	386	334	319	447
OI SOM STORAGE WITHDRAWAL		29	09	42	(8)	(89)	(138)	(156)	(54)	140	141	74	3	103
PHINE CHER POWERPLANT		120	60	30	202	83	30	30	30	60	150	150	0	710
ECMICK OF LEACE		388	308	350	200	200	260	299	511	999	871	826	352	5,135
DOWN FOR FASE		205	150	. 243	61	95	61	164	179	205	294	309	352	2,280
MOVILLE ALLEASE		108	104	108	108	76	108	129	192	240	229	154	89	1,665
IMBUS RELEASE		200	MILE	100	450	121	105	BOR	75	80	85	06	95	1.210
VIII.		0 4	2			0	-	S,R	193	193	232	145	87	198
EATHER RIVER DEMANDS	1	90	75 0	2	00	8	70	42	40	33	49	62	70	826
UBA HIVER ACCRETIONS		200	0	30	55	35	000	26.7	200	3 6	245		90	2 076
ACRAMENTO RIVER ACCRETIONS		140	190	320	549	807	684	/11	Oc.	(22)	(341)		200	2,0,
VILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4,000	4.000	4,000	4,000	9,000	4,000	000.	3	
VILKINS SLOUGH ACTUAL (CFS)		6,483	6,064	7,693	7,508	10,718	9,812	5,567	6.927	5,882	8,798	9,692	5,815	
REEPOHT FLOW (CFS)		13.671	12,641	16,598	14.928	20,893	18,102	11,928	13,533	13,223	17,134	17,5/3	14,932	
CTUAL DELTA OUTFLOW		215	208	461	411	1,015	922	452	467	398	289	219	149	5,174
REQUIRED DELTA OUTFLOW		215	208	215	277	250	277	452	467	366	289	219	149	3,384
NTIOCH FLOW		(611)	(1,362)	(1,566)	(2,537)	15	0	7	2,810	3,484	1,666	162	(771)	1,297
ROSS CHANNEL GATES		OPEN	OPEN	OPEN	OPEN	CLOSED	CLOSED	CLOSED	OPEN	OPEN	OPEN	OPEN	OPEN	
NOP BANKS PUMPING		265	348	420	430	162	149	168	123	117	237	250	397	3,066
VP BANKS PUMPING		96	0	0	0	0	0	0	0	0	45	150	0	331
RACY PUMPING		246	238	246	246	162	149	96	184	178	282	282	250	2,559
ONTRA COSTA PUMPING		11	80	7	7	80	8	11	12	15	18	18	14	135
VP CCIA BACANCE		14	(1)	0	0	0	0	(0)	(0)	(0)	0	(0)	(0)	
VP DOS AMIGOS		85	57	28	57	113	106	117	138	148	180	148	85	1,262
WP DOS AMIGOS		206	176	209	191	217	238	242	235	322	367	326	198	2,927
VP SAN LIIS FOM STORAGE	200	358	478	670	832	812	727	260	398	187	45	72	102	
WP SAN LIIS FOM STORAGE	300	347	513	719	948	883	782	069	558	332	182	98	273	
BINITY FOW ELEVATION ZETA	183	5 355	2318	2318	2321	2328	2 336	2.345	2.351	2,345	2,334	2,318	2,316	
CONTINUE AND A CONTINUE OF CON	13 001	13 269	13 004	13 001	13 179	13 632	14 208	14.862	15.284	14,865	14,036	12,949	12,824	
MUISKEYTOWN FOW ELEVATION (FD	1 199	1 199	1 199	1 199	1 199	1 199	1.199	1 207	1.210	1,210	1,210	1,210	1,209	
WHISKEYTOWN EUR ELEVATION (FT)	2 064	2 064	2 964	2 0.64	2 964	2 964	2 964	3.167	3.250	3,250	3,250	3,250	3,220	
WHISHELLOWN SURFACE AND (ACADS)	1 015	1 012	1 012	1 012	1 000	1 036	1 053	1.062	1,058	1,048	1,026	1,004	966	
SHASIA ECIM ELEVATION (T1)	2.0.	710'	210.	3 0.	770'	000)	1	111111					

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

Part	Study Year Hydrologic Type (W.A-D-C-E) Starting Storage Level (HI-HM-LM-LO) Oct-Feb (%) Project Deliveries (100-75-50-25-0) Mar-Sep (%) Project Deliveries (100-75-50-25-0)					,		2000	5						
This continue with the continue within the continue with the continue with the continue with the con	Storage Level (HI-HM-LM-LO) (%) Project Deliveries (100-75-50-25-0) (%) Project Deliveres (100-75-50-25-0)						ONT OIL	A COOC AA	TIONIC	STEDIA A	AND DIAN				
100 170 171	(%) Project Delivenes (100-75-50-25-0) (%) Project Delivenes (100-75-50-0)	Σ				•	יסוגם-ובעוסי								
The control of the	(%) Project Delivenes (100-75-50-25-0)	100													
Thirty T		75	DATE:	10/16											
High Horizontal 100 Horizo	(%) Water Rights Delivenes (100-75-50-25-0)	100	TIME:	12:19											
NAME Color NAME Color NAME Color NAME Color NAME Color NAME Color Co	(%) Water Rights Delivaries (100-75-50-25-0)	_	3YPASS												
Thirty T	ve Extension	В													
1,500 1,141 1,244 1,253 1,250 1,260 2,065 2,06		INITIAL	100	NOV	DEC	JAN	FEB	MAR	APH	MAY	NOC	JUL	AUG	SEP	TOTAL
Continue	FOM STORAGE	1,500	1,334	1,284	1,253	1.290	1,378	1,493	1.648	1.700	1.621	1,574	1,379	1,357	
2,200	EYTOWN EOM STORAGE	206	506	506	506	206	506	506	230	240	240	240	240	236	
Continue	A FOM STORAGE	2,500	2,541	2,582	2,731	2,938	3,295	3,734	3,935	3,836	3,581	2,999	2,559	2,381	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	I F FOM STORAGE	2.200	2.054	2,026	2,058	2,258	2,553	2,880	3,069	3,063	2,854	2,487	2,104	1,786	
The continue of the continue	M FOM STORAGE	400	346	300	276	301	397	999	750	838	693	466	357	350	
Color	TOWN STORAGE WITHDRAWAL		150	09	53	О	О	0	0	20	99	40	141	72	552
The continue of the continue	A STORAGE WITHDRAWAL		(45)	(40)	(149)	(207)	(357)	(440)	(207)	96	241	564	425	168	43
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	I E STORAGE WITHDRAWAL		143	29	(28)	(199)	(294)	(328)	(192)	2	200	356	375	313	377
The control of the	M STORAGE WITHDRAWAI		52	45	56	(24)	(96)	(168)	(186)	(35)	139	219	105	3	8
S	CHEEK POWERPLANT		150	09	09	=	27	52	0	09	9	40	140	مال	639
Secondaria Sec	OK BELFASE		325	270	231	200	180	215	293	220	571	824	765	358	4.782
Secondaria Sec	I F DE I FASE		205	149	132	61	æ	61	200	179	207	264	350	346	2,210
S. M. Colored T. M. Co	SPEEASE		92	89	92	92	69	77	66	154	238	307	185	68	1,584
Se 0 0 0 0 1 56 193 193 193 222 145 87 S 140 150 0 99 42 40 40 60 6 10 62 40 62 70 10 <td>THE ELOW</td> <td>Î</td> <td>110</td> <td>105</td> <td>115</td> <td>120</td> <td>150</td> <td>105</td> <td>80</td> <td>75</td> <td>80</td> <td>85</td> <td>96</td> <td>95</td> <td>1,210</td>	THE ELOW	Î	110	105	115	120	150	105	80	75	80	85	96	95	1,210
S 75 100 99 92 79 42 40 400 4000	D BIVEB DEWANDS		58	0	0	0	0	-	28	193	193	232	145	87	296
S 140 190 320 549 607 684 117 (50) (227) (34) (200) 4,000	INVER ACCRETIONS		85	75	100	66	92	79	42	40	33	49	62	70	826
1,000 4,00	MENTO DIVER ACCRETIONS		140	18	320	549	807	684	117	(20)	(227)	(341)	(208)	95	2,076
Side	S SI OLIGH TARGET (CES)		4.000	4.000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
12,399 11,732 12,598 14,676 20,039 16,876 14,533 13,533 13,537 17,134 17,752 14,932 14,676 20,030 277 250 277	S SLOUGH ACTUAL (CFS)		5.461	5.421	5,750	7,508	10,364	9,085	5,466	7,555	5,909	8,022	8,702	5,916	
Continue	SECOND (CES)		12,399	11.732	12.598	14,678	20,039	16,876	11,923	13,533	13,257	17,134	17,752	14,932	
Colored Colo	DELTA OLITELOW		215	208	215	395	974	857	452	467	366	289	219	149	4,806
The color of the	IED DELTA OLITEI OW		215	208	215	277	250	277	452	467	366	289	219	149	3,384
OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN	CH FLOW		101	(853)	(2,526)	(2,603)	13	-	11	2,810	3,465	1,666	62	(771)	1,376
Column	CHANNEL GATES		OPEN	OPEN	OPEN	_			CLOSED	OPEN	OPEN	OPEN	OPEN	OPEN	
Column	NNKS PUMPING		251	230	420	431	159	144	195	123	119	207	291	397	2,966
Column	NKS PUMPING		32	64	0	0	0	0	0	0	0	75	120	0	291
The color of the	PUMPING		246	238	246	246	159	144	69	184	178	282	282	520	2,524
Charles Char	A COSTA PUMPING		11	8	7	7	8	8	=	12	15	18	18	4	135
Region R	JA BALANCE		0	0	101	0	o	0	0	٥	0	9	0	0 1	000,
193 165 196 179 203 223 227 220 302 344 306 196	SAMIGOS		85	22	28	27	113	106	117	138	148	180	148	8	1,262
200 294 476 670 832 809 719 525 363 152 40 37 37 37 37 37 37 37 3	S AMIGOS		193	165	196	179	203	223	227	220	302	344	306	186	2./44
200 247 305 524 767 714 624 575 459 256 100 66 2,301 2,286 2,282 2,279 2,280 2,300 2,313 2,317 2,317 2,397 2,290 1,1857 10,944 10,666 10,495 11,199 1,199 1,199 1,295 1,205 1,210 1,210 (FT)	N LUIS EOM STORAGE	200	294	478	670	832	803	719	525	363	152	40	3/	/9	
(FT) 1,1857 10,944 10,666 10,495 11,199 1,199 1,199 1,199 1,295 1,296 1,296 1,199 1,	IN LUIS EOM STORAGE	200	247	305	524	767	714	624	575	459	256	100	99	266	
(FT) 1,195 1,094 1,066 10,495 10,699 11,190 11,817 12,656 12,932 12,508 12,256 11,196 11,196 11,199 1,199 1,199 1,199 1,199 1,207 1,210 1,	EOM ELEVATION (FT)	2,301	2,286	2,282	2,279	2,282	2,290	2,300	2,313	2,317	2,311	2,307	2,290	2,288	
(FT) 1,199 1,199 1,199 1,199 1,199 1,199 1,199 1,199 1,210 3,250	SURFACE AREA (ACRES)	11,857	10,944	10,666	10,495	10,699	11,190	11,817	12,656	12,932	12,508	12,256	11,196	11,072	
ACRES) 2,964 2,964 2,964 2,964 2,964 2,964 2,964 3,167 3,250	SYTOWN EOM ELEVATION (FT)	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,207	1,210	1,210	1,210	1,210	1.209	
982 984 986 993 1,003 1,019 1,038 1,046 1,042 1,031 1,006 985 1985 1988 20,090 20,304 21,095 22,178 24,014 26,236 27,236 26,743 25,466 22,492 20,183 19	YTOWN SURFACE AREA (ACRES)	2,964	2,964	2,964	2,964	2,964	2,964	2,964	3,167	3,250	3,250	3,250	3,250	3 220	
19,868 20,090 20,304 21,095 22,178 24,014 26,236 27,236 26,743 25,466 22,492 20,183	LEVATION (FT)	982	984	986	993	1,003	1,019	1,038	1,046	1,042	1,031	1,006	985	976	
	SURFACE AREA (ACRES)	19,868	20,090	20,304	21,095	22,178	24,014	26,236	27,236	26,743	25,466	22,492	20,183	19,224	

UNITED STATES BUREAU OF RECLAMATION

							T SEPTITIONAL	COR (Į,		1,559	449		138	231 106	3)	30 630	358 4,768	264 1,939	89 1,283	95 1,210	87 967	70 826	95 2,076	4,000		13,553	149	149 3,384	-	OPEN	315 2	0	250 2.		5	85		132		2,254	9,022	1,200	2,998	Ц	100000
							1 AUG	1 003		ľ	1	-		101		356		100	029	331	185	8	145		(208)	L	7,170	15	219	219	-	OPE	272	25	282	18	0			102		2,256	9,171	1,210	3,250	Ш	1000
							JUL	1176	0/1	047	2,425	2,159	266	100	489	431	158	100	809	SEE	246	82	232	49	(341)	4,000	7,789	17,134	289	289	1,666	OPEN	282	0	282	18	(0)	180	317	201	42	2,272	10,059	1,210	3,250	978	007
MATION	LONG-TERM OPERATIONS CRITERIA AND PLAN						NOC	1 283	202,1	0.00	2,931	2,600	732	96	201	200	139	100	571	207	238	80	193	33	(227)	4,000	5,909	13,257	396	366	3,465	OPEN	119	0	178	15	(0)	148	251	387	95	2,282	10,655	1,210	3,250	1,002	0,,00
UNITED STATES BUREAU OF RECLAMATION	CRITERIA						MAY	I.	1	4	4	2	877			2		30	519	179	184	75	193	40	(20)	4	7,056	13,533	467	467	2,810	OP	123	0	184		0	138	187	599	246	2,292	11,312	1,210	3,250		1
UREAU O	SATIONS (APH I	4 248	1	ľ	4	2	8			(317)	(253)	D	485	75	33	80	58	42	117	4,000	8,683	11,928	452	452	7	CLOSED	7.0	0	194		(0)	117	199	761	327	2,285	10,858	1,207	3,167	-	
STATES B	ERM OPEF						T MAH	T	1	4	4	2	569	5		(328)	(211)	33	200	61	34	105	-	79	684	4,000	8,833	15,924	806	277	8	CLO	140	0	140	8	0	106	194	830	471	2,270	9,978	1,199	2,964	-	
UNITED	LONG-T						FEB	4 053	4		_	2	358	3		(294)	(135)	30	180	56	31	150	0	92	٣	4	10,364	19,339	941	250	92	CLOSED	156	0	156	8	0	43	178	924	536	2,259	9,344	1,199	2,964	↓_	
							I JAN	1	1	4	_		223	3		(199)	(55)	20	200	61	61	120	0	66		4	7,508	Г	365	277	(2,723)	OPEN	431	0	246	7	0	21	157	L		2.250	8,838	1,199	L	L	1
			_	_			T DEC	1		4	_	1,678		1 23		(38)	(5)	30	231	122	61		L	100	L	4	5.758	r	1	215	(2,157)	-	379	0	246		202	=	181	L		2	_		_	L	
			10/14	08:49			VON			4		1,637	162	1 60	(72)	2	15	09	238	L	09			75		4	L	r	208	208	(20)	OPEN	-	48	193	80	0	12	132			2	L	L	<u> </u>	$oxed{}$	
		T	DATE	_	<u> a</u>	_		ļ		4	4	1,639	177	100	(13)	59	21	100	307	121	62	110	58	85	140	4,000	5 200	10,231	215	215	1,315	OPEN	167	48	181		0	43	216	L		2	-	╄	┡	-	
	N CW	75	75	8	100		INITIAL	1000	1,100	202	2,000	1,700	200																											200	1001	2,264	9,620	1,199	2.964	955	
Study Year Hydrologic Type (W-A-D-C-E)	Starting Storage Level (HI-HM-LM-LO)	Oct-Feb (%) Project Deliveries (100-75-50-25-0)	Mar-Sep (%) Project Deliveries (100-75-50-25-0)	Oct-Dec (%) Water Bights Deliveries (100-75-50-25-0)	(%) Water Bioble Deliveres (100-75-50-25-0)	און ביייים בייים ביייים בייים ביייים ביייים ביייים ביייים ביייים בייים ביים בייים בייי	ATL VALUES IN TAR	ערר גערסרס ווא ועו	IRINITY EOM STORAGE	WHISKEYTOWN EOM STORAGE	SHASTA EOM STORAGE	OROVILLE EOM STORAGE	FOLSOM EOM STORAGE	WHISKEYTOWN STORAGE WITHDRAWAL	SHASTA STORAGE WITHDRAWAL	OROVILLE STORAGE WITHDRAWAL	FOLSOM STORAGE WITHDRAWAL	SPRING CREEK POWERPLANT	KESWICK BELEASE	OROVILLE RELEASE	NIMBLIS RELEASE	VIENTERIOW	FATHER RIVER DEMANDS	YUBA BIVER ACCRETIONS	SACRAMENTO RIVER ACCRETIONS	MILKINS SLOUGH TARGET (CFS)	MI KINS SLOUGH ACTUAL (CFS)	(FREEPORT FLOW (CFS)	ACTUAL DELTA OUTFLOW	REQUIRED DELTA OUTFLOW	ANTIOCH FLOW	CROSS CHANNEL GATES	SWP BANKS PUMPING	CVP BANKS PUMPING	TRACY PUMPING	CONTRA COSTA PUMPING	CVP COA BALANCE	CVP DOS AMIGOS	SWP DOS AMIGOS	CVP SAN LUIS EOM STORAGE	SWP SAN LUIS EOM STORAGE	ITBINITY FOM ELEVATION (FT)	TRINITY SURFACE AREA (ACRES)	WHISKEYTOWN FOM ELEVATION (FT)	WHISKEYTOWN SURFACE ABEA (ACRES)	SHASTA EOM ELEVATION (FT)	/

Study Year Hydrologic Type (W-A-D-C-E)	0				_	UNITED STATES BUREAU OF RECLAMATION	rates Bu	REAU OF	RECLAM/	TION				
Starting Storage Level (HI-HM-LM-LO)	רס				_	LONG-TERM OPERATIONS CRITERIA AND PLAN	M OPER	TIONS C	RITERIA A	NO PLAN				
Oct-Feb (%) Project Delivenes (100-75-50-25-0)	20													
Mar-Sep (%) Project Delivenes (100-75-50-25-0)	90	DATE:	10/16											
Oct-Dec (%) Water Rights Deliveries (100-75-50-25-0)	75	TIME:	12:24											
Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	100	BYPASS												
Alternative Extension	В						DAN	1 dax	T OXIA	T JALL	1 1111	T STITE	Caro	INTAL
ALL VALUES IN TAF	INFIIAL	170	200	DEC.	NAU.	000	CAM	C COX	C C	100	200	000	200	
TRINITY EOM STORAGE	200	604	585	604	637	(2)	833	989	1.0/2	934	3	848	170	
WHISKEYTOWN EOM STORAGE	206	506	506	506	506	506	506	230	240	240	240	240	210	
SHASTA EOM STORAGE	1,700	1,690	1,732	1,832	2,042	2,401	2,862	2,913	2,820	2,660	2,342	2,050	006.1	
OROVILLE EOM STORAGE	1,200	1,199	1,259	1,360	1,560	1,855	2,182	2,512	2,508	2,301	1,862	1,441	1,377	
FOLSOM EOM STORAGE	200	178	164	170	226	362	574	768	825	680	484	374	368	
WHISKEYTOWN STORAGE WITHDRAWAL		80	30	3	3	3	2	0	20	26	86	-	28	320
SHASTA STORAGE WITHDRAWAL		7	(42)	(66)	(210)	(360)	(460)	(57)	98	149	305	279	141	(264)
OROVILLE STORAGE WITHDRAWAL		Ξ	(09)	(66)	(199)	(594)	(328)	(332)	0	198	431	414	8	(208)
FOI SOM STORAGE WITHDRAWAL		20	15	(2)	(55)	(136)	(211)	(196)	(61)	139	189	104	4	(195)
SPRING CREEK POWERPLANT		08	30	9	20	30	30	0	30	9	86	0	26	406
KESWICK BEI FASE		307	238	231	200	180	200	443	516	479	612	479	358	4,243
OBOVILLE RELEASE		61	9	61	61	26	61	09	177	202	339	389	93	1,625
NIMBLIS BELFASE		62	09	61	61	31	34	89	184	238	277	184	8	1,371
DERIVATIS FLOW		110	105	115	120	150	105	90	7.5	80	82	06	95	1,210
FEATHER RIVER DEMANDS		28	0	0	0	0	-	28	193	193	232	145	87	296
VIIBA RIVER ACCRETIONS		85	75	100	66	92	79	42	40	33	49	62	70	826
SACRAMENTO RIVER ACCRETIONS		140	190	320	549	807	684	117	(20)	(22)	(341)	(208)	95	2,076
WILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4.000	4,000	
WILKINS SLOUGH ACTUAL (CFS)		5,367	4,984	5,787	7,516	10,371	8,843	8,135	7,264	4,701	4,943	4,333	6,014	
FREEPORT FLOW (CFS)		9,270	9,203	10,954	14,178	19,339	15,924	11,915	13,458	11,684	14,428	13,729	10,680	
ACTUAL DELTA OUTFLOW		215	208	215	365	939	805	452	467	366	588	219	149	4,689
REQUIRED DELTA OUTFLOW		215	208	215	277	250	277	452	467	366	289	219	149	3,384
ANTIOCH FLOW		1,853	564	(1,606)	ㅋ	_	0	17	2,852	4,346	3,181	2,315	1,610	12,409
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	-		CLOSED	CLOSED	OPEN	OPEN	OPEN	OPEN	OPEN	4
SWP BANKS PUMPING		108	141	319	431	219	143	22	121	11/	282	330	14/	2,413
CVP BANKS PUMPING		32	32	0	0	0	0	0	٥	0 8	0 8	0 0	0 0	40 0
TRACY PUMPING		197	508	246	246	S	140	12	184	3	22	120	000	2,107
CONTRA COSTA PUMPING		=	8	7	7	80	9	8	20	=	2	13		
CVP COA BALANCE		0	0	70	О	0	٥	0	9	<u>(</u>)	5	(0)	ח	1
CVP DOS AMIGOS		53	14	7	14	SJ.	S.	79	8	107	123	8 8	À.	7 227
SWP DOS AMIGOS		157	138	185	158	165	180	184	1/8	539	8/2	231	144	6,201
CVP SAN LUIS EOM STORAGE	200	332	515	735	946	976	976	976	829	611	329	11/	18/	
SWP SAN LUIS EOM STORAGE	100	43	41	173	437	483	436	292	220	81	89	152	146	
TRINITY EOM ELEVATION (FT)	2,218	2,205	2,202	2,205	2,209	2,221	2,235	2,253	2,261	2,253	2,243	2,237	2,234	
TRINITY SURFACE AREA (ACRES)	7,162	6,514	6,375	6,511	6.742	7,314	8,014	8,969	9,457	8,999	8,431	8,110	7,978	
WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,199	1,199	1,199	1,199	1,199	1,199	1,207	1,210	1,210	1,210	1,210	1,200	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,964	2,964	2,964	2,964	2,964	2,964	3,167	3,250	3,250	3,250	3,250	2,998	
SHASTA EOM ELEVATION (FT)	937	937	939	945	957	977	666	1,002	266	980	974	958	949	
SHASTA SURFACE AREA (ACRES)	15,384	15,327	15,574	16,155	17,355	19,337	21,779	22,049	21,561	20,719	19,014	17,403	16,550	

UNITED STATES BUREAU OF RECLAMATION

DATE: 10/14 TIME: 12:05 BYPASS 1,805 1,745 1,744 1,812 1,862 1,805 1,773 1,765 1,774 1,812 1,862 1,805 1,705 1,74 1,812 1,862 3,103 3,061 3,061 3,181 3,381 3,701 2,558 2,490 2,433 2,526 2,671 2,888 530 470 421 380 455 597 530 470 421 380 455 597 530 470 421 380 455 597 139 69 61 (144) (219) (20) 161 149 161 79 60 0 161 149 161 79 56 61 161 149 161 79 56 48 161 149 161 79 56 61	APH MAY 1,970 1,976 230 240 3,749 3,568 3,044 2,933 768 816 (158) 106 (158) 106 (173) (53) 0 51 395 573 33 123 33 123 80 60 80 60 80 60	JUN JUL 1,808 1,634 240 240 2,713 2,896 671 425 671 425 119 761 211 405 211 405 139 239 120 160 571 830 148 263 277 208 170 710 170 710 710 170 710 17	AUG 1,476 240 2,292 2,292 1,914 1,914 1,914 1,914 1,914 1,914 1,914 1,914 1,914 1,914 1,914 1,914 1,914 1,914 1,914 1,914 1,916 1,916 1,917 1,91	SEP 1,419 1,419 210 2,135 1,578 230 62 650 650 650 650 650 650 650 650 650 650	01AL 676 991 1.087 5.161 1.406 9303 9303 1.406
NATA NOT		D 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Z - 1 0/1 - 1		01AL 676 344 670 1,406 1,406 1,406
National Property 100 BYPASS 100 BYPASS 100 BYPASS 100 BYPASS 100 BYPASS 100 150		R 61 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N F		991 1.087 1.406 1.406 1.406
100 HME: 12:U3 HME	2 2 3	Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 + 01 +		01AL 676 344 1,406 1,406 1,406
100 BYPASS 1,773 1,765 1,774 1,812 1,862 1,504 1,205 1,774 1,165 1,774 1,812 1,862 1,006 1,700 2,066 1,000 2,556 2,430 2,433 3,561 3,181 3,381 3,701 2,886 2,700 2,556 2,440 2,433 3,566 4,556 2,671 2,886 2,700 2,556 2,440 2,433 3,566 4,556 2,671 2,886 2,700 2,556 2,440 2,433 3,566 4,560 2,000 3,900 3,000	2 2 3	R	4 - 2 -		01AL 676 344 670 1,406 990
NITTAL NOT N	2 3 3	R. 1. 2. 2. 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2	4- 01-		991 1,087 344 670 1,1406 1,406 1,406
NITIAL OCT NOW UEC 1774 1812 1862 1770 1862 1770 1862 1770 1862 1770 1862 1770 1862 1770 1862 1770 1862 1862 1770 1862 1862 1770 1862 1	8 2 3	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	- 01-	1,419 210 2135 1,578 1,578 1,578 143 60 60 60 89 89 89 89 87 87	1,087 1,1087 1,1087 1,1060 1,406 1,406
1.500 18.05 1.773 1.65 1.60 1.00 2.06 1.501 2.06 18.05 1.773 1.615 1.615 1.701 2.06 1.502 2.700 2.556 2.490 2.433 2.556 2.671 2.888 E.WITHDRAWAL 2.700 2.556 2.490 2.433 2.556 2.671 2.888 E.WITHDRAWAL 3.90 3.061 3.061 3.061 3.001 DRAWAL 1.00 1.00 1.00 1.00 0.0 0.0 DRAWAL 1.00 1.00 1.00 0.0 0.0 0.0 DS 2.00 2.00 2.00 2.00 3.00 3.00 DS 2.00 2.00 3.00 3.00 3.00 3.00 DS 2.00 2.00 3.00 3.00 3.00 3.00 DS 2.00 3.00 3.00 3.00 3.00 3.00 DS 2.00 3.00 3.00 3.00 3.00 3.00 DS 3.00 3.00 3.00 DS 3.00 3.00 3.00	6 2	9 9 9 4 4 9 1 8 9 9 9 9	N =	2:135 2:135 1,578 230 62 147 331 60 60 60 89 89 89 89 87 87	676 670 670 670 670 670 670 670 670 670
DRAGE 180 150 </td <td>5 3</td> <td>8 9 4 1 4 4 5 2 1 8 5 5 5 5</td> <td>N F</td> <td>2,135 1,578 230 230 62 147 331 43 60 60 60 60 89 89 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80</td> <td>676 991 1,087 344 670 990 1,406 970</td>	5 3	8 9 4 1 4 4 5 2 1 8 5 5 5 5	N F	2,135 1,578 230 230 62 147 331 43 60 60 60 60 89 89 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	676 991 1,087 344 670 990 1,406 970
Secondary	2	7.4 1 4 4 2 1 1 8 2 2 2		1,578 230 62 62 147 331 43 60 89 60 89 89 89 89 89 50 89	676 991 1,087 344 670 1,920 1,406 900
E CONTRIBUTORAWAL E CONTRIBLE CONTRI		2 2 2 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		230 62 147 147 331 60 60 60 60 60 60 60 60 60 60 60 60 60	676 991 1,087 344 670 5,161 1,406 900
AWAL 470 421 380 439 171 AWAL 101 64 12 0		1 4 4 4 2 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		43 43 43 60 60 87 89 89 87 87 87	676 991 1,087 344 670 5,161 1,920 900 900
AWAL 101 64 12 0<		4 4 2 1 - 8 2 2 3		331 43 43 60 60 87 89 87 87 87	991 1,087 344 344 1,920 900 900
139 69 61 (120) (200) (210) (210) (210		8 2 2 8		331 89 89 87 87 89 87 87 87 87 87 87 87 87 87 87 87 87 87	344 344 670 5,161 1,406 900
139 69 61 627 (144) (219) 100 67 60 10 0 0 0 333 332 270 200 180 200 161 149 161 79 56 61 161 149 161 79 56 61 161 149 161 79 56 61 161 149 161 79 56 61 108 104 108 108 31 34 108 104 108 108 31 34 108 104 108 109 31 34 25		2 8 8 1 2		43 60 387 334 89 60 60 87 87	344 670 1,920 1,406 900
67 60 52 42 (79) (171) 100 60 50 200 180 200 161 161 149 161 79 56 61 168 104 108 108 31 34 169 108 101 100 200 108 104 108 108 31 34 108 104 108 31 34 34 108 104 108 31 34 34 109 40 0 0 0 10 10 400 4,000		8 8 8 8		89 89 87 87 87 87 87	5,161 1,920 1,406 900
100		6 0 0		387 334 89 60 60 87 56	5,161 1,920 1,406 900
161 149 161 79 56 61 161 149 161 79 56 61 162 163 179 56 61 163 164 108 31 34 164 108 108 31 34 165 20 0 0 0 10 165 20 0 0 0 11 160 30 40 65 56 56 160 31 34 34 170 30 4.000 4.000 4.000 4.000 170 4.000 4.000 4.000 4.000 4.000 170 4.000 4.000 4.000 4.000 4.000 170 5.858 6.475 6.216 7.998 170 215 208 215 277 250 277 170 215 208 215 277 250 277 170 215 2289 215 278 215 170 216 2289 215 216 129 170 216 2289 246 106 129 170 216 238 246 246 106 129 170 209 209 170 209 209 209 170 209 209 170 209 209 209 170 209 209 209 170 209 209 209 170 209 209 170 209 209 170 209 209 170 209 209 170 209 209 170 209 209 170 209 209 170 209 209 170 209 209 170 209 209 170 209 209 170 209 209 170 209 209 170 209 209 170 209 209 170 209 209 200 200 200 200 200 20				334 89 60 67 87 31	1,406
161 149 161 179 161 181		2 2		89 60 87 31 56	1.406
AANDS				87 31 56	200
DEMANDS 70 80 90 110 <td></td> <td></td> <td></td> <td>31</td> <td>200</td>				31	200
SEMANDS SS 0<	Ц			31	Š
40 30 40 65 54 65 65 67 67 67 67 4 0.00 4 0.00 4 0.00 4 0.00 4 0.00 4 0.00 4 0.00 4 0.00 4 0.00 4 0.00 6 566 6 0.50 5,886 6,475 6,216 7,998 12,306 11,676 12,176 12,863 10,948 13,794 12,306 11,676 12,176 12,863 10,948 13,794 153 (822) (2,283) (3,126) 10,948 13,794 153 (822) (2,283) (3,126) 10,948 13,794 154 194 369 427 106 129 155 11 8 7 7 8 8 156 238 246 246 106 129 157 191 143 193 193 193 193 193 193 158 57 28 57 28 29 159 150 150 150 151 151 152 153 153 153 153 151 152 153 153 153 153 153 151 151 152 153 153 153 153 151 151 152 153 153 153 153 153 151 151 152 153 153 153 153 153 151 151 152 153 153 153 153 153 151 152 153 153 153 153 153 153 152 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 154 155 155 155 155 155 155	1			999	412
4,000 4,00	(3) (192)	(243) (320)			787
4,000		4,000	000'+	4,000	
6,566	-	5,919 8,832		6.403	
12,306 11,076 215 277 535 692 215 208 215 277 250 277 153 (822) (2.289) (3.126) 18 7 154 (822) (2.289) (3.126) 18 7 181 194 369 427 106 129 246 236 246 246 106 129 11 8 7 7 8 8 11 8 7 7 8 8 12 85 57 259 193 259 13 143 153 169 191 209 141 143 153 169 191 209 154 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155	F	11,509 17,070	0 17,895	14,563	
215 208 215 277 250 277 100	268 246	232 240		149	3,472
153 (2.28) (2.289) (3.126) 18 7 7 18 8 8 8 8 18 18 18 18 18 18 18 18 18 1	268 246	232 240	0 195	149	2.772
CATES CATE	2 1,810	2,643 1,065	(331)	(565)	1.435)
181 194 359 427 106 56 72 0 0 0 54 236 246 246 106 11 8 7 7 8 11 8 7 7 8 0 0 0 84 136 0 0 0 84 136 0 0 0 84 136 0 181 181 183 183 183 183 181 181 183 183 183 183 181 181 183 183 183 183 181 181 183 183 183 183 181 181 183 183 183 183 181 181 183 183 183 183 181 181 183 183 183 181 181 183 183 183 181 181 183 183 183 181 181 183 183 183 181 181 183 183 183 181 181 183 183 181 181 183 183 181 181 183 183 181 181 183 183 181 181 183 183 181 181 183 183 181 181 183 181 183 183 181 183 183 181 183 183 181 183 183 181 183 183 181 183 183 181 183 183 181 183 183 181 183 183 183 183 183 183 184 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185	CLOSED OPEN	OPEN OPEN	OPEN	OPEN	
10	127 123	119 232		340	2,600
2 2 6 238 246 246 106 106 11 11 8 7 7 8 8 10 101 11 8 7 7 8 8 10 101 11 11 11 11 11 11 11 11 11 11 11	0	0		0	323
11 8 7 7 8 1 1 1 1 1 1 1 1 1	110 184	2	2	220	2,437
0 (0) 84 135 0 85 57 28 57 113 181 143 193 169 191	11 12			4	250
85 57 28 57 113 181 143 193 169 191 181 143 193 169 191	(0) (0)			(0)	1 200
181 143 193 169 191	117 148	159 15		CS	202,1
101	213 203	E)	2	1/1	600.7
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	600 413	. 176	15 36	8	
200 210 125 507 757 663	469 371			198	
See 2 200 2 201 2	2,338 2,339	2,326 2,312		2,294	
2,333 2,320 6,020 2,020 43 207 43 208 1	14,356 14,388	13,504 12,581		11,415	
13,49Z 13,523 13,517 13,020 1 185	1.207 1.210	1,210 1,210	1,210	1,200	
501,1 501,1 671,1 871,1 1981,1	3.167 3.250	3,250 3,250	3	2,998	
EA (ACRES) 2,964 2,736 2,439 2,439 2,533 2,539	1,038 1,031	1,021		963	
1,015 1,010 1,008 1,008 1,014 2,125	26 244 25 300	24,263 21,751	51 18,740	17,875	

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

Starting Storage Level (HI-MI-LM-LO) Starting Storage Level (HI-MI-LM-LO) Oct-Feb (%) Project Delivenes (100-75-50-25-0) Mar-Sep (%) Project Delivenes (100-75-50-25-0) Mar-Sep (%) Project Delivenes (100-75-50-25-0)	MI				_	ONG. TEP	M OPER	TIONS C	RITERIA A	LONG-TERM OPERATIONS CRITERIA AND PLAN				
Feb (%) Project Delivenes (100-75-50-25-0) - Sep (%) Project Delivenes (100-75-50-25-0) - Sep (%) Project Delivenes (100-75-50-25-0)						200								
-Sep (%) Project Delivenes (100-75-50-25-0)	100													
Dec (92) Water Brotte Deliveries (100-75-50-25-0)	80	DATE:	10/16											
יום בר (אי) אימופו ויוא ויוא ויוא ויוא ויוא ויוא ויוא ו	100	TIME:	12:28											
an-Sep (%) Water Rights Deliveries (100-75-50-25-0)	75	BYPASS												
Alternative Extension	83											1 20118	0000	CIXIO
ALL VALUES IN TAF	INITIAL	120	NOV	DEC	JAN	rrB	MAH	APH	MAY	NOC .	300	YOU.	367	
TRINITY EOM STORAGE	1,500	1,386	1,354	1,325	1,335	1,372	1,423	1,330	/90'1	1,400	1,388	171.	200,0	
WHISKEYTOWN EOM STORAGE	206	180	150	150	160	170	506	530	240	240	240	240	210	
SHASTA EOM STORAGE	2,500	2,432	2,401	2,460	2,580	2,780	3,100	3,162	2,985	2,706	2,184	1,901	1.778	
OBOVILLE FOM STORAGE	2,200	2,058	1,990	1,933	1,967	2,112	2,329	2,499	2,391	2,184	1,793	1,459	1,298	
FOI SOM FOM STORAGE	400	346	315	266	283	329	501	647	999	583	431	376	331	
MHISKEYTOWN STORAGE WITHINGWAI		121	64	32	o	0	0	0	25	119	-	162	92	616
SHASTA STORAGE WITHDRAWAI		64	31	(65)	(120)	(200)	(320)	(89)	169	268	909	271	115	658
STASTA STORAGE WITHDRAWAI		139	69	61	(33)	(144)	(218)	(172)	104	199	383	327	157	872
COLONICE STORAGE WITHOUTSWALL		52	30	52	(17)	(75)	(142)	(147)	(23)	8/	145	20	45	5
COSOM STOLET BOWERD AND		120	03	330	0	О	О	О	30	120	0	160	106	610
STRING OFFER STRING		384	321	231	200	180	200	382	539	628	902	611	385	4,768
ACOVILLE DELEASE		161	149	161	137	26	61	09	121	136	241	262	160	1,705
WILLE MELENSE		6	74	108	49	31	34	09	154	149	184	35	89	1,116
NIMBUS HELEASE		10/	NO.	8	110	011	1001	08	09	20	40	SS	60	900
INALIS FLOW		2,00	0	0	0	0	-	æ	193	193	232	145	87	296
FEATHER RIVER DEMAINDS	-	9	30	40	65	56	48	22	18	17	20	25	31	412
SACRAMENTO RIVER ACCRETIONS		95	110	210	405	341	553	(3)	(192)	(243)	(320)		82	787
WILKINS SLOUGH TARGET (CFS)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
WILKINS SLOUGH ACTUAL (CFS)		6,426	5,878	5,215	6,500	6,247	8,030	6,237	6,643	7,832	7,835	7,292	6,672	
FREEDORY FLOW (CES)		11,916	11,004	11,533	12,863	10,948	13,794	8,381	10,118	11,250	13,192	12,037	11,594	
ACTUAL DELTA OUTFLOW		215	208	215	277	535	692	268	246	232	240	195	149	3,472
REQUIRED DELTA OUTFLOW		215	208	215	277	250	277	268	246	232	240		149	2,772
ANTIOCH FLOW		372	(445)	(1,930)	(3, 126)		8	3	1,847	2,788	3,236	-	1,098	6,817
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	=	CLOSED	CLOSED	CLOSED	OPEN	OPEN	OPEN	OPEN	OPEN	
SWP BANKS PUMPING		181	194	329	427	106	130	114	122	107	210	210	167	2,297
CVP BANKS PUMPING		32	32	0	0	0	0	0	٥	0	0	\downarrow	0 0	\$ 8
RACY PUMPING		246	238	246	246	106	130	126	184	278	150		250	2,13U
CONTRA COSTA PUMPING		11	8	7	7	8	9	8	o l	=	13	13	2	
JVP COA BALANCE		0	(0)	45	78	0	0	0	3	0 [0	9	2 5	000
CVP DOS AMIGOS		85	27	28	57	113	8	79	3	101	221	32	'n	202
SWP DOS AMIGOS		155	121	168	146	165	180	184		230	294	737	144	2,109
SVP SAN LUIS EOM STORAGE	200	294	446	638	802	740	743	678	292	46/	177.	64	13/	
SWP SAN LUIS EOM STORAGE	200	219	286	445	718	651	591	206	441	302	201	165	1/8	
RINITY EOM ELEVATION (FT)	2,301	2,291	2,288	2,286	2,286	2,290	2,294	2,303	2,307	2,292	2,291	2,271	2,263	
FRINITY SURFACE AREA (ACRES)	11,857	11,231	11,056	10,897	10,950	11,158	11,435	12,022	12,221	11,312	11,246		9,533	
WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,189	1,178	1,178	1,182	1,185	1,199	1,207	1,210	1,210	1,210	\downarrow	1,200	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,736	2,459	2,459	2,553	2,646	2,964	3,167	3,250	3,250	3,250		2,998	
SHASTA EOM ELEVATION (FT)	985	978	977	980	986	995	1,010	1,013	1,005	992	396	4	342	
SHASTA SURFACE AREA (ACRES)	19,868	19,503	19,333	19,654	20,297	21,352	23,015	23,334	22,420	20,962	18,148	16,553	15,840	

