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1. Introduction

Understanding the interactions between groundwater and sur-
face-water systems is an important aspect of water resources man-
agement. Using mathematical models to study these interactions
can help us better address associated water quality and quantity
issues. In the published literature, groundwater and surface-water
interactions have been studied using both physical and mathemat-
ical approaches (Clement et al, 1994; Winter, 1995; Chang and
Clement, 2012; Simpson et al, 2003a) that involve invoking a
range modeling simplifications and assumptions, such as assuming
that groundwater flow takes place in a homogeneous porous med-
ium, assuming that streams are fully penetrating, and assuming
rainfall conditions are uniform. To provide further insight into
real-world practical problems, some of these simplifications and
assumptions need to be relaxed.

A major challenge in studying groundwater and surface-water .

interactions arises from the fact that there is a considerable
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difference in the response times of these systems (Rodriguez
et al., 2006; Hantush, 2005). For example, after a rainfall event, sur-
face-water levels can respond on the order of hours to days,
whereas groundwater levels might respond on the order of w§eks
to months. Current approaches for studying these problems can be
classified into four categories, each of which involve certain limjta-
tions: (i) field investigations, which can be expensive and time con-
suming; (ii) laboratory experiments, which can be Iimited‘ by

scaling issues; (iii) numerical modeling, which, due to the or%ers

of magnitude differences in the response times, might lead to
numerical instabilities or other convergence issues (Hantush,
2005); and (iv) analytical modeling, which may be efficient Put
can have serious limitations in considering practical scenarios
involving variations in stream stage, recharge, or discharge bound-
ary conditions (Barlow and Moench, 1998). Several previous
researchers have presented analytical solutions focussing on aqui-
fer response times (Rowe, 1960; Pinder et al., 1969; Singh and
Sagar, 1977; Lockington, 1997; Mishra and Jain, 1999; Ojha,
2000; Swamee and Singh, 2003; Srivastava, 2003).

Understanding groundwater response times near a groundwater
surface-water boundary will help us make informed decisions
about the use of different types of mathematical models. For
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example, if the water stage in the surface-water body is perturbed,
we expect the local groundwater system in contact with the stream
to undergo a transient response and eventually reach a new steady-
state, Tools that can predict the time needed for such transient
responses to relax to a steady-state condition could help to make
informed decisions about using appropriate mathematical models.
For example, immediately after changing the surface-water eleva-
tion, we would need to apply a transient mathematical model to
predict the groundwater response; whereas, after a sufficiently long
period of time, we could describe the system using a simpler steady-
state model (Simpson et al., 2003b).

In the groundwater literature, response time (or lag time) is
defined as the time scale required for a groundwater system to
change from some initial condition to a new steady-state
(Sophocleous, 2012), In the heat and mass transfer literature this
time scale is known as the critical time (Hickson et al., 2009a,b,
2011). Simpson et al. (2013) summarized several previous
attempts to estimate the groundwater response time into three
categories: (i) numerical computation, (ii) laboratory-scale experi-
mentation, and (iii) simple mathematical definitions or approxi-
mations. All three categories involve making subjective

definitions of the response time by tracking transient responses-

and choosing an arbitrary tolerance € and claiming that the
response time is the time taken for the transient response to decay
below this tolerance (Chang et al, 2011; Landman and
McGuinness, 2000; Watson et al., 2010; Hickson et al,, 2011; Lu
and Werner, 2013). There are several limitations with this
approach. The most obvious limitation is that the response time
depends on a subjectively defined tolerance, €. Secondly, this
approach does not lead to a general mathematical expression to
describe how the response time would vary with problem geome-
try, changes in boundary conditions or aquifer parameters. Finally,
this approach requires an analytical or a numerical solution to the
governing transient equation. To deal with these limitations,
Simpson et al. (2013) demonstrated the use of a novel concept,
mean action time (MAT), for estimating aquifer response times.

The concept of MAT was originally proposed by McNabb and
Wake (1991) to describe the response times of heat transfer pro-
cesses. MAT provides an objective definition for quantifying
response time scales of different processes (McNabb, 1993). MAT
analysis leads to an expression relating the response time to the
various model parameters, Simpson et al. (2013) used MAT to char-
acterize the response time for a groundwater flow problem that
was driven by areal recharge processes, but did not consider any
groundwater and surface-water interactions. The objective of this
study is to extend the work of Simpson et al. (2013) and present
a mathematical model which describes transient groundwater flow
processes near a groundwater and surface-water boundary with
time-dependent boundary conditions. We adapt existing MAT the-
ory to deal with time-dependent boundary conditions and present
expressions for MAT which describe spatial variations in response
times for both linear and non-linear boundary forcing conditions.
These theoretical developments are then tested using data sets
obtained from laboratory experiments.

2. Mathematical development
We consider a one-dimensional, unconfined, Dupuit-Forchhei-

mer model of saturated groundwater flow through a homogeneous
porous medium (Bear, 1979), which can be written as,

8h d [, 0h
55 =K [n31. M

where h(x, t) (L) is the groundwater head at position x, t (T) is time,
Sy (-) is the specific yield and X (LJT) is the saturated hydraulic

conductivity. When variations in the saturated thickness are small
compared to the average saturated thickness, we can linearize the
governing equation by introducing an average saturated thickness,

h, to yield (Bear, 1979),

oh _-d%h
Sya = Khw, . (2)
which can be re-written as the linear diffusion equation,
oh __&*h
%= P 3

where D = Kh/S, (L%/T) is the aquifer diffusivity. In this work, we
will use Eq. (3) to model a groundwater system which changes from
an initial condition, h(x,0) = hp(x), to some steadyj-state,
lime_h(x,t) = hoo(x). We will consider two different classes of
boundary conditions for Eq. (3): Case 1, in which both the left
(x = 0) and right (x = L) boundary conditions vary as functions of
time, and Case 2, in which one boundary condition is ﬁxefl and

the other one is allowed to vary with time.
2.1. Case 1: two time varying boundary conditions

We first consider the case where the surface-water variatibns at
both the left (x = 0) and right (x = L) boundaries vary with time,

Bl(t) = h(or t)v (4)
Br(t) = h{L,t). 5)

We assume that, after a sufficient amount of time, both B.(t)
and Bg(t) approach some steady condition, ‘

mB.(0) = he(0), - | ®
HmBe(t) = hie (1), ™

for which the steady solution of Eq. (3) is,
ho(x) = (E‘L(L)—Zhﬂ)x + hoo{0). , (8)

A schematic of these initial, transient and steady-state condi-
tions are shown in Fig. 1.

The purpose of this study is to present an objective framework
to estimate the time scale required for the system to effectively
relax to steady-state conditions. To begin our analysis we first con-
sider the following two mathematical quantities (Ellery et al.,
2012a,b; Simpson et al., 2013),

hix,t) — h(x)
ho(X) = ho (%) |’
o _AF(tx) 8 [hix,t) — heo(x)
0 =S5 oo

F(tix) =1 - t>0, E)

t>0, )
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hol: ‘

[
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Fig. 1. Schematic of the physical model showing initial (dotted), transient (dashed)
and steady (solid) conditions. Changes in water head in the right and left
boundaries are defined by functions of Bx(t) and B(t), respectively. At steady-
state, the left and right boundary conditions reach the levels h, (0) and h. (L),
respectively.
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