3 Description of the Proposed Action

3.1 Introduction

The CVP/SWP comprises two major inter-basin water storage and delivery systems that divert and re-divert water from the southern portion of the Delta. The CVP/SWP includes major reservoirs upstream of the Delta, and transports water via natural watercourses and canal systems to areas south and west of the Delta. The CVP also includes facilities and operations on the Stanislaus and San Joaquin Rivers. The major facilities on these rivers are New Melones and Friant Dams, respectively.

The California State Water Resources Control Board (SWRCB) permits the CVP and SWP to store water during wet periods, divert unstored water, and re-divert water that has been stored in upstream reservoirs. The CVP/SWP operates pursuant to water right permits and licenses issued by the SWRCB to appropriate water by diverting to storage or by directly diverting to use and re-diverting releases from storage later in the year. As conditions of their water right permits and licenses, the SWRCB requires the CVP/SWP to meet specific water quality, quantity, and operational criteria within the Delta. Reclamation and the California Department of Water Resources (DWR) closely coordinate the CVP/SWP operations, respectively, to meet these conditions.

The proposed action (PA) includes new water conveyance facility construction, new conveyance facility operation in coordination with operation of existing CVP/SWP Delta facilities, maintenance of the existing facilities and newly constructed facilities, implementation and maintenance of conservation measures, and required monitoring and adaptive management activities. Each of these components of the PA is described in detail below. The chapter ends with a discussion of activities that may be interrelated or interdependent with the PA.

Table 3.1-1 identifies the proposed new facilities, identifies the existing requirements that apply to CVP/SWP facilities in the Delta region, and notes which requirements are (or are not) incorporated in the PA. As such, Table 3.1-1 clarifies which facilities and activities addressed under the 2008 U.S. Fish and Wildlife Service (USFWS) and 2009 National Marine Fisheries Service (NMFS) Biological Opinions (BiOps) will be replaced and superseded by the PA once the new facilities are operational, provided, however, that requirements listed in Table 3.1-1 may be adjusted to the extent allowed by law based on new data and/or scientific analyses, including data from the coordinated monitoring and research to be conducted under the Coordinated Science and Adaptive Management Program and real time operations, such that operations will still adequately protect listed species from jeopardy while maximizing water supplies.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Action</th>
<th>Description</th>
<th>Source</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Facilities</td>
<td>Head of Old River Gate construction</td>
<td>Construction, operations, and maintenance of the proposed head of Old River operable gate.</td>
<td>This document</td>
<td>Changes needed to incorporate operations of new facilities and corresponding changes in management structure.</td>
</tr>
<tr>
<td>Real-time Operations</td>
<td>NMFS IV.3</td>
<td>Reduce likelihood of entrainment or salvage at the export facilities</td>
<td>NMFS (2009)</td>
<td>PA operational criteria supplement this RPA.</td>
</tr>
<tr>
<td>Real-time Operations</td>
<td>NMFS 11.2.1.1</td>
<td>Technical Team</td>
<td>NMFS (2009)</td>
<td>Existing real-time decision making process is incorporated into the PA as described in Section 3.1.5. In addition to this process a separate real-time operations coordination team will be convened in an advisory capacity, as described in Section 3.3.3.</td>
</tr>
<tr>
<td>Real-time Operations</td>
<td>NMFS IV.5</td>
<td>Formation of Delta Operations for Salmon and Sturgeon Technical Working Group</td>
<td>NMFS (2009)</td>
<td>These technical groups are incorporated in the PA unchanged.</td>
</tr>
<tr>
<td>Barriers</td>
<td>Temporary Barriers</td>
<td>Operation of the temporary barriers project in the south Delta</td>
<td>Reclamation (2008)</td>
<td>Temporary barriers are included with regard to hydrodynamic effects, with year-to-year placement and removal subject to separate authorizations. HORB replaced by operable HOR gate.</td>
</tr>
<tr>
<td>Barriers</td>
<td>Do not implement Permanent Barriers</td>
<td>South Delta Improvement Program—Phase I (Permanent Operable Gates)</td>
<td>USFWS (2008), NMFS (2009)</td>
<td>SDIP is not being implemented. The HOR gate is included in the PA.</td>
</tr>
<tr>
<td>Flow</td>
<td>CDFW Condition 5</td>
<td>Flow criteria, also including real-time operational considerations</td>
<td>CDFG (2009)</td>
<td>PA operational criteria supersedes this condition.</td>
</tr>
<tr>
<td>Topic</td>
<td>Action</td>
<td>Description</td>
<td>Source</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Flow</td>
<td>Jones</td>
<td>Permitted diversion capacity of 4,600 cfs</td>
<td>Reclamation (2008)</td>
<td>To be operated per flow criteria. Permitted diversion capacity does</td>
</tr>
<tr>
<td></td>
<td>Pumping Plant</td>
<td></td>
<td>USFWS (2008)</td>
<td>not allow for more water to be</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NMFS (2009)</td>
<td>exported in conjunction with the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>operation of NDD than is</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>permitted by the SWRCB.</td>
</tr>
<tr>
<td>Flow</td>
<td>Banks</td>
<td>Diversion rates at Clifton Court intake are normally restricted to 6,680 cfs</td>
<td>Reclamation (2008)</td>
<td>To be operated per flow criteria.</td>
</tr>
<tr>
<td></td>
<td>Pumping Plant</td>
<td>with exceptions</td>
<td>USFWS (2008)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DWR (2009)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NMFS (2009)</td>
<td></td>
</tr>
<tr>
<td>Flow</td>
<td>NMFS IV.2.1</td>
<td>San Joaquin River inflow to export ratio (and 61-day pulse flows)</td>
<td>NMFS (2009)</td>
<td>Modeling criteria of PA uses this as mechanism to meet spring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>outflow criteria in April and May. PA operational criteria for south</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Delta operations supersede this RPA action; PA operational</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>criteria include this I:E ratio for April and May only. See Table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3-1.</td>
</tr>
<tr>
<td>Flow</td>
<td>NMFS IV.2.3</td>
<td>OMR flow management</td>
<td>NMFS (2009)</td>
<td>PA operational criteria incorporate and replace this RPA action. See</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Table 3.3-1.</td>
</tr>
<tr>
<td>Flow</td>
<td>USFWS 1</td>
<td>Adult migration and entrainment; first flush: limit exports so average daily</td>
<td>USFWS (2008)</td>
<td>PA operational criteria incorporate all aspects of this</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OMF flow is no more negative than -2,000 cfs for 14 days, with a 5-day</td>
<td></td>
<td>action including salvage based triggers, and replace this RPA action.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>running average no more negative than -2,500 cfs</td>
<td></td>
<td>See Table 3.3-1 and Section 3.3.2.</td>
</tr>
<tr>
<td>Flow</td>
<td>USFWS 2</td>
<td>Adult migration and entrainment</td>
<td>USFWS (2008)</td>
<td>PA operational criteria incorporate and replace this RPA action.</td>
</tr>
<tr>
<td>Flow</td>
<td>USFWS 3</td>
<td>Entrainment protection of larval smelt</td>
<td>USFWS (2008)</td>
<td>PA operational criteria incorporate and replace this RPA action.</td>
</tr>
<tr>
<td>Flow</td>
<td>USFWS 4</td>
<td>Estuarine habitat during fall (provide Delta outflow to maintain average X2</td>
<td>USFWS (2008)</td>
<td></td>
</tr>
<tr>
<td>Aqueduct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Action</td>
<td>Description</td>
<td>Source</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Delta Cross Channel</td>
<td>Delta Cross Channel Operations</td>
<td>Operate Delta Cross Channel</td>
<td>Reclamation (2008) NMFS (2009)</td>
<td>NMFS IV.1.2 operational criteria without any change. NMFS IV.1.1 is addressed by real-time operations. As described in Section 3.4.8, Monitoring and Research Program, the monitoring associated with current operations would continue.</td>
</tr>
<tr>
<td>Studies</td>
<td>NMFS 11.2.1.3</td>
<td>Monitoring programs and reporting regarding effects of CVP/SWP operations</td>
<td>NMFS (2009)</td>
<td>This work is performed by IEP with take authorization via scientific collection permits. This would continue and include any additional monitoring and reporting as required by CWF.</td>
</tr>
<tr>
<td>Studies</td>
<td>CDFW Condition 8</td>
<td>Monitoring and reporting</td>
<td>CDFG (2009)</td>
<td>No change from 2009 activities.</td>
</tr>
</tbody>
</table>
Chapter 3. Description of the Proposed Action

Conveyance Facility Construction

<table>
<thead>
<tr>
<th>Topic</th>
<th>Action</th>
<th>Description</th>
<th>Source</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Facilities</td>
<td>CCWD Facilities</td>
<td>Operation and maintenance of CCWD facilities owned by Reclamation: the Rock Slough Intake and Contra Costa Canal</td>
<td>Reclamation (2008)</td>
<td>Rock Slough diversion is included in modeling/baseline.</td>
</tr>
<tr>
<td>Other Facilities</td>
<td>Clifton Court Forebay Aquatic Weed Control Program</td>
<td>Application of herbicide to control aquatic weeds and algal blooms in CFF</td>
<td>Reclamation (2008)</td>
<td>DWR (2009)</td>
</tr>
</tbody>
</table>

Facilities and Activities Not Included in the PA

<table>
<thead>
<tr>
<th>Existing Requirements</th>
<th>Action</th>
<th>Description</th>
<th>Source</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1641</td>
<td>Implement D-1641, as described</td>
<td>SWRCB D-1641</td>
<td>Incorporated into the environmental baseline. PA may include discretionary operations as allowed under the existing regulatory criteria and proposed operations criteria.</td>
<td></td>
</tr>
<tr>
<td>COA</td>
<td>Implement existing COA</td>
<td>P.L. 99-546</td>
<td>Incorporated into the environmental baseline. PA may include discretionary operations as allowed under the existing regulatory criteria and proposed operations criteria.</td>
<td></td>
</tr>
<tr>
<td>CVPIA</td>
<td>Implement CVPIA, as authorized</td>
<td>P.L. 102-575</td>
<td>Incorporated into the environmental baseline. PA may include discretionary operations as allowed under the existing regulatory criteria and proposed operations criteria.</td>
<td></td>
</tr>
<tr>
<td>SWRCB WRO 90-05</td>
<td>Implement WRO 90-05</td>
<td>SWRCB WRO 90-05</td>
<td>Incorporated into the environmental baseline.</td>
<td></td>
</tr>
<tr>
<td>VAMP</td>
<td>Vernalis Adaptive Management Plan (VAMP)</td>
<td>Reclamation (2008)</td>
<td>VAMP has expired, per agreement.</td>
<td></td>
</tr>
<tr>
<td>CDFW Condition 6.4</td>
<td>NBA, RRDS, and Sherman Island diversions and fish screens</td>
<td>CDFG (2009)</td>
<td>Will be complete prior to start of PA.</td>
<td></td>
</tr>
<tr>
<td>NMFS IV.4.1</td>
<td>Tracy fish collection facility improvements to reduce pre-screen loss and improve screening efficiency</td>
<td>NMFS (2009)</td>
<td>Will be completed before north Delta diversion operations begin; subject to a separate take authorization.</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Action</td>
<td>Description</td>
<td>Source</td>
<td>Comments</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Tracy and Skinner Facilities</td>
<td>NMFS IV.4.2</td>
<td>Skinner fish collection facility improvements to reduce pre-screen loss and improve screening efficiency</td>
<td>NMFS (2009)</td>
<td>Will be completed before north Delta diversion operations begin; subject to a separate take authorization.</td>
</tr>
<tr>
<td>Tracy and Skinner Facilities</td>
<td>NMFS IV.4.3</td>
<td>Tracy fish collection facility and the Skinner fish collection facility actions to improve salvage monitoring, reporting, and release survival rates</td>
<td>NMFS (2009)</td>
<td>Will be completed before north Delta diversion operations begin; subject to a separate take authorization.</td>
</tr>
<tr>
<td>Studies</td>
<td>NMFS IV.2.2</td>
<td>Six-year acoustic tag experiment</td>
<td>NMFS (2009)</td>
<td>In progress.</td>
</tr>
<tr>
<td>Habitat Restoration</td>
<td>NMFS I.5</td>
<td>Funding for CVPIA Anadromous Fish Screen Program</td>
<td>NMFS (2009)</td>
<td></td>
</tr>
<tr>
<td>Habitat Restoration</td>
<td>NMFS I.6.1</td>
<td>Restoration of floodplain rearing habitat</td>
<td>NMFS (2009)</td>
<td>Occurs in Yolo Bypass; subject to separate take authorization.</td>
</tr>
<tr>
<td>Habitat Restoration</td>
<td>NMFS I.6.2</td>
<td>Near-term actions at Liberty Island/Lower Cache Slough and Lower Yolo Bypass</td>
<td>NMFS (2009)</td>
<td>Actions already under way and will have separate take authorization.</td>
</tr>
<tr>
<td>Habitat Restoration</td>
<td>NMFS I.6.3</td>
<td>Lower Putah Creek enhancements</td>
<td>NMFS (2009)</td>
<td>Actions already under way and will have separate take authorization.</td>
</tr>
<tr>
<td>Habitat Restoration</td>
<td>NMFS I.6.4</td>
<td>Lisbon Weir improvements</td>
<td>NMFS (2009)</td>
<td>Actions already under way and will have separate take authorization.</td>
</tr>
<tr>
<td>Habitat Restoration</td>
<td>NMFS I.7</td>
<td>Reduce migratory delays and loss of salmon, steelhead, and sturgeon at Fremont Weir and other structures in the Yolo Bypass</td>
<td>NMFS (2009)</td>
<td>Occurs in Yolo Bypass; subject to separate take authorization.</td>
</tr>
<tr>
<td>Habitat Restoration</td>
<td>USFWS 6</td>
<td>Habitat restoration (create or restore a minimum of 8,000 acres of intertidal and associated subtidal habitat in the Delta and Suisun Marsh)</td>
<td>USFWS (2008)</td>
<td>Action is being implemented and is expected to be completed before north Delta diversion operations begin.</td>
</tr>
<tr>
<td>Habitat Restoration</td>
<td>CDFW Condition 7</td>
<td>LFS habitat restoration</td>
<td>CDFG (2009)</td>
<td>Action is being implemented and may be included in the USFWS 6 requirement above. Action is expected to be completed before north Delta diversion operations begin.</td>
</tr>
</tbody>
</table>
The purpose of this BA is to evaluate the effects of the proposed action on federally listed species. The PA entails construction and operation of facilities for the movement of water entering the Delta from the Sacramento Valley watershed to the existing CVP/SWP pumping plants located in the southern Delta. The PA also entails operation of the existing and proposed new CVP/SWP Delta facilities in a manner that minimizes or avoids adverse effects on listed species, and that protects and enhances aquatic, riparian, and associated natural communities and ecosystems. The PA will maintain the ability of the CVP/SWP to deliver up to full contract amounts, when hydrologic conditions result in the availability of sufficient water, consistent with the requirements of state and Federal law and the terms and conditions of water delivery contracts held by SWP contractors and certain members of San Luis Delta Mendota Water Authority, and other existing applicable agreements.

The Proposed Action includes ongoing compliance with D-1641 (the current Bay-Delta Water Quality Control Plan), ongoing compliance with the Fall X2 RPA (FWS 2008), and a new spring outflow criterion that ensures the same spring outflow exceedance frequencies that would have occurred absent the PA. Reclamation has reinitiated consultation with FWS and NMFS on the Coordinated Long-Term Operation of the CVP and SWP (LTO). This more broadly-scoped consultation will update system-wide operating criteria for the LTO consistent with the requirements of section 7 and will be coordinated with the update of the water quality control plan.
Presentation of the PA in this biological assessment does not amount to a project approval by DWR or Reclamation. DWR must complete CEQA review, as well as compliance with several other federal and state environmental laws and regulations, before it can construct, operate or use any new facilities associated with the PA. Reclamation must complete NEPA review prior to implementing any federal actions associated with the PA. In conducting its CEQA review, and completing other environmental compliance processes, DWR may be required to modify, add, or remove elements of the PA consistent with the requirement to adopt mitigation measures and/or alternative in order to address specific environmental impacts. Consistent with the directives of CEQA, DWR may determine, at the completion of the CEQA process, to deny approval of the PA or specific elements of the PA based on any significant environmental impact that cannot be mitigated. Prior to the conclusion of formal consultation, the BA will be supplemented if substantive changes are made to the PA relevant to the analysis of listed species or designated critical habitat.

3.1.1 Central Valley Project

The CVP is the largest Federal Reclamation project and was originally authorized by the Rivers and Harbors Act of 1935. The CVP was reauthorized by the Rivers and Harbors Act of 1937 for the purposes of “improving navigation, regulating the flow of the San Joaquin River and the Sacramento River, controlling floods, providing for storage and for the delivery of the stored waters thereof, for construction under the provisions of the Federal Reclamation Laws of such distribution systems as the Secretary of the Interior (Secretary) deems necessary in connection with lands for which said stored waters are to be delivered, for the reclamation of arid and semiarid lands and lands of Indian reservations, and other beneficial uses, and for the generation and sale of electric energy as a means of financially aiding and assisting such undertakings and in order to permit the full utilization of the works constructed.” This Act provided that the dams and reservoirs of the CVP “shall be used, first, for river regulation, improvement of navigation and flood control; second, for irrigation and domestic uses; and, third, for power.” The CVP was reauthorized in 1992 through the Central Valley Project Improvement Act (CVPIA). The CVPIA modified that authorization under Rivers and Harbors Act of 1937 adding mitigation, protection, and restoration of fish and wildlife as a project purpose. Further, the CVPIA specified that the dams and reservoirs of the CVP should now be used “first, for river regulation, improvement of navigation, and flood control; second, for irrigation and domestic uses and fish and wildlife mitigation, protection and restoration purposes; and, third, for power and fish and wildlife enhancement.”

CVPIA (Public Law 102-575, Title 34) includes authorization for actions to benefit fish and wildlife intended to implement the purposes of that Title. Specifically, Section 3406(b)(1) is implemented through the Anadromous Fish Restoration Program (AFRP). The AFRP objectives, as they relate to operations, are further explained below. CVPIA Section 3406(b)(1) provides for modification of the CVP Operations to meet the fishery restoration goals of the CVPIA, so long as the operations are not in conflict with the fulfillment of the Secretary’s contractual obligations to provide CVP water for other authorized purposes. The U.S. Department of the Interior’s (Interior) decision on Implementation of Section 3406(b)(2) of the CVPIA, dated May 9, 2003, provides for the dedication and management of 800,000 acre-feet (af) of CVP-water yield annually by implementing upstream and Delta actions. Interior manages and accounts for (b)(2) water pursuant to its May 9, 2003, decision and the Ninth Circuit’s decision in Bay Institute of
San Francisco v. United States, 66 Fed. Appx. 734 (9th Cir. 2003), as amended, 87 Fed. Appx. 637 (2004). Additionally, Interior is authorized to acquire water to supplement (b)(2) water, pursuant to Section 3406(b)(3).

A portion of the water conserved in upstream reservoirs on the Sacramento and San Joaquin Rivers and their tributaries is pumped at the C.W. “Bill” Jones Pumping Plant (Jones PP) in the Delta and delivered to the south of the Delta, the CVP service area.

Under the PA, the Jones PP will continue to fulfill its role, in conjunction with the Banks PP. Both pumping plants will also use water diverted from the Sacramento River at three new intakes located in the north Delta and conveyed to the south Delta export facilities via new tunneled and connecting conveyance, as described in Section 3.2, Conveyance Facility Construction. Flow criteria affecting CVP/SWP water withdrawals under the PA are described in Section 3.3, Operations and Maintenance of New and Existing Facilities, as are operational criteria for other CVP/SWP facilities and activities in the Delta, as well as facilities maintenance.

3.1.2 State Water Project

DWR was established in 1956 as the successor to the Department of Public Works for authority over water resources and dams within California. DWR also succeeded to the Department of Finance’s powers with respect to state application for the appropriation of water (Stats. 1956, First Ex. Sess., Ch. 52; see also Wat. Code Sec. 123) and has permits for appropriation from the SWRCB for use by the SWP. DWR’s authority to construct state water facilities or projects is derived from the Central Valley Project Act (CVPA) (Wat. Code Sec. 11100 et seq.), the Burns-Porter Act (California Water Resources Development Bond Act) (Wat. Code Sec. 12930-12944), the State Contract Act (Pub. Contract Code Sec. 10100 et seq.), the Davis-Dolwig Act (Wat. Code Sec. 11900-11925), and special acts of the State Legislature. Although the Federal government built certain facilities described in the CVPA, the Act authorizes DWR to build facilities described in the Act and to issue bonds. See Warne v. Harkness, 60 Cal. 2d 579 (1963). The CVPA describes specific facilities that have been built by DWR, including the Feather River Project and California Aqueduct (Wat. Code Sec. 11260), Silverwood Lake (Wat. Code Sec. 11261), and the North Bay Aqueduct (Wat. Code Sec. 11270). The Act allows DWR to administratively add other units (Wat. Code Sec. 11290) and develop power facilities (Wat. Code Sec. 11295).

The Burns-Porter Act, approved by the California voters in November 1960 (Wat. Code Sec. 12930-12944), authorized issuance of bonds for construction of the SWP. The principal facilities of the SWP are Oroville Reservoir and related facilities, and San Luis Dam and related facilities, Delta facilities, the California Aqueduct including its terminal reservoirs, and the North and South Bay Aqueducts. The Burns-Porter Act incorporates the provisions of the CVPA. DWR is required to plan for recreational and fish and wildlife uses of water in connection with state-constructed water projects and can acquire land for such uses (Wat. Code Sec. 233, 345, 346, 12582). The Davis-Dolwig Act (Wat. Code Sec. 11900-11925) establishes the policy that preservation of fish and wildlife is part of state costs to be paid by water supply contractors, and recreation and enhancement of fish and wildlife are to be provided by appropriations from the General Fund.
DWR holds contracts with 29 public agencies in northern, central, and southern California for water supplies from the SWP. Water stored in the Oroville facilities, along with water available in the Delta (consistent with applicable regulations) is captured in the Delta and conveyed through several facilities to SWP contractors.

The SWP is operated to provide flood control and water for agricultural, municipal, industrial, recreational, and environmental purposes. A large portion of the water conserved in Oroville Reservoir is released to serve three Feather River area contractors, two contractors served from the North Bay Aqueduct, and pumped at the Harvey O. Banks Pumping Plant (Banks PP) in the Delta serving the remaining 24 contractors in the SWP service areas south of the Delta. In addition to pumping water released from Oroville Reservoir, the Banks PP pumps water from other sources entering the Delta.

Under the PA, the Banks PP will continue to fulfill this role, but will also use water diverted from the Sacramento River at three new intakes located in the north Delta and conveyed to the Banks PP via new tunneled and connecting conveyance, as described in Section 3.2, Conveyance Facility Construction. Flow criteria affecting CVP/SWP water withdrawals under the PA are described in Section 3.3 Operations and Maintenance of New and Existing Facilities, as are operational criteria for other CVP/SWP facilities and activities in the Delta, and facilities maintenance.

3.1.3 Coordinated Operations Agreement

The Coordinated Operations Agreement (COA) between the United States of America and DWR to operate the CVP/SWP was signed in November 1986. Congress, through Public Law 99-546, authorized and directed the Secretary of the Interior to execute and implement the COA. The COA defines the rights and responsibilities of the CVP/SWP with respect to in-basin water needs and project exports and provides a mechanism to account for those rights and responsibilities.

Under the COA, Reclamation and DWR agree to operate the CVP/SWP under balanced conditions in a manner that meets Sacramento Valley and Delta needs while maintaining their respective annual water supplies as identified in the COA. Balanced conditions are defined as periods when the two projects agree that releases from upstream reservoirs, plus unregulated flow, approximately equal water supply needed to meet Sacramento Valley in-basin uses and project exports. Coordination between the CVP and the SWP is facilitated by implementing an accounting procedure based on the sharing principles outlined in the COA. During balanced conditions in the Delta when water must be withdrawn from storage to meet Sacramento Valley and Delta requirements, 75% of the responsibility to withdraw from storage is borne by the CVP and 25% by the SWP. The COA also provides that during balanced conditions when unstored water is available for export, 55% of the sum of stored water and the unstored water for export is allocated to the CVP, and 45% is allocated to the SWP. Although the principles were intended to cover a broad range of conditions, changes implanted in subsequent the 2000 Trinity ROD, recent biological opinions (Chapter 2 Consultation History), a Revised SWRCB Decision 1641 (Revised D-1641) (Section 3.1.4.2 Decision 1641 and Revised D1641), and changes to the CVPIA were not specifically addressed by the COA. However, these variances have been addressed by Reclamation and DWR through mutual, informal agreements.
Chapter 3. Description of the Proposed Action
Conveyance Facility Construction

3.1.4 Delta Operations Regulatory Setting

3.1.4.1 1995 Water Quality Control Plan

The SWRCB adopted the 1995 Bay-Delta Water Quality Control Plan (1995 WQCP) on May 22, 1995, which became the basis of SWRCB Decision 1641. The SWRCB continues to hold workshops and receive information regarding processes on specific areas of the 1995 WQCP. The SWRCB amended the WQCP in 2006 (as discussed below), but, to date, the SWRCB has made no significant changes to the 1995 WQCP framework.

3.1.4.2 Decision 1641 and Revised D1641

The SWRCB has issued numerous orders and decisions regarding water quality and water right requirements for the Bay-Delta Estuary that impose multiple operations responsibilities on CVP/SWP in the Delta to meet the flow objectives in the 1995 WQCP. With D-1641 (issued December 29, 1999) and its subsequent revision (Revised D-1641, dated March 15, 2000), the SWRCB implements the objectives set forth in the 1995 WQCP, resulting in flow and water quality requirements for CVP/SWP operations to assure protection of beneficial uses in the Delta. The SWRCB also conditionally allows for changes to points of diversion (e.g., for the PA) with Revised D-1641.

The various flow objectives and export restraints are designed to protect fisheries. These objectives include specific outflow requirements throughout the year, specific export restraints in the spring, and export limits based on a percentage of estuary inflow throughout the year. The water quality objectives are designed to protect agricultural, municipal and industrial (M&I), and fishery uses, and they vary throughout the year and according to the wetness of the year (five water-year types: W, AN, BN, D, CD) classification scheme (e.g., the five water-year types using Sacramento Valley 40-30-30 Water Year Index). These flow and water quality objectives remain in effect and are subject to revision per petition process or every 3–5 year revision process set by the SWRCQB.

On December 29, 1999, SWRCB adopted and subsequently revised (on March 15, 2000) D-1641, amending certain terms and conditions of the water rights of the CVP/SWP under D1485. D-1641 substituted certain objectives adopted in the 1995 Bay-Delta Plan for water quality objectives that had to be met under the water rights of the CVP/SWP. The requirements in D-1641 address the standards for fish and wildlife protection, M&I water quality, agricultural water quality, and Suisun Marsh salinity. SWRCB D-1641 also authorizes the CVP/SWP to jointly use each other’s points of diversion in the southern Delta, with conditional limitations and required response coordination plans. SWRCB D-1641 modified the Vernalis salinity standard under SWRCB Decision 1422 to the corresponding Vernalis salinity objective in the 1995 Bay-Delta Plan.

3.1.4.3 2006 Revised WQCP

The SWRCB undertook a proceeding under its water quality authority to amend the 1995 WQCP. Prior to commencing this proceeding, the SWRCB conducted a series of workshops in 2004 and 2005 to receive information on specific topics addressed in the 1995 WQCP.
The SWRCB adopted a revised WQCP on December 13, 2006. There were no changes to the Beneficial Uses from the 1995 WQCP to the 2006 WQCP, nor were any new water quality objectives adopted in the 2006 WQCP. A number of changes were made simply for readability. Consistency changes were also made to assure that sections of the 2006 plan reflected the current physical condition or current regulation. The SWRCB continues to hold workshops and receive information regarding Pelagic Organism Decline (POD), Climate Change, and San Joaquin salinity and flows, and will coordinate updates of the Bay-Delta Plan with on-going development of the comprehensive Salinity Management Plan.

3.1.4.4 Current Water Quality Control Plan Revision Process

The State Water Board is in the process of developing and implementing updates to 2006 WQCP that protect beneficial uses in the Bay-Delta watershed. This update is broken into four phases, some of which are proceeding concurrently. Phase 1 of this work, currently in progress, involves updating San Joaquin River flow and southern Delta water quality requirements for inclusion in the WQCP. Phase 2 will involve comprehensive changes to the WQCP to protect beneficial uses not addressed in Phase 1, focusing on Sacramento River driven standards. Phase 3 will involve implementation of Phases 1 and 2 through changes to water rights and other measures; this phase requires a hearing to determine the appropriate allocation of responsibility between water rights holders within the scope of the Phase 1 and Phase 2 plans. Phase 4 will involve developing and implementing flow objectives for priority Delta tributaries upstream of the Delta.

3.1.4.5 Annual/Seasonal Temperature Management Upstream of the Delta

Reclamation is required to control water temperature in the Sacramento River pursuant to State Water Board Order WR 90-5. Furthermore, per the Reasonable and Prudent Alternative (RPA) (Action Suite I.2) in the NMFS 2009 BiOp, Reclamation is required to develop and implement an annual Temperature Management Plan by May 15 each year to manage the cold water supply within Shasta Reservoir and make cold water releases from Shasta Reservoir, and Trinity Reservoir through the Spring Creek Tunnel, to provide suitable temperatures for listed species, and, when feasible, fall-run Chinook salmon, which is an important commercial fishery and a prey base for listed Southern Resident Distinct Population Segment (DPS) killer whale. Reclamation shall manage operations to achieve certain daily average water temperatures in the Sacramento River between Keswick Dam and Bend Bridge. In addition, Reclamation is required to provide the draft February forecast and initial allocations, as well as a projection of temperature management operations for the summer months to NMFS for review and evaluation under RPA Action I.2.3.

Since December 2013, state and Federal agencies that supply water, regulate water quality, and protect fish and wildlife have worked closely to manage these resources despite persistent drought conditions. As an example, in 2015 and 2016, Reclamation and NMFS adjusted the February operations forecast modeling, temperature compliance criteria, and Keswick release schedule in efforts to minimize further temperature effects. However, recent drought operations under the 2009 NMFS BiOp RPA have resulted in approximately 5.6% and 4.2% egg-to-fry
survival to Red Bluff in 2014 and 2015, respectively\(^1\). In consideration of recent concerns with
the level of protection provided by the NMFS 2009 BiOp RPA based on the very low egg-to-fry
survival to Red Bluff, and new information regarding temperature tolerance during early life
stages over the past few years, NMFS will work with Reclamation and other state and Federal
agencies to adjust the RPA Action Suite 1.2. The adjustment will be made pursuant to the 2009
NMFS BiOp Section 11.2.1.2. *Research and Adaptive Management*, which states “After
completion of the annual review, NMFS may initiate a process to amend specific measures in
this RPA to reflect new information, provided that the amendment is consistent with the
Opinion’s underlying analysis and conclusions and does not limit the effectiveness of the RPA in
avoiding jeopardy to listed species or adverse modification of critical habitat.” This process is
anticipated to conclude in late 2016 and may include refinements and additions to the existing
annualseasonal temperature management processes, including spring storage targets, revised
temperature compliance criteria and a range in summertime Keswick release rates. The adjusted
RPA Action Suite 1.2 will apply to Reclamation’s Shasta operations when the adjustment process
is completed as described above.

3.1.5 Real-Time Operations Upstream of the Delta

The goal for real-time decision making is to assist fishery management by minimizing potential
adverse effects for listed species while meeting permit requirements and contractual obligations
for water deliveries. Real-time data assessment promotes flexible operational decision making
that can be adjusted in the face of uncertainties as outcomes from management actions and other
events become better understood. High uncertainty exists regarding real-time conditions that can
change management decisions to balance operations to meet beneficial uses through 2030.

The PA does not propose changing any of the existing real-time operational processes currently
in place. However, as described in Section 3.3.3 *Real-Time Operational Decision-Making
Process*, an additional real-time operations process would be implemented under the PA.

Sources of uncertainty or flexibility in operations that are considered and responded to during
real-time operations include the following.

- Hydrologic conditions
- Meteorological conditions
- Tidal variability
- Listed species (presence, distribution, habitat, and other factors such as ocean conditions)
- Ecological conditions

\(^1\) NMFS' March 18, 2016, response to the Bureau of Reclamation's February forecast.
3.1.5.1 Ongoing Processes to support Real-Time Decision Making

Real-time changes to CVP/SWP operations that help avoid and minimize adverse effects to listed species must also consider public health, safety, and water supply reliability. While Reclamation and DWR maintain their respective authorities to operate the CVP and SWP, various operating criteria are influenced by a number of real-time factors. To facilitate real-time operational decisions and fish and wildlife agency (consisting of USFWS, NMFS, and the California Department of Fish and Wildlife [CDFW]) determinations, Reclamation, DWR, and the fish and wildlife agencies have developed and refined (U.S. Bureau of Reclamation 2008; National Marine Fisheries Service 2009; U.S. Fish and Wildlife Service 2008) a set of processes to collect data, disseminate information, develop recommendations, make decisions, and provide transparency. This process consists of three types of groups that meet on a recurring basis. All of these teams review the most up-to-date data and information on fish status and Delta conditions, and develop recommendations that can be used to modify operations or criteria to improve the protection of listed species.

- The process to identify actions to protect listed species varies to some degree among species and geographic area, but abides by the following general outline. A fisheries or operations technical team compiles and assesses current information regarding species, operational or hydrologic conditions, such as stages of reproductive development, geographic distribution, relative abundance, and physical habitat conditions. That team then provides a recommendation to the fish and wildlife agency with statutory obligation to enforce protection of the species in question, within guidelines established within the respective biological opinion or incidental take authorization. The fish and wildlife agency’s staff and management review the recommendation and use it as a basis for developing, in cooperation with Reclamation and DWR, an operational response that minimizes adverse effects on listed species. In addition, certain actions may require input from the SWRCB to assess consistency with WQCP requirements or other water rights permit terms. The outcomes of protective actions that are implemented are monitored and documented, and this information informs future actions by the real-time decision-making teams. The management team is comprised of management staff from Reclamation, DWR, and the fish and wildlife agencies. The SWRCB also participates in management team meetings.

- Information teams are teams that disseminate and coordinate information among agencies and stakeholders.

- Fisheries and operations technical teams are comprised of technical staff from state and Federal agencies.

All of these teams review the most up-to-date data and information on fish status and Delta conditions, and develop recommendations that can be used to modify operations or criteria to improve the protection of listed species.
Table 3.1-2. Ongoing Real-Time Decision-Making Groups

<table>
<thead>
<tr>
<th>Working Group</th>
<th>Description</th>
<th>Agency Lead</th>
<th>Meeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Operations Management Team (WOMT)</td>
<td>Existing technical work teams report weekly updates and recommendations to WOMT, which is then used to advise USFWS, NMFS and CDFW in order to make final determinations for listed aquatic species conservation needs and water operations.</td>
<td>DWR</td>
<td>Weekly (Tuesday at 1:00PM) October–June</td>
</tr>
<tr>
<td>Water Operations Technical Work Teams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smelt Working Group (SWG)</td>
<td>A technical advisory team that provides recommendations on SWP and CVP operations to USFWS, CDFW, and WOMT pursuant to the USFWS RPA on Delta Smelt and CDFW ITP on Longfin Smelt.</td>
<td>FWS</td>
<td>Weekly (Monday at 10:00AM) December–June</td>
</tr>
<tr>
<td>Delta Operations for Salmonids and Sturgeon (DOSS)</td>
<td>A technical advisory team that provides recommendations on SWP and CVP operations to NMFS and WOMT pursuant to the NMFS RPA on anadromous salmonids and green sturgeon.</td>
<td>NMFS</td>
<td>Weekly (Tuesday at 9:00AM) October–June</td>
</tr>
<tr>
<td>CALFED Operations Group</td>
<td>Representatives from fish agencies and stakeholder groups make recommendations to SWP and CVP operations with the requirements of the SWRCB's Decision 95-6, the NMFS & USFWS biological opinions and CVPIA.</td>
<td>DWR</td>
<td>Monthly</td>
</tr>
<tr>
<td>Central Valley Project Improvement Act B2 Interagency Team (B2IT)</td>
<td>Discusses implementation of section 3406 (b)(2) of the CVPIA, which defines the dedication of CVP water supply for environmental purposes. It communicates with WOMT to ensure coordination with the other operational programs or resource-related aspects of project operations, including flow and temperature issues.</td>
<td>FWS</td>
<td>Weekly (Thursdays at 9:30AM)</td>
</tr>
<tr>
<td>Data Assessment Team (DAT)</td>
<td>Coordinates and disseminates information and data among Project and Fisheries agencies and stakeholders that are related to water project operations, hydrology, and fish surveys in the Delta.</td>
<td>DWR</td>
<td>Weekly</td>
</tr>
<tr>
<td>Delta Conditions Team (DCT)</td>
<td>Coordinates with scientists and engineers from the state and federal agencies, water contractors, and environmental groups to review the real-time operations and Delta conditions, including data from new turbidity monitoring stations and new analytical tools. The members of the DCT provides their individual information to the SWG and/or DOSS, which can then be used to provide recommendations to WOMT.</td>
<td>FWS</td>
<td>Weekly (Friday at 9:30AM)</td>
</tr>
<tr>
<td>Sacramento River Temperature Task Group (SRTTG)</td>
<td>Meets initially in the spring to discuss biological, hydrologic, and operational information, objectives, and alternative operations plans to recommend a temperature control point. Once the SRTTG has recommended an operation plan for temperature control, Reclamation</td>
<td>USBR</td>
<td>Monthly (April–October)</td>
</tr>
</tbody>
</table>

| **Chapter 3. Description of the Proposed Action**
Conveyance Facility Construction	

American River Group (ARG)

- Although open to the public, the ARG meetings generally include representatives from several agencies and organizations with on-going concerns and interests regarding management of the Lower American River. The ARG convenes monthly or more frequently if needed, with the purpose of providing fishery updates and reports for Reclamation to help manage Folsom Reservoir for fish resources in the Lower American River.