UNITED STATES BUREAU OF RECLAMATION LONG-ȚERM OPERATIONS CRITERIA AND PLAN

	TOTAL						416	246	200	(15)	410	4,156	1,371	1,058	900	296	412	787				3,488	2,772	16,208		1.918	32	1,582	=		463	1,819								
	SEP)[850	210	1,693	1,135	193	132	79	159	12	130	389	162	8	90	87	31	SS	4,000	6,858	11,194	149	149	1,322	OPEN	169	0	224	10	0	8	117	162	96	2,242	8,372	1,200	2,998	937	15,339
	AUG	1,016	240	1,779	1,298	202	2	340	503	11	0	520	144	153	20	145	52	(225)	4,000	6,114	9,630	195	195	4,298	OPEN	92	0	8	13	(0)	52	189	09	41	2,256	9,131	1,210	3,250	942	15,849
	JOC	1,072	240	2,131	1,513	322		426	228	164	0	929	116	204	40	232	8	(320)	4,000	6,927	10,183	240	240	4.920	OPEN	85	0	9	13	(0)	67	248	195	152	2,261	9,458	1,210	3,250	362	17,854
AND PLAN	NOC	1,083	240	2,573	1,778	492	29	228	184	29	09	528	121	130	20	193	17	(243)	4,000	6,521	9,010	232	232	4,042	OPEN	92	0	8	-	(0)	82	188	403	330	2,262	9,521	1,210	3,250	985	20.256
F RECLAM	I MAY		Ц	_		"	25									193		(192)	4,000	5,464	8			_	g	12		٩	6	(0)			569			10,130	1,210	3,250	Н	21,517
UNITED STATES BUREAU OF RECLAMATION LONG-ȚERM OPERATIONS CRITERIA AND PLAN	Ц			_	2	9	0			٥						1 58	3 22	3 (3)	4,000		8		2		D CLOSED	-		٩		0			9 709		3 2,269	9,916	1,207	3,167	Н	3 21,964
D STATES TERM OPE	Н	3 1,043		_	_	9 391	0			5		0 215	56 61		100	0	56 48	1 553	0 4,000		14.		772 0		2	13		130		0	43 26	9 150	2 789		3 2,258	0 9,289	1,199	2	8 993	4 21,119
LONG	JAN FEB	955 993	160 170		1,754	174 249	0				0	200 180	101		110 11	0	65 5	405 341	90 4.000		10,948		77 250	8	CLO	10		246 106			21 4	123 139	732 752	531 490	19 2,253	96 8 990	1,185	L	968 978	19,494
	EC JA		150 16		1,538 1,609	156 1	32	(1)			30	231 20	101	, 29	90	0	40	210 4(4,000 4,000		9,819 12,279	215 277	215 277		N OPEN	224 391		246 24	7	(1)	11	143 12	530 73	271 5	2,248 2,249	8,708 8,766	1,178 1,182	-	L	41 18,407
10/16	NOV D	974 5	150		1,536 1,5		64		41		60	248 2	121	09	80	0	30	110	4,000 4,0	4,667 5.2	9.060	208	208		OPEN OPEN	166		150	80	0	21	98	320	192 2	2.251 2.2	-	1	1	L	17,409 17,741
DATE: 16 TIME: 15 BYPASS	OCT	900	180	2,010 2	1,577	177	101	(12)	121	21	100	288	143	61	70	58	40	95	4,000	4,891 4	9,548 9,	215	215	Н	OPEN OP	163	0	150	11	٥	43	130	216	128	2,254 2	_	1,189	╀	L	17,173 17,
100 LM 155 BYR	Ļ	1,100	206		1,700 1	200													4	4	8				jo			_				_	200	100	2,264	L	-	<u> </u>	-	17,119 17
																			_										_			-								
Study Year Hydrologic Type (W.A.D.C.E.) Starting Storage Level (HI-HM-LM-LO) Oct-Eeb (%) Project Delivenes (100-75-50-25-0) Mar-Sep (%) Project Delivenes (100-75-50-25-0) Cct-Dec (%) Water Rights Delivenes (100-75-50-25-0) Lan-Sep (%) Water Rights Delivenes (100-75-50-25-0) Alternative Fatersion	ALL VALUES IN TAF	TRINITY EOM STORAGE	WHISKEYTOWN EOM STORAGE	SHASTA EOM STORAGE	OROVILLE EOM STORAGE	FOLSOM EOM STORAGE	WHISKEYTOWN STORAGE WITHDRAWAL	SHASTA STORAGE WITHDRAWAL	OROVILLE STORAGE WITHDRAWAL	FOLSOM STORAGE WITHDRAWAL	SPHING CREEK POWERPLANT	KESWICK RELEASE	OROVILLE RELEASE	NIMBUS RELEASE	MERNALIS FLOW	FEATHER RIVER DEMANDS	YUBA RIVER ACCRETIONS	SACRAMENTO RIVER ACCRETIONS	WILKINS SLOUGH TARGET (CFS)	WILKINS SLOUGH ACTUAL (CFS)	FREEPORT FLOW (CFS)	ACTUAL DELTA OUTFLOW	REQUIRED DELTA OUTFLOW	ANTIOCH FLOW	CROSS CHANNEL GATES	SWP BANKS PUMPING	CVP BANKS PUMPING	TRACY PUMPING	CONTRA COSTA PUMPING	CVP COA BALANCE	CVP DOS AMIGOS	SWP DOS AMIGOS	CVP SAN LUIS EOM STORAGE	SWP SAN LUIS EOM STORAGE	MRIMITY EOM ELEVATION (F.1)	TRINITY SURFACE AREA (ACRES)	WHISKEYTOWN FOM ELEVATION (FT)	WHISKEYTOWN SURFACE AREA (ACRES)	SHASTA EOM ELEVATION (FT)	SHASTA SURFACE AREA (ACRES)

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

Study Year Hydrologic Type (W-A-D-C-E)	၁				. ر	IS OF INC	UNITED STATES BOARCAG OF		יייל ביייל ביי ביייל ביייל בי					
Starting Storage Level (HI-HM-LM-LO)	PO I				_	ONG-TER	M OPERA	LONG-TERM OPERATIONS CHILERIA AND PLAN	ILEMIAA	ND-FCAN				
Oct-Feb (%) Project Delivenes (100-75-50-25-0)	50													
Mar-Sep (%) Project Delivenes (100-75-50-25-0)	0	DATE:	10/14											
Oct-Dec (%) Water Rights Delivenes (100-75-50-25-0)	75	TIME:	13:18											
Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	75	BYPASS												
Alternative Extension	В													
ALL VALUES IN TAF	INITIAL	100	NOV	DEC	JAN	FEB	MAH	APH	MAY	NON	305	AUG	SEP	IOI AIL
THINITY EOM STORAGE	700	909	585	586	595	633	684	792	053	92/	/16	632	/09	
WHISKEYTOWN EOM STORAGE	506	180	120	150	160	170	506	230	240	240	240	240	210	
SHASTA EOM STORAGE	1,700	1,767	1,824	1,853	1,973	2,173	2,478	2,700	2,693	2,536	2,178	1,885	1,720	
OROVILLE FOM STORAGE	1,200	1,157	1,177	1,218	1,328	1,473	1,689	1,851	1,803	1,670	1,455	1,283	1,177	
FOI SOM FOM STORAGE	200	178	163	160	178	254	396	509	542	426	263	508	195	
MHEKEYTOWN STORAGE WITHDHAWAL		101	54	2	0	0	0	0	25	29	31	32	32	306
CHASTA STORAGE WITHORAWAI		(69)	(57)	(53)	(120)	(200)	(302)	(227)	(0)	146	343	281	157	(80)
OBOWILL STORAGE WITHORAWAI		42	(20)	(39)	(109)	(144)	(218)	(163)	44	126	208	167	102	(2)
FOI SOM STORAGE WITHDRAWAI		20	15	2	(17)	(97)	(142)	(114)	(37)	111	157	29	12	(16)
CEDIMIC CHEEK DOWNERPLANT		100	20	o	О	o	О	0	88	30	30	30	30	300
KEGMICK DELEASE		231	223	231	200	180	215	223	370	416	573	491	367	3,720
OBOWI E BELEASE		64	09	61	61	28	61	69	61	63	99	102	105	831
MINISTER DELEGATE		61	09	62	49	31	34	93	140	182	197	35	09	1,061
WINDO RELEASE		207	80	05	110	011	100	80	909	20	40	250	09	900
CCATUCO DIVED DEMANDS		5.8	c	c	0	0	-	88	193	193	232	145	87	196
KILDA DIVINO A CODETIONS		40	3	ΨV	65	95	48	22	18	17	20	52	31	412
CACBAMENTO BIVED ACCRETIONS		95	110	210	405	341	553	(6)	(192)	(243)	(320)	(522)	99	787
MACHINE EL OLION TABLET (CES)		4 000	4 000	4 000	4 000	4 000	4.000	4.000	4,000	4,000	4,000	4,000	4,000	
WILKING STOLIGH ACTUAL (CFS)		4 124	4 324	5 253	6.519	6.271	8,298	3,943	4,488	5.008	6,439	5,952	6,622	
EBEEDATE FOW / CES		7 329	7,616	9 168	11.640	10.948	14,037	6,421	6,166	7.027	8,394	7,484	9.880	
ACTILAL DELTA CLITELOW		216	208	215	277	535	707	268	246	232	240	195	149	3,488
RECILIBED DELTA CHITELOW		215	208	215	277	550	277	268	246	232	240	195	149	2,772
ANTIOCH ELOW		2 951	1 452	(909)	(2.441)	182	33	1,367	4,060	5,153	5,922	5,500	2,058	25,467
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	÷	CLOSED	CLOSED	CLOSED	OPEN	OPEN	OPEN	OPEN	OPEN	
SWP BANKS PHIMPING		84	105	185	352	106	130	123	63	34	35	33	112	1,379
CVP BANKS PUMPING		0	0	0	0	0	0	0	0	0	0	0	0	0
TRACY PUMPING		35	157	245	246	106	130	0	0	0	0	0	203	1,179
CONTRA COSTA PUMPING			80	7	7	8	9	8	6	=	13	13	10	111
CVP COA BALANCE		-	(0)	(0)	8/	0	0	0	٥	(O)	(0)	(0)	0	
CVP DOS AMIGOS		29	14	7	14	53	2	3	4	4	2	4	2	118
SWP DOS AMIGOS		141	64	105	8	101	106	111	91	126	180	125	77	1,317
CVP SAN I UIS FOM STORAGE	200	195	295	514	727	773	843	756	626	476	300	149	270	
SWP SAN LUS FOM STORAGE	100	40	79	158	413	412	428	430	391	287	130	45	75][
TRINITY FOM ELEVATION (FT)	2,218	2,205	2,202	2,202	2,203	2,209	2,216	2,230	2,235	2,225	2,220	2,209	2,205	
TRINITY SURFACE AREA (ACRES)	7,162	6,528	6,375	6,385	6,452	6,712	7,053	7,761	8,001	7,525	7,270	6,705	6,533	
WHISKEYTOWN EOM ELEVATION (FT)	1,199	1,189	1,178	1,178	1,182	1,185	1,199	1.207	1,210	1,210	1,210	1,210	1,200	
WHISKEYTOWN SURFACE AREA (ACRES)	2,964	2,736	2,459	2,459	2,553	2,646	2,964	3,167	3,250	3,250	3,250	3,250	2,998	
SHASTA EOM ELEVATION (FT)	937	941	945	947	954	365	981	991	931	983	365	948	939	
SHASTA SURFACE AREA (ACRES)	15,384	15,777	16,109	16,279	16,967	18,086	19,749	20,929	20,894	20,062	18,116	16,465	15,499	
			-											

UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN

							TOTAL						365	1,526	1,449	406	1,010	5,036	1,782	879	200	296	165	(800)				2,838	2,774	14,103		1,529	32	1,746	111		663	1,453								
							SEP	729	210	1,609	1,224	175	32	187	189	27	30	387	192	45	30	87	5	30	4,000	6,829	10,983	149	149	1,440	OPEN	170	0	180	10	(0)	30	91	98	279	2,222	7,356	1,200	2,998	932	14,837
							AUG	760	240	1,803	1,417	204	83	434	155	909	80	684	06	73	20	145	5	(200)	4.000	9,367	10,522	195	195	8	OPEN	27	0	180	13	0	52	145	40	205	2,226	7,553	1,210	3,250	944	15,991
							JUL	006	240	2,250	1,578	268	162	466	222	70	160	806	70	90	20	232	5	(332)	4,000	9,855	10,105	240	240	4,964	OPEN	52	0	95	13	0	29	203	85	334	2,243	8,431	1,210	3,250	696	18,513
ATION ND PLAN							NOC	1,083	240	2,733	1,808	343	160	596	182	67	160	646	69	88	20	193	6	(311)	4,000	7,697	8.271	232	232	4,456	OPEN	28	0	20	11	(0)	99	147	258	525	2,262	9,519	1,210	3,250	993	21,104
RECLAM,							MAY	1,323	240	3,040	1,997	414	117	210	128	33	120	220	65	91	40	193	10	(290)	4,000	5,952	6,759	248	248	3,754	OPEN	28	0	S	6	(0)	52	107	434	657	2,285	10,884	1,210	3,250	1,007	22.707
UNITED STATES BUREAU OF RECLAMATION LONG-TERM OPERATIONS CRITERIA AND PLAN							APR	1,468	230	3,258	2,128	451	80	(27)	(27)	(46)	96	293	85	09	20	58	10	(06)	4,000	4,000	5.857	268	268	1,760	CLOSED	12	0	47	8	(0)	41	126	584	748	2,298	11,683	1,207	3,167	1,017	23 827
STATES BURN OPER							MAR	1,528	206	3,237	2,103	406	11	(128)	(138)	(75)	99	282	19	31	9	-	12	(3)	4,000	4,000	6,035	277	277	8	CLOSED	55	0	103	9	(0)	56	121	677	873	2,303	12,011	1,199	2,964	1,016	23 720
UNITED S							FEB	1,620	170	3,109	1,967	331	55	(94)	(94)	(25)	9	226	99	31	9	0	12	42	4,000	4,000	6,388	314	250	5	CLOSED	65	0	65	8	0	113	114	299	948	2,311	12,504	1,185	2,646	1,011	23.062
							JAN	1,681	160	3,015	1,872	306	27	(9)	254	41	30	244	384	77	9	0	14	119	4,000	4,762	13,399	277	277	(3.426)	OPEN	410	0	246	7	0	57	101	770	1.004	2,316	12,833	1,182	2,553	1,006	22 57R
							DEC	1,722	150	3,009	2,124	345	33	55	330	99	30	275	400	92	20	0	23	63	4,000	4,470	13,503	215	215	(3,033)	OPEN	411	0	246	7	(0)	28	118	909	701	2,319	13.049	1,178	2,459	1,006	22 5.47
		10/14	*1/01	13.22			NOV	1.761	150	3,064	2,450	409	64	55	88	8	09	295	149	104	20	0	28	88	4,000	5,199	10,695	208	208	(272)	OPEN	145	32	238	80	(0)	57	75	414	410	2.322	13,259	1.178	2,459	1,009	22 834
		DATE.	DAIC.	I WE	BYPASS		100	1,800	180	3,119	2,538	200	102	77	159	86	100	347	161	108	40	58	32	87	4,000	5,810	11,422	215	215	648	OPEN	153	0	246	=	0	85	105	262	343	2.325	13,465	1,189	2,736	1,011	22 446
W =	= 5	3 4	0 5	8	75	8	INITIAL	1,900	206	3,200	2,700	009																											200	300	2.333	13.991	1,199	2,964	1,015	23 520
Study Year Hydrologic Type (W-A-D-C-E) Starting Streams and (Hi-HM (M-I-C)	Starting Storage Level (ni-nw-Lw-LO)	Oct-Feb (%) Project Delivenes (100-75-50-25-0)	Mar-Sep (%) Project Delivenes (100-75-50-25-0)	Oct-Dec (%) Water Rights Delivenes (100-75-50-25-0)	Jan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	Attemative Extension	ALL VALUES IN TAF	THINITY EOM STORAGE	WHISKEYTOWN EOM STORAGE	SHASTA EOM STORAGE	OROVILLE EOM STORAGE	FOLSOM EOM STORAGE	WHISKEYTOWN STORAGE WITHDRAWAL	SHASTA STORAGE WITHDRAWAL	OROVILLE STORAGE WITHDRAWAL	FOLSOM STORAGE WITHDRAWAL	SPRING CREEK POWERPLANT	KESWICK RELEASE	OROVILLE RELEASE	NIMBUS RELEASE	VERNALIS FLOW	FEATHER RIVER DEMANDS	YUBA RIVER ACCRETIONS	SACRAMENTO RIVER ACCRETIONS	WILKINS SLOUGH TARGET (CFS)	WILKINS SLOUGH ACTUAL (CFS)	FREEPORT FLOW (CFS)	ACTUAL DELTA OUTFLOW	REQUIRED DELTA OUTFLOW	ANTIOCH FLOW	CROSS CHANNEL GATES	SWP BANKS PUMPING	CVP BANKS PUMPING	TRACY PUMPING	CONTRA COSTA PUMPING	CVP COA BALANCE	CVP DOS AMIGOS	SWP DOS AMIGOS	CVP SAN LUIS EOM STORAGE	SWP SAN LUIS EOM STORAGE	THINITY EOM ELEVATION JETS	TRINITY SURFACE AREA (ACRES)	WHISKEYTOWN FOM ELEVATION (FT)	WHISKEYTOWN SURFACE AREA IACRESI	SHASTA EOM ELEVATION (FT)	CHASTA SUBFACE AREA (ACRES)

UNITED STATES BUREAU OF RECLAMATION

						ONG. TER	AN OPFRA	TIONS	LONG. TERM OPERATIONS CRITERIA AND PLAN	ND PLAN				
Starting Storage Level (HI-HM-LM-LO)	Ž.													
Oct-Feb (%) Project Deliveries (100-75-50-25-0)	8													
Mar-Sep (%) Project Deliveries (100-75-50-25-0)	0	DATE:	10/16											
Oct-Dec (%) Water Rights Deliveries (100-75-50-25-0)	100	TIME:	12:36											
lan-Sep (%) Water Rights Delivenes (100-75-50-25-0)	75	BYPASS								•				
Alternative Extension	В										11.0	1	Cultura	TATION.
ALL VALUES IN TAF	INITIAL	120	NOV	DEC	JAN	FEB	MAH	APR	MAY	NOS	JOE	AUG	SEP	IOIAL
THINITY FOM STORAGE	1,500	1,381	1,342	1,302	1,262	1,230	1,199	-199	1,084	884	/43	503	4/4	
WHISKEYTOWN FOM STORAGE	506	180	150	150	160	170	506	230	240	240	240	240	210	
CHASTA FOM STORAGE	2.500	2,491	2,478	2,452	2,502	2,567	2,636	2,609	2,392	2,038	1,502	1,187	1,056	
OBOWILE FOW STORAGE	2.200	2,038	1,950	1,685	1,755	1,849	1,986	1,995	1,864	1,675	1,446	1,286	1,225	
CALCALLE COM STORAGE	400	315	270	242	224	249	323	396	380	327	243	191	174	
FOLSOM COM STORAGE WITHDIA WAT		122	54	33	12	52	4	20	18	120	122	183	32	852
TA STORAGE WITHDRAWAL		9	13	56	(20)	(65)	(69)	21	211	344	523	306	125	1,390
SHASIA SIORAGE WITHORAWAL		159	88	269	(69)	(94)	(138)	(11)	128	182	222	155	25	950
CHOVILLE STORAGE WITHORAWAL		83	45	29	19	(22)	(74)	(74)	13	49	6/	49	15	209
OLSOW STORAGE WITHOUSE AND COMMENT		120	09	330	30	30	30	30	06	120	120	180	30	870
STRING CHEEK TOWERTON		296	253	246	200	225	281	281	521	654	823	959	325	4,760
AESWICK AELEASE		161	149	339	19	26	61	101	65	69	0.2	8	9	1,283
MADIS DELEASE		93	99	55	55	31	32	33	20	70	88	61	ಜ	681
MINDOS ACELEASE		40	20	8	09	09	9	20	40	20	20	50	30	200
COATUCE DIVER DEMANDS		58	0	0	0	0	-	58	193	193	232	145	87	296
LATINGA BIVED ACCRETIONS		32	28	23	14	12	12	10	10	6	5	2	5	165
SACRAMENTO RIVER ACCRETIONS		87	88	63	119	42	(3)	(06)	(290)	(311)	(332)	(200)	8	(800)
WII KINS SI OLIGH TARGET (CFS)		4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	
WII KINS SLOUGH ACTUAL (CFS)		4,980	4,493	4,000	4,054	4,000	4,000	4,000	5,789	8,201	10,505	9,204	5,906	
REEPORT FLOW (CFS)		10,348	9,237	11,440	7.080	6,374	6,035	5,470	5,946	8,102	10,512	9.871	7,521	0000
ACTUAL DELTA OUTFLOW		215	208	215	277	313	277	268	248	232	240	195	149	2,837
REQUIRED DELTA OUTFLOW		215	208	215	277	250	277	568	248	232	240	195	149	2,1/4
ANTIOCH FLOW		1,250	548	(1.876)	\rightarrow		8	2.029	4,209	4.550	4,736	4,163	3,379	23,111
CROSS CHANNEL GATES		OPEN	OPEN	OPEN	-#	_#	CLUSED	CLUSEU	OFCIN	NI SE				1 000
SWP BANKS PUMPING		153	145	320	88	2	S C	0,0	07	07	So	20	3 0	0
OVP BANKS PUMPING		2 5	2 5	2	2 0	2 2	202	0	6	40	120	140	106	1.305
RACY PUMPING		2 =	20 4	200	7	3 00	9	80	6	1	13	13	10	111
CONTRA COSTA PURPING		10/	, e	=	(0)	0	(0)	(0)	0	(0)	0	O	(0)	
OVP COA BALANCE		85	57	28	57	113	2	3	4	4	2	4	2	364
ON DOS AMIGOS		89	4-	08	67	75	77	82	59	85	134	82	20	006
OVERANTHIS FOR STORAGE	200	1961	261	387	485	382	425	346	216	106	20	39	છ	
SWP SAN LUS FOM STORAGE	200	282	385	654	699	653	624	295	520	453	335	271	526	
RINITY FOX ELEVATION (FT)	2.301	2,291	2,287	2,284	2,280	2,277	2,274	2,274	2,263	2,241	2,224	2,189	2,183	
RINITY SUBFACE AREA (ACRES)	11,857	11.204	10,989	10,769	10,542	10,365	10,187	10,187	9,528	8,336	7,442	5,786	5,564	
WHISKEYTOWN FOM ELEVATION (FT)	1,199	1,189	1,178	1,178	1,182	1,185	1,199	1,207	1,210	1,210	1,210	1,210	1,200	
WHISKEYTOWN SUBFACE AREA (ACRES)	2,964	2,736	2,459	2,459	2,553	2,646	2,964	3,167	3,250	3,250	3,250	3,250	2,998	
SHASTA FOM ELEVATION (FT)	982	981	981	979	985	985	988	987	976	957	925	905	891	
			1		0.00	70000	002.00	100 454	40.00	17 225	44.00	* C * C *	44 977	

Appendix C

CVP-OCAP Temperature Study Results

Appendix C

Table of Contents

Pre-1992 Alternative Temperature Study Results (N01 - N18) - No Bypass .	C-3 - C-20
Pre-1992 Alternative Temperature Study Results (B01 - B18) - Bypass	C-21 - C-38
TEM Alternative Temperature Study Results (BT12, BT14 - BT17)	C-39 - C-43
B Alternative Temperature Study Results (B19 - B36)	C-44 - C-61

		,		
,				

OPERATIONAL TEMPERATURE CONTROL STUDY N01: W-HI-100.PRE - CVP-OCAP 7/30/92

CATION	J	F	M	Α	М	J	J	Α	S.	0	И	D
			0.	0.	ο.	0.	0.	0.	0.	0.	0.	0.
LO-TAF LO-F	0. 0.0	0. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0-1	0.0	•			040	270	197.	174.	116.	142.	90.	40.
PO-TAF	21.	100.	84.	107. 43.8	212. 43.8	270. 43.8	43.8	43.8	44.0	44.4	45.1	45.6
P0F	44.5	43.8	43.8	43.0	40.0	4000						
R-TAF	21.	100.	84.	107.	212.	270.	197.	174.	116.	142.	90.	40.
R-THE	41.5	43.8	43.8	43.8	43.8	43.8	43.8	43.8	44.0	44.4	45.1	45.6
				4.0	7.0	99.	18.	53.	24.	26.	12.	19.
EW -TAF	18.	17.	18.	18.	73. 47.5	48.0	49.5	49.5	49.1	46.4	44.5	41.9
EPIE	40.1	43.8	46.1	47.6 48.5	49.4	49.4	57.4	52.7	52.7	48.5	45.5	41.3
)C -F IE -F	40.5	43.6 43.7	45.9 46.0	49.4	52.9	52.5	65.2	57.8	58.3	51.9	47.0	40.1
7 5	7 26 - 4-					100	180.	120.	122.	120.	90.	60.
SC -TAF	60.	150.	120.	120.	150.	180. 51.7	53.4	54.8	55.0	52.2	49.4	46.7
IC-F	43.6	44.5	45.7	47.4	50.1	21.7	55.4	34.0				
DIAG TAE	0.	0.	0.	0.	0.	0.	0.	0.	0 .	0.	0.	0.
8742-TAF 8742-F	0.0	0.0	44.7	44.7	44.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
				517	652.	558.	742.	609.	414.	348.	348.	700.
5815-TAF	700.	750.	58 0. 45.7	517. 45.8	45.9	46.4	47.8	50.1	52.7	55.6	54.9	48.4
9815-F	46.4	45.6	45./	45.0	70.5							
\$342TAF	9.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
3942-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		===	500	C 1 7	652.	558.	742.	609.	414.	348.	348.	700.
SH-TAF	700.	750.	58 0. 45.7	517. 45.8	45.9	46.4	47.8	50.1	52.7	55.6	54.9	48.4
SH-F	46.4	45.6 45.8	46.3	47.0	47.5	48.5	49.6	51.9	54.2	56.3	54.6	48.3
KASC-F	46.3	45.0	40.5	47.0								40. 3
KES-E	46.1	45.6	46.2	47.1	48.0	49.3	50.3	52.4	54.4	55.2	53.5	48.2
ACL-F	46.0	45.7	46.6	47.9	49.1	50.6	51.6	53.7	55.4	55.7	53.4	48.1 48.1
BCL-F	46.0	45.7	46.6	47.9	49.2	50.7	51.7	53.7	55.4	55.7 56.2	53.4 53.2	47.9
CC-F	46.0	45.9	47.1	48.9	50.5	52.2	53.2	55.2	56.6 58.9	56.2	53.2	47.5
BB-F	45.8	46.1	47.9	50.0	52.6	54.6	55.6	57.4	58.9	57.2	53.1	47.4
R8-F	45.7	46.3	48.2	50.7	53.5	55.6	56.7	58.5	33.0	5/.2		

READY -

OPERATIONAL TEMPERATURE CONTROL STUDY NO2: W-HM-100.PRE - CVP-0CAP 7/30/92

CATION	J	F	М	Α	M	J	J	Α	s	0	И	D
LO-TAF	0.	0 .	0.	ø.	0.	0.	ð.	0.	0.	0.	0.	0.
L0-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PO-TAF	21.	17.	23.	47.	122.	150.	227.	174.	101.	142.	90.	40.
₽0-F	44.3	0.0	43.6	43.6	43.6	43.6	43.6	43.6	43.7	43.9	44.5	45.0
R-TAF	21.	17.	23.	47.	122.	150.	227.	174.	101.	142.	90.	40.
R-F	44.3	43.6	43.6	43.6	43.6	43.6	43.6	43.6	43.7	43.9	44.5	45.0
EW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
EW-F	40.1	43.9	48.9	50.9	49.7	50.8	48.7	49.3	49.5	46.0	44.1	41.6
C-F	40.5	43.7	47.4	50.3	51.2	51.9	56.8	52.5	53.1	48.2	45.2	41.1
F-F	41.2	43.8	46.5	50.0	54.0	54.6	64.9	57.6	58.5	51.6	46.8	40.0
C-TAF	60.	66.	60.	60.	60.	60.	210.	120.	107.	120.	90.	60.
C-F	43.6	43.9	45.3	46.9	48.9	52.0	53.9	54.9	55.4	52.2	49.2	46.6
3742-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0 .	0°.
								Δ Δ	44 7	Α Δ	0.0	Δ Δ
742-F	0.0	0.0	44.7	44.7	44.7	0.0	44.7	0.0	44.7	0.0	0.0	0.0
742-F 1815-TAF	0.0 700.	0.0 750.	580.	517.	652.	710.	624.	668.	323.	246.	191.	260.
1815-TAF	700.	750.	580.	517.	652.	710.	624.	668.	323.	246.	191.	260.
1815-TAF -815F	700. 46.4	750. 45.6	580. 45.7	517. 45.8	652. 45.9	710. 46.5	624. 48. 0	668. 50.3	323. 52.9	246. 55.0	191. 54.6	260. 48.3
1815-TAF -815-F	700. 46.4 0.	750. 45.6	580. 45.7	517. 45.8	652. 45.9	710. 46.5	624. 48.0 0.	668. 50.3	323. 52.9	246. 55.0	191. 54.6	260. 48.3
1815-TAF -815-F 3942-TAF 1942-F	700. 46.4 0. 0.0	750. 45.6 0.	580. 45.7 0.	517. 45.8 0.	652. 45.9 0.	710. 46.5 0. 0.0	624. 48.0 0.	668. 50.3 0.	323. 52.9 0.	246. 55.0 0.	191. 54.6 0.	260. 48.3 0.
1815-TAF -815-F 3942-TAF 1942-F 3H-TAF	700. 46.4 0. 0.0	750. 45.6 0. 0.0	580. 45.7 0. 0.0	517. 45.8 0. 0.0	652. 45.9 0. 0.0	710. 46.5 0. 0.0	624. 48.0 0. 0.0	668. 50.3 0. 0.0	323. 52.9 0. 0.0	246. 55.0 0. 0.0	191. 54.6 0. 0.0	260. 48.3 0. 0.0
1815-TAF -815-F 3942-TAF 1942-F 3H-TAF 3H-F	700. 46.4 0. 0.0 700. 46.4	750. 45.6 0. 0.0 750. 45.6	580. 45.7 0. 0.0 580. 45.7	517. 45.8 0. 0.0 517. 45.8	652. 45.9 0. 0.0 652. 45.9	710. 46.5 0. 0.0 710. 46.5	624. 48.0 0. 0.0 624. 48.0	668. 50.3 0. 0.0 668. 50.3	323. 52.9 0. 0.0 323. 52.9	246. 55.0 0. 0.0 246. 55.0	191. 54.6 0. 0.0 191. 54.6	260. 48.3 0. 0.0 260. 48.3
1815-TAF -815-F 3942-TAF -1942-F 3H-TAF -1H-F -(ASC-F	700. 46.4 0. 0.0 700. 46.4 46.3	750. 45.6 0. 0.0 750. 45.6 45.8	580. 45.7 0. 0.0 580. 45.7 46.3	517. 45.8 0. 0.0 517. 45.8 47.0	652. 45.9 0. 0.0 652. 45.9 47.5	710. 46.5 0. 0.0 710. 46.5 48.2	624. 48.0 0. 0.0 624. 48.0 50.2	668. 50.3 0. 0.0 668. 50.3 52.0	323. 52.9 0. 0.0 323. 52.9 54.9	246. 55.0 0. 0.0 246. 55.0 55.9	191. 54.6 0. 0.0 191. 54.6 54.2	260. 48.3 0. 0.0 260. 48.3 48.0
1815-TAF -815-F 3942-TAF -1942-F 3H-TAF -1H-F -1ASC-F	700. 46.4 0. 0.0 700. 46.4 46.3	750. 45.6 0. 0.0 750. 45.6 45.8	580. 45.7 0. 0.0 580. 45.7 46.3	517. 45.8 0. 0.0 517. 45.8 47.0	652. 45.9 0. 0.0 652. 45.9 47.5	710. 46.5 0. 0.0 710. 46.5 48.2	624. 48.0 0. 0.0 624. 48.0 50.2	668. 50.3 0. 0.0 668. 50.3 52.0	323. 52.9 0. 0.0 323. 52.9 54.9	246. 55.0 0.0 246. 55.0 55.9	191. 54.6 0. 0.0 191. 54.6 54.2	260. 48.3 0. 0.0 260. 48.3 48.0
1815-TAF -815-F 3942-TAF 1942-F 3H-TAF 3H-F (ASC-F	700. 46.4 0. 0.0 700. 46.4 46.3 46.1 46.0	750. 45.6 0. 0.0 750. 45.6 45.8	580. 45.7 0. 0.0 580. 45.7 46.3	517. 45.8 0. 0.0 517. 45.8 47.0 47.0	652. 45.9 0. 0.0 652. 45.9 47.5	710. 46.5 0. 0.0 710. 46.5 48.2 48.5 49.8	624. 48.0 0.0 624. 48.0 50.2 51.1 52.5	668. 50.3 0. 0.0 668. 50.3 52.0 52.4 53.6	323. 52.9 0. 0.0 323. 52.9 54.9 55.0 56.2	246. 55.0 0.0 246. 55.0 55.9 54.7 55.3	191. 54.6 0. 0.0 191. 54.6 54.2 52.6 52.5	260. 48.3 0. 0.0 260. 48.3 48.0 47.7 47.6
1815-TAF -815-F 3942-TAF 1942-F 3H-TAF 1H-F (ASC-F (FS-F ACL-F RCL-F	700. 46.4 0. 0.0 700. 46.4 46.3 46.1 46.0 46.0	750. 45.6 0. 0.0 750. 45.6 45.8 45.6 45.8	580. 45.7 0. 0.0 580. 45.7 46.3 46.2 46.7	517. 45.8 0. 0.0 517. 45.8 47.0 47.9 47.9	652. 45.9 0. 0.0 652. 45.9 47.5 47.6 48.9 49.0	710. 46.5 0. 0.0 710. 46.5 48.2 48.5 49.8	624. 48.0 0. 0.0 624. 48.0 50.2 51.1 52.5 52.6	668. 50.3 0.0 668. 50.3 52.0 52.4 53.6 53.7	323. 52.9 0. 0.0 323. 52.9 54.9 55.0 56.2 56.3	246. 55.0 0.0 246. 55.0 55.9 54.7 55.3 55.3	191. 54.6 0. 0.0 191. 54.6 54.2 52.6 52.5 52.4	260. 48.3 0. 0.0 260. 48.3 48.0 47.7 47.6 47.5

FADY.

OPERATIONAL TEMPERATURE CONTROL STUDY N03: W-LM-100.PRE - CVP-OCAP 7/30/92

CATION	J	F	М	Α	М	J	J	Α	S	0	И	D
LO-TAF	0.	ø.	0.	0.	0.	0.	0.	0.	0.	0.	0 .	0.
LO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PO-TAF	21.	25.	23.	32.	92.	120.	122.	54.	39.	142.	60.	40.
P0-F	44.1	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.4	43.7	44.0
FR-TAF	21.	25.	23.	32.	92.	120.	122.	54.	39.	142.	60.	40.
ſRF	44.1	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.4	43.7	44.0
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
EW-F	40.0	43.7	48.9	52.8	51.1	52.0	52.2	58.3	55.5	45.6	43.4	41.0
DC-F	40.4	43.6	47.4	51.3	52.4	53.0	59.4	60.4	58.1	47.8	44.6	40.6
4F-F	41.1	43.7	46.5	50.4	54.8	55.4	66.3	63.8	62.3	51.4	46.5	39.6
SCTAF	60.	75.	60.	45.	30.	30.	105.	0.	45.	120.	60.	60.
SC- F	43.6	43.9	45.5	46.7	47.5	49.2	54.4	0.0	58.0	53.1	50.3	46.7
\$742-TAF	0.	0.	0.	0.	0.	0.	0.	-0.	0.	0.	0.	٥.
S742-F	0.0	0.0	44.5	44.5	44.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3815-TAF	169.	750.	580.	517.	652.	558.	755.	768.	313.	292.	266.	171.
9815- F	46.1	45.3	45.6	45.7	45.8	46.3	47.8	50.5	53.3	55.8	54.7	48.2
5942-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
S942 F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SH-TAF	169.	750.	580.	517.	652.	558.	755.	768.	313.	292.	266.	171.
SILE	46.1	45.3	45.6	45.7	45.8	46.3	47.8	50.5	53.3	55.8	54.7	48.2
KASC-F	45.9	45.5	46.1	46.8	47.4	48.4	49.6	51.9	55.3	56.5	54.4	47.7
YESF	45.3	45.4	46.0	46.8	47.4	48.4	50.2	51.9	55.6	55.5	53.6	47.4
ACL-F	45.2	45.5	46.5	47.7	48.7	50.1	51.6	53.1	57.0	56.0	53.5	47.2
BCL-F	45.2	45.5	46.5	47.8	48.8	50.2	51.6	53.2	57.0	56.0	53.4	47.2
CCF	45.1	45.7	47.0	48.8	50.3	52.1	53.2	54.7	58.5	56.5	53.3	46.9
BB-F	44.8	46.0	47.9	50.1	52.8	55.0	55.8	56.8	61.2	57.3	53.2	46.6
RBF	44.8	46.1	48.2	50.8	53.7	56.2	56.9	57.9	62.0	57.6	53.1	46.5

OPERATIONAL TEMPERATURE CONTROL STUDY N04: W-L0-100.PRE - CVP-OCAP 7/30/92

ATION	J	F	М	Α	M	J	J	А	S	0	И	0
O-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
UF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
O-TAF	21.	25.	23.	32.	77.	105.	32.	54.	24.	122.	50.	20.
,0-Ł	43.7	42.8	42.8	42.8	42.8	42.8	42.8	42.9	0.0	43.3	43.9	44.2
?-TAF	21.	25.	23.	32.	77.	105.	32.	54.	24.	122.	50.	20.
} F	43.7	42.8	42.8	42.8	42.8	42.8	42.8	42.9	43.0	43.3	43.9	44.2
EU-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
™-F	39.9	43.6	48.8	52.7	52.0	52.7	65.7	58.1	58.9	45.8	43.5	39.4
)-F	40.3	43.5	47.3	51.2	53.1	53.6	69.1	60.3	61.0	48.0	44.7	39.2
F	41.1	43.7	46.4	50.4	55.2	55.9	71.7	63.7	64.4	51.5	46.5	38.7
C-TAF	60.	75.	60.	45.	15.	15.	15.	0.	30.	100.	50.	49.
0 F	43.6	43.9	45.5	46.7	47.4	47.9	49.0	0.0	51.2	52.8	50.3	47.3
742-TAF	0.	0.	0.	0.	0.	0.	ø.	0.	0.	0.	9 .	0.
742F	0.0	0.0	44.4	44.4	44.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
815 -TAF	140.	575.	580.	517.	652.	558.	830.	771.	327.	210.	232.	191.
815F	46.0	45.2	45.5	45.6	45.7	46.2	47.9	50.9	53.9	56.1	54.7	48.2
942 -TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
942-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
H-TAF	140.	575.	580.	517.	652.	558.	830.	771.	327.	210.	232.	
H-F	46.0	45.2	45.5	45.6	45.7	46.2	47.9	50.9	53.9	56.1	54.7	48.2
ASC-F	45.7	45.4	46.1	46.8	47.3	48.4	49.5	52.3	55.8	57.0	54.3	47.8
ES-F	45.1	45.2	46.0	46.8	47.3	48.4	49.5	52.3	55.4	55.6	53.6	47.7
CL-F	45.0	45.4	46.5	47.7	48.7	50.1	50.9	53.5	56.8	56.2	53.4	47.5
CLF	45.0	45.4	46.5	47.8	48.7	50.2	51.0	53.6	56.8	56.2	53.3	47.4
C-F	44.9	45.7	47.0	48.8	50.3	52.2	52.7	55.0	58.3	56.9	53.1	47.2
R-F	44.7	46.0	47.9	50.1	52.8	55.1	55.3	57.1	61.1	57.8	53.1	46.7
'B-F	44.6	46.2	48.2	50.8	53.8	56.3	56.5	58.2	61.9	58.2	53.0	46.6

