SHR-40f

Delta Bathymetry Mapping With Four Beam ADCPs:

Tradeoffs , Tools, and Techniques

Aaron Blake

USGS, Sacramento

Why Map Bathymetry?

- Navigation
- Pre or post dredge assessment
- Study fundamental processes
 - Bed-form mapping
 - Sediment transport
- Generate model inputs
- Predeployment reconnaissance

Bathymetry Needs

Model Inputs; Garbage in, garbage out!

Potential users of improved bathymetry:

- Si3D
- RMA
- DSM2-CSDP
- REALM
- TRIM3D
- Contracted projects, e.g., Hydroqual What does this list imply?

Huge variability in data requirements!

- Inputs range from DEMs to sparse cross sections
- Model runs range in scale from $O(10^2)m$ to $O(10^5)m$!

The Key Question: What defines a good bathymetry survey?

- Accuracy of data points
 - Depth, position
- Density of data points
 - Multibeam standard?
- balanced against...
- Survey Speed
 - Cost/Unit Area
- Survey Turnaround Time

The Optimal Survey

- An engineering geek might define a Survey Number (SN):
- SN = m/n
- m = amount of data collected
- n = minimum amount of data needed for the target model(s) to capture driving physics
- SN << 1 = bad model runs
- SN >> 1 = wasted time/money

How do we optimize bathymetry collection?

This requires...

- Rapid turnaround between acquisition and survey processing/assessment
- Automatic data filtering
 - Scan by scan doesn't cut it!
 - Multi beam standard?
- Ability to navigate to pre-selected areas

Iterative data acquisition process

- 1. Rough primary survey (30%-50%)
 - Analyze to find areas of interest
- 2. Focused secondary survey (40%-60%)
 - Survey areas of interest (red boxes)
 - Reprocess and asses data
- 3. Quick tertiary survey to fill in last gaps (0%-10%)

BathMapper

Developed to optimize iterative acquisition

Basics of the BathMapper system

- RDI ADCP provides depth and geometry data
 - Four independent depth measurements (40 deg square)
- Trimble Ag GPS provides position
- Matlab and LabView software for control and processing
 - Software timed acquisition
 - Real time navigation and ping processing
 - On-the-boat DEM generation

BathMapper Software

Multithreading for software timed acquisition

- Each major process has its own thread and priority
 - 1. Instrument control
 - 2. Data processing / filtering
 - 3. Data storage
 - 4. Data visualization and navigation display
- Software timed acquisition
 - Data acquisition is timed by software calls (User sets data rate <5Hz)
 - More accurate synchronization of position and ping data
- Real-time filtering, navigation, and ping feedback
 - Real-time processing occurs during acquisition down time

BathMapper Software Rapid DEM generation and evaluation

- Automated DEM generation (1-5 minutes)
 - Assigns survey data to regular grid points
 - Determines wet and dry grid points
 - Interpolates to the empty wet grid points
- DEM evaluation
 - Distance from real data (m)
 - 2D Gradient (m/m)
 - Grad*Dist metric (m)

Select and mark points for further aquisition

Change is important!

Gradient of .3-.4

In the end...

(Lessons learned from BathMapper development)

- Ultimately, bathymetry collection is a means to an end (Accurate model runs, optimal instrument placement, etc.)
- No matter what tools you use, bathymetry acquisition can be optimized!
- An iterative acquisition approach is useful
- Consider the data interpolation when driving your boat!
- Use meaningful specifications for data acquisition (outcome based!)