Clear Creek Technical Working Group (CCTWG)

- Group that identifies, prioritizes, and guides restoration opportunities on lower Clear Creek with an emphasis on anadromous fish.

Stanislaus Operation Group (SOG)

- Action III.1.1 calls for Reclamation to create a Stanislaus Operations Group to provide a forum for real-time operational flexibility and implementation of the alternative actions defined in the RPA. This group provides directional and oversight to ensure that the East Side Division RPA actions are implemented, monitored for effectiveness and evaluated. Reclamation, in coordination with SOG, shall submit an annual summary of the status of these actions.

Stanislaus River Forum (SRF)

- New group formed to allow for stakeholder input immediately prior to the SOG discussions. Not part of the existing NMFS BiOp.

NMFS BiOp Annual Review Group

- Reclamation and NMFS will host a workshop to review the prior water years’ operations and to determine whether any measures prescribed in the 2009 NMFS Biological Opinion RPA should be altered in light of information learned from prior years’ operations or research.

5 Agency Meeting (BO RPA Implementation)

- To assure close coordination and oversee the efforts of IMT on the implementation of the biological opinions governing SWP and CVP.

Implementation Management Team (IMT)

- Responsible for ensuring the regulatory compliance and implementation of the biological opinions (i.e. RPA actions).

Interagency Fish Passage Steering Committee (IFPSC)

- To charter, and support through funding agreements, an interagency steering committee to provide oversight and technical, management, and policy direction for the Fish Passage Program.

| **3.1.5.2 Groups Involved in Real-Time Decision Making and Information Sharing** |
---|---|

3.1.5.2.1 Water Operations Management Team

The Water Operations Management Team (WOMT) is composed of representatives from Reclamation, DWR, USFWS, NMFS, and CDFW. SWRCB participates in discussions. This management-level team was established to facilitate timely decision-support and decision-making.
making at the appropriate level. The WOMT first met in 1999, and continues to meet to make management decisions. Although the goal of WOMT is to achieve consensus on decisions, the participating agencies retain their authorized roles and responsibilities. Existing working groups/technical work teams report weekly updates and recommendations to the WOMT, which are then used to advise USFWS, NMFS and CDFW in order to make final determinations for listed aquatic species conservation needs and water operations.

3.1.5.2.2 Operations and Fisheries Technical Teams
Several fisheries-specific teams have been established to provide guidance and recommendations on current operations (flow and temperature regimes), as well as resource management issues. These teams include the Sacramento River Temperature Task Group, Smelt Working Group, Delta Conditions Team, Delta Operations for Salmonids and Sturgeon Workgroup, and American River Group. Each of these teams is described in more detail below. A more detailed list is provided in Table 3.1-2 above.

3.1.5.2.2.1 The Sacramento River Temperature Task Group
The Sacramento River Temperature Task Group (SRTTG) is a multiagency group formed by Reclamation pursuant to SWRCB Water Rights Orders 90-5 and 91-1, to assist with improving and stabilizing the Chinook salmon population in the Sacramento River. Annually, Reclamation develops temperature operation plans for the Shasta and Trinity divisions of the CVP. These plans consider impacts on winter-run and other races of Chinook salmon and associated Project operations. The SRTTG meets initially in the spring to discuss biological, hydrologic, and operational information, objectives, and alternative operations plans for temperature control. Once the SRTTG has recommended an operations plan for temperature control, Reclamation then submits a temperature management plan to SWRCB and NMFS, generally on or before June 1 each year.

After implementation of the operations plan, the SRTTG may report out on the results of studies and monitoring, or temperature model runs. The group holds meetings as needed, typically monthly through the summer and into fall, to recommend plan revisions based on updated biological data, reservoir temperature profiles, and operations data. Updated plans may be needed for summer operations to protect winter-run, or in fall for the fall-run spawning season. If there are any changes in the plan, Reclamation submits a supplemental report to SWRCB.

3.1.5.2.2.2 Smelt Working Group
The Smelt Working Group (SWG) consists of representatives from USFWS, CDFW, DWR, U.S. Environmental Protection Agency (USEPA), Reclamation, and NMFS. USFWS chairs the group, and a member is assigned by each agency. The SWG evaluates biological and technical issues regarding delta smelt and develops recommendations for consideration by USFWS. Since longfin smelt became a state candidate species in 2008, SWG has also developed recommendations for CDFW to minimize adverse effects on longfin smelt.

The SWG compiles and interpret the latest real-time information regarding state- and federally listed smelt, such as stages of development, distribution, and salvage. After evaluating available information, if the SWG members agree that a protective action is warranted, the SWG submits its recommendations in writing to WOMT, USFWS and CDFW.
Chapter 3. Description of the Proposed Action
Conveyance Facility Construction

The SWG may meet at any time at the request of USFWS, but generally meets weekly during the months of January through June, when smelt salvage at the CVP and SWP export facilities has historically occurred.

3.1.5.2.2.3 Delta Operations for Salmonid and Sturgeon Workgroup
The DOSS workgroup is a technical team with relevant expertise from Reclamation, DWR, CDFW, USFWS, SWRCB, U.S. Geological Survey (USGS), USEPA, and NMFS that provides advice to WOMT and to NMFS on issues related to fisheries and water resources in the Delta and recommendations on measures to reduce adverse effects of Delta operations of the CVP and SWP on salmonids and green sturgeon. The purpose of DOSS is to review CVP and SWP operations in the Delta and the collected data from the different ongoing monitoring programs.

3.1.5.2.2.4 Delta Condition Team
The existing SWG and WOMT advise USFWS on smelt conservation needs and water operations. In addition, a Delta Condition Team (DCT), consisting of scientists and engineers from the state and federal agencies, water contractors, and environmental groups, meet weekly to review the real time operations and Delta conditions, including data from new turbidity monitoring stations and new analytical tools such as the Delta Smelt behavior model. The members of the DCT provide their individual information to the SWG and the DOSS workgroup. Individual members of the DCT may provide, in accordance with a process provided by the WOMT, their information to the SWG or DOSS for their consideration in developing recommendations to the Project Agencies for actions to protect listed fish species.

3.1.5.2.2.5 American River Group
In 1996, Reclamation established a working group for the Lower American River, known as the American River Group (ARG). Although open to the public, the ARG meetings generally include representatives from several agencies and organizations with ongoing concerns and interests regarding management of the Lower American River. The formal members of the group are Reclamation, USFWS, NMFS, CDFW, and the Water Forum.

The ARG convenes monthly or more frequently if needed, with the purpose of providing fishery updates and recommendations for Reclamation to help manage operations at Folsom Dam and Reservoir for the protection of fishery resources in the Lower American River, and with consideration of its other intended purposes (e.g., water and power supply).

3.1.6 Take Authorization Requested
The PA includes several activities that are expected to result in incidental take of federally listed species. In compliance with Section 7 of the ESA, take authorization is being requested for activities in which take is anticipated. However, some activities that may result in incidental take are not able to be authorized at this time because of lack of specific detail for effects to federally listed species. In these cases, separate incidental take authorization may be required via reinitiation of the CWF consultation, separate Section 7 consultation, or scientific collection permits.

The following timeline of actions indicates which of the actions under the PA include a request for take authorization. For clarity on the relationship of these actions to the existing biological...
Chapter 3. Description of the Proposed Action
Conveyance Facility Construction

opinions, the timeline also includes some components of operations pursuant to the USFWS (2008) and NMFS (2009) biological opinions for the operations of the CVP and SWP.

3.1.6.1 Construction Phase

The construction phase begins when the NEPA record of decision is issued and ends when operations of the NDDs commence. During the construction phase, take authorization is requested for the following activities.

- All activities described in Section 3.2.1 Geotechnical Exploration.
- All activities described in Section 3.2.2 North Delta Diversions.
- All activities described in Section 3.2.3 Tunneled Conveyance.
- All activities described in Section 3.2.4 Intermediate Forebay.
- All activities described in Section 3.2.5 Clifton Court Forebay.
- All activities described in Section 3.2.6 Connections to Banks and Jones Pumping Plants.
- All activities described in Section 3.2.7 Power Supply and Grid Connections.
- All activities described in Section 3.2.8 Head of Old River Gate.
- All activities described in Section 3.2.9 Temporary Access and Work Areas.

During the construction phase, take authorization is not requested for the following activities.

- CVP/SWP operations, which will continue pursuant to the USFWS (2008) and NMFS (2009) biological opinions.
- Construction of the Georgiana Slough non-physical barrier described in Section 3.4.3.1.1.1 Nonphysical Fish Barrier at Georgiana Slough.
- Construction of mitigation for impacts to listed species, described in Section 3.4.3 Restoration for Fish Species and Section 3.4.5 Terrestrial Species Conservation. Once these mitigation sites have been selected, following procedures described in the cited sections, separate Section 7 consultations are expected for construction at each mitigation site.
- Mitigation site compliance monitoring effects on listed species other than valley elderberry longhorn beetle and California red-legged frog. Such monitoring will need scientific collection permits.
3.1.6.2 Operations Phase

The operations phase begins when operations of the NDDs commence. During the operations phase, take authorization is requested for the following activities.

- Operations of the NDDs as described in Section 3.3.2.1 Operational Criteria for North Delta CVP/SWP Export Facilities.

- Continued operations of south Delta CVP/SWP export facilities (i.e., operations currently covered under the USFWS (2008) and NMFS (2009) biological opinions for the operations of the CVP and SWP) as described in Section 3.3.2.2 Operational Criteria for South Delta CVP/SWP Export Facilities.

- Operations of the HOR gate as described in Section 3.3.2.3 Operational Criteria for the Head of Old River Gate.

- Operations of the Delta Cross Channel gates as described in Section 3.3.2.4 Operational Criteria for the Delta Cross Channel Gates.

- Operations of the Suisun Marsh facilities as described in Section 3.3.2.5 Operational Criteria for the Suisun Marsh Facilities.

- Operations of the North bay Aqueduct intake as described in Section 3.3.2.6 Operational Criteria for the North Bay Aqueduct Intake.

- Operations of the Georgiana Slough non-physical barrier as described in Section 3.4.3.1.1.1 Nonphysical Fish Barrier at Georgiana Slough.

- Giant garter snake habitat maintenance as described in Section 3.3.6.4 Clifton Court Forebay and Pumping Plant and Section 3.3.6.6 Power Supply and Grid Connections.

During the operations phase, take authorization is not requested for the following activities.

- All activities described in Section 3.4.3.1.1.1 Nonphysical Fish Barrier at Georgiana Slough. Installation and operations of this barrier are expected to be covered under a separate Section 7 consultation.

- In-water maintenance activities described in Section 3.3.6.1 North Delta Diversions. It is not possible, prior to final design of the facilities, to define how these activities would be performed or how often they would be needed. These activities will be addressed via consultation reinitiation or via a separate Section 7 consultation.

- In-water maintenance activities described in Section 3.3.6.4 Clifton Court Forebay and Pumping Plant. It is not possible, prior to final design of the facilities, to define how these activities would be performed or how often they would be needed. These activities will be addressed via consultation reinitiation or via a separate Section 7 consultation.
• In-water maintenance activities described in Section 3.3.6.5 Connections to Banks and Jones Pumping Plants. It is not possible, prior to final design of the facilities, to define how these activities would be performed or how often they would be needed. These activities will be addressed via consultation reinitiation or via a separate Section 7 consultation.

• In-water maintenance activities described in Section 3.3.6.7 Head of Old River Gate. It is not possible, prior to final design of the facilities, to define how these activities would be performed or how often they would be needed. These activities will be addressed via consultation reinitiation or via a separate Section 7 consultation.

• Fish monitoring and studies described in Section 3.4.7 Monitoring and Research Program. These studies are subject to design through a collaborative process engaging the fish and wildlife agencies. The need for take authorization and any necessary Section 7 consultation will occur through that process.

• Mitigation site compliance monitoring effects on listed species other than valley elderberry longhorn beetle and California red-legged frog. Such monitoring will need scientific collection permits.

3.2 Conveyance Facility Construction

Conveyance facility construction includes the following component parts, with each discussed in a subsection to this chapter as follows:

• Geotechnical exploration, Section 3.2.1.

• North delta diversions construction, Section 3.2.2.

• Tunneled conveyance, which will connect the intakes to the forebays, Section 3.2.3.

• Intermediate Forebay (IF), Section 3.2.4.

• Clifton Court Forebay, an existing structure that will be reconfigured in accordance with the new dual-conveyance system design, Section 3.2.5.

• Connections to the Banks and Jones Pumping Plants, which are existing CVP/SWP export facilities, Section 3.2.6.

• Power supply and grid connections, Section 3.2.7.

• Head of Old River (HOR) gate, Section 3.2.8.

• Temporary access and work areas, Section 3.2.9.

As part of the water right change in point of diversion process with the California State Water Resources Control Board, DWR and Reclamation are working to address the concerns of protesting legal users of water throughout the watersheds involved in either the CVP or SWP. To
date, only one settlement, with Contra Costa Water District (CCWD), is complete. The CCWD settlement requires the inclusion of mitigation measures for water quality effects associated with the PA. The mitigation measures include sequenced implementation mechanisms, related to the construction, operation, and maintenance of additional facilities to transfer water to existing CCWD facilities. Because the detail and related effects of those facilities are currently being defined, the adverse effects to listed species and to critical habitat are not evaluated in this BA. When actions associated with implementation of the agreement are sufficiently defined to provide for analysis of potential adverse effects to listed species and critical habitat, a supplement to this BA will be provided to the Services.

A detailed description of the construction activities associated with each of these component parts is provided below. Figure 3.2-1 provides a map overview of these facilities, and Figure 3.2-2 provides a schematic diagram showing how these facilities will work with existing water-export facilities to create a modified water-export infrastructure facility for the Delta. Further design detail is provided in these following appendices: Appendices 3.A Map Book for the Proposed Action; 3.B Conceptual Engineering Report, Volume 1; 3.C Conceptual Engineering Report, Volume 2; and 3.D Construction Schedule for the Proposed Action. Many of the construction techniques that will be employed during construction phase, such as cofferdams, sheet pile walls, slurry and diaphragm walls, are detailed in Appendix 3.B, Appendix B Conceptual Level Construction Sequencing of DHCCP Intakes (despite the title, Appendix 3.B addresses engineering techniques common to intake, shaft, and forebay construction).

Components of conveyance facility construction share common construction-related activities; for example, some of the component parts require dewatering. Table 3.2-1 identifies 11 common construction-related activities, each of which is described in greater detail in Section 3.2.10 Common Construction-Related Activities. In addition, all construction-related activities described in the PA will be performed in accordance with the general avoidance and minimization measures detailed in Appendix 3.F General Avoidance and Minimization Measures (AMMs). Specific avoidance and minimization measures (Table 3.2-2) are referred to in the following descriptions as applicable, except that AMM-1 Worker Awareness Training is a general AMM and is applicable to all personnel and all aspects of conveyance facility construction, and therefore will not be repeated in this description. Except where stipulated by an applicable species-specific AMM, proposed work may occur at the following times of day (see Table 3.2-1 for definitions of each term).

- Clearing: Between dawn and sunset.

3 Note that Appendix 3.B Conceptual Engineering Report, Volume 1 and Appendix 3.C Conceptual Engineering Report, Volume 2 were prepared to support engineering conceptual design as of July 1, 2015. During the preparation of this biological assessment, certain design changes were made in order to further minimize potential effects on listed species. Thus the PA described in this biological assessment differs in some particulars from the description in the appendices. Where such inconsistencies occur, the biological assessment constitutes an accurate description and represents DWR’s and Reclamation’s intent to perform the PA as here described.

4 The AMMs presented in this section are also the subject of concurrent environmental review processes required for approval of the PA and, therefore, may be subject to further revision. Prior to the conclusion of formal consultation, the BA will be supplemented if substantive changes are made to the AMMs relevant to the analysis of listed species or designated critical habitat.
Figure 3.2-1 Proposed Action Overview
Figure 3.2-2 Conveyance Schematic

Source: Adapted from California Department of Water Resources Conceptual Engineering Report, 2015.
• Site work: At any time of the day or night.
• Ground improvement: At any time of the day or night.
• Borrow fill: At any time of the day or night.
• Fill to flood height: At any time of the day or night.
• Dispose spoils: At any time of the day or night.
• Dewatering: At any time of the day or night.
• Dredging and Riprap Placement: Between dawn and sunset when performed adjacent to or in water bodies. At any time of the day or night when performed in dry areas or in a previously-cleared area.
• Barge operations: At any time of the day or night.
• Landscaping: Between dawn and sunset.
• Pile Driving: Between dawn and sunset.

Proposed construction-related work entails the use of equipment that may produce in-air sound at levels in excess of the local acoustic background; see the effects analysis (Chapter 6) for detailed analysis of the effects of exposure to in-air sound associated with various activities on listed species.

Several activities required for conveyance construction (e.g., dredging, pile driving, barge operations, geotechnical exploration, etc.) will result in disturbance and redistribution of sediments at and below the surface. There is a potential for some of these sediments to contain existing contaminants, and the disturbance associated with these activities could increase the risk of exposure to contaminants for listed species. Detailed sediment and contaminant characterizations of the specific areas expected to be subject to sediment disturbance are limited and do not provide enough information to support a thorough analysis of effects at this time. Examples of such studies include the maintenance dredging of Discovery Bay and the maintenance dredging of federal navigational channels in San Francisco Bay.

The former study (Central Valley Water Board 2003) considered a site near Clifton Court forebay where sediments are predominantly silt- and clay-sized, with less than 33% sand. Such sediments may be taken as representative of potential contaminants in the Clifton Court Forebay area. Contaminants detected in sediment testing included arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, zinc, tributyltin, polycyclic aromatic hydrocarbons, and organochlorine pesticides. Arsenic levels averaged 7.4 mg/kg, which is below average Sacramento-San Joaquin Delta background concentrations. All other constituents were at concentrations significantly below Human Residential and Human Industrial screening values.

The latter study (USACE and San Francisco Water Board 2014) considered a variety of federally maintained navigation channels. Although the channels are located downstream of the
Sacramento-San Joaquin Rivers confluence, the evaluated materials had predominately been transported downstream from those rivers, and at several of the tested sites primarily consisted of fine sand; thus study results are expected to be representative of contaminants likely to be found in the NDD area, where preliminary geotechnical results indicate surficial sediments that are predominately sand-sized. Sediment from the San Francisco Ship Channel was found to be 93% to 99% sand, and the analysis concluded “The total organic carbon levels in composite samples (total of two composites) ranged from 0.11 percent to 0.35 percent for samples collected in 2010. This is considered to be low, and in the highly suitable range for beneficial reuse. Throughout the years that MSC has been tested for maintenance dredging purposes, the sediment has been determined to be suitable for unconfined aquatic placement at the San Francisco Bar Channel Disposal Site (SF-8) or the Ocean Beach Demonstration Site.” Testing at the Suisun Bay Channel and New York Slough found sediments to be 94% to 99% sand and concluded “Historically, the sediment has been deemed suitable for in-Bay placement at SF-9 and Suisun Bay placement site (SF-16). In 2009, confirmatory chemistry tests were run, in addition to the usual grain-size testing; these tests showed that no potential contaminant exceeded acceptable limits.” Other sites yielded similar results, but are not reported here because their primary sediment source was not the Sacramento and San Joaquin rivers.

Based on these previous studies, the preliminary contaminant risk to listed species is low due to low contaminant levels in both clay/silt and sand samples, with particularly low concentrations likely in the predominately sand-sized sediments at the NDDs where exposure risk is greatest. Therefore, analysis of all actions in this PA that result in potential turbidity effects and sediment disturbance assumes a level of risk to the species from exposure to contaminants that is equivalent to the findings of the first-level sediment assessment for an initial evaluation of effects to listed fish species and their aquatic habitat. The PA also includes AMMs that are intended to specifically address the identified preliminary contaminant risk(s).

As described in Appendix 3.F, General Avoidance and Minimization Measures, AMM6 Disposal and Reuse of Spoils, Reusable Tunnel Material, and Dredged Material, to better define potential effects to listed species or aquatic habitat, and to streamline the collection and incorporation of newer information (i.e., monitoring data or site-specific baseline information), the following protocol will be followed. The action agency will work with State and Federal resource agencies with authorization and jurisdiction to identify the timeline for information gathering in relation to initiation of the specific action, but it is anticipated to be at least several months prior to the initiation of the action. At that time, DWR and Reclamation will follow the protocol below.

- DWR will ensure the preparation and implementation of a pre-dredge sampling and analysis plan (SAP). The SAP will be developed and submitted by the contractor(s) as part of the water plan required per standard DWR contract specifications (Section 01570). Prior to initiating any dredging activity, the SAP will evaluate the presence of contaminants that may affect water quality from the following discharge routes.
 - Instream discharges during dredging.
 - Direct exposure to contaminants in the material through ingestion, inhalation, or dermal exposure.
o Effluent (return flow) discharge from an upland disposal site.

o Leachate from upland dredge material disposal that may affect groundwater or surface water.

- Concentrations of the identified chemical constituents in the core samples will be screened through appropriate contaminant screening tables to ensure compliance with applicable agency guidelines.

- Results of the sediment analyses and the quality guidelines screening will determine the risk associated with the disturbance of the sediment horizons by identifying specific pathways of exposure to adverse effects.

- Results of the testing will be provided to all relevant State and Federal agencies for their use in monitoring or regulating the activities under consideration.

- If the results of the chemical analyses of the sediment samples indicate that one or more chemical constituents are present at concentrations exceeding screening criteria, then additional alternative protocols to further minimize or eliminate the release of sediments into the surrounding water column must be implemented.

- The applicant must provide to CDFW, NMFS and USFWS a plan to reduce or eliminate the release of contaminated sediment prior to the start of any actions that will disturb the sediments in the proposed construction area. Plans using a shrouded hydraulic cutterhead, or an environmentally sealed clamshell bucket may be acceptable provided that adequate supporting information is provided with the proposed plan. Plans should also include descriptions of the methods employed to treat, transport, and dispose of the contaminated sediment, as well as any resulting decant waters.

This approach incorporates the potential for take authorization to be revised at the time that effects of the action are determined to be “reasonably certain to occur” and the description of activities, existing conditions, and risk to species can be more specifically described with updated, site-specific information.

This type of approach is consistent with approaches to ESA compliance for other large-scale, long-term, repeated actions that do not have adequate site-specific and current information to support the analysis of effect of a specific future action at the time of consultation.

In Appendix 3.A *Map Book for the Proposed Action*, a detailed set of aerial photographs showing the proposed facilities and areas of both temporary and permanent impacts are presented.

Temporary impacts include impacts associated with new facility construction, but not ongoing or future facility operations. The following criteria determine whether a construction impact is temporary or permanent for the purposes of assessing effects on listed species.

- For all wildlife species and Delta Smelt, impacts lasting more than 1 year (365 days) are considered permanent.
• For all salmonid species and green sturgeon, impacts lasting more than 2 years are considered permanent.

Temporary impacts are not compensated for by habitat restoration; however, affected sites are restored to preconstruction conditions.

Note that Appendix 3.A does not include facilities for which the location is unknown. These unknown locations fall into three types: geotechnical exploration sites, safe haven work areas, and barge landings. Section 3.2.1 Geotechnical Exploration describes geotechnical exploration sites; Section 3.2.3 Tunneled Conveyance describes safe haven work areas; and Section 3.2.10.9 Barge Landing Construction and Operations, describes barge landings. See Chapter 5 Effects Analysis for Chinook Salmon, Central Valley Steelhead, Green Sturgeon, and Killer Whale, and Chapter 6 Effects Analysis for Delta Smelt and Terrestrial Species, for a discussion of how effects of these activities on listed species were analyzed.

Appendix 3.D Construction Schedule for the Proposed Action, contains conveyance facility construction-related scheduling and forms the basis for statements regarding scheduling in this chapter.

Pile driving assumptions are detailed in Appendix 3.E Pile Driving Assumptions for the Proposed Action.
Table 3.2-1. Components of Conveyance Construction and the Common Construction Activities Used in Each

<table>
<thead>
<tr>
<th>Common Construction Activity</th>
<th>Geotechnical Exploration</th>
<th>Delta Intakes</th>
<th>Tunnels</th>
<th>Intermediate Forebay</th>
<th>Clifton Court Forebay</th>
<th>Connections to Banks and Jones</th>
<th>Power Supply and Grid Connections</th>
<th>Head of Old River Gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearing<sup>a</sup></td>
<td>At upland sites</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Site work<sup>b</sup></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ground improvement<sup>c</sup></td>
<td>No</td>
<td>Yes</td>
<td>Shafts</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Borrow fill<sup>d</sup></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Fill to flood height<sup>e</sup></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Dispose spoils<sup>f</sup></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dewatering<sup>g</sup></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Dredging and Riprap Placement<sup>h</sup></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Barge operations<sup>i</sup></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Landscaping<sup>j</sup></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Pile Driving<sup>k</sup></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

^a Includes grubbing, clearing, and grading. Assumed to affect entire construction footprint; any areas not actually cleared are nonetheless subject to sufficiently invasive activity that their value as habitat for listed species is reduced to near zero.

^b Includes all initial site work: Construct access, establish stockpiles and storage areas, construction electric, fencing, stormwater treatment per a SWPPP (Storm Water Pollution Prevention Plan). Occurs only on cleared sites.

^c Includes drilling, injection of materials, installation of dewatering wells, etc. Occurs only on cleared sites.

^d Includes excavation, dewatering (separate activity), and transport of borrow material. Occurs only on cleared sites.

^e Includes placement of engineered fill to design flood height. Occurs only on cleared sites that previously or concurrently experience ground treatment and dewatering. Fill work meets U.S. Army Corps of Engineers (USACE) levee specifications where relevant.

^f Includes placement of excavated, dredged, sedimentation basin, or reusable tunnel material (RTM) material on cleared sites where site work has been done.

^g Includes dewatering via groundwater wells or by direct removal of water from excavation, as well as dewatering of excavated material; water may be contaminated by contact with wet cement or other chemicals (e.g., binders for RTM); includes dewatering of completed construction, e.g. of shafts during tunneling.

^h Includes any work that occurs in fish-bearing waters, except that barge operations and pile driving are separately described.

ⁱ Includes barge landing construction; barge operations in river (e.g., to place sheetpiles); tug operations; barge landing removal.

^j Includes placement of topsoil, installation of plant material, and irrigation and other activities as necessary until performance criteria are met. Occurs only on cleared sites.

^k Includes work that involves vibratory and/or impact driving of piles in fish-bearing waters.
Table 3.2-2. Summary of the Avoidance and Minimization Measures Detailed in Appendix 3.F

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMM1</td>
<td>Worker Awareness Training</td>
<td>Includes procedures and training requirements to educate construction personnel on the types of sensitive resources in the work area, the applicable environmental rules and regulations, and the measures required to avoid and minimize effects on these resources.</td>
</tr>
<tr>
<td>AMM2</td>
<td>Construction Best Management Practices (BMPs) and Monitoring</td>
<td>Standard practices and measures that will be implemented prior, during, and after construction to avoid or minimize effects of construction activities on sensitive resources (e.g., species, habitat), and monitoring protocols for verifying the protection provided by the implemented measures.</td>
</tr>
<tr>
<td>AMM3</td>
<td>Stormwater Pollution Prevention Plan</td>
<td>Includes measures that will be implemented to minimize pollutants in stormwater discharges during and after construction related to the PA, and that will be incorporated into a stormwater pollution prevention plan to prevent water quality degradation related to pollutant delivery from action area runoff to receiving waters.</td>
</tr>
<tr>
<td>AMM4</td>
<td>Erosion and Sediment Control Plan</td>
<td>Includes measures that will be implemented for ground-disturbing activities to control short-term and long-term erosion and sedimentation effects and to restore soils and vegetation in areas affected by construction activities, and that will be incorporated into plans developed and implemented as part of the National Pollutant Discharge Elimination System (NPDES) permitting process for the PA.</td>
</tr>
<tr>
<td>AMM5</td>
<td>Spill Prevention, Containment, and Countermeasure Plan</td>
<td>Includes measures to prevent and respond to spills of hazardous material that could affect navigable waters, including actions used to prevent spills, as well as specifying actions that will be taken should any spills occur, and emergency notification procedures.</td>
</tr>
<tr>
<td>AMM6</td>
<td>Disposal and Reuse of Spoils, Reusable Tunnel Material, and Dredged Material</td>
<td>Includes measures for handling, storage, beneficial reuse, and disposal of excavation or dredge spoils and reusable tunnel material, including procedures for the chemical characterization of this material or the decant water to comply with permit requirements, and reducing potential effects on aquatic habitat, as well as specific measures to avoid and minimize effects on species in the areas where RTM will be used or disposed.</td>
</tr>
<tr>
<td>AMM7</td>
<td>Barge Operations Plan</td>
<td>Includes measures to avoid or minimize effects on aquatic species and habitat related to barge operations, by establishing specific protocols for the operation of all PA-related vessels at the construction and/or barge landing sites. Also includes monitoring protocols to verify compliance with the plan and procedures for contingency plans.</td>
</tr>
<tr>
<td>AMM8</td>
<td>Fish Rescue and Salvage Plan</td>
<td>Includes measures that detail procedures for fish rescue and salvage to avoid and minimize the number of Chinook salmon, steelhead, green sturgeon, and other listed species of fish stranded during construction activities, especially during the placement and removal of cofferdams at the intake construction sites.</td>
</tr>
<tr>
<td>AMM9</td>
<td>Underwater Sound Control and Abatement Plan</td>
<td>Includes measures to minimize the effects of underwater construction noise on fish, particularly from impact pile-driving activities. Potential effects of pile driving will be minimized by restricting work to the proposed in-water work windows and by controlling or abating underwater noise generated during pile driving.</td>
</tr>
<tr>
<td>AMM10</td>
<td>Methylmercury Management</td>
<td>Design and construct wetland mitigation sites to minimize ecological risks of methylmercury production.</td>
</tr>
</tbody>
</table>

5 Proposed in-water work windows vary within the Delta: June 1 to October 31 at the NDDs, July 1 to November 30 at the CCF, and August 1 to October 31 at both the HOR Gate and the barge landings.
Chapter 3. Description of the Proposed Action
Operations and Maintenance of New and Existing Facilities

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMM11</td>
<td>Design Standards and Building Codes</td>
<td>Ensure that the standards, guidelines, and codes, which establish minimum design criteria and construction requirements for project facilities, will be followed. Follow any other standards, guidelines, and code requirements that are promulgated during the detailed design and construction phases and during operation of the conveyance facilities.</td>
</tr>
<tr>
<td>AMM12</td>
<td>Transmission Line Design and Alignment Guidelines</td>
<td>Design the alignment of proposed transmission lines to minimize impacts on sensitive terrestrial and aquatic habitats when siting poles and towers. Restore disturbed areas to preconstruction conditions. In agricultural areas, implement additional BMPs. Site transmission lines to avoid greater sandhill crane roost sites or, for temporary roost sites, by relocating roost sites prior to construction if needed. Site transmission lines to minimize bird strike risk.</td>
</tr>
<tr>
<td>AMM13</td>
<td>Noise Abatement</td>
<td>Develop and implement a plan to avoid or reduce the potential in-air noise impacts related to construction, maintenance, and operations.</td>
</tr>
<tr>
<td>AMM14</td>
<td>Hazardous Material Management</td>
<td>Develop and implement site-specific plans that will provide detailed information on the types of hazardous materials used or stored at all sites associated with the water conveyance facilities and required emergency-response procedures in case of a spill. Before construction activities begin, establish a specific protocol for the proper handling and disposal of hazardous materials.</td>
</tr>
<tr>
<td>AMM15</td>
<td>Construction Site Security</td>
<td>Provide all security personnel with environmental training similar to that of onsite construction workers, so that they understand the environmental conditions and issues associated with the various areas for which they are responsible at a given time.</td>
</tr>
<tr>
<td>AMM16</td>
<td>Fugitive Dust Control</td>
<td>Implement basic and enhanced control measures at all construction and staging areas to reduce construction-related fugitive dust and ensure the Action commitments are appropriately implemented before and during construction, and that proper documentation procedures are followed.</td>
</tr>
<tr>
<td>AMM17</td>
<td>Notification of Activities in Waterways</td>
<td>Before in-water construction or maintenance activities begin, notify appropriate agency representatives when these activities could affect water quality or aquatic species.</td>
</tr>
</tbody>
</table>

A great deal of refinement has occurred during the PA development process, enabling substantial reductions in potential impacts. These refinements are summarized in Table 3.2-3.

Table 3.2-3. California WaterFix Design Refinements

<table>
<thead>
<tr>
<th>PA Refinement</th>
<th>Administrative Draft EIR/EIS (December 2012)</th>
<th>2013 Design Refinements</th>
<th>2014 Design Refinements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water facility footprint</td>
<td>3,654 acres</td>
<td>1,851 acres</td>
<td>1,810 acres</td>
</tr>
<tr>
<td>Intermediate forebay size (water surface)</td>
<td>750 acres</td>
<td>40 acres</td>
<td>28 acres</td>
</tr>
<tr>
<td>Private property impacts</td>
<td>5,965 acres</td>
<td>5,557 acres</td>
<td>4,288 acres</td>
</tr>
<tr>
<td>Public lands used</td>
<td>240 acres</td>
<td>657 acres</td>
<td>733 acres</td>
</tr>
<tr>
<td>Number of intakes</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Number of tunnel reaches</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Number of launch and retrieval shaft locations</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Agricultural impacts</td>
<td>6,105 acres</td>
<td>6,033 acres</td>
<td>4,890 acres</td>
</tr>
</tbody>
</table>
3.2.1 Geotechnical Exploration

3.2.1.1 Overview of Geotechnical Exploration

Geotechnical exploration will be used to obtain data to support the development of an appropriate geologic model, characterize ground conditions, and reduce the geologic risks associated with the construction of proposed facilities.

DWR will perform a series of geotechnical investigations along the selected water conveyance alignment, at locations proposed for facilities, and at material borrow areas. The proposed exploration is designed as a two-part program (Phases 2a and 2b) to collect geotechnical data. The two-part program will allow refinement of the second part of the program to respond to findings from the first part. The Draft Geotechnical Exploration Plan (Phase 2) provides additional details for both phases regarding the rationale, methodology, locations, and criteria for obtaining subsurface soil information and laboratory test data (Appendix 3.G Geotechnical Exploration Plan—Phase 2).

Sampling will occur at locations along the water conveyance alignment and at proposed facility sites. The exploration will include field and laboratory testing of soil samples. The field tests will consist of auger and mud-rotary drilling with soil sampling using a standard penetration test (SPT) barrel (split spoon sampler) and Shelby tubes; cone penetrometer testing (CPT); geophysical testing; pressure meter testing; installation of piezometers and groundwater extraction wells; dissolved gas sampling; aquifer testing; and excavation of test pits. All of these techniques, except test pit excavation and CPT, entail drilling. The field exploration program will evaluate soil characteristics and collect samples for laboratory testing. Laboratory tests will include soil index properties, strength, compressibility, permeability, and specialty testing to support tunnel boring machine (TBM) selection and performance specification.

3.2.1.2 Methods for Land-Based Exploration

The land-based portion of the proposed Phase 2a and 2b exploration will occur at approximately 1,380 geotechnical exploration locations. The exploration locations will be selected on the basis of location (as shown in Appendix 3.G, Geotechnical Exploration Plan—Phase 2, Attachment A) and on accessibility for truck or track-mounted drill rigs. At approximately 60 of the exploration locations, test pits will be excavated, with test pit dimensions 4 feet wide, 12 feet long, and 12 feet deep. Test pits are used to evaluate bearing capacity, physical properties of the sediments, location of the groundwater table, and other typical geologic and geotechnical parameters.

Temporary pumping wells and piezometers will be installed at intake, forebay, pump shaft, and tunnel shaft exploration locations to investigate soil permeability and to allow sampling of dissolved gases in the groundwater. Small test pits will be excavated at some locations to obtain near-surface soil samples for laboratory analysis.