OPERATIONAL TEMPERATURE CONTROL STUDY N05: A-HI-100.PRE - CVP-OCAP 7/30/92

DCATION	Ĵ	F	М	Α	М	Ĵ	J	A	S	0	И	D
TLO-TAF	0.	0.	0.	0.	0.	0.	0.	٥.	0.	0.	0.	0. 0.0
fLOF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO~TAF	31.	19.	28.	21.	86.	185.	171.	116.	87.	146.	101.	69.
TP0- F	44.5	43.9	43.9	43.9	43.9	43.9	43.9	43.9	43.9	44.0	44.1	44.4
TRTAF	31.	19.	28.	21.	86.	185.	171.	116.	87.	146.	101.	69.
IRF	44.5	43.9	43.9	43.9	43.9	43.9	43.9	43.9	43.9	44.0	44.1	44.4
LEW-TAF	.18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
IFW F	41.0	44.0	48.6	55.1	51.9	49.8	50.4	52.0	50.5	46.0	43.8	42.4
DC-F	41.1	43.8	47.2	52.6	53.0	51.0	58.1	54.9	53.9	48.2	44.9	41.7
14FF	41.4	43.8	46.4	50.8	55.2	53.8	65.6	59.5	.59.2	51.6	46.7	40.4
SCTAF	45.	45.	45.	0.	15.	90.	150.	60.	90.	120.	90.	60.
GC-F	43.7.	43.8	44.4	0.0	45.8	48.2	54.9	55.4	56.7	52.6	49.1	46.2
3742-TAF	Ø.	Ø.	0.	0.	θ.	0.	ີ ∂ .	0.	0.	0.	0.	0.
3742-F	0.0	0.0	0.0	0.0	0.0	45.3	0.9	0.0	45.4	0.0	45.5	0.0
9815-TAF	340.	430.	410.	217.	535.	536.	718.	759.	265.	321.	266.	380.
3815 -F	47.1	45.8	45.9	46.0	46.0	46.1	46.8	49.1	52.0	54.8	54.7	49.4
5942-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
1942 F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SH-TAF	340.	430.	419.	217.	535.	536.	718.	759.	265.	321.	266.	380.
SH-F	47.1	45.8	45.9	46.0	46.0	46.1	46.8	49.1	52.0	54.8	54.7	49.4
KASC-F	46.9	46.1	46.7	48.7	48.0	48.3	48.8	50.6	54.5	55.5	54.4	49.1
res-r	46.5	45.9	46.5	48.7	47.9	48.3	49.9	51.0	55.1	54.7	53.1	48.7
ACL-F	46.4	46.1	47.1	50.6	49.5	49.9	51.2	52.2	56.5	55.2	52.9	48.5
BCL-F	46.4	46.1	47.1	50.7	49.6	50.0	51.3	52.2	56.5	55.2	52.9	48.5
CCF	46.3	46.4	47.8	52.6	51.4	51.8	52.9	53.7	58.1	55.8	52.8	48.3
RB-F	45.8	46.7	48.8	54.5	54.1	54.5	55.5	55.8	60.9	56.6	52.8	47.4
RRF	45.8	16.9	49.2	55.6	55.1	55.8	56.6	56.8	61.7	56.9	52.7	47.4

OPERATIONAL TEMPERATURE CONTROL STUDY N06: A-HM-100.PRE - CVP-OCAP 7/30/92

CATION	J	F	M	Α	М	J	J	Α	\$	0	И	O
LO-TAF	0.	0.	θ.	0.	0.	0.	0.	0.	0.	0.	0 .	0.
LO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PO-TAF	31.	19.	28.	21.	73.	138.	66.	56.	27.	146.	101.	39.
P0F	44.4	43.7	43.7	43.7	0.0	43.7	43.7	43.7	43.7	43.7	43.9	44.1
R-TAF	31.	19.	28.	21.	73.	138.	66.	56.	27.	146.	101.	39.
R-F	44.4	43.7	43.7	43.7	43.7	43.7	43.7	43.7	43.7	43.7	43.9	44.1
EU-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
EW-F	41.0	43.9	48.5	55.1	52.9	51.4	57.9	58.1	58.4	45.8	43.6	41.0
)C-F	41.1	43.7	47.2	52.6	53.9	52.4	63.5	60.3	60.6	48.0	44.8	40.6
lFF	41.4	43.8	46.4	50.8	55.7	55.0	68.6	63.7	64.1	51.5	46.6	39.6
3C-TAF	45.	45.	45.	0.	0.	45.	45.	0.	30.	120.	90.	30.
iC-F	43.7	43.8	44.4	0.0	0.0	46.5	48.7	0.0	54.2	53.0	49.1	46.9
3742-TAF	Ø.	0.	0.	0.	0.	~0.	0.	0.	0.	0.	0.	ø.
3742F	0.0	0.0	0.0	0.0	0.0	45.2	0.0	0.0	45.2	0.0	0.0	0.0
3815 -TAF	155.	213.	410.	217.	560.	574.	823.	721.	327.	283.	185.	201.
3815- F	47.0	45.7	45.8	45.8	45.9	46.0	47.0	49.8	53.2	56.4	54.8	49.2
3342-TAF	ø.	0.	Ø.	0.	0.	ø.	0.	Ø.	0.	0.	0.	0.
3942 -F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SH-TAF	155.	213.	410.	217.	560.	574.	823.	721.	327.	283.	185.	201.
3H-F	47.0	45.7	45.8	45.8	45.9	46.0	47.0	49.8	53.2	56.4	54.8	49.2
KASC-F	46.6	46.3	46.5	48.5	47.8	48.1	48.7	51.3	55.1	57.0	54.3	48.7
KES-F	45.9	45.9	46.3	48.5	47.8	48.0	48.7	51.3	55.0	55.8	52.6	48.5
∩CL-F	45.8	46.3	46.9	50.4	49.4	49.6	50.1	52.7	56.4	56.3	52.5	48.2
RCL-F	45.8	46.3	46.9	50.5	49.4	49.7	50.2	52.7	56.5	56.3	52.4	48.1
CC-F	45.6	46.8	47.6	52.5	51.2	51.6	51.9	54.3	58.0	56.8	52.3	47.8
BBF	45.1	47.2	48.6	54.4	53.9	54.4	54.5	56.6	60.8	57.5	52.5	. 46.9
RB-F	45.1	47.5	49.1	55.5	55.0	55.6	55.7	57.7	61.6	57.8	52.4	46.8

OPERATIONAL TEMPERATURE CONTROL STUDY N07: A-LM-100.PRE CVP-OCAP 7/30/92

OCATION	J	F	М	Α	М	J	J	A	S	0	N	D
TLO-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
T10F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF	18.	19.	28.	21.	73.	99.	21.	56.	27.	146.	71.	39.
TP0F	0.0	43.4	43.4	43.4	0.0	0.0	43.4	43.4	43.5	43.6	44.1	44.6
TR-TAF	18.	19.	28.	21.	73.	99.	21.	56.	27.	146.	71.	39.
TR-F	44.2	43.4	43.4	43.4	43.4	43.4	43.4	43.4	43.5	43.6	44.1	44.6
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
IFW-F	39.7	43.9	48.4	55.0	52.7	53.6	70.1	58.0	58.3	45.7	43.7	41.3
DC-F	40.2	43.7	47.1	52.5	53.7	54.4	72.3	60.2	60.5	47.9	44.9	40.8
NF-F	41.0	43.8	46.4	50.8	55.6	56.6	73.4	63.6	64.0	51.4	46.6	39.8
SC-TAF	32.	45.	45.	0.	2.	3.	0.	0.	30.	120.	60.	30.
SC-F	43.8	43.9	44.5	0.0	45.6	45.8	0.0	0.0	46.9	50.2	48.6	47.0
5742-TAF	0.	0.	0.	0.	0.	0.	Θ.	0.	0.	0.	0.	0.
S742 -F	0.0	44.7	44.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3815-TAF	168.	136.	140.	193.	560.	616.	868.	710.	328.	329.	259.	201.
S815F	46.8	45.5	45.5	45.6	45.6	45.9	47.4	51.3	55.8	59.7	54.6	49.1
S942 TAF	0.	0.	Ø.	0.	О.	0.	0.	0.	0.	0.	0.	0.
S942-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SH-TAF	168.	136.	140.	193.	560.	616.	868.	710.	328.	329.	259.	201.
SHIF	46.8	45.5	45.5	45.6	45.6	45.9	47.4	51.3	55.8	59.7	54.6	49.1
KASCF	46.4	46.5	47.7	48.6	47.6	47.8	49.0	52.8	57.4	60.0	54.3	48.6
KES-F	16.0	45.9	46.9	48.6	47.6	47.8	49.0	52.8	56.5	57.4	53.2	48.4
ACL-F	45.8	46.4	48.1.	50.7	49.2	49.4	50.4	54.1	57.8	57.7	53.1	48.1
BCL-F	45.8	46.4	48.2	50.8	49.3	49.5	50.5	54.2	57.8	57.7	53.0	48.0
CCF	45.6	47.0	49.5	52.9	51.0	51.4	52.1	55.7	59.3	58.0	52.9	47.7
BB-F	45.2	47.5	50.8	54.8	53.7	54.2	54.8	57.9	61.8	58.6	52.9	46.9
RRF	45.1	47.8	51.5	56.0	54.8	55.5	55.9	58.9	62.5	58.8	52.8	46.8

OPERATIONAL TEMPERATURE CONTROL STUDY
N08: A-LO-100.PRE CVP-OCAP 7/30/92

NOITA	J	F	M	Α	M	J	J	Α	S	0	И	D
	0	0.	0.	0.	9.	0.	0.	0.	0.	0.	0.	0.
_0-TAF _0F	0. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
.01	0.0	0.0	• • •							400	~ 4	49.
PO-TAF	18.	17.	18.	21.	73.	99.	21.	56.	24.	126.	61. 46.9	46.5
?0F	0.0	0.0	0.0	42.9	0.0	0.0	43.3	43.7	0.0	45.3	40.9	40.5
				• 4	70	99.	21.	56.	24.	126.	61.	49.
R-TAF	18.	17.	18.	21.	73. 42.9	43.0	43.3	43.7	44.2	45.3	46.9	46.5
R-F	43.7	42.9	42.9	42.9	42.9	43.0	43.5	1007				
SIL TAE	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
EW-TAF	39.6	43.8	49.3	54.9	52.4	53.4	70.1	58.1	59.2	47.3	45.5	43.0
EW-F C-F	40.1	43.6	47.6	52.4	53.4	54.3	72.3	60.3	61.2	49.3	46.3	12.2
U-F F− F	41.0	43.7	46.5	50.8	55.4	56.4	73.4	63.7	64.6	52.5	47.5	40.8
r-1	72.0	1017										10
C-TAF	32.	42.	35.	0.	2.	3.	0.	0.	27.	100.	50.	40.
C-F	43.8	43.9	44.3	0.0	45.1	45.4	0.0	0.0	46.5	50.7	49.7	47.1
						_		0	0.	0.	0.	0.
742-TAF	0.	0.	0.	0.	0.	0.	0.	0.0	0.0	0.0	0.0	6.0
742-F	0.0	0.0	44.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
				100	559.	619.	868.	700.	331.	131.	173.	191.
815-TAF	168.	138.	149.	193.	45.6	45.9	47.4	51.4	55.9	58.5	54.7	49.2
815F	46.8	45.5	45.5	45.6	45.0	43.5	77.01					
040 745	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
942-TAF 942-F	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
542-1	0.0	0.0	• • •								. 70	101
H-TAF	168.	138.	149.	193.	559.	619.	868.	700.	331.	131.	173.	191. 49.2
11F	46.8	45.5	45.5	45.6	45.6	45.9	47.4	51.4	55.9	58.5	54.7	48.7
ASC-F	46.4	46.4	47.6	48.6	47.6	47.8	49.0	52.9	57.5	59.4	54.2	40.7
						4= 0	40.0	E2 0	56.7	55.6	53.2	48.4
ES-F	46.0	45.8	47.0	48.6	47.6	47.8	49.0	52.9 54.2	57.9	56.4	53.0	48.1
1CL-F	45.8	46.4	48.2	50.7	49.2	49.4	50.4	54.2	58.0	56.4	52.9	48.1
3CL-F	45.8	46.4	48.2	50.8	49.3	49.5	50.5	55.8	59.4	57.2	52.7	47.7
10-F	45.6	47.0	49.5	52.9	51.0	51.4	52.1 54.8	58.0	61.8	58.2	52.8	46.9
3 8F	45.2	47.5	50.9	54.8	53.7 54.8	54.2 55.4	55.9	59.1	62.6	58.7	52.7	46.8
₹8-F	45.1	47.8	51.5	56.0	54.0	55.4	3.3.3	95.1	02.0			

OPERATIONAL TEMPERATURE CONTROL STUDY N09: D-HI-100.PRE CVP-OCAP 7/30/92

CATION	3	F	М	Α	М	J	J	Α	S	0	И	D
LO-TAF	0.	0.	0.	o.	0.	0.	0.	0.	0.	0.	0.	0.
LO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PO-TAF	21.	19.	23.	52.	104.	156.	171.	206.	73.	146.	72.	42.
P0F	44.6	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.2	44.5	44.8
R-TAF	21.	19.	23.	52.	104.	156.	171.	206.	73.	146.	72.	42.
R-F	44.6	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.2	44.5	44.8
EW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
EWF	40.2	44.0	49.0	50.7	50.9	50.9	50.5	48.9	51.5	46.2	44.0	41.6
C-F	40.5	43.8	47.4	50.2	52.2	52.0	58.1	52.1	54.8	48.3	45.1	41.1
F-F	41.2	13.8	46.5	50.0	54.7	54.6	.65.6	57.3	59.8	51.8	46.8	40.0
C-TAF	20.	30.	30.	30.	30.	60.	150.	150.	75.	120.	60.	30.
iC-F	43.9	43.9	44.1	44.9	46.4	49.3	54.9	54.6	55.4	52.4	49.9	47.1
3742-TAF	. 0.	0.	0.	Ø.	0.	0.	0.	ø.	0.	0.	0.	0.
5742-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3815-TAF	200.	171.	210.	413.	493.	569.	726.	700.	193.	298.	250.	288.
8815-F	47.4	46.1	46.0	46.1	46.1	46.2	47.1	50.1	53.4	56.3	55.1	49.5
5942-TAF	0.	0.	0.	ø.	0.	0.	0.	0.	0.	0.	0.	0.
5942 - Fr	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SH-TAF	200.	171.	210.	413.	493.	569.	726.	700.	193.	298.	250.	288.
SH · F	47.4	46.1	46.0	46.1	46.1	46.2	47.1	50.1	53.4	56.3	55.1	49.5
KASC-F	47.0	46.8	47.5	47.6	48.3	48.3	49.0	51.7	56.5	57.0	54.7	49.1
KES-F	46.7	46.4	47.1	47.4	48.2	. 48.4	50.0	52.2	56.2	55.7	53.8	48.9
ACL-F	46.5	46.8	48.0	48.5	49.8	50.0	51.4	53.3	57.9	56.1	53.6	48.7
BCL - F	46.5	46.8	48.1	48.6	49.9	50.1	51.5	53.4	57.9	56.1	53.5	48.6
CC-F	46.3	47.3	49.1	49.8	51.8	51.9	53.0	54.7	59.7	56.6	53.3	48.3
BRF	45.6	47.7	50.4	51.2	54.5	54.6	55.6	56.7	62.7	57.4	53.2	47.3
R8-F	45.5	48.0	50.9	52.1	55.6	55.8	56.7	57.7	63.5	57.7	53.1	47.2

OPERATIONAL TEMPERATURE CONTROL STUDY N10: D-HM-100.PRE CVP-OCAP 7/30/92

CATION	J	F	М	Α	М	J	J	A	\$	0	. N	D
LO-TAF	0.	0.	0.	0.	0.	ø.	0.	0.	ø.	0.	0.	0.
LO−F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PO-TAF	18.	17.	18.	22.	134.	156.	161.	196.	68.	176.	72.	72.
₽ 0-F	0.0	0.0	0.0	43.8	43.8	43.8	43.8	44.0	44.6	46.0	48.4	47.2
R-TAF	18.	17.	18.	22.	134.	156.	161.	196.	68.	176.	72.	72.
R-F	44.4	43.8	43.8	43.8	43.8	43.8	43.8	44.0	44.6	46.1	48.4	47.2
EW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
EW-F	39.8	44.0	49.5	54.9	49.4	50.7	50.7	49.1	52.3	47.5	46.8	44.5
C-F	40.3	43.8	47.7	52.4	51.0	51.8	58.3	52.3	55.4	49.5	47.3	43.5
FF	41.1	43.8	46.6	50.8	53.9	54.5	. 65.7	57.5	60.3.	52.7	48.1	41.7
C -TAF	17.	27.	25.	0.	60.	60.	140.	140.	70.	150.	60.	60.
C-F	43.9	44.0	44.1	0.0	45.4	49.4	55.0	54.8	55.5	52.6	50.8	47.1
742-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
742-F	0.0	0.0	45.6	0.0	0.0	0.0	0.0	0.0	45.7	0.0	0.0	0.0
815-TAF	183.	153.	160.	403.	493.	599.	703.	699.	288.	206.	209.	171.
815-F	47.3	45.9	45.9	46.0	46.0	46.3	47.7	52.0	57.2	60.3	55.0	49.5
942-TAF	ø.	0.	Ø.	0.	0.	0.	Ø .	0.	0.	0.	Ø.	0.
- 912-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
H FAF	183.	153.	160.	403.	493.	599.	703.	699.	288.	206.	209.	171.
H-F	47.3	45.9	45.9	46.0	46.0	46.3	47.7	52.0	57.2	60.3	55.0	49.5
ASC-F	46.9	46.7	47.8	47.5	48.2	48.2	49.7	53.5	58.9	60.6	54.5	48.9
(ES-F	46.6	46.3	47.3	47.5	47.9	48.3	50.6	53.7	58.2	57.2	53.7	48.4
1CL-F	46.4	46.8	48.5	48.7	49.5	49.8	52.0	54.8	59.4	57.6	53.5	48.1
RCL-F	46.4	46.8	48.5	48.8	49.6	49.9	52.0	54.9	59.4	57.6	53.4	48.1
10-F	46.2	47.4	49.7	50.1	51.3	51.7	53.7	56.1	60.7	58.1	53.2	47.7
⊀B~F	45.5	47.7	51.0	51.6	54.0	54.3	56.2	58.0	62.8	58.7	53.1	46.9
₹8 -F	45.4	48.0	51.6	52.5	55.1	55.5	57.3	58.9	63.5	59.0	53.0	46.8

OPERATIONAL TEMPERATURE CONTROL STUDY N11: D-LM-075.PRE CVP-OCAP 7/30/92

		_			м	J	J	A	s	0	И	D
CATION	J	F	M	A	М	3	3	••				
rLO-TAF	ø.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
rLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF	21.	19.	23.	22.	104.	156.	121.	156.	28.	126.	72.	42.
TPO-F	44.2	43.6	43.6	43.6	43.6	43.6	43.7	44.5	45.8	47.2	49.6	47.0
TR-TAF	21.	19.	23.	22.	104.	156.	121.	156.	28.	126.	72.	42.
TRF	44.2	43.6	43.6	43.6	43.6	43.6	43.7	44.5	45.8	47.2	49.6	47.0
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
LEW-F	40.1	43.9	48.9	54.8	50.6	50.5	52.5	50.6	58.7	48.8	47.5	42.8
DC-F	40.5	43.7	47.4	52.4	52.0	51.6	59.6	53.6	60.8	50.6	47.8	42.1
NF-F	41.2	43.8	46.5	50.8	54.5	54.3	66.4	58.5	64.3	53.5	48.4	40.7
SCTAF	20.	. 30.	30.	0.	30.	60.	100.	100.	30.	100.	60.	30.
90-F	43.9	43.9	44.1	0.0	45.0	47.5	54.7	56.8	57.2	54.4	51.5	47.4
3742-TAF	0.	0.	0.	ø.	0.	Ø.	0.	0.	Ō.	0.	0.	0.
S742-F	0.0	45.3	45.3	0.0	0.0	0.0	0.0	45.4	0.0	0.0	0.0	0.0
\$815-TAF	180.	151.	155.	343.	421.	537.	696.	576.	324.	169.	163.	201.
S815-F	47.1	45.8	45.8	45.8	45.9	46.3	48.2	52.7	58.0	60.8	54.8	49.4
3942-TAF	0.	0.	0.	Θ.	0.	0.	0.	Ø.	0.	0.	0.	0.
\$942-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SHTAF	180.	151.	155.	343.	421.	537.	696.	576.	324.	169.	163.	201.
SH- F	47.1	45.8	45.8	45.8	45.9	46.3	48.2	52.7	58.0	60.8	54.8	49.4
KASC-F	46.8	46.6	47.8	47.6	48.4	48.5	50.2	54.4	59.5	61.2	54.3	48.9
KES-F	46.5	46.2	47.2	47.6	48.2	48.4	50.8	54.8	59.3	58.7	53.5	48.7
ACL-F	46.3	46.7	48.4	49.0	50.0	50.1	52.2	56.0	60.4	59.0	53.3	48.4
RCL-F	16.3	46.7	48.4	49.0	50.1	50.2	52.3	56.1	60.4	59.0	53.3	48.3
CC-F	46.1	47.3	49.7	50.5	52.2	52.1	54.0	57.5	61.6	59.4	53.0	48.0
BB-F	45.4	47.7	51.0	52.2	55.2	54.9	56.6	59.6	63.6	60.0	53.0	47.0
RB-F	45.4	48.0	51.6	53.1	56.3	56.1	57.8	60.7	64.2	60.2	52.9	46.9

OPERATIONAL TEMPERATURE CONTROL STUDY N12: D-LO-050.PRE CVP-OCAP 7/30/92

CATION	J	F	М	A	M	J	J	A	\$	0	N	D
LO-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
L0-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PO-TAF	21.	19.	23.	22.	104.	156.	111.	146.	24.	107.	42.	22.
PO-F	43.9	43.2	43.2	43.2	43.2	43.7	45.5	48.2	0.0	52.7	53.1	46.4
R-TAF	21.	19.	23.	22.	104.	156.	111.	146.	24.	107.	42.	22.
R-F	43.9	43.2	43.2	43.2	43.2	43.7	45.5	48.2	50.5	52.7	53.1	46.4
EW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
EWF	39.9	43.8	48.8	54.7	50.3	50.6	54.5	53.8	60.8	53.2	48.4	40.4
PC-F	40.3	43.6	47.3	52.3	51.7	51.7	61.0	56.5	62.6	54.4	48.5	40.1
!F-F'	41.1	43.7	46.4	50.8	54.3	54.4	67.2	60.7	65.6	56.5	48.8	39.3
C-TAF	20.	30.	30.	0.	30.	60.	90.	90.	26.	80.	30.	10.
·CF	43.9	43.9	44.1	0.0	45.0	47.5	54.4	58.7	59.1	57.4	53.1	47.7
3742-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
742-F	0.0	45.0	45.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3815-TAF	180.	151.	155.	283.	405.	498.	614.	488.	331.	151.	193.	221.
3815~F	47.0	45.7	45.7	45.7	45.8	46.4	48.6	52.8	58.0	60.8	54.8	49.4
1942TAF	0.	0.	0.	ø.	0.	0.	0.	0.	ø.	0.	0.	0.
1942-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SH-TAF	180.	151.	155.	283.	405.	498.	614.	488.	331.	151.	193.	221.
3H-F	47.0	45.7	45.7	45.7	45.8	46.4	48.6	52.8	58.0	60.8	54.8	49.4
(ASC-F	46.7	46.5	47.7	47.8	48.4	48.8	50.8	54.9	59.4	61.2	54.3	48.9
(FS-F	46.4	46.1	47.1	47.8	48.2	48.7	51.3	55.5	59.4	59.9	54.1	48.8
1CL-F	46.2	46.6	48.3	49.4	50.1	50.4	52.9	56.9	60.4	60.2	53.9	48.5
301-F	46.2	46.6	48.4	49.5	50.2	50.5	52.9	57.0	60.5	60.1	53.8	48.5
CC-F	46.0	47.2	49.6	51.2	52.3	52.5	54.8	58.6	61.6	60.5	53.5	48.1
3 R-F	45.4	47.6	50.9	53.0	55.3	55.4	57.6	60.9	63.6	60.9	53.3	47.1
RB-F	45.3	47.9	51.5	54.0	56.5	56.7	58.8	61.9	64.2	61.0	53.2	47.0

OPERATIONAL TEMPERATURE CONTROL STUDY N13: C-HI-100.PRE CVP-OCAP 7/30/92

OCATION	3	F	М	Α	М	J	J	Α	S	0	N	D
TLO-TAF TLO-F	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	° 0.	0. 0.0	0. 0.0
TPO-TAF TPO-F	23. 44.6	17. 44.1	38. 44.1	30. 44.1	139. 44.1	219. 44.1	182. 44.1	157. 44.1	58. 44.2	102. 44.3	46. 44.6	31.
TR-TAF	23.	17.	38.	30.	139.	219.	182.	157.	58.	102.	46.	31.
TR-F	44.6	44.1	44.1	44.1	44.1	44.1	44.1	44.1	44.2	44.3	44.6	44.9
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
LEW-F	40.4	44.0	48.0	53.4	49.5	49.2	50.2	50.3	53.1	47.1	43.8	40.8
DC-F	40.7	43.8	46.9	51.6	51.0	50.5	57.9	53.4	56.1	49.1	44.9	40.4
NF-F	41.3	43.8	46.3	50.5	53.9	53.4	65.5	58.3	60.8	52.4	46.7	39.5
SC-TAF	Ø.	0.	0.	0.	60.	120.	160.	100.	60.	100.	60.	10.
SC-F	0.0	0.0	0.0	0.0	44.4	51.1	54.1	55.0	55.8	54.3	51.9	47.2
S742~TAF	0.	0.	0.	0.	0.	Θ.	ο.	0.	0.	0.	0.	0.
S742-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6
\$815TAF	200.	181.	185.	386.	529.	532.	699.	752.	389.	269.	232.	255.
S815F	47.4	46.2	46.2	46.2	46.2	46.3	47.5	51.9	58.7	61.6	55.0	49.6
5942 -TAF	0.	0.	0.	0.	0.	0.	0.	0.	Ø.	0.	0.	0.
9942- F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SH-TAF	200.	181.	185.	386.	529.	532.	699.	752.	389.	269.	232.	255.
SH-F	47.4	46.2	46.2	46.2	46.2	46.3	47.5	51.9	58.7	61.6	55.0	49.6
KASC-F	47.1	46.8	47.8	47.7	48.2	48.6	49.5	53.3	59.9	61.7	54.6	49.2
KES-E	47.1	46.8	47.8	47.7	47.8	49.1	50.4	53.5	59.4	59.7	54.0	49.1
ACL-F	46.8	47.3	48.9	48.9	49.3	50.6	51.7	54.6	60.2	59.9	53.8	48.8
RCL-F	46.8	47.3	49.0	49.0	49.4	50.7	51.8	54.6	60.2	59.9	53.8	48.7
CC-F	46.5	47.7	50.1	50.4	51.1	52.4	53.4	55.9	61.2	60.1	53.5	48.4
8BF	45.8	48.0	51.3	51.9	53.7	54.9	55.9	57.8	62.9	60.4	53.4	47.3
RB-F	45.7	48.3	51.8	52.8	54.7	56.1	57.1	58.7	63.5	60.6	53.3	47.2

OPERATIONAL TEMPERATURE CONTROL STUDY N14: C-HM-075.PRE CVP-OCAP 7/30/92

CATION	J	F	М	Α	М	J	j	Α	S	0	И.	D
LO-TAF	0.	0.	0.	0.	0.	0 .	0.	0.	0.	0.	0.	0.
1.0-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PO-TAF	23.	17.	38.	30.	109.	219.	182.	217.	88.	122.	46.	51.
PO-F	44.5	43.9	43.9	43.9	43.9	43.9	44.0	44.6	46.5	49.2	51.8	47.2
RTAF	23.	17.	38.	30.	109.	219.	182.	217.	88.	122.	46.	51.
R-F	44.5	43.9	43.9	43.9	43.9	43.9	44.0	44.6	46.5	49.2	51.8	47.2
EW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
EW-F	40.3	44.0	47.9	53.4	50.5	49.0	50.1	49.1	52.2	50.5	47.9	43.5
)C-F	40.6	43.8	46.9	51.6	51.9	50.3	57.9	52.3	55.3	52.1	48.1	42.7
₹F-F	41.2	43.8	46.3	50.5	54.4	53.3	65.4	57.5	60.2	54.7	48.6	41.1
C-TAF	0.	0.	0.	0.	30.	120.	160.	160.	90.	120.	60.	30.
-C-F	0.0	0.0	0.0	0.0	44.0	49.3	54.0	54.2	54.8	55.1	52.3	47.2
1742-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
742-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1815TAF	200.	181.	185.	338.	496.	497.	673.	649.	314.	233.	246.	219.
:815F	47.3	46.0	46.0	46.0	46.1	46.6	49.0	55.2	62.6	61.9	54.8	49.3
3942-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	Ø.	0.	0.
-942 -F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3H -TAF	200.	181.	185.	338.	496.	497.	673.	649.	314.	233.	246.	219.
11 - F	47.3	46.0	46.0	46.0	46.1	46.6	49.0	55.2	62.6	61.9	54.8	49.3
'ASC-F	46.9	46.7	47.6	47.8	48.2	48.9	51.0	56.6	63.6	62.0	54.4	48.8
(ES-F	46.9	46.7	47.6	47.8	48.0	49.0	51.6	56.1	61.6	59.7	54.0	48.6
ICIF	46.7	47.2	48.7	49.2	49.6	50.6	52.9	57.1	62.4	59.9	53.8	48.3
3CL-F	46.6	47.2	48.8	49.2	49.7	50.7	53.0	57.2	62.4	59.9	53.7	48.2
CC-F	46.4	47.7	50.0	50.7	51.5	52.5	54.6	58.4	63.3	60.1	53.5	47.9
3R−F	45.7	47.9	51.2	52.4	54.3	55.1	57.1	60.1	64.7	60.4	53.4	47.0
₹8~F	45.6	48.2	51.8	53.3	55.4	56.3	58.2	61.0	65.2	60.6	53.3	46.9

OPERATIONAL TEMPERATURE CONTROL STUDY N15: C-LM-050.PRE CVP-OCAP 7/30/92

ICATION	J	F	M	Α	М	J	J	Α	S	0	И	D
LO-TAF	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	Ø. Ø. Ø	Ø. Ø. Ø
TPO-TAF	23.	17.	38.	30.	109.	159.	172.	147.	28.	102.	46.	51.
IPO→F	44.3	43.7	43.7	43.7	43.7	43.7	44.3	47.0	49.5	51.8	53.0	46.6
TR-TAF	23.	17.	38.	30.	109.	159.	172.	147.	28.	102.	46.	51.
IR- F	44.3	43.7	43.7	43.7	43.7	43.7	44.3	47.0	49.5	51.8	53.0	46.6
LEW-TAF	.18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
. EW-F	40.3	43.9	47.8	53.3	50.4	50.5	50.7	52.9	59.8	52.6	48.6	43.1
)C-F 4F- F	40.6 41.2	43.7 43.8	46.8	51.6 50.5	51.8	51.6	58.3	55.7	61.7	53.9	48.7	42.3
41 - 1	41.2	43.8	46.3	50.5	54.4	54.3	65.7	60.1	65.0	56.1	48.9	40.8
SC-TAF	0.	0.	0.	0.	30.	60.	150.	90.	30.	100.	60.	30.
\$CF-	0.0	0.0	0.0	0.0	44.0	46.5	54.5	55.9	57.6	57.0	52.8	47.2
5742-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
3742-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9815-TAF	200.	181.	185.	339.	447.	500.	520.	509.	358.	195.	163.	201.
9815 F	47.2	45.9	45.9	45.9	46.0	47.0	49.8	55.3	62.5	61.6	54.6	49.3
6942 -TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0942 F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SH-TAF	200.	181.	185.	339.	447.	500.	520.	509.	358.	195.	163.	201.
H F	47.2	45.9	45.9	45.9	46.0	47.0	49.8	55.3	62.5	61.6	54.6	49.3
KASC - F	46.8	46.6	47.5	47.7	48.4	49.3	52.3	57.1	63.4	61.8	54.2	48.8
FFS F	46.8	46.6	47.5	47.7	48.1	49.0	52.8	56.9	63.0	60.2	53.8	48.6
ACI, -F	46.6	47.1	48.6	49.1	49.9	50.7	54.4	58.2	63.7	60.4	53.6	48.3
RCL - F	46.5	47.1	48.7	49.2	50.0	50.8	54.5	58.3	63.7	60.4	53.5	48.2
CC-F	46.3	47.6	49.9	50.7	52.0	52.8	56.3	59.7	64.5	60.6	53.3	47.9
BR F	45.6	47.9	51.1	52.3	54.9	55.6	59.0	61.8	65.7	60.9	53.2	47.0
R8-F	45.5	48.2	51.7	53.2	56.0	56.9	60.2	62.8	66.1	61.0	53.0	46.9

OPERATIONAL TEMPERATURE CONTROL STUDY N16: C-LO-025.PRE CVP-OCAP 7/30/92

ATION	J	F	М	Α	М	J	J	Α	S	0	N	0
O-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
O-TAF	23.	17.	38.	30.	109.	129.	52.	87.	28.	102.	36.	21.
'0-F	44.0	43.3	43.3	43.3	43.5	45.0	47.2	49.2	51.3	54.5	52.9	45.6
?-TAF	23.	17.	38.	30.	109.	129.	52.	87.	28.	102.	36.	21.
₹F	44.0	43.3	43.3	43.3	43.5	45.0	47.2	49.2	51.3	54.5	52.9	45.6
EW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
-W-F	40.2	43.9	47.7	53.2	50.2	52.7	62.1	57.6	60.4	54.6	47.8	10.0
D⊸F	40.5	43.7	46.8	51.5	51.6	53.6	66.5	59.8	62.2	55.6	48.1	39.7
F	41.2	43.8	46.2	50.5	54.3	55.9	70.2	63.3	65.4	57.4	48.5	39.0
C-TAF	0.	0.	0:	0.	30.	30.	30.	30.	30.	100.	50.	0.
?- F	0.0	0.0	0.0	0.0	44.0	45.2	48.3	52.3	56.7	59.0	53.2	0.0
742-TAF	0.	0.	0.	0.	0.	0.	0.	9.	0.	0.	0.	0.
742F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	0.0
315-TAF	200.	181.	185.	258.	393.	463.	551.	475.	328.	163.	173.	231.
315F	47.0	45.8	45.8	45.8	46.0	47.2	50.5	56.7	63.7	61.3	54.6	49.2
942-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
942~F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
H-TAF	200.	181.	185.	258.	393.	463.	551.	475.	328.	163.	173.	231.
11-F	47.0	45.8	45.8	45.8	46.0	47.2	50.5	56.7	63.7	61.3	54.6	49.2
ASC-F	46.7	46.5	47.4	48.1	48.6	49.7	52.8	58.5	64.6	61.6	54.1	48.8
FS-F	46.7	46.5	47.4	48.1	48.3	49.4	52.6	58.1	63.9	60.6	53.9	48.8
CL-F	46.5	47.0	48.6	49.8	50.2	51.3	54.4	59.6	64.6	60.8	53.7	48.5
CL-F	46.4	47.0	48.6	49.9	50.3	51.4	54.5	59.6	64.6	60.8	53.5	48.4
C-F	46.2	47.5	49.8	51.7	52.5	53.6	56.5	61.2	65.4	61.0	53.3	48.1
8- F	45.5	47.8	51.1	53.5	55.5	56.6	59.6	63.4	66.5	61.2	53.2	47.1
8- F	45.5	48.1	51.7	54.6	56.7	58.0	60.9	64.5	66.9	61.4	53.0	47.0

OPERATIONAL TEMPERATURE CONTROL STUDY N17: E-HI-050.PRE CVP-OCAP 7/30/92

DOATION	,	-	_			,	,	Α.		0	A.1	0	
DCATION	J	F	M	Α	M	J	3	A	S	U	И	D	
TLO-TAF	Θ.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
110F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
TPO-TAF	55.	81.	131.	123.	201.	260.	183.	138.	28.	103.	46.	52.	
TP0F	44.7	44.2	44.2	44.2	44.2	44.2	44.5	46.1	48.2	50.8	52.7	46.5	
TR-TAF	55.	81.	131.	123.	201.	260.	183.	138.	28.	103.	46.	52.	
TR-F	44.7	44.2	44.2	44.2	44.2	44.2	44.5	46.1	48.2	50.8	52.7	46.5	
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.	
IEW F	42.3	44.1	45.6	47.5	48.0	48.5	50.5	52.5	59.4	51.8	48.5	43.1	
DC-F	42.0	43.8	45.7	48.4	49.8	49.8	58.1	55.3	61.4	53.2	48.6	42.3	
NF- F	41.8	43.8	45.9	49.4	53.1	52.9	65.6	59.8	64.7	55.5	48.9	40.8	
SC-TAF	30.	60.	90.	90.	120.	160.	160.	80.	30.	100.	60.	30.	
SC F	43.7	43.9	45.4	46.6	49.0	51.3	53.4	55.0	56.4	56.5	52.7	47.2	
3742-TAF	0.	0.	0.	0.	0.	0.	0.	Θ.	ø.	0.	Θ.	0.	
5742-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\$815-TAF	170.	167.	193.	275.	510.	549.	710.	693.	358.	279.	250.	216.	
9815-F	47.5	46.3	46.3	46.3	46.3	46.5	49.1	58.5	66.5	62.5	54.6	48.7	
S942-TAF	0.	0.	0.	Θ.	0.	0.	0.	0.	0.	0.	0.	0.	
S942F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
SH-TAF	170.	167.	193.	275.	510.	549.	710.	693.	358.	279.	250.	216.	
SH- F	47.5	46.3	46.3	46.3	46.3	46.5	49.1	58.5	66.5	62.5	54.6	48.7	
KASC-F	47.1	47.0	47.8	48.4	48.3	48.7	51.0	59.7	67.1	62.5	54.3	48.3	
KES-F	46.6	46.2	47.0	48.0	48.4	49.3	51.4	59.2	66.3	60.9	54.0	48.2	
ACL-F	46.4	46.6	47.9	49.2	49.8	50.7	52.8	60.1	66.7	61.0	53.8	47.9	
BCL-F	46.3	46.6	47.9	49.3	49.9	50.8	52.8	60.2	66.7	61.0	53.7	47.8	
CC-F	46.1	47.1	48.9	50.7	51.4	52.3	54.3	61.2	67.2	61.2	53.5	47.6	
BB F	45.5	47.5	50.0	52.2	53.8	54.7	56.8	62.8	67.9	61.3	53.4	46.9	
RBF	45.4	47.8	50.5	53.1	54.8	55.8	57.8	63.5	68.2	61.4	53.3	46.8	

OPERATIONAL TEMPERATURE CONTROL STUDY N18: E-HM-000.PRE CVP-OCAP 7/30/92

'ATION	J	F	М	Α	· M	J	J	Α	\$	0	14	D
LO-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	ø.
LO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PO-TAF	55.	51.	72.	63.	171.	220.	143.	88.	28.	122.	46.	52.
P0-F	44.6	44.0	44.0	44.0	44.0	44.0	44.8	47.2	49.6	53.9	53.0	45.6
R-TAF	55.	51.	72.	63.	171.	220.	143.	88.	28.	122.	46.	52.
R-F	44.6	44.0	44.0	44.0	44.0	44.0	44.8	47.2	49.6	53.9	53.0	45.6
ELI-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
EW-F	42.2	44.0	46.5	49.8	48.5	49.1	52.2	56.2	59.8	54.0	48.6	42.6
C-F	41.9	43.8	46.1	49.7	50.2	50.4	59.4	58.6	61.7	55.1	48.7	41.9
FF	41.8	43.8	46.0	49.8	53.4	53.3	66.3	62.4	65.0	57.0	48.9	40.6
C-TAF	30.	30.	30.	30.	90.	120.	120.	30.	30.	120.	60.	30.
C-F	43.7	43.8	44.2	45.4	48.0	51.9	53.7	56.1	56.7	57.2	52.9	47.2
.742TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
712-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0
815-TAF	170.	195.	251.	281.	471.	524.	633.	606.	318.	170.	178.	216.
815-F	47.3	46.1	46.1	46.1	46.2	47.3	52.7	64.6	67.5	60.8	54.2	48.4
942~TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
942-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
H-TAF	170.	195.	251.	281.	471.	524.	633.	606.	318.	170.	178.	216.
⊞-F	47.3	46.1	46.1	46.1	46.2	47.3	52.7	64.6	67.5	60.8	54.2	48.4
(ASC-F	46.9	46.7	47.3	48.2	48.4	49.5	54.6	65.6	68.0	61.2	53.8	48.0
ES-F	46.4	46.3	47.0	47.9	48.3	49.9	54.5	65.2	67.0	59.5	53.6	47.9
1CL-F	46.2	46.7	47.8	49.4	49.9	51.4	55.8	65.9	67.5	59.8	53.4	47.7
3CL-F	46.2	46.8	47.9	49.5	49.9	51.5	55.9	66.0	67.5	59.8	53.3	47.6
C-F	46.0	47.2	48.8	51.1	51.7	53.2	57.4	66.9	68.0	60.1	53.1	47.3
38-F	45.4	47.6	50.0	52.7	54.3	55.7	59.8	68.0	68.5	60.5	53.1	46.8
₹8-F	45.3	47.8	50.5	53.7	55.3	56.8	60.9	68.7	68.8	60.7	52.9	46.7

CADY.

OPERATIONAL TEMPERATURE CONTROL STUDY 801: W-HI-100.PRE - CVP-OCAP 7/30/92

BCATION	J	F	М	Α	M	J	J	Α	S	0	N	D
			٥.	0.	0.	0.	0.	0.	0.	0.	0.	0.
TLO-TAF TLO-F	0. 0.0	0. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10-1	0.0	0.0								4.40	90.	40.
TPO-TAF	21.	100.	84.	107.	212.	270.	197.	174.	24.	142. 44.1	44.5	44.9
IPO-F	44.5	43.8	43.8	43.8	43.8	43.8	43.8	43.8	43.9	44.1	44.5	771.2
		4.0.0	0.4	107.	212.	270.	197.	174.	24.	142.	90.	40.
TR-TAF	21.	100.	84.	43.8	43.8	43.8	43.8	43.8	43.9	44.1	44.5	44.9
TR-F	44.5	43.8	43.8	43.0	40.0	4010						
LELL TAS	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
LEW-TAF LEW-F	40.1	43.B	46.1	47.6	47.5	48.0	49.5	49.5	59.2	46.2	44.1	41.5
DC -F	40.5	43.6	45.9	48.5	49.4	49.4	57.4	52.7	61.2	48.3	45.2	41.0
NF-F	41.2	43.7	46.0	49.4	52.9	52.5	65.2	57.8	64.6	51.8	46.8	39.9
141								4.00	0.	120.	90.	60.
SC-TAF	60.	150.	120.	120.	150.	180.	180.	120.	0.0	52.4	49.5	46.8
SCF	43.6	44.5	45.7	47.4	50.1	51.7	53.4	54.8	0.0	32.7	43.0	
0740 TAE	0.	ø.	0.	0.	0.	0.	0.	301.	536.	153.	0.	0.
\$742TAF \$742F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45.0	49.7	52.8	0.0	0.6
17 12 1	0.0	0.0							_	4.05	2	0.
3815 -TAF	0.	0.	0.	0.	0.	332.	605.	309.	0.	195.	3.	0.0
S815F	0.0	0.0	0.0	0.0	0.0	45.3	45.6	47.7	0.0	56.7	58.7	0.0
		750	500	517.	652.	226.	137.	Ø.	0.	0.	345.	700.
3942 -TAF	700.	750.	580.	46.4	47.7	49.6	53.0	0.0	- 0.0	0.0	57.5	50.4
3942 F	47.2	45.8	45.8	40.4	7/ • /	15.00						
SHTAF	700.	750.	580.	517.	652.	558.	742.	609.	536.	348.	348.	700.
SH-F	47.2	45.8	45.8	46.4	47.7	47.0	47.0	46.4	49.7	55.0	57.5	50.4
KASC-F	47.1	46.0	46.4	47.5	49.2	49.1	48.9	48.4	51.1	55.7	57.0	50.2
1.1130 T	****									54.0	cc c	49.9
KES-F	46.8	45.8	46.3	47.5	49.4	49.7	49.8	49.5	51.1	54.9	55.5 55.3	49.8
ACL-F	46.8	45.9	46.7	48.3	50.4	51.1	51.1	50.9	52.3	55.3	55.2	49.8
BCL-F	46.7	45.9	46.7	48.3	50.5	51.1	51.2	51.0	52.4	55.3 55.8	54.9	49.6
CCF	46.7	46.1	47.2	49.2	51.7	52.6	52.7	52.6	53.7	56.6	54.5	48.6
RB F	16.4	46.3	47.9	50.3	53.6	54.9	55.2	55.1	56.5 57.3	56.9	54.4	48.5
RB · F	46.3	46.4	48.3	51.0	54.5	56.0	56.2	56.2	5/.3	50.5	97.7	,,,,,,

TARGET: RB-3W; REDUCED SC 122.2 TAF IN SEPT.

OPERATIONAL TEMPERATURE CONTROL STUDY 802: W-HM-100.PRE - CVP-OCAP 7/30/92

OCATION	J	F	M	Α	М	J	J	Α	S	0	N	D
TLO-TAF	0.	0.	0.	0.	ø.	0.	0.	0.	0.	0.	0.	0.
TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF	21.	17.	23.	47.	122.	150.	227.	174.	24.	142.	90.	40.
TPO-F	44.3	43.6	43.6	43.6	43.6	43.6	43.6	43.6	43.6	43.7	44.1	44.4
TR-TAF	21.	17.	23.	47.	122.	150.	227.	174.	24.	142.	90.	40.
TR-F	44.3	43.6	43.6	43.6	43.6	43.6	43.6	43.6	43.6	43.7	44.1	44.4
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
LEW-F	40.1	43.9	48.9	50.9	49.7	50.8	48.7	49.3	59.1	45.9	43.8	41.3
DC-F	40.5	43.7	47.4	50.3	51.2	51.9	56.8	52.5	61.1	48.1	44.9	40.8
NF-F	41.2	43.8	46.5	50.0	54.0	54.6	64.9	57.6	64.5	51.6	46.7	39.8
SCTAF	60.	66.	60.	60.	60.	60.	210.	120.	0.	120.	90.	60.
SCF	43.6	43.9	45.3	46.9	48.9	52.0	53.9	54.9	0.0	52.3	49.4	46.8
5742-TAF	0.	0.	0.	0.	0.	0.	371.	90.	430.	62.	0.	9.
S742-F	0.0	- 0.0	0.0	0.0	0.0	0.0	44.9	45.4	48.5	51.8	0.0	0.0
\$815-TAF	0.	0.	0.	0.	0.	234.	253.	537.	0.	184.	1.	0.
S815~F	0.0	0.0	0.0	0.0	0.0	45.2	45.5	47.7	0.0	56.1	57.6	0.0
S942-TAF	700.	750.	580.	517.	652.	476.	0.	41.	0.	0.	190.	260.
S942-F	47.2	45.8	45.8	46.4	47.7	49.8	0.0	58.2	0.0	0.0	57.4	50.5
SH-TAF	700.	750.	580.	517.	652.	710.	624.	668.	430.	246.	191.	260.
SHF	47.2	45.8	45.8	46.4	47.7	48.3	45.2	48.0	48.5	55.0	57.4	50.5
KASC-F	47.1	46.0	46.4	47.5	49.2	49.9	47.6	49.8	50.4	55.9	56.6	50.0
KESF	46.8	45.8	46.3	47.4	49.2	50.1	49.2	50.6	50.4	54.7	54.3	49.4
ACL-F	46.8	46.0	46.7	48.3	50.4	51.3	50.7	51.9	51.9	55.3	54.1	49.1
BCL-F	46.7	46.0	46.8	48.4	50.4	51.4	50.7	51.9	52.0	55.3	54.0	49.1
CC-F	46.7	46.2	47.3	49.4	51.8	52.8	52.4	53.4	53.7	55.9	53.7	48.7
BB-F	46.4	46.4	48.1	50.5	53.9	55.0	55.1	55.7	57.0	56.9	53.5	47.5
R8-F	46.3	46.5	48.4	51.2	54.8	56.0	56.3	56.7	57.9	57.3	53.4	47.4

TARGET: R8-4W; REDUCED SC 107.1 TAF IN SEPT.

OPERATIONAL TEMPERATURE CONTROL STUDY B03: W-LM-100.PRE - CVP-OCAP 7/30/92

CATION	J	F	М	Α	M	J	J	Α	S	0	N	D	
LO-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
L0-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
PO-TAF	21.	25.	23.	32.	92.	120.	122.	54.	24.	142.	60.	40.	
PO-F	44.1	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.4	43.7	43.9	
RTAF	21.	25.	23.	32.	92.	120.	122.	54.	24.	142.	60.	40.	
RF	44.1	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.4	43.7	43.9	
EW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.	
EU-F	40.0	43.7	48.9	52.8	51.1	52.0	52.2	58.3	59.0	45.6	43.4	41.6	
C-F	40.4	43.6	47.4	51.3	52.4	53.0	59.4	60.4	61.1	47.8	44.6	40.6	
F-F	41.1	43.7	46.5	50.4	54.8	55.4	66.3	63.8	64.5	51.4	46.5	39.6	
C-TAF	60.	75.	60.	45.	30.	30.	105.	0.	0.	120.	60.	60.	
C-F	43.6	43.9	45.5	46.7	47.5	49.2	54.4	0.0	0.0	53.2	50.6	47.0	
742-TAF	Ø.	0.	0.	0.	0.	0.	0.	0.	358.	13.	0.	0.	
742-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45.8	48.6	0.0	0.0	
815-TAF	0.	0.	Ø.	0.	Θ.	215.	487.	615.	0.	267.	1.	0.	
815-F	0.0	0.0	0.0	0.0	.0.0	45.0	45.4	46.8	0.0	54.8	56.8	0.0	
5942-TAF	169.	750.	580.	517.	652.	343.	268.	153.	ø.	12.	264.	171.	
8942-F	47.1	45.7	45.7	46.3	47.7	49.5	53.1	59.7	0.0	67.4	57.3	50.3	
SH-TAF	169.	750.	580.	517.	652.	558.	755.	768.	358.	292.	266.	171.	
SH-F	47.1	15.7	45.7	46.3	47.7	47.8	48.1	49.4	45.8	55.0	57.3	50.3	
KASC-F	46.7	45.9	46.3	47.5	49.2	49.8	49.9	50.9	48.2	55.8	56.8	49.6	
KES-F	45.9	45.7	46.2	47.4	49.1	49.8	50.4	50.9	48.2	55.0	55.7	48.9	
ΛCL-F	45.8	45.9	46.7	48.3	50.4	51.4	51.8	52.2	50.1	55.5	55.4	48.6	
RGL - F	45.7	45.9	46.7	48.4	50.4	51.5	51.9	52.3	50.3	55.5	55.3	48.5	
CC-F	45.6	46.1	47.2	49.4	51.8	53.3	53.5	53.8	52.4	56.1	55.0	48.1	
00…n BB f	45.2	46.3	48.0	50.6	54.0	56.0	56.0	56.0	56.5	56.9	54.5	47.1	
RR-F	45.1	46.4	48.4	51.3	54.9	57.2	57.1	57.1	57.6	57.3	54.3	47.0	

TARGET: BB-1W; REDUCED SC 45 TAF IN SEPT.

OPERATIONAL TEMPERATURE CONTROL STUDY 804: W-LO-100.PRE - CVP-OCAP 7/30/92

CATION	J	F	M	Α	М	J	J	A	s	0	И	0
TLO-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	9 .	0.
~LO~F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FPO-TAF	21.	25.	23.	32.	77.	105.	32.	54.	24.	122.	50.	20.
[PO-F	43.7	42.8	42.8	42.8	42.8	42.8	42.8	42.9	43.0	43.3	43.9	44.2
TR-TAF	21.	25.	23.	32.	77.	105.	32.	54.	24.	122.	50.	20.
「RF	43.7	42.8	42.8	42.8	42.8	42.8	42.8	42.9	43.0	43.3	43.9	44.2
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
_EWF	39.9	43.6	48.8	52.7	52.0	52.7	65.7	58.1	58.9	45.8	43.5	39.4
C-F	40.3	43.5	47.3	51.2	53.1	53.6	69.1	60.3	61.0	48.0	44.7	39.2
√F-F	41.1	43.7	46.4	50.4	55.2	55.9	71.7	63.7	64.4	51.5	46.5	38.7
SC-TAF	60.	75.	60.	45.	15.	15.	15.	0.	0.	100.	50.	40.
3CF	43.6	43.9	45.5	46.7	47.4	47.9	49.0	0.0	0.0	52.1	50.2	47.4
S742-TAF	0.	0.	0.	· 0.	0.	0.	0.	0.	358.	7.	0.	0.
3742-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45.6	48.4	0.0	0.0
S815-TAF	0.	0.	0.	0.	0.	221.	463.	623.	0.	196.	1.	0.
3815-F	0.0	0.0	0.0	. 0.0	0.0	44.9	45.3	46.7	0.0	54.8	56.4	0.0
3942TAF	140.	575.	580.	517.	652.	337.	367.	148.	0.	7.	231.	191.
3942-F	47.0	45.7	45.7	46.3	47.6	49.5	53.2	60.6	0.0	67.6	57.3	50.3
SHTAF	140.	575.	580.	517.	652.	558.	830.	771.	358.	210.	232.	191.
SH~ F	47.0	45.7	45.7	46.3	47.6	47.7	48.8	49.4	45.6	55.0	57.3	50.3
KASC-F	46.6	45.9	46.2	47.4	49.2	49.7	50.4	50.9	48.1	56.1	56.7	49.7
KES-F	45.7	45.7	46.1	47.3	49.2	49.7	50.4	50.9	48.1	54.8	55.5	49.3
ACL-F	45.6	45.9	46.6	48.2	50.4	51.3	51.8	52.2	50.0	55.5	55.2	48.9
BCLF	45.6	45.9	46.6	48.3	50.5	51.4	51.8	52.3	50.2	55.5	55.1	48.9
CC-F	45.4	46.1	47.1	49.3	51.9	53.3	53.5	53.7	52.3	56.2	54.8	48.5
88-F	45.0	46.4	48.0	50.5	54.1	56.0	56.0	56.0	56.4	57.2	54.3	47.2
R8-F	45.0	46.5	48,.3	51.2	55.1	57.2	57.2	57.1	57.5	57.6	54.1	47.1

TARGET: BB-1W; REDUCED SC 30.4 TAF IN SEPT.

OPERATIONAL TEMPERATURE CONTROL STUDY 805: A-HI-100.PRE - CVP-OCAP 7/30/92

CATION	J	F	M	Α	М	J	J	Α	S	0	N	D
LO-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
L0-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PO-TAF	31.	19.	28.	21.	86.	185.	171.	116.	24.	146.	101.	69.
P0-F	44.5	43.9	43.9	43.9	43.9	43.9	43.9	43.9	43.9	43.9	44.0	44.2
R-TAF	31.	19.	28.	21.	86.	185.	171.	116.	24.	146.	101.	69.
R-F	44.5	43.9	43.9	43.9	43.9	43.9	43.9	43.9	43.9	43.9	44.0	44.2
.EW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
.EW-F	41.0	44.0	48.6	55.1	51.9	49.8	50.4	52.0	59.2	46.0	43.7	42.2
DC-F	41.1	43.8	47.2	52.6	53.0	51.0	58.1	54.9	61.2	48.2	44.9	41.6
4F-F	41.4	43.8	46.4	50.8	55.2	53.8	65.6	59.5	64.6	51.6	46.6	40.3
SC-TAF	45.	45	45.	0.	15.	90.	150.	60.	0.	120.	90.	60.
sçF	43.7	43.8	44.4	0.0	45.8	48.2	54.9	55.4	0.0	52.8	49.4	46.4
3742TAF	0.	0.	0.	0.	0.	0.	0.	0.	355.	1.	0.	0.
5742-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	46.0	47.1	0.0	0.0
3815-TAF	ø.	0.	0.	Ø.	0.	0.	453.	577.	0.	274.	0.	0.
3815-F	0.0	0.0	0.0	0.0	0.0	0.0	45.8	46.2	0.0	53.1	55.4	0.0
5942-TAF	340.	430.	410.	217.	535.	536.	265.	181.	Θ.	45.	265.	380.
3942-F	47.3	46.0	46.0	46.2	46.9	48.4	51.8	60.0	0.0	66.7	57.1	50.3
SH-TAF	340.	430.	410.	217.	535.	536.	718.	759.	355.	321.	266.	380.
SH F	47.3	46.0	46.0	46.2	46.9	48.4	48.0	49.5	46.0	55.0	57.1	50.3
KASC-F	47.1	46.3	46.8	48.9	48.8	50.5	49.9	51.0	48.4	55.7	56.6	49.9
KES-F	46.7	46.1	46.6	48.9	48.7	50.2	50.8	51.3	48.4	54.9	54.8	49.4
ACL-F	46.6	46.3	47.1	50.8	50.3	51.7	52.1	52.5	50.3	55.4	54.6	49.2
BCL-F	46.6	46.3	47.2	50.9	50.3	51.8	52.2	52.6	50.4	55.4	54.5	49.2
CC-F	46.4	46.6	47.8	52.8	52.1	53.5	53.7	54.0	52.6	55.9	54.2	48.9
BB- F	46.0	46.9	48.8	54.6	54.6	56.0	56.2	56.1	56.6	56.7	53.9	47.8
RB-F	45.9	47.1	49.3	55.7	55.6	57.1	57.3	57.1	57.8	57.1	53.8	47.7

TARGET: B8-3N; REDUCED SC 90 TAF IN SEPT

FADY.

OPERATIONAL TEMPERATURE CONTROL STUDY 806: A-HM-100.PRE - CVP-0CAP 7/30/92

CATION	J	F	М	A	М	3	3	Α	s	0	И	D
1.0TAF	0.	0.	0.	0.0	0.	0.	0.	0.	0.	0.	Ø.	0.
LOF	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	Ø. Ø	0.0
PO-TAF	31.	19.	28.	21.	73.	138.	66.	56.	27.	146.	101.	39.
	44.4	43.7	43.7	43.7	43.7	43.7	43.7	43.7	43.7	43.7	43.9	44.1
R-TAF	31.	19.	28.	21.	73.	138.	66.	56.	27.	146.	101.	39.
	44.4	43.7	43.7	43.7	43.7	43.7	43.7	43.7	43.7	43.7	43.9	44.1
.EW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
EW-F	41.0	43.9	48.5	55.1	52.9	51.4	57.9	58.1	58.4	45.8	43.6	41.0
)C-F	41.1	43.7	47.2	52.6	53.9	52.4	63.5	60.3	60.6	48.0	44.8	40.6
≀F-F	41.4	43.8	46.4	50.8	55.7	55.0	68.6	63.7	64.1	51.5	46.6	39.6
SCTAF	45.	45.	45.	0.	0.	45.	45.	0.	0.	120.	90.	30.
SCF	43.7	43.8	44.4	0.0	0.0	46.5	48.7	0.0	0.0	52.7	49.2	47.1
3742-TAF	0.	0.	0.	0.	0.	0.	0.	0.	357.	7.	0.	0.
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45.9	47.2	0.0	0.0
3815TAF	0.	0.	0.	0.	0.	0.	424.	590.	0.	254.	1.	0.
3815F	0.0	0.0	0.0	0.0	0.0	0.0	45.7	46.1	0.0	54.2	56.7	0.0
3942-TAF	155.	213.	410.	217.	560.	574.	399.	130.	0.	21.	184.	201.
3942-F	47.3	45.9	45.9	46.1	46.8	48.6	52.5	62.0	0.0	67.5	57.2	50.3
SH-TAF	155.	213.	410.	217.	560.	574.	823.	721.	357.	283.	185.	201.
SH-E	47.3	45.9	45.9	46.1	46.8	48.6	49.0	49.0	45.9	55.0	57.2	50.3
(ASC-F	46.8	46.5	46.7	48.8	48.6	50.5	50.6	50.6	48.3	55.8	56.5	49.7
1ES-F NCL-F RCL-F DC-F RB-F RB-F	46.1 45.9 45.9 45.7 45.2	46.0 46.4 46.4 46.9 47.3 47.6	46.5 47.1 47.1 47.8 48.8 49.2	48.8 50.7 50.8 52.7 54.5 55.6	48.6 50.1 50.2 51.9 54.4 55.5	50.2 51.7 51.8 53.5 56.0 57.2	50.5 51.9 51.9 53.5 56.0 57.1	50.6 52.0 52.1 53.6 56.1 57.2	48.3 50.2 50.3 52.5 56.5 57.7	54.9 55.4 55.4 56.0 56.8 57.2	54.1 53.9 53.8 53.6 53.4 53.3	49.4 49.0 48.9 48.5 47.2 47.1

TARGET: 88-1W; REDUCED SC 30 TAF IN SEPT.

πΛDY.

OPERATIONAL TEMPERATURE CONTROL STUDY 807: A-LM-100.PRE - CVP-OCAP 7/30/92

CATION	J	F	M	Α	M	J	J	Α	S	0	И	D
LO-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
1.0-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PO-TAF	18.	19.	28.	21.	73.	99.	21.	56.	27.	146.	71.	39.
P0-F	44.2	43.4	43.4	43.4	43.4	43.4	43.4	43.4	43.5	43.6	44.1	44.6
R-TAF	18.	19.	28.	21.	73.	99.	21.	56.	27.	146.	71.	39.
R-F	44.2	43.4	43.4	43.4	43.4	43.4	43.4	43.4	43.5	43.6	44.1	44.6
EW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
EW-F	39.7	43.9	48.4	55.0	52.7	53.6	70.1	58.0	58.3	45.7	43.7	41.3
C-F	40.2	43.7	47.1	52.5	53.7	54.4	72.3	60.2	60.5	47.9	44.9	40.8
FF	41.0	43.8	46.4	50.8	55.6	56.6	73.4	63.6	64.0	51.4	46.6	39.8
C-TAF	32.	45.	45.	0.	2.	3.	0.	0.	30.	120.	60.	30.
C-F	43.8	43.9	44.5	0.0	45.6	45.8	0.0	0.0	46.9	50.2	48.6	47.0
742-TAF	0.	0.	0.	0.	0.	0.	0.	11.	328.	153.	0.	0.
742F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	44.8	46.0	51.3	0.0	0.0
815-TAF	0.	0.	0.	0.	0.	122.	548.	621.	0.	176.	6.	0.
815- F	0.0	0.0	0.0	0.0	0.0	45.4	45.6	47.0	0.0	58.2	60.6	0.0
942-TAF	168.	136.	140.	193.	560.	494.	320.	78.	0.	0.	253.	201.
1942-F	47.0	45.8	45.8	46.1	47.0	49.2	54.8	65.6	0.0	0.0	57.3	50.4
SH-TAF	168.	136.	140.	193.	560.	616.	868.	710.	328.	329.	259.	201.
H-F	47.0	45.8	45.8	46.1	47.0	48.4	49.0	49.0	46.0	55.0	57.4	50.4
ASC-F	46.7	46.7	48.0	49.0	48.8	50.2	50.5	50.6	48.7	55.7	56.8	49.8
FS-F	46.2	46.0	47.1	49.0	48.8	50.2	50.5	50.6	48.5	54.2	55.3	49.4
ICL-F	46.1	46.5	48.3	51.0	50.3	51.7	51.9	52.0	50.5	54.7	55.0	49.1
RCI F	46.0	46.6	48.4	51.1	50.4	51.8	51.9	52.1	50.6	54.7	54.9	49.0
CC-F	45.8	47.1	49.6	53.2	52.1	53.5	53.5	53.7	52.7	55.3	54.6	48.6
≀R~F	45.3	47.6	51.0	55.1	54.6	56.0	56.0	56.1	56.7	56.2	54.2	47.3
₹B-F	45.2	47.9	51.6	56.2	55.6	57.2	57.1	57.2	57.8	56.5	54.0	47.2

TARGET: BB-3W

OPERATIONAL TEMPERATURE CONTROL STUDY 808: A-LO-100.PRE - CVP-OCAP 7/30/92

CATION	J	F	М	Α	M	3	J	Α	S	0	N	O
O-TAF	0.	ø.	0.	0.	0.	0.	ø.	9 .	0.	0.	0.	ø.
.0-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70-TAF	18.	17.	18.	21.	73.	99.	21.	56.	24.	126.	61.	49.
70-F	43.7	42.9	42.9	42.9	42.9	43.0	43.3	43.7	44.2	45.3	46.9	46.5
7-TAF	18.	17.	18.	21.	73.	99.	21.	56.	24.	126.	61.	49.
?-F	43.7	42.9	42.9	42.9	42.9	43.0	43.3	43.7	44.2	45.3	46.9	46.5
EW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
EW-F	39.6	43.8	49.3	54.9	52.4	53.4	70.1	58.1	59.2	47.3	45.5	43.0
C-F	40.1	43.6	47.6	52.4	53.4	54.3	72.3	60.3	61.2	49.3	46.3	42.2
F- F	41.0	43.7	46.5	50.8	55.4	56.4	73.4	63.7	64.6	52.5	47.5	40.8
C-TAF	32.	42.	35.	0.	2.	3.	0.	ø.	27.	100.	50.	40.
C-F	43.8	43.9	44.3	0.0	45.1	45.4	0.0	0.0	46.5	50.7	49.7	47.1
740 545	0.	•	•	•	•	•	•	45	221	44.		
142-TAF	ν.	0.	0.	0.	0.	0.	0.	45.	331.	44.	0.	0.
742-TAF 742-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45.	46.5	50.3	0.0	0.0
	0.0 0.	0.0			0.0 0.							
742-F	0.0 0.	0.0	0.0	0.0	0.0	0.0	0.0	44.8	46.5	50.3	0.0	0.0
742-F 315-TAF	0.0 0.	0.0	0.0	0.0	0.0 0.	0.0 128.	0.0 554.	44.8 586.	46.5 0.	5 0. 3	0.0	0.0
742-F 315-TAF 315-F	0.0 0. 0.0	0.0 0. 0.0	0.0 0. 0.0	0.0 0. 0.0	0.0 0. 0.0	0.0 128. 45.4	9.9 554. 45.6	44.8 586. 47.0	9. 9. 9.9	50.3 87. 57.4	0.0 1. 57.7	0.0 0. 0.0
742-F 315-TAF 315-F -	0.0 0. 0.0 168.	0.0 0. 0.0	0.0 0. 0.0 149.	0.0 0. 0.0 193.	0.0 0. 0.0 559.	0.0 128. 45.4 491.	9.9 554. 45.6 314.	44.8 586. 47.0	9. 9. 9.9	50.3 87. 57.4	0.0 1. 57.7	0.0 0. 0.0
742-F 315-TAF 315-F 342-TAF 942-F	0.0 0.0 168. 47.0	0.0 0.0 138. 45.8	0.0 0.0 149. 45.8 149.	0.0 0.0 193. 46.1	0.0 0. 0.0 559. 47.0 559.	0.0 128. 45.4 491. 49.2 619. 48.4	0.0 554. 45.6 314. 55.0	44.8 586. 47.0 69. 65.9	9. 9. 9. 9.	50.3 87. 57.4 0.	0.0 1. 57.7 172. 57.3	0.0 0.0 191. 50.5
742-F 315-TAF 315-F 342-TAF 342-F H-TAF	0.0 0.0 168. 47.0	0.0 0.0 138. 45.8	0.0 0.0 149. 45.8	0.0 0.0 193. 46.1	0.0 0.0 559. 47.0	0.0 128. 45.4 491. 49.2 619.	0.0 554. 45.6 314. 55.0	44.8 586. 47.0 69. 65.9 700. 48.7	46.5 0.0 0.0 331.	50.3 87. 57.4 0. 0.0	0.0 1. 57.7 172. 57.3	0.0 0.0 191. 50.5
742-F 315-TAF 315-F 342-TAF 942-F	0.0 0.0 168. 47.0	0.0 0.0 138. 45.8	0.0 0.0 149. 45.8 149.	0.0 0.0 193. 46.1	0.0 0. 0.0 559. 47.0 559.	0.0 128. 45.4 491. 49.2 619. 48.4	0.0 554. 45.6 314. 55.0 868.	44.8 586. 47.0 69. 65.9 700. 48.7	46.5 0. 0.0 0. 0.0 331. 46.5	50.3 87. 57.4 0. 0.0	0.0 1. 57.7 172. 57.3 173. 57.3	0.0 0.0 191. 50.5
742-F 315-TAF 315-F 342-TAF 942-F	0.0 0.0 168. 47.0 168. 47.0 46.7 46.2 46.1	0.0 0.0 138. 45.8 138. 45.8	0.0 0.0 149. 45.8 149. 45.8	0.0 0.0 193. 46.1 193. 46.1	0.0 0.0 559. 47.0 559. 47.0 48.9	0.0 128. 45.4 491. 49.2 619. 48.4 50.2	0.0 554. 45.6 314. 55.0 868. 49.0 50.5	44.8 586. 47.0 69. 65.9 700. 48.7 50.4	46.5 0.0 0.0 0.0 331. 46.5 49.0	97. 57.4 0. 0.0 131. 55.0 56.6	0.0 1. 57.7 172. 57.3 173. 57.3	0.0 0.0 191. 50.5 191. 50.5 49.8
742-F 315-TAF 315-F 342-TAF 942-F H-TAF I- F ASC-F ESF CLF CLF	0.0 0.0 168. 47.0 168. 47.0 46.7 46.2 46.1	0.0 0.0 138. 45.8 138. 45.8 46.7	0.0 0.0 149. 45.8 149. 45.8 47.8	0.0 0.0 193. 46.1 193. 46.1 49.0 51.0 51.1	0.0 0.0 559. 47.0 559. 47.0 48.9	0.0 128. 45.4 491. 49.2 619. 48.4 50.2	0.0 554. 45.6 314. 55.0 868. 49.0 50.5	44.8 586. 47.0 69. 65.9 700. 48.7 50.4	46.5 0.0 0.0 331. 46.5 49.0 48.8	97. 57.4 0. 0.0 131. 55.0 56.6	0.0 1. 57.7 172. 57.3 173. 57.3 56.5	0.0 0.0 191. 50.5 191. 50.5 49.8
742-F 315-TAF 315-F - 342-TAF 342-F - H-TAF 1- F ASC-F ES-F CL-F CL-F C-F	0.0 0.0 168. 47.0 168. 47.0 46.7 46.2 46.1 46.0 45.8	0.0 0.0 138. 45.8 138. 45.8 46.7 46.6 46.6 47.2	0.0 0.0 149. 45.8 149. 45.8 47.8 47.1 48.3 48.4 49.6	0.0 0.0 193. 46.1 193. 46.1 49.0 51.0 51.1 53.2	0.0 0.0 559. 47.0 559. 47.0 48.9 50.4 50.5 52.1	0.0 128. 45.4 491. 49.2 619. 48.4 50.2 50.2 51.7 51.8 53.5	0.0 554. 45.6 314. 55.0 868. 49.0 50.5 50.5 51.9 51.9 53.5	44.8 586. 47.0 69. 65.9 700. 48.7 50.4 51.8 51.9 53.5	46.5 0.0 0.0 331. 46.5 49.0 48.8 50.7 50.8 52.9	50.3 87. 57.4 0. 0.0 131. 55.0 56.6 54.0 55.0 55.0 56.0	0.0 1. 57.7 172. 57.3 173. 57.3 56.5	0.0 0.0 191. 50.5 191. 50.5 49.8 49.3 49.0 48.9 48.5
742-F 315-TAF 315-F 342-TAF 942-F H-TAF I- F ASC-F ESF CLF CLF	0.0 0.0 168. 47.0 168. 47.0 46.7 46.2 46.1	0.0 0.0 138. 45.8 138. 45.8 46.7	0.0 0.0 149. 45.8 149. 45.8 47.8	0.0 0.0 193. 46.1 193. 46.1 49.0 51.0 51.1	0.0 0.0 559. 47.0 559. 47.0 48.9 50.4 50.5	0.0 128. 45.4 491. 49.2 619. 48.4 50.2 50.2 51.7 51.8	0.0 554. 45.6 314. 55.0 868. 49.0 50.5 50.5 51.9 51.9	44.8 586. 47.0 69. 65.9 700. 48.7 50.4 51.8 51.9	46.5 0.0 0.0 331. 46.5 49.0 48.8 50.7 50.8	50.3 87. 57.4 0. 0.0 131. 55.0 56.6 54.0 55.0 55.0	0.0 1. 57.7 172. 57.3 173. 57.3 56.5 55.0 54.6 54.5	0.0 0.0 191. 50.5 191. 50.5 49.8 49.3 49.0 48.9

TARGET: B8-3W

ABY.

OPERATIONAL TEMPERATURE CONTROL STUDY 809: D-HI-100.PRE - CVP-OCAP 7/30/92

OCATION	J	F	М	Α	М	J	J	Α	S	0	N	D
TLO-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF	21.	19.	23.	52.	104.	156.	171.	206.	24.	146.	72.	42.
TPO-F	44.6	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.1	44.3	44.6
TR-TAF	21.	19.	23.	52.	104.	156.	171.	206.	24.	146.	72.	42.
TR-F	44.6	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.0	44.1	44.3	44.6
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
I FW-F	40.2	44.0	49.0	50.7	50.9	50.9	50.5	48.9	59.2	46.1	43.9	41.4
OC-F	40.5	43.8	47.4	50.2	52.2	52.0	58.1	52.1	61.2	48.3	45.0	40.9
NF-F.	41.2	43.8	46.5	50.0	54.7	54.6	65.6	57.3	64.6	51.7	46.7	39.8
SC-TAF	20.	30.	30.	30.	30.	60.	150.	150.	0.	120.	60.	30.
SC-F	43.9	43.9	44.1	44.9	46.4	49.3	54.9	54.6	0.0	52.2	50.0	47.2
S742-TAF	0.	0.	0.	0.	0.	0.	0.	16.	268.	51.	0.	፡ છ
S742-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45.8	46.3	48.8	0.0	0.0
S815-TAF	0.	0.	0.	0.	0.	129.	582.	613.	0.	245.	1.	0.
\$815 -F	0.0	0.0	0.0	0.0	0.0	46.0	46.1	47.4	0.0	56.2	58.0	0.0
5942-TAF	200.	171.	210.	413.	493.	441.	144.	71.	0.	2.	249.	288.
9942-F	47.4	46.2	46.2	46.3	47.1	49.0	54.1	63.6	0.0	69.4	57.3	50.4
SH-TAF	200.	171.	210.	413.	493.	569.	726.	700.	268.	298.	250.	288.
SH~ F	47.4	46.2	46.2	46.3	47.1	48.3	47.7	49.0	46.3	55.0	57.3	50.4
KASCF	47.1	46.9	47.6	47.7	49.1	50.3	49.6	50.6	49.5	55.8	56.7	49.9
KES-F	46.8	46.5	47.2	47.5	48.9	50.2	50.5	51.3	49.5	54.8	55.4	49.6
ACL-F	46.6	46.9	48.1	48.6	50.5	51.7	51.9	52.5	51.9	55.3	55.1	49.3
RCI F	46.6	46.9	48.2	48.7	50.6	51.8	51.9	52.5	52.0	55.3	55.0	49.3
CC-F	46.3	47.4	49.2	49.9	52.4	53.5	53.5	53.9	54.5	55.8	54.7	48.9
BB-F	45.7	47.7	50.4	51.3	55.0	56.0	56.0	56.0	58.9	56.7	54.3	47.6
R8-F	45.6	48.0	51.0	52.1	56.0	57.1	57.1	56.9	60.1	57.1	54.1	47.5

TARGET: BB-24: REDUCED SC 75 TAF IN SEPT 28W

OPERATIONAL TEMPERATURE CONTROL STUDY 810: D-HM-100.PRE - CVP-0CAP 7/30/92

CCATION	J	F	М	Α	М	J	J	Α	s	0	И	D
TLO-TAF	0.	0.	0.	ø.	ø.	0.	0.	0.	0.	Ø .	0.	0.
TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF	18.	17.	18.	22.	134.	156.	161.	196.	68.	176.	72.	72.
TPO-F	44.4	43.8	43.8	43.8	43.8	43.8	43.8	44.0	44.6	46.3	48.4	47.2
TR-TAF	18.	17.	18.	22.	134.	156.	161.	196.	68.	176.	72.	72.
TR-F	44.4	43.8	43.8	43.8	43.8	43.8	43.8	44.0	44.6	46.1	48.4	47.2
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
LEW-F	39.8	44.0	49.5	54.9	49.4	50.7	50.7	49.1	52.3	47.5	46.8	44.5
DC-F	40.3	43.8	47.7	52.4	51.0	51.8	58.3	52.3	55.4	49.5	47.3	43.5
NF→F	41.1	43.8	46.6	50.8	53.9	54.5	65.7	57.5	60.3	52.7	48.1	41.7
SC-TAF	17.	27.	25.	0.	60.	60.	140.	140.	70.	150.	60.	60.
SC-F	43.9	44.0	44.1	0.0	45.4	49.4	55.0	54.8	55.5	52.6	50.8	47.1
S742-TAF	ø.	0.	0.	0.	0.	0.	0.	37.	288.	122.	0.	0.
S742F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45.7	46.9	52.2	0.0	0.0
S815-TAF	0.	0.	0.	0.	0.	204.	586.	559.	0.	84.	2.	0.
S815-F	0.0	0.0	0.0	0.0	0.0	45.9	46.0	48.0	0.0	59.0	60.4	0.0
5942-TAF	183.	153.	160.	403.	493.	396.	117.	102.	0.	0.	207.	171.
S942-F	47.3	46.1	46.1	46.5	47.8	50.6	57.8	69.1	0.0	0.0	57.2	50.4
SH-TAF	183.	153.	160.	403.	493.	599.	703.	699.	288.	206.	209.	171.
SH-F	47.3	46.1	46.1	46.5	47.8	49.0	48.0	51.0	46.9	55.0	57.2	50.4
KASC-F	47.0	46.8	48.0	47.9	49.8	50.8	49.9	52.5	49.8	56.1	56.6	49.7
KES-F	46.7	46.4	47.5	47.9	49.3	50.7	50.7	52.9	50.9	54.6	55.3	49.0
ACL-F	46.5	46.9	48.6	49.1	50.8	52.1	52.1	54.0	52.6	55.2	55.0	48.7
BCL-F	46.5	46.9	48.7	49.1	50.9	52.2	52.2	54.1	52.7	55.2	54.9	48.6
CC-F	46.2	47.4	49.9	50.4	52.6	53.8	53.8	55.4	54.6	55.9	54.6	48.2
88F	45.6	47.8	51.1	51.9	55.0	56.1	56.3	57.3	58.2	56.8	54.1	47.1
RBF	45.5	48.1	51.7	52.7	56.0	57.2	57.5	58.2	59.2	57.3	53.9	47.0

TARGET: BB-4W

OPERATIONAL TEMPERATURE CONTROL STUDY 811: D-LM-075.PRE - CVP-0CAP 7/30/92

LOCATION	J	F	М	Α	М	J	J	Α	ŝ	0	н	D
TLO-TAF	0.	0.	o .	9.	0.	0.	0.	0.	0.	0.	0.	9).
TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0
TPO-TAF	21.	19.	23.	22.	. 104.	156.	121.	156.	28.	126.	72.	42.
TPO-F	44.2	43.6	43.6	43.6	43.6	43.6	43.7	44.5	45.8	47.2	49.6	47.0
TR-TAF	21.	19.	23.	22.	104.	156.	121.	156.	28.	126.	72.	42.
TR-F	44.2	43.6	43.6	43.6	43.6	43.6	43.7	44.5	45.8	47.2	49.6	47.0
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
LEW-F	40.1	43.9	48.9	54.8	50.6	50.5	52.5	50.6	58.7	48.8	47.5	42.8
DC-F	40.5	43.7	17.4	52.4	52.0	51.6	59.6	53.6	60.8	50.6	47.8	42.1
NF-F	41.2	43.8	46.5	50.8	54.5	54.3	66.4	58.5	64.3	53.5	48.4	40.7
SC-TAF	20.	30.	30.	0.	30.	60.	100.	100.	0.	100.	60.	30.
SC-F	43.9	43.9	44.1	0.0	45.0	47.5	54.7	56.8	0.0	54.5	51.7	47.5
S742-TAF	0.	θ.	Θ.	θ.	0.	0.	36.	108.	354.	159.	0.	0.
S742-F	0.0	0.0	0.0	0.0	0.0	0.0	45.4	45.6	49.9	56.7	0.0	0.0
S815-TAF	Θ.	0.	0.	0.	144.	347.	607.	455.	0.	9.	9.	0.
S815-F	0.0	0.0	0.0	0.0	45.8	45.8	46.3	50.1	0.0	61.6	61.6	0.0
S942-TAF	180.	151.	155.	343.	277.	190.	54.	12.	0.	0.	154.	201.
S942-F	47.2	46.0	46.2	47.6	48.6	52.3	59.9	69.9	0.0	0.0	57.3	50.4
SH-TAF	180.	151.	155.	343.	421.	537.	696.	576.	354.	169.	163.	201.
SH- F	47.2	46.0	46.2	17.0	47.6	48.1	47.3	19.7	19.9	56.9	57.5	50.4
KASC-F	46.8	46.8	48.1	48.7	49.9	50.2	49.3	51.6	52.0	57.9	56.6	40.8
KESF	46.5	46.3	47.4	18.7	49.6	49.9	50.0	52.4	52.0	56.6	55.3	40.5
ACL-F	46.3	46.8	48.6	50.0	51.3	51.5	51.5	53.7	53.7	57.2	54.9	40.1
BCL-F	46.3	146.0	48.7	50.0	51.4	51.6	51.5	53.8	53.7	57.2	54.8	40.8
CC-F	46.1	17.1	या. व	" t.5	5-3.4	53.4	53.3	55.4	55.6	57.8	54.4	40.6
BB−F	15.4	17.7	51.1	45.0	56.0	56.0	56.0	57.8	58.9	58.6	53.9	17.3
R8-F	45.4	48.6	51.7	53.8	57.2	57.2	57.2	58.8	59.9	59.0	53.8	17.2

TARGET: BB GAW : REDUCED GC 30 TAF IN SEPT

OPERATIONAL TEMPERATURE CONTROL STUDY B12: D-LO-050.PRE - CVP-OCAP 7/30/92

LOCATION	3	F	М	Α	M	J	J	٨	s	0	И	D
TLO-TAF	0.	0.	θ.	0.	0.	0.	0.	9.	0.	0.	0.	Θ.
TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF	21.	19.	23.	22.	104.	156.	111.	146.	24.	107.	42.	22.
TPO-F	43.9	43.2	43.2	43.2	43.2	43.7	45.5	48.2	50.5	52.7	53.1	46.4
TR-TAF	21.	19.	23.	22.	104.	156.	111.	146.	24.	107.	42.	22.
TR-F	43.9	43.2	43.2	43.2	43.2	43.7	45.5	48.2	50.5	52.7	53.1	46.4
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
LEW-F	39.9	43.8	48.8	54.7	50.3	50.6	54.5	53.8	60.8	53.2	48.4	49.4
DC-F	40.3	43.6	47.3	52.3	51.7	51.7	61.0	56.5	62.6	54.4	48.5	40.1
NF-F	41.1	43.7	46.4	50.8	54.3	54.4	67.2	60.7	65.6	56.5	48.8	39.3
SC-TAF	20.	30.	उत.	0.	30.	60.	90.	90.	ο.	80.	30.	10.
SC-F	43.9	43.9	41.1	9.0	45.0	47.5	54.4	58.7	0.0	57.4	53.2	47.8
S742-TAF	0.	0.	o.	9.	0.	θ.	295.	488.	358.	151.	Ø .	ø,
\$742-F	0.0	0.0	0.0	0.0	0.0	0.0	45.5	48.4	53.5	57.2	0.0	0.0
5815-TAF	0.	9.	ο.	0.	267.	400.	318.	ο.	ø.	0.	12.	ο.
5815∻F	0.0	0.0	ର ଓ	0.0	45.7	45.8	46.6	0 0	0.0	0.0	61.8	0.0
S942-TAF	180.	151.	155.	DR3.	138.	98.	2.	ø.	я.	ø.	181.	221.
S942-F	47.9	46.4	46.8	47.7	49.6	54.1	59.3	0 0	0.0	0.0	57.2	50.4
SH-TAF	180.	151.	155.	283.	405.	498.	614.	488.	358.	151.	193.	221.
SH-F	47.0	46.4	46.8	47.7	47.0	47.4	46.1	48.4	53.5	57.2	57.5	50.4
KASC-F	46.7	47.1	48.6	49.6	49.5	49.7	48.4	50.7	55.2	58.3	56.7	49.8
KES-F	46.4	46.6	17.9	47.6	49.2	49.5	49.2	51.9	55.2	58.0	56.2	49.7
ACL-F	46.2	47.0	19.0	51.0	51.0	51.2	50.9	53.6	56.6	58.5	55.8	49.3
BCL-F	46.2	47.1	19.0	51.1	51.1	51.3	51.0	53.6	56.6	58.5	55.6	49.2
CC-F	46.0	47.6	50.2	50.6	53.2	53.2	52.9	55.5	58.2	59.0	55.2	48.8
BB-F	45.4	47.9	51.3	54.1	56.0	56.0	56.0	58.1	60.9	59.7	54.5	47.4
R8-F	45.3	48.2	51.9	55.1	57.1	57.3	57.3	59.4	61.7	69.0	54.2	47.3

TARGET: BB-6CW : REDUCED SC 26.4 TAF IN SEPT

OPERATIONAL TEMPERATURE CONTROL STUDY 813: C-HI-100.PRE - CVP-0CAP 7/30/92

CATION	J	·F	М	Α	М	J	J	Α	S	0	N	D
LO-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
LO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PO-TAF	23.	17.	38.	30.	139.	219.	182.	157.	58.	102.	46.	31.
P0-F	44.6	44.1	44.1	44.1	44.1	44.1	44.1	44.1	44.2	44.3	44.6	44.9
R-TAF	23.	17.	38.	30.	139.	219.	182.	157.	58.	102.	46.	31.
RF	44.6	44.1	44.1	44.1	44.1	44.1	44,.1	44.1	44.2	44.3	44.6	44.9
.EW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
FW-F	40.4	44.0	48.0	53.4	49.5	49.2	50.2	50.3	53.1	47.1	43.8	40.8
C-F	40.7	43.8	46.9	51.6	51.0	50.5	57.9	53.4	56.1	49.1	44.9	40.4
IF-F	41.3	43.8	46.3	50.5	53.9	53.4	65.5	58.3	60.8	52.4	46.7	39.5
C-TAF	0.	0.	0.	0.	60.	120.	160.	100.	60.	100.	60.	10.
CF	0.0	0.0	0.0	0.0	44.4	51.1	54.1	55.0	55.8	54.3	51.9	47.2
5742-TAF	0.	0.	0.	0.	0.	0.	0.	5.9.	389.	269.	3.	0.
5742-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	46.0	49.6	58.0	58.2	0.0
8815-TAF	0.	0.	0.	0.	0.	306.	656.	626.	0.	0.	21.	0.
815-F	0.0	0.0	0.0	0.0	0.0	46.1	46.3	. 49.6	0.0	0.0	62.5	0.0
5942-TAF	200.	181.	185.	386.	529.	226.	43.	66.	0.	0.	209.	255.
1942-F	47.5	46.2	46.2	46.5	47.7	50.5	57.2	68.6	0.0	0.0	57.0	50.3
SH-TAF	200.	181.	185.	386.	529.	532.	699.	752.	389.	269.	232.	255.
H F	47.5	46.2	46.2	46.5	47.7	48.0	47.0	51.0	49.6	58.0	57.5	50.3
CASC-F	47.1	46.9	47.8	48.9	49.6	50.1	49.0	52.4	51.5	58.5	56.8	49.8
KES-F	47.1	46.9	47.8	48.0	49.1	50.3	50.0	52.7	52.1	57.4	55.8	49.7
1CL-F	46.8	47.3	48.9	49.2	50.5	51.7	51.3	53.8	53.4	57.7	55.5	49.3
RCL-F	46.8	47.4	49.0	49.3	50.6	51.8	51.4	53.9	53.5	57.7	55.4	49.3
CC-F	46.5	47.8	50.1	50.6	52.2	53.5	53.0	55.2	55.0	58.2	55.0	48.9
88- F	45.8	48.1	51.3	52.1	54.6	55.9	55.6	57.1	57.9	58.8	54.5	47.5
₹8-F	45.7	48.3	51.8	53.0	55.6	57.0	56.7	58.0	58.8	59.0	54.3	47.4

TARGET: B8-4W

FADY.