At each geotechnical exploration location, DWR will implement BMPs that include measures for air quality, noise, greenhouse gases, and water quality. Direct impacts on buildings, utilities, and known irrigation and drainage ditches will be avoided during geotechnical exploration activities.
Each geotechnical exploration location will be active for a period ranging from a few hours to 12 work days, depending on exploration type and target depth. Exploration locations that involve only CPT testing and/or soil test pits will typically be active for less than 1 day (normally a crew would do two such locations per day). There will be approximately 415 sites that involve only CPT testing. The remaining exploration locations (approximately 965) involve soil borings and will be active for multiple days, with the duration of activity dependent upon the depth of the borings. The deepest borings (i.e., 300 feet) will be located at shaft locations, and will require up to 12 work days. There will be approximately 50 such locations. The remaining 365 borings will be to depths of up to 200 feet and will be located along the majority of the tunnel alignment and at other facility construction sites (i.e., the intakes, Intermediate Forebay, and facilities near Clifton Court Forebay); work at these sites will require approximately 5 work days each. After each site is explored, bored excavations will be backfilled with cement-bentonite grout in accordance with California regulations and industry standards (Water Well Standards, DWR 74-81 and 74-90). Test pits will be backfilled with the excavated material on the same day as they are excavated, with the stockpiled topsoil placed at the surface and the area restored as closely as possible to its original condition. Piezometers will be installed at some sites, and at these locations, technicians may periodically revisit the sites to collect data. Aquifer pump tests will also be performed at some sites; however, pump test activities are not expected to exceed 10 days at these sites.

3.2.1.3 Methods for Overwater Exploration

The overwater portion of the proposed Phase 2a and 2b exploration will occur at approximately 90 to 100 exploration locations. At these locations, geotechnical borings and CPTs will be drilled in the Delta waterways. The exploration locations will be selected on the basis of location (as shown in Appendix 3.G Geotechnical Exploration Plan—Phase 2, Attachment A), with precise site selection based upon practicability considerations such as avoidance of navigation markers and underwater cables. Approximately 30 of these locations will be in the Sacramento River to obtain geotechnical data for the proposed intake structures. An additional 25 to 35 of these locations will be at the major water undercrossings along the tunnel alignment and 30 to 35 of these locations will be at the proposed barge unloading facilities and Clifton Court Forebay (CCF) modifications. The borings and CPTs are planned to explore depths between 100 and 200 feet below the mud line (i.e., river bottom).

DWR will conduct overwater drilling only during the in-water work window between the hours of sunrise and sunset. Duration of drilling at each location will vary depending on the number and depth of the holes, drill rate, and weather conditions, but activities are not expected to exceed 60 days at any one location. Overwater borings for the intake structures and river crossings for tunnels will be carried out by a drill ship and barge-mounted drill rigs.

3.2.1.4 Extent of Phase 2a Land-based and Overwater Work

Phase 2a exploration will focus on collecting data to support preliminary engineering through soil borings and CPTs at approximately 550 land-based and 43 overwater locations. Land-based explorations will be conducted for the intake perimeter berms, State Route (SR) 160, sedimentation basins, pumping plants, forebay embankments, tunnel construction and vent shafts, and other appurtenant facilities (subsequent subsections herein describe these facilities in...
detail). Overwater explorations will support the design of intake structures and the major water crossings along the conveyance alignment.

Phase 2a exploration for tunnel construction will entail land-based drilling approximately every 1,000 feet along the tunnel alignment. One-third of the sites will receive only soil borings, half will receive only CPTs, and one-sixth will receive both soil borings and CPTs. All of the land-based boreholes along the tunnel alignments will be fitted with piezometers. Overwater drilling is planned in Potato Slough (three sites), San Joaquin River (three sites), Connection Slough (two sites), and CCF (35 sites).

In addition, six soil borings and four CPTs will occur at each tunnel shaft or CCF pumping plant shaft site. Once drilling is completed at each shaft site, two of the boreholes will be converted into groundwater extraction wells and the other four boreholes will be converted into piezometers. Boreholes and CPTs are also proposed for the intake and pumping plant sites and SR 160. Approximately six boreholes at each of the proposed intakes will be converted into piezometers.

3.2.1.5 Extent of Phase 2b Land-based and Overwater Work

Phase 2b exploration will support final design, permitting requirements, and planning for procurement and construction-related activities. Phase 2b explorations will include soil borings, CPTs, and test pits at approximately 830 land-based and 94 overwater locations.

Phase 2b exploration for tunnel construction will entail land-based drilling for soil borings near the Phase 2a CPT locations such that a borehole (soil boring or CPT) will have been located at approximately 500-foot intervals along the entire tunnel alignment, a spacing that generally conforms to typical design efforts for tunnels like those proposed.

Similarly, Phase 2b boring will occur at the construction and ventilation shaft sites, and will also occur at the safe haven intervention sites (these types of facilities are described in Section 3.2.3 Tunneled Conveyance). Overwater boreholes and CPTs are planned in the Sacramento River, Snodgrass Slough, South Fork Mokelumne River, San Joaquin River, Potato Slough, Middle River, Connection Slough, Old River, North Victoria Canal, and CCF. Phase 2a and Phase 2b geotechnical exploration are summarized in Table 3.2-4.
Table 3.2.4. Planned Geotechnical Exploration

<table>
<thead>
<tr>
<th>Siting</th>
<th>Location</th>
<th>Maximum Number of Exploration Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Phase 2a</td>
</tr>
<tr>
<td>On land</td>
<td>All locations</td>
<td>550</td>
</tr>
<tr>
<td>Over-water</td>
<td>Sacramento River</td>
<td>0</td>
</tr>
<tr>
<td>Over-water</td>
<td>Snodgrass Slough</td>
<td>0</td>
</tr>
<tr>
<td>Over-water</td>
<td>South Fork Mokelumne River</td>
<td>0</td>
</tr>
<tr>
<td>Over-water</td>
<td>San Joaquin River</td>
<td>3</td>
</tr>
<tr>
<td>Over-water</td>
<td>Potato Slough</td>
<td>3</td>
</tr>
<tr>
<td>Over-water</td>
<td>Middle River</td>
<td>0</td>
</tr>
<tr>
<td>Over-water</td>
<td>Connection Slough</td>
<td>2</td>
</tr>
<tr>
<td>Over-water</td>
<td>Old River</td>
<td>0</td>
</tr>
<tr>
<td>Over-water</td>
<td>West Canal</td>
<td>0</td>
</tr>
<tr>
<td>Over-water</td>
<td>CCF</td>
<td>35</td>
</tr>
</tbody>
</table>

3.2.1.6 Schedule

Phase 2a and Phase 2b land-based explorations will require approximately 24 months, using six land-based drill rigs operating concurrently for 6 days per week. Land-based explorations will typically occur from April through November, and when performed in suitable habitat will conform to timing constraints for terrestrial species as specified in Section 3.4, Conservation Measures. Phase 2a and Phase 2b overwater explorations will require approximately 14 months, using two drill rigs operating concurrently for 6 days per week. Work will be performed within proposed in-water work windows. This schedule will be expedited if possible, depending on the availability of site access, drilling contractors and equipment, permit conditions, and weather. Most of the proposed geotechnical explorations will be performed during the first 3 years of implementation. See Appendix 3.D Construction Schedule for the Proposed Action for further information on the conveyance facility construction schedule.

3.2.2 North Delta Diversions

The siting process featured evaluations of a wide variety of locations for north Delta diversion intakes and various configurations. Possible intake locations and configurations were considered and analyzed in terms of the availability of quantity and quality of water for the diversion, the ability to divert at each intake location, potential impacts on other nearby diverters and dischargers, fish exposure-risk to intakes, presence of fish migration corridors, potential water quality considerations, and reasonable costs estimates involved in construction and operation, among other considerations. This preliminary analysis provided information sufficient to focus on potential intake locations and assumed a diversion facility consisting of five (5) intakes with a total capacity of 15,000 cubic feet per second (cfs). Potential siting of intake locations ranged in distance as far upstream on the Sacramento River to north of the American River confluence in Sacramento County, to as far downstream as south of Steamboat Slough in Solano County. Detailed analyses of these potential intake configurations were conducted in 2010. These analyses showed that actual intake locations are primarily influenced by exposure risk for fish, and to a lesser extent, migration pathways (California Department of Water Resources et al. 2013 [Appendix 3.A]). After extensive analysis and consultation with stakeholders, in July 2012 the
Chapter 3. Description of the Proposed Action
Operations and Maintenance of New and Existing Facilities

Project proponents proposed to evaluate the construction and use of three intakes (Intakes 2, 3, and 5) located between Courtland and Clarksburg for a total maximum pumping capacity of 9,000 cfs. This configuration and capacity was chosen because the water facilities would meet projected water supply needs. The use of three intakes was found to be sufficient to meet forecast diversion volume needs and would have lower environmental impacts compared to construction of five intakes. The intakes are designed as on-bank screens. Design and operational criteria supporting this concept included design constraints developed in collaboration with the fish and wildlife agencies (Fish Facilities Technical Team 2008, 2011), as well as minimum performance standards for bypass flows, sufficient to minimize the risk of covered fishes becoming entrained or impinged on the screens.

The intake design process also reflects a long duration of collaborative discussions between the project proponents and the fish and wildlife agencies. In 2008, the Fish Facilities Technical Team’s (FFTT) preliminary draft, Conceptual Proposal for Screening Water Diversion Facilities along the Sacramento River, reviewed and evaluated various approaches to the screening of diversion facilities, using screen design principles offered by NMFS, CDFW, and USFWS (Fish Facilities Technical Team 2008). These principles included using designs that would comply with the following criteria.

- Be biologically protective.
- Provide a positive, physical barrier between fish and water intakes.
- Avoid the need to collect, concentrate, and handle fish passing the intake.
- Avoid bypasses that would concentrate fish numbers, increasing the risk of predation.
- Avoid off-channel systems, in order to avoid handling fish.
- Select locations that have desirable hydraulic characteristics (e.g., uniform sweeping velocities, reduced turbulence).
- Use the best available existing technology in use in the Sacramento Valley.
- Use smaller multiple intakes (as opposed to a single large intake) to enhance fish protection with operational flexibility under varying flow conditions.
- Minimize the length of intake(s) to reduce the duration of exposure to the screen surface for fish.
- Select locations on the Sacramento River as far north as practicable to reduce the exposure of delta smelt, longfin smelt, and other estuarine species.
- Avoid areas where predators may congregate or where potential prey would have increased vulnerability to predation.
- Avoid areas of existing riparian habitat.
3.2.2.1 **Intake Design**

The PA will include construction of three intakes (Intake 2, Intake 3, and Intake 5) on the east bank of the Sacramento River between Clarksburg and Courtland, in Sacramento County, California. Intake locations and plans are shown in Figure 3-1; in Appendix 3.A *Map Book for the Proposed Action*, Sheets 1 and 2; and Appendix 3.C *Conceptual Engineering Report, Volume 2*, Sheets 10 to 32, 44, and 45. The materials in Appendix 3.C include a rendering of a completed intake, as well as both overview and detail drawings for each intake site. The intakes are described in Appendix 3.B *Conceptual Engineering Report, Volume 1*, Section 6.1 *Description and Site Plans*; see particularly Tables 6-1 and 6-2, which describe intake design criteria relevant to analysis of effects, such as approach and sweeping velocities and fish screen specifications, and Section 6.1.1.1 *Intake Structures*, which describes fish screen design. Other intake components are behind the fish screens and have no potential to affect listed species. Information relevant to intakes construction details is provided in Appendix 3.B, Section 6.2 *Construction Methodology*. General intake dimensions are shown in Table 3.2-5.

Table 3.2-5. Intake Dimensions

<table>
<thead>
<tr>
<th>Intake</th>
<th>Location (river mile)</th>
<th>Overall Length of Structure along Sacramento River Bank (feet)</th>
<th>Area of Intake Construction Site (acres)</th>
<th>Area of Tidal Perennial Habitat (acres)</th>
<th>Temporary In-Water Work</th>
<th>Permanent (Intake + Wing Wall Transitions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake 2</td>
<td>41.1</td>
<td>1,969</td>
<td>190</td>
<td>4.9</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Intake 3</td>
<td>39.4</td>
<td>1,497</td>
<td>152</td>
<td>3.3</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Intake 5</td>
<td>36.8</td>
<td>1,901</td>
<td>144</td>
<td>5.0</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>--</td>
<td>5,367</td>
<td>486</td>
<td>13.2</td>
<td>6.6</td>
<td></td>
</tr>
</tbody>
</table>

Each intake can divert a maximum of 3,000 cfs of river water. Each intake consists of an intake structure fitted with on-bank fish screens; gravity collector box conduits extending through the levee to convey flow to the sedimentation system; a sedimentation system consisting of sedimentation basins to capture sand-sized sediment and drying lagoons for sediment drying and consolidation; a sedimentation afterbay providing the transition from the sedimentation basins to a shaft that will discharge into a tunnel leading to the Intermediate Forebay; and an access road, parking area, electrical service, and fencing (as shown in Appendix 3.C *Conceptual Engineering Report, Volume 2*, Sheets 11, 12, and 13).

3.2.2.2 **Fish Screen Design**

The intakes include fish screens designed to minimize the risk that fish or larvae will be entrained into the intakes or injured by impingement on the fish screens. The foremost design attribute achieving this purpose is to meet criteria established by the fish agencies limiting water velocities through the screen (called the approach velocity) to values substantially less than swimming speeds achievable by the fish species of concern and limiting water velocities parallel to the surface of the screen (called the sweeping velocity) to values that will allow fish to travel past the screen with minimal additional effort or risk of impingement (Fish Facilities Technical Team 2011). However, many other aspects of facility design also help determine its effects on
fish, therefore the process of design has been and will continue to be subject to extensive collaborative discussions with the fish agencies. A variety of preconstruction studies are proposed to aid in refinement of the fish screen design; see Section 3.4.8 Monitoring and Research Program, for a listing and description of these studies.

Each screened intake will consist of a reinforced concrete structure subdivided into six individual bays that can be isolated and managed separately. Water will be diverted from the Sacramento River by gravity into the screened intake bays and routed from each bay through multiple parallel conveyance box conduits to the sedimentation basins. Flow meters and flow control sluice gates will be located on each box conduit to assure limitations on approach velocities and that flow balancing between the three intake facilities is achieved. All of the intakes will be sized at the design water surface elevation (WSE) to provide approach velocities at the fish screen of less than or equal to 0.20 feet per second (ft/s) at an intake flow rate of 3,000 cfs. The design WSE for each site has been established as the 99% exceedance (Sacramento River stage) elevation, and the maximum design WSE was established as the 200-year flood elevation plus an 18-inch allowance for sea level rise, which is a conservative estimate in the context of available forecasts (Mineart et al. 2009).

The fish screen will include screen panels and solid panels that form a barrier to prevent fish from being drawn into the intake and the traveling screen cleaning system. Fish screen design has not yet been finalized, and final design is subject to review and approval by the fish and wildlife agencies (i.e., USFWS, NMFS, and CDFW). Design specifications for the fish screens meet Delta Smelt criteria, which require an approach velocity less than or equal to 0.2 ft/s. When coupled with equal or greater sweeping velocities, Delta Smelt impingement and screen contact are thereby minimized (Swanson et al. 2005; White et al. 2007), and therefore this standard has been adopted as a performance standard for the North Delta Diversions (Fish Facilities Technical Team 2011). The Delta Smelt approach velocity criterion is also protective of salmonids because it is well below the 0.33 ft/s approach velocity standard for Chinook salmon fry. Fish screens will be provided with monitoring systems capable of verifying approach and sweeping velocity standard compliance in real time.

As currently designed, the fish screens will be a vertical flat plate profile bar type made from stainless steel with a maximum opening of 0.069 inch and porosity of 43%. Proposed fish screens dimensions are shown in Table 3.2-6. Each of the configurations shown in the table provides hydraulic performance adequate to divert up to 3,000 cfs within a design range of river flows. Each configuration achieves this with a given total area of active fish screen, but the size of the intakes is variable due to differences in screen height, and the length of the intakes incorporates unscreened refugia areas (further discussed below).

6 The specific performance standard is: “Diversions should be designed to operate at an approach velocity of 0.33 fps to minimize screen length, however, to minimize impacts to delta smelt, the diversions should be operated to an approach velocity of 0.2 fps at night if delta smelt are suspected to be present, based on a real-time monitoring program. The diversions may be operated to an approach velocity of 0.33 fps at all other times” (Fish Facilities Technical Team 2011).
Table 3.2-6. Fish Screen Dimensions

<table>
<thead>
<tr>
<th>Intake</th>
<th>Screen Height</th>
<th>Screen Width</th>
<th>Number of Screens</th>
<th>Total Length of Screens(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake 2</td>
<td>12.6 feet</td>
<td>15 feet</td>
<td>90</td>
<td>1,350 feet</td>
</tr>
<tr>
<td>Intake 3</td>
<td>17.0 feet</td>
<td>15 feet</td>
<td>74</td>
<td>1,110 feet</td>
</tr>
<tr>
<td>Intake 5</td>
<td>12.6 feet</td>
<td>15 feet</td>
<td>90</td>
<td>1,350 feet</td>
</tr>
</tbody>
</table>

Notes

\(^1\) Fish screen length is shorter than structure length shown in Table 3.2-5 because structure length includes concrete approach sections and refugia.

Source: Appendix 3.C

See Appendix 3.C Conceptual Engineering Report, Volume 2, Sheets 16, 17, 19, 22, and 23 for illustration of the following elements of the fish screen system. Screen panels will be installed in the lower portion of the intake structure face, above a 2-foot wall against which sediment could accumulate between maintenance intervals (described in Section 3.3.6.1.2 Sediment Removal). Solid panels will be stacked above the screen panels in guides extending above the deck of the structure. The screen panels will be arranged in groups, with each screen bay group providing sufficient screen area for 500 cfs of diversion. There will be six separate screen bay groups per intake facility, all of which will be hydraulically independent. A log boom will protect the screens and screen cleaning systems from impact by large floating debris. Each screen bay group will have a traveling screen cleaning system. The screen cleaners will be supported by a monorail and driven by an electric motor and cable system with a cycle time of no more than 5 minutes. Flow control baffles will be located behind each screen panel and will be installed in guides to accommodate complete removal of the baffle assembly for maintenance. These flow control baffles will be designed to evenly distribute the approach velocity to each screen such that it meets the guidelines developed by the FFTT (Fish Facilities Technical Team 2011). The flow control baffle guides will also serve as guides for installing bulkhead gates (after removal of the flow control baffles) for maintenance of each screen bay group. The bulkhead gates will be designed to permit dewatering of a screen bay group under normal river conditions.

Because of the length of the screens and extended fish exposure to their influence (screens and cleaners), incorporation of fish refugia areas will be evaluated as part of next engineering design phase of the intakes, as recommended by the FFTT (Fish Facilities Technical Team 2011). Current conceptual design for the refugia would provide areas within the columns between the fish screen bay groups that would provide fish resting areas and protected cover from predators. The current design calls for a 22-foot-wide refugium between each of the six screen bay groups at each intake. Design concepts for fish refugia and studies to evaluate their effectiveness are still in development, and final refugia design is subject to review by the fish agencies (i.e., USFWS, NMFS, and CDFW). The review and final design process will incorporate lessons from the Fish Facilities Technical Team (2011) work, the current NMFS (2011) guidance for fish screens, and recent relevant projects, as applicable. Two recent examples of fish refugia design and installation include the Red Bluff Diversion fish screen and that of Reclamation District 2035, on the Sacramento River just north of Sacramento (Svoboda 2013). The Red Bluff Diversion fish screen design used a physical model study to assess hydraulic parameters such as velocity and turbulence in relation to behavior of juvenile Chinook salmon, white sturgeon, and rainbow trout. The refugia consist of flat recessed panels protected by vertical bars. Bar spacing at the entrance to each refugium was selected based on fish size, to allow entry of protected species while
excluding predators. A final design was chosen to reduce velocity in the refuge while minimizing turbulence; under this design, a total of four fish refugia were constructed along 1,100 feet of screen. At the Reclamation District 2035 fish screen, an initial design included a single refuge pocket midway along the intake, which was subsequently modified to include 2-ft-long refugia between each screen panel along the intake. This fish screen also included juvenile fish habitat elements into the upstream and downstream sheet pile training walls and the sloped soil areas above the training walls, with grating materials attached to the sheet pile walls to prevent predatory fish from holding in the corrugated areas by the walls and to provide another form of refuge for small fish (Svoboda 2013). These two examples serve to illustrate the site-specific design considerations that are necessary for construction of large intakes. The effectiveness of refugia requires study (Svoboda 2013).

All fish screen bay groups will be separated by piers with appropriate guides to allow for easy installation and removal of screen and solid panels as well as the flow control baffle system and bulkheads; these features will be removable by gantry crane (Appendix 3.C Conceptual Engineering Report, Volume 2, Sheet 17). Piers will support the operating deck set with a freeboard of 18 inches above the 200-year flood level with sea level rise. The levee in the immediate area will be raised to provide a freeboard of 3 feet above the 200-year flood level with sea level rise. Sheet pile training walls will have a radius of 200 feet and will be upstream and downstream of the intake structures providing improved river hydraulics and vehicular access to the operating deck as well as transitioning the intake structure to the levee (Appendix 3.C, Sheets 33 and 34 show the extent of levee modifications).

3.2.2.3 Construction Overview and Schedule

The timeline for NDD construction is presented in Appendix 3.D Construction Schedule for the Proposed Action. The schedule is complex, with work simultaneously occurring at all major facilities for a period of years, and tunnel boring likewise occurring simultaneously at multiple sites for a period of years. During construction, the sequence of activities and duration of each schedule element will depend on the contractor’s available means and methods, definition and variation of the design, departure from expected conditions, and perhaps other variable factors.

Each intake has its own construction duration with Intakes 2, 3, and 5 each projected to take approximately 4 to 5 years. Early phase tasks to facilitate construction will include mobilization, site work, and establishing concrete batch plants, pug mills, and cement storage areas. During mobilization the contractors will bring materials and equipment to construction sites, set up work areas, locate offices, staging and laydown areas, and secure temporary electrical power. Staging, storage, and construction zone prep areas for each intake site will cover approximately 5 to 10 acres.

Site work consists of clearing and grubbing (discussed in Section 3.2.10.1 Clearing), constructing site work pads, and defining and building construction access roads (discussed in Section 3.2.9 Temporary Access and Work Areas) and barge access (discussed in Section 3.2.10.9 Barge Landing Construction and Operations). Before site work commences, the contractor will implement erosion and sediment controls in accordance with the Storm Water Pollution Prevention Plan (SWPPP) (See Appendix 3.F General Avoidance and Minimization Measures, AMM3 Stormwater Pollution Prevention Plan, for a detailed description). Site
clearing and grubbing and site access to stockpile locations have not yet been developed, but will be subject to erosion and dust control measures as specified in the SWPPP and other permit authorizations.

Although DWR plans to use existing roads to the greatest extent possible, some new roads and bridges will be constructed to expedite construction activities and to minimize impact to existing commuters and the environment. Access roads and environmental controls will be maintained consistent with BMPs and other requirements of the SWPPP and permit documents.

Substantial amounts of engineered fill will be placed landward of the levee, amounting to approximately 2 million cubic yards at each intake site. This fill material will be used primarily in levee work, pad construction for the fills, and other placements needed to ensure that the permanent facilities are at an elevation above the design flood (i.e., a 200-year flood with additional allowance for sea level rise). The required engineered fill material will preferably be sourced onsite from locations within the permanent impact footprint, for instance from excavations to construct the sedimentation basins. Material sourced from offsite will be obtained as described in Section 3.2.10.4 Borrow Fill.

3.2.2.4 Levee Work

Levee modifications will be needed to facilitate intake construction and to provide continued flood management. The levee modifications are described in Appendix 3.B Conceptual Engineering Report, Volume 1, Section 15 Levees, and in Appendix 3.C, Conceptual Engineering Report, Volume 2, Drawings 6, 10 to 17, 19, 44, and 45. Additional information on cofferdam construction (one element of the levee work) appears in Appendix 3.B, Section 6.2.1, General Constructability Considerations. The Sacramento River levees are Federal Flood Control Project levees under the jurisdiction of USACE and Central Valley Flood Protection Board, and specific requirements are applicable to penetrations of these levees. Authorizations for this work have not yet been issued. All construction on these levees will be performed in accordance with conditions and requirements set forth in the USACE permit authorizing the work.

Principal levee modifications necessary for conveyance construction are here summarized. See the referenced text in Appendices 3.B and 3.C, Conceptual Engineering Report, Volumes 1 and 2, respectively, for detailed descriptions of the work. Appendix 3.B, Section 15.2, Sequence of Construction at the Levee, includes a table detailing the sequence of construction activities in levee work.

New facilities interfacing with the levee at each intake site will include the following elements.

3.2.2.4.1 Levee Widening

Levees near the intakes will be widened on the land-side to increase the crest width, facilitate intake construction, provide a pad for sediment handling, and accommodate the Highway 160 realignment. Levee widening is done by placing low permeability levee fill material on the land-side of the levee. The material is compacted in lifts and keyed into the existing levee and ground. The levee will be widened by about 250 feet at each intake site. The widened levee sections will allow for construction of the intake cofferdams, associated diaphragm walls, and levee cutoff
walls within the existing levee prism while preserving a robust levee section to remain in place during construction.

SR 160 will be impacted by construction activities at each of the three intake sites. During the levee widening, the highway will be permanently relocated from its current alignment along the top of the river levee to a new alignment established on top of the widened levee aligned approximately 220 feet farther inland from the river. The location of the new permanent SR 160 alignment is shown in Appendix 3.C Conceptual Engineering Report, Volume 2, Drawings 13, 14, 15 and 16.

3.2.2.4.2 On-Bank Intake Structure, Cofferdam, and Cutoff Walls
The intake structure and a portion of the box conduits will be constructed inside a dual sheet pile cofferdam installed within the levee prism on the river-side (Appendix 3.C, Conceptual Engineering Report, Volume 2, Drawings 15, 16, 17 and 19; construction techniques are described in Appendix 3.B, Conceptual Engineering Report, Volume 1, Sections 6.2.1, General Constructability Considerations; 15.1, Configuration of Facilities in the Levee; and 15.2, Sequence of Construction at the Levee. See Section 3.2.2.5, Pile Installation for Intake Construction, for detail on the pile placement required for cofferdam construction). The intake structure foundation will use a combination of ground improvement (as described in Section 3.2.10.3, Ground Improvement) and steel-cased driven piles or drilled piers. The cofferdams will project from 10 to 35 feet into the river, relative to the final location of the intake screens, dewatering up to 5 acres of channel at each intake site. The river width varies from 475 feet at Intake 3 to 615 feet at Intake 5, so this represents 1.6% to 7.4% of the channel width.

The back wall of the cofferdam along the levee crest will be a deep slurry diaphragm cutoff wall designed for dual duty as a structural component of the cofferdam and to minimize seepage through and under the levee at the facility site. The diaphragm wall will extend along the levee crest upstream and downstream of the cofferdam and the fill pad for the sedimentation on the land-side, which will allow for a future tie-in with levee seepage cutoffs that are not part of the PA. The other three sides of the cofferdam, including a center divider wall, will be sheet pile walls. The cofferdam will include a permanent, 5-foot-thick tremie concrete seal in the bottom to aid dewatering and constructability within the enclosed work area.

Once each cofferdam is completed and the tremie seal has been poured and has cured, the enclosed area will be dewatered as described in Section 3.2.10.7, Dewatering, with fish rescue occurring at that time, in accordance with a fish rescue plan that has been previously approved by CDFW, NMFS, and USFWS. Preparation and requirements for fish rescue plans are described in Appendix 3.F General Avoidance and Minimization Measures, AMM8 Fish Rescue and Salvage Plan. Following dewatering, areas within the cofferdam will be excavated to the level of design subgrade using clam shell or long-reach backhoe before ground improvements (jet grouting and deep soil mixing) and installation of foundation piles as described below in Section 3.2.2.5, Pile Installation for Intake Construction.

In conjunction with the diaphragm wall, a slurry cutoff wall (soil, bentonite, and cement slurry) will be constructed around the perimeter of the construction area for the land-side facilities. This slurry wall will be tied into the diaphragm wall at the levee by short sections of diaphragm wall perpendicular to the levee. The slurry cutoff wall will overlap for approximately 150 feet along
the diaphragm wall at the points of tie-in. The slurry wall is intended to help prevent river water from seeping through or under the levee during periods when deep excavations and associated dewatering are required on the land-side. By using the slurry wall in conjunction with the diaphragm wall, the open cut excavation portion of the work on the landside will be completely surrounded by cutoff walls. These walls will minimize induced seepage from the river through the levee, both at the site and immediately adjacent to the site, and serve as long-term seepage control behind the levee.

At the upstream and downstream ends of the intake structure, a sheet pile training wall will transition from the concrete intake structure into the river-side of the levee. Riprap will be placed on the levee-side slope upstream and downstream of the structure to prevent erosion from anomalies in the river created by the structure. Riprap will also be placed along the face of the structure at the river bottom to resist scour.

The cofferdam structure and the berm surrounding the entire intake construction site will provide temporary flood protection during construction; see Appendix 3.B, Conceptual Engineering Report, Volume 1, Section 15.3.1, Temporary Flood Protection Features, for a detailed explanation of how this will be accomplished.

After intake construction is complete the cofferdammed area will be flooded and underwater divers using torches or plasma cutters will trim the sheet piles at the finished grade/top of structural slab. A portion of the cofferdam will remain in place after intake construction is complete to facilitate dewatering as necessary for maintenance and repairs, as shown in Appendix 3.C, Conceptual Engineering Report, Volume 2, Drawing 16.

3.2.2.4.3 Box Conduits

Large gravity collector box conduits (12 conduits at each intake) will lead from the intake structure through the levee prism to the landside facilities. The box conduits will be constructed by open-cut methods after the intake portion of the cofferdam is backfilled. Backfill above the box conduits and reconstruction of the disturbed portion of the levee prism will be accomplished using low-permeability levee material in accordance with USACE specifications.

3.2.2.5 Pile Installation for Intake Construction

Structural properties of the sediment at the construction site are a principal consideration in determining the effort required for pile installation. See Appendix 3.B, Section 6.2.2, Intake Structure and Sediment Facilities Geotechnical, for a description of geotechnical findings at each intake site. Generally, sediments at the intake sites consist of a surficial layer of soft to medium stiff, fine-grained soils to a depth of approximately 20 to 30 feet below ground surface; underlain by stratified stiff clay, clayey silt, and dense silty sand to the depth of the soil borings.

See Section 3.2.10.11, Pile Driving, for a general description of how pile driving will be performed. Table 3.2-7 summarizes proposed pile driving at the intake sites, including the type, size, and number of piles required, as well as the number of piles driven per day, the number of impact strikes per pile, and whether piles will be driven in-water or on land (source: Appendix 3.E, Pile Driving Assumptions for the Proposed Action). Table 3.2-7 specifies 42-inch steel piles for the intake foundations; however, depending on the findings of the geotechnical
exploration, it may be feasible to replace some or all of those steel piles with cast-in-drilled-hole (CIDH) foundation piles. The CIDH piles are installed by drilling a shaft, installing rebar, and filling the shaft with concrete; no pile driving is necessary with CIDH methods. Use of concrete filled steel piles will involve vibratory or impact-driving hollow steel piles, and then filling them with concrete. Table 3.2-7 assumes that all piles will be driven using impact pile driving, but the design intent is to use impact pile driving only for placement of the intake structure foundation piles. All other piles will be started using vibratory pile driving and driving will be completed using impact pile driving. Based on experience during construction of the Freeport diversion facility, it is expected that approximately 70% of the length of each pile can be placed using vibratory pile driving, with impact driving used to finalize pile placement. In-water pile driving will be subject to abatement, hydroacoustic monitoring, and compliance with timing limitations as described in Appendix 3.F, General Avoidance and Minimization Measures, AMM9 Underwater Sound Control and Abatement Plan.

Table 3.2-7. Pile Driving for Intake Construction

<table>
<thead>
<tr>
<th>Feature</th>
<th>On-land or In-water</th>
<th>Pile Type/ Sizes</th>
<th>Total Piles</th>
<th>Number of Pile Drivers in Concurrent Use</th>
<th>Piles/ Day</th>
<th>Strikes/ Pile</th>
<th>Strikes/ Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake Cofferdam – Intakes 2, 3, and 5</td>
<td>In-water</td>
<td>Sheet pile</td>
<td>2,500</td>
<td>4</td>
<td>60</td>
<td>210</td>
<td>12,600</td>
</tr>
<tr>
<td>Intake Structure Foundation – Intake 2</td>
<td>In-water</td>
<td>42-inch diameter steel</td>
<td>1,120</td>
<td>4</td>
<td>60</td>
<td>1,500</td>
<td>90,000</td>
</tr>
<tr>
<td>Intake Structure Foundation – Intake 3</td>
<td>In-water</td>
<td>42-inch diameter steel</td>
<td>850</td>
<td>4</td>
<td>60</td>
<td>1,500</td>
<td>90,000</td>
</tr>
<tr>
<td>Intake Structure Foundation – Intake 5</td>
<td>In-water</td>
<td>42-inch diameter steel</td>
<td>1,120</td>
<td>4</td>
<td>60</td>
<td>1,500</td>
<td>90,000</td>
</tr>
<tr>
<td>SR-160 Bridge (Realignment) at Intake</td>
<td>On-land</td>
<td>42-inch diameter steel</td>
<td>150</td>
<td>2</td>
<td>30</td>
<td>1,200</td>
<td>36,000</td>
</tr>
<tr>
<td>Control Structure at Intake</td>
<td>On-land</td>
<td>42-inch diameter steel</td>
<td>650</td>
<td>4</td>
<td>60</td>
<td>1,200</td>
<td>72,000</td>
</tr>
<tr>
<td>Pumping Plant and Concrete Sedimentation Basins at Intake</td>
<td>On-land</td>
<td>42-inch diameter steel</td>
<td>1,650</td>
<td>4</td>
<td>60</td>
<td>1,200</td>
<td>72,000</td>
</tr>
</tbody>
</table>

Sheet piles will be installed in two phases starting with a vibratory hammer and then switching to impact hammer if refusal is encountered before target depths. Sheet pile placement for cofferdam installation will be performed by a barge-mounted crane equipped with vibratory and impact pile-driving rigs. Foundation pile placement within the cofferdammed area may be done before or after the cofferdammed area is dewatered. If it is done after the cofferdammed area is dewatered and the site is dry, a crane equipped with pile driving rig will be used within the cofferdam. If done before the cofferdam is dewatered, pile driving will be performed by a barge-mounted crane positioned outside of the cofferdam or a crane mounted on a deck on top of the cofferdam. In-water pile driving will be subject to abatement (e.g., use of a bubble curtain), hydroacoustic monitoring, and compliance with timing limitations as described in Appendix 3.F, General Avoidance and Minimization Measures, AMM9 Underwater Sound Control and Abatement Plan.
At the conclusion of construction, the intake facilities will be landscaped, fenced, and provided with security lighting as described in Section 3.2.10.10, *Landscaping and Associated Activities*.

3.2.3 Tunneled Conveyance

Although conceptual proposals for north Delta diversions of water for the CVP/SWP have been discussed since at least the early 1960s\(^7\), the earlier proposals all relied upon canal designs that would have resulted in extensive and unacceptable adverse impacts on both the human and natural environment in the Delta.

In 2009, however, the project proponents selected a pipeline and tunnel-based system as the preferred basis of design for conveyance of water from the North Delta Diversions to the CVP/SWP export facilities. The initial tunneled conveyance design, analyzed in the draft EIR/EIS for the PA (U.S. Bureau of Reclamation, U.S. Fish and Wildlife Service, National Marine Fisheries Service, and California Department of Water Resources 2013), had pump stations sited at each of the intakes, and somewhat smaller tunnels, north of the IF, compared to the PA.

Subsequent value engineering studies revealed that if the tunnels were made larger, then a gravity-feed system would work, allowing elimination of the pump stations at the intakes and their replacement with a consolidated pump station at the CCF. This design change reduced overall electricity consumption associated with operations of the PA, with a concomitant reduction in greenhouse gas generation (for electric power production). It also eliminated the need for new, permanent high-voltage electrical transmission lines serving the new intakes, and thereby eliminated the potential bird strike and other adverse effects associated with those transmission lines (although temporary transmission lines are still needed, to power TBMs and provide other construction electricity).

3.2.3.1 Design

The conveyance tunnels will extend from the proposed intake facilities (Section 3.2.2 *North Delta Diversions*) to the North Clifton Court Forebay (NCCF). The tunneled conveyance includes the North Tunnels, which consist of three reaches that connect the intakes to the IF; and two parallel Main Tunnels, connecting the IF to the NCCF. Final surface conveyance connecting the NCCF to the existing export facilities is described in Section 3.2.6 *Connections to the Banks and Jones Pumping Plants*. The water conveyance tunnels will be operated with a gravity feed system, delivering to a pumping station located at the NCCF.