OPERATIONAL TEMPERATURE CONTROL STUDY B14: C-HM-075.PRE - CVP-0CAP 7/30/92

LOCATION	J	F	М	Α	M	J	J	Α	S	0	N	D
TLO-TAF	0.	9.	0.	0.	0.	0.	0.	0.	0.	0.	0.	o.
TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF	23.	17.	38.	30.	109.	219.	182.	217.	24.	122.	46.	51.
TPO-F	44.5	43.9	43.9	13.9	43.9	43.9	44.0	44.7	45.9	47.5	49.9	47.2
TR-TAF	23.	17.	38.	30.	109.	219.	182.	217.	24.	122.	46.	51.
TR-F	44.5	43.9	13.9	43.9	43.9	43.9	44.0	44.6	45.9	47.5	49.9	47.2
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
LEW-F	40.3	44.0	47.9	53.4	50.5	49.0	50.1	49.1	59.7	49.1	46.9	43.5
DC-F	40.6	43.8	46.9	51.6	51.9	50.3	57.9	52.3	61.7	50.9	47.3	42.7
NF-F	41.2	43.8	46.3	50.5	54.4	53.3	65.4	57.5	64.9	53.7	48.1	41.1
SC-TAF	0.	0.	0.	0.	30.	120.	160.	160.	0.	120.	60.	30.
SC-F	0.0	0.0	0.0	0.0	44.0	49.3	54.0	54.2	0.0	53.8	52.0	47.3
S742-TAF	0.	9.	o.	ค.	0.	0.	14.	140.	314.	233.	3.	o.
S742-F	0.0	0.0	0.0	0.0	0.0	0.0	45.7	45.9	51.5	60.5	58.1	0.0
S815-TAF	0.	ø.	Θ.	o.	65.	382.	621.	480.	9.	9.	243.	219.
\$815-F	0.0	0.0	0.0	0.0	45.9	46.0	46.6	52.1	0.0	0.0	57.3	50.0
S942-TAF	200.	181.	185.	238.	431.	115.	38.	28.	О.	0.	Ø .	ი.
8942-F	47.3	46.1	46.4	47.4	49.6	54.6	63.6	76.2	0.0	0.0	0.0	ຄ . ຄ
SH-TAF	200.	181.	185.	338.	496.	497.	673.	649.	314.	233.	216.	210.
SH-F	47.3	46.1	46.4	47.4	49.1	48.0	47.5	51.8	51.5	60.5	57.3	50.0
KASC-F	47.9	46.8	48.0	49.0	51.0	50.3	49.6	53.4	53.6	60.8	56.7	49.5
KES-F	47.0	46.8	18.0	49.0	50.6	50.1	50.4	53.6	53.6	58.4	55.8	49.2
ACL-F	46.8	47.3	49.1	50.3	52.1	51.6	51.9	54.7	55.3	58.7	55.5	48.9
BCL-F	46.7	47.3	19.1	50.3	52.1	51.7	51.9	54.7	55.4	58.7	55.4	48.8
CC-F	46.5	47.7	50.3	51.7	53.8	53.4	53.6	56.0	57.2	59.1	55.0	48.5
88-F	45.7	48.0	51.4	53.2	56.1	56.0	56.1	58.0	60.5	59.6	54.5	47.3
R8-F	45.6	48.3	51.9	54.1	57.1	57.1	57.3	58.9	61.4	59.8	54.3	47.2

TARGET: BB-6RW : REDUCED SC 90 TAF IN SEPT.

OFF SAFEONAL TEMPERATURE CONTROL STUDY R15: C-LM-050.PRE - CVP-OCAP 7/30/92

NOCV110H	1	1.	11	Λ	M	J	vJ.	Λ	S	0	И	þ
TIO-TAE	ο.	0.	0	0.	ο.	0.	0.	Э.	0.	0.	0.	φ.
TLO-F	9.9	0.0	0.0	0.0	0.0	0.0	0.0	0 - 0	0.0	0.0	0.0	0.0
1PO-TAF	23.	17.	38.	30.	109.	159.	172.	147.	28.	102.	46.	51.
TPOF	44.3	43.7	43.7	13.7	43.7	43.7	44.5	47.0	49.5	51.8	53.0	46.6
TRTAF	23.	17.	38.	÷6.	109.	159.	172.	147.	28.	102.	46.	51.
TR-F	44.3	43.7	43.7	43.7	13.7	43.7	44.3	47.0	49.5	51.8	53.0	46.6
LEID-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
LEW-F	40.3	43.9	47.8	53.3	50.4	50.5	50.7	52.9	59.8	52.6	48.6	43.1
DC-F	48.6	43.7	46.8	51.6	51.8	51.6	,58.3	55.7	61.7	53.9	48.7	42.3
NF-F	41.2	43.8	46.3	50.5	54.4	54.3	65.7	60.1	65. 9	56.1	48.9	40.8
SC-TAF	0.	θ.	e .	ø.	30.	60.	150.	90.	30.	100.	60.	36.
SC-F	0.0	9.9	- 0 . 0	ი.ი	14.0	46.5	54.5	55.9	57.6	57.0	52.8	47.2
S742-TAF	٥.	θ.	О.	0.	0.	0.	271.	397.	358.	195.	2.	0.
3742-F	0.0	0.0	0.0	9.0	0.0	0.0	45.8	48.6	56.2	60.9	58.0	0.0
S815-TAF	0.	0.	0.	Θ.	255.	129.	219.	112.	0.	٥.	161.	71.
3815-F	9.9	9.0	0.9	0.0	45.8	45.9	46.7	51.5	0.0	0.0	57.3	51.7
3942-TAF	200.	181.	185.	339.	192.	71.	θ.	θ.	ο.	0.	0.	129.
S942-F	47.2	46.4	47.3	48.5	51.6	58.3	64.4	.0.0	ი. ი	0.0	0.9	49.1
SH-TAF	200.	181.	122	₹4 9 .	117.	500.	520.	569.	358.	195.	163.	201.
SH-F	47.2	46.4	47.3	43.5	48.3	47.7	46.2	49.2	56.2	60.9	57.3	50.1
KASC-F	46.9	47.8	48.7	50.0	50.4	50.0	48.9	51.5	57.7	61.2	56.5	49.5
KES-F	46.9	47.9	48.7	50.0	50.0	49.6	50.2	52.2	57.7	59.8	55.5	49.2
ACLF	46.7	17.1	49.7	51.2	51.6	51.3	51.9	53.7	58.8	60.0	55.1	48.8
BCLF	46.6	47.4	49.7	51.2	51.7	51.4	52.0	53.8	58.8	60.0	55.0	48.8
CC F	46.4	47.9	r 0 - 3	42.5	53.6	53.3	53.9	55.5	66.1	60.3	54.6	48 4
BB-F	45.7	.48.1	51.7	63.9	56.1	56.1	57.0	58.1	62.2	60.6	54.1	47.2
RB F	15.6	48.4	67.3	54.7	57.1	57.3	58.3	59.3	62.9	60.8	53.9	47 1

TARGET: BB LOCH

OPERATIONAL TEMPERATURE CONTROL STUDY B16: C-LO-025.PRE - CVP-OCAP 7/30/92

CATION	3	F	M	Α	М	J	J	Α	S	0	N	D
LO-TAF	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	9.
LO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PO-TAF	23.	17.	38.	30.	109.	129.	52.	87.	28.	172.	36.	21.
PO-F	44.0	43.3	43.3	43.3	43.5	45.0	47.2	49.2	51.3	56.8	52.4	45.0
RTAF	23.	17.	38.	30.	109.	129.	52.	87.	28.	172.	36.	21.
R-F	44.0	43.3	43.3	43.3	43.5	45.0	47.2	49.2	51.3	56.3	52.4	45.0
.EW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
EWF	40.2	43.9	47.7	53.2	50.2	52.7	62.1	57.6	60.4	56.0	47.5	39.8
)C-F	40.5	43.7	46.8	51.5	51.6	53,.6	66.5	59.8	62.2	56.8	47.8	39.6
1F-F	41.2	43.8	46.2	50.5	54.3	55.9	70.2	63.3	65.4	58.3	48.4	38.9
3C-TAF	0.	0.	0.	0.	30.	30.	30.	30.	30.	170.	50.	0.
C-F	0.0	0.0	0.0	0.0	44.0	45.2	48.3	52.3	56.7	58.8	53.2	0.0
3742-TAF	0.	0.	0.	0.	0.	0.	22.	196.	328.	93.	0.	0.
3742-F	0.0	0.0	0.0	0.0	0.0	0.6	45.3	45.7	53.1	59.8	0.0	0.0
3815-TAF	0.	0.	0.	50.	218.	362.	488.	276.	0.	0.	173.	209.
3815-F	0.0	0.0	0.0	45.7	45.7	45.9	47.2	52.8	0.0	0.0	57.2	50.2
3942-TAF	200.	181.	185.	208.	176.	101.	41.	3.	Ø.	0.	0.	22.
942F	47.0	48.5	48.3	49.6	53.1	60.3	72.3	79.0	0.0	0.0	0.0	48.4
3HTAF	200.	181.	185.	258.	393.	463.	551.	475.	328.	93.	173.	231.
SH∽F	47.0	48.5	48.3	48.9	49.0	49.0	49.0	50.0	53.1	59.8	57.2	50.0
(ASC-F	46.7	48.8	49.6	50.8	51.3	51.3	51.4	52.3	55.0	60.6	56.4	49.5
(ES-F	46.7	48.8	49.6	50.8	50.8	50.9	51.2	52.3	55.1	59.4	55.7	49.5
\CL-F	46.5	49.0	50.5	52.2	52.5	52.7	53.1	54.1	56.5	59.8	55.3	49.1
3CL-F	46.4	49.0	50.5	52.3	52.6	52.8	53.2	54.2	56.6	59.7	55.1	49.0
C−F	46.2	49.3	51.4	53.8	54.6	54.9	55.4	56.2	58.1	60.1	54.7	48.6
}RF	45.5	49.0	52.2	55.2	57.1	57.7	58.6	59.1	60.9	60.5	54.1	47.3
?8-F	45.5	49.2	52.7	56.1	58.2	59.0	60.0	60.4	61.7	60.7	53.9	47.2

TARGET: 88-3C ; INCREASED SC 70 TAF IN OCT

OPERACIONAL TEMPERATURE COMIROL STUDY B17: 1 HI-050.PRE - CVP-OCAP 7/30/02

OCVIION	1	1	11	Λ	14	J	Ε,	Λ	ϵ_i	n	11	Ð
110-105	o.	θ.	r.i	ο,	0.	o .	0.	0.	0.	· ο	0.	O
110-F	6.6	9. 0	0 0	U. Ü	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0
TPO-TAF	55.	81.	131.	1 53.	201.	260.	183.	138.	58.	103.	46.	57.
TPO-F	44.7	11.2	11.7	11.2	11.2	14.2	11.5	16.1	48.7	57.3	53.2	46.3
TR-TAF	55.	яţ.	131.	1/3.	201.	260.	183.	138.	58.	103.	46.	50.
TR-F	44.7	11.2	11.2	11.2	44.2	44.2	44.5	46.1	48.7	52.3	53.2	46.3
LEW-TAF	18.	17.	18.	13.	73.	99.	18.	23	24.	26.	12.	12.
LEW-F	12.3	11.1	15.6	47.5	48.0	48.5	50.5	52.5	55.6	52.9	48.7	13.0
DC-F	42.0	43.8	45.7	40.4	19.8	49.8	58.1	55.3	58.2	54.2	48.8	42.2
NFF	41.8	43.8	15.9	40.4	53.1	52.9	65.6	59.8	62.3	56.3	49.0	40.8
SC-TAF	30.	60.	90.	ൗ.	120.	160.	160.	80.	69.	100.	60.	30.
3C-F	43.7	43.9	15.1	46.6	19.0	51.3	53.4	55.0	57.0	57.2	52.9	17.2
\$742-TAF	0.	Ø.	9.	9.	0.	0.	ο.	218.	328.	279.	3.	ο.
S742-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	46.3	56.0	62.8	57.5	0.0
\$815-TAF	9.	0.	o.	9.	0.	392.	625.	450.	0.	9.	247.	216.
S815-F	0.0	0.0	0.0	0.0	0.0	46.3	46.7	52.9	0.0	0.0	56.9	19.5
5942-TAF	170.	167.	103.	075.	510.	157.	85.	25.	0.	0.	θ.	0.
S942-F	47.5	46.3	16.1	16.9	49.3	55.8	70.1	79.0	0.0	0.0	0.0	0.0
SH-TAF	170.	167.	193.	275.	510.	549.	710.	693.	328.	279.	250.	216.
SH-F	47.5	46.3	16.1	16.0	49.3	19.0	49.5	51.8	55.0	62.8	56.9	19.5
KASC-F	47.1	47.0	47.9	19.0	51.1	51.0	51.3	53.3	57.6	62.8	56.3	49.0
KES-F	46.6	45.2	47.1	48.4	50.7	51.1	51.7	53.5	57.5	61.3	55.6	48.8
ACL-F	46.4	45.6	17.0	19.6	51.9	52.4	53.0	54.6	58.6	61.4	55.3	48.5
BCL-F	46.3	46.6	48.0	19.7	52.0	52.4	53.1	54.7	58.7	61.4	55.3	48.4
$CC - \Gamma$	46.1	47.1	48.9	51.1	53.4	53.9	54.6	56.1	50.9	61.5	54.9	48.1
BB -F	45.5	17.5	50.l	55	55.5	56.1	57.0	58.1	62.1	61.6	54.4	47.1
R₿-F	45.4	47.8	7.0 15	53.4	56.4	57.2	58.0	59.1	67.8	61.7	54.3	47.0

TARGET: BR LOCKE: INCREASED OF 30 TAR IN SEPT.

READY

OPERATIONAL TEMPERATURE CONTROL STUDY 818: E-HM-000.PRE - CVP-0CAP 7/30/92

ומר אז ז ז חו	J.	F	M	٨	M	J	J	٨	\$	n	И	Ð
TLO TAE	ø.	0.	9.	0.	9.	9.	ø.	ρ.	0.	0.	0.	0.
HOE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO TAF	55.	51.	72.	63.	171.	220.	143.	88.	58.	122.	46.	52.
IPO F	44.6	14.0	44.0	44.0	44.0	44.0	44.8	47.2	50.3	55.9	52.8	45.4
TR TAF	55.	51.	72.	63.	171.	220.	143.	88.	58.	122.	46.	52.
IR F	44.6	44.0	44.0	44.9	44.9	44.0	44.8	47.2	50.3	55.9	52.8	45.4
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	1.9 -
11/0/1	42.2	44.0	46.5	19.8	48.5	49.1	52.2	56.2	56.5	55.6	48.5	42.4
nr. r	41.9	43.8	46.1	19.7	50.2	50.4	59.4	58.6	59.0	56.5	48.6	41.7
ы - г	41.8	43.8	46.9	49.8	53.4	53.3	66.3	62.4	62.9	58.1	48.9	10.1
SC-TAE	30.	30.	30.	30.	90.	120.	120.	30.	60.	120.	60.	30.
SO-F	43.7	43.8	44.2	45.4	48.0	51.9	53.7	56.1	56.9	58.4	53.1	47.2
				_	_	á	_	000	200	1.70		2
9742 - FAF	Θ.	0.	0.	0.	9.	Ø.	9.	200.	288.	170.	ด.	0.
9742 - FAE 9742 - E	9. 0.0	0. 0.0	0.	9. 9.0	9. 9.8	o.	9.9	46.2	288.1	61.5	56.5	0.0
1112 F	0.0	0.0	0.0	0.0	ი.ი	0.0	0.0	46.2	58.1	61.5	56.5	9.9
9742 F 9815 TAF	9.	0.9	o.o	ø.s	ი. ი 82.	9.9 387.	9.9 562.	46.2 406.	58.1	61.5 0.	56.5 178.	0.0 216.
9815 FAE 9815 FAE	6. 6. 9.9	0.9 0. 0.0	o.o o.o	9.9 9.	ი.ი 82. 46.1	387. 46.1	9.9 562. 47.2	46.2 406. 57.0	58.1 9. 9.0	61.5 0. 0.0	56.5 178. 56.4	9.9 216. 49.2
9742 F 9815 TAF 9815 F 9842 TAF	9.9 179.	0.0 0. 0.0 195.	0.0 0. 0.0 251.	9.9 9. 9.9 281.	82. 46.1 389.	387. 46.1	9.9 562. 47.2 71.	46.2 406. 57.0	58.1 0. 0.0	61.5 0. 0.0	56.5 178. 56.4 0.	9.9 216. 49.2 9.
9742 F 9815 TAF 9815 F 9942 TAF 9942 F	9.9 9.9 179.	0.0 0.0 195.	9. 9. 9.0 251. 47.2	0.0 0.0 231. 49.2	82. 46.1 389. 54.3	387. 36.1 137. 66.7	9.9 562. 47.2 71. 79.0	46.2 406. 57.0 9.	9. 9.0 9.0	61.5 9. 9.0 9.	56.5 178. 56.4 9.	0.0 216. 49.2 0.
9742 F 9815 TAF 9815 F 9942 TAF 9942 F	9.9 9.9 179. 47.4	0.0 0.0 195. 46.3	0.0 0.0 251. 47.2	0.0 0.0 281. 49.2 281.	82. 46.1 389. 54.3	9.9 387. 46.1 137. 66.7	9.9 562. 47.2 71. 79.0 633.	46.2 406. 57.0 9. 9.0	58.1 9. 9.0 9.0 9.0	61.5 9. 9.9 9. 9.0	56.5 178. 56.4 0. 0.0	0.0 216. 49.2 0. 0.0 216.
9742 F 9815 TAF 9815 F 9942 TAF 9942 F 981-TAF 981 F	9.9 9.9 179. 47.4	0.0 0.0 195. 16.3 195. 46.3	0.0 0.0 25L. 47.2 251. 47.2	0.0 0.0 281. 49.2 281.	82. 46.1 389. 54.3 471. 52.9	9.0 387. 46.1 137. 66.7 524. 51.5	9.9 562. 47.2 71. 79.0 633. 50.8	46.2 406. 57.0 9.0 606. 53.5	58.1 9. 9.0 9.0 9.0 288. 58.1	61.5 0. 0.0 0.0 170. 61.5	56.5 178. 56.4 9. 9. 9. 178. 56.4	0.0 216. 49.2 0. 0.0 216. 49.2
9742 F 9815 TAF 9815 F 9942 TAF 9942 F SH-TAF GH F KASC-F	9.9 179. 47.4 179. 47.4	0.0 0.0 195. 46.3 46.3	0.0 0.0 251. 47.2 251. 47.2 48.3	0.0 0.0 281. 49.2 281. 49.2 51.0	82. 46.1 389. 54.3 471. 52.9 54.5	9.9 387. 46.1 137. 66.7 524. 51.5 53.4	9.9 562. 47.2 71. 79.0 633. 50.8 52.8	46.2 406. 57.0 9.0 606. 53.5 55.1	58.1 9. 9.0 9.0 9.0 288. 58.1 59.7	61.5 9. 9. 9. 0.0 179. 61.5 61.7	56.5 178. 56.4 9. 9.0 178. 56.4 55.7	0.0 216. 49.2 0. 0.0 216. 49.2 48.7
9742 F 9815 TAF 9815 F 9942 TAF 9942 F SHI-TAF SHI F KASCI-F	9.9 179. 47.4 179. 47.9	0.0 0.0 195. 46.3 46.9	0.0 0.0 251. 47.2 251. 47.2 48.3	0.0 0.0 281. 49.2 281. 49.2 51.0	82. 46.1 389. 54.3 471. 52.9 54.5 53.5 54.7 54.7	9.0 387. 46.1 137. 66.7 524. 51.5 53.4	9.9 562. 47.2 71. 79.0 633. 50.8 52.8	46.2 406. 57.0 9.0 606. 53.5 55.1	58.1 9. 9.0 9.0 9.0 288. 58.1 59.7 59.2 60.3 60.3	61.5 0. 0.0 0.0 170. 61.5 61.7	56.5 178. 56.4 0. 0.0 178. 56.4 55.7	0.0 216. 49.2 0. 0.0 216. 49.2 48.7
SB15 TAF SB15 F SB15 F SB12 TAF SB12 F SB1-TAF SB1-TAF SB1-F SB1-F CB1 F KASC-F ACL F	9.9 179. 47.4 179. 47.0 46.5 46.3	0.0 0.0 195. 46.3 195. 46.3 46.9	0.0 0.0 25L. 47.2 251. 47.2 48.3	0.0 0.0 281. 49.2 281. 49.2 51.0	82. 46.1 389. 54.3 471. 52.9 54.5	9.0 387. 46.1 137. 66.7 524. 51.5 53.4 53.1 54.4	9.9 562. 47.2 71. 79.0 633. 50.8 52.8	46.2 406. 57.0 9.0 606. 53.5 55.1 55.1	58.1 9. 9.0 9.0 288. 58.1 59.7 59.2 60.3 60.3 61.5	61.5 0.0 0.0 170.6 61.5 61.7 60.3 60.5 60.5 60.7	56.5 178. 56.4 0. 0.0 178. 56.4 55.7 55.0 54.7 54.6 54.3	0.0 216. 49.2 0.0 216. 49.2 48.7 48.5 48.2 48.2
9742 F 9815 FAF 9815 F 9942 TAF 9942 F SH-TAF 9H F KASC -F ACL F BCL F	9.9 179. 47.4 179. 47.9 46.5 46.3 46.3	0.0 0.0 195. 46.3 46.9 46.5 46.9	9.0 9.0 251. 47.2 251. 47.2 48.3 47.9 48.6 48.7	0.0 0.0 281. 49.2 281. 49.2 51.0 50.5 51.7	82. 46.1 389. 54.3 471. 52.9 54.5 53.5 54.7 54.7	9.0 387. 46.1 137. 66.7 524. 51.5 53.4 53.1 54.4 54.5	9.9 562. 47.2 71. 79.0 633. 50.8 52.8 52.9 54.4 54.4	46.2 406. 57.0 9.0 606. 53.5 55.1 55.1 56.5	58.1 9. 9.0 9.0 9.0 288. 58.1 59.7 59.2 60.3 60.3	61.5 9. 9. 9. 0.0 179. 61.5 61.7 69.3 69.5 69.5	56.5 178. 56.4 0. 0.0 178. 56.4 55.7 55.0 54.7 54.6	0.0 216. 49.2 0.0 216. 49.2 48.7 48.5 48.2 48.2

TARGET: CC-6CW : INCREASED 3C 30 TAF IN SEPT.

READY.

OPERATIONAL TEMPERATURE CONTROL STUDY BT12: D-LO-25.TEM - CVP-OCAP 7/30/92

1	OCATION	J	F	М	Α	М	J	J	Α	S	0	Н	D
	TLO-TAF	0. 0.0	0. 0.0	0. 0.9	0. 0.0	0. 0.0	0. 0.0						
	TPO-TAF ·	21. 43.9	19. 43.2	23. 43.2	22. 43.2	104. 43.2	156. 43.7	21. 44.8	56. 45.4	24. 46.2	107. 47.6	42. 49.5	22. 46.7
	TR-TAF	21. 43.9	19. 43.2	23. 43.2	22. 43.2	104. 43.2	156. 43.7	21. 44.8	56. 45.4	24. 46.2	107. 47.6	42. 49.5	22. 46.7
	LEM-L LEM-L DC L	18. 39.9 40.3	17. 43.8 43.6	18. 48.8 47.3	18. 54.7 52.3	73. 50.3 51.7	99. 50.6 51.7	18. 70.3 72.4	53. 59.0 61.1	24. 59.7 61.7	26. 49.4 51.1	12. 46.4 47.0	19. 40.5 40.1
	SC-FAF	20.	43.7 30. 43.9	30. 44.1	50.8 0. 0.0	30. 45.0	54.4 60. 47.5	73.5 0. 0.0	64.3 0.	64.9 0.	53.9 80. 53.8	47.9 30. 51.7	39.3 10. 47.7
	3742 TAE	0. 0.0	0.0	0. 0.0	0. 0.0	296. 45.4	0. 0.0	528. 45.8	527. 47.8	358. 51.3	135. 53.9	0. 0.0	0. 0.0
	5815 TAE 5815 E	9. 9.8	0. 0.0	0. 0.0	0. 0.6	0. 0.0	400. 45.8	0. 0.0	0. 0.0	0. 0.0	48. 59.2	2. 60.3	0. 0.0
	\$942-TAE \$942-E	180. 47.0	151. 46.5	155. 46.9	193. 47.7	0. 0.0	16. 51.9	0. 0.0	0. 0.0	0. 0.0	0. 0.0	191. 57.3	221. 50.5
	SH-TAF SH F CASC -F	180. 47.0 46.7	151. 46.5 47.2	155. 46.9 48.7	193. 47.7 50.4	296. 45.4 48.9	416. 46.0 48.9	528. 45.8 48.6	527. 47.8 50.0	358. 51.3 53.2	183. 55.3 56.5	193. 57.3 56.6	221. 50.5 49.9
	HEG F ACL F BCL F	46.4 46.2 46.2	46.7 47.1 47.1	48.0 49.0 49.1	50.4 52.2 52.3	48.5 51.0 51.1	48.7 50.8 50.9	48.6 50.8 51.0	50.0 51.9 52.0	53.2 54.7 54.8	55.7 56.3 56.3	55.9 55.5 55.4	49.8 49.4 49.3
	18 € 18 € 10 € €	45.4 45.3	47.6 47.9 48.2	50.2 51.4 51.9	54.2 55.8 56.8	53.7 57.0 58.3	53.1 56.3 57.7	53.5 57.3 58.9	54.1 57.2 58.5	56.5 59.6 60.6	57.1 - 58.1 58.5	54.9 54.3 54.1	48.9 47.4 47.3

TARGET: BR-98W : ELIMINATED SC IN JULY-SEPT.

BLADY.

OPERATIONAL TEMPERATURE CONTROL STUDY BT14: C-HM-50.TEM - CVP-OCAP 7/30/92

LOCATION	J	F	М	Α	М	J	J	A	s	0	N	D
TLO-TAF	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0
TPQTAF	23.	17.	38.	30.	109. 43.9	219. 43.9	182. 44.0	157. 44.4	24. 45.2	122. 46.3	46. 48.3	51. 47.0
TPO-F	44.5	43.9	43.9	43.9	43.9	43.9	44.0	44.4	45.2	40.3	40.3	47.0
TR-TAF	23.	17.	38.	30.	109.	219.	182.	157.	24.	122.	46.	51.
TR-F	44.5	43.9	43.9	43.9	43.9	43.9	44.0	44.4	45.2	46.3	48.3	47.0
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	153.	24.	26.	12.	19.
LEW-F	40.3	44.0	47.9	53.4	50.5	49.0	50.1	50.5	59.5	48.2	45.9	43.4
OC~F	40.6	43.8	46.9	51.6	51.9	50.3	57.79	51.8	61.5	50.1	46.6	42.6
NFF	41.2	43.8	46.3	50.5	54.4	53.3	65.4	54.1	64.8	53.1	47.6	41.0
SC-TAF	0.	0.	0.	0.	30.	120.	160.	0.	0.	120.	60.	30.
SCF	0.0	0.0	0.0	0.0	44.0	49.3	54.0	0.0	0.0	53.6	51.8	47.3
3742-TAF	· Ø.	0.	0.	0.	0.	0.	66.	97.	388.	111.	163.	0.
S742-F	0.0	0.0	0.0	0.0	0.0	0.0	45.9	45.9	50.9	57.9	55.2	0.0
3815TAF	0.	0.	0.	0.	75.	322.	541.	622.	0.	0.	0.	0.
5815-F	0.0	0.0	0.0	0.0	46.0	46.1	46.3	50.2	0.0	0.0	0.0	0.0
5942-TAF	200.	181.	185.	299.	363.	166.	13.	52.	0.	0.	0.	201.
S942-F	47.4	46.1	46.3	46.9	48.3	51.8	58.3	69.9	0.0	0.0	0.0	50.4
SH-TAF	200.	181.	185.	299.	438.	488.	620.	771.	388.	111.	163.	201.
511F	47.4	46.1	46.3	46.9	47.9	48.0	46.5	51.0	50.9	57.9	55.2	50.4
KASC-F	47.0	46.8	47.9	48.7	50.1	50.3	48.8	52.4	52.7	59.1	54.6	49.8
KESE	47.0	46.8	47.9	48.7	49.7	50.1	49.9	52.4	52.7	56.2	53.8	49.5
ΛCL~F	46.8	47.3	49.0	50.1	51.4	51.7	51.4	53.6	54.2	56.9	53.6	49.1
BCL-F	46.7	47.3	49.0	50.2	51.5	51.7	51.5	53.7	54.2	56.9	53.5	49.0
CC-F	46.5	47.7	50.2	51.8	53.4	53.5	53.2	55.1	55.9	57.7	53.3	48.6
RRF	45.7	48.0	51.3	53.4	56.0	56.1	56.0	57.2	59.0	58.6	53.2	47.3
RB-F	45.6	48.3	51.9	54.3	57.1	57.2	57.2	58.2	59.9	59.0	53.0	47.2

TARGET: BB-4AW : ELIMINATED SC IN AUG-SEPT.

ld.bt15 ist. READY.

OPERATIONAL TEMPERATURE CONTROL STUDY 8T15: C-LM-25.TEM - CVP-OCAP 7/30/92

LOCATION	J	F	Ħ	Α	м	J	J	А	s	0	N	D
TLO-TAF	0.	0.	0.	ø.	0.	0.	0.	0.	0.	0.	0.	0.
TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF	23.	17.	38.	30.	109.	159.	22.	57.	178.	102.	46.	51.
TPO-F	44.3	43.7	43.7	43.7	43.7	43.7	43.9	44.1	45.7	48.9	51.1	46.8
TR-TAF	23.	17.	38.	30.	109.	159.	22.	57.	178.	102.	46.	51.
TRF	44.3	43.7	43.7	43.7	43.7	43.7	43.9	44.1	45.5	48.9	51.1	46.8
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	27.	26.	12.	19.
LEFF E	40.3	43.9	47.8	53.3	50.4	50.5	69.8	58.1	48.8	50.4	47.6	43.3
DC-F	40.6	43.7	46.8	51.6	51.8	51.6	72.1	60.3	52.2	52.0	47.9	42.5
Nr-F	41.2	43.8	46.3	50.5	54.4	54.3	73.3	63.7	57.5	54.6	48.4	41.0
SC-TAF	0.	0.	0.	0.	30.	60.	0.	0.	180.	100.	60.	30.
3C - F	0.0	0.0	0.0	0.0	44.0	46.5	0.0	0.0	53.7	54.7	52.0	47.1
3742-TAF	0.	0.	0.	0.	0.	0.	283.	434.	178.	131.	163.	0.
S742-F	0.0	0.0	0.0	0.0	0.0	0.0	45.8	49.6	55.4	58.2	55.1	0.0
3815 -TAF	0.	0.	0.	0.	347.	423.	371.	195.	0.	0.	0.	0.
S815-F	0.0	0.0	0.0	0.0	45.9	46.0	47.2	52.6	0.0	0.0	0.0	0.0
3942-TAF	200.	181.	185.	253.	11.	15.	2.	0.	0.	0.	0.	201.
9942-F	47.2	46.2	47.0	48.1	50.0	54.6	60.0	0.0	0.0	0.0	0.0	50.4
SH-TAF	200.	181.	185.	253.	358.	438.	656.	629.	178.	131.	163.	201.
SHE	47.2	46.2	47.0	48.1	46.0	46.3	46.6	50.5	55.4	58.2	55.1	50.4
KASC-F	46.9	46.9	48.5	50.1	48.9	49.0	48.8	52.3	58.4	59.2	54.6	49.8
K11 F	46.9	46.9	48.5	50.1	48.5	48.7	48.8	52.3	56.0	57.2	53.9	49.4
ACLF	46.7	47.3	49.5	51.6	50.6	50.7	50.6	53.8	57.4	57.8	53.7	49.1
BCL - F	46.6	47.1	49.6	51.7	50.7	50.8	50.7	53.8	57.4	57.8	53.5	49.0
CC-F	46.4	47.8	50.6	53.3	53.0	52.9	52.8	55.5	58.9	58.4	53.3	48.6
BB F	45.7	48.1	51.6	54.8	56.1	56.1	56.1	58.0	61.4	59.2	53.2	47.3
RBF	45.6	48.3	52.2	55.7	57.4	57.4	57.5	59.2	62.2	59.6	53.0	47.2

TARGET: BB-6CW; ELIMINATED SC IN JUL-AUG, INCREASED SC 150 TAF IN SEPT

OPERATIONAL TEMPERATURE CONTROL STUDY 8T16: C-LO-25.TEM - CVP-OCAP 7/30/92

LOCATION	J	F	M	۸	M	J	J	Α	s	0	N	D
TI.O-TAF	0.	0.	ø.	Ø.	0.	0.	0.	0.	0.	0.	0.	0.
110-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF	23.	17.	38.	30.	109.	129.	52.	87.	28.	102.	36.	21.
TPO-F	44.0	43.3	43.3	43.3	43.5	45.0	47.2	49.2	51.3	54.5	52.9	45.6
TR-TAF	23.	17.	38.	30.	109.	129.	52.	87.	28.	102.	36.	21.
TR-F	44.0	43.3	43.3	43.3	43.5	45.0	47.2	49.2	51.3	54.5	52.9	45.6
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
1 FW- F	40.2	43.9	47.7	53.2	50.2	52.7	62.1	57.6	60.4	54.6	47.8	40.0
DCF	40.5	43.7	46.8	51.5	51.6	53.6	66.5	59.8	62.2	55.6	48.1	39.7
NF-F	41.2	43.8	46.2	50.5	54.3	55.9	70.2	63.3	65.4	57.4	48.5	39.0
SC-TAF	0.	0.	0.	0.	30.	30.	30.	30.	30.	100.	50.	9.
S(:F	0.0	0.0	0.0	0.0	44.0	45.2	48.3	52.3	56.7	59.0	53.2	0.0
\$742-TAF	0.	0.	0.	0.	344.	388.	510.	464.	328.	131.	173.	9.
9742F	0.0	0.0	0.0	0.0	45.6	45.8	46.3	49.5	54.8	58.6	55.1	0.0
S815-TAF	0.	0.	0.	0.	0.	0.	0.	Ø.	Ø.	0.	ø.	0.
9815~F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.9	0.0	0.0	0.0	0.9
5942 -TAF	200.	181.	185.	223.	0.	0.	0.	Ø .	0.	ø.	Ø.	231.
9942-F	47.0	48.2	48.1	49.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.3
SH-TAF	200.	181.	185.	223.	344.	388.	510.	464.	328.	131.	173.	231.
GIL F	47.0	48.2	48.1	49.4	45.6	45.8	46.3	49.5	54.8	58.6	55.1	50.3
KASC-F	46.7	48.6	49.4	51.5	48.6	48.8	49.1	51.9	56.6	59.5	54.5	49.8
KES- F	46.7	48.6	49.4	51.5	48.2	48.5	49.1	51.9	56.6	59.3	54.2	49.8
ACL: F	46.5	48.9	50.3	53.0	50.4	50.8	51.2	53.8	57.9	59.7	53.9	49.4
FICE F	46.4	48.8	50.3	53.1	50.6	51.0	51.3	53.9	57.9	59.6	53.8	49.3
CCF	46.2	49.1	51.3	54.7	52.9	53.5	53.8	56.0	59.3	60.0	53.5	48.9
BB E	45.5	48.9	52.1	56.0	56.1	57.0	57.5	59.0	61.8	60.5	13.3	47.4
RB-F	45.5	49.1	52.6	56.9	57.4	58.5	59.0	60.3	62.6	60.7	53.2	47.3

TARGET: BB-16W

old.bt17 list READY.

OPERATIONAL TEMPERATURE CONTROL STUDY 8T17: E-HI-25.TEM - CVP-OCAP 7/30/92

1	UCATION	J	F	М	٨	М	J	J	Α	\$	0	N	D
	110-TAF	9.	Ø. Ø. Ø	0. 0.0	0. 0.0	Ø. Ø. Ø	0. 0.0						
	TPO-TAF	55.	81. 44.1	131.	123. 44.1	201. 44.1	260. 44.2	183. 44.7	138. 46.8	28. 49.5	153. 54.0	46. 53.3	52. 45.9
	IPO-F	55.	81.	131.	123.	201.	260.	183. 44.6	138. 46.8	28. 49.5	153. 54.0	46. 53.3	52. 45.9
	IR F	44.7	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
	TEMEE DCF	42.3	44.1	45.6 45.7	47.4 48.3	48.0 49.8	48.5	50.6 58.2	53.1 55.8	59.8 61.7	54.1 55.2 57.1	48.8 48.8 49.0	42.7 42.0 40.6
	MI F	41.8 30.	43.8	45.9 90.	49.4 90.	53.1	52.9 160.	65.6 160.	60.2 80.	65.0 30.	150.	60.	30.
	SC-TAF SC-F	43.7	43.9	45.4	46.6	49.0	51.3	53.4	55.1	56.6	57.0	52.8	47.2 0.
	9742 TAF 9742 F	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	2. 46.2	183. 46.3	328. 51.5	218. 59.3	178. 55.6	0.0
	0815-TAF 0815-T	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0	325. 46.3	620. 46.4	439. 49.5	0. 0.0	0. 0.0	0. 0.0	201. 50.2
	\$942 -TAF	170. 47.5	121. 46.3	130. 46.3	234. 46.6	489. 47.8	212. 51.9	23. 62.4	11. 73.9	0. 0.0	0. 0.0	0. 0.0	0.0
	SH TAF	170.	121.	130.	234.	489.	537.	645.	633.	328. 51.5	218. 59.3	178. 55.6	201.
	CH E KASC-F	47.5 47.1	46.3 47.2	46.3 48.5	49.0	47.8 49.8	48.5 50 .6	47.0	49.0 50.8	53.6	59.8	55.0	49.6
	KEG E ACL E	46.6	46.1 46.6	47.2 48.3	48.3	49.6 51.0	50.8 52.1	50.0	51.3 52.6	53.9 55.3 55.4	58.7 58.9 58.9	54.4 54.2 54.1	49.3 48.9 48.8
	RO F 00 -F RE F	46.3 46.1 45.5	46.7 47.2 47.6	48.3 49.4 50.6	49.8 51.3 . 52.9	51.1 52.6 54.8	52.2 53.7 56.0	51.6 53.3 56.0	52.7 54.3 56.6	57.1	59.3 59.7	53.8 53.5	48.4 47.2
	RB-F	45.4	47.9	51.2	53.8	55.8	57.0	57.2	57.8	60.9	59.9	53.4	47.1

TARGET: RB- 48W

OPERATIONAL TEMPERATURE CONTROL STUDY 819: W-HI-100.8 - 9/29/92

						-,,						
LOCATION	J	F	Ħ	A	M	J	J	A	5	0	H	0
T L O - T A F T L O - F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
T P O - T A F T P O - F	21. 44.5	100. 43.8	84. 43.8	107. 43.8	212. 43.8	270. 43.8	197. 43.8	174. 43.8	24. 43.9	142. 44.1	90. 44.5	40. 44.9
TR-TAF TR-F	21. 44.5	100. 43.8	84.	107. 43.8	212. 43.8	270. 43.8	197. 43.8	174. 43,8	24. 43.9	142. 44.1	90. 44.5	40.
LEW-TAF 1EW-F 0C-F NF-F	18. 40.1 40.5 41.2	17. 43.8 43.6 43.7	18. 46.1 45.9 46.0	18. 47.6 48.5 49.4	73. 47.5 49.4 52.9	99. 48.0 49.4 52.5	18. 49.5 57.4 65.2	53. 49.5 52.7 57.8	24. 59.2 61.2 64.6	26. 46.2 48.3 51.8	12. 44.1 45.2 46.8	19. 41.5 41.0 39.9
50-14F 50-F	60. 43.6	150. 44.5	120. 45.7	120. 47.4	150. 50.1	180. 51.7	180. 53.4	120. 54.8	0. 0.0	120. 52.4	90. 49.5	60. 46.8
S742-TAF S742-F	0. 0.0	0. 0.0	0.0	0.0	0. 0.0	0.0	0.0	505. 45.8	\$36. 50.5	318. 53.9	378. 54.9	0.0
S815-TAF S815-F	0.0	0.0	0.0	0.0	0.0	332. 45.3	658. 45.7	104. 47.6	0. 0.0	0.0	0.	0.0
\$942-TAF \$942-F	700. 47.2	750. 45.8	580. 45.8	517. 46.4	652. 47.7	226; 49.6	84. 52.8	0.	0. 0.0	0.0	0.0	700. 50.6
SH-TAF SH-F KASC-F	700. 47.2 47.1	750. 45.8 46.0	580. 45.8 46.4	517. 46.4 47.5	652. 47.7 49.2	558. 47.0 49.1	742. 46.5 48.4	609. 46.1 48.2	536. 50.5 51.9	318. 53.9 54.8	378. 54.9 54.7	700. 50.6 50.4
CL-CFS CtO-F CLM-F	50. 43.0 43.8	50. 43.1 48.0	50. 43.4 52.1	50. 43.5 58.1	50. 43.6 65.3	50. 44.0 69.1	50. 44.8 72.9	50. 45.9 70.9	50. 47.5 65.1	50. 49.2 58.1	101. 48.8 49.6	99. 46.1 45.6
KES-F ACL-F BCL-F CC-F BB-F RB-F	46.8 46.8 46.7 46.7 46.4 46.3	45.8 45.9 45.9 46.1 46.3 46.4	46.3 46.7 46.7 47.2 47.9 48.3	47.5 48.3 48.3 49.2 50.3	49.4 50.4 50.5 51.7 53.6 54.5	49.7 51.1 51.1 52.6 54.9 56.0	49.4 50.7 50.8 52.3 54.8 55.9	49.3 50.7 50.8 52.4 54.9 56.1	51.9 53.0 53.1 54.4 57.0	54.1 54.7 54.7 55.3 56.2 56.5	53.7 53.6 53.5 53.4 53.3	50.1 50.0 49.9 49.8 48.7

TARGET: R8-W2; REDUCED SC 122.2 TAF IN SEPT

OPERATIONAL TEMPERATURE CONTROL STUDY 820: W-HM-100.8 - 9/29/92

						-,,						
LOCATION	J	F	И	A	N	J	J	A	\$	0	N	0
TLO-TAF TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF TPO-F	21. 44.3	17. 43.6	23. 43.6	47. 43.6	122. 43.6	150. 43.6	227. 43.6	174. 43.6	24. 43.6	142. 43.7	90. 44.1	40.
T R - T A F T R - F	21. 44.3	17. 43.6	23. 43.6	47. 43.6	122. 43.6	150. 43.6	227. 43.6	174. 43.6	24. 43.6	142. 43.7	90. 44.1	40.
LEW-TAF LEW-F OC-F MF-F	18. 40.1 40.5 41.2	17. 43.9 43.7 43.8	18. 48.9 47.4 46.5	18. 50.9 50.3 50.0	73. 49.7 51.2 54.0	99. 50.8 51.9 54.6	18. 48.7 56.8 64.9	53. 49.3 52.5 57.6	24. 59.1 61.1 64.5	26. 45.9 48.1 51.6,	12. 43.8 44.9 46.7	19. 41.3 40.8 39.8
SC-TAF SC-F	60. 43.6	66. 43.9	60. 45.3	60. 46.9	60. 48.9	60. 52.0	210. 53.9	120. 54.9	0.0	120. 52.3	90. 49.4	60. 46.8
S742-TAF S742-F .	0.0	0.0	0.0	0.0	0.0	0.0	17. 44.6	609. 46.6	521. 50.9	258. 53.6	179. 54.4	0.0
S815-TAF 5815-F	0.0	0.0	0.0	0.0	0.0	467. 45.3	653. 45.9	0.0	0.0	0.0	0.0	0.0
\$ 9 4 2 - T A F \$ 9 4 2 - F	700. 47.2	750. 45.8	580. 45.8	517. 46.4	652. 47.7	92. 49.5	71. 52.6	0.0	0.0	0.0	0.0	260. 50.7
SH-TAF SH-F KASC-F	700. 47.2 47.1	750. 45.8 46.0	580. 45.8 46.4	517. 46.4 47.5	652. 47.7 49.2	558. 46.0 48.2	742. 46.5 48.4	609. 46.6 48.6	521. 50.9 52.3	258. 53.6 54.6	179. 54.4 54.0	260. 50.7 50.2
CL-CFS CLD-F CLM-F	50. 43.0 43.8	50. 43.1 48.0	50. 43.4 52.1	50. 43.5 58.1	50. 43.6 65.3	50. 43.8 69.0	50. 44.4 72.8	50. 45.5 70.8	50. 47.0 65.0	50. 48.8 57.9	101. 48.7 49.6	99. 46.1 45.6
KES-F ACL-F 8CL-F CC-F 88-F R8-F	46.8 46.8 46.7 46.7 46.4	45.8 46.0 46.0 46.2 46.4 46.5	46.3 46.7 46.8 47.3 48.1	47.4 48.3 48.4 49.4 50.5 51.2	49.2 50.4 50.4 51.8 53.9 54.8	48.6 50.2 50.3 52.1 54.8 56.0	49.6 50.9 51.0 52.5 54.9 56.0	49.6 51.0 51.1 52.8 55.2 56.4	52.3 53.5 53.5 54.8 57.4 58.2	53.9 54.5 54.5 55.2 56.2 56.6	52.5 52.4 52.3 52.2 52.4 52.3	49.6 49.3 49.2 48.9 47.6 47.5

TARGET: R8-W2; SC REDUCEO 107.1 TAF IN SEPT

OPERATIONAL TEMPERATURE CONTROL STUDY 821: W-LN-100.8 - 9/29/92

LOCATION	J	F	Ħ	A	H	J	J	A	\$	0	X	0
TLO-TAF TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF TPO-F	21. 44.1	25. 43.3	23. 43.3	32. 43.3	92.	120.	18.	54. 43.3	24. 43.3	142.	60. 43.4	40. 43.5
TR-TAF TR-F	21. 44.1	25. 43.3	23. 43.3	32. 43.3	92. 43.3	120. 43.3	18.	54. 43.3	24.	142. 43.3	60. 43.4	40. 43.5
LEW-TAF LEW-F OC-F MF-F	18. 40.0 40.4 41.1	17. 43.7 43.6 43.7	18. 48.9 47.4 46.5	18. 52.8 51.3 50.4	73. 51.1 52.4 54.8	99. 52.0 53.0 55.4	18. 71.1 73.0 73.8	53. 58.3 60.4 63.8	24. 59.0 61.1 64.5	26. 45.5 47.7 51.3	12. 43.2 44.5 46.4	19. 40.7 40.3 39.4
S C - T A F S C - F	60. 43.6	75. 43.9	60. 45.5	45. 46.7	30. 47.5	30. 49.2	0.0	0.0	0.0	120. 51.8	60. 49.9	80. 46.9
\$742-TAF \$742-F	0. 0.0	0. 0.0	0. 0.0	0.0	0. 0.0	0. 0.0	0. 0.0	256. 44.9	331. 49.6	354. 53.8	110. 55.2	0.0
\$815-1AF \$815-F	0.0	0.0	0.0	0.0	0.0	450. 45.2	650. 45.8	463. 48.8	0.0	0.0	37. 55.5	0.0.
S942-TAF S942-F	210. 47.1	750. 45.7	580. 45.7	517. 46.3	652. 47.7	108.	197. 53.1	19. 58.7	0. 0.0	0.0	16. 54.7	171. 50.6
SH-YAF SH-F KASC-F	210. 47.1 46.8	750. 45.7 45.9	580. 45.7 46.3	517. 46.3 47.5	652. 47.7 49.2	558. 46.0 48.2	847. 47.5 49.1	738. 47.7 49.3	331. 49.6 51.9	354. 53.8 54.5	163. 55.2 54.7	171. 50.6 49.9
C1-CFS C10-F CLM-F	50. 43.0 43.8	50. 43.1 48.0	50. 43.4 52.1	50. 43.5 58.1	50. 43.6 65.3	50. 43.9 69.1	50. 44.4 72.8	50. 45.3 70.7	50. 46.3 64.8	50. 47.5 57.5	101. 48.6 49.5	99. 46.1 45.6
KES-F ACL-F BCL-F CC-F BB-F RB-F	46.1 46.0 45.9 45.8 45.4	45.7 45.9 45.9 46.1 46.3	46.2 46.7 46.7 47.2 48.0	47.4 48.3 48.4 49.4 50.6 51.3	49.1 50.4 50.4 51.8 54.0 54.9	48.3 50.0 50.1 52.0 54.8 56.1	49.1 50.6 50.6 52.3 55.0 56.2	49.3 50.7 50.8 52.4 54.9 56.1	51.9 53.7 53.8 55.7 59.2 60.2	53.8 54.3 54.3 54.9 55.8 56.2	53.4 53.2 53.1 52.9 52.8	49.1 48.8 48.7 48.3 47.2

TARGET: R8-H28 ; REDUCED SC 105 TAF IN JUL & 45 TAF IN SEPT.

OPERATIONAL TEMPERATURE CONTROL STUDY 822: W-LO-100.8 - 9/29/92

LOCATION	J	F	N	A	N	J	J	A	\$	0	11	0
TLO-TAF TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF	21.	25.	23.	32.	77.	105.	32.	\$4.	24.	122.	50.	20.
TPO-F	43.7	42.8	42.8	42.8	42.8	42.8	42.8	42.9	43.0	43.3	43.9	44.2
TR-TAF	21.	25.	23.	32.	77.	105.	32.	54.	24.	122.	50.	20.
TR-F	43.7	42.8	42.8	42.8	42.8	42.8	42.8	42.9	43.0	43.3	43.9	44.2
LEW-TAF	18.	17.	18.	18.	73.	99.	18.	53.	24.	26.	12.	19.
LEW-F	39.9	43.6	48.8	52.7	52.0	52.7	65.7	58.1	58.9	45.8	43.5	39.4
OC-F	40.3	43.5	47.3	51.2	53.1	53.6	69.1	60.3	61.0	48.0	44.7	39.2
NF-F	41.1	43.7	46.4	50.4	55.2	55.9	71.7	63.7	64.4	51.5	46.5	38.7
SC-TAF	60.	75.	60.	45.	15.	15.	15.	0.0	30.	100.	50.	40.
SC-F	43.6	43.9	45.5	46.7	47.4	47.9	49.0		51.2	52.8	50.3	47.3
S742-TAF S742-F	0. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	192. 44.5	327.	310. 53.4	188. 54.5	0.0
\$815-TAF \$815-F	0.0	0.0	0.0	0.0	0.0	434. 45.0	647. 45.7	532. 48.7	0.0	0. 0 0	0.0	0.0
S942-TAF S942-F	140. 47.0	519. 45.6	580. 45.6	517. 46.3	652. 47.6	124. 49.5	181. 53.1	14. 58.1	- 0.0	0.0	0.0	191. 50.7
SH-TAF	140.	519.	580.	517.	652.	558.	827.	738.	327.	310.	188.	191.
SH-F	47.0	45.6	45.6	46.3	47.6	46.0	47.3	47.8	48.9	53.4	54.5	50.7
KASC-F	46.6	45.9	46.2	47.4	49.2	48.2	49.0	49.4	51.2	54.3	54.1	50.0
CL-CFS	50.	50.	50.	50.	50.	50.	50.	50.	50.	50.	101.	99.
CLO-F	43.0	43.1	43.4	43.5	43.6	43.9	44.4	45.2	46.1	46.9	48.1	46.6
CLN-F	43.8	48.0	52.1	58.1	65.3	69.1	72.8	70.7	64.7	57.3	49.2	45.9
KES-F ACL-F BCL-F CC-F 88-F RB-F	45.7 45.6 45.6 45.0 45.0	45.6 45.9 45.9 46.1 46.4 46.6	46.1 46.6 46.6 47.1 48.0 48.3	47.3 48.2 48.3 49.3 50.5	49.2 50.4 50.5 51.9 54.1 55.1	48.2 49.9 50.0 52.0 54.9 56.2	49.0 50.5 50.5 52.2 54.9 56.1	49.4 50.8 50.9 52.5 55.0 56.1	51.2 52.9 53.0 54.9 58.4 59.4	53.9 54.5 54.5 55.2 56.1 56.5	53.3 53.1 53.0 52.8 52.9	49.5 49.1 49.1 48.7 47.3

TARGET: R8-W2A

OPERATIONAL TEMPERATURE CONTROL STUDY 823: A-HI-100.8 - 9/24/92

						-,-,,	•					
LOCATION	J	F	N	A	N	J	J	A	S	0	N	0
TLO-TAF TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF TPO-F	19. 44.5	17. 43.9	18. 43.9	20. 43.9	131. 43.9	270. 43.9	196. 43.9	86. 43.9	52. 43.9	146.	71. 44.1	39. 44.3
TR-TAF TR-F	19. 44.5	17. 43.9	18. 43.9	20. 43.9	131. 43.9	270. 43.9	196. 43.9	86. 43.9	52. 43.9	146. 44.0	71. 44.1	39. 44.3
LEW-TAF LEW-F OC-F NF-F	18. 39.8 40.3 41.1	·17. 44.0 43.6 43.8	18. 49.5 47.7 46.6	18. 55.1 52.5 50.8	73. 49.6 51.1 54.0	99. 48.1 49.5 52.6	18. 49.7 57.6 65.3	53. 54.3 56.9 61.1	24. 53.7 56.6 61.2	26. 46.0 48.2 51.6	12. 43.7 44.9 46.6	19. 41.1 40.5 39.7
SC-TAF SC-F	32. 43.8	42 43.9	35. 44.3	0. 0.0	60. 46.2	175. 51.4	175. 53.5	30. 51.3	55. 54.9	120. 52.8	60. 50.1	30. 47.1
\$742-TAF \$742-F	0. 0.0	0. 0.0	0. 0.0	0.0	0.0	452. 45.6	162. 45.8	298. 46.2	325. 48.6	288. 50.9	338. 53.3	0.0
\$815-TAF \$815-F	0.0	0. 0.0	0.0	0.0	0.0	0.0	518. 46.0	354. 47.9	0.0	0.0	0.0	0.0
\$ 9 4 2 - I A F \$ 9 4 2 - F	340. 47.3	430. 46.0	410. 46.0	217. 46.2	534. 46.9	0.0	50.1	6. 55.5	0.0	0. 0.0	0.0	340. 50.7
SH - TAF SH - F KASC - F	340. 47.3 47.1	430. 46.0 46.3	410. 46.0 46.8	217. 46.2 48.9	534. 46.9 48.8	452. 45.6 48.3	687. 46.0 48.1	659. 47.2 49:0	325. 48.6 51.0	288. 50.9 52.1	338. 53.3 53.1	340. 50.7 50.3
CL-CFS CLO-F CLM-F	50. 43.0 43.8	50. 43.2 48.1	50. 43.6 52.2	50. 43.7 58.1	50. 43.8 65.4	50. 43.9 69.1	50. 44.1 72.8	50. 44.6 70.5	50. 45.7 64.6	50. 47.5 57.5	101. 48.7 49.6	99. 46.1 45.6
KES-F ACL-F BCL-F CC-F 88-F RB-F	46.8 46.7 46.7 46.5 46.0 45.9	46.3 46.3 46.6 46.9 47.1	46.6 47.2 47.2 47.9 48.9	48.9 50.8 50.9 52.8 54.6 55.7	48.5 50.0 50.1 51.7 54.2 55.2	49.2 50.7 50.8 52.6 55.2 56.4	49.2 50.6 50.7 52.3 55.0 56.1	49.2 50.7 50.8 52.6 55.2 56.4	51.6 53.1 53.2 55.0 58.3 59.3	52-3 53.0 53.0 53.8 54.9 55.4	52.6 52.5 52.4 52.5 52.5	50.0 49.8 49.7 49.4 47.9

TARGET: R8-W2A

OPERATIONAL TEMPERATURE CONTROL STUDY 824: A-HN-100.8 - 9/30/92

						.,,.	_					
LOCATION	J	F	N	A	N	J	J	A	\$	0	N	0
TtO-TAF TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF TPO-F	31. 44.4	19. 43.7	28.	21. 43.7	73. 43.7	140. 43.7	66.	56. 43.7	27. 43.7	146. 43.7	101. 43.9	39. 44.1
TR-TAF TR-F	31. 44.4	19. 43.7	28. 43.7	21. 43.7	73. 43.7	140. 43.7	66. 43.7	56. 43.7	27. 43.7	146. 43.7	101. 43.9	39. 44.1
LEW-TAF LEW-F DC-F NF-F	18. 41.0 41.1 41.4	17. 43.9 43.7 43.8	18. 48.5 47.2 46.4	18. 55.1 52.6 50.8	73. 52.9 53.9 55.7	99. 51.3 52.4 54.9	18. 57.9 63.5 68.6	53. 58.1 60.3 63.7	24. 58.4 60.6 64.1	26. 45.8 48.0 51.5	12. 43.6 44.8 46.6	19. 41.0 40.6 39.6
SC-TAF SC-F	45. 43.7	45. 43.8	45. ,44.4	0.0	45.5	45. 46.5	45. 48.9	0.0	30. 54.5	120. 53.0	90. 49.1	30. 46.9
5742-TAF 5742-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	96. 45.3	323. 47.6	283. 52.7	185. 54.3	0.0
5815-TAF 5815-F	0.0	0.0	0.0	0.0	332. 45.7	300. 45.8	652. 46.1	668. 48.2	0.0	0.0	0.0	0.0
5942-TAF 5942-F	155. 47.3	213. 45.9	410. 45.9	253. 46.1	139. 46.7	282. 48.3	123. 51.9	50. 58.9	0.0	0.0	0.0	201. 50.8
S H - T A F S H - F K A S C - F	155. 47.3 46.8	213. 45.9 4615	410. 45.9 46.7	253. 46.1 48.4	471. 46.0 48.2	581. 47.0 49.0	774. 47.0 48.8	814. 48.5 49.9	323. 47.6 50.1	283. 52.7 53.7	185. 54.3 53.9	201. 50.8 50.1
C1-CFS C10-F C1M-F	50. 43.0 43.8	50. 43.1 48.0	50. 43.4 52.1	50. 43.5 58.1	50. 43.6 65.3	50. 43.7 69.0	50. 44.0 72.7	50. 44.5 70.5	50. 45.0 64.4	50. 45.9 56.9	101. 47.4 48.7	99. 46.0 45.5
KES-F ACI-F 8CI-F CC-F 88-F R8-F	46.1 45.9 45.9 45.7 45.2	46.0 46.4 46.4 46.9 47.3	46.5 47.1 47.1 47.8 48.8 49.2	48.4 50.1 50.2 52.0 53.7 54.8	48.2 50.0 50.1 52.1 54.9 56.1	48.8 50.4 50.5 52.3 54.9 56.1	48.8 50.3 50.4 52.1 54.9 56.1	49.9 51.2 51.2 52.7 55.0 56.0	50.5 52.3 52.4 54.3 58.0 59.0	53.5 54.1 54.1 54.8 55.8 56.2	52.3 52.2 52.2 52.1 52.3 52.3	49.7 49.3 49.2 48.8 47.3

TARGET: R8-W2A

OPERATIONAL TEMPERATURE CONTROL STUDY 825: A-LM-100.8 - 9/29/92

LOCATION	J	F	И	A	K	J	J	A	S	0	N	D
T L O - T A F T L O - F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
T P O - T A F T P O - F	18.	19. 43.4	28. 43.4	21. 43.4	73. 43.4	99. 43.4	21. 43.4	56. 43.4	27. 43.5	146. 43.6	71. 44.1	39. 44.6
ÎR-ÎAF TR-F	18.	19. 43.4	28. 43.4	21. 43.4	73. 43.4	99. 43.4	21. 43.4	56. 43.4	27. 43.5	146. 43.6	71. 44.1	39. 44.6
1 EW-TAF 1 EW-F 0 C-F NF-F	18. 39.7 40.2 41.0	17. 43.9 43.7 43.8	18. 48.4 47.1 46.4	18. 55.0 52.5 50.8	73. 52.7 53.7 55.6	99. 53.6 54.4 56.6	18 70.1 72.3 73.4	53. 58.0 60.2 63.6	24. 58.3 60.5 64.0	26. 45.7 47.9 51.4	12. 43.7 44.9 46.6	19. 41.3 40.8 39.8
SC-TAF SC-F	, 32. 43.8	45. 43.9	45. 44.5	0.0	2. 45.6	3. 45.8	0.0	0.0	30. 46.9	120. 50.2	60. 48.6	30. 47.0
\$742-TAF \$742-F	0.0	0.0	0.0	0.0	0. 0.0	0.0	0. 0.0	157. 45.1	328. 48.6	187. 53.4	178. 54.5	0.0
\$815-TAF \$815-F	0. 0.0	0. 0.0	0.0	0.0	0.0	314. 45.6	685. 45.8	608. 48.3	0.	0.0	0.0	0.0
S 9 4 2 - TA F S 9 4 2 - F	168. 47.1	136. 45.8	155. 45.8	193. 46.0	563. 46.7	304. 40.5	134. 53.1	49. 61.6	0.0	0.0	0.0	201. 50.7
SH-TAF SH-F KASC-F	168. 47.1 46.8	136. 45.8 46.7	155. 45.8 47.8	193. 46.0 48.9	563. 46.7 48.5	619. 47.0 48.9	819. 47.0 48.7	814. 48.5 49.9	328. 48.6 51.0	187. 53.4 54.9	178. 54.5 54.1	201. 50.7 50.1
C1-CFS C10-F C1#-F	50. 43.0 43.8	50. 43.2 48:1	50. 43.6 52.2	50. 43.7 58.1	50. 43.8 65.4	50. 43.9 69.1	50. 44.2 72.8	50. 44.6 70.5	50. 45.0 64.4	50. 45.3 56.7	101. 45.8 47.7	99. 45.9 45.5
K E S - F A C L - F 8 C L - F C C - F 8 8 - F R 8 - F	46.3 46.1 46.1 45.9 45.3	46.0 46.5 46.6 47.1 47.6 47.9	47.1 48.2 48.2 49.4 50.7	48.9 50.9 51.0 53.1 55.0 56.1	48.5 50.0 50.1 51.8 54.3 55.4	48.9 50.5 50.6 52.4 55.0 56.2	48.7 50.2 50.3 52.0 54.8 56.0	49.9 51.2 51.2 52.7 55.0 56.0	50.7 52.4 52.5 54.4 58.0 59.1	53.1 53.9 53.9 54.8 56.0 56.6	52.7 52.6 52.5 52.3 52.5	49.7 49.3 49.2 48.8 47.4

TARGET: RO-W2A

OPERATIONAL TEMPERATURE CONTROL STUDY 826: A-LO-100.8 - 9/29/92

			0.0									
LOCATION	J	F	IL	A	K	J	J	A	\$	0	N	0
TLO-TAF TLO-F	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF TPO-F	18.	17. 42.9	18.	21. 42.9	73. 42.9	99. 43.0	21.	56. 43.7	124. 44.9	126. 47.0	49.0	49.
TR-TAF TR-F	18. 43.7	17. 42.9	18. 42.9	21. 42.9	73. 42.9	99. 43.0	21. 43.3	56. 43.7	124. 44.9	126. 47.0	61. 49.0	49. 46.8
LEW-TAF LEW-F DC-F NF-F	18. 39.6 40.1	17. 43.8 43.6 43.7	18. 49.3 47.6 46.5	18. 54.9 52.4 50.8	73. 52.4 53.4 55.4	99. 53.4 54.3 56.4	18. 70.1 72.3 73.4	53. 58.1 60.3 63.7	24. 49.5 53.1 58.5	26. 48.7 50.5 53.5	12. 46.9 47.3 48.1	19. 43.2 42.4 40.9
SC-TAF SC-F	32. 43.8	42. 43.9	35. 44.3	0.0	45.1	3. 45.4	0.0	0.0	127. 50.3	100. 53.3	50. 50.6	40.
\$742-1AF \$742-F	0.0	0.	0.0	0.0	0.	0.0	0.0	145.	232. 48.1	207. 55.0	188. 55.0	0.0
\$815-TAF \$815-F	0.	0.0	0.0	0. 0.0	0.0	394. 45.4	726. 45.9	611. 49.9	0.0	0.0	0.0	0.0
5942-TAF 5942-F	168.	138.	165. 45.8	193. 46.2	572. 47.3	225. 49.7	94. 55.4	27. 64.6	0.0	0.0	0.0	191. 50.6
SH-TAF SH-F KASC-F	168. 47.0 46.6	138. 45.7 46.6	165. 45.8 47.7	193. 46.2 49.1	572. 47.3 49.0	619. 47.0 48.9	819. 47.0 48.7	783. 49.5 51.0	232. 48.1 51.5	207. 55.0 56.1	188. 55.0 54.5	191. 50.6 50.0
CL-CFS CLO-F CLM-F	50. 43.0 43.8	50. 43.2 48.1	50, 43.6 52.2	50. 43.7 58.1	50. 43.8 65.4	50. 43.9 69.1	50. 44.1 72.8	\$0. 44.4 70.5	50. 44.7 64.3	50. 45.0 56.8	101. 45.6 47.6	99. 46.1 45.6
KES-F ACL-F BCL-F CC-F 88-F R8-F	46.2 46.0 46.0 45.8 45.2	46.5 46.5 46.5 47.1 47.6 47.9	47.1 48.2 48.3 49.5 50.8 51.4	49.1 51.1 51.2 53.3 55.1 56.2	49.0 50.4 50.5 52.2 54.6 55.6	48.9 50.5 50.6 52.4 55.0 56.2	48.7 50.2 50.3 52.0 54.8 56.0	51.0 52.3 52.3 53.8 56.0 57.1	51.1 52.8 52.9 54.8 58.3 59.3	55.2 55.8 55.8 56.5 57.5	53.7 53.5 53.3 53.1 53.1	49.5 49.1 49.1 48.6 47.3 47.2

TARGET: R8-W4A; INCREASED SC 100TAF IN SEPT.

OPERATIONAL TEMPERATURE CONTROL STUDY 827: 0-HI-75.8 - 9/28/92

LOCATION	J	F	N	A	H	1.	J	A	\$	0	N	0
TLO-TAF TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. 0.0	0.0
TP0-TAF TP0-F	21. 44.6	19. 44.0	23. 44.0	52. 44.0	104.	156. 44.0	171. 44.0	206. 44.0	24. 44.0	146. 44.1	72. 44.3	42. 44.6
TR-TAF TR-F	21. 44.6	19.	23. 44.0	52. 44.0	104.	156. 44.0	171. 44.0	206. 44.0	24. 44.0	146. 44.1	72. 44.3	42.
LEW-TAF LEW-F OC-F NF-F	18. 40.2 40.5 41.2	17. 44.0 43.8 43.8	18. 49.0 47.4 46.5	18. 50.7 50.2 50.0	73. 50.9 52.2 54.7	99. 50.9 52.0 54.6	18. 50.5 58.1 65.6	53. 48.9 52.1 57.3	24. 59.2 61.2 64.6	26. 46.1 48.3 51.7	12. 43.9 45.0 46.7	19. 41.4 40.9 39.8
S C - T A F S C - F	20. 43.9	30. 43.9	30. 44.1	30. 44.9	30. 46.4	60. 49.3	150. 54.9	150. 54.6	0.0	120. 52.2	60. 50.0	30. 47.2
\$742-TAF \$742-F	0.0	0.0	0.0	0.0	0.0	509.°	721. 46.1	78. 46.4	352. 48.1	268. 52.1	248. 54.1	0.0
\$815-TAF \$815-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	554. 48.5	0.0	0.0	0.0	0.0
\$942-TAF \$942-F	180. 47.4	170. 46.2	230. 46.2	269. 46.3	481. 46.8	0.0	0.0	44. 59.9	0.0	0.0	0.0	320. 50.7
SH-TAF SH-F KASC-F	180. 47.4 47.1	170. 46.2 46.9	230. 46.2 47.5	269. 46.3 48.4	481. 46.8 48.9	509. 46.0 48.3	721. 46.1 48.2	676. 49.0 50.7	352. 48.1 50.4	268. 52.1 53.3	248. 54.1 53.9	320. 50.7 50.3
C1-CFS C10-F C1M-F	50. 43.0 43.8	50. 43.2 48.1	50. 43.6 52.2	50. 43.7 58.1	50. 43.8 65.4	50. 43.8 69.0	50. 44.1 72.8	50. 44.6 70.5	50. 45.6 64.6	50. 47.3 57.4	101. 48.8 49.6	99. 46.2 45.7
KES-F ACL-F BCL-F CC-F BB-F RB-F	46.8 46.6 46.5 46.3 45.6	46.5 46.9 46.9 47.4 47.7	47.1 48.0 48.1 49.0 50.2 50.8	48.0 49.6 49.6 51.3 52.9 53.9	48.8 50.4 50.5 52.3 55.0 56.0	48.4 50.2 50.2 52.2 55.1 56.4	49.4 50.8 50.8 52.5 55.1 56.2	\$1.4 52.6 52.7 54.1 56.2 57.1	50.4 52.2 52.3 54.3 58.0 59.0	53.6 53.6 54.4 55.5 56.0	53.1 53.0 52.9 52.8 52.8 52.7	50.0 49.7 49.7 49.3 47.9

TARGET: R8-W4A; REDUCED SC 75 TAF IN SEPT.

OPERATIONAL TEMPERATURE CONTROL STUDY 828: 0-HM-75.8 - 9/30/92

			020	: U-NM-	13.0 -	2120125						
LOCATION	J	F	×	A	K	J	J	A	\$	0	H	0
TLO-TAF TLO-F	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TP0-TAF TP0-F	18.	17. 43.8	18. 43.8	22. 43.8	134. 43.8	156. 43.8	61. 43.8	196. 43.9	24. 44.0	176. 44.6	72. 45.9	72. 46.3
TR-TAF TR-F	18.	17. 43.8	18. 43.8	22. 43.8	134. 43.8	156. 43.8	61. 43.8	196. 43.8	24.	176. 44.5	72. 45.9	72. 46.3
LEH-TAF LEW-F OC-F MF-F	18. 39.8 40.3	17. 44.0 43.8 43.8	18. 49.5 47.7 46.6	18. 54.9 52.4 50.8	73. 49.4 51.0 53.9	99. 50.7 51.8 54.5	18. 58.8 64.1 68.9	53. 48.9 52.1 57.3	24. 59.2 61.2 64.6	26. 46.2 48.3 51.8	12. 44.9 45.8 47.2	19. 43.8 42.9 41.3
SC-TAF SC-F	17. 43.9	27. 44.0	25. 44.1	0.0	60. 45.4	60. 49.4	40. 53.5	140. 55.5	0.0	150. 52.2	60. 50.3	60. 47.0
S742-1AF S742-F	0.	0.0	0. 0.0	0.0	0.0	511. 45.8	68. 45.9	71. 45.9	352. 48.9	176. 54.5	209. 55.0	0.0
5815-TAF 5815-F	0.0	0.0	0.0	0.0	0.0	0. 0.0	657. 46.4	532. 49.9	0.0	0.0	0.0	0.0
S 9 4 2 - T A F S 9 4 2 - F	183. 47.3	153. 46.1	190. 46.1	293. 46.4	490. 47.4	0.0	59. 55.0	22. 65.1	0.0	0.0	0.0	171. 50.6
SH-TAF SH-F KASC-F	183. 47.3 47.0	153. 46.1 46.8	190. 46.1 47.7	293. 46.4 48.4	490. 47.4 49.5	511. 45.8 48.2	784. 47.0 48.8	625. 50.0 51.8	352. 48.9 51.1	176. 54.5 55.8	209. 55.0 54.5	171. 50.6 49.9
CL-CFS CLO-F CLN-F	50. 43.0 43.8	50. 43.2 48.1	50. 43.7 52.2	50. 43.8 58.2	50. 43.8 65.4	50. 43.9 69.1	50. 44.0 72.7	50. 44.3 70.4	50. 45.2 64.5	50. 46.9 57.3	101. 48.9 49.7	99. 46.2 45.7
K E S - F A C L - F B C L - F C C - F B B - F R B - F	46.7 46.5 46.5 46.2 45.6	46.4 46.9 46.9 47.4 47.8	47.3 48.3 48.4 49.5 50.7 51.3	48.4 49.9 50.0 51.6 53.2 54.2	49.1 50.6 50.6 52.3 54.8 55.9	48.3 50.1 50.2 52.1 55.0 56.3	49.0 50.5 50.6 52.3 55.1 56.3	52.5 53.7 53.8 55.2 57.3 58.3	51.1 52.8 52.9 54.8 58.4 59.4	54.1 54.8 54.8 55.6 56.7 57.1	53.6 53.4 53.3 53.1 53.1	49.1 48.8 48.7 48.3 47.2 47.1

TARGET: R8-W6A; REDUCED SC 100 TAF IN JUL & 70 TAF IN SEPT.