Each tunnel segment will be excavated by a TBM. This technique largely limits surface impacts on those associated with initial geotechnical investigations on the TBM route (Section 3.2.1 *Geotechnical Exploration*), surface facilities located at the TBM launch and reception shafts (this section), the disposition of material excavated by the TBMs (Section 3.2.10.6 *Dispose Spoils*), the provision of electric power to the TBM (Section 3.2.7 *Power Supply and Grid Connections*), and points where the TBM cutterhead may need to be accessed for repair or maintenance.

\(^7\) See Draft EIR/EIS Appendix 3.A (California Department of Water Resources et al. 2013) for a detailed description of the historical development of the tunneled conveyance concept.
Chapter 3. Description of the Proposed Action
Operations and Maintenance of New and Existing Facilities

Chapter 3. Description of the Proposed Action

Section 3.2.3.3.5 Intermediate Tunnel Access). Water quality impact potential is associated with dewatering procedures and construction stormwater disposition at the TBM launch and reception surface facilities, and would be addressed via relevant minimization measures described in Section 3.2.10.7 Dewatering, and relevant AMMs (Appendix 3.F General Avoidance and Minimization Measures, AMM3 Stormwater Pollution Prevention Plan, AMM4 Erosion and Sediment Control Plan, and AMM5 Spill Prevention, Containment, and Countermeasure Plan). TBM's also have the potential to generate subsurface effects due to the sound produced by TBM excavation, which can be detected by sensitive receptors such as green sturgeon.

The TBM launch facilities will be relatively large and active construction sites because they are continuously active during a TBM tunnel drive, when they will provide the only surface access to the tunnel. Thus they will require stockpiles of materials used by the TBM, will provide access to the TBM for its operation and maintenance, and will receive all materials excavated by the TBM. Conversely, TBM reception facilities will be used to recover the TBM at the end of its drive, and thus have a smaller footprint and a more limited operating scope. Table 3.2-8 summarizes all of the proposed tunnel drives, identifying launch and reception shafts, tunnel lengths, and tunnel diameters. Appendix 3.B Conceptual Engineering Report, Volume 1, Figure 11-1, shows this information on a map. Note that Bouldin Island and the IF will be the primary tunneling sites; the IF will be the launch point for 25.1 miles of two 40-foot tunnels and 4.8 miles of a 28-foot tunnel, while Bouldin Island will be the launch point for four, 40-foot tunnels with a total length of 25.4 miles. Bacon Island will be the launch point for two, 40-foot tunnels with a total length of 16.6 miles, while Intake 2 will be a relatively small site, acting as launch point for one 28-foot tunnel that will be 2.0 miles long.

For a detailed explanation of the tunneling work, see Appendix 3.B Conceptual Engineering Report, Volume 1, Sections 3.1 Proposed Alignment and Key Components, 3.2 Reach Descriptions, and 11.0 Tunnels; Sections 11.2.5 Tunnel Excavation Methods and 11.2.6 Tunnel Support, in particular, detail the process of tunneling. Briefly\(^8\), tunneling will be performed by a TBM, which is a very large and heavy electrically-powered machine that will be launched from the bottom of a launch shaft, and will tunnel continuously underground to a reception shaft. The cutterhead of the TBM will be hydrostatically isolated from the remainder of the machine, so that the inside of the tunnel will be dry and at atmospheric pressure. As the TBM proceeds, precast concrete tunnel lining sections will be assembled within the TBM to produce a rigid, water-tight tunnel lining. Typically very little dewatering will be needed to keep the interior of the tunnel dry. A electrically-powered conveyor will carry excavated material from the TBM back to the launch shaft, where a vertical conveyor will carry the material to the surface for disposal (Section 3.2.10.6 Dispose Spoils). A narrow-guage railway may be installed in the tunnel with a diesel locomotive, or rubber wheeled diesel engine trucks may be used to carry workers, tunnel lining segments, and other materials from the launch shaft to the TBM.

\(^8\) An excellent video summarizing how a TBM tunnels through soft sediment is available at https://www.youtube.com/watch?v=qx_EjMILLgY. Neither the contractor nor the project depicted in the video has any relationship to the proposed action, but the type of machine used and the procedures depicted are very similar to those that would occur under the proposed action.
A map book showing all of the tunnel drives is presented in Appendix 3.A *Map Book for the Proposed Action*. Design drawings showing tunnel routing, design of the shaft structures, and layout of the surface facilities at launch and reception sites appear in Appendix 3.C *Conceptual Engineering Report, Volume 2*; see Drawings 44 to 54, showing the tunnel routing and all associated areas of surface activity. A detailed project schedule, showing periods of tunneling and associated activities, is given in Appendix 3.D *Construction Schedule for the Proposed Action*. Each TBM launch or retrieval shaft will require barge access for equipment and materials; see Section 3.2.10.9 *Barge Landing Construction and Operations*, for further information. Avoidance and minimization measures (AMMs) to be implemented during construction work at all surface facilities supporting the tunneling work appear in Appendix 3.F *General Avoidance and Minimization Measures*, and are referenced below as appropriate.

Table 3.2-8. Tunnel Drive Summary

<table>
<thead>
<tr>
<th>Reach</th>
<th>Launch Shaft</th>
<th>Reception Shaft</th>
<th>Inside Diameter (ft)</th>
<th>Length (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intake 2</td>
<td>Intake 3 junction structure</td>
<td>28</td>
<td>1.99</td>
</tr>
<tr>
<td>2</td>
<td>IF inlet</td>
<td>Intake 3 junction structure</td>
<td>40</td>
<td>6.74</td>
</tr>
<tr>
<td>3</td>
<td>IF inlet</td>
<td>Intake 5</td>
<td>28</td>
<td>4.77</td>
</tr>
<tr>
<td>4</td>
<td>IF</td>
<td>Staten Island</td>
<td>40</td>
<td>9.17</td>
</tr>
<tr>
<td>5</td>
<td>IF</td>
<td>Staten Island</td>
<td>40</td>
<td>9.17</td>
</tr>
<tr>
<td>6</td>
<td>Bouldin Island</td>
<td>Staten Island</td>
<td>40</td>
<td>3.83</td>
</tr>
<tr>
<td>7</td>
<td>NCCF</td>
<td>Bacon Island</td>
<td>40</td>
<td>8.29</td>
</tr>
</tbody>
</table>

3.2.3.2 Schedule

Appendix 3.D *Construction Schedule for the Proposed Action*, provides scheduling information for tunneling activities. The TBM launch shafts will be most active, producing RTM on a nearly continuous basis, for the following time periods:

- **CCF**: May 2020 to February 2025
- **Bouldin Island**: October 2020 to May 2025
- **IF**: May 2021 to October 2026
- **Intake 2**: October 2021 to July 2025

Overall, the peak period of activity will be from October 2020 to April 2025. Considering time required to prepare each site, as well as time required to stabilize and restore RTM storage areas, each site will remain active throughout essentially the whole period of construction (2018 to 2030). Since the CCF, IF, and Intake 2 are essential components of the conveyance system, these sites will remain permanently active. The Bouldin Island site, however, will close following
attainment of revegetation and restoration objectives for the associated RTM storage areas, although a small permanent tunnel access shaft will remain.

3.2.3.3 Construction

Launch shaft sites (IF, Bouldin, NCCF, and Intake 2) are shown in Appendix 3.C Conceptual Engineering Report, Volume 2, Drawings 56, 50, 76, and 11, respectively. Reception shaft sites (Intake 3, Intake 5, Staten Island, and Bacon Island) are similar in design. Appendix 3.C, Drawings 69 to 73 show typical work area and finished construction plans for paired tunnel shafts.

3.2.3.3.1 Shaft Site Facilities
Facilities at launch shaft sites will include a concrete batch plant and construction work areas including offices, parking, shop, short-term segment storage, fan line storage, crane, dry houses, settling ponds, daily spoils piles, temporary RTM storage, electrical power supplies, air, water treatment, and other requirements. There will also be space for slurry ponds at sites where slurry wall construction is required. Work areas for RTM handling and permanent spoils disposal will also be necessary, as discussed in Section 3.2.10.6 Dispose Spoils. Facilities at reception shafts will be similar but more limited, as there will be no need for a concrete batch plant or for RTM storage.

3.2.3.3.2 Shaft Site Preparation
Shaft site preparation is detailed in Appendix 3.B Conceptual Engineering Report, Volume 1, Section 11.2.1 Advance Works Contracts. During shaft site preparation, vehicular access will be established and electrical service will be provided via temporary transmission line (see Section 3.2.7 Power Supply and Grid Connections). The shafts will be located on pads elevated to above the 200-year flood elevation; fill will be placed to construct these pads and to preload the ground to facilitate settling. The site will be fenced for security and made ready for full construction mobilization. Due to the pervasive nature of these activities, all surface disturbance associated with construction at each shaft site will occur very early during the period of activity at each site; the entire site footprint will be disturbed and will remain so for the duration of construction activity.

3.2.3.3.2.1 Access Routes
Access routes for each shaft site are shown in Appendix 3.A Map Book for the Proposed Action, and in Appendix 3.C Conceptual Engineering Report, Volume 2, Drawings 44 to 54. These sources also depict the footprint for new permanent access roads, which will be a feature of every shaft site. SR 160 provides access to the intakes and their associated shafts, but for all other shafts (including atmospheric safe haven access shafts, discussed in Section 3.2.3.3.5 Intermediate Tunnel Access), access roads will be constructed. Those roads will be permanent features except at atmospheric safe haven access shafts, where they will be temporary.

3.2.3.3.2.2 Fill Pads
Permanent conveyance facilities (intakes, permanent shaft sites, IF, and CCF facilities) must be sited at elevations that are at minimal risk of flooding; see Appendix 3.B Conceptual Engineering Report, Volume 1, Section 3.5 Flood Protection Considerations for a detailed discussion of this issue. This means that the facilities will require fill pads with a top surface
elevation of approximately 25 feet to 35 feet, depending upon location (Appendix 3.B, Table 3-4). These sites are currently near or below sea level, so substantial fill volumes will be needed, the placement of which will cause consolidation settlement of underlying delta soils at the construction sites. The shafts at the IF are an exception; these will initially be constructed at near existing site grades, and final site grades will be established in conjunction with final IF inlet and outlet facilities. The permanent elevated pad perimeters are assumed to extend to 75 feet from the outside of the shafts to facilitate heavy equipment access for maintenance and inspection. As the existing ground elevations are significantly lower than the final planned elevations, the pad fills will slope down to the adjacent existing site grades at an inclination of between 3 horizontal to 1 vertical (3H to 1V) to 5H to 1V.

Due to the soft ground conditions expected at the construction sites, it will also be necessary to improve existing sites to support heavy construction equipment, switchyards, transformers, concrete and grout plants, cranes and hoists, TBMs, and water treatment plants. See Section 3.2.10.3 Ground Improvement, for discussion of how this will be achieved.

Preliminary estimates suggest 8 to 10 feet of consolidation settlement can be expected from the placement of shaft pad area fills. Pre-loading of the existing pad and placement of vertical wick drains, spaced at 5 feet on center to a depth of 60 feet, will be used to achieve soil consolidation through vertical relief of excess pore water pressure in the compressible soils. It is expected that all but approximately 12 inches of the total settlement will occur within 1 year following pad placement. Thus pad construction will significantly precede other work at the shaft site; at the IF, for instance, earthwork will begin 2.5 years prior to ground improvement, and will then be followed by a 9-month period of ground improvement, before the site will be ready for mobilization.

Construction of the pad fills will require substantial amounts of material, which will be sourced from borrow sites; see Section 3.2.10.4 Borrow Fill, for further discussion.

3.2.3.3 Shaft Construction

During mobilization, construction manpower, stockpiles of materials, and needed equipment will be stationed at the construction site.

Shaft construction procedures are described in Appendix B Conceptual Engineering Report, Volume 1, Section 11.2.3 Shaft Construction, and here summarized. Shafts are circular in plan with a 100-foot diameter for 28 foot tunnels and a 113-foot diameter for 40-foot tunnels. These minimum sizes are constrained by the equipment needs to launch and retrieve the TBM from the bottom of the shaft.

Final design of shafts is not complete, but the basic objective is to use concrete construction methods to create a watertight shaft sufficiently strong to resist hydrostatic pressure within the delta sediments. This will be done by constructing a concrete cylinder prior to removing the sediment from the structure. Potential construction methods include overlapping concrete caisson walls, panel walls, jet-grout column walls, secant piles walls, slurry walls, precast sunken caissons, and potentially other technologies. In the areas where TBMs enter and exit, a special break-in/break-out section will be constructed as an integral part of the shaft.
Shaft bottoms will be stabilized to resist uplift associated with external hydrostatic pressures, during both excavation and operation. It may be necessary to pretreat ground at the shaft area from the surface to the bottom of the shaft to control blowouts during excavation of the shaft. Concrete working slabs capable of withstanding uplift will be required at all shaft locations to provide a stable bottom and a suitable working environment. To place the bottom slab, the shaft will be excavated to approximately 30 to 50 feet below the invert level of the tunnel, and a concrete base will be placed underwater using tremie techniques. It is expected that this will be an unreinforced mass concrete plug to withstand ground water pressure, with optional relief wells to relieve uplift pressure during tunnel construction. The launch and reception of the TBMs will require that large openings be created in the shaft walls. To maintain structural stability, it will be necessary to provide additional structural support. This will be provided by a reinforced concrete buttress or frame structure within the shaft.

Dewatering will be required during shaft construction and operation, and will be performed as described in Section 3.2.10.7 Dewatering. Dewatering of sediments surrounding the shaft may be needed during construction, depending upon the construction method selected. Dewatering will also be needed during excavation within the shaft, following placement of the tremie seal, and continuously thereafter until completion of construction work within the shaft.

3.2.3.3.4 Tunnel Excavation
The tunnel excavation procedure is described in Appendix 3.B Conceptual Engineering Report, Volume 1, Sections 11.2.5 Tunnel Excavation Methods, to 11.2.8 Logistics. Tunnel excavation will occur entirely underground and thus will entail no surface impacts, apart from those associated with the TBM launch and reception shafts (discussed above) and the construction access shafts (discussed below). Tunnel dewatering needs will be minor, compared to those associated with shaft construction, and are discussed above. Disposition of material excavated during tunnel construction is addressed in Section 3.2.10.6 Dispose Spoils.

3.2.3.3.5 Intermediate Tunnel Access
In the event that maintenance, inspection, or repair of the TBM cutterhead will be needed, contractors will be able to access their equipment either from inside the TBM or from the surface using construction access shafts. Such access points are termed “safe havens” because they constitute points where humans can work on the outside of the TBM in conditions of comparative safety.

Access to the cutterhead from inside the TBM will occur at a “pressurized safe haven intervention.” It will be a “pressurized” safe haven because compressed air will be used to create a safe work area; the air pressure will exclude sediment and water from the excavation. Consequently humans in the work area will be subject to risks similar to those experienced by SCUBA divers: they will have a limited time during which they can safely work in the excavation, and must undergo a long and potentially dangerous decompression process when they leave the work area. In order to minimize that risk, surface-based equipment is commonly used to inject grout into the sediments surrounding the work area, minimizing the risk that the excavation will collapse and allowing workers to work in a less highly pressurized environment. Pressurized safe haven interventions will be constructed by injecting grout from the surface to a point in front of the TBM, or by using other ground improvement techniques such as ground freezing. Once the ground has been stabilized by one of these techniques, the TBM will then
bore into the treated area. Surface equipment required to construct the safe haven intervention site will include a small drill rig and grout mixing and injection equipment, and facilities to control runoff from dewatering (dewatering, if required, will be performed as described in Section 3.2.10.7 Dewatering). Disturbance at the site is expected to be limited to an area of approximately 100 feet by 100 feet. The surface drilling and treatment operation will typically take about 8 weeks to complete. Once complete, all equipment will be removed and the surface features reestablished. To the greatest extent possible, established roadways will be used to access the intervention sites. If access is not readily available, temporary access roads will be established.

Access to the cutterhead from the surface, referred to as an “atmospheric safe haven interventions,” will require construction of a shaft. These construction access shafts will not require pad construction to elevate the top of the shaft to above the 200-year flood level. At these sites, a shaft roughly equal to the diameter of the TBM cutterhead will be excavated to tunnel depth. Approximately 3 acres will be required at each of these locations to set up equipment, construct flood protection facilities, excavate/construct the shaft, and set up and maintain the equipment necessary for the TBM maintenance work. It is anticipated that all work associated with developing and maintaining these shafts will occur over approximately 9 to 12 months. At the completion of the TBM maintenance at these sites, the TBM will mine forward, and the shaft location will be backfilled. Dewatering at construction access shafts, if required, will be performed as described in Section 3.2.10.7 Dewatering. Drilling muds or other materials required for drilling and grouting will be confined on the work site and such materials will be disposed of offsite at a permitted facility. Disturbed areas will be returned to preconstruction conditions by grading and appropriate revegetation (in most cases, returning the site to use as cropland).

Final determination of the number and siting of shaft locations will depend upon determinations by the tunnel construction contractor(s). Moreover, it is likely that final siting of both pressurized and atmospheric safe haven intervention sites will not occur until after geotechnical explorations are completed, as information from those explorations is needed to determine the appropriate spacing for safe haven intervention sites (TBM cutterhead wear rates depend partly upon the types of material being tunneled). Table 3.2-9 shows the number of safe haven interventions expected to be associated with each tunnel, based upon current understanding of site conditions.

<table>
<thead>
<tr>
<th>Reach</th>
<th>Length (miles)</th>
<th>Pressurized</th>
<th>Atmospheric</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6.74</td>
<td>5</td>
<td>1 to 3</td>
</tr>
<tr>
<td>3</td>
<td>4.77</td>
<td>3</td>
<td>1 to 2</td>
</tr>
<tr>
<td>4 (twin tunnel)</td>
<td>9.17</td>
<td>7</td>
<td>1 to 4</td>
</tr>
<tr>
<td>5 (twin tunnel)</td>
<td>3.83</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6 (twin tunnel)</td>
<td>8.86</td>
<td>7</td>
<td>1 to 4</td>
</tr>
<tr>
<td>7 (twin tunnel)</td>
<td>8.29</td>
<td>6</td>
<td>1 to 3</td>
</tr>
</tbody>
</table>
Both pressurized and atmospheric safe haven intervention sites will be located to minimize impacts on sensitive terrestrial and aquatic habitats. Because intervention sites are not determinable at this time, potential effects on species are estimated using a conservative analysis, as detailed in in Appendix 6.B Terrestrial Effects Analysis Methods.

3.2.3.4 Landscaping

As at the Delta intakes, the construction phase at both permanent and temporary shaft sites will conclude with landscaping and the installation of safety lighting and security fencing, which will be performed as described in Section 3.2.10.10 Landscaping and Associated Activities.

3.2.4 Intermediate Forebay

The IF will receive water from the three North Delta Diversions and discharge it to the twin tunnelled conveyance to CCF. When first proposed, the IF was a much larger facility (750 acres) and was located in an environmentally sensitive location, on private land adjacent to the Stone Lakes National Wildlife Refuge. Subsequent hydraulic design of the conveyance system that locates the pumping plants at CCF allows the IF to be located on a DWR-owned parcel of land. The IF footprint is a water surface area of 54 acres at maximum water elevation.

3.2.4.1 Design

Appendix 3.A Map Book for the Proposed Action, Sheet 5, shows the IF, access routes, and related facilities in the area. Appendix 3.C Conceptual Engineering Report, Volume 2, Drawings 55 to 68, show an artist’s concept of the completed forebay, as well as drawings showing the complete forebay and various design details. Appendix 3.B Conceptual Engineering Report, Volume 1, Section 14 Forebays, provides detail on the design, construction and operations of the IF; see particularly Sections 14.1 (description and site plan), 14.2. (construction methodology), 14.2.4 (embankment completion), 14.2.6 (spillway), and 14.2.8 (inlet and outlet structures). Section 5.3.1 Intermediate Forebay Size Evaluation, describes the basis for design sizing of the IF. Proposed construction will comply with avoidance and minimization measures identified in Appendix 3.F General Avoidance and Minimization Measures.

The IF, located on Glannvale Tract, will store water between the proposed intake and conveyance facilities and the main tunnel conveyance segment. The IF provides an atmospheric break in the deep tunnel system and buffer volume for the upstream intake sites and the downstream CCFPP. This buffer provides make-up water and storage volume to mitigate transients generated as a result of planned or unplanned adjustments of system pumping rates. The IF also facilitates isolating segments of the tunnel system, while maintaining operational flexibility. Thus each tunnel, into and out of IF, can be hydraulically isolated for maintenance, while maintaining partial system capacity.

The IF will have a capacity of 750 acre feet (af) and an embankment crest elevation of +32.2 feet, which meets Delta Habitat Conservation and Conveyance Program (DHCCP) flood protection standards (i.e., a 200-year flood with provision for sea level rise). Current ground surface elevation at the site averages +0 feet. The WSE varies between a maximum elevation of +25 feet and a minimum elevation of -20 feet. The IF will include an emergency spillway and emergency inundation area to prevent the forebay from overtopping. This spillway will divert
water during high flow periods to an approximately 131-acre emergency inundation area adjacent to and surrounding the IF. From the IF, water will be conveyed by a gravity bypass system through an outlet control structure into a dual-bore 40-foot-diameter tunnel that runs south to the CCF. The IF will serve to enhance water supply operational flexibility by using forebay storage capacity to regulate flows from the intakes to the CCF.

3.2.4.2 Schedule

The principal dates for construction of the IF are shown in Table 3.2-10.

<table>
<thead>
<tr>
<th>Description</th>
<th>Start</th>
<th>End</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract management, supervision, administration, temporary facility operations, and delivery of construction supplies</td>
<td>7/1/2026</td>
<td>7/11/2031</td>
<td>61 months</td>
</tr>
<tr>
<td>Earthworks</td>
<td>7/1/2026</td>
<td>12/25/2029</td>
<td>42 months</td>
</tr>
<tr>
<td>Inlet & outlet ground improvements</td>
<td>12/28/2028</td>
<td>10/12/2030</td>
<td>23 months</td>
</tr>
<tr>
<td>Inlet & outlet site work</td>
<td>9/27/2029</td>
<td>4/12/2030</td>
<td>8 months</td>
</tr>
<tr>
<td>Operate concrete batch plant; inlet & outlet concrete work</td>
<td>3/27/2030</td>
<td>4/11/2031</td>
<td>13 months</td>
</tr>
<tr>
<td>Inlet & outlet gates, mechanical & electrical work</td>
<td>12/25/2030</td>
<td>7/11/2031</td>
<td>7 months</td>
</tr>
</tbody>
</table>

* Dates given in this table assume a Record of Decision date of 1/1/2018 and a construction end date of 7/11/2031.

3.2.4.3 Construction

Construction of the IF entails first excavating the embankment areas down to suitable material. A slurry cutoff wall is then emplaced to a depth of -50 feet to eliminate the potential for piping or seepage beneath the embankment. The embankment is then constructed of compacted fill material. Inlet and outlet shafts (which also serve as TBM launch shafts as described in Section 3.2.3 Tunneled Conveyance) are then constructed. Then the interior basin is excavated to design depth (-20 feet), and the spillway is constructed. All excavations are expected to require dewatering, and dewatering is expected to be continuous throughout construction of the IF; see Section 3.2.10.7 Dewatering, for further discussion of how this will be achieved. Ground improvement (described in Section 3.2.10.3 Ground Improvement) may be needed beneath structures, depending upon the outcomes of the geotechnical explorations described in Section 3.2.1 Geotechnical Exploration.

The IF will have a surface footprint of 243 acres, all of which is permanent impact (under current conditions, the area is a vineyard). Approximately 1 million cubic yards (cy) of excavation and 2.3 million cy of fill material are required for completing the IF embankments. Much of the excavated material is expected to be high in organics and unsuitable for use in embankment construction and requires disposal (see Section 3.2.10.6 Dispose Spoils).

Construction of the IF embankments and tunnel shaft pans will require substantial volumes of engineered fill. The required fill material will preferably be sourced onsite from locations within the permanent impact footprint. Material sourced from offsite will be obtained as described in Section 3.2.10.4, Borrow Fill.
As at the Delta intakes, the construction phase at the IF will conclude with landscaping and the installation of safety lighting and security fencing, which will be performed as described in Section 3.2.10.10 Landscaping and Associated Activities.

3.2.5 Clifton Court Forebay

3.2.5.1 Design

Functionally, the facilities at CCF are proposed to receive water from north Delta and south Delta sources, and to deliver that water into the CVP/SWP. In order to accomplish this dual function, the existing forebay will be divided into two halves, North CCF (NCCF) and South CCF (SCCF). The NCCF will receive screened water from the new river intakes, while the SCCF will continue to receive flows from the existing Old River intake gate on CCF. The NCCF will also be the site for a pump station, the operations of which form the primary control and constraints on the rate of water diversion through the river intakes (although that rate is also subject to control at the river intakes). Collective operations of these facilities will be coordinated through an operations center sited at the NCCF pump station. The SCCF will continue to operate as under current conditions. To minimize environmental impacts, the proposed size of the CCF and its appurtenant facilities have been optimized consistent with the overall design goal of the PA to achieve diversion rates at the North Delta Diversions not exceeding 9,000 cfs, and to achieve overall CVP/SWP water export rates consistent with existing authorizations for those facilities, subject to operational and regulatory constraints detailed in Section 3.3 Operations and Maintenance of the New and Existing Facilities.

Maps and drawings depicting the CCF and its spatial relationship to other elements of the PA are shown in the Appendices. Appendix 3.A Map Book for the Proposed Action, Sheet 13, shows the CCF, access routes, and related facilities in the area. Appendix 3.C Conceptual Engineering Report, Volume 2, Drawing 2, provides an overview of the CCF facilities in relation to the rest of the conveyance facilities, and Drawing 54 provides a site-scale view of the proposed facilities at CCF. Drawing 74 shows an artist’s concept of the completed CCF pumping plant, and Drawings 75 to 78 show details of the proposed pumping plant. Drawing 82 is a detailed overall CCF site plan, and Drawings 85 to 87 provide sectional views of the proposed embankments that contain the CCF. Drawings 90 and 91 provide plan and section views of the proposed spillway from the NCCF into Old River.

Detailed information on design of the proposed facilities at CCF is given in Appendix 3.B Conceptual Engineering Report, Volume 1. Sections 4.4.6 Clifton Court Forebay Pump Plant (CCFPP) Operations; 4.4.7 North Clifton Court Forebay Operations; and 4.6 Implications of Modified Pipeline/Tunnel Clifton Court Option on Current SWP and CVP Operations, describe how the CCF pump plant and the NCCF will be operated to support overall conveyance system functions. Section 7, CCF Pumping Plant, describes the design and construction of the CCF pumping plant, while the north and south CCF and their construction methodology are described in Sections 14.1.2 North Clifton Court Forebay; 14.1.3 South Clifton Court Forebay; 14.2.2 General Excavation for the NCCF and SCCF; 14.2.3 General Excavation for the Existing South
Chapter 3. Description of the Proposed Action
Operations and Maintenance of New and Existing Facilities

Embankment of Clifton Court Forebay; 14.2.5 New Clifton Court Forebay Embankment; 14.2.6 New Spillway and Stilling Basin; and 14.2.8 New Forebay Structures. Construction will comply with avoidance and minimization measures identified in Appendix 3.F General Avoidance and Minimization Measures.

Construction at CCF will also include connections to the existing Banks and Jones pumping plants. Design and construction of those connections are described in Section 3.2.6 Connections to Banks and Jones Pumping Plants.

The overall schedule for activities at CCF is shown in Appendix 3.D Construction Schedule for the Proposed Action; see drawings in Appendix 3.C, Conceptual Engineering Report, Volume 2, for locations of the referenced structures. Four major elements of the proposed construction will occur in the CCF area: tunneling, the CCPP, the modifications to the current CCF to create a North and South CCF, and connections to the Banks and Jones pumping plants.

- **Tunneling (Reach 7)** will start from the CCPP construction site and will excavate north to Bacon Island, as described in Section 3.2.3 Tunnled Conveyance; RTM from the tunnels will be disposed near CCF as described in Section 3.2.10.6 Dispose Spoils. Tunneling activity will begin 47 months after project start (scheduled to occur in January; the start year depends upon the date of project authorization and the time needed to prepare contract specifications and issue contracts) and will proceed continuously for 61 months.

- **The CCPP will be constructed at the northeast corner of the CCF complex and includes the shafts used to launch the TBMs. Construction will start at the CCPP will begin 36 months after project start and will proceed continuously for 100 months.**

- **CCF work will occur throughout the site, and will be continuously active from 84 months after project start until 147 months after project start. Apart from startup activities (access improvement, mobilization, etc.), embankment and canal work will continue from 90 months to 130 months after project start. Work on control structures and spillways will occur from 108 months to 144 months after project start.**

3.2.5.1.1 Clifton Court Pumping Plant

Each of the two units at CCPP will have a design pumping capacity of 4,500 cfs and will include 4 large pumps (1,125 cfs capacity) and 2 smaller pumps (563 cfs capacity). One large pump at each plant will be a spare. Each pumping plant will be housed within a building and will have an associated electrical building. The pumping plant buildings will be circular structures with a diameter of 182 feet and each will be equipped with a bridge crane that will rotate around the building and allow for access to the main floor for pump removal and installation. The total site for the pumping plants, electrical buildings, substation, spillway, access roads, and construction staging areas is approximately 95 acres. The main floor of the pumping plants and appurtenant permanent facilities will be constructed at a minimum elevation of 25 feet to provide flood protection. The bottom of the pump shafts will be at an elevation of approximately -163 feet, though a concrete base slab, shaft lining, and diaphragm wall will be constructed to deeper levels (to an elevation of -275 feet). A control room within an electrical building at the pumping facility site will be responsible for controlling and monitoring the communication between the intakes,
pumping plants, and the Delta Field Division Operations and Maintenance Center, DWR Headquarters, and the Joint Operations Center.

A 230 kV transmission line and associated 230Kv–115kV substation used during construction will be repurposed and used to power the pumping plants at the CCF location during operations. The repurposed substation will provide power to a new substation that will convert power from 115kV to 13.8kV. This substation will then include 13.8 kV feeder lines to a proposed electrical building to distribute the power to the major loads including the main pumps, dewatering pumps, and 13.8kV to 480V transformers.

3.2.5.1.2 Clifton Court Forebay
SWP pumps operate primarily during off-peak electrical usage hours, which minimizes electricity costs and makes optimal use of available generating capacity. Thus the current CCF is sized to accommodate the hydraulic differential generated by the difference between a fairly constant rate of flow into the Forebay, but a highly variable rate of discharge into the export canal. Under the PA, the CCF will be divided into two separate but contiguous forebays: North Clifton Court Forebay (NCCF) and South Clifton Court Forebay (SCCF). The NCCF will be sized to meet the hydraulic needs of balancing water entry from the North Delta Diversions with discharge via the CVP/SWP export pumps. Since NCCF will receive the flow from the Delta Intakes, this will be water that has passed through the Delta Intake fish screens and is therefore expected to contain no fish. The SCCF will continue to meet the needs of SWP export pumps taking in south Delta water; as such it will function as a replacement for the current CCF, and thus must be enlarged south in order to maintain its current size while still accommodating the creation of the NCCF. SCCF will consist of the southern portion of the existing CCF, with expansion to the south into Byron Tract 2.

The CCF will be expanded by approximately 590 acres to the southeast of the existing forebay. The existing CCF will be dredged, and the expansion area excavated, to design depths of -8 feet for the north cell (the NCCF) and -10 feet for the south cell (the SCCF). A new embankment will be constructed around the perimeter of the forebay, as well as an embankment dividing the forebay into the NCCF and the SCCF. The tunnels from the Sacramento River intakes will enter the CCPP at the northeastern end of the NCCF, immediately south of Victoria Island, and flows will typically enter the NCCF via pumping (unpumped gravity flow will be feasible when the Sacramento River is at exceptionally high stages; see Appendix 3.B, Conceptual Engineering Report, Volume 1, Section 7.1.3.2, Pumping Hydraulics, for detailed discussion of hydraulic constraints on gravity-driven vs. pumped operations).

3.2.5.1.3 Clifton Court Forebay Technical Team
Modifications to CCF constitute one of the most complex aspects of the PA. Recognizing that design of these modifications is still in an early stage, DWR, Reclamation, NMFS, CDFW, and USFWS have determined that ongoing collaborative efforts will be needed to ensure that the final design and construction procedures for CCF minimize effects on listed species. Accordingly, representatives from each of these agencies will participate in a Clifton Court Forebay Technical Team (CCFTT). The CCFTT will convene upon initiation of formal consultation for the PA and will meet periodically until DWR completes final design for the proposed CCF modifications (a time period expected to be at least two years). The CCFTT will be charged with the following duties:
• Based on construction information presented by DWR, review and make recommendations regarding phasing of CCF construction for the benefit of listed and unlisted fish or for water quality. In considering any options for phasing, the CCFTT will consider preliminary costs and constructability.

• Based on construction information presented by DWR, review and make recommendations regarding appropriate techniques for dewatering, fish rescue, and fish exclusion during in-water work. Dewatering and fish rescue will be needed for all cofferdam work at CCF, and fish exclusion will be needed for dredging. In considering these techniques, the CCFTT will consider preliminary costs and constructability.

• Develop performance criteria and study programs to evaluate critical issues in CCF operations. One such issue is changes to predation patterns in the SCCF, which may have significantly deeper water depths, different residence times, and more exposure of mineral substrates, compared to the current CCF. Other operational issues may also be identified by the CCFTT.

• Identify and describe near-term research/monitoring needs, if any, to reduce key uncertainties prior to construction.

• Prepare draft and final reports summarizing CCFTT recommendations. The final report must be provided no less than 8 months prior to DWR’s completion of final design, so that recommendations can be incorporated into those construction contract documents.

CCFTT recommendations will be reviewed by the five agencies for consideration. Adopted recommendations will be incorporated to CCF final design. DWR will abide by monitoring provisions and other measures sufficient to demonstrate implementation of these recommendations.

3.2.5.2 Construction

3.2.5.2.1 Clifton Court Pumping Plant

3.2.5.2.1.1 Overview

A detailed account of CCPP construction appears in Appendix 3.B Conceptual Engineering Report, Volume 1, Section 7.2 Construction Methodology. In general, construction of the CCPP will follow the procedures described for tunnel shaft construction in Sections 3.2.3.3.1 Shaft Site Facilities; 3.2.3.3.2 Shaft Site Preparation; and 3.2.3.3.3 Shaft Construction. The CCPP shafts will be larger in inside diameter (150 feet instead of 113 feet) than most shafts serving 40-foot tunnel bores due to the design needs of the pumping plant. As shown in Appendix 3.C Conceptual Engineering Report, Volume 2, Drawings 75 and 76, the appurtenant facilities will be more extensive than at most tunnel shaft sites, including a permanent electrical substation, two electrical buildings, and an office/storage building, as well as temporary facilities for storage, staging, construction electrical, and water treatment (for stormwater). All of these facilities will be sited on the CCF embankment, at the design flood elevation (i.e., a 200-year flood with provision for sea level rise) of 25 feet.
3.2.5.2.1.2 Site Access
Vehicular site access during construction will use existing roads: from the east, from Byron Highway via Clifton Court Road and the Italian Slough levee crest road or the NCCF embankment crest road. Access from the south will be from the Byron Highway via NCCF embankment crest road and West Canal levee crest road. Barge access will also be needed, for transport of heavy TBM sections and other very large equipment and materials, and possibly for transport of bulk materials (fill material or excavated material). Barge access will be from the West Canal using a proposed barge unloading facility. See Section 3.2.10.9 Barge Landing Construction and Operations, for further discussion of the use, design, and construction of barge landings. Proposed barge traffic and landing facilities are also generally described in Appendix 3.B3 Conceptual Engineering Report, Volume 1, Section 23.3.

3.2.5.2.1.3 Cofferdam and Fill Work
A sheet pile cofferdam will be placed to enclose the portion of the CCPP fill pad adjoined by water (Appendix 3.C3 Conceptual Engineering Report, Volume 2, Drawings 75 and 83; however note that, as detailed below, the design has been modified to dewater NCCF prior to CCPP construction; thus no sheet pile cofferdam will be placed in the portions of the CCPP fill pad adjoining the NCCF). Sheet pile placement for cofferdam installation will be performed by a barge-mounted crane and/or a crane mounted on the existing levee, equipped with vibratory and impact pile-driving rigs.

The general approach to pile driving, including minimization measures to be used, is described in Section 3.2.10.11, Pile Driving. Assumptions for pile driving are given in Appendix 3.E, Pile Driving Assumptions for the Proposed Action, which addresses the number, type and size of piles required, as well as the number of piles driven per day, the number of impact strikes per pile, and whether piles will be driven in-water or on land (piles driven to construct the cofferdam will all be “in-water”). Sheet piles will be driven starting with a vibratory hammer, then switching to an impact hammer if refusal is encountered before target depths. In-water pile driving will be subject to abatement, hydroacoustic monitoring, and compliance with timing limitations as described in Appendix 3.F, General Avoidance and Minimization Measures, AMM9 Underwater Sound Control and Abatement Plan.

Fill pad construction will then proceed within the dewatered area, as described in Section 3.2.3.3.2.2, Fill Pads, including fill placement, compaction, and ground improvement.

3.2.5.2.1.4 Dewatering
Dewatering and water treatment associated with cofferdam installation will be as described in Section 3.2.10.7, Dewatering. This procedure includes fish removal as prescribed in Appendix 3.F, General Avoidance and Minimization Measures, AMM8 Fish Rescue and Salvage Plan.

Extensive dewatering will be required during construction of the CCPP shafts. Dewatering will be performed as described in Section 3.2.3.3.3, Shaft Construction. Other construction activities with the potential to affect listed species are described below, in the discussion of how CCF embankments and related facilities will be constructed.
3.2.5.2.2 **Clifton Court Forebay**
Due to the duration and complexity of the proposed work at CCF, a phased work schedule is planned. The phases include the following:

- Phase 1 – SCCF expansion (eastern and western parts of expansion area shown in Appendix 3.C, *Conceptual Engineering Report, Volume 2, Drawings 54 and 82*)
- Phase 2 – Dredge to design depth within the portion of CCF located south of the proposed embankment separating NCCF and SCCF
- Phase 3 – Remove embankment separating the existing CCF from the expansion area
- Phase 4 – Construct embankment separating NCCF and SCCF, with subsequent dewatering, fish rescue, and excavation to design depth within NCCF
- Phase 5 – Construct West and East Side Embankments located south of the proposed embankment separating the NCCF and SCCF
- Phase 6 – Construct NCCF East Side Embankment
- Phase 7 – Construct NCCF West Side Embankment
- Phase 8 – Construct NCCF North Side Embankment

3.2.5.2.2.1 Embankments
All construction except Phases 2 and 3 (dredging and embankment removal; discussed in the following section) will consist of embankment construction. In all phases, this will follow the same general approach:

- All Phases: Clear and grub existing vegetation where necessary for construction work to proceed. See Section 3.2.10.1, *Clearing*, for further discussion of how clearing will be performed.
- All Phases: Temporary or permanent relocation or installation of electrical transmission lines as needed.
- Phases 1, 4 and 5: Drive sheet piles to enclose the construction area with a cofferdam. Piles will be driven from a barge, or from land where possible. Sheet pile driving within the existing CCF or adjacent to the existing waterways, Old River and Italian Slough, will occur within fish-bearing waters. In these areas, implement fish rescue and salvage plans as required per Appendix 3.F, *General Avoidance and Minimization Measures, AMM8 Fish Rescue and Salvage Plan*. In Phase 1, where a portion of the new SCCF embankment adjoins the existing Jones PP approach canal, pile driving will occur in non-fish-bearing waters. See Section 3.2.10.11, *Pile Driving*, for further discussion of how pile driving will be performed. Then, dewater area enclosed by cofferdam. See Section 3.2.10.7, *Dewatering*, for further discussion of how dewatering will be performed.
• Phases 6, 7 and 8: Because the NCCF will be dewatered prior to construction of these embankments, no pile driving or cofferdam construction will be necessary.

• Phases 1 and 4 to 8: Dewater and excavate to foundation depth. Excavation equipment will include scrapers, excavators, bulldozers, off-road and on-road trucks as deemed appropriate. Material suitable for use in constructing the new embankments will be stockpiled within the construction area limits and reused. Unsuitable material will be disposed as described in Section 3.2.10.6, Dispose Spoils.

• Phases 1 and 4 to 8: Possibly, install a slurry cutoff wall. The need for such walls will be determined following detailed geotechnical investigations.

• Phases 1 and 4 to 8: Construct new embankment using similar equipment as excavation operations, but also including compaction equipment, rollers, motor graders, and water trucks or water pulls to place material in lifts until finish heights are reached. The required embankment material will be borrowed from within the limits of the forebays to the extent feasible, or from borrow sites, as described in Section 3.2.10.4, Borrow Fill. A total of 9.3 million cy of fill will be used in the new and modified CCF embankments.

• Phases 1, 2 and 5 to 8: Trimming or removal of sheet piles if needed (Phases 6 to 8 will not have sheet piles) and placing riprap or other appropriate slope protection materials on water-side of slopes using excavators, loaders and trucks as required.

3.2.5.2.2 Phased Construction at Clifton Court Forebay

The phases of work in embankment construction will include the following:

• Phase 1 – Drive sheet piles on southwest side of CCF by outflow channel and southeast side of forebay by inflow gates to facilitate new channel and new embankment work. Clear, grub, and perform exploration of SCCF expansion property to find suitable soils for embankment fills and potential spoil areas. Construct embankment fills as described above. Modify existing SCCF intake concurrently with embankment construction. Relocate or raise electrical transmission towers within the construction area concurrently with embankment construction.

• Phase 2 – Dredge the portion of CCF located south of the proposed embankment dividing NCCF from SCCF. The area will be dredged to an elevation of approximately -10.0 ft, which will be the bottom elevation of SCCF. Dredging will be performed with a cutter head dredge, a dragline type dredge, or other suitable dredging technique. Silt curtains will be used as required by applicable permits, and other measures to minimize potential effects will be implemented as described in Section 3.2.10.8, Dredging and Riprap Placement, and in Appendix 3.F, General Avoidance and Minimization Measures, AMM6 Disposal and Reuse of Spoils, Reusable Tunnel Material, and Dredged Material. Silt curtains will be placed in a west-east orientation so as to not impede water flow from inlet to outlet in the portions of the forebay not being dredged at any given time, and will enclose an area of approximately 200 acres. Portions of the forebay deeper than -10.0 feet (principally, the scour holes near the CCF inlet and outlet) will not be dredged and silt curtains will be placed so as to avoid exposing these areas to dredging-related water.
quality effects. Four or five such 200-acre cells will be dredged sequentially to complete dredging in the affected area. Dredging will be performed only during the in-water work window; three successive work windows will be needed to complete the dredging. Dredged material suitable for use in constructing the new embankments will be stockpiled within the construction area limits and reused. Unsuitable material will be disposed as described in Section 3.2.10.6, Dispose Spoils. As described there, up to 7,000,000 cubic yards of dredged material will be produced. It is assumed for the purposes of this analysis that all of that material will be classified as unsuitable and require disposal, but the material will be evaluated and re-used in embankment construction to the extent feasible.

- Phase 3 – Drive sheet piles to connect the two sets of sheet piles installed on the south side of CCF during Phase 1. Excavate existing embankment down to invert elevation. Excavated material suitable for use in constructing the new embankments will be stockpiled within the construction area limits and reused. Unsuitable material will be disposed as described in Section 3.2.10.6, Dispose Spoils. Allow water to be introduced into the new forebay section on the south of CCF until water height of the two locations is even, then remove the sheet piles placed during Phase 2.

- Phase 4 – Drive sheet piles for partitioning forebay. Dewater NCCF, which is now blocked off by partition sheet piles. In the dewatered area, excavate to a bottom elevation of -8.0 ft. Construct partition embankment fill as described above.

- Phase 5 – Construct embankment on east side of NCCF, following procedure described above. Construct spillway (described below) concurrently with embankment construction.

- Phase 6 – Construct embankment on west side of NCCF, following procedure described above.

- Phase 7 – Construct embankment on north side of NCCF, following procedure described above; note that much of the north side work will have already been completed during pad construction for the CCPP. Construct spillway (described below) concurrently with embankment construction.

3.2.5.2.2.3 CCF Spillway

An emergency spillway will be constructed in the NCCF east side embankment, south of the CCPP fill pad. The spillway will be sized to carry emergency overflow (9,000 cfs, the maximum inflow from the North Delta Diversions) to the Old River, so a containment area will not be necessary.

The shallow foundation beneath this structure must be improved to prevent strength loss and seismic settlement. The ground improvement (Section 3.2.10.3, Ground Improvement) will be to elevation -50.0 feet within the footprint of the structure and beyond the structure by a distance of approximately 25 feet. The work will be performed within the sheet pile installed for embankment filling under construction Phase 6.
3.2.6 Connections to Banks and Jones Pumping Plants

3.2.6.1 Design

Under existing conditions, the Jones PP draws water from the Old River and West Canal via an approach canal that originates at the Tracy Fish Collection Facility, near the southeast corner of the CCF. The Banks PP draws water from the CCF via an approach canal that originates at the southwest corner of the CCF, at the Skinner Delta Fish Protective Facility. The PA entails no changes to the Tracy or Skinner fish facilities.

The new system configuration allows both the Banks PP and the Jones PP to draw water from existing sources and/or from the NCCF. See Appendix 3.C Conceptual Engineering Report, Volume 2, Sheet 82, for a drawing showing the following:

- The Jones PP will continue to draw water from the Middle River via the existing canal. A new control structure will be installed downstream of the Tracy Fish Collection Facility.
- The Jones PP will also be able to draw water from the NCCF via a new canal on the south side of SCCF that connects with the existing Jones PP approach canal. A new control structure will be installed just upstream of the connection.
- The Banks PP will continue to draw water from the CCF (which will become part of the SCCF) via the Skinner Delta Fish Protective Facility, but a new control structure will be installed between the SCCF and the fish facility.
- The Banks PP will also be able to draw water from the NCCF via the same canal used by the Jones PP. That canal will fork near the southwest corner of SCCF; the east branch will go toward the Jones PP, and the south branch will enter a control structure and then connect with the existing Banks PP approach canal.

The new system configuration will require, in addition to the canals and control structures mentioned above, two new siphons, shown in Appendix 3.C Conceptual Engineering Report, Volume 2, Sheets 83 and 84. One siphon will convey NCCF water beneath the SCCF outlet canal. The second siphon will convey NCCF water to the Banks PP underneath the Byron Highway and the adjacent Southern Pacific Railroad line. Siphons are proposed because the water level in the canals is higher than the level of either the railroad or the highway. Each siphon will have a control structure fitted with radial gates at the inlet, to regulate upstream WSE and flow through the siphons. In order to isolate a siphon for repairs and inspections, stop logs will also be provided at the downstream end of the siphon barrel.

Control structures, fitted with radial gates, will also be located at the end of the new approach channels to control the amount of flow delivered to Jones PP and Banks PP.

For further detail on the design and configuration of these connections, see the material in the following appendices:

- Appendix 3.A Map Book for the Proposed Action, Sheet 13, provides a photo-aerial map view of the proposed system configuration changes.
Appendix 3.B *Conceptual Engineering Report, Volume 1*, Section 4 *Conveyance System Operations*, describes the existing and proposed facilities and the hydraulic constraints on their operations.

Appendix 3.B *Conceptual Engineering Report, Volume 1*, Sections 14.1.2 *North Clifton Court Forebay*; 14.1.3 *South Clifton Court Forebay*; 14.2.7 *New Approach Canals to Banks and Jones Pumping Plants*; and 14.2.9 *Banks and Jones Channel Control Structures* describe design and construction of various elements of the Banks and Jones connections. Further details appear in Sections 24.4.3.4 *Canals (Approach Canals to Jones and Banks Pumping Plants)* and 24.4.3.5 *Culvert Siphons*.

Appendix 3.C *Conceptual Engineering Report, Volume 2*, Sheets 82 to 84, are drawings showing the proposed canals, siphons, and control structures.

3.2.6.2 Construction

3.2.6.2.1 NCCF Canal

The new canal delivering water from the NCCF to the Banks PP and Jones PP will originate at NCCF Siphon 1, which will convey water from the NCCF under the existing CCF outlet. The canal will run due south for 2,700 feet, where it will fork; the south fork will pass through Siphon 2 and then join the existing Banks PP approach canal at a location downstream of the existing Skinner Delta Fish Protective Facility. The east fork will parallel the Byron Highway on its north side for 4,900 feet, where it will join the existing Jones PP approach canal at a location downstream of the existing Tracy Fish Collection Facility (Appendix 3.C *Conceptual Engineering Report, Volume 2*, Sheet 82).

As with SCCF, the embankment crest elevation for the NCCF canal is +24.5 feet, which includes considerations for flood levels and sea-level rise. The canal invert is -5 feet at Siphon 1, dropping gradually to meet the existing invert depths at the points where it connects to the existing Banks and Jones approach canals. The ground beneath the canal will be subject to ground improvement (Section 3.2.10.3 *Ground Improvement*) to depth -50 feet. The canal will be excavated and its embankments constructed using the same procedure described in Section 3.2.5.2.2.1 *Embankments*. That procedure will entail cofferdam installation to provide a dry work area, in places where construction will be contiguous with waters of the state. The canal adjoins fish-bearing waters, and entails pile driving in or near those waters, for approximately 800 feet along the Banks PP approach canal upstream of the Skinner Delta Fish Protective Facility. Apart from this section, construction pile driving associated with the Banks and Jones connections will not occur in or near fish-bearing waters.

3.2.6.2.2 NCCF Siphon 1 (Beneath SCCF Outlet)

NCCF Siphon 1 will convey water from the NCCF beneath the existing CCF outlet (which will become the SCCF outlet) and into the NCCF canal, leading to the Banks PP and Jones PP approach canals (Appendix 3.C *Conceptual Engineering Report, Volume 2*, Sheet 82). The siphon will be 1,500 feet long and will consist of 3 concrete box culverts, each 23 feet wide and
23 feet tall, with a total conveyance capacity of 15,000 cfs, matching the combined pumping capacity of the Banks PP plus the Jones PP and providing maximum operational flexibility for drawdown of the forebay. It will be provided with radial gates at the inlet, and it will have provision for stop logs at the outlet, enabling dewatering of each culvert if necessary for maintenance.

The siphon will be supported on a pile foundation, and will be constructed within a cofferdam erected in the CCF outlet channel. Concrete structures will be cast-in-place. The CCF outlet channel is a fish-bearing water, so cofferdam installation is subject to timing, noise abatement, and other constraints as identified in Section 3.2.10.11 Pile Driving, and in Appendix 3.F General Avoidance and Minimization Measures, AMM9 Underwater Sound Control and Abatement Plan. Foundation pile driving, if required, will occur within a dewatered cofferdam and thus will not be an in-water activity. Dewatering of the cofferdam will occur as described in Section 3.2.10.7, Dewatering, and will require compliance with Appendix 3.F, AMM8 Fish Rescue and Salvage Plan.

The siphon will be constructed in two phases, each phase lasting approximately one year. In the first phase, a temporary cofferdam will be constructed approximately halfway along the length of the siphon and then the area will be dewatered and excavated to the desired lines and grade. Half of the total length of the culvert siphon will be constructed inside the cofferdam, temporarily plugged, and backfilled to the desired waterway bottom configuration. During the second phase, the cofferdam will be re-installed across the other half of the siphon, the area will be dewatered, and the remainder of the siphon will be constructed and backfilled.

The siphon structure footprint will be as shown in the map book (Appendix 3.A Map Book for the Proposed Action, Sheet 13). The area of impact will be up to 250 feet wide. A 15-acre area will be required for construction staging, also as shown in the map book.

3.2.6.2.3 NCCF Siphon 2 (Beneath Byron Highway)

NCCF Siphon 2, which will pass beneath Byron Highway and the adjacent Southern Pacific Railroad line, will be of the same basic design as NCCF Siphon 1, but will be smaller, consisting of 2, 23-foot-square box culverts with a total flow capacity of 10,300 cfs; the siphon will be 1,000 feet long.

Construction of NCCF Siphon 2 will be as described above for NCCF Siphon 1, except that no cofferdam will be needed, no fish-bearing waters will be affected, construction will occur within one year, and reroutes of the Byron Highway and the SPRR will be needed during construction. These reroutes will occur within the temporary impact areas shown in the map book (Appendix 3.A Map Book for the Proposed Action, Sheet 13). The excavation will require dewatering as described in Section 3.2.10.7, Dewatering, and the footprint of the construction work and staging areas will be as shown in the map book (Appendix 3.A, Sheet 13).

3.2.6.2.4 Canal Control Structures

Four canal control structures will be constructed (shown in Appendix 3.C Conceptual Engineering Report, Volume 2, Sheet 82):

- Old River/Jones PP canal control structure.
• NCCF/Jones PP canal control structure.
• NCCF/Banks PP canal control structure.
• SCCF/Banks PP canal control structure.

Two of these will be constructed in the existing Banks PP and Jones PP approach canals, and the others will be constructed in the forks of the new NCCF canal that lead to the Banks PP and Jones PP approach canals. Use of these control structures will enable operational decisions about how much water to divert to each PP from each water source (i.e., north or south Delta waters). Control structure designs are shown in Appendix 3.C, Sheets 88 and 89. Note that the design in Appendix 3.C has been revised to site the control structure shown just upstream of the Skinner Fish Facility. The control structure will instead be sited downstream of the facility. As such, all control structures will be sited in non-fish-bearing waters and will be located downstream of fish-bearing waters. Structures will be cast-in-place concrete structures with ground improvement (Section 3.2.10.3 Ground Improvement) used for foundation work. Footprints for construction will range from 476 by 200 feet (Old River/Jones PP canal structure) to 656 by 422 feet (NCCF/Banks PP canal structure); in each case, the footprint will lie within the area otherwise occupied by the canal itself.

3.2.7 Power Supply and Grid Connections

The PA as originally envisioned entailed new pumping plants at each of the new North Delta Diversions, which would have required long runs of high-voltage (250 kV) electrical transmission lines to establish grid connections. Those powerlines resulted in substantial adverse effects on covered listed species due to construction, maintenance, and bird strike potential of the operational lines. Redesign to eliminate the intake pumping plants has greatly reduced the electrical demand of the operating project. During construction, the PA will rely primarily upon electrical power sourced from the grid via temporary transmission lines to serve the TBM s and other project components. Use of diesel generators or other portable electrical power sources will be minimized due to the adverse air quality impacts of onsite power generation. Once operational, the largest power consumption will be for the pumping plant at CCF, where a grid connection will be available nearby. The intakes and IF will have relatively low operational power demands, which will be met via relatively short and lower-voltage connections to nearby grid sources.

3.2.7.1 Design

Electric power will be required for intakes, pumping plants, operable barriers, boat locks, and gate control structures throughout the proposed conveyance alignment. Temporary power will also be required during construction of water conveyance facilities.

New temporary electrical transmission lines to power construction activities will be built prior to construction of permanent transmission lines to power conveyance facilities. These lines will extend existing power infrastructure (lines and substations) to construction areas, generally providing electrical capacity of 12 kV at work sites. Main shafts for the construction of deep tunnel segments will require the construction of 69 kV temporary electrical transmission lines.
Both temporary and permanent electrical transmission lines serving the PA are shown in Appendix 3.C *Conceptual Engineering Report, Volume 2*, Sheet 94. Temporary and permanent transmission lines are also shown in the map book, Appendix 3.A *Map Book for the Proposed Action*, Sheets 1 to 15.

Transmission lines to construct and operate the water conveyance facilities will connect to the existing grid in two different locations. The northern point of interconnection will be located north of Lambert Road and west of Highway 99 (Appendix 3.A *Map Book for the Proposed Action*, Sheet 4). From here, a new 230 kV transmission line will run west, along Lambert Road, where one segment will run south to the IF on Glannvale Tract, and one segment will run north to connect to a substation where 69 kV lines will connect to the intakes. At the southern end of the conveyance alignment, the point of interconnection will be in one of two possible locations: southeast of Brentwood near Brentwood Boulevard (Appendix 3.A, sheet 15) or adjacent to the Jones Pumping Plant (Appendix 3.A, sheet 13). While only one of these points of interconnection will be used, both are depicted in figures, and the effects of constructing transmission lines leading from both sites are combined and accounted for in the effects analysis. A 230 kV line will extend from one of these locations to a tunnel shaft northwest of CCF, and will then continue north, following tunnel shaft locations, to Bouldin Island. Lower voltage lines (Appendix 3.C *Conceptual Engineering Report, Volume 2*, Sheet 94) will be used to power intermediate and reception shaft sites between the main drive shafts. Because the power required during operation of the water conveyance facilities will be much less than that required during construction, and because it will largely be limited to the pumping plants, all of the new electrical transmission lines between the IF and the CCF will be temporary.

An existing 500kV line, which crosses the area proposed for expansion of the CCF, will be relocated to the southern end of the expanded forebay in order to avoid disruption of existing power facilities. No interconnection to this existing line is proposed.

Temporary substations will be constructed at each intake, at the IF, and at each of the launch shaft locations. To serve permanent pumping loads, a permanent substation will be constructed adjacent to the pumping plants at CCF, where electrical power will be transformed from 230 kV to appropriate voltages for the pumps and other facilities at the pumping plant site. For operation of the three intake facilities and IF, existing distribution lines will be used to power gate operations, lighting, and auxiliary equipment at these facilities.

Utility interconnections are planned for completion in time to support most construction activities, but for some activities that need to occur early in the construction sequence (e.g., constructing raised pads at shaft locations and excavating the shafts), onsite generation may be required on an interim basis. As soon as the connection to associated utility grid power is completed, electricity from the interim onsite generators will no longer be used.

3.2.7.2 Construction

Selection of transmission line alignments is subject to Appendix 3.F *General Avoidance and Minimization Measures, AMM12 Transmission Line Design and Alignment*, which identifies mandatory habitat avoidance measures and defines other aspects of transmission line design and routing. Temporary lines will be constructed from existing facilities to each worksite where
power will be necessary for construction, following the alignments shown in Appendix 3.A Map
Book for the Proposed Action. Construction of new transmission lines will require three phases:
site preparation, tower or pole construction, and line stringing. For 12 kV and 69 kV lines, cranes
will be used during the line stringing phase. For stringing transmission lines between 230 kV
towers, cranes and helicopters will be used.

Construction of 230 kV and 69 kV transmission lines will require a corridor width of 100 feet
and, at each tower or pole, a 100- by 50-foot area will be required for construction laydown,
trailers, and trucks. Towers or poles will be located at intervals of 450 feet for 69kV lines, and
750 feet for 230kV lines. Construction will also require about 350 feet along the corridor
(measured from the base of the tower or pole) at conductor pulling locations, which includes any
turns greater than 15 degrees and/or every 2 miles of line. Construction will also require
vehicular access to each tower or pole location. Vehicular access routes have not yet been
determined, but will use existing routes to the greatest extent practicable, and are likewise
subject to the siting constraints of AMM12.

For construction of 12 kV lines (when not sharing a 69 kV line), a corridor width of 25–40 feet
will be necessary, with 25 feet in each direction along the corridor at each pole. Construction will
also require 200 feet along the corridor (measured from the base of the pole) and a 50-foot-wide
area at conductor pulling locations, which will include any turns greater than 15° and/or every 2
miles of line. For a pole-mounted 12 kV/480 volt transformer, the work area will only be that
normally used by a utility to service the pole (typically about 20 by 30 feet adjacent to pole). For
pad-mounted transformers, the work area will be approximately 20 by 30 feet adjacent to the pad
(for construction vehicle access). Construction of 12kV lines will also require vehicular access to
each tower or pole location. Vehicular access routes have not yet been determined, but will use
existing routes to the greatest extent practicable, and are likewise subject to the siting constraints
of AMM12.

3.2.8 Head of Old River Gate

3.2.8.1 Design

An operable gate will be constructed at the head of Old River. One purpose of the HOR gate is to
keep outmigrating salmonids in the mainstem of the San Joaquin River and to prevent them from
moving into the south Delta via Old River; another purpose is to improve water quality in the
San Joaquin River (particularly the Stockton Deep Water Ship Channel) in the fall by keeping
more water in the mainstem San Joaquin River. The barrier will be located at the divergence of
the head of Old River and the San Joaquin River, as shown in Appendix 3.A. Map Book for the
Proposed Action, Sheet 16; this location is approximately 300 feet west of the temporary rock
barrier that is annually installed and removed under current conditions. Preliminary design of the
HOR gate specifies that it will be 210 feet long and 30 feet wide overall, with top elevation of
and construction of the structure are further detailed in Appendix 3.B Conceptual Engineering
Report, Volume 1, Section 17 Operable Barrier.

This structure will include seven bottom-hinged gates, totaling approximately 125 feet in length.
Other components associated with this barrier are a fish passage structure, a boat lock, a control
building, a boat lock operator’s building, and a communications antenna. Appurtenant components include floating and pile-supported warning signs, water level recorders, and navigation lights. The barrier will also have a permanent storage area (180 by 60 feet) for equipment and operator parking. Fencing and gates will control access to the structure. A propane tank will supply emergency power backup.

The boat lock will be 20 feet wide and 70 feet long. The associated fish passage structure will be designed according to guidelines established by NMFS and USFWS, and will be 40 feet long and 10 feet wide, constructed with reinforced concrete. Stop logs will be used to close the fish passage structure when not in use to protect it from damage. When the gate is partially closed, flow will pass through the fish passage structure traversing a series of baffles. The fish passage structure is designed to maintain a 1-foot-maximum head differential across each set of baffles. The historical maximum head differential across the gate is 4 feet; therefore, four sets of baffles will be required. The vertical slot fish passage structure will be entirely self-regulating and will operate without mechanical adjustments to maintain an equal head drop through each set of baffles regardless of varying upstream and downstream water surface elevations.

3.2.8.1.1 HOR Gate Technical Team
Recognizing that design of these HOR gate is still in an early stage, DWR, Reclamation, NMFS, CDFW, and USFWS have determined that ongoing collaborative efforts will be needed to ensure that the final design and construction procedures for the HOR gate minimize effects on listed species. Accordingly, representatives from each of these agencies will participate in an HOR Gate Technical Team (HGTT). The HGTT will convene upon initiation of formal consultation for the PA and will meet periodically until DWR completes final design for the HOR gate (a time period expected to be at least two years). The HGTT will be charged with the following duties:

- Based on construction information presented by DWR, review and make recommendations regarding provisions for fish passage at the HOR gate. In considering such provisions, the HGTT will consider preliminary costs and constructability.

- Based on construction information presented by DWR, review and make recommendations regarding appropriate techniques for dewatering, fish rescue, and fish exclusion during in-water work. These measures will likely be needed for all cofferdam work at the HOR gate. In considering these techniques, the HGTT will consider preliminary costs and constructability.

- Identify and describe near-term research/monitoring needs, if any, to reduce key uncertainties prior to construction.

- Prepare draft and final reports summarizing HGTT recommendations. The final report must be provided no less than 8 months prior to DWR’s completion of final design, so that recommendations can be incorporated into construction contract documents.

HGTT recommendations will be reviewed by the five agencies for consideration. Adopted recommendations will be incorporated to HOR gate final design specifications prior to
construction contract issuance. DWR will abide by monitoring provisions and other measures sufficient to demonstrate implementation of these recommendations.

3.2.8.2 Construction

Appendix 3.D Construction Schedule for the Proposed Action presents the schedule for HOR gate construction. The operable barrier will be sited within the confines of the existing channel, with no levee relocation. To ensure the stability of the levee, a sheet pile retaining wall will be installed in the levee where the operable barrier connects to it. Construction will comply with relevant avoidance and minimization measures detailed in Appendix 3.F General Avoidance and Minimization Measures, including the following.

- AMM2 Construction Best Management Practices and Monitoring
- AMM3 Stormwater Pollution Prevention Plan
- AMM4 Erosion and Sediment Control Plan
- AMM5 Spill Prevention, Containment, and Countermeasure Plan
- AMM6 Disposal and Reuse of Spoils, Reusable Tunnel Material, and Dredged Material
- AMM7 Barge Operations Plan
- AMM8 Fish Rescue and Salvage Plan
- AMM9 Underwater Sound Control and Abatement Plan
- AMM11 Design Standards and Building Codes
- AMM14 Hazardous Materials Management
- AMM15 Construction Site Security
- AMM16 Fugitive Dust Control
- AMM17 Notification of Activities in Waterways

3.2.8.2.1 Dredging

Dredging to prepare the channel for gate construction will occur along 500 feet of channel, from 150 feet upstream to 350 feet downstream from the proposed barrier. A total of up to 1,500 cubic yards of material will be dredged. Dredging will last approximately 15 days, will be performed during the in-water work window, and will otherwise occur as described in Section 3.2.10.8 Dredging and Riprap Placement, and subject to the constraints described in Appendix 3.F General Avoidance and Minimization Measures, AMM6 Disposal and Reuse of Spoils, Reusable Tunnel Material, and Dredged Material. Dredging may use either a hydraulic or a sealed clamshell dredge, in either case operated from a barge in the channel.
Dredging is proposed to deviate from the procedure described in AMM6 in one respect. Assuming that on-land disposal of dredged material is determined by the appropriate review authorities to be suitable, the material will be spread on adjacent agricultural fields in a layer approximately 1-foot thick, subject to landowner approval. If required to use an existing dredged material disposal site, the site currently used for dredged material disposal in association with temporary rock barrier placement and removal will be used. This site, at the junction of Old and Middle rivers, is shown in Appendix 3.A Map Book for the Proposed Action, Sheet 16.

3.2.8.2.2 Gate Construction
The HOR gate will be constructed using cofferdam construction, which will create a dewatered construction area for ease of access and egress. Construction will occur in two phases. The first phase will include construction of half of the operable barrier, masonry control building, operator’s building, and boat lock. The second phase will include construction of the second half of the operable barrier, the equipment storage area, and the remaining fixtures, including the communications antenna and fish passage structure. The construction period is estimated to be up to 32 months, with a maximum construction crew of 80 people. A temporary work area of up to 15 acres will be sited in the vicinity of the barrier for such uses as storage of materials, fabrication of concrete forms or gate panels, placing of stockpiles, office trailers, shops, and construction equipment maintenance. The operable barrier construction site, including the temporary work area, has for many years been used for seasonal construction and removal of a temporary rock barrier, and all proposed work will occur within the area that is currently seasonally disturbed for temporary rock barrier construction. Site access roads and staging areas used in the past for rock barrier installation and removal will be used for construction, staging, and other construction support facilities for the proposed barrier.

All in-water work, including the construction of cofferdams, sheetpile walls and pile foundations, and placing rock bedding and stone slope protection, will occur during the proposed in-water work windows to minimize effects on fish. All other construction will take place from a barge or from the levee crown and will occur throughout the year.

The construction of the cofferdam and the foundation for the HOR gate will require in-water pile driving, performed as described in Section 3.2.10.11 Pile Driving. The installation of the cofferdams will require approximately 550 sheet piles (275 per season). Approximately 15 piles, a maximum of 50 feet long and to a depth of 13.5 to 15 feet, will be set per day with an estimated 210 strikes per pile over a period of approximately 18 days per season. Sheet piles will be installed starting with a vibratory hammer, then switching to impact hammer if refusal is encountered before target depths. The installment of the foundation for the operable barrier will require 100 14-inch steel pipe or H-piles (50 per season) to be set with 1 pile driver on site. Approximately 15 piles, a maximum of 50 feet long and to a depth of 13.5 to 15 feet, will be set per day with an estimated 1,050 strikes per pile over a period of approximately 3 days per season. Foundation pile driving may be done in the dry or in the wet. It is possible that cast-in-drilled-hole concrete foundation piles will be used, in which case pile driving of foundation piles will not be required, but that determination awaits results of geotechnical analysis and further design work; the effects analysis assumes that impact driving will occur.

The first construction phase involves installing a cofferdam in half of the channel and then dewatering the area (see Section 3.2.10.7 Dewatering). The cofferdam will remain in the water
until the completion of half of the gate. The cofferdam will then be flooded, and removed or cut off at the required invert depth, and another cofferdam installed in the other half of the channel. In the second phase, the gate will be constructed using the same methods, with the cofferdam either removed or cut off. Cofferdam construction will in both phases begin in August and last approximately 18 days. Construction has been designed so that the south Delta temporary barriers at this site can continue to be installed and removed as they are currently until the permanent gates are fully operable, however, the installation and removal of the temporary barriers is not part of the PA.

3.2.9 Temporary Access and Work Areas

Construction work areas for the conveyance facilities will include areas for construction equipment and worker parking, field offices, a warehouse, maintenance shops, equipment and materials laydown and storage, and stockpiled topsoil strippings saved for reuse in landscaping, as discussed in Section 3.2.10.10 Landscaping and Associated Activities.

Surface vehicular access will be needed for construction of all water conveyance facilities. Geotechnical exploration sites on water or on agricultural lands can be accessed by suitable vehicles, but all other construction sites will require road access. All-weather roads (asphalt paved) will be needed for year-round construction at all facilities, while dry-weather roads (minimum 12 inch thick gravel or asphalt paved) can be used for construction activities restricted to the dry season. Dust abatement will be addressed in all construction areas as provided by Appendix 3.F General Avoidance and Minimization Measures, AMM16 Fugitive Dust Control. Heavy construction equipment, such as diesel-powered dozers, excavators, rollers, dump trucks, fuel trucks, and water trucks will be used during excavation, grading, and construction of access/haul roads. Detour roads will be needed for all intakes and for traffic circulation around the work areas.

Temporary barge unloading facilities will be constructed, used, and decommissioned as detailed in Section 3.2.10.9 Barge Landing Construction and Operations.

As described in Appendix 3.B Conceptual Engineering Report, Volume 1, Section 24.3.4 Concrete Batch Plants, Pug Mills, and Cement Storage, temporary concrete batch plants will be needed due to the large amount of concrete required for construction and the schedule demands of the PA. A batch plant is proposed for siting at each TBM launch shaft or TBM retrieval shaft location (listed in Table 3.2-8). The area required for these plants will be within the construction footprint for these facilities as shown in Appendix 3.A Map Book for the Proposed Action, but precise facility siting within the construction site has not yet been determined. Other facilities to be co-located with concrete batch plants within the construction site footprint will include fuel stations, pug mills, soil mixing facilities, cement storage, and fine and coarse aggregate storage. Fuel stations will be needed for construction equipment fueling. Pug mills will be needed for generating processed soil materials used at the various sites. Soil mixing facilities will be needed for some of the muck disposal and for ground improvement activities. Cement and required admixtures will be stored at each site to support concrete, slurry walls, ground improvement, soil mixing, and other similar needs. TBM launch sites may also contain facilities for production of precast tunnel segments. If constructed, these will be located adjacent to concrete plants, and will also be within the construction site footprint as shown in Appendix 3.A. It is likely that each
precast segment plant would require approximately 10 acres for offices, concrete plant, materials storage, and casting facilities.

All storage and processing areas will be properly contained as required for environmental and regulatory compliance. In addition, work at all sites will be required to comply with terms of all applicable avoidance and minimization measures listed in Appendix 3.F, *General Avoidance and Minimization Measures*.

3.2.10 Common Construction-Related Activities

3.2.10.1 Clearing

Essentially all lands within the temporary and permanent impact footprint are assumed to be cleared; the only exceptions are lands that are underlain by a structure (TBM-excavated tunnels), or that are beneath a structure (electrical transmission line wires, between the towers), or that are underwater (in association with the Delta intakes, the CCF, the Banks and Jones connections, and the HOR gate). Grading will be performed where required by the project design. Clearing and grading will be performed using standard equipment such as bulldozers. Topsoil from cleared areas will be stockpiled and reused at the close of construction (see Section 3.2.10.10 Landscaping and Associated Activities).

Clearing will be the principal conveyance construction impact on listed species of wildlife, resulting in habitat removal as well as potential effects on animals. Impacts due to clearing and grading will be treated as permanent when they persist for more than one year, which will be the case for all conveyance construction components except geotechnical exploration (see Section 3.2.1 Geotechnical Exploration, for explanation). Clearing work will be subject to relevant avoidance and minimization measures including *AMM2 Construction Best Management Practices and Monitoring*, *AMM3 Stormwater Pollution Prevention plan*, *AMM4 Erosion and Sediment Control Plan*, *AMM5 Spill Prevention, Containment, and Countermeasure Plan*, *AMM14 Hazardous Material Management*, *AMM16 Fugitive Dust Control*, and the appropriate species-specific measures applicable to modeled habitat at the construction site (see Appendix 3.F General Avoidance and Minimization Measures for full detail on these measures).

3.2.10.2 Site Work

Site work will occur within previously cleared areas. It will include construction of site access, establishment of stockpiles and staging and storage areas, site fencing, onsite electric (such as a substation), and erection of temporary construction buildings (primarily offices and storage). Equipment used during site work mainly will include large vehicles and vehicle-mounted equipment such as cranes, which have the potential to create noise and light comparable to other construction equipment. Performance of site work will entail the risk of spills associated with vehicles and with materials transport, and the potential for erosion or stormwater effects associated with cleared areas. These risks will be minimized by implementing all of the same avoidance and minimization measures named above for clearing and grading work.
3.2.10.3 **Ground Improvement**

Ground improvement will occur within previously cleared areas. Ground improvement serves to improve existing substrates at a site so that they can bear heavy loads and otherwise support the design of the proposed construction. Activities performed in ground improvement will include drilling, and injection of materials. Ground improvement commonly will occur in association with grading (Section 3.2.10.1 Clearing) and dewatering (Section 3.2.10.7 Dewatering). Ground improvement constitutes a permanent impact; improved ground will remain in place for the duration of the PA and thereafter. Equipment used in ground improvement will include large vehicle-mounted drilling and injection equipment with potential to create noise and light comparable to other construction equipment. Performance of ground improvement will entail the risk of spills associated with vehicles and with materials transport. These risks will be minimized by implementing avoidance and minimization measures AMM2 Construction Best Management Practices and Monitoring, AMM5 Spill Prevention, Containment, and Countermeasure Plan, and AMM14 Hazardous Material Management.