OPERATIONAL TEMPERATURE CONTROL STUDY 829: 0-LM-75.8 - 9/30/92

						.,,.	•					
LOCATION	J	F	И	A	X	J	3	A	\$	0	W	0
TLO-TAF TLO-F	0.0	0.0	0.0	0.0	0. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. 0.0
TPO-TAF TPO-F	21. 44.2	19. 43.6	23. 43.6	22. 43.6	104. 43.6	196. 43.6	121. 43.8	156. 44.9	28. 46.4	126. 48.0	72. 50.5	42. 47.0
TR-TAF TR-F	21.	19. 43.6	23. 43.6	22. 43.6	104. 43.6	196. 43.6	121. 43.8	156. 44.9	28. 46.4	126. 48.0	72. 50.5	42. 47.0
LEW-TAF LEW-F OC-F NF-F	18. 40.1 40.5 41.2	17. 43.9 43.7 43.8	18. 48.9 47.4 46.5	18. 54.8 52.4 50.8	73. 50.6 52.0 54.5	99. 49.3 50.6 53.5	18. 52.6 59.7 66.4	53. 51.0 54.0 58.8	24. 58.9 61.0 64.4	26. 49.4 51.1 53.9	12. 48.2 48.4 48.7	19. 42.8 42.1 40.7
SC-TAF SC-F	20. 43.9	30. 43.9	30. 44.1	0.	30. 45.0	100. 49.2	100. 54.6	100. 56.8	30. 57.0	100. 54.7	60. 51.8	30. 47.4
\$742-TAF \$742-F	0. 0.0	0. 0.0	0. 0.0	0. 0.0	0.0	0.0	37. 45.4	173. 45.7	329. 52.1	207. 59.4	178. 55.0	0.0
\$815-TAF \$815-F	0. 0.0	0.0	0.0	0.0	113. 45.7	386. 45.8	606. 46.5	393. 51.7	0.0	0.0	0.0	0.0
\$942-TAF \$942-F	180. 47.2	151. 46.0	170. 46.3	500. 47.5	376. 49.9	85. 54.6	66. 63.1	12.7	0.0	0.0	0.0	201. 50.3
SH-TAF SH-F KASC-F	180. 47.2 46.8	151. 46.0 46.8	170. 46.3 48.0	500. 47.5 48.6	489. 48.9 50.8	471. 47.4 49.8	709. 48.0 49.9	570. 50.0 51.9	329. 52.1 54.1	207. 59.4 59.9	178. 55.0 54.5	201. · 50.3 49.7
C L - C F S C L O - F C L N - F	50. 43.0 43.8	50. 43.2 48.1	50. 43.6 52.2	50. 43.7 58.1	50. 43.8 65.4	50. 43.8 69.0	50. 44.0 72.7	50. 44.3 70.4	50. 45.1 64.4	50. 46.9 57.3	101. 49.7 50.2	99. 46.5 45.9
KES-F ACL-F BCL-F CC-F BB-F RB-F	46.5 46.3 46.3 46.1 45.4	46.8 46.8 47.4 47.7 48.0	47.4 48.5 48.6 49.7 50.9 51.5	48.6 49.5 49.6 50.6 51.8 52.5	50.5 52.0 52.0 53.7 56.0 57.0	49.7 51.4 51.5 53.3 56.1 57.3	50.5 51.9 52.0 53.7 56.3 57.5	52.6 54.0 54.1 55.7 58.0 59.1	54.3 55.8 55.9 57.5 60.4 61.2	58.2 58.6 58.6 59.0 59.5 59.8	\$3.8 53.6 53.5 53.3 53.2 53.1	49.4 49.0 48.9 48.5 47.3

TARGET: 88-W68

OPERATIONAL TEMPERATURE CONTROL STUDY 830: 0-10-50.8 - 9/30/92

LOCATION	3	f	И	A	N	J	J	A	S	0	И	0
TLO-TAF TLO-F	0. 0.0	0. 0.0	0. 0.0	0.0	0.0	0. 0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF TPO-F	21. 43.9	19. 43.2	23. 43.2	22. 43.2	104. 43.2	156. 43.7	111. 45.5	56. 47.2	24.	107.	42. 51.7	22. 46.6
TR-TAF TR-F	21. 43.9	19. 43.2	23. 43.2	22. 43.2	104. 43.2	156. 43.7	111. 45.5	56. 47.2	24. 48.1	107.	42. 51.7	22. 46.6
LEW-TAF LEW-F OC-F NF-F	18. 39.9 40.3 41.1	17. 43.8 43.6 43.7	18. 48.8 47.3 46.4	18. 54.7 52.3 50.8	73. 50.3 51.7 54.3	99. 50.6 51.7 54.4	18. 54.5 61.0 67.2	53. 59.9 61.9 64.9	24. 60.2 62.1 65.2	26. 51.0 52.5 55.0	12. 47.6 47.9 48.4	19. 40.5 40.1 39.3
SC-TAF SC-F	20. 43.9	30. 43.9	30. 44.1	0.0	30. 45.0	60. 47.5	90. 54.4	0.0	26. 58.2	80. 56.4	30. 52.9	10. 47.6
S742-TAF S742-F	0.0	0.0	0.0	0.0	0.0	0.0	239. 45.4	479. 48.3	331. 54.4	227. 59.3	208. 55.0	0.0
S815-TAF S815-F	. 0.0	0.0	0.0	0.0	214. 45.6	409. 45.7	282. 46.4	0. 0.0	0. 0.0	0.0	0.0	0.0
\$942-TAF \$942-F	180. 47.0	151. 46.9	170. 47.1	443. 48.4	272. 51.7	10. 57.3	2. 63.1	0. 0.0	0. 0.0	0. 0.0	0.0	221. 50.3
SH-TAF SH-F KASC-F	180. 47.0 46.7	151. 46.9 47.5	170. 47.1 48.7	443. 48.4 49.6	486. 49.0 50.9	419. 46.0 48.8	522. 46.0 48.7	479. 48.3 50.8	331. 54.4 56.2	227. 59.3 59.7	208. 55.0 54.6	221. 50.3 49.7
C L - C F S C L D - F C L N - F	50. 43.0 43.8	50. 43.2 48.1	50. 43.6 52.2	50. 43.7 58.1	50. 43.8 65.4	50. 43.8 69.0	50. 44.0 72.7	50. 44.3 70.4	50. 45.0 64.4	50. 46.5 57.1	101. 49.7 50.2	99. 47.1 46.3
K E S - F A C L - F B C L - F C C - F 8 B - F R B - F	46.4 46.2 46.2 46.0 45.4	46.9 47.3 47.4 47.8 48.1 48.3	48.0 49.0 49.1 50.1 51.2 51.8	49.6 50.6 50.6 51.7 52.9 53.6	50.6 52.1 52.1 53.8 56.1 57.1	48.6 50.7 50.8 53.0 56.2 57.6	19.5 51.4 51.6 53.7 57.0 58.5	50.8 52.8 52.9 55.1 58.3 59.7	56.3 57.6 57.7 59.1 61.7	58.8 59.2 59.1 59.5 60.0	54.4 54.1 54.0 53.7 53.5 53.3	49.6 49.2 49.1 48.7 47.3

TARGET: 88-WIOC; REDUCED SC 90 TAF IN AUG.

END OF FILE

OPERATIONAL TEMPERATURE CONTROL STUDY 831: C-H1-75.8 - 9/29/92

			***			., ,						
LOCATION	J	F	ĸ	A	N	J	J	A	\$	0	N	0
T L O - T A F T L O - F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. 0.0	0.0
T P O - T A F T P O - F	23. 44.6	17. 44.1	38. 44.1	30. 44.1	139. 44.1	219. 44.1	182. 44.1	157. 44.1	58. 44.2	102. 44.3	46. 44.6	31.
TR-TAF TR-F	23. 44.6	17. 44.1	38. 44.1	30. 44.1	139. 44.1	219. 44.1	182. 44.1	157. 44.1	58. 44.2	102.	46.	31. 44.9
LEW-TAF LEW-F OC-F NF-F	18. 40.4 40.7 41.3	17. 44.0 43.8 43.8	18. 48.0 46.9 46.3	18. 53.4 51.6 50.5	73. 49.5 51.0 53.9	99. 49.2 50.5 53.4	18. 50.2 57.9 65.5	53. 50.3 53.4 58.3	24. 53.1 56.1 60.8	26. 47.1 49.1 52.4	12. 43.8 44.9 46.7	19. 40.8 40.4 39.5
SC-TAF SC-F	0.0	0. 0.0	0.0	0.0	60. 44.4	120. 51.1	160. 54.1	100. 55.0	60. 55.8	100. 54.3	60. 51.9	10. 47.2
\$742-TAF \$742-F	0.0	0.0	0.0	0. 0.0	0.0	0. 0.0	0. 0.0	34. 46.0	327. 47.7	285. 55.1	248. 55.3	0.0
\$815-TAF \$815-F	0.0	0. 0.0	0. 0.0	0.0	0 0 . 0	366. 46.1	598. 46.3	582. 49.0	0.0	0.0	0. 0.0	0.0
S 9 4 2 - T A F S 9 4 2 - F	200. 47.5	181. 46.2	200. 46.2	109. 46.6	· 513.	85. 50.7	74. 56.9	114. 68.9	0.0	0.0	0.0	260. 50.4
SH-TAF SH-F KASC-F	200. 47.5 47.1	181. 46.2 46.9	200. 46.2 47.7	409. 46.6 48.0	513. 47.9 49.8	452. 47.0 49.6	670. 47.5 49.6	730. 52.0 53.4	327. 47.7 50.2	285. 55.1 55.9	248. 55.3 54.9	260. 50.4 49.9
C L - C F S C L O - F C L M - F	50. 43.0 43.8	50. 43.1 48.0	50. 43.5 52.1	50. 43.6 58.1	50. 43.6 65.3	50. 43.7 69.0	50. 43.8 72.7	.50. 44.1 70.4	50. 45.0 64.4	50. 46.9 57.3	101. 48.9 49.7	99. 46.0 45.5
K E S - F A C L - F B C L - F C C - F B B - F R B - F	47.1 46.8 46.8 46.5 45.8	46.9 47.3 47.4 47.8 48.1 48.3	47.7 48.8 48.8 49.9 51.1 51.6	48.0 49.1 49.2 50.5 51.9 52.7	49.2 50.7 50.8 52.4 54.8 55.8	49.9 51.6 51.7 53.5 56.2 57.4	50.5 51.9 52.0 53.6 56.2 57.3	53.6 54.7 54.7 56.0 57.9 58.9	51.1 52.7 52.8 54.5 57.9 58.9	55.5 56.0 56.5 57.3 57.7	54.3 54.1 54.0 53.8 53.6 53.4	49.8 49.4 49.4 49.0 47.5

TARGET: 88-W6

OPERATIONAL TEMPERATURE CONTROL STUDY 832: C-HW-50.8 - 9/29/92

			***		• • • •							
LOCATION	J	F *	K	A	W	J	J	A	\$	0	Ж	0
T10-TAF T10-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF TPO-F	23. 44.5	17. 43.9	38. 43.9	30. 43.9	109. 43.9	219. 43.9	22. 13.9	217. 44.0	88. 44.5	122. 45.7	46.	51. 46.8
TR-TAF TR-F	23. 44.5	17. 43.9	38. 43.9	30. 43.9	109. 43.9	219. 43.9	22. 43.9	217. 44.0	88. 44.5	122. 45.7	46.	51. 46.8
LEW-TAF LEW-F OC-F MF-F	18. 40.3 40.6 41.2	17. 44.0 43.8 43.8	18. 47.9 46.9	18. 53.4 51.6 50.5	73. 50.5 51.9 54.4	99. 49.0 50.3 53.3	18. 69.8 72.1 73.3	53. 48.6 51.9 57.1	24. 50.8 -54.2 59.3	26. 47.8 49.7 52.9	12. 45.5 46.3 47.5	19. 43.3 42.5 41.0
SC-TAF SC-F	0.0	0.0	0.0	0.0	30. 44.0	120. 49.3	0.0	160. 53.7	90. 54.1	120. 53.7	60. 51.7	30. 47.1
S742-TAF S742-F	0.	0.0	0.0	0.0	0.0	0.0	40. 45.7	220. 46.1	295. 52.5	281. 60.0	264. 55 ₁ 4	0.0
\$815-TAF \$815-F	0.0	0.0	0. 0.0	0. 0.0	67. 45.9	381. 46.0	633. 46.7	231. 51.8	0. 0.0	0.0	0.0	201. 50.1
\$942-TAF \$942-F	200. 47.3	181.	200. 46.5	382. 47.7	442.	127. 56.0	32. 65.6	0.0	0.0	0.0	0.0	0.0
SH-TAF SH-F KASC-F	200. 47.3 47.0	181. 46.1 46.8	200. 46.5 48.0	382. 47.7 49.1	509. 19.7 51.5	508. 48.5 50.7	706. 47.5 49.5	451. 49.0 51.5	295. 52.5 54.7	281. 60.0 60.3	264. 55.4 55.0	201. 50.1 49.5
C1-CFS CL0-F C1M-F	50. 43.0 43.8	50. 43.1 48.0	. 50. 43.5 52.1	50. 43.6 58.1	50. 43.6 65.3	50. 43.7 59.0	50. 43.8 72.7	50. 44.0 70.4	50. 44.7 64.3	50. 46.3 57.1	101. 48.8 49.6	99. 45.9 45.5
KES-F AC1-F BC1-F CC-F 08-F R8-F	47.0 46.8 46.7 46.5 45.7	46.8 47.3 47.3 47.7 48.0 48.3	48.0 49.0 49.1 50.1 51.2 51.8	49.1 50.2 50.3 51.6 52.9 53.7	51.1 52.5 52.6 54.1 56.3 57.3	50.4 51.9 52.0 53.7 56.2 57.3	49.5 51.2 51.3 53.2 56.2 57.5	52.1 53.6 53.7 55.4 58.0 59.2	54.6 55.9 56.0 57.5 60.2 61.0	58.3 58.6 58.6 58.9 59.4	54.4 54.2 54.1 53.9 53.6 53.5	49.2 48.8 48.7 48.4 47.2 47.1

TARGET: B8-W68; SC REDUCED 160 TAF IN JULY

OPERATIONAL TEMPERATURE CONTROL STUDY 833: C-LN-25.8 - 9/29/92

LOCATION	J	F	N	A	N	J	J	A	\$	0	И	Đ
TLO-TAF TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0. 0.0	0. 0.0
1 P O - T A F T P O - F	23. 44.3	17.	38. 43.7	30. 43.7	109. 43.7	159. 43.7	22.	57. 44.1	128. 45.1	102. 47.5	46. 49.7	51. 46.8
TR-TAF TR-F	23. 44.3	17. 43.7	38. 43.7	30. 43.7	109. 43.7	159. 43.7	22. 43.9	57. 44.1	128. 45.1	102. 47.5	46. 49.7	51. 46.8
LEW-TAF LEW-F OC-F NF-F	18. 40.3 40.6 41.2	17. 43.9 43.7 43.8	10. 47.8 46.8 46.3	18. 53.3 51.6 50.5	73. 50.4 51.8 54.4	99. 50.5 51.6 54.3	18. 69.8 72.1 73.3	53. 58.1 60.3 63.7	24. 49.5 53.1 58.5	26. 49.4 51.1 53.9	12. 46.8 47.3 48.1	19. 43.3 42.5 41.0
SC-TAF SC-F	0. 0.0	0.0	0. 0.0	0.0	30. 44.0	60. 46.5	0.0	0.0	130. 54.4	100. 54.6	60. 51.9	30. 47.1
\$742-TAF \$742-F	0.0	0.0	0.0	0.0	0.0	0.0	91. 45.6	520. 49.2	259. 56.1	188. 60.1	188. 55.0	0.0
S815-TAF S815-F	0.0	0.0	0.0	0.0	289. - 45.8	425. 46.0	508. 47.4	0.0	0.0	0.0	0.0	0.0
S 9 4 2 - T A F S 9 4 2 - F	200. 47.2	181. 46.4	200. 47.4	283. 48.5	129. 51.2	43. 57.4	28. 66.5	0.0	0.0	0. 0.0	0.0	201. 50.2
SH - TAF SH - F KASC - F	200. 47.2 46.8	181. 46.4 47.0	200. 47.4 48.7	283. 48.5 50.3	418. 47.5 49.8	468. 47.0 49.5	626. 48.0 50.2	520. 49.2 51.4	259. 56.1 58.1	188. 60.1 60.5	188. 55.0 54.5	201. 50.2 49.6
C L - C F S C L D - F C L M - F	. 50. 43.0 43.8	50. 43.1 48.0	50. 43.5 52.1	50. 43.6 58.1	50. 43.6 65.3	50. 43.7 69.0	50. 43.8 72.7	50. 43.9 70.3	50. 44.3 64.2	50. 45.3 56.7	101. 47.6 48.9	99. 46.0 45.5
KES-F ACL-F 8CL-F CC-F 88-F R8-F	46.8 46.6 46.5 46.3 45.6	47.0 47.4 47.4 47.9 48.1	48.7 49.6 49.7 50.7 51.6 52.1	50.3 51.7 51.7 53.2 54.6 55.5	49.4 51.2 51.3 53.3 56.0 57.1	49.2 51.0 51.1 53.1 56.1 57.4	50.2 52.0 52.1 54.2 57.4 58.8	51.4 53.2 53.3 55.3 58.3 59.6	56.9 58.0 58.1 59.4 61.7 62.4	58.4 58.8 58.8 59.2 59.8 60.0	53.9 53.7 53.5 53.3 53.2 53.1	49.3 48.9 48.8 48.4 47.2 47.1

TARGET: 88-WIGC; REDUCED SC 150 IN JUL, 90 IN AUG, INCREASED SC 100 IN SEPT

OPERATIONAL TEMPERATURE COMTROL STUDY 834: C-LO-0.8 - 9/29/92

10CAT10N	J	F	M	A	11	J	3	A	\$	0	H	0
TLO-TAF TLO-F	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF TPO-F	23. 44.0	17. 43.3	38. 43.3	30. 43.3	109. 43.5	129. 45.0	52. 47.2	87. 49.2	28. 51.3	102. 54.5	36. 52.9	21'. 45.6
TR-TAF TR-F	23. 44.0	17.	38. 43.3	30. 43.3	109. 43.5	129. 45.0	52. 47.2	87. 49.2	28.	102. 54.5	36. 52.9	21. 45.6
LEW-TAF LEW-F OC-F NF-F	18 40.2 40.5 41.2	17. 43.9 43.7 43.8	18. 47.7 46.8 46.2	18. 53.2 51.5 50.5	73. 50.2 51.6 54.3	99. 52.7 53.6 55.9	18. 62.1 66.5 70.2	53. 57.6 59.8 63.3	24. 60.4 62.2 65.4	26. 54.6 55.6 57.4	12. 47.8 48.1 48.5	19. 40.0 39.7 39.0
SC-TAF SC-F	0.0	0.0	0.0	0.0	30. 44.0	30. 45.2	30. 48.3	30. 52.3	30. 56.7	100. 59.0	50. 53.2	0.0
\$742-TAF \$742-F	0.0	0.0	0.0	0.0	246. 45.5	386. 45.7	\$9. 45.8	410. 48.1	338. 55.1	131. 59.1	173. 55.0	0.0
5815-TAF 5815-F	0.0	0.0	0.0	0.0	93. 45.7	0. 0.0	465. 47.6	\$1. \$1.6	0.0	0. 0.0	0.0	0.0
5942-TAF 5942-F	200. 47.0	181.	200. 48.1	223. 49.5	0. 0.0	0.	18. 65.6	0.0	0.0	0.0	0.0	231. 50.3
S H - T A F S H - F K A S C - F	200. 47.0 46.7	181. 48.2 48.6	200. 48.1 49.4	223. 49.5 51.6	340. 45.6 48.7	386. 45.7 48.8	543. 48.0 50.5	461. 48.5 51.0	338. 55.1 56.8	131. 59.1 59.9	173. 55.0 54.5	231. 50.3 49.7
C1-CFS C10-F C1M-F	50. 43.0 43.8	50. 43.1 48.0	50. 43.4 52.1	50. 43.6 58.1	50. 43.6 65.3	50. 43.7 69.0	50. 43.8 72.7	50. 43.9 70.3	50. 44.1 64.1	50. 44.9 56.6	101. 47.5 48.8	99. 47.0 46.2
KES-F ACL-F 8CL-F CC-F 88-F R8-F	46.7 46.5 46.4 46.2 45.5	48.6 48.9 48.8 49.1 48.9	49.4 50.3 50.3 51.2 52.0 52.4	51.6 53.1 53.2 54.7 56.1 57.0	48.3 50.5 50.7 53.1 56.2 57.5	48.5 50.8 51.0 53.5 57.0 58.5	50.4 52.4 52.5 54.7 58.1 59.5	51.1 53.0 53.1 55.3 58.4 59.8	56.8 58.0 58.1 59.4 61.8 62.6	59.5 59.8 60.2 60.6	54.2 53.9 53.8 53.5 53.3	49.7 49.3 49.2 48.8 47.4

TAR6ET: 88-W14

OPERATIONAL TEMPERATURE COMTROL STUDY 835: E-H1-25.8 - 9/29/92

LOCATION	J	F	И	A	X	J	J	A	\$	0	И	Ū
T L O - T A F T L O - F	0.0	0.0	0. 0.0	0. 0.0	0.0	0.0	0.0	0.0	0. 0.0	0. 0.0	0. 0.0	0. 0.0
TPO-TAF TPO-F	55. 44.7	81. 44.2	131. 44.2	123. 44.2	201. 44.2	260. 44.2	183. 44.5	138. 46.1	28.	103. 50.8	46. 52.7	52. 46.5
Î R - T A F T R - F	\$\$. 44.7	81. 44.2	131. 44.2	123.	201. 44.2	260. 44.2	183. 44.5	138. 46.1	28. 48.2	103.	46. 52.7	52. 46.5
LEWSTAF LEW-F OC-F NF-F	18. 42.3 42.0 41.8	17. 44.1 43.8 43.8	18. 45.6 45.7 45.9	18. 47.5 48.4 49.4	73. 48.0 49.8 53.1	99. 48.5 49.8 52.9	18. 50.5 58.1 65.6	53. 52.5 55.3 59.8	24. 59.4 61.4 64.7	26. 51.8 53.2 55.5	12. 48.5 48.6 48.9	19. 43.1 42.3 40.8
SC-TAF SC-F	30. 43.7	60. 43.9	90. 45.4	90. 46.6	120. 49.0	160. 51.3	160. 53.4	80. 55.0	30. 56.4	100. 56.5	60. 52.7	30. 47.2
\$742-TAF \$742-F	0.0	0. 0.0	0.0	0.0	0.0	0. 0.0	2. 46.1	206. 46.2	357. 52.9	247. 60.9	235. 55.7	0.0
\$815-TAF \$815-F	0. 0.0	0.0	0. 0.0	0. 0.0	0. 0.0	371. 46.2	610. 46.5	387. 50.4	0.0	0.0	0.0	245. 50.0
S942-TAF S942-F	214. 47.5	166. 46.3	192. 46.4	203. 46.9	430. 48.6	116. 53.6	34. 65.0	11. 77.3	0.0	0. 0.0	0.0	0.0
S H - T A F S H - F K A S C - F	214. 47.5 47.2	166. 46.3 47.0	192. 46.4 47.9	203. 46.9 49.6	430. 48.6 50.8	486. 48.0 50.3	646. 47.5 49.6	604. 49.5 51.4	357. 52.9 54.7	247. 60.9 61.1	235. 55.7 55.3	245. 50.0 49.5
C L - C F S C L D - F C L M - F	50. 43.0 43.8	50. 43.1 48.0	50. 43.5 52.1	50. 43.6 58.1	50. 43.7 65.4	50. 43.9 69.1	50. 44.5 72.9	50. 45.5 70.8	50. 46.9 65.0	50. 48.6 57.9	101. 50.4 50.7	99. 45.9 45.5
K E S - F A C L - F B C L - F C C - F 8 8 - F R 8 - F	46.8 46.6 46.5 46.3 45.7	46.2 46.6 46.6 47.1 47.5 47.8	47.1 47.9 48.0 48.9 50.1 50.6	48.7 50.1 50.2 51.8 53.4 54.4	50.4 51.8 51.9 53.5 55.8 56.7	50.5 52.0 52.1 53.7 56.1 57.2	50.4 51.8 51.9 53.6 56.2 57.4	51.8 53.2 53.3 54.9 57.3 58.4	54.8 56.1 56.2 57.7 60.4 61.2	59.8 60.0 60.0 60.2 60.5 60.7	54.8 54.5 54.4 54.2 53.9 53.7	49.2 48.9 48.9 40.5- 47.3 47.2

TARGET: 08-W48

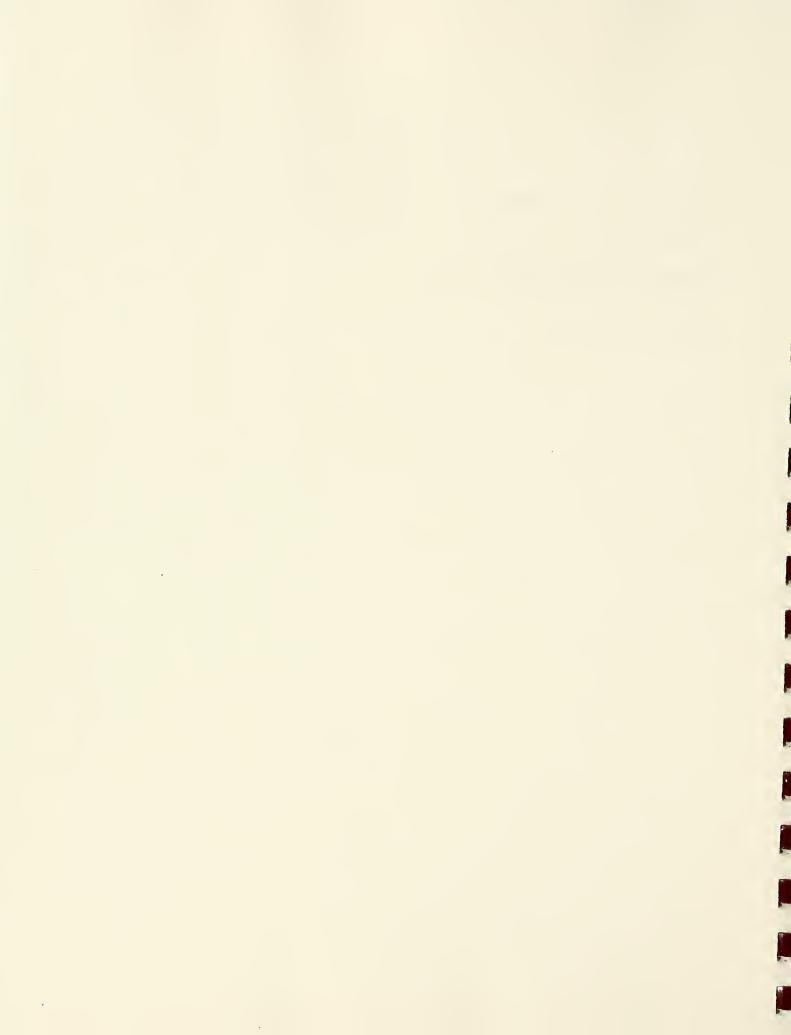
OPERATIONAL TEMPERATURE CONTROL STUDY 836: E-HM-0.8 - 9/29/92

			030		• 1 0	120100						
LOCATION	J	F	M	A	Х	J	J	A	\$	0	К	0
TLO-TAF TLO-F	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TPO-TAF TPO-F	55. 44.6	51. 44.0	72. 44.0	63.	171.	220. 44.0	143.	238. 51.0	28. 58.8	122.	46. 51.2	52. 44.3
TR-TAF TR-F	55. 44.6	51. 44.0	72. 44.0	63.	171. 44.0	220. 44.0	143. 44.8	238. 50.5	28. 58.8	122. 60.7	46. 51.2	52. 44.3
LEW-TAF LEW-F OC-F NF-F	18. 42.2 41.9	17. 44.0 43.8 43.8	18. 46.5 46.1 46.0	18. 49.8 49.7 49.8	73. 48.5 50.2 53.4	99. 49.1 50.4 53.3	18. 52.2 59.4 66.3	53. 53.8 56.5 60.7	24. 62.5 64.0 66.7	26. 59.4 59.8 60.6	12. 47.6 47.9 48.4	19. 41.7 41.1 40.0
SC-TAF SC-F	30. 43.7	30. 43.8	30. 44.2	30. 45.4	90. 48.0	120. 51.9	120. 53.7	180. 56.9	30. 57.3	120. 58.9	60. 53.2	30. 47.1
S742-TAF S742-F	0.	0.0	0.0	0.0	0.0	0.0	0.0	136. 46.0	295. 54.0	176. 61.4	193. 54.4	0.0
S815-TAF S815-F	0.	0.0	0.0	0.0	74. 46.1	371. 46.1	604. 47.2	340. 55.8	0.0	0.0	0.0	216. 49.4
S 9 4 2 - T A F S 9 4 2 - F	170. 47.3	195.	251. 47.3	251. 49.2	357. 53.9	162. 65.4	99. 78.8	0.0	0.0	0.0	0.0	0.0
SH-TAF SH-F KASC-F	170. 47.3 47.0	195. 46.3 46.9	251. 47.3 48.4	251. 49.2 51.1	431. 52.5 54.3	534. 52.0 53.8	703. 51.7 53.4	476. 53.0 55.1	295. 54.0 56.0	176. 61.4 61.6	193. 54.4 54.0	216. 49.4 48.9
CL-CFS CLO-F CLM-F	50. 43.0 43.8	50. 43.1 48.0	50. 43.4 52.1	50. 43.5 58.1	50. 43.6 65.3	50. 43.7 69.0	50. 44.1 72.8	50. 44.9 70.6	50. 46.3 64.8	50. 48.3 57.8	101. 50.3 50.6	99. 45.5 ⁻ 45.2
KES-F ACL-F 8CL-F CC-F 88-F R8-F	46.5 46.3 46.1 45.4	46.5 46.9 46.9 47.4 47.7	48.0 48.7 48.8 49.6 50.6 51.1	50.5 51.8 51.9 53.3 54.7 55.6	53.2 54.5 54.6 56.0 57.9 58.8	53.5 54.7 54.8 56.2 58.3 59.3	53.4 54.7 54.8 56.3 58.6 59.7	55.6 56.8 56.9 58.3 60.4	56.1 57.5 57.6 59.2 61.9 62.7	60.5 60.7 60.7 60.9 61.1 61.3	53.8 53.6 53.5 53.3 53.2 53.1	48.7 48.4 48.3 48.0 47.0

TARGET: CC-WGA ; INCREASED SC 150 TAF IN AUGUST

				1
	,			1
		-		,
				-4
		·		

Appendix D


Selected Data Used in CVP-OCAP Water Year Operations Studies

Appendix D

Table of Contents

CVP-OCAP Delta Outflow Requirement and Controlling Standard	D-3
CVP-OCAP Water Allocations Scenarios	D-4 - D-6
Development of Accretion/Depletion Input for Long-Term CVP-OCAP Studies	D-7 - D-20
Sacramento River Deliveries	D-21 - D-25

CVP-OCAP DELTA OUTFLOW REQUIREMENTS AND CONTROLLING STANDARD

		ABOVE			EXTREME
монтн	WET	NORMAL	DRY	CRITICAL	CRITICAL
WONT	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife
ОСТ	Chipps Island EC	Chipps Island EC	Relaxed	Relaxed	Relaxed
001	Ompo idiana 20		Chipps Island EC	Chipps Island EC	Chipps Island EC
DOI - CFS	4,500	4,500	3,500	3,500	3,500
	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife
NOV	Chipps Island EC	Chipps Island EC	Relaxed	Relaxed	Relaxed
			Chipps Island EC	Chipps Island EC	Chipps Island EC
DOI - CFS	4,500	4,500	3,500	3,500	3,500
	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife
DEC	Chipps Island EC	Chipps Island EC	Relaxed	Relaxed	Relaxed
			Chipps Island EC	Chipps Island EC	Chipps Island EC
DOI - CFS	4,500	4,500	3,500	3,500	3,500
	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife	Fish & Wildlifa	Fish & Wildlife
JAN	Chipps Island EC	Chipps Island EC	Chipps Island EC	Chipps Island EC	Chipps Island EC
DOI - CFS	4,500	4,500	4,500	4,500	4,500
	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife
FEB	Chipps Island DOI	Chipps Island EC	Chipps Island EC	Chipps Island EC	Chipps Island EC
DOI - CFS	10,000	4,500	4,500	4,500	4,500
	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife	Fish & Wildlife
MAR	Chipps Island DOI	Chipps Island EC	Chipps Island EC	Chipps Island EC	Chipps Island EC
DOI - CFS	10,000	4,500	4,500	4,500	4,500
	Fish & Wildlife	Agriculture	Agriculture	Fish & Wildlife	Fish & Wildlife
APR	Chipps Island DOI	Emmaton EC	Emmaton EC	Chipps Island EC	Chipps Island EC
		Jersey Point EC	Jersey Point EC		
DOI - CFS	10,000	7,600	7,600	4,500	4,500
	Fish & Wildlife	AG - F&W	Agriculture	Ag - M&I	Agriculture
MAY	Chipps Island DOI	Emmaton EC	Emmaton EC	Emmaton EC	Emmaton EC
		Jersey Point EC	Jersey Point EC	Jersey Point EC	Jersey Point EC
		Chipps Island DOI		Contra Costa Cl	Contra Costa Cl
DOI - CFS	13,350	13,000	7,600	4,000	4,000
	Fish & Wildlife	Fish & Wildlife	Agriculture	Ag - M&I	Agriculture
JUN	Chipps Island DOI	Chipps Island DOI	Emmaton EC	Emmaton EC	Emmaton EC
			Jersey Point EC	Jersey Point EC	Jersey Point EC
				Contra Costa Cl	Contra Costa Ci
DOI - CFS	13,160	10,700	6,200	3,900	3,900
	Fish & Wildlife	Fish & Wildlife	Agriculture	Ag - M&I	Agriculture
JUL	Chipps Island DOI	Chipps Island DOI	Emmaton EC	Emmaton EC	Emmaton EC
			Jersey Point EC	Jersey Point EC	Jersey Point EC
				Contra Costa Cl	Contra Costa Cl
DOI - CFS	10,000	7,700	4,700	3,900	3,900
	Agriculture	Ag - M&I	Ag - M&I	Ag - M&I	Ag - M&I
AUG	Emmaton EC	Emmaton EC	Emmaton EC	Emmaton EC	Emmaton EC
	Jersey Point EC	Jersey Point EC	Jersey Point EC	Jersey Point EC	Jersey Point EC
		Contra Costa CI	Contra Costa CI	Contra Costa Cl	Contra Costa Cl
DOI - CFS	5,000	4,500	3,600	3,200	3,200
		Municipal & Industrial	Municipal & Industrial	Municipal & Industrial	Municipal & Industrial
SEP	Contra Costa Cl	Contra Costa Cl	Contra Costa Cl	Contra Costa Cl	Contra Costa Cl
DOI - CFS	2,500	2,500	2,500	2,500	2,500

Ag = Agriculture
DOI = Delta Outflow Index
F&W = Fish & Wildlife
M&I = Municipal & Industrial

CFS = Cubic Feet Per Second CI = Chlorides

EC = Electrical Conductivity

LONG-TERM CVP-OCAP ALLOCATION SCENARIO

	ANNUAL	WR: 10	100%	100%	100%	75%	75%	75%
	QUANTITY	AG: 10	100%	75%	20%	20%	25%	%0
WATER RIGHTS SETTLEMENTS								
AGRICULTURE MUNICIPAL & INDUSTRIAL	2,172.0	2,17	2,172.0	2,172.0	2,172.0	1,629.0	1,629.0	1,629.0
WEST SACRAMENTO	23.6		23.6	23.6	23.6	17.7	17.7	17.7
SUBTOTAL - WATER RIGHTS	2,213.9	2,21	2,213.9	2,213.9	2,213.9	1,660.4	1,660.4	1,660.4
PROJECT								
Nived voi 100	272	ų	2 C	6 6	a	a	4 4 4	C
SUTTER BUTTE	17.7	, —	17.7	13.3	0 80	0.00	4	0.0
BUTTE SLOUGH	4.2		4.2	3.2	2.1	2.1	17	0.0
FEATHER RIVER	20.0	., 2	20.0	15.0	10.0	10.0	5.0	0.0
BLACK BUTTE	9.6	ว์	3.6	2.7	1.8	1.8	6.0	0.0
CORNING CANAL	43.8	7	43.8	32.9	21.9	21.9	11.0	0.0
SHASTA LAKE TRINITY RIVER DIVISION	14.2		14.2 40.8	10.7	7.1	7.1	3.6	0.0
			 o o) } ·	5	5	1	j
SUBTOTAL - PROJECT	558.2	ιχ. 	558.2	418.7	279.1	279.1	139.6	0.0
TOTAL - SACRAMENTO RIVER	2,772.1	2,7	2,772.1	2,632.6	2,493.0	1,939.5	1,800.0	1,660.4
AMERICAN RIVER								
FOLSOM LAKE								
WATER RIGHTS	29.0	u,	29.0	59.0	59.0	29.0	59.0	29.0
PROJECT	50.8	u ,	50.8	38.1	25.4	25.4	12.7	0.0
PLACEH COUNTY	155.0		8.0	0.9	4.0	O. 4.		0.0
SUBTOTAL - FOLSOM LAKE	264.8	11	117.8	103.1	88.4	88.4	73.7	59.0

	ANNUAL	WR: 100%	100%	100%	75%	75%	75%
	QUANTITY	AG: 100%	75%	20%	20%	25%	%0
AMERICAN RIVER (CON'T)							
FOLSOM SOUTH CANAL							
WATER RIGHTS PROJECT	25.0	20.0	20.0	20.0	20.0	20.0	20.0
SUBTOTAL - FOLSOM SOUTH	235.0	20.0	20.0	20.0	20.0	20.0	20.0
CITY OF SACRAMENTO	230.0	0.09	0.09	0.09	45.0	45.0	45.0
TOTAL AMERICAN RIVER	729.8	197.8	183.1	168.4	153.4	138.7	124.0
CONTRA COSTA	195.0	135.0	135.0	101.0	101.0	101.0	101.0
DMC/MENDOTA POOL							
CONTRACT ENTITIES OTHER WATER RIGHTS	840.0	840.0 37.3	940.0	840.0	630.0	630.0	630.0
SUBTOTAL - WATER RIGHTS	877.3	877.3	8 877.3	877.3	658.0	658.0	658.0
DMC SLC/DMC	463.8	463.8	347.9	231.9	231.9	116.0 27.9	0.0
HEFUGE WAIEH (ADDITIONAL)	52.0	52.0	39.0	26.0	26.0	13.0	0.0
SUBTOTAL - PROJECT	627.5	627.5	5 470.7	313.7	313.7	156.9	0.0
LOSSES	110.0	110.0	110.0	110.0	110.0	110.0	110.0
TOTAL DMC/MP	1,614.8	1,614.8	1,458.0	1,301.0	1,081.7	924.9	768.0

	ANNUAL	WR: 100%	100%	100%	75%	75%	75%
	QUANTITY	AG: 100%	75%	20%	20%	25%	%0
SAN FELIPE	196.3	196.3	147.2	147.2	147.2	147.2	147.2
ONEILL FOREBAY	27.9	27.9	20.9	14.0	14.0	7.0	0.0
SAN LUIS CANAL/CVC							
WATER RIGHTS	6.0	6.0	4.0	4.0	3.0	3.0	3.0
M&I	16.5	16.5	16.5	16.5	12.4	12.4	12.4
AGRI:							
CROSS VALLEY SLWD/PANOCHE WESTLANDS	128.3 139.6 1,100.0	128.3 139.6 1.100.0	96.2	64.2 69.8 550.0	64.2 69.8 550.0	32.1 34.9 275.0	0.0
REFUGES	8.2	8.2	6.2	4.1	4.1	2.1	0.0
LOSSES	15.0	15.0	15.0	15.0	11.3	11.3	11.3
TOTAL - SAN LUIS CANAL/CVC	1,413.6	1,413.6	1,067.6	723.6	714.7	370.7	26.6
GRAND TOTAL - CVP	6,949.5	6,357.5	5,644.4	4,948.2	4,151.5	3,489.5	2,827.2

Development of Accretion/Depletion Input

for Long-Term CVP-OCAP Studies

Water accretions/depletions (acc/dep) to the Sacramento River and its tributaries are a result of many causes related to precipitation, land use, and water project operations, and their magnitude and timing vary from month to month and year to year. Because the Long-Term CVP-OCAP studies were performed for a range of hydrologic and reservoir conditions, it was necessary to develop acc/dep data that were representative of the conditions that would exist in each of the twenty model scenarios (5 runoff conditions, times 4 starting reservoir storages).

Information exists to compute acc/dep on a daily basis. For the purposes of these studies, however, data are required for monthly time steps. To obtain monthly values, calculations were performed to determine the daily acc/dep and then the results of the daily values were summed. An examination of these results indicated that the magnitude and timing of acc/dep are most influenced by the factors that determine annual runoff. As a consequence, a typical acc/dep pattern was determined for each of the four hydrologic year types and those same patterns were used with all beginning reservoir storage conditions.

Keswick-Freeport

Reclamation has daily data back to 1970 with which the Sacramento River acc/dep between Keswick and Freeport (Kes-Fpt) has been computed. USGS data is available back to 1949 which would, if it could be used, double the period of record available for analysis. To determine if the USGS data "matched" Reclamation data, a comparison was made of Reclamation calculated monthly acc/dep, for the water years 1970 through 1990, with the acc/dep calculated using USGS data. A graphic representation of that comparison is shown in Figure A, with the straight line representing the results if there was a perfect match. From observation it was determined that the two methods

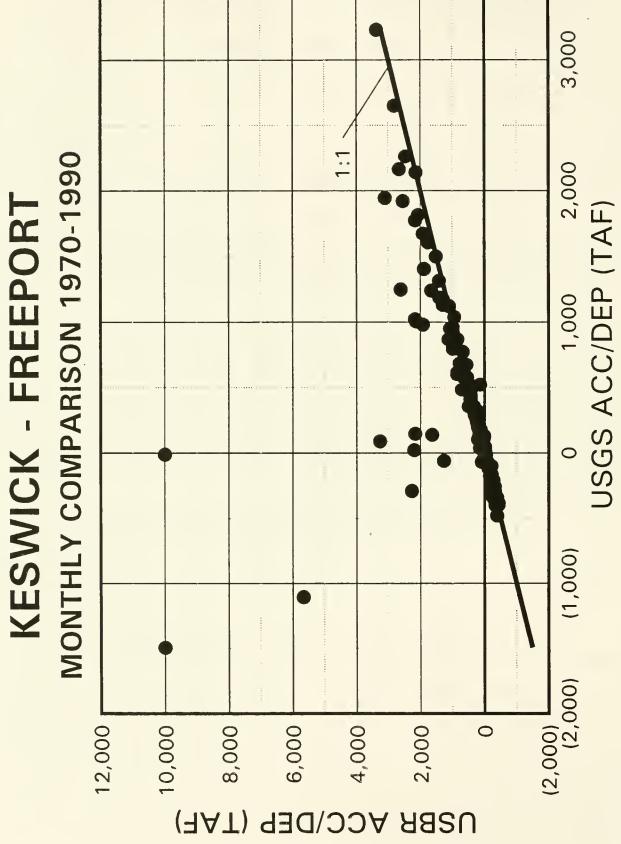


Figure A

(Reclamation and USGS) provided equivalent results and that the period of record could be extended with USGS data back to 1949. Monthly acc/dep values were determined with the USGS data and used in further analyses.

Keswick-Wilkins Slough

Similar Reclamation and USGS data is available for calculating Sacramento River acc/dep between Keswick and Wilkins Slough (Kes-Wlk). Again, Reclamation data is limited to the 1970 through 1990 period and an extension of the data using USGS data might be valuable. Applying the comparison technique used for the Kes-Fpt analysis, it was determined that the two methods for determining the Kes-Wlk acc/dep were equivalent (see Figure B). Monthly acc/dep values were determined with the USGS data and used in further analyses.

Keswick-Freeport versus Keswick-Wilkins Slough

Because of water operation constraints in the model, it was necessary to determine a relationship between Kes-WLK acc/dep and Kes-Fpt acc/dep. This relationship makes it possible to calculate a Kes-Wlk acc/dep given a Kes-Fpt acc/dep. The relationship between the two river reaches is probably dependent to some extent on cropping patterns and land development in the region, thus, the period of record used in this analysis was limited to 1970 through 1990 which is most representative of current conditions. Plotting the monthly Kes-Wlk acc/dep versus monthly Kes-Fpt acc/dep provides a visual means of identifying the relationship (see Figure C). Using regression analysis, a "best-fit" line was determined and an equation was developed that describes the Kes-Wlk acc/dep as a function of the Kes-Fpt acc/dep.

Figure B

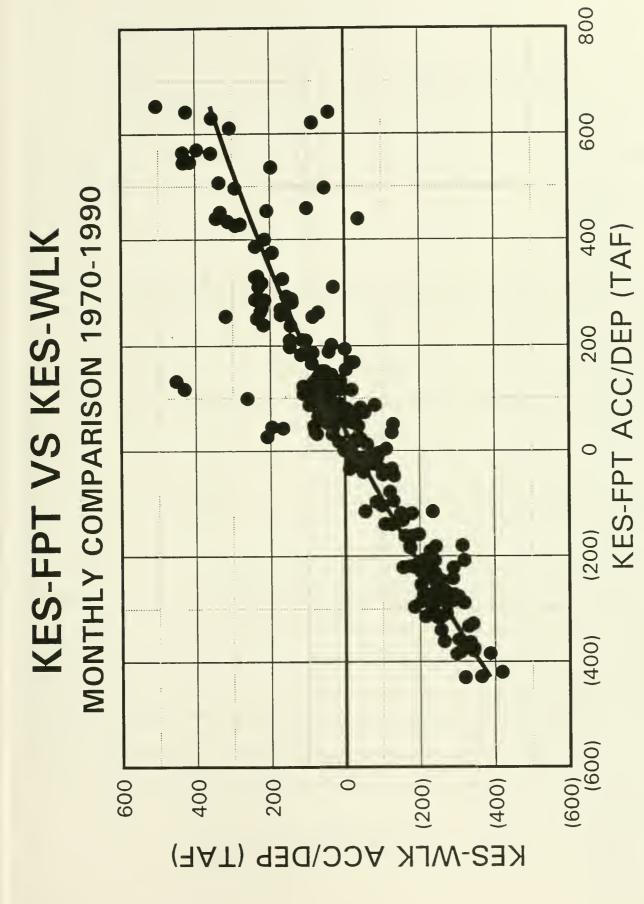


Figure C

Keswick-Freeport Accretions/Depletions by Year Type

In order to determine the "typical" acc/dep for the hydrologic year types, the years 1949 through 1990 were divided into five groups; wet, above normal, dry, critical, and extreme critical. The group boundaries and each year's placement in a group was determined by the Sacramento River Index defined in SWRCB D-1485. Once the groups were established, an average monthly acc/dep was determined for each month. Figure D illustrates the initial results of this analysis.

It was apparent from the plotted results that some anomalies in monthly averages were evident during the months when rainfall can be significant. To ameliorate these anomalies, certain years (particularly the extremely wet years and/or years with runoff distributions well outside typical ranges) were selectively removed from the analysis to avoid unduly influencing results because of isolated rainfall events. Figure E is a graphical representation of the adjusted Kes-Fpt acc/dep distributions used in all Long-Term CVP-OCAP studies.

Yuba River Accretion/Depletions

Yuba River operations are not controlled in the spreadsheet model used for the Long-Term CVP-OCAP studies. It was, therefore, necessary to estimate Yuba River operations for each of the hydrologic year types. In a procedure similar to that used for the Sacramento River, USGS data for the period 1970 through 1990 were segregated by hydrologic year type and plotted on a monthly basis (see Figure F). Water years 1970, 1971, 1973, 1978, 1980, 1984, and 1986 were described as wet; water years 1975 and 1989 were described as above normal; water years 1972, 1979, 1981, and 1985 were described as dry; water years 1976, 1987, and 1988 were described as critical; and, 1977 was an extreme critical year. Upon observation of the results, certain adjustments were made to the values to create distributions that ignore extreme events and are believed to be plausible in temporal distribution and magnitude (see Figure G).

KESWICK - FREEPORT ACC/DEP ACTUAL DATA BY YEAR TYPE 1949-1991

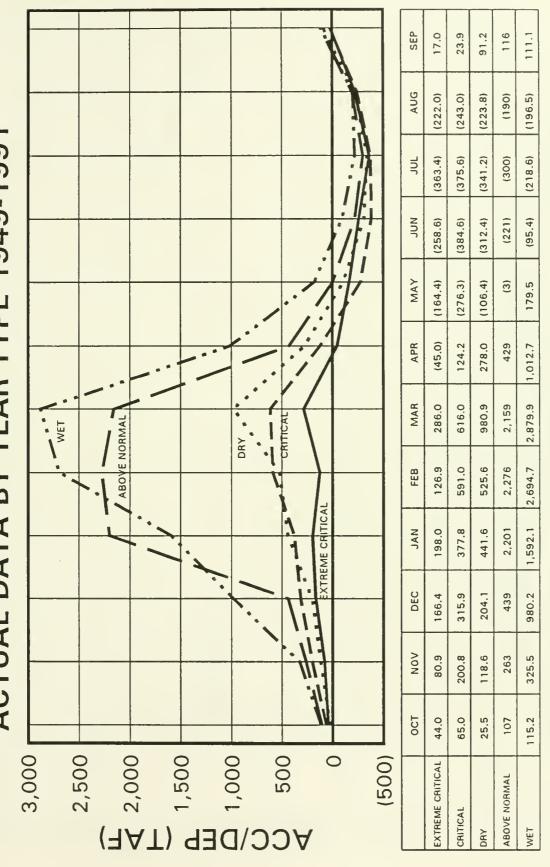


Figure D

KESWICK - FREEPORT ACC/DEP

ADJUSTED DATA BY YEAR TYPE EXTREME CRITICAL OVE NORM WET 2,000 1,500 1,000 0 500 (TAF)

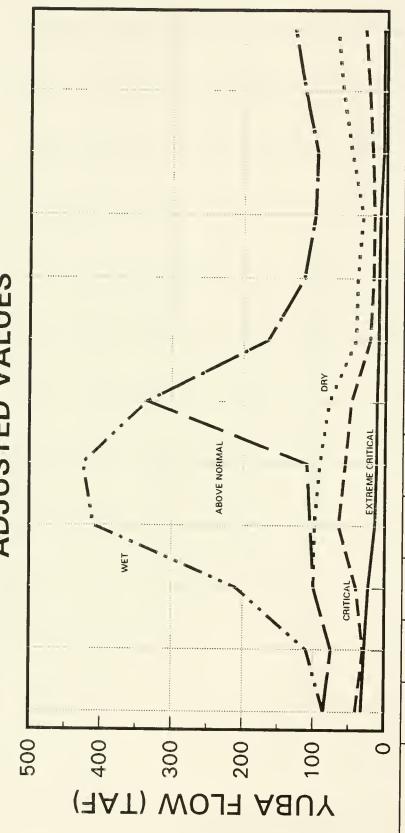
	ост	NOV	DEC	JAN	FE8	MAR	APR	MAY	Nnr	JUL	AUG	SEP
EXTREME CRITICAL	55	09	40	105	30	(15)	(100)	(300)	(320)	(340)	(202)	25
CRITICAL	55	80	170	340	285	505	. (25)	(210)	(260)	(340)	(250)	25
DRY	55	115	220	450	715	605	75	(96)	(260)	(390)	(270)	25
ABOVE NORMAL	55	150	300	500	1,050	1,150	440	(25)	(205)	(345)	(070)	7,
WET	52	175	620	1,745	1,890	1,150	465	06	(135)	(300)	(225)	75

Figure E

(AAT) WOJA ABUY

YUBA RIVER @ MARYSVILLE

ACTUAL VALUES 1970-1990 ABOVE NORMIAL 100 200 400 300 500


	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEP
EXTREME CRITICAL	32,422	28,328	22,788	14,122	11,738	11,534	10,294	10,219	9,213	5,435	4,407	5,107
CRITICAL	85,560	72,633	65,662	64,611	55,556	47,618	22,390	18,163	16,761	20,299	42,834	30,783
DRY	83,096	75,372	104,747	98,858	91,727	79,455	170,68	44,229	33,493	48,767	61,825	70,309
ABOVE NORMAL	22,876	69,939	126,922	108,775	106,760	390,307	263,465	87,647	120,747	84,639	124,136	130,083
WET	88,616	109,565	208,824	408,205	425,160	337,529	425,160 337,529 167,747 115,906	115,906	101,183	97,120	117,996	131,991

EXTREME CRITICAL

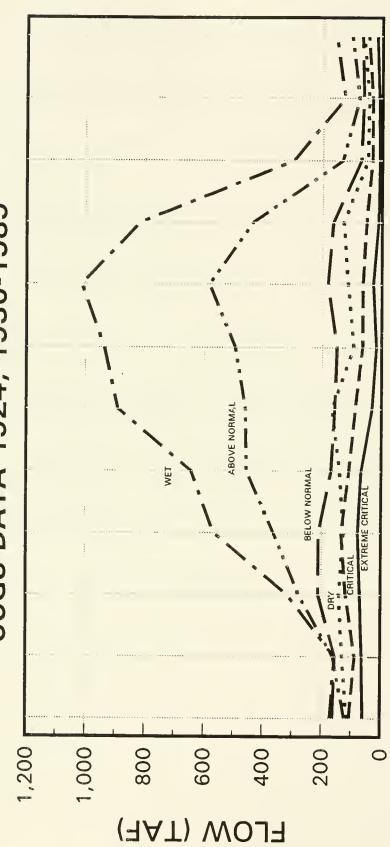
Figure F

YUBA RIVER @ MARYSVILLE

ADJUSTED VALUES

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	NNC	JUL	AUG	SEP
EXTREME CRITICAL	32	28	23	14	12	12	10	10	6	2	2	5
CRITICAL	40	30	40	65	56	48	22	18	17	20	25	31
DRY	85	75	100	66	92	79	42	40	33	49	62	70
ABOVE NORMAL	85	75	100	105	110	335	165	115	100	. 97	115	130
WET	85	110	210	410	425	335	165	115	100	97	115	130

Figure G

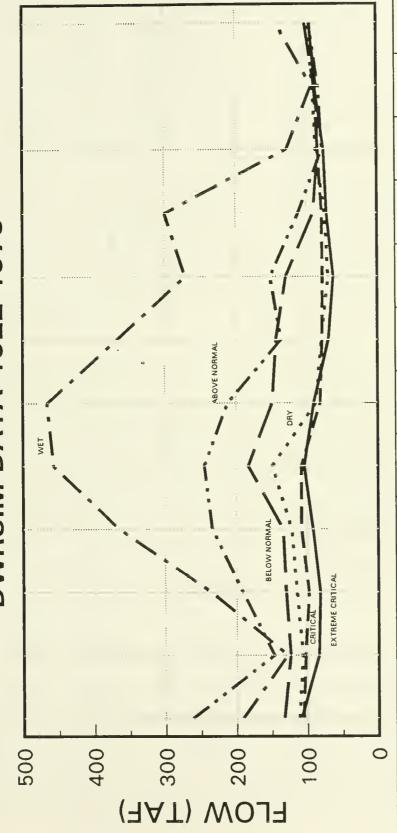

San Joaquin River at Vernalis

San Joaquin River operations are not controlled in the spreadsheet model used for the Long-Term CVP-OCAP studies. It was, therefore, necessary to estimate San Joaquin River flows at Vernalis for each of the hydrologic year types. In a procedure similar to that used for the Yuba River, USGS data for the period 1924, and 1930 through 1989 were segregated by hydrologic year type and plotted on a monthly basis (see Figure H). Because the San Joaquin River watershed does not mirror the Sacramento River watershed, it was not possible to use the Sacramento River Index as a means to designate hydrologic year types so. As a substitute method, based on annual totals, 25 percent of the years were classified as wet; 25 percent of the years as above normal; 35 percent of the years as dry; 10 percent of the years as critical; and, 5 percent of the years as extreme critical.

A second means of estimating Vernalis flow, using data from DWRSIM, was used as a check on the USGS data. Since New Melones Dam was only recently completed and since it has a major affect on the San Joaquin River flow, the early USGS data is probably not very representative of current conditions. The DWRSIM data for water years 1922 through 1978 were segregated in a manner like that used for the USGS data (see Figure I). Observation of the results from these two procedures combined with historic 1990, 1991, and 1992 operations resulted in certain adjustments to the values to create distributions that ignore extreme events and are believed to be plausible in temporal distribution and magnitude (see Figure J).

SAN JOAQUIN RIVER @ VERNALIS

USGS DATA 1924, 1930-1989



SEP	18	47	63	89	103	156
ALIG	1	33	45	63	77	126
	6	33	48	17	133	298
NOT	12	52	129	164	435	815
MAY	29	64	114	182	583	1,014
APR	18	64	94	150	495	937
MAR	32	88	167	158	460	891
FEB	68	109	140	169	456	643
JAN	78	134	127	211	363	267
DEC	70	118	141	211	277	316
NOV	63	87	129	154	160	155
OCT	59	105	113	161	121	170
	EXTREME CRITICAL	CRITICAL	DRY	BELOW NORMAL	ABOVE NORMAL	WET

Figure H

SAN JOAQUIN RIVER @ VERNALIS

DWRSIM DATA 1922-1978

[15	7		15	_
100	SEP	94	95	97	101	95	142
	AUG	87	85	90	88	82	92
	JUL	75	83	98	83	77	127
	NOC	71	78	74	90	111	300
	MAY	62	77	69.	129	151	271
	APR	69	78	79	143	136	368
	MAR	90	81	87	149	212	466
	FE8	104	108	149	183	245	457
	JAN	92	108	122	134	234	365
	DEC	82	98	115	130	191	235
	NOV	84	103	107	124	147	128
	OCT	109	106	112	133	262	191
		EXTREME CRITICAL	CRITICAL	DRY	BELOW NORMAL	ABOVE NORMAL	WET

Figure I

SAN JOAQUIN RIVER @ VERNALIS ADJUSTED VALUES

ABO'VE NORMAL EXTREME CRITICAL WET 400 100 300 200 (AAT) WOJA

	OCT	OCT NOV	DEC	JAN	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEP
EXTREME CRITICAL	40	20	20	09	09	09	50	40	20	20	20	30
CRITICALC	70	80	06	110	110	100	80	09	50	40	50	09
DRY	110	105	115	120	150	105	80	75	80	85	06	92
ABOVE NORMAL	110	125	130	135	185	150	145	130	90	85	06	92
WET	110	145	215	300	350	340	255	210	180	85	90	95

Figure J

Sacramento River Deliveries

The performance of operations studies for the Long-Term CVP-OCAP require a knowledge of deliveries to both water rights holders and CVP project contractors. Because accomplishing certain survival goals for the winter-run salmon require applying deficiencies to water deliveries, a method of estimating actual water use for a defined deficiency was developed. The method recognizes a difference between water rights holders and project water contractors and determines separate deliveries for a given deficiency. Since the model used for the Long-Term CVP-OCAP studies does not have a direct input for Sacramento River water demands, differences between 100 percent deliveries and those determined by applying delivery deficiencies are applied to the accretions/depletions on the Sacramento River.

Examination of Reclamations monthly records for the purpose of determining patterns in deliveries show that 85 percent of the water is delivered from April through August. Of that volume, 13 percent is used in April; 20 percent is used in May; 23 percent is used in June; 24 percent is used in July; and, 20 percent is used in August. September and October water deliveries were found to equal 13 percent of the annual total, with September receiving 65 percent and October receiving 35 percent of the amount. The November through March water deliveries amount to only 6 percent of the annual total. Distribution of the November through March volume is 36 percent in November; 15 percent in December; 14 percent in January; 15 percent in February; and, 20 percent in March.

Water rights contracts on the Sacramento River are 2,214,000 acre-feet and CVP project water contracts are 558,000 acre-feet for a total of 2,772,000 acre-feet. Examination of Reclamation records indicate, however, that the average annual total delivery to both water rights and project contractors is only about 2,075,000 acre-feet when no deficiencies are placed on water use. Of this amount, it is estimated that about 500,000 acre-feet of the project water is being used and about 1,575,000 acre-feet of the water rights water is being used.

In years when deficiencies have been placed on CVP water contractors, about 1,800,000 acre-feet of water was delivered to Sacramento water users. In these instances (1977 and 1991), the deliveries to water rights users are limited to 75 percent of contractual values while the project deliveries have been cut by as much as 75 percent. We assume that with a 75 percent reduction in deliveries, project contractors will take the maximum amount of water available under contract. In this instance, project contractors are assumed to be taking 140,000 acre-feet meaning that the difference, 1,660,000, acre-feet is being served to water rights contractors.

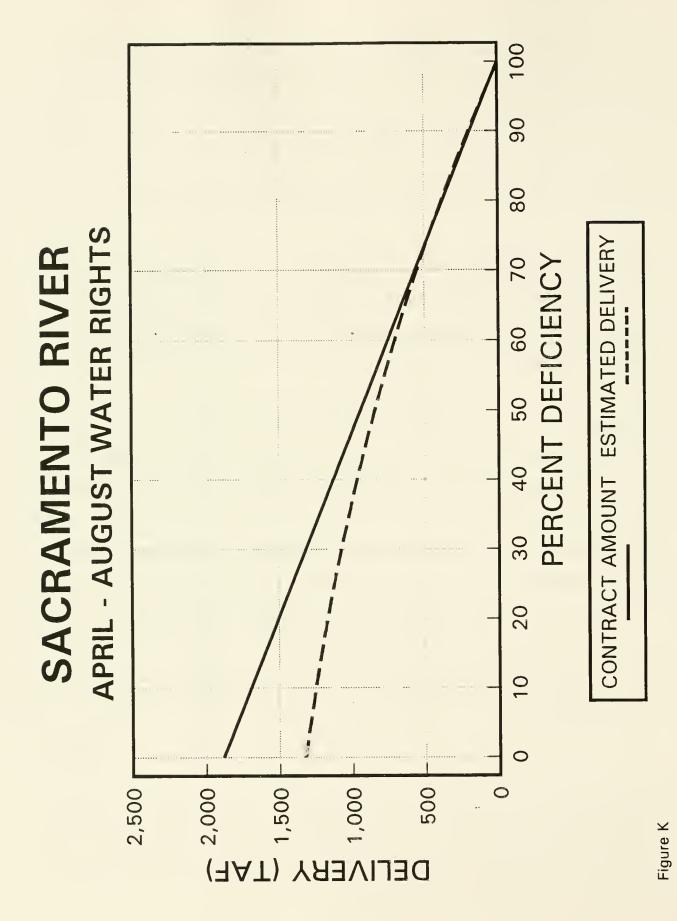
Since, over the course of CVP operations, there have been so few occasions when deficiencies have been declared, it is difficult to describe a relationship between actual deliveries and imposed deficiencies. This difficulty holds true for both water rights contracts and project water contracts. For use in the Long-Term CVP-OCAP studies a relationship was developed that appears to be reasonable but is, by no means, the only one that can be hypothesized.

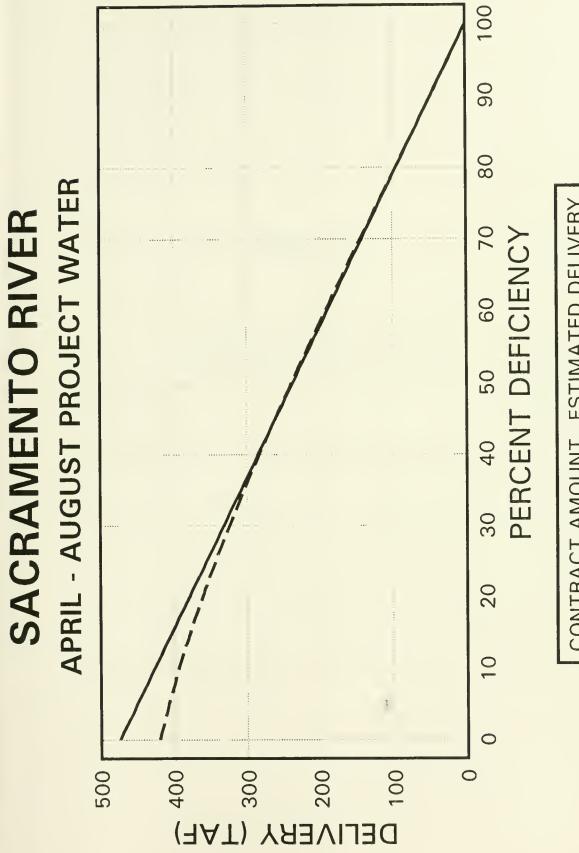
Water Rights Contracts

The deficiency versus delivery relationship for water rights contracts was developed for the April through August period. These months are the primary irrigation months and account for 85 percent of annual water deliveries. Analysis of the September through March data shows that deliveries during this time period are similar despite differences in deficiencies.

In developing a curve of deliveries versus imposed deficiency only two points are available from historic records. Historic April through August water rights deliveries with no deficiencies are about 1,325,000 acre-feet and historic water rights deliveries for the same period with 25 percent deficiency is about 1,120,000 acre-feet.

To estimate additional points on the delivery-deficiency curve, it was assumed that if a 70 percent or greater deficiency was imposed on the water rights contractors then deliveries would equal the contract allowable amount. In other words, if the imposed deficiency was less than 70 percent, actual water rights deliveries would probably


be something less than the contract allowable but if bigger deficiencies were imposed deliveries would be maximized. Figure K is a graphical representation of the contract maximum (solid line) and the estimated delivery (dashed line) versus deficiency.


Project Water Contracts

The delivery versus deficiency relationship for project water contracts was developed for the April through August period. These months are the primary irrigation months and account for 85 percent of annual water deliveries. Analysis of the September through March data shows that deliveries during this time period are similar despite differences in deficiencies.

In developing a curve of deliveries versus imposed deficiency only a limited number of points are available from historic records. Historic April through August project water deliveries with no deficiencies are about 420,000 acre-feet and historic water rights deliveries for the same period with 75 percent deficiency is about 120 acre-feet.

To estimate additional points on the delivery-deficiency curve, it was assumed that if a 50 percent or greater deficiency was imposed on the water rights contractors then deliveries would equal the contract allowable amount. In other words, if the imposed deficiency was less than 50 percent, actual water rights deliveries would probably be something less than the contract allowable but if bigger deficiencies were imposed deliveries would be maximized. Figure L is a graphical representation of the contract maximum (solid line) and the estimated delivery (dashed line) versus deficiency.

CONTRACT AMOUNT ESTIMATED DELIVERY

Figure L

Appendix E

Central Valley Project Statistical Data Tables

	3
	•
	9
•	

Appendix E

Table of Contents

CVP Reservoirs Watershed Characteristics	E-3
CVP Reservoir Characteristics	E-4
CVP Features Discharge Capabilities	E-5
CVP Pumping Plants	E-6
CVP Carriage Facilities	E-7

		1
•		
		1
		1
		1
		Į
		1
		1
	•	1

CENTRAL VALLEY PROJECT RESERVOIRS

Watershed Characteristics

				iter year rund ons of acre-		April-Julyrunoff (millions of acre-feet)		
Reservoir	Drainage area (square miles)	Major tributaries	Mean	Maximum	Minimum	Mean		
Clair Engle (Trinity)	719	Trinity	1.21 (1912-1990)	2.89 (1983)	.23 (1977)	.60 (1912-1990)		
Shasta	6,665	Pit, Mccloud, Sacramento	5.58 (1922-1990)	10.80 (1974)	2.48 (1924)	1.74 (1922-1990)		
Whiskeytown	228	Clear Creek	.26 (1922-1990)	.88 (1983)	.06 (1924)	.07 (1922-1990)		
Folsom	1875	American	2.71 (1906-1990)	6.38 (1983)	.35 (1977)	1.35 (1906-1990)		
New Melones	904	Stanislaus	1.16 (1906-1990)	2.98 (1983)	.15 (1977)	.74 (1906-1990)		

					CENTR	AL VALL	CENTRAL VALLEY PROJECT	ECT					
					Rese	rvoir Cha	Reservoir Characteristics	SS					
		Dam			Gross pool		Bo	Bottom of flood control pool	P	Mir	Minimum active	0	
	Reservoir	Туре	Height (feet)	Storage (TAF)	Elevation (feet)	Surface area (acres)	Storage (TAF)	Elevation (feet)	Surface area (acres)	Storage (TAF)	Elevation (feet)	Surface area (acres)	
	Clair Engle	Zoned Earthfill	537.5	2,448.0	2370	16,535	2,100.0*	2347.8	14,899	312.6	2145.0	4,044	
	Shasta	Concrete Curved Gravity, Embankment	602	4,552.0	1067	29,740	3,252.0	1018.5	23,942	587.1	840	7,528	
	Clair A. Hill/ Whiskeytown	Zoned	281.5	241.1	1210	3,220	205.7**	1198.5	2,946	27.5	1100	787	
	Folsom	Concrete Gravity, Earth Wings	340	974.0	466	11,450	574.0	425.7	8631	82.0	327	1917	
	New Melones	Zoned Earth and Rockfill	625	2,419.5	1088	12,462	1,970.0	1049.6	10,962	300.0	808.2	3,448	
	San Luis	Zoned Earthfill	382	2,041.0	544	13,000		N/A		79.2	326	3,630	
=										•			

* Safety of dams drawdown criteria (to control inflow design flood)

^{**}Normal wintertime drawdown to avoid spills

CENTRAL VALLEY PROJECT FEATURES

Discharge Capabilities

	Powerpla	ant		Spillway		Outlets		Outlets		
# of Units	Total capacity (in MW)	Total discharge (In ft³/s)	Crest elev. (In feet)	Discharge (in ft³/s)	@ Elev. (in feet)	# of Outlets	Discharge @ (in ft³/s)	Elev. (in feet)		
2	140	3,900	2370.0	22,530	2370.0	2	9,725 7,200 2,500 (Aux)	2370.0		
1	.5	100	1874.5	30,000	1902.0	1	320	N/A		
2	154.4	3,600		N/A			N/A			
1^	3.5		1210.0	28,892	1220.5	2	1,250	1220.5		
2	200	4,400	•	N/A		*	N/A			
-	-	-	795.0	5138	809.5	2	710	809.5		
7	583	18,000	1037.0	183,600	1065.0	18	81,800	6 -942.0 8 -842.0 4 -742.0		
3	105	16,000	537.0	250,000	587.0		N/A			
3	197.7	8,600	418.0	567,000	475.4	8	30,960	466.0		
2	13.5	5,500	102.4	300,000	126.5		N/A			
2	300	9,600	1088.0	112,600	1123.4	3	2,300 3,200	808.0 1088.0		
8	424	11,000	544.0	875	545.8		N/A			
6	25.2	4,200	225.0	3,300	228.0		N/A			
	1 2 1 2 7 3 3 3 2 2 8 6 6	# of capacity (in MW) 2 140 1 .5 2 154.4 1 3.5 2 200	# of capacity (in MW) (in ft³/s) 2 140 3,900 1 .5 100 2 154.4 3,600 1 3.5 2 200 4,400	# of Units Total capacity (in MW) Total discharge (ln ft³/s) Crest elev. (ln feet) 2 140 3,900 2370.0 1 .5 100 1874.5 2 154.4 3,600	# of Units Total capacity (in MW) Total discharge (in ft³/s) Crest elev. (in feet) Discharge (in ft³/s) 2 140 3,900 2370.0 22,530 1 .5 100 1874.5 30,000 2 154.4 3,600 N/A 1° 3.5° 1210.0 28,892 2 200 4,400 N/A 7 583 18,000 1037.0 183,600 3 105 16,000 537.0 250,000 3 197.7 8,600 418.0 567,000 2 13.5 5,500 102.4 300,000 2 300 9,600 1088.0 112,600 8 424 11,000 544.0 875 6 25.2 4,200 225.0 3,300	# of Units Total Capacity (in MW) Total discharge (ln feet) Crest elev. (in feet) Discharge (in feet) Elev. (in feet) 2 140 3,900 2370.0 22,530 2370.0 1 .5 100 1874.5 30,000 1902.0 2 154.4 3,600 N/A 1° 3.5° 1210.0 28,892 1220.5 2 200 4,400 N/A N/A - - - 795.0 5138 809.5 7 583 18,000 1037.0 183,600 1065.0 3 105 16,000 537.0 250,000 587.0 3 197.7 8,600 418.0 567,000 475.4 2 13.5 5,500 102.4 300,000 126.5 2 300 9,600 1088.0 112,600 1123.4 8 424 11,000 544.0 875 545.8 6 25.2 4,200 <td># of Units Total Capacity (in MW) Total discharge (in feet) (in feet) Crest elev. (in feet) (in feet) Discharge (in feet) (in feet) # of Outlets 2 140 3,900 2370.0 22,530 2370.0 2 1 .5 100 1874.5 30,000 1902.0 1 2 154.4 3,600 N/A </td> <td># of Units Total Capacity (in MW) Total discharge (in feet) Crest elev. (in feet) Discharge (in feet) # of Outlets Discharge (in feet) # of Dis</td>	# of Units Total Capacity (in MW) Total discharge (in feet) (in feet) Crest elev. (in feet) (in feet) Discharge (in feet) (in feet) # of Outlets 2 140 3,900 2370.0 22,530 2370.0 2 1 .5 100 1874.5 30,000 1902.0 1 2 154.4 3,600 N/A	# of Units Total Capacity (in MW) Total discharge (in feet) Crest elev. (in feet) Discharge (in feet) # of Outlets Discharge (in feet) # of Dis		

CENTRAL VALLEY PROJECT Pumping Plants

Pumping plant	# of Units	Total discharge capacity (in ft 3/s)	Lift (in feet)	From	То
Tracy	6	4,600	197	Delta	Delta-Mendota Canal
Dos Amigos	6	13,200	107 - 125	Pool 13, California Aqueduct	Pool 14, San Luis Canal
San Luis/Gianelli Pump Generating Plant	8	11,000	99 - 327	O'Neill Forebay	San Luis Reservoir
O'Neill Pump Generating Plant	6	4,200	44 - 56	Delta-Mendota Canal	O'Neill Forebay
Folsom	6	. 350	0 -100	Folsom Lake	North Fork Pipeline
Pacheco	12	480	85 - 300	San Luis Reservoir	Pacheco Tunnel
Coyote	6	300	40 - 210 Santa Clara Conduit		Coyote Creek or Calero Reservoir
Pleasant Valley	9	1,185	197 San Luis Canal		Coalinga Canal
Contra Costa #2	6	410	25 - 28		
Corning	6	477	59 -71	Tehama Colusa Canal	Corning Canal

CENTRAL VALLEY PROJECT

Carriage Facilities

Canals/conveyances	Point of diversion	Terminus	Conveyance capacity	Length
Delta-Mendota Canal	Tracy Pumping Plant	Mendota Pool	4,600 to 3,211 ft ³ /s	116.6 miles
San Luis Canal	O'Neill Forebay	Check 21, California Aqueduct	13,100 to 8,350 ft ³ /s	101.3 miles
Folsom-South Canal	Nimbus Dam/Lake Natoma	Dry Creek	3,500 ft ³ /s	26.7 miles
Tehama-Colusa Canal	Red Bluff Diversion Dam	Dunnigan, California	2,530 to 1,700 ft ³ /s	111 miles
Coming Canal	Coming Canal Pumping Plant	Tehama County	500 to 88 ft ³ /s	21 miles
Contra Costa Canal	Rock Slough	Martinez Reservoir	350 to 22 ft 3/s	47.7 miles
Pacheco Tunnel	San Luis Reservoir	Through Diablo Mountain Range to Bifurcation of Santa Clara and Hollister Conduits	480 ft ³ /s	7 miles
Santa Clara Tunnel & Conduit	Pacheco Conduit	Coyote Pumping Plant	330 ft ³ /s	22.1 miles
Hollister Conduit	Pacheco Conduit	San Justo Reservoir	83 ft ³ /s	19.5 miles
Coalinga Canal	Pleasant Valley Pumping Plant at Mile 74.0 on the San Luis Canal	Coalinga Area	1,100 ft ³ /s	11.6 miles

GLOSSARY

ACRE-FOOT -- The quantity of water (43,560 cubic feet or 325,900 gallons) that would cover 1 acre to a depth of 1 foot.

ANADROMOUS FISH -- Fish, such as salmon, that migrate up rivers from the sea to spawn in freshwater.

BALANCED WATER CONDITIONS -- Periods when it is agreed that releases from upstream reservoirs plus unregulated flow approximately equal the water supply needed to meet Sacramento Valley inbasin uses, plus exports.

CAPACITY -- The maximum power output or load for which a turbine-generator, station, or system is rated. Measured in kilowatts (kW) or megawatts (MW).

CAPITAL COST -- Costs associated with the development and construction of a hydropower facility, including land, structures, improvements, power generation and transmission equipment, engineering, administrative fees, legal fees, financing costs, and contingencies.

CARRIAGE WATER -- That amount of Delta outflow needed to meet all of the water quality requirements of D-1485 (see glossary term) minus that needed to meet the requirements, excluding those for Contra Costa Canal at Pumping Plant No. 1 (D5) and Clifton Court Forebay Intake at West Canal (C9). The quantity of additional Delta outflow (carriage water) is a function of Delta export pumping and South Delta inflow rates. Carriage water is necessary to reduce the effects of sea water intrusion into the Delta around the south side of Sherman Island (reverse flows up the San Joaquin River).

CARRYOVER STORAGE -- Total amount of water in CVP storage as of September 30 of each year (i.e., "carried over" from one water year to the next).

CENTRAL VALLEY PROJECT YIELD -- The annual amount of water made available by operation of the CVP over a specified period of time and subject to certain operating, hydrologic, and management assumptions.

CONJUNCTIVE USE -- Used to describe operation of a ground-water basin in coordination with a surface-water system.

CONSUMPTIVE USE -- The total amount of water taken up by vegetation for transpiration or building of plant tissue, the unavoidable evaporation of soil moisture, and intercepted precipitation associated with vegetative growth.

CONVEYANCE CAPACITY -- The volume of water that can be transported by a canal, aqueduct, or ditch; generally measured in cubic feet per second (ft³/s).

G-1 10/92

CUBIC ACRE-FEET PER SECOND -- A measure of a moving volume of water; i.e., cubic feet per second (ft³/s). Synonymous with "second-feet."

DECISION-893 (D-893) -- American River water rights decision on major applications to appropriate water from the American River system.

DECISION-1400 (D-1400) -- American River water rights decision regarding the operation of Auburn and Folsom Reservoirs and Lake Natoma.

DECISION-1485 (**D-1485**) -- The State Water Resources Control Board (SWRCB) decision specifying water-quality standards for the Sacramento-San Joaquin Delta (Delta) and Suisun Marsh.

DEFICIENCIES -- Reductions in deliveries of contracted firm water caused by critically dry hydrologic conditions. The amount of these reductions is expressed as the percent of the full water supply delivered annually.

DELTA OUTFLOW INDEX -- Calculated net Delta flow past Chipps Island.

DRAWDOWN -- Lowering the water level of a reservoir by releasing water at a greater rate than the inflow to the reservoir.

ENDANGERED SPECIES -- Generally taken to mean any species or subspecies whose survival is threatened with extinction and is included in the Federal list of endangered species (covered under the Endangered Species Act of 1973).

EXCEEDANCE LEVEL -- Expressed as a percentage, used to assist in quantifying the numerical range within which a predicted or estimated quantity may occur, it is the probability that a specified threshold value will be exceeded.

EXCESS WATER CONDITIONS -- When releases from upstream reservoirs plus unregulated flow exceed Sacramento Valley inbasin uses plus exports.

FIRM YIELD -- That water supply available in all years from the operation of CVP facilities, except in dry and critically dry years when shortages occur. The amount of yield is based on the premise of: (1) ultimate conditions (traditionally equated to the year 2020 level of development), and (2) operations studies of the 1928-34 critically dry period to establish deficiency criteria. CVP operations studies use historical hydrology modified to show the level of depletions, accretions, and demands appropriate for the 2020 development level and reflect coordinated operations with the State of California as set forth in the Coordinated Operations Agreement of 1986 (COA). Based on assumptions used in the COA Environmental Impact Statement/Environmental Impact Report (EIS/EIR), the firm yield of the northern portion of the CVP was estimated at 8.3 million acre-feet (MAF), with 7.2 MAF committed under contracts existing in 1986.

10/92 G-2

HINDCASTING -- Process of validating the accuracy of forecast procedures by estimating past runoff quantities and comparing with observed or measured quantities.

INBASIN USES, SACRAMENTO VALLEY -- Legal uses of water in the Sacramento Basin, including the water required under the provisions of D-1485 (see glossary term).

INFLOW DESIGN FLOOD -- Inflow that the dam is designed to safely release to protect the dam structure.

INTERIM WATER -- Interim water is defined as the difference between firm yield and the level of firm yield demand in any year. Before 2020, demands for firm yield supplies are assumed to be below their contractual maximum; thus, interim water can be contracted until the firm yield demand has built up to its contractual maximum.

INTERMITTENT WATER -- Reclamation is proposing to use this term to denote a supply of water above firm yield which, when added to the supply, would constitute the total amount of water that could be contracted. This supply would be used in combination with ground water through a conjunctive use program to expand the total supply of water that Reclamation could contract for. The water could be contracted on an annual, short-term (longer than 1 year but less than 20 years) or long-term (20 to 40 years) basis. The amount of water that could be delivered under this type of contract would not be as dependable as firm yield, since the intermittent supply would depend on the type of water year (wet, normal, or dry) and the quantity of water delivered each year to firm yield contractors. The probability of delivering an intermittent supply would be calculated on the basis of past hydrology and the ability to meet firm yield demands based on the 1928-34 dry year period (e.g., 75 years out of 100, 80 years out of 100, 85 years out of 100, etc.).

PREFERENCE CUSTOMER -- Entities entitled to preference under Reclamation law, including several municipalities, utility and irrigation districts, military installations, and various Federal and State agencies.

PROJECT DEPENDABLE CAPACITY (PDC) -- The lowest electric capacity available to meet preference customer loads, which could be available with energy support from CVP powerplants in any given month during the most adverse period of streamflow conditions of record (after deducting the estimated capacity required from CVP powerplants for project load (see glossary term) during the water contractor's peak load period).

PROJECT LOAD -- Power that Reclamation's CVP powerplants are using at any particular time.

RAMPING FORMULA -- Increments at which release changes can be made for fishery or levee purposes.

G-3

Glossary LONG-TERM CVP-OCAP

REDDS -- Depression in river or lakebed dug by fish for the deposition of eggs.

REVERSE FLOW -- Flow going in the opposite direction of the natural riverflow, caused by pumping.

SHASTA CRITERIA -- Used to determine the year type for contracts and release schedules that reference the forecasted Shasta annual inflow.

STOPLOGS -- A plate or beam, typically made of timber, metal, or concrete and used to cover the opening of a structure and stop the flow of water.

WATER YEAR -- Starting October 1 and ending on September 30 each year.

10/92 G-4

BIBLIOGRAPHY

California Department of Water Resources, April 1984, Plan of Protection for Suisun Marsh.

Corps of Engineers, April 1962, revised January 1977, Report on Reservoir Regulation for Flood Control, Shasta Dam and Lake.

Corps of Engineers studies, 1974, see p. 43.

Corps of Engineers, January 1980, Report on Reservoir Regulation for Flood Control, New Melones Dam and Lake.

Corps of Engineers, December 1987, Folsom Dam and Lake, American River, California, Water Control Manual.

Flood Control Diagrams, Shasta, 1977.

Flood Control Diagrams, Folsom.

Memorandum of Operating Agreement for the Protection and Preservation of Fish Life in the American River as Affected by Folsom and Nimbus Dams and their Related Works and Diversion of Water Under Contracts with the United States, October 24, 1957.

Rivers and Harbors Committee Document Number 35, 73rd Congress.

State Water Resources Control Board Decision 896

State Water Resources Control Board Decision 1379, 1971.

State Water Resources Control Board Decision 1400

State Water Resources Control Board Decision 1422

State Water Resources Control Board Decision 1485, 1978.

- U. S. Department of the Interior, Bureau of Reclamation, April 5, 1960, Memorandum of Agreement with the California Department of Fish and Game.
- U.S. Department of the Interior, Bureau of Reclamation studies, 1975, see p. 43.
- U.S. Department of the Interior, Bureau of Reclamation, Department of Fish and Game, & State Water Resources Control Board, January 1980, Memorandum of Understanding.
- U.S. Department of the Interior, January 16, 1981, Secretarial Decision, see p. 33.

R-1

LONG-TERM CVP-OCAP

- U.S. Department of the Interior, Bureau of Reclamation, October 1981, Memorandum of Agreement with the Department of Fish and Game, see p. 52.
- U.S. Department of Interior, Bureau of Reclamation, and State of California, Department of Water Resources, *Coordinated Operations Agreement* (COA), November 1986, agreement between the United States of America and the Department of Water Resources of the State of California for the Coordinated Operation of the Central Valley Project and the State Water Project, No. 7-07-20-WO-551.
- U.S. Department of the Interior, Bureau of Reclamation, November 1988, *Plan of Protection for the Suisun Marsh*.
- U.S. Department of the Interior, May 8, 1991, Secretarial Position Statement, see p. 34.
- U.S. Water and Power Resources Service, Project Data Book, 1981.

10/92 R-2