3.2.10.4 **Borrow Fill**

The total amount of borrow material for engineered fill used in all aspects of the PA will be approximately 21 million cy (as bank cubic yards). This total amount will include approximately 3 million cy for tunnel shaft pads, 6.5 million cy for the CCF embankments, 2 million cy for the IF embankments, 6.7 million cy at the three intake sites (approximately 2 million cy each), and 2.6 million cy at the CCPP site. Source locations for this borrow material will be within the work area footprint shown in Appendix 3.A Map Book for the Proposed Action. Appendix 3.B Conceptual Engineering Report, Volume 1, Section 21 Borrow Sites, describes the criteria for selection of borrow sites and identifies suitable geological materials that could be used as sources of borrow material. Apart from engineering specifications, the criteria for selection of borrow sites will include the following:

- Borrow material should not require post-excavation processing (other than moisture conditioning).
- Borrow material should be exposed at surface and require no, or very limited, overburden removal.
- Borrow areas should be selected to minimize the impact or encroachment on existing surface and subsurface development and environmentally sensitive areas as much as possible.

3.2.10.5 **Fill to Flood Height**

Permanent levees, embankments, and fills on which structures are sited at the intakes, the IF, the CCPP, and the Banks and Jones connections, will be filled to the design flood height, which is the level of the 0.5% annual exceedance flood (i.e., the 200-year flood), plus an 18-inch allowance for sea level rise. Since current ground elevations at most of the construction sites are at or slightly below sea level, substantial volumes of material will be needed to construct these fills, and the weight of this material will cause substantial compaction and settling in the
underlying ground. Compaction and settling issues will be addressed by ground improvement (Section 3.2.10.3 *Ground Improvement*) and dewatering wells (Section 3.2.10.7 *Dewatering*), which are used to reduce hydraulic pressure within the sediments and accelerate the rate of compaction.

Fills to flood height will occur at sites that have previously been cleared. The fill material will be sourced from borrow sites (Section 3.2.10.4 *Borrow Fill*) and transported using conventional earthmoving equipment, or possibly conveyors if the distances involved are short and are entirely within the area cleared for facility construction. Performance of this work will entail the risk of spills associated with vehicles and with materials transport, and the potential for erosion or stormwater effects associated with cleared areas. These risks will be minimized by implementing all of the same avoidance and minimization measures named above for clearing and grading work (Section 3.2.10.1 *Clearing*).

3.2.10.6 Dispose Spoils

Spoils will include materials removed from the construction area and placed for nonstructural purposes. The principal sources of spoils will be materials removed during excavation of tunnels (RTM) and dredging of the CCF. Secondary sources will include structural excavations during facilities construction.

Dredged material composition is not currently determined. Composition, potential contamination, and resulting considerations in disposition of this material are described in Appendix 3.F *General Avoidance and Minimization Measures, AMM6 Disposal and Reuse of Spoils, Reusable Tunnel Material, and Dredged Material*. Properties and disposition of RTM are detailed below.

RTM is the by-product of tunnel excavation using a TBM. The RTM will be a plasticized mix consisting of soil cuttings, air, water, and may also include soil conditioning agents. Soil conditioning agents such as foams, polymers, and bentonite may be used to make soils more suitable for excavation by a TBM. Soil conditioners are non-toxic and biodegradable. During tunnel construction the daily volume of RTM withdrawn at any one shaft location will vary, with an average volume of approximately 6,000 cubic yards per day. It is expected that the transport of the RTM out of the tunnels and to the RTM storage areas will be nearly continuous during mining or advancement of the TBM. The RTM will be carried on a conveyor belt from the TBM to the base of the launch shaft. The RTM will be withdrawn from the tunnel shaft with a vertical conveyor and placed directly into the RTM work area using another conveyor belt system. From the RTM work area, the RTM will be roughly segregated for transport to RTM storage and water treatment (if required) areas as appropriate. Appendix 3.A *Map Book for the Proposed Action*, Sheets 1–5 and 7–15 show conveyor belt and RTM storage area locations.

RTM must be dewatered in order to stabilize it for long-term placement in a storage area. Atmospheric drying by tilling and rotating the material, combined with subsurface collection of excess liquids will typically be sufficient to render the material dry and suitable for long-term storage or reuse. Leachate will drain from ponds to a leachate collection system, then be pumped to leachate ponds for possible additional treatment. Disposal of the RTM decant liquids will require permitting in accordance with NPDES and Regional Water Quality Control Board
regulations. A retaining dike and underdrain liquid collection system (composed of a berm of compacted soil, gravel and collection piping, as described below), will be built at each RTM storage area. The purpose of this berm and collection system will be to contain any liquid runoff from the drying material. The dewatering process will consist of surface evaporation and draining through a drainage blanket consisting of rock, gravel, or other porous drain material. The drainage system will be designed per applicable permit requirements. Treatment of liquids (primarily water) extracted from the material could be done in several ways, including conditioning, flocculation, settlement/sedimentation, and/or processing at a package treatment plant to ensure compliance with discharge requirements.

Disposition and reuse of all spoils will be subject to Appendix 3.F General Avoidance and Minimization Measures, AMM6 Disposal and Reuse of Spoils, Reusable Tunnel Material, and Dredged Material. That AMM prescribes criteria for the selection of spoils storage areas; preparation of storage areas; and the procedures for draining, chemical characterization, and treatment of spoils, including how any existing contamination of the spoils will be addressed.

Table 3.2-11 provides a summary of how spoils would be stored, and Table 3.2-12 summarizes the disposition of spoils material. Designated spoils storage areas are shown in the map book, Appendix 3.A Map Book for the Proposed Action. RTM will be the largest source of this material, and disposition of that material will be, on an acreage basis, one of the largest impacts of the PA. Dredged material from the CCF will be the second largest source of spoils.
Table 3.2-11. Spoils and Reusable Tunnel Material Storage: Key Construction Information

- Final locations for storage of spoils, RTM, and dredged material will be selected based on the guidelines presented in *AMM6 Disposal and Reuse of Spoils, Reusable Tunnel Material, and Dredged Material* (Appendix 3.F, General Avoidance and Minimization Measures).
- Conventional earthmoving equipment, such as bulldozers and graders, would be used to place the spoil. Some spoil, with the exception of RTM, may be placed on the landside toes of canal embankments and/or setback levees.
- Spoils may temporarily be placed in borrow pits or temporary spoil laydown areas pending completion of embankment or levee construction. Borrow pits created for this project will be the preferred spoil location.
- RTM that may be have potential for re-use in the PA (such as levee reinforcement, embankment or fill construction) will be stockpiled. The process for testing and reuse of this material is described further in *AMM6 Disposal and Reuse of Spoils, Reusable Tunnel Material, and Dredged Material* (Appendix 3.F, General Avoidance and Minimization Measures).
- A berm of compacted imported soil will be built around the perimeter of the RTM storage area to ensure containment. The berm will conform to USACE guidelines for levee design and construction.
- RTM will be stacked to an average depth of 10 ft; precise stacking depth will vary across disposal sites.
- Maximum capacity of RTM storage ponds will be less than 50 af.
- RTM areas may be subdivided by a grid of interior earthen berms in RTM ponds for dewatering.
- Dewatering will involve evaporation and a drainage blanket of 2 ft-thick pea gravel or similar material placed over an impervious liner.
- Leachate will drain from ponds to a leachate collection system, then be pumped to leachate ponds for possible additional treatment.
- Transfer of RTM solids to disposal areas may be handled by conveyor, wheeled haul equipment, or barges, at the contractor’s discretion.
- Where feasible, the invert of RTM ponds will be a minimum of 5 ft above seasonal high groundwater table.
- An impervious liner will be placed on the invert and along interior slopes of berms, to prevent groundwater contamination.
- RTM will not be compacted.
- Spoil placed in disposal areas will be placed in 12-inch lifts, with nominal compaction.
- The maximum height for placement of spoil is expected to be 6 ft above preconstruction grade (10 ft above preconstruction grade for sites adjacent to CCF), and have side slopes of 5H:1V or flatter.
- After final grading of spoil is complete, the area will be restored based on site-specific conditions following project restoration guidelines.

<table>
<thead>
<tr>
<th>Disposal Site</th>
<th>Volume (cy)</th>
<th>Disposal Area (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTM and dredged material disposal site near Intake 2</td>
<td>1,020,000</td>
<td>45.6</td>
</tr>
<tr>
<td>RTM disposal sites near IF</td>
<td>9,060,000</td>
<td>404.7</td>
</tr>
<tr>
<td>RTM disposal site on Bouldin Island</td>
<td>8,340,000</td>
<td>1,208.8</td>
</tr>
<tr>
<td>RTM and dredged material disposal sites near CCF</td>
<td>5,370,000 (RTM) 7,000,000 (dredged)</td>
<td>899.6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>30,790,000</td>
<td>2,558.7</td>
</tr>
</tbody>
</table>

RTM is expected to be reusable, suitable as engineered fill for varied applications, and also suitable for restoration work such as tidal habitat restoration. However, end uses for that material have not yet been identified. It is likely that the material will remain in designated storage areas for a period of years before a suitable end use is identified, and any such use will be subject to environmental evaluation and permitting independent of the PA. Therefore disposition of RTM is assumed to be permanent, and future reuse of this material is not part of the PA.
Materials removed during surface excavation and dredging, or from clearing of the sedimentation basins, may also be reusable. Much of this material is expected to have a high content of fines and/or organic matter and thus may not be suitable for use as engineered fill, but may be suitable for use in habitat restoration projects. As with RTM, no end uses for this material have yet been identified, such use is not part of the PA, and the material will be permanently disposed in the designated RTM and dredged material storage areas. The exception to this statement is topsoil removed during clearing for construction. Topsoil is not classified as spoils; it will be stockpiled and reused for landscaping and restoration, as described in Section 3.2.10.10 Landscaping and Associated Activities.

Sacramento River sediment removed from the water column at the intake sedimentation basins will be reused as described above. However, to the maximum extent practicable, the first and preferred disposition of this material will be to reintroduce it to the water column in order to maintain Delta water quality (specifically, turbidity, as a component of Delta Smelt critical habitat; as described in Section 6.1.3.5.3 Sediment Removal (Water Clarity)). DWR will collaborate with USFWS and CDFW to develop and implement a sediment reintroduction plan that provides the desired beneficial habitat effects of maintained turbidity while addressing related permitting concerns (the proposed sediment reintroduction is expected to require permits from the Central Valley Regional Water Quality Control Board and USACE). USFWS and NMFS will have approval authority for this plan and for monitoring measures, to be specified in the plan, to assess its effectiveness. Current conceptual design for the plan suggests that it will incorporate placement of sediment during low flow periods at a seasonally inundated location along the mainstem river, such as a bench constructed for the purpose. The sediment would then be remobilized and carried downstream following inundation during seasonal high flows (generally, the winter and spring months). The sediment reintroduction would be designed for consistency with Basin Plan objectives for turbidity, viz., “‘For Delta waters, the general objectives for turbidity apply subject to the following: except for periods of storm runoff, the turbidity of Delta waters shall not exceed 50 NTUs in the waters of the Central Delta and 150 NTUs in other Delta waters. Exceptions to the Delta specific objectives will be considered when a dredging operation can cause an increase in turbidity. In this case, an allowable zone of dilution within which turbidity in excess of limits can be tolerated will be defined for the operation and prescribed in a discharge permit’” (Central Valley Water Board 1998, p. III-9.00).

3.2.10.7 Dewatering

Due to the generally high groundwater table in the Delta, the location of much of the construction alignment at below-sea-level elevations, and the extensive construction of below-grade structures, dewatering will be needed for nearly all components of conveyance construction. “Dewatering” as used in this document refers to the removal of water from a work area or from excavated materials, and discharge of the removed water to surface waters in accordance with the terms and conditions of a valid NPDES permit and any other applicable Central Valley Regional Water Quality Control Board requirements.

Dewatering will generally be accomplished by electrically powered pumps, which will either dewater via groundwater wells (thereby drawing down the water table to minimize the amount of water entering a work area) or by direct removal of water from an excavation or other work area (such as a cofferdam or the bottom of a completed tunnel access shaft). Dewatering of excavated
materials would be accomplished in a similar manner, by stockpiling the material and allowing the water to infiltrate to an impervious layer such as a liner or the bottom of a storage tank, and then pumping or draining it prior to treatment or discharge. At most conveyance facilities, dewatering will be an ongoing activity throughout most of the period of construction activity.

Dewatering water is subject to contamination. Groundwater at a site may be contaminated due to a preexisting condition, such as elevated salinity; or contaminants may be introduced by construction activity. The most frequent contaminants are expected to be alkalinity caused by water contact with curing concrete or ground improvement materials, or viscous binders used in drilling mud or to treat sediments being excavated by a TBM. There is also the potential for accidental contamination due to spillage of construction materials such as diesel fuel.

Dewatering waters will be stored in sedimentation tanks; tested for contaminants and treated in accordance with permit requirements; and discharged to surface waters. Treatment of the removed groundwater has not yet been determined and could include conditioning, flocculation, settlement/sedimentation, and/or processing at a package treatment plant. Velocity dissipation structures, such as rock or grouted riprap, will be used to prevent scour where dewatering discharges enter the river. Location of dewatering discharge points will be determined at time of filing for coverage under the NPDES general permit or before start-up of discharge as appropriate. Additional information will be developed during design and the contractor will be required to comply with permit requirements.

3.2.10.8 Dredging and Riprap Placement

For the purposes of this analysis, dredging and riprap placement are defined to be activities that occur in fish-bearing waters. This definition thus excludes, for instance, dredging that occurs in the sedimentation basins at the intakes, or riprap placement that occurs in a dewatered area.

Dredging is subject to constraints imposed by the Federal permit for the activity, and further would be conducted as specified in Appendix 3.F General Avoidance and Minimization Measures, AMM6 Disposal and Reuse of Spoils, Reusable Tunnel Material, and Dredged Material. AMM6 requires preparation of a sampling and analysis plan; compliance with relevant NPDES and SWRCB requirements; compliance with the proposed in-water work windows; and other measures intended to minimize risk to listed species.

Riprap placement would also comply with relevant NPDES and SWRCB requirements; and with the proposed in-water work windows.

3.2.10.9 Barge Landing Construction and Operations

Contractors will use barges to deliver TBM components to TBM launch sites, and may also use barges to deliver other heavy or bulky equipment or materials to those sites, or to haul such materials from those sites.

This activity will include barge landing construction, barge operations in the river, tug operations, and barge landing removal.

Barge docks will be needed at each TBM launch shaft site, i.e., Intake 2, the IF, Bouldin Island, and the CCF. Appendix 3.D Construction Schedule for the Proposed Action presents the
Barge landings are assumed not to require dredging for construction or maintenance. No such dredging is proposed and take authorization for it is not requested.

Each dock will be supported by 24-inch steel piles placed approximately every 20 ft under the dock, for a total of up to 51 piles. An additional 56 piles will be required to construct the connecting bridge. See Section 3.2.10.11 Pile Driving and Appendix 3.E Pile Driving Assumptions for the Proposed Action for details on piling and pile driving associated with barge landing construction.

Each dock will be in use during the entire construction period at each location, five to six years. All docks will be removed at the end of construction. All piling will either be removed, or cut at the mudline.

Approximately 11,800 barge trips are projected to carry tunnel segment liners from ports (locations not yet determined, but likely in the Sacramento area) to barge landings via the Sacramento River, averaging approximately 4 round-trips per day for up to 5.5 years. Because barges may also be used for other purposes, such as transportation of bulk materials, a total of 15,000 barge trips are projected as a conservative assumption (i.e., a greater number of trips is not expected to occur). This is a small increase relative to

Note that this description is inconsistent with that presented in Appendix 3.B. The engineering staff have stated that the approach presented in Appendix 3.B has been superseded by this approach.
existing marine traffic in the area. Barges used will be commercial vessels propelled by
tugboats. Barge sizes have not been determined. Commercial barge operators on the
Sacramento River are required to operate in compliance with navigational guidelines.

See Appendix 3.B *Conceptual Engineering Report, Volume 1, Section 23.3 Barge Traffic and
Landing Facilities*, for further discussion of barge traffic and barge docks.

- All barge operations will be required to comply with the provisions of a barge operations
 plan, as specified in Appendix 3.F *General Avoidance and Minimization Measures, AMM7 Barge Operations Plan*. As there stated, the barge operations plan will be subject
to review and approval by DWR and the other resource agencies (CDFW, NMFS, and
USFWS included), and will address the following.

 o Bottom scour from propeller wash.
 o Bank erosion or loss of submerged or emergent vegetation from propeller wash
 and/or excessive wake.
 o Sediment and benthic community disturbance from accidental or intentional barge
 grounding or deployment of barge spuds (extendable shafts for temporarily
 maintaining barge position) or anchors.
 o Accidental material spillage.
 o Hazardous materials spills (e.g., fuel, oil, hydraulic fluids).
 o Potential for suspension of contaminated sediments.

3.2.10.10 Landscaping and Associated Activities

The construction phase at most conveyance facilities will conclude with landscaping.
Revegetation of disturbed areas will be determined in accordance with guidance given by
DWR’s WREM No. 30a, Architectural Motif, State Water Project and through coordination with
local agencies through an architectural review process. This guidance from DWR WREM No
30a is set forth as follows.

If possible, the natural environment will be preserved. If not possible, a re-
vegetation plan will be developed. Landscaping plans may be required if deemed
appropriate to enhance facility attractiveness, for the control of
dust/mud/wind/unauthorized access, for reducing equipment noise/glare, for
screening of unsightly areas from visually sensitive areas. Planting will use low
water-use plants native to the Delta or the local environment, with an
organic/natural landscape theme without formal arrangements. For longevity and
minimal visual impact, low maintenance plants and irrigation designs will be
chosen. Planting plans will use native trees, shrubs or grasses and steps will be
taken to avoid inducing growth of non-native invasive plant species/CA Plant
Society weedy species10. Planting of vegetation will be compatible with density and patterns of existing natural vegetation areas and will be placed in a manner that does not compromise facility safety and access. Planting will be done within the first year following the completion of the project and a plant establishment plan will be implemented.

Landscaping in cleared areas will reuse topsoil stockpiled at the time of site clearing. Site revegetation plans will be developed for restoration of areas disturbed by PA activities.

Other activities occurring at the conclusion of construction will include site cleanup, installation of operational lighting, and installation of security fencing.

Site cleanup will consist of removal of all construction equipment, materials, and debris from the site. Construction debris will be disposed at a regional facility authorized to receive such materials.

Operational lighting will be needed at the intakes, the IF, the consolidated pumping plant at CFF, at the HOR gate, and at the control structures associated with the Banks and Jones connections; operational lighting will also continue to be provided at the existing CVP/SWP facilities. Lighting for the proposed facilities will be designed in accordance with guidance given by DWR’s WREM No. 30a, Architectural Motif, State Water Project and through coordination with local agencies through an architectural review process. This guidance is set forth as follows.

All artificial outdoor lighting is to be limited to safety and security requirements. All lighting is to provide minimum impact on the surrounding environment and is to be shielded to direct the light only towards objects requiring illumination. Lights shall be downcast, cut-off type fixtures with non-glare finishes set at a height that casts low-angle illumination to minimize incidental spillover of light onto adjacent properties, open spaces or backscatter into the nighttime sky. Lights shall provide good color rendering with natural light qualities with the minimum intensity feasible for security, safety and personnel access. All outdoor lighting will be high pressure sodium vapor with individual photocells. Lighting will be designed per the guidelines of the Illuminating Engineering Society (IES). Additionally, all lights shall be consistent with energy conservation and are to be aesthetically pleasing. Lights will have a timed on/off program or will have daylight sensors. Lights will be programmed to be on whether personnel is present or not.

The intakes, the IF, the consolidated pumping plant at CFF, and the HOR gate will be provided with security fencing to prevent unauthorized public access. Security camera systems and intrusion alarm systems will be located at these sites. Admission to the sites and buildings will require credentialed entry through access control gates and secure doors, respectively. At each

10 This text refers to plant species identified as invasive by the California Invasive Plant Council. For further information see http://www.cal-ipc.org/.
site, the fence line will be coincident with or within the area of permanent impact shown in Appendix 3.A, *Mapbook for the Proposed Action*.

3.2.10.11 Pile Driving

Sheet pile and tubular steel pile driving will be required for intake construction, barge dock construction, embankment work at CCF, the Banks and Jones connections, and construction of the HOR gate. Both vibratory and impact pile driving are expected to occur at each of these locations, as structural requirements call for impact pile driving to refusal.

In-water pile driving will be subject to abatement, hydroacoustic monitoring, and compliance with timing limitations as described in Appendix 3.F, *General Avoidance and Minimization Measures, AMM9 Underwater Sound Control and Abatement Plan*. For all sheetpile cofferdams proposed at the Delta intakes, CCF, and HOR gate, it is assumed that approximately 70% of the length of each pile can be placed using vibratory pile driving, with impact driving used to finalize pile placement. Piles will be installed using vibratory methods or other non-impact driving methods for the intakes, wherever feasible, to minimize adverse effects on fish and other aquatic organisms. However, the degree to which vibratory driving can be performed effectively is unknown at this time due to as yet undetermined geologic conditions at the construction sites. The remaining pile driving would be conducted using an impact pile driver. Once constructed, if the foundation design for either the Delta intakes or HOR gate requires pile driving, such work would be conducted from within the cofferdam; it is still undetermined if the foundation would use piles or concrete-in-drilled-hole methods, which does not require pile driving. If driven foundation piles are included in the design, DWR will require contractors to isolate pile driving activities within dewatered cofferdams as a means of minimizing noise levels and potential adverse effects on fish.

The barge docks would require pile driving of 24-inch tubular steel piles in the water. DWR will work with contractors to minimize pile driving, particularly impact pile driving, by using floating docks instead of pile-supported docks, wherever feasible considering the load requirements of the landings and the site conditions; floating docks would need fewer piles. If dock piles for barge landings cannot be installed using vibratory methods, the construction contractor will use a bubble curtain or other attenuation device to minimize underwater noise.

Table 3.2-13 shows the approximate channel widths, timing, and duration of pile driving for each facility or structure where pile driving is proposed to occur in open water or on land within 200 feet of open water.
Table 3.2-13. Pile Driving Sites and Durations

<table>
<thead>
<tr>
<th>Facility or Structure</th>
<th>Average Width of Water Body (feet)</th>
<th>Year of Construction</th>
<th>Duration of Pile Driving (days)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake 2 Cofferdam</td>
<td>700</td>
<td>Year 8</td>
<td>42</td>
</tr>
<tr>
<td>Intake 2 Foundation</td>
<td>700</td>
<td>Year 9</td>
<td>19</td>
</tr>
<tr>
<td>Intake 3 Cofferdam</td>
<td>500</td>
<td>Year 7</td>
<td>42</td>
</tr>
<tr>
<td>Intake 3 Foundation</td>
<td>500</td>
<td>Year 8</td>
<td>14</td>
</tr>
<tr>
<td>Intake 5 Cofferdam</td>
<td>600</td>
<td>Year 5</td>
<td>42</td>
</tr>
<tr>
<td>Intake 5 Foundation</td>
<td>600</td>
<td>Year 6</td>
<td>19</td>
</tr>
<tr>
<td>Barge Landings</td>
<td>265–1,030</td>
<td>Year 1 and 2</td>
<td>2</td>
</tr>
<tr>
<td>CCF Cofferdams</td>
<td>10,500</td>
<td>Year 9 and 10</td>
<td>337</td>
</tr>
<tr>
<td>CCFN Siphon Inlet</td>
<td>10,500</td>
<td>Year 9</td>
<td>72</td>
</tr>
<tr>
<td>CCFN Siphon Outlet</td>
<td>10,500</td>
<td>Year 7</td>
<td>72</td>
</tr>
<tr>
<td>HOR gate Cofferdams</td>
<td>150</td>
<td>Year 7</td>
<td>18</td>
</tr>
<tr>
<td>HOR gate Foundation</td>
<td>150</td>
<td>Year 7</td>
<td>4</td>
</tr>
</tbody>
</table>

Notes
¹ Indicates number of days required for one pile driver. Work may be completed more quickly if multiple pile driving rigs operate concurrently.

3.3 Operations and Maintenance of New and Existing Facilities

This section of Chapter 3 discusses proposed operations and maintenance of the PA, which includes new and existing CVP/SWP facilities in the Delta. It includes the following subsections.

- Section 3.3.1, Implementation
- Section 3.3.2, Operational Criteria, describes the approach to flow management and identify specific operational criteria applying to both existing and proposed CVP/SWP facilities in the Delta.
- Section 3.3.3, Real-Time Operational (RTO) Decision-Making Process, describes how those criteria will be implemented in real time using available system status information.
- Section 3.3.4, Operation of South Delta Facilities, describes how the south Delta facilities are operated to minimize harm to listed species of fish, and to control invasive aquatic vegetation.
- Section 3.3.5, Water Transfers, describes what water transfers are and defines the extent to which they are covered activities under the PA.
- Section 3.3.6, Maintenance of the Facilities, describes how the new and existing facilities will be maintained under the PA.

The operational criteria in this section that are in addition to the criteria prescribed by existing biological opinions were developed, based on the best scientific and commercial data available, as part of a proposed habitat conservation plan for the purpose of contributing to the recovery of listed and nonlisted covered species. In addition, those criteria will only take effect once the
north Delta export facilities become operational and Reclamation determines, after conferring with FWS and NMFS, that those criteria are required to ensure the coordinated operations of the CVP and SWP are not likely to jeopardize the continued existence of any endangered species or threatened species or result in the destruction or adverse modification of designated critical habitat for those species. Further, those criteria were developed based on the best available scientific information at the time this document was prepared. This determination will be based on the best scientific and commercial data available at the time the north Delta export facilities become operational, including data collected and analysis conducted through the collaborative science and adaptive management program described in Section 3.4.8.3, Monitoring Prior to Operations. If those data and analyses indicate that one or more of the water operations flow criteria in Table 3.3-1 should be eliminated or modified, Reclamation will, if required, reinitiate consultation pursuant to Section 7 of the ESA and/or DWR will, if required, commence a permit amendment process under California law to modify the operating criteria, as appropriate.

As previously stated, DWR has entered into a settlement agreement with CCWD, the effects of which are not evaluated in this BA. When operational and maintenance actions associated with implementation of the agreement are sufficiently defined to provide for analysis of potential adverse effects to listed species and critical habitat, a supplement to this BA will be provided to the Services.

3.3.1 Implementation

Implementation of the PA will include operations of both new and existing water conveyance facilities once the new north Delta diversion facilities are completed and become operational. Most existing facilities will continue to be operated consistent with existing regulatory authorizations, including the USFWS (2008) and NMFS (2009)11 BiOps. However, operational limits included in this PA for south Delta export facilities will replace the south Delta operational limits currently implemented in compliance with the USFWS (2008) and NMFS (2009) BiOps when the proposed north Delta diversion becomes operational. See Table 3.1-1 for a complete summary of facilities and actions included in the proposed action. The PA also includes criteria for spring outflow and new minimum flow criteria at Rio Vista during the months of January through August that will apply when the proposed north Delta diversion becomes operational. The north Delta diversions and the head of Old River gate are ‘new’ facilities for the SWP and will be operated consistent with the PA criteria presented in this BA for these facilities.

The USFWS (2008) and NMFS (2009) BiOps for CVP/SWP operations will continue to apply for CVP/SWP activities not covered in this BA. For Shasta operations, the NMFS (2009) RPA adjustment (Action Suite 1.2) for seasonal temperature management that will likely be completed in late 2016 will apply. The proposed CWF operating criteria are not intended to change Shasta operations; thus, the NMFS (2009) RPA adjustment (Action suite 1.2) for seasonal temperature management will control if there are any unforeseen conflicts in Shasta operations between the proposed CWF operating criteria and the adjusted RPA. To summarize the proposed action includes modified or new operational criteria for the following facilities:

11 Note: Any reference to the NMFS (2009) BO in this Chapter is to include the amendments to that BO, as issued by NMFS on April 7, 2011.
• north Delta Intakes
• south Delta export facilities
• Head of Old River (HOR) gate operations

Additionally, the operation of the following facilities is included in the PA once the north Delta diversions are operational, but no changes to their operations are proposed.

• Delta Cross Channel (DCC) gate operations
• Suisun Marsh facilities
• North Bay Aqueduct (NBA) Intake

The proposed operational criteria are described in the following sections and in Table 3.3-1. The longfin smelt is a species listed under the California Endangered Species Act (CESA). Therefore, it will be necessary for DWR to meet CESA permit issuance criteria for this species. To avoid a reduction in overall abundance for longfin smelt, the PA includes spring outflow criteria, which are intended to be provided by appropriate beneficiaries through the acquisition of water from willing sellers. If sufficient water cannot be acquired for this purpose, the spring outflow criteria will be accomplished through operations of the CVP/SWP to the extent an obligation is imposed on either the SWP or CVP under federal or applicable state law. Best available science, including that developed through a collaborative science program, will be used to analyze and make recommendations on the role of such flow in supporting longfin smelt abundance to CDFW, who will determine whether it is necessary to meet CESA permitting criteria.

Operations under the PA may result in substantial change in Delta flows compared to the expected flows under the existing Delta configuration, and in some instances real-time operations will be applied for water supply, water quality, flood control, and/or fish protection purposes. Two key drivers of CVP/SWP operations, Fall X2 and spring outflow, as well as many of the individual operational components described below, are designed to adapt to developing scientific information as a consequence of the level of uncertainty associated with those criteria. A Collaborative Science and Adaptive Management Program will be used to evaluate and consider changes in the operational criteria based on information gained before and after the new facilities become operational. Described in more detail in Section 3.4.6 Collaborative Science and Adaptive Management Program this program will be used to consider and address scientific uncertainty regarding the Delta ecosystem and to inform implementation of the operational criteria in the near term for existing BiOps for the coordinated operations of the CVP/SWP (U.S. Fish and Wildlife Service 2008, National Marine Fisheries Service 2009) and the 2081b permit for the SWP facilities and operations (California Department of Fish and Game 2009), as well as in the future for the new BiOp and 2081(b) for this PA.

3.3.2 Operational Criteria

Table 3.3-1 provides an overview of the proposed new criteria and other key criteria assumed for Delta operations when the proposed north Delta diversion intakes are operational. The proposed
operational criteria were developed in coordination with NMFS, USFWS, and DFW to minimize project effects on listed species. Further descriptions, including the intent of the specific criteria for each facility are described below. Two new criteria, not associated with any facility, include a minimum flow at Rio Vista and a spring outflow criteria. The purpose of the Rio Vista minimum flow is to ensure a minimum flow in the Sacramento River in January through August, where there currently is no minimum flow requirement under D-1641. The purpose of the spring outflow criteria is to maintain spring outflows consistent with the current Biological Opinions (FWS 2008; NMFS 2009), as described above. A brief description of the modeling assumptions for each criterion is also included. Additional detail regarding modeling assumptions is included in Table 3.3-2. Actual operations will also rely on real-time operations as described in Section 3.3.3, Real-Time Operational Decision-Making Process. Criteria presented in Table 3.3-1 for south Delta operations represent the maximum restrictions on exports. Even though this BA attempts to describe the temporal scale at which some of the operational criteria will be implemented (e.g. north Delta bypass flow requirements and OMR requirements), a detailed operations plan will be developed by Reclamation and DWR in coordination with DFW, NMFS and USFWS prior to the new facilities becoming operational, which will detail implementation of the criteria presented in Table 3.3-1.

Table 3.3-1. New and Existing Water Operations Flow Criteria and Relationship to Assumptions in CALSIM II Modeling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Criteria</th>
<th>Summary of CALSIM II Modeling Assumptions</th>
</tr>
</thead>
</table>
| North Delta bypass flows | • Bypass Flow Criteria (specifies bypass flow required to remain downstream of the North Delta intakes):
 - October, November: Minimum flow of 7,000 cfs required in river after diverting at the North Delta intakes.
 - December through June: see below
 - July, August, September: Minimum flow of 5,000 cfs required in river after diverting at the North Delta intakes.
 • Initial Pulse Protection:
 - Low-level pumping of up to 6% of total Sacramento River flow such that bypass flow never falls below 5,000 cfs. No more than 300 cfs can be diverted at any one intake.
 - Low level pumping maintained through the initial pulse period.
 - Sacramento River pulse is determined based on the criteria specified in Table 3.3-2, and real-time monitoring of juvenile fish movement.
 - If the initial pulse begins and ends before Dec 1, criteria for the appropriate month (Oct–Nov) go into effect after the pulse until Dec 1. On Dec 1, the Level 1 rules defined in Table 3.3-2 apply until a second pulse, as defined in Table 3.3-3 occurs. The second pulse will have the same protective operation as the first pulse. | • Initial Pulse Protection:
 - Low-level pumping of up to 6% of total Sacramento River flow such that bypass flow never falls below 5,000 cfs. No more than 300 cfs can be diverted at any one intake.
 - If the initial pulse begins and ends before Dec 1, criteria for the appropriate month (Oct–Nov) go into effect after the pulse until Dec 1. On Dec 1, the Level 1 rules defined in Table 3.3-2 apply until a second pulse, as defined in Table 3.3-3 occurs. The second pulse will have the same protective operation as the first pulse. |

12 Sacramento River flow upstream of the intakes to be measured flow at Freeport. Bypass flow is the Sacramento River flow quantified downstream of the Intake # 5. Sub-daily north Delta intakes’ diversion operations will maintain fish screen approach and sweeping velocity criteria.
Chapter 3. Description of the Proposed Action

Operations and Maintenance of New and Existing Facilities

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Criteria</th>
<th>Summary of CALSIM II Modeling Assumptions*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>into effect after the pulse until Dec 1. On Dec 1, the Level 1 rules defined below apply unless a second pulse occurs. If a second pulse occurs before June 30th, will have the same protective operation as the first pulse.
Post-pulse Criteria (specifies bypass flow required to remain downstream of the North Delta intakes):
 - December through June: once the initial pulse protection ends, post-pulse bypass flow operations will not exceed Level 1 pumping unless specific criteria have been met to increase to Level 2 or Level 3. If those criteria are met, operations can proceed as defined in Table 3.3-2. The specific criteria for transitioning between and among pulse protection, Level 1, Level 2, and/or Level 3 operations, will be developed and based on real-time fish monitoring and hydrologic/behavioral cues upstream of and in the Delta as discussed in Section 3.3.3.1, North Delta Diversion. During operations, adjustments to the default allowable diversion level specified in Table 3.3-2 are expected to be made to improve water supply and/or migratory conditions for fish by making real-time adjustments to the diversion levels at the north Delta intakes. These adjustments are expected to fall within the operational bounds analyzed for the BA and will be managed under real time operations (RTOs).</td>
<td>
October, November: No south Delta exports during the D-1641 San Joaquin River 2-week pulse, no OMR restriction during 2 weeks prior to pulse, and a 3-day average of −5,000 cfs in November after pulse.
December: OMR flows will not be more negative than an average of −5,000 cfs when the Sacramento River at Wilkins Slough pulse (same as north Delta diversion bypass flow pulse defined in Table 3.3-2) triggers, and no more negative than an average of −2,000 cfs when the delta smelt USFWS (2008) BiOp action 1</td>
</tr>
</tbody>
</table>

13 San Joaquin River based OMR action triggered when the leading edge of the pulse releases are measured at Vernalis.

14 OMR measured through the currently proposed index-method (Hutton 2008) with a 14-day averaging period consistent with the current operations (USBR 2014).

15 December Sacramento River pulse determined by flow increases at Wilkins Slough of greater than 45% within 5-day period and exceeding 12,000 cfs at the end of 5-day period, and real-time monitoring of juvenile fish movement. Reclamation and DWR will require lead time of no less than 3 days to change operations in response to the pulse.
### Parameter	Criteria	Summary of CALSIM II Modeling Assumptions
	triggers. No OMR flow restriction prior to the Sacramento River pulse or delta smelt action 1 triggers.	requirement for 14 days is assumed. Remaining Dec days were assumed to have an allowable OMR of -8000 cfs to compute a composite monthly allowable OMR level.
	January, February\(^{16}\): OMR flows will not be more negative than a 3-day average of 0 cfs during wet years, −3,500 cfs during above-normal years, or −4,000 cfs during below-normal to critical years, except −5,000 in January of dry and critical years.	
	March\(^{17}\): OMR flows will not be more negative than a 3-day average of 0 cfs during wet or above-normal years or −3,500 cfs during below-normal and dry year and -3,000 cfs during critical years.	
	April, May\(^{18}\): Allowable OMR flows depend on gaged flow measured at Vernalis, and will be determined by a linear relationship. If Vernalis flow is below 5,000 cfs, OMR flows will not be more negative than -2000 cfs. If Vernalis is 6,000 cfs, OMR flows will not be less than +1000 cfs. If Vernalis is 10,000 cfs, OMR flows will not be less than +2,000 cfs. If Vernalis is 15,000 cfs, OMR flows will not be less than +3,000 cfs. If Vernalis is at or exceeds 30,000 cfs, OMR flows will not be less than 6,000 cfs.	
	June: Similar to April and May, allowable flows depend on gaged flow measured at Vernalis (except without interpolation). If Vernalis is less than 3,500 cfs, OMR flows will not be more negative than −3,500 cfs. If Vernalis exceeds 3,500 cfs up to 10,000 cfs, OMR flows will not be less than 0 cfs. If Vernalis exceeds 10,000 cfs up to 15,000 cfs, OMR flows will not be less than +1,000 cfs. If Vernalis exceeds 15,000 cfs, OMR flows will not be less than +2,000 cfs.	
	July, August, September: No OMR flow constraints\(^{19}\).	
	OMR criteria under 2008 USFWS and 2009 NMFS BiOps or the above, whichever results in...	

\(^{16}\) Water year type based on the Sacramento 40-30-30 index to be based on 50% forecast per current approaches; the first update of the water year type to occur in February. CALSIM II modeling uses previous water year type for October through January, and the current water year type from February onwards.

\(^{17}\) Water year type as described in the above footnote.

\(^{18}\) When OMR target is based on Vernalis flow, will be a function of 5-day average measured flow.

\(^{19}\) The PA operations include a preference for south Delta pumping in July through September months to provide limited flushing flows to manage water quality in the south Delta.
### Parameter	**Criteria**	**Summary of CALSIM II Modeling Assumptions**
HOR gate operations	more positive, or less negative OMR flows, will be applicable.	• Assumed 50% open from January 1 to June 15, and during days in October prior to the D-1641 San Joaquin River pulse. Closed during the pulse. 100% open in the remaining months.

| HOR gate operations | • October 1–November 30: RTO management — HOR gate will be closed in order to protect the D-1641 pulse flow designed to attract upstream migrating San Joaquin origin adult Fall-Run Chinook Salmon (Section 3.3.3, Real-Time Operational Decision-Making Process). HOR gate will be closed approximately 50% during the time immediately before and after the SJR pulse and it will be fully closed during the pulse unless new information suggests alternative operations are better for fish.
 • January: When salmon fry are migrating (determined based on real time monitoring), initial operating criterion will be to close the gate subject to RTO for purposes of water quality, stage, and flood control considerations.
 • February–June 15th: Initial operating criterion will be to close the gate subject to RTO for purposes of water quality, stage, and flood control considerations (Section 3.3.3, Real-Time Operational Decision-Making Process). Reclamation, DWR, NMFS, USFWS, and DFW will actively explore the implementation of reliable juvenile salmonid tracking technology that may enable shifting to a more flexible real time operating criterion based on the presence/absence of listed fishes.
 • June 16 to September 30, December: Operable gates will be open. |
Spring Outflow

| March, April, May: Initial operations will maintain the March–May average delta outflow that would occur with existing facilities under the operational criteria described in the 2008 USFWS BiOp and 2009 NMFS BiOp (U.S. Fish and Wildlife Service 2008; National Marine Fisheries Service 2009). The 2011 NMFS BiOp action IV.2.1 (San Joaquin River i-e ratio) will be used to constrain Apr–May total Delta exports under the PA to meet March–May Delta outflow targets per current operational practices (National Marine Fisheries Service 2009). March–May average delta outflow targets representative of the modeled outflows under the current BiOps with existing facilities at the time the North Delta Diversion will be operational are tabulated below for 10% exceedance intervals (U.S. Fish and Wildlife Service 2008; National Marine Fisheries Service 2009).

| Rio Vista minimum flow standard\(^{22}\) | January through August: flows will exceed 3,000 cfs
| | September through December: flows per D-1641 criteria |
| Key Existing Delta Criteria Included in Modeling\(^{23}\) |
| Fall Outflow | No change. September, October, November: implement the USFWS 2008 BO Fall X2 requirements in wet (W) and above normal (AN) year types. | September, October, November: implement the 2008 USFWS BiOp “Action 4: Estuarine Habitat During Fall” (Fall X2) requirements (U.S. Fish and Wildlife Service 2008). |
| Winter and summer outflow | No change. Flow constraints established under D-1641 will be followed if not superseded by criteria listed above. | SWRCB D-1641 Delta outflow and February – June X2 criteria. |

\(^{21}\) For example, if best available science resulting from collaborative scientific research program shows that Longfin Smelt abundance can be maintained in the absence of spring outflow, and DFW concurs, an alternative operation for spring outflow could be to follow flow constraints established under D-1641. Any changes in the PA will be implemented consistent with the Collaborative Science and Adaptive Management Program, including coordination with USFWS and NMFS.

\(^{22}\) Rio Vista minimum monthly average flow in cfs (7-day average flow not be less than 1,000 below monthly minimum), consistent with the SWRCB D-1641.

\(^{23}\) All the CALSIM II modeling assumptions are described in Appendix 5.A, CALSIM Methods and Results.
Chapter 3. Description of the Proposed Action

Operations and Maintenance of New and Existing Facilities

Parameter Criteria

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Criteria</th>
</tr>
</thead>
</table>
| Delta Cross Channel Gates | - No change in operational criteria.
 - Operating criteria as required by NMFS (2009) BiOp Action IV.1 and D-1641 |
| Suisun Marsh Salinity Control Gates | - No change. Gates will continue to be closed up to 20 days per year from October through May.
 - Seasonal operation: The radial gates are operational from Oct to Feb if Martinez EC is higher than 20000, and for remaining months they remain open.
 - Tidal operations when gates are operational: Gates close when: downstream channel flow is \(< 0.1\) (onset of flood tide); Gates open when: upstream to downstream stage difference is \(> 0.3\) ft (onset of ebb tide) |
| Export to inflow ratio | - Operational criteria are the same as defined under D-1641, and applied as a maximum 3-day running average.
 - The D-1641 export/inflow (E/I) ratio calculation was largely designed to protect fish from south Delta entrainment. For the PA, Reclamation and DWR propose that the NDD be excluded from the E/I ratio calculation. In other words, Sacramento River inflow is defined as flows downstream of the NDD and only south Delta exports are included for the export component of the criteria.
 - Combined export rate is defined as the diversion rate of the Banks Pumping Plant and Jones Pumping Plant from the south Delta channels.
 - Delta inflow is defined as the sum of the Sacramento River flow downstream of the proposed north Delta diversion intakes, Yolo Bypass flow, Mokelumne River flow, Cosumnes River flow, Calaveras River flow, San Joaquin River flow at Vernalis, and other miscellaneous in-Delta flows. |

Summary of CALSIM II Modeling Assumptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta Cross Channel Gates</td>
<td>- Delta Cross Channel gates are closed for a certain number of days during October 1 through December 14 based on the Wilkins Slough flow, and the gates may be opened if the D-1641 Rock Slough salinity standard is violated because of the gate closure. Delta Cross Channel gates are assumed to be closed during December 15 through January 31. February 1 through June 15, Delta Cross Channel gates are operated based on D-1641 requirements.</td>
</tr>
</tbody>
</table>

See Table 3.3-2 for Proposed Action CALSIM II Modeling Assumptions
Table 3.3-2. Proposed Action CALSIM II Criteria and Modeling Assumptions

<table>
<thead>
<tr>
<th>Dual Conveyance Scenario with 9,000 cfs North Delta Diversion (includes Intakes 2, 3 and 5 with a maximum diversion capacity of 3,000 cfs at each intake)</th>
</tr>
</thead>
</table>

1. North Delta Diversion Bypass Flows
These parameters define the criteria for modeling purposes and provide the real-time operational criteria levels as operations move between and among the levels. Actual operations will be based on real-time monitoring of hydrologic conditions and fish presence/movement as described in Section 3.3.3.1, North Delta Diversions.

<table>
<thead>
<tr>
<th>Low-Level Pumping (Dec-Jun)</th>
</tr>
</thead>
</table>
Diversions of up to 6% of total Sacramento River flow such that bypass flow never falls below 5,000 cfs. No more than 300 cfs can be diverted at any one intake.

<table>
<thead>
<tr>
<th>Initial Pulse Protection</th>
</tr>
</thead>
</table>
Low level pumping as described in Table 3.3-1 will be maintained through the initial pulse period. For modeling, the initiation of the pulse is defined by the following criteria: (1) Sacramento River flow at Wilkins Slough increasing by more than 45% within a five-day period and (2) flow on the fifth day greater than 12,000 cfs.

The pulse (and low-level pumping) continues until either (1) Sacramento River flow at Wilkins Slough returns to pre-pulse flow level (flow on first day of pulse period), or (2) Sacramento River flow at Wilkins Slough decreases for 5 consecutive days, or (3) Sacramento River flow at Wilkins Slough is greater than 20,000 cfs for 10 consecutive days.

After pulse period has ended, operations will return to the bypass flow table (Sub-Table A).
If the initial pulse period begins and ends before Dec 1st in the modeling, then any second pulse that may occur before the end of June will receive the same protection, i.e., low level pumping as described in Table 3.3-1.

<table>
<thead>
<tr>
<th>Post-Pulse Operations</th>
</tr>
</thead>
</table>
After initial pulse(s), allowable diversion will go to Level I Post-Pulse Operations (see Sub-Table A) until 15 total days of bypass flows above 20,000 cfs occur. Then allowable diversion will go to the Level II Post-Pulse Operations until 30 total days of bypass flows above 20,000 cfs occur. Then allowable diversion will go to the Level III Post-Pulse Operations.

Sub-Table A. Post-Pulse Operations for North Delta Diversion Bypass Flows
Implement following bypass flow requirements sufficient to minimize any increase in the upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to minimize any increase in upstream transport toward the proposed intakes or into Georgiana Slough. Allowable diversion will be greater of the low-level pumping or the diversion allowed by the following bypass flow rules.
Level I Post-Pulse Operations

<table>
<thead>
<tr>
<th>If Sacramento River flow is over...</th>
<th>But not over...</th>
<th>The bypass is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec–Apr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 cfs</td>
<td>5,000 cfs</td>
<td>100% of the amount over 0 cfs</td>
</tr>
<tr>
<td>5,000 cfs</td>
<td>15,000 cfs</td>
<td>Flows remaining after constant low level pumping</td>
</tr>
<tr>
<td>15,000 cfs</td>
<td>17,000 cfs</td>
<td>15,000 cfs plus 80% of the amount over 15,000 cfs</td>
</tr>
<tr>
<td>17,000 cfs</td>
<td>20,000 cfs</td>
<td>16,600 cfs plus 60% of the amount over 17,000 cfs</td>
</tr>
<tr>
<td>20,000 cfs</td>
<td>no limit</td>
<td>18,400 cfs plus 30% of the amount over 20,000 cfs</td>
</tr>
</tbody>
</table>

Level II Post-Pulse Operations

<table>
<thead>
<tr>
<th>If Sacramento River flow is over...</th>
<th>But not over...</th>
<th>The bypass is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec–Apr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 cfs</td>
<td>5,000 cfs</td>
<td>100% of the amount over 0 cfs</td>
</tr>
<tr>
<td>5,000 cfs</td>
<td>11,000 cfs</td>
<td>Flows remaining after constant low level pumping</td>
</tr>
<tr>
<td>11,000 cfs</td>
<td>15,000 cfs</td>
<td>11,000 cfs plus 60% of the amount over 11,000 cfs</td>
</tr>
<tr>
<td>15,000 cfs</td>
<td>20,000 cfs</td>
<td>13,400 cfs plus 50% of the amount over 15,000 cfs</td>
</tr>
<tr>
<td>20,000 cfs</td>
<td>no limit</td>
<td>15,900 cfs plus 20% of the amount over 20,000 cfs</td>
</tr>
</tbody>
</table>

Level III Post-Pulse Operations

<table>
<thead>
<tr>
<th>If Sacramento River flow is over...</th>
<th>But not over...</th>
<th>The bypass is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec–Apr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 cfs</td>
<td>5,000 cfs</td>
<td>100% of the amount over 0 cfs</td>
</tr>
<tr>
<td>5,000 cfs</td>
<td>11,000 cfs</td>
<td>Flows remaining after constant low level pumping</td>
</tr>
<tr>
<td>11,000 cfs</td>
<td>15,000 cfs</td>
<td>11,000 cfs plus 50% of the amount over 11,000 cfs</td>
</tr>
<tr>
<td>15,000 cfs</td>
<td>15,000 cfs</td>
<td>15,000 cfs plus 70% of the amount over 15,000 cfs</td>
</tr>
</tbody>
</table>

Level II Post-Pulse Operations

<table>
<thead>
<tr>
<th>If Sacramento River flow is over...</th>
<th>But not over...</th>
<th>The bypass is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 cfs</td>
<td>5,000 cfs</td>
<td>100% of the amount over 0 cfs</td>
</tr>
<tr>
<td>5,000 cfs</td>
<td>11,000 cfs</td>
<td>Flows remaining after constant low level pumping</td>
</tr>
<tr>
<td>11,000 cfs</td>
<td>15,000 cfs</td>
<td>11,000 cfs plus 50% of the amount over 11,000 cfs</td>
</tr>
</tbody>
</table>

Level III Post-Pulse Operations

<table>
<thead>
<tr>
<th>If Sacramento River flow is over...</th>
<th>But not over...</th>
<th>The bypass is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 cfs</td>
<td>5,000 cfs</td>
<td>100% of the amount over 0 cfs</td>
</tr>
<tr>
<td>5,000 cfs</td>
<td>9,000 cfs</td>
<td>Flows remaining after constant low level pumping</td>
</tr>
<tr>
<td>9,000 cfs</td>
<td>15,000 cfs</td>
<td>9,000 cfs plus 50% of the amount over 9,000 cfs</td>
</tr>
</tbody>
</table>

15,000 cfs	20,000 cfs	16,600 cfs plus 60% of the amount over 17,000 cfs
20,000 cfs	no limit	18,400 cfs plus 30% of the amount over 20,000 cfs
20,000 cfs	no limit	15,900 cfs plus 20% of the amount over 20,000 cfs
20,000 cfs	no limit	13,000 cfs plus 0% of the amount over 20,000 cfs

Level III Post-Pulse Operations

<table>
<thead>
<tr>
<th>If Sacramento River flow is over...</th>
<th>But not over...</th>
<th>The bypass is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 cfs</td>
<td>5,000 cfs</td>
<td>100% of the amount over 0 cfs</td>
</tr>
<tr>
<td>5,000 cfs</td>
<td>9,000 cfs</td>
<td>Flows remaining after constant low level pumping</td>
</tr>
<tr>
<td>9,000 cfs</td>
<td>15,000 cfs</td>
<td>9,000 cfs plus 50% of the amount over 9,000 cfs</td>
</tr>
<tr>
<td>15,000 cfs</td>
<td>20,000 cfs</td>
<td>16,600 cfs plus 60% of the amount over 17,000 cfs</td>
</tr>
<tr>
<td>20,000 cfs</td>
<td>no limit</td>
<td>18,400 cfs plus 30% of the amount over 20,000 cfs</td>
</tr>
<tr>
<td>20,000 cfs</td>
<td>no limit</td>
<td>15,900 cfs plus 20% of the amount over 20,000 cfs</td>
</tr>
<tr>
<td>20,000 cfs</td>
<td>no limit</td>
<td>13,000 cfs plus 0% of the amount over 20,000 cfs</td>
</tr>
<tr>
<td>Level I Post-Pulse Operations</td>
<td>Level II Post-Pulse Operations</td>
<td>Level III Post Pulse Operations</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>If Sacramento River flow is over...</td>
<td>If Sacramento River flow is over...</td>
<td>If Sacramento River flow is over...</td>
</tr>
<tr>
<td>17,000 cfs</td>
<td>20,000 cfs</td>
<td>15,000 cfs</td>
</tr>
<tr>
<td>20,000 cfs</td>
<td>no limit</td>
<td>15,000 cfs</td>
</tr>
<tr>
<td>But not over...</td>
<td>But not over...</td>
<td>But not over...</td>
</tr>
<tr>
<td>16,400 cfs plus 50% of the amount over 17,000 cfs</td>
<td>20,000 cfs</td>
<td>13,000 cfs plus 35% of the amount over 15,000 cfs</td>
</tr>
<tr>
<td>17,900 cfs plus 20% of the amount over 20,000 cfs</td>
<td>no limit</td>
<td>14,750 cfs plus 20% of the amount over 20,000 cfs</td>
</tr>
<tr>
<td>The bypass is...</td>
<td>The bypass is...</td>
<td>The bypass is...</td>
</tr>
<tr>
<td>15,000 cfs</td>
<td>20,000 cfs</td>
<td>15,000 cfs</td>
</tr>
<tr>
<td>17,000 cfs</td>
<td>no limit</td>
<td>15,000 cfs</td>
</tr>
<tr>
<td>Jun</td>
<td>Flows remaining after constant low level pumping</td>
<td>Flows remaining after constant low level pumping</td>
</tr>
<tr>
<td>0 cfs</td>
<td>5,000 cfs</td>
<td>0 cfs</td>
</tr>
<tr>
<td>5,000 cfs</td>
<td>15,000 cfs</td>
<td>5,000 cfs</td>
</tr>
<tr>
<td>15,000 cfs</td>
<td>17,000 cfs</td>
<td>5,000 cfs</td>
</tr>
<tr>
<td>Flows remaining after constant low level pumping</td>
<td>5,000 cfs</td>
<td>9,000 cfs</td>
</tr>
<tr>
<td>15,000 cfs</td>
<td>17,000 cfs</td>
<td>5,000 cfs</td>
</tr>
<tr>
<td>15,000 cfs plus 60% of the amount over 15,000 cfs</td>
<td>11,000 cfs</td>
<td>9,000 cfs</td>
</tr>
<tr>
<td>11,000 cfs</td>
<td>15,000 cfs</td>
<td>15,000 cfs</td>
</tr>
<tr>
<td>Flows remaining after constant low level pumping</td>
<td>5,000 cfs</td>
<td>9,000 cfs</td>
</tr>
<tr>
<td>17,000 cfs</td>
<td>20,000 cfs</td>
<td>15,000 cfs</td>
</tr>
<tr>
<td>16,200 cfs plus 40% of the amount over 17,000 cfs</td>
<td>15,000 cfs</td>
<td>10,800 cfs plus 20% of the amount over 15,000 cfs</td>
</tr>
<tr>
<td>15,000 cfs</td>
<td>20,000 cfs</td>
<td>15,000 cfs</td>
</tr>
<tr>
<td>13,600 cfs plus 20% of the amount over 20,000 cfs</td>
<td>no limit</td>
<td>11,800 cfs plus 0% of the amount over 20,000 cfs</td>
</tr>
<tr>
<td>20,000 cfs</td>
<td>no limit</td>
<td>20,000 cfs</td>
</tr>
<tr>
<td>20,000 cfs</td>
<td>no limit</td>
<td>20,000 cfs</td>
</tr>
</tbody>
</table>
Chapter 3. Description of the Proposed Action
Operations and Maintenance of New and Existing Facilities

Level I Post-Pulse Operations

<table>
<thead>
<tr>
<th>If Sacramento River flow is over...</th>
<th>But not over...</th>
<th>The bypass is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Sacramento River flow is over...</td>
<td>But not over...</td>
<td>The bypass is...</td>
</tr>
<tr>
<td>Over...</td>
<td>But not over...</td>
<td>The bypass is...</td>
</tr>
<tr>
<td>0 cfs</td>
<td>5,000 cfs</td>
<td>100% of the amount over 0 cfs</td>
</tr>
<tr>
<td>5,000 cfs</td>
<td>No limit</td>
<td>A minimum of 5,000 cfs</td>
</tr>
</tbody>
</table>

Bypass flow requirements in other months:

<table>
<thead>
<tr>
<th>Jul–Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 cfs</td>
</tr>
<tr>
<td>5,000 cfs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oct–Nov</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 cfs</td>
</tr>
<tr>
<td>7,000 cfs</td>
</tr>
</tbody>
</table>

Level II Post-Pulse Operations

<table>
<thead>
<tr>
<th>If Sacramento River flow is over...</th>
<th>But not over...</th>
<th>The bypass is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Sacramento River flow is over...</td>
<td>But not over...</td>
<td>The bypass is...</td>
</tr>
<tr>
<td>Over...</td>
<td>But not over...</td>
<td>The bypass is...</td>
</tr>
<tr>
<td>0 cfs</td>
<td>5,000 cfs</td>
<td>100% of the amount over 0 cfs</td>
</tr>
<tr>
<td>5,000 cfs</td>
<td>No limit</td>
<td>A minimum of 5,000 cfs</td>
</tr>
</tbody>
</table>

Level III Post Pulse Operations

<table>
<thead>
<tr>
<th>If Sacramento River flow is over...</th>
<th>But not over...</th>
<th>The bypass is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Sacramento River flow is over...</td>
<td>But not over...</td>
<td>The bypass is...</td>
</tr>
<tr>
<td>Over...</td>
<td>But not over...</td>
<td>The bypass is...</td>
</tr>
<tr>
<td>0 cfs</td>
<td>5,000 cfs</td>
<td>100% of the amount over 0 cfs</td>
</tr>
<tr>
<td>5,000 cfs</td>
<td>No limit</td>
<td>A minimum of 5,000 cfs</td>
</tr>
</tbody>
</table>

2. South Delta Channel Flows

OMR Flows
All of the baseline model logic and input used in the No Action Alternative as a surrogate for the OMR criteria required by the various fish protection triggers (density, calendar, turbidity and flow based triggers) described in the 2008 USFWS and the 2009 NMFS CVP/SWP BiOps were incorporated into the modeling of the PA except for NMFS BO Action IV.2.1 – San Joaquin River i/e ratio. The PA includes the proposed operational criteria, as well. Whenever the BiOps’ triggers require OMR be less negative or more positive than those shown below, those OMR requirements will be met. These newly proposed OMR criteria (and associated HOR gate operations) are in response to expected changes under the PA, and only applicable after the proposed north Delta diversion becomes operational. Until the north Delta diversion becomes operational, only the OMR criteria under the current BiOps apply to CVP/SWP operations.

Biological Assessment for the California WaterFix July 2016

Combined Old and Middle River flows must be no less than values below (cfs)
(Water year type classification based Sacramento River 40-30-30 index)

<table>
<thead>
<tr>
<th>Month</th>
<th>W</th>
<th>AN</th>
<th>BN</th>
<th>D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>0</td>
<td>-3,500</td>
<td>-4,000</td>
<td>-5,000</td>
<td>-5,000</td>
</tr>
<tr>
<td>Feb</td>
<td>0</td>
<td>-3,500</td>
<td>-4,000</td>
<td>-4,000</td>
<td>-4,000</td>
</tr>
<tr>
<td>Mar</td>
<td>0</td>
<td>0</td>
<td>-3,500</td>
<td>-3,500</td>
<td>-3,500</td>
</tr>
<tr>
<td>Apr</td>
<td>varies</td>
<td>varies</td>
<td>varies</td>
<td>varies</td>
<td>varies</td>
</tr>
<tr>
<td>May</td>
<td>varies</td>
<td>varies</td>
<td>varies</td>
<td>varies</td>
<td>varies</td>
</tr>
<tr>
<td>Jun</td>
<td>varies</td>
<td>varies</td>
<td>varies</td>
<td>varies</td>
<td>varies</td>
</tr>
<tr>
<td>Jul</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Aug</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sep</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Head of Old River Operable (HOR) Gate Operations/Modeling assumptions (% OPEN)

<table>
<thead>
<tr>
<th>MONTH</th>
<th>HOR Gate<sup>a</sup></th>
<th>MONTH</th>
<th>HOR Gate<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct</td>
<td>50% (except during the pulse)<sup>b</sup></td>
<td>May</td>
<td>50%</td>
</tr>
<tr>
<td>Nov</td>
<td>100% (except during the post-pulse period)<sup>b</sup></td>
<td>Jun 1–15</td>
<td>50%</td>
</tr>
<tr>
<td>Dec</td>
<td>100%</td>
<td>Jun 16–30</td>
<td>100%</td>
</tr>
<tr>
<td>Jan</td>
<td>50%<sup>c</sup></td>
<td>Jul</td>
<td>100%</td>
</tr>
<tr>
<td>Feb</td>
<td>50%</td>
<td>Aug</td>
<td>100%</td>
</tr>
<tr>
<td>Mar</td>
<td>50%</td>
<td>Sep</td>
<td>100%</td>
</tr>
<tr>
<td>April</td>
<td>50%</td>
<td></td>
<td>50%</td>
</tr>
</tbody>
</table>

^a Values are monthly averages for use in modeling. The model compares these minimum allowable OMR values to 2008 USFWS BiOp RPA OMR requirements and uses the less negative flow requirement.

^b Based on San Joaquin inflow relationship to OMR provided below in Sub-Table B.

^c Two weeks before the D-1641 pulse (assumed to occur October 16-31 in the modeling), No OMR restrictions (for modeling purposes an OMR requirement of -5,000 cfs was assumed during this 2 week period)

Two weeks during the D-1641 pulse, no south Delta exports

Two weeks after the D-1641 pulse, -5,000 cfs OMR requirement (through November)

^d OMR restriction of -5,000 cfs for Sacramento River winter-run Chinook salmon when North Delta initial pulse flows are triggered or OMR restriction of -2,000 cfs for delta smelt when triggered.

For modeling purposes (to compute a composite Dec allowable OMR), remaining days were assumed to have an allowable OMR of -8000 cfs.

- **Chapter 3. Description of the Proposed Action**
- **Operations and Maintenance of New and Existing Facilities**

<table>
<thead>
<tr>
<th>MONTH</th>
<th>HOR Gate<sup>a</sup></th>
<th>MONTH</th>
<th>HOR Gate<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct</td>
<td>varies<sup>c</sup></td>
<td>Nov</td>
<td>varies<sup>c</sup></td>
</tr>
<tr>
<td>Dec</td>
<td>-5,000<sup>d</sup></td>
<td></td>
<td>-5,000<sup>d</sup></td>
</tr>
</tbody>
</table>

^a Percent of time the HOR gate is open. Agricultural barriers are in and operated consistent with current practices. HOR gate will be open 100% whenever flows are greater than 10,000 cfs at Vernalis.

HOR gate operation is triggered based upon State Water Board D-1641 pulse trigger. For modeling assumptions only, two weeks before the D-1641 pulse, it is assumed that the HOR gate will be open 50%.

^b During the D-1641 pulse (assumed to occur October 16-31 in the modeling), it is assumed the HOR gate will be closed.

For two weeks following the D-1641 pulse, it was assumed that the HOR gate will be open 50%.

Exact timing of the action will be based on hydrologic conditions.

^c The HOR gate becomes operational at 50% when salmon fry are migrating (based on real time monitoring). This generally occurs when flood flow releases are being made. For the purposes of modeling, it was assumed that salmon fry are migrating starting on January 1.

In the CALSIM II modeling, the “HOR gate open percentage” specified above is modeled as the percent of time within a month that HOR gate is open. In the DSM2 modeling, HOR gate is assumed to operate such that the above-specified percent of “the flow that would have entered the Old River if the HOR gate were fully open”, would enter the Old River.
Chapter 3. Description of the Proposed Action
Operations and Maintenance of New and Existing Facilities

Sub-Table B. San Joaquin Inflow Relationship to OMR

<table>
<thead>
<tr>
<th>April and May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>If San Joaquin flow at Vernalis is the following</td>
<td>If San Joaquin flow at Vernalis is the following</td>
</tr>
<tr>
<td>≤ 5,000 cfs</td>
<td>≤ 3,500 cfs</td>
</tr>
<tr>
<td>6,000 cfs</td>
<td>3,501 to 10,000 cfs</td>
</tr>
<tr>
<td>10,000 cfs</td>
<td>10,001 to 15,000 cfs</td>
</tr>
<tr>
<td>15,000 cfs</td>
<td>≥30,000 cfs</td>
</tr>
<tr>
<td>≥30,000 cfs</td>
<td>>15,000 cfs</td>
</tr>
</tbody>
</table>

3. Delta Cross Channel Gate Operations

Assumptions
Per SRWCB D-1641 with additional days closed from Oct 1 – Jan 31 based on NMFS BiOp (Jun 2009) Action IV.1.2 (closed during flushing flows from Oct 1 – Dec 14 unless adverse water quality conditions). This criterion is consistent with the No Action Alternative.

4. Rio Vista Minimum Instream Flows

Assumptions
Sep–Dec: Per D-1641; Jan-Aug: Minimum of 3,000 cfs

5. Delta Outflow

Delta Outflow
SWRCB D-1641 requirements, or outflow per requirements noted below, whichever is greater

<table>
<thead>
<tr>
<th>Months</th>
<th>Delta Outflow Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring (Mar–May):</td>
<td>Additional spring outflow requirement<sup>a</sup></td>
</tr>
<tr>
<td>Fall (Sep–Nov):</td>
<td>Implement USFWS 2008 BO Fall X2 requirement</td>
</tr>
</tbody>
</table>

Notes:
^a Additional Delta Outflow required during the Mar-May period to maintain Delta outflows that would occur under the No Action Alternative at the time North Delta Diversion would become operational (for modeling purposes this is represented by the No Action Alternative model with projected climate (Q5) and sea level conditions at Early Long-Term). Mar–May average Delta outflow targets for the PA are tabulated below for 10% exceedance intervals based on the modeled No Action Alternative Mar-May Delta outflow. Since 2009 NMFS BO San Joaquin River i-c ratio constraint is the primary driver for the Apr-May Delta outflow under the No Action Alternative, this criterion was used to constrain Apr-May TOTAL Delta exports under the PA to meet Mar-May Delta outflow targets.

<table>
<thead>
<tr>
<th>Percent Exceedance:</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Mar-May Delta Outflow Target (cfs)*:</td>
<td>44,500</td>
<td>44,500</td>
<td>35,000</td>
<td>27,900</td>
<td>20,700</td>
<td>16,800</td>
<td>13,500</td>
<td>11,500</td>
<td>9,100</td>
</tr>
</tbody>
</table>

[*] values based on the flow frequency of Mar – May average Delta Outflow modeled under No Action Alternative under Early Long-Term Q5 climate projections, without San Joaquin River Restoration Flows for this BA.
6. Operations for Delta Water Quality and Residence Time

Assumptions

Jul–Sep: Prefer south delta intake up to total pumping of 3,000 cfs; No specific intake preference beyond 3,000 cfs.

Oct–Jun: Prefer north delta intake;

(real-time operational flexibility)

7. In-Delta Agricultural and Municipal & Industrial Water Quality Requirements

Assumptions

Existing D-1641 AG and MI standards

8. D-1641 E-I Ratio Computation

Assumptions

In computing the E-I Ratio in the CALSIM II model, the North Delta Diversion is not included in the export term, and the Sacramento River inflow is as modeled downstream of the North Delta Intakes.
Flow criteria are applied seasonally (month by month) and according to the following five water-year types. Under the observed hydrologic conditions over the 82-year period (1922–2003), the number of years of each water-year type is listed below. The water-year type classification, unless otherwise noted, is based on the Sacramento Valley 40-30-30 Water Year Index defined under Revised D-1641.

- Wet (W) water-year: the wettest 26 years of the 82-year hydrologic data record, or 32% of years.
- Above-normal (AN) water-year: 12 years of 82, or 15%.
- Below-normal (BN) water-year: 14 years of 82, or 17%.
- Dry (D) water-year: 18 years of 82, or 22%.
- Critical (C) water-year: 12 years of 82, or 15%.

The above noted frequencies are expected to change slightly under projected climate conditions at year 2030. The number of years of each water-year type per D-1641 Sacramento Valley 40-30-30 Water Year Index under the projected climate condition assumed for this BA, over the 82-year period (1922–2003) is provided below. Appendix 5A, Section 5.A.3, Climate Change and Sea Level Rise provides more information on the assumed climate change projection at year 2030 for this BA.

- Wet water-year: the wettest 26 years of the 82-year hydrologic data record, or 32% of years.
- Above-normal water-year: 13 years of 82, or 16%.
- Below-normal water-year: 11 years of 82, or 13%.
- Dry water-year: 20 years of 82, or 24%.
- Critical water-year: 12 years of 82, or 15%.

3.3.2.1 **Operational Criteria for North Delta CVP/SWP Export Facilities**

The proposed operational criteria were developed based on the scientific information available at the time of document preparation and are intended to minimize project effects on listed species while providing water supply reliability. The proposed north Delta diversions will allow the PA to export water, consistent with applicable criteria, during periods of high flow. Thus, north Delta diversions will be greatest in wetter years and lowest in drier years, when south Delta diversions will provide the majority of the CVP/SWP exports. North Delta bypass flow criteria were developed primarily to avoid impacts on listed species, with the considerations enumerated below. Real time operations will also be used to adjust operations to further limit effects on listed species and maximize water supply benefits (Section 3.3.3, Real-Time Operational Decision-Making Process). Additionally, the PA operations include a preference for south Delta facility pumping in July through September to limit any potential water quality degradation in the south
Delta. Delta channel flows and diversions may be modified in response to real-time operational needs such as those related to Old and Middle Rivers (OMR), Delta Cross Channel operations (DCC), or North Delta bypass flows.

In addition to the bypass flow criteria described below and in Table 3.3-1, and Table 3.3-2, constraints incorporated in the design and operation of the north Delta intakes include the following.

- The new north Delta diversion intakes will consist of three separate intake units with a total, combined intake capacity not exceeding 9,000 cfs (maximum of 3,000 cfs per unit); details in Section 3.2.2, North Delta Diversions.

- Project conveyance will be provided by a tunnel capacity sized to provide for gravity-assisted flow from an IF to the south Delta pumping facilities when supported by sufficient flow conditions.

- The facility will, during operational testing and as needed thereafter, demonstrate compliance with the then-current NOAA, USFWS, and CDFW fish screening design and operating criteria, which govern such things as approach and sweeping velocities and rates of impingement. In addition, the screens will be operated to achieve the following performance standard: Maintain listed juvenile salmonid survival rates through the reach containing new north Delta diversion intakes (0.25 mile upstream of the upstream-most intake to 0.25 mile downstream of the downstream-most intake) of 95% or more of the existing survival rate in this reach. The reduction in survival of up to 5% below the existing survival rate will be cumulative across all screens and will be measured on an average monthly basis.

- The facility will precede full operations with a phased test period during which DWR, as project applicant, in close collaboration with NMFS and CDFW, will develop detailed plans for appropriate tests and use those tests to evaluate facility performance across a range of pumping rates and flow conditions. This phased testing period will include biological studies and monitoring efforts to enable the measurement of survival rates (both within the screening reach and downstream to Chipps Island), and other relevant biological parameters which may be affected by the operation of the new intakes.

- Operations will be managed at all times to avoid increasing the magnitude, frequency, or duration of flow reversals in the Sacramento River at the Georgiana Slough junction above pre-north Delta diversion intakes operations levels.

- The fish and wildlife agencies (i.e., USFWS, NMFS, and CDFW) retain responsibility for determination of the operational criteria and constraints (i.e., which pumping stations are operated and at what pumping rate) during testing. The fish and wildlife agencies are also responsible for evaluating and determining whether the diversion structures are achieving performance standards for listed species of fish over the course of operations. Consistent with the experimental design, the fish and wildlife agencies will also determine when the testing period should end and full operations consistent with developed operating criteria can commence. In making this determination, fish and wildlife agencies expect and will
consider that, depending on hydrology, it may be difficult to test for a full range of conditions prior to commencing full operations. Therefore, tests of the facility to ensure biological performance standards are met are expected to continue intermittently after full operations begin, to enable testing to be completed for different pumping levels during infrequently occurring hydrologic conditions.

- The Collaborative Science and Adaptive Management Program will, among other things, develop and use information focused on minimizing uncertainties related to the design and operation of the fish screens (Section 3.4.6 Collaborative Science and Adaptive Management Program).

- Once full operation begins, the real-time operations program (Section 3.3.3, Real-Time Operational Decision Making Process) will be used to ensure that adjustments in pumping are made when needed for fish protection or as appropriate for water supply, water quality, flood control, and/or fish protection purposes as described in Section 3.3.3 for each real-time operational component.

- The Collaborative Science and Adaptive Management Program will review the efficacy of the North Delta bypass criteria, to determine what adjustments, if any, are needed to further minimize adverse effects on listed species of fish.

The objectives of the north Delta diversion bypass flow criteria include regulation of flows to (1) maintain fish screen sweeping velocities, (2) minimize potential increase in upstream transport of productivity in the channels downstream of the intakes, (3) support salmonid and pelagic fish movements to regions of suitable habitat, (4) reduce losses to predation downstream of the diversions, and (5) maintain or improve rearing habitat conditions in the north Delta.

To ensure that these objectives are met, diversions must be restricted at certain times of the year that bracket the main juvenile salmon migration period (mostly from December through June). This is achieved by restricting the north Delta diversion to low level pumping (maximum diversion of 6% of Sacramento River flow measured upstream of the intakes up to 900 cfs [300 cfs per intake]) when the juvenile fish begin their outmigration, which generally coincides with seasonal high flows triggered by fall/winter rains followed by a ramping up of allowable diversion rates, while ensuring flows are adequate to be protective of aquatic species during the remainder of the outmigration. Additional but less restrictive requirements apply for the late spring to late fall period.

A flow condition will be categorized as an initial flow pulse based on real-time monitoring of flow at Wilkins Slough and movement of listed juvenile salmonids (as described in Section 3.3.3.1, North Delta Diversion). The definition of the initial flow pulse is provided below in Table 3.3-1, which, along with real time monitoring of fish movement, will be used to determine the fish pulse. If the initial pulse begins and ends before December 1, the Level 1 post pulse criteria for May will go into effect after the pulse until December 1. On December 1, the post-pulse rules defined below for December through April, starting with Level 1, apply. If a second pulse, as defined above, occurs, the second pulse will have the same protective operations as the first pulse.
Chapter 3: Description of the Proposed Action
Conservation Measures

At the end of the pulse phase, post-pulse operations described in Table 3.3-3 will apply, with potential adjustments made based on real-time operations. The conditions that trigger the transition from the pulse protection to post-pulse operations are described in Table 3.3-2, along with bypass operating rules for the post-pulse phase, which provide maximum allowable levels of diversion for a given Sacramento River inflow measured upstream of the intakes. Additionally, as described in Table 3.3-3, there will be biologically based triggers to allow for transitioning between and among the different diversion levels shown in Table 3.3-2 (Section 3.3.3.1, North Delta Diversion).

In July through September, the bypass rules are less restrictive, allowing for a greater proportion of the Sacramento River flow to be diverted, as described in Table 3.3-1. In October through November, the bypass amount is increased from 5,000 cfs to 7,000 cfs, allowing a smaller proportion of the Sacramento River flow to be diverted during the fall months.

In addition, north Delta diversion at the three intakes are subjected to approach velocity and sweeping velocity restrictions at the proposed fish screens. Appendices 5A and 5B describes the assumptions used in modeling the sweeping velocity restrictions on the north Delta diversion.

3.3.2.2 Operational Criteria for South Delta CVP/SWP Export Facilities

The objective of the new south Delta flow criteria is to further minimize take at south Delta pumps by reducing the hydrodynamic effects of south Delta operations that may affect fish movement and migration routing during critical periods for listed fish species. The south Delta channel flow criteria are based on the parameters for Old and Middle River (OMR) flows and the San Joaquin River inflow, as summarized below and in Table 3.3-1 and Table 3.3-2, and HOR gate operations (summarized in Section 3.3.2.3, Operational Criteria for the Head of Old River Gate).

Additionally, the PA operations include a preference for south Delta pumping in July through September to provide limited flushing flows to manage water quality in the south Delta.

The OMR flow criteria chiefly serve to constrain the magnitude of reverse flows in the Old and Middle Rivers to limit fish entrainment into the south Delta and increase the likelihood that Delta smelt can successfully reproduce in the San Joaquin River. The rational for using OMR flow criteria is based on the USFWS (2008) and NMFS (2009) BiOp RPA Actions, and are described in Table 3.3-1 and Table 3.3-2. These newly proposed additional OMR criteria (and associated HOR gate operations in Section 3.3.2.3, Operational Criteria for the Head of Old River Gate) are designed primarily to secure operations that are expected to provide beneficial changes in south Delta flows under the PA, (i.e., they would lessen reverse flows in Old and Middle Rivers); and they are only applicable only after the proposed north Delta diversion becomes operational.
In April, May, and June, minimum allowable OMR flow values would be based upon the San Joaquin River inflow (Table 3.3-1 and Table 3.3-2). In October and November, OMR and south Delta export restrictions are based upon State Water Board D-1641 pulse trigger, as follows.24

- Two weeks before the State Water Board D-1641 pulse trigger: no OMR restrictions.
- During State Water Board D-1641 pulse trigger: no south Delta exports.
- Two weeks following State Water Board D-1641 pulse trigger: OMR operated to be no more negative than -5,000 cfs through November.

Additionally, new criteria based on the water year type in December through March will be implemented as described in detail in Table 3.3-1. The new criteria generally constrain the south Delta exports more under the wetter years compared to the requirements under the USFWS (2008) and NMFS (2009) BiOps. The new OMR criteria (and associated HOR gate operations) are primarily to preserve the reduced reverse flow conditions under the PA, and are only applicable after the proposed north Delta diversion becomes operational. Until the north Delta diversion becomes operational only the OMR criteria under the current BiOps apply to CVP/SWP operations.

\subsection*{3.3.2.3 Operational Criteria for the Head of Old River Gate}

As described in Section 3.2, \textit{Conveyance Facility Construction}, a new permanent, operable gate at the head of Old River (at the divergence from the San Joaquin River) will be constructed and operated to protect outmigrating San Joaquin River salmonids in the spring and to provide water quality improvements in the San Joaquin River in the fall. The new HOR gate will replace the temporary rock barrier that is typically installed at the same location. (Temporary agricultural barriers on Middle River and Old River near Tracy and Grant Line Canal will continue to be installed consistent with current operations). Operation of the HOR gate could vary from completely open (lying flat on the channel bed) to completely closed (erect in the channel, prohibiting any flow of San Joaquin River water into Old River), with the potential for operations in between that will allow partial flow. The operational criteria are described in Table 3.3-1. The actual operation of the gate will be determined by real-time operations (Section 3.3.3, \textit{Real-Time Operational Decision-Making Process}) based on actual flows and/or fish presence.

- \textbf{October 1–November 30th}: The HOR gate will be closed to coincide with and protect the D-1641 upstream pulse flow releases and adult salmonid migration as specified in Table 3.3-1. Priority management in these two months is for protecting flow for upstream migrating adult salmonids accessing the San Joaquin River tributaries for spawning.

- \textbf{January}: The initial operating criterion will be to close the gate when juvenile salmonids are first detected in monitoring. Gate shall remain closed while fish are present, but

24 For the purposes of modeling, it was assumed that the D-1641 pulse in San Joaquin River occurs in the last 2 weeks of October.
Chapter 3: Description of the Proposed Action
Conservation Measures

subject to RTO for purposes of water quality, stage, and flood control considerations. The agencies will actively explore the implementation of reliable juvenile salmonid tracking technology that may enable shifting to a more flexible real time operating criterion based on the presence/absence of listed fishes.

- **February–June 15:** The gate will be closed, but subject to RTO for purposes of water quality, stage, and flood control considerations (Section 3.3.3, *Real-Time Operational Decision-Making Process*). The agencies will actively explore the implementation of reliable juvenile salmonid tracking technology that may enable shifting to a more flexible real time operating criterion based on the presence/absence of listed fishes.

- **June 16 to September 30, December:** Operable gates will be open.

- To reduce downstream flood risks based on current conditions, HOR gate will remain open if San Joaquin River flow at Vernalis is greater than 10,000 cfs (threshold may be revised to align with any future flood protection actions).

3.3.2.4 Operational Criteria for the Delta Cross Channel Gates

The Delta Cross Channel (DCC) is a gated diversion channel in the Sacramento River near Walnut Grove and Snodgrass Slough (Appendix 3.A *Map Book for the Proposed Action*, Sheet 5) that is owned and operated by Reclamation. No changes to DCC operational criteria from the operations described in D-1641 and the USFWS (2008) and NMFS (2009) BiOps are proposed. Flows into the DCC from the Sacramento River are controlled by two 60-foot by 30-foot radial gates. When the gates are open, water flows from the Sacramento River through the cross channel to channels of the lower Mokelumne and San Joaquin Rivers toward the interior Delta. The DCC operation improves water quality in the interior Delta by improving circulation patterns of higher-quality water from the Sacramento River toward Delta diversion facilities.

Reclamation operates the DCC in the open position to (1) improve water quality in the interior Delta, and (2) reduce saltwater intrusion rates in the western Delta. During the late fall, winter, and spring, the gates are often periodically closed to protect out-migrating salmonids from entering the interior Delta. In addition, whenever flows in the Sacramento River at Sacramento reach 20,000 to 25,000 cfs (on a sustained basis), the gates are closed to reduce potential scouring and flooding that might occur in the channels on the downstream side of the gates.

Flow rates through the gates are determined by Sacramento River stage and are not affected by export rates in the south Delta. The DCC also serves as a link between the Mokelumne River and the Sacramento River for small craft. It is used extensively by recreational boaters and anglers whenever it is open. Because alternative routes around the DCC are quite long, Reclamation tries to provide adequate notice of DCC closures so boaters may plan for the longer excursion.

Under the PA, the DCC will continue to be operated as it is now operated under the terms of the NMFS (2009) BiOp. The gates will be closed if fish are present in October and November, with closure decisions at that time reached through the existing real-time operations process described in Section 3.3.3, *Real-Time Operational Decision Making Process*. The CALSIM II modeling assumed DCC operations as required by NMFS (2009) BiOp RPA Action IV.1.2 by using a
regression of Sacramento River monthly flow at Wilkins Slough and the number of days in the month when the daily flow would be greater than 7500 cfs. The latter was assumed to be an indicator that salmonids would be migrating to the delta. In the modeling, DCC gates are closed for the same number of days as Wilkins Slough is estimated to exceed 7500 cfs during October 1 through December 14, and the gates may be opened if the D-1641 Rock Slough salinity standard is violated because of the gate closure. DCC gates are assumed to be closed during December 15 through January 31. February 1 through June 15, DCC gates are operated based on D-1641 requirements.

3.3.2.5 Operational Criteria for the Suisun Marsh Facilities

The Suisun Marsh facilities are jointly operated by CVP/SWP and include the Suisun Marsh Salinity Control Gates (SMSCG), Roaring River Distribution System (RRDS), Morrow Island Distribution System (MIDS), and Goodyear Slough Outfall. No changes to the operations of the Suisun Marsh facilities from those described in the USFWS (2008) and NMFS (2009) BiOps are proposed.

3.3.2.5.1 Suisun Marsh Salinity Control Gates

The SMSCG are located on Montezuma Slough about two miles downstream from the confluence of the Sacramento and San Joaquin Rivers, near Collinsville (Appendix 3.A Map Book for the Proposed Action, Sheet 17). Operation of the SMSCG began in October 1988 as Phase II of the Plan of Protection for the Suisun Marsh. The objective of SMSCG operation is to decrease the salinity of the water in Montezuma Slough. The facility, spanning the 465-foot width of Montezuma Slough, consists of a boat lock, a series of three radial gates, and removable flashboards. The gates control salinity by restricting the flow of higher salinity water from Grizzly Bay into Montezuma Slough during incoming tides and retaining lower salinity Sacramento River water from the previous ebb tide. Operation of the gates in this fashion lowers salinity in Suisun Marsh channels and results in a net movement of water from east to west.

When Delta outflow is low to moderate and the gates are not operating, tidal flow past the gate is approximately 5,000 to 6,000 cfs while the net flow is near zero. When operated, flood tide flows are arrested while ebb tide flows remain in the range of 5,000 to 6,000 cfs. The net flow in Montezuma Slough becomes approximately 2,500 to 2,800 cfs. The Corps of Engineers permit for operating the SMSCG requires that it be operated between October and May only when needed to meet Suisun Marsh salinity standards. Historically, the gate has been operated as early as October 1, while in some years (e.g., 1996) the gate was not operated at all. When the channel water salinity decreases sufficiently below the salinity standards or at the end of the control season, the flashboards are removed and the gates raised to allow unrestricted movement through Montezuma Slough. Details of annual gate operations can be found in “Summary of Salinity Conditions in Suisun Marsh During WYs 1984–1992”, or the “Suisun Marsh Monitoring Program Data Summary” produced annually by DWR, Division of Environmental Services.

The approximately 2,800 cfs net flow induced by SMSCG operation is effective at moving the salinity downstream in Montezuma Slough. Salinity is reduced by roughly one-hundred percent at Beldons Landing, and lesser amounts further west along Montezuma Slough. At the same time, the salinity field in Suisun Bay moves upstream as net Delta outflow (measured nominally
at Chipps Island) is reduced by gate operation. Net outflow through Carquinez Strait is not affected.

The boat lock portion of the gate is held open at all times during SMSCG operation to allow for continuous salmon passage opportunity. With increased understanding of the effectiveness of the gates in lowering salinity in Montezuma Slough, salinity standards have been met with less frequent gate operation, compared to the early years of operations (prior to 2006). For example, despite very low outflow in fall 2007 and fall 2008, gate operation was not required at all in 2007, and was limited to 17 days during winter 2008. Assuming no significant, long-term changes in the drivers mentioned above, this level of operational frequency (10 to 20 days per year) can generally be expected to continue to meet standards in the future except perhaps during the most critical hydrologic conditions and/or other conditions that affect Delta outflow.

3.3.2.5.2 Roaring River Distribution System
The RRDS (Appendix 3.A Map Book for the Proposed Action, Sheet 17) was constructed during 1979 and 1980 as part of the Initial Facilities in the Plan of Protection for the Suisun Marsh. The system was constructed to provide lower salinity water to 5,000 acres of private and 3,000 acres of DFG-managed wetlands on Simmons, Hammond, Van Sickle, Wheeler, and Grizzly islands.

The RRDS includes a 40-acre intake pond that supplies water to Roaring River Slough. Motorized slide gates in Montezuma Slough and flap gates in the pond control flows through the culverts into the pond. A manually operated flap gate and flashboard riser are located at the confluence of Roaring River and Montezuma Slough to allow drainage back into Montezuma Slough for controlling water levels in the distribution system and for flood protection. DWR owns and operates this drain gate to ensure the Roaring River levees are not compromised during extremely high tides.

Water is diverted through a bank of eight 60-inch-diameter culverts equipped with fish screens into the Roaring River intake pond on high tides to raise the water surface elevation in RRDS above the adjacent managed wetlands. Managed wetlands north and south of the RRDS receive water, as needed, through publicly and privately owned turnouts on the system.

The intake to the RRDS is screened to prevent entrainment of fish larger than approximately 25 mm. DWR designed and installed the screens based on CDFW criteria. The screen is a stationary vertical screen constructed of continuous-slot stainless steel wedge wire. All screens have 3/32-inch slot openings. To minimize the risk of delta smelt entrainment, RRDS diversion rates are controlled to maintain an average approach velocity below 0.2 ft/s at the intake fish screen. Initially, the intake culverts were held at about 20% capacity to meet the velocity criterion at high tide. Since 1996, the motorized slide gates have been operated remotely to allow hourly adjustment of gate openings to maximize diversion throughout the tide.

3.3.2.5.3 Morrow Island Distribution System
The MIDS (Appendix 3.A Map Book for the Proposed Action, Sheet 17) was constructed in 1979 and 1980 in the south-western Suisun Marsh as part of the Initial Facilities in the Plan of Protection for the Suisun Marsh. The contractual requirement for Reclamation and DWR is to provide water to the ownerships so that lands may be managed according to approved local management plans. The system was constructed primarily to channel drainage water from the
adjacent managed wetlands for discharge into Suisun Slough and Grizzly Bay. This approach increases circulation and reduces salinity in Goodyear Slough.

The MIDS is used year-round, but most intensively from September through June. When managed wetlands are filling and circulating, water is tidally diverted from Goodyear Slough just south of Pierce Harbor through three 48-inch culverts. Drainage water from Morrow Island is discharged into Grizzly Bay by way of the C-Line Outfall (two 36-inch culverts) and into the mouth of Suisun Slough by way of the M-Line Outfall (three 48-inch culverts), rather than back into Goodyear Slough. This helps prevent increases in salinity due to drainage water discharges into Goodyear Slough. The M-Line ditch is approximately 1.6 miles in length and the C-Line ditch is approximately 0.8 miles in length.

3.3.2.5.4 Goodyear Slough Outfall
The Goodyear Slough Outfall (Appendix 3.A Map Book for the Proposed Action, Sheet 17) was constructed in 1979 and 1980 as part of the Initial Facilities in the Plan of Protection for the Suisun Marsh. A channel approximately 69 feet wide was dredged from the south end of Goodyear Slough to Suisun Bay (about 2,800 feet). The excavated material was used for levee construction. The control structure consists of four 48-inch culverts with flap gates on the bay side. On ebb tides, Goodyear Slough receives watershed runoff from Green Valley Creek and, to a lesser extent, Suisun Creek. The system was designed to draw creek flow south into Goodyear Slough, and thereby reduce salinity, by draining water one-way from the lower end of Goodyear Slough into Suisun Bay on the ebb tide. The one-way flap gates at the Outfall close on flood tide keeping saltier bay water from mixing into the slough. The system creates a small net flow in the southerly direction overlaid on a larger, bidirectional tidal flow. The system provides lower salinity water to the wetland managers who flood their ponds with Goodyear Slough water. Another initial facility, the MIDS, diverts from Goodyear Slough and receives lower salinity water. Since the gates are passively operated (in response to water surface elevation differentials) there are no operations schedules or records. The system is open for free fish movement except very near the Outfall when flap gates are closed during flood tides.

3.3.2.6 Operational Criteria for the North Bay Aqueduct Intake
The Barker Slough Pumping Plant diverts water from Barker Slough into the North Bay Aqueduct (NBA) for delivery in Napa and Solano Counties. Maximum pumping capacity is 175 cubic feet per second (cfs) (pipeline capacity). During the past few years, daily pumping rates have ranged between 0 and 140 cfs. The current maximum pumping rate is 140 cfs due to the physical limitations of the existing pumps. Growth of biofilm in a portion of the pipeline also limits the NBA ability to reach its full pumping capacity.

The NBA intake is located approximately 10 miles from the mainstem Sacramento River at the end of Barker Slough (Appendix 3.A Map Book for the Proposed Action, Sheet 17). Per salmon screening criteria, each of the ten NBA pump bays is individually screened with a positive barrier fish screen consisting of a series of flat, stainless steel, wedge-wire panels with a slot width of 3/32 inch. This configuration is designed to exclude fish approximately one inch or larger from being entrained. The bays tied to the two smaller units have an approach velocity of about 0.2 feet per second (ft/s). The larger units were designed for a 0.5 ft/s approach velocity,
but actual approach velocity is about 0.44 ft/s. The screens are routinely cleaned to prevent excessive head loss, thereby minimizing increased localized approach velocities.

The NBA fish screens are also designed to comply with USFWS criteria for delta smelt protection (Reclamation 2008), which are likewise protective of longfin smelt. A larval delta smelt monitoring program occurs each spring in the sloughs near NBA. This monitoring program is used to trigger NBA export reductions when delta smelt larvae are nearby.

Delta smelt monitoring was required at Barker Slough under the March 6, 1995 OCAP BiOp. Starting in 1995, monitoring was required every other day at three sites from mid-February through mid-July, when delta smelt may be present. As part of the Interagency Ecological Program, DWR has contracted with DFW to conduct the required monitoring each year since the BO was issued. Details about the survey and data are available on DFG’s website (http://www.delta.dfg.ca.gov/data/NBA). Beginning in 2008, the NBA larval sampling was replaced by an expanded 20-mm survey (described at http://www.delta.dfg.ca.gov/data/20mm) that has proven to be fairly effective at tracking delta smelt distribution and reducing entrainment. The expanded survey covers all existing 20-mm stations, in addition to a new suite of stations near the NBA. The expanded survey also has an earlier seasonal start and stop date to focus on the presence of larvae in the Delta. These surveys also collect information on longfin smelt.

3.3.3 Real-Time Operational Decision-Making Process

The real-time operational decision-making process (real-time operations (RTO)) allows short-term (i.e., daily and weekly) adjustments to be made to water operations, within the range of criteria described in Section 3.3.1, Implementation, and Section 3.3.2, Operational Criteria. RTO will be implemented to maximize water supply for CVP/SWP, subject to providing the necessary protections for listed species, through the existing decision-making process and related technical work teams identified in Section 3.1.5.2 Groups Involved in Real-Time Decision Making and Information Sharing.

To complement the RTO process, the Action Agencies (DWR and Reclamation) can convene a separate real time operations coordination team (RTOCT) that includes representatives of USFWS, NMFS, CDFW, DWR and Reclamation. DWR and Reclamation also will designate one representative of the SWP contractors and one representative of the CVP contractors as participants on the coordination team in an advisory capacity. This RTOCT effort will assist DWR and Reclamation in fulfilling their responsibility to inform the SWP and CVP participants regarding available information and real-time decisions. This coordination effort may also periodically review how to enhance or strengthen the scientific and technical information used to inform decision-making, and how to communicate with the public and other interested parties.

The Action Agencies and fish and wildlife agency representatives will confer with the SWP and CVP contractor representatives regarding ideas, options and additional funding to enhance the

25 The decision-making process and technical work teams identified here are provisional and may be subject to further revision, either through future coordination or as developed through the Collaborative Science and Adaptive Management Program described in Section 3.4.6.
information available for decisions on RTO. The SWP and CVP contractor representatives will confer with other SWP and CVP contractors regarding RTOTC coordination and decisions. This RTOCT is intended to supplement the existing process and teams. This may result in recommendations being made through the DCT. Decision-making will still happen as it currently does under the USFWS (2008) and NMFS (2009) BiOps, as outlined in Appendix 1: Project Description to the NMFS 2009 BiOp where it states (p.28):

“The process to identify actions for protection of listed species varies to some degree among species but follows this general outline: A Fisheries or Operations Technical Team compiles and assesses current information regarding species, such as stages of reproductive development, geographic distribution, relative abundance, physical habitat conditions, then provides a recommendation to the agency with statutory obligation to enforce protection of the species in question. The agency’s staff and management will review the recommendation and use it as a basis for developing, in cooperation with Reclamation and DWR, a modification of water operations that will minimize adverse effects to listed species by the Projects. If the Project Agencies do not agree with the action, then the fishery agency with the statutory authority will make a final decision on an action that they deem necessary to protect the species. In the event it is not possible to refine the proposed action in order that it does not violate section 7(a)(2) of the ESA, the Project and fisheries agencies will reinitiate consultation.

The outcomes of protective actions that are implemented will be monitored and documented, and this information will inform future recommended actions.”

The operational adjustments made through the RTO processes apply only to the facilities and activities identified in the PA. RTOs are expected to be needed during at least some part of the year at the north and south Delta diversions and the HOR gate. The extent to which real time adjustments that may be made to each parameter related to these facilities shall be limited by the criteria and/or ranges set out in Section 3.3.2, Operational Criteria. That is, operational adjustments shall be consistent with the criteria, and within any ranges, established in the PA. Subsections 3.3.3.1, North Delta Diversion; 3.3.3.2, South Delta Diversion; and 3.3.3.3, Head of Old River Gate, provide considerations for the real-time operations. Any modifications to the criteria and/or ranges set out in the operating criteria shall occur through the adaptive management Program, and the effects of any such modifications shall be analyzed by Reclamation and DWR, in consultation with NMFS and USFWS, to determine if Reclamation and DWR should reinitiate consultation prior to implementation. Nothing in this section shall limit the Services ability to make adjustments pursuant to existing BiOps or limit their existing authorities to exercise discretion pursuant to existing regulations and procedures.

The CVP-SWP operators conduct seasonal planning of the CVP-SWP operations, taking into account many factors such as the existing regulatory requirements, forecasted hydrology, contractual demands, etc. The operators also consider any recommendations resulting from the RTO decision making to minimize adverse effects for listed species while meeting permit requirements and contractual obligations for water deliveries.

3.3.3.1 North Delta Diversion

Operations for North Delta bypass flows will be managed according to the following criteria:
• **October, November**: Minimum bypass flows of 7,000 cfs required after diverting at the North Delta intakes.

• **December through June**: Post-pulse bypass flow operations will not exceed Level 1 pumping unless specific criteria have been met to increase to Level 2 or Level 3. If those criteria are met, operations can proceed as defined in Table 3.3-1 and Table 3.3-2. The specific criteria for transitioning between and among pulse protection, Level 1, Level 2, and/or Level 3 operations, will be developed and based on real-time fish monitoring and hydrologic/behavioral cues upstream of and in the Delta. During operations, adjustments are expected to be made to improve water supply and/or migratory conditions for fish by making real-time adjustments to the pumping levels at the north Delta diversions. These adjustments will be managed under RTOs as described below.

• **July, August, September**: Minimum bypass flows of 5,000 cfs required after diverting at the north Delta diversion intakes.

Real-time operations of the north Delta intakes are intended to allow for the project objective of water diversion while also providing the protection needed to migrating and rearing salmonids. RTOs will be a key component of NDD operations, and will likely govern operations for the majority of the December through June salmonid migration period. Under RTOs, the NDD would be operated within the range of Levels 1-3, depending on risk to fish and with consideration for other factors such as water supply and other Delta conditions, and by implementing pulse protection periods when primary juvenile winter-run Chinook salmon migration is occurring. Post-pulse bypass flow operations will remain at Level 1 pumping while juvenile salmonids are migrating through and rearing in the north Delta, unless it is determined through initial operating studies that an equivalent level of protection can still be provided at Level 2 or 3 pumping. The specific criteria for transitioning between and among pulse protection, Level 1, Level 2, and/or Level 3 operations, will be based on real-time fish monitoring and hydrologic/behavioral cues upstream of and in the Delta that will be studied as part of the PA’s Collaborative Science and Adaptive Management Plan (Section 3.4.6). Based on the outcome of the studies listed in Section 3.4.6, information about appropriate triggers, off-ramps, and other RTO management of NDD operations will be integrated into the operations of the PA. The RTOs will be used to support the successful migration of salmonids past the NDD and through the Delta, in combination with other operational components of the PA.\(^{26}\)

The following operational framework serves as an example based on the recommended NDD RTO process (Marcinkevage and Kundargi 2016). A 5-agency technical team co-chaired by NMFS and CDFW will develop the RTO process based on a science plan developed through the collaborative science process and finalized through the adaptive management process prior to commencement of actual operations of the north Delta facilities.

\(^{26}\) Operations necessary to support Delta rearing of juvenile salmonids will be addressed through the adaptive management program, due to limited information on rearing flow needs at this time.
3.3.3.1.1 **Pulse-Protection**

- A fish pulse is defined as catch of X_p winter-run-sized Chinook salmon in a single day at a specified location\(^{27}\).

- Upon initiation of fish pulse, operations must reduce to low-level pumping.

- Pumping may not exceed low-level pumping for the duration of fish pulse. A fish pulse is considered over after X^2 consecutive days with daily winter-run-sized Chinook salmon catch less than X_p at or just downstream of the new intakes\(^{27}\).

- Operations may increase to Level 1 when the fish pulse is over as described in the above criteria are met.

- A second fish pulse, if detected using the same definition (catch of X_p winter-run-sized Chinook salmon in a single day at a specified location), is given the same low-level pumping protection as the first pulse if the first pulse occurred before December [1]\(^{28}\). Otherwise, operations remain at Level 1 during the second fish pulse.

- A maximum of two fish pulses are protected in a year.

- After protection of pulse(s), post-pulse migration protection criteria are imposed.

3.3.3.1.2 **Post-Pulse Migration Protection**

- Post-pulse operations must remain at Level 1 until combined catch at all Sacramento stations is below X_a\(^{29}\) for five consecutive days and bypass flows are greater than 20,000 cfs for 15 non-consecutive days (as stated in Table 3.3-2). If both conditions are met, operations may transition to Level 2.

- Operations at Level 2 can remain at Level 2 as long as there is no subsequent fish migration event detected, in which case operations would revert back to level 1 (see following two bullets). Provided there are no fish migration events detected, operations must remain at Level 2 until bypass flows are greater than 20,000 cfs for 15 (additional) non-consecutive days (as stated in Table 3.3-2). If both conditions are met, operations may transition to Level 3.

- A fish migration event is defined as catch of X_m Chinook salmon of any size or run in a single day at a specific location\(^{30}\).

- Upon initiation of a migration event, operations must revert back to Level 1 (if not already there) for migration protection.

\(^{27}\) Triggers will be developed from data provided by monitoring stations.

\(^{28}\) Triggers and the exact date in December will be developed from data provided by monitoring stations. Effects analysis based on pulse protection period ending December 1st.

\(^{29}\) X_a – Specific durations and triggers will be developed from data provided by monitoring stations.

\(^{30}\) X_m – Specific durations and triggers will be developed from data provided by monitoring stations.
• Migration protection operations must be maintained at Level 1 until the combined catch at all Sacramento stations is below X_a for X^3 consecutive days. If this criteria is met, operations may return to the pre-migration event level (i.e., Level 2 or Level 3).

3.3.3.2 South Delta Diversions

The south Delta diversions will be managed under RTO throughout the year based on fish protection triggers (e.g., salvage density, calendar, species distribution, entrainment risk, turbidity, and flow based triggers [Table 3.3-3]). Increased restrictions as well as relaxations of the OMR criteria outside of the range defined in Table 3.3-3 may occur through adaptive management as a result of observed physical and biological information. Additionally, RTO will also be managed to distribute pumping activities among the three north Delta and two south Delta intake facilities to maximize both survival of listed fish species in the Delta and water supply.

<table>
<thead>
<tr>
<th>First Stage Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Daily CVP/SWP older juvenile Chinook salmon loss density (fish per TAF) is greater than incidental take limit divided by 2,000 (2% WRJPE ÷ 2,000), with a minimum value of 2.5 fish per taf, or</td>
</tr>
<tr>
<td>(2) Daily CVP/SWP older juvenile Chinook salmon loss is greater than 8 fish per TAF multiplied by volume exported (in TAF), or</td>
</tr>
<tr>
<td>(3) Coleman National Fish Hatchery coded wire tagged late fall-run Chinook salmon or Livingston Stone National Fish Hatchery coded wire tagged winter-run Chinook salmon cumulative loss is greater than 0.5% for each surrogate release group, or</td>
</tr>
<tr>
<td>(4) Daily loss of wild steelhead (intact adipose fin) is greater than 8 fish per TAF multiplied by volume exported (in TAF).</td>
</tr>
<tr>
<td>Response:</td>
</tr>
<tr>
<td>• Reduce exports to achieve an average net OMR flow of -3,500 cfs for a minimum of 5 consecutive days. The 5-day running average OMR flows will be no more than 25% more negative than the targeted flow level at any time during the 5-day running average period (e.g., -4,375 cfs average over 5 days).</td>
</tr>
<tr>
<td>• Resumption of -5,000 cfs flows is allowed when average daily fish density is less than trigger density for the last 3 days of export reduction. Reductions are required when any one criterion is met.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Stage Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Daily CVP/SWP older juvenile Chinook salmon loss density (fish per TAF) is greater than incidental take limit divided by 1,000 (2% of WRJPE ÷ 1,000), with a minimum value of 5 fish per TAF, or</td>
</tr>
<tr>
<td>(2) Daily CVP/SWP older juvenile Chinook salmon loss is greater than 12 fish per TAF multiplied by volume exported (in TAF), or</td>
</tr>
<tr>
<td>(3) Daily loss of wild steelhead (intact adipose fin) is greater than 12 fish per TAF multiplied by volume exported (in TAF).</td>
</tr>
<tr>
<td>Response:</td>
</tr>
<tr>
<td>• Reduce exports to achieve an average net OMR flow of -2,500 cfs for a minimum 5 consecutive days. Resumption of -5,000 cfs flows is allowed when average daily fish density is less than trigger density for the last 3 days of export reduction. Reductions are required when any one criterion is met.</td>
</tr>
</tbody>
</table>
Chapter 3: Description of the Proposed Action

Conservation Measures

End of Triggers

- Continue action until June 15 or until average daily water temperature at Mossdale is greater than 72°F (22°C) for 7 consecutive days (1 week), whichever is earlier.

Response:
- If trigger for end of OMR regulation is met, then the restrictions on OMR are lifted for the remainder of the water year.

\[^a \text{Salvage density triggers modify PA operations only within the ranges proposed in Table 3.3-1. Triggers will not be implemented in a manner that reduces water supplies in amounts greater than modeled outcomes.} \]

\[^b \text{Older juvenile Chinook salmon is defined as any Chinook salmon that is above the minimum length for winter-run Chinook salmon, according to the Delta Model length-at-date table used to assign individuals to race.} \]

\[^c \text{Three consecutive days in which the combined loss numbers are below the action triggers are required before the OMR flow reductions can be relaxed to no more negative than -5,000 cfs. A minimum of 5 consecutive days of export reduction are required for the protection of listed salmonids under the action. Starting on day 3 of the export curtailment, the level of fish loss must be below the action triggers for the remainder of the 5-day export reduction to relax the OMR requirements on day 6. Any exceedance of a more conservative trigger restarts the 5-day OMR action response with the 3 consecutive days of loss monitoring criteria.} \]

TAF = thousand acre-feet.

WRJPE = the current year’s winter-run Chinook salmon juvenile production estimate.

3.3.3.3 Head of Old River Gate

Operations for the HOR gate will be managed under RTOs as follows.

- **October 1–November 30th:** The HOR gate will be closed to coincide with and protect the D-1641 upstream pulse flow releases and adult salmonid migration as specified in Table 3.3-1. Priority management in these two months is for protecting flow for upstream migrating adult salmonids accessing the San Joaquin River tributaries for spawning.

- **January:** The initial operating criterion will be to close the gate when juvenile salmonids are first detected in monitoring. Gate shall remain closed while fish are present, but subject to RTO for purposes of water quality, stage, and flood control considerations. The agencies will actively explore the implementation of reliable juvenile salmonid tracking technology that may enable shifting to a more flexible real time operating criterion based on the presence/absence of listed fishes.

- **February–June 15th:** The gate will be closed, but subject to RTO for purposes of water quality, stage, and flood control considerations. The agencies will actively explore the implementation of reliable juvenile salmonid tracking technology that may enable shifting to a more flexible real time operating criterion based on the presence/absence of listed fishes.

- **June 16 to September 30, December:** Operable gates will be open.

- To reduce downstream flood risks based on current conditions, HOR gate will remain open if San Joaquin River flow at Vernalis is greater than 10,000 cfs (threshold may be revised to align with any future flood protection actions).
3.3.4 Operation of South Delta Facilities

This section describes how the existing South Delta facilities, including the CVP’s C.W. “Bill” Jones Pumping Plant and Tracy Fish Collection Facility and the SWP’s Harvey O. Banks Pumping Plant and Skinner Delta Fish Protective Facility, are operated to minimize the risks of predation and entrainment of listed species of fish, and how the Clifton Court Forebay is managed for control of invasive aquatic vegetation. These operations are unchanged from those described in and regulated by the USFWS (2008) and NMFS (2009) BiOps.

3.3.4.1 C.W. “Bill” Jones Pumping Plant and Tracy Fish Collection Facility

The CVP and SWP use the Sacramento River, San Joaquin River, and Delta channels to transport water to export pumping plants located in the south Delta. The CVP’s Jones PP, about five miles north of Tracy, consists of six available pumps. The Jones PP is located at the end of an earth-lined intake channel about 2.5 miles in length. At the entrance to the intake channel, louver screens (that are part of the Tracy Fish Collection Facility) intercept fish, which are then collected, held, and transported by tanker truck to release sites more than 20 km away from the pumping plants, in the west Delta near the Sacramento/San Joaquin confluence. Currently those sites include the Emmaton and Delta Base release sites for the CVP, and the Curtis Landing and Horseshoe Bend release sites for the SWP.

Jones Pumping Plant has a permitted diversion capacity of 4,600 cfs with maximum pumping rates capable of achieving that capacity.

The Tracy Fish Collection Facility (TFCF) is located in the south-west portion of the Sacramento-San Joaquin Delta and uses behavioral barriers consisting of primary louvers and secondary screens to guide entrained fish into holding tanks before transport by truck to release sites within the Delta. The primary louvers are located in the primary channel just downstream of a trashrack structure. The secondary screens consist of a travelling positive barrier fish screen. The louvers and screens allow water to pass through into the pumping plant but the openings between the slats prevent fish with a body width greater than 2 inches from passing between them and redirect them toward one of four bypass entrances along the louver arrays. Smaller fish, that can pass through the louvers, may be behaviorally redirected by the louver structure. The louvers perform best at flows low enough to allow fish to behaviorally redirect before they contact the structure.

There are approximately 52 different species of fish entrained into the TFCF per year; however, the total numbers are significantly different for the various species salvaged. Also, it is difficult if not impossible to determine exactly how many safely make it all the way to the collection tanks awaiting transport back to the Delta. Hauling trucks used to transport salvaged fish to release sites inject oxygen and contain an eight parts per thousand salt solution to reduce stress. The CVP uses two release sites, one on the Sacramento River near Horseshoe Bend and the other on the San Joaquin River immediately upstream of the Antioch Bridge. The transition boxes and conduits between the louvers and fish screens were rehabilitated during the San Joaquin pulse period of 2004.
When south Delta hydraulic conditions allow, and within the original design criteria for the TFCF, the louvers are operated with the D-1485 and NMFS (2009) BiOp objectives of achieving water approach velocities: for striped bass of approximately 1 foot per second (ft/s) from May 15 through October 31, and for salmon of approximately 3 ft/s from November 1 through May 14. Channel velocity criteria are a function of bypass ratios through the facility. Due to changes in south Delta hydrology and seasonal fish protection regulations over the past twenty years, the present-day TFCF is able to meet these conditions approximately 55% of the time.

Fish passing through the facility are sampled at intervals of no less than 30 minutes every 2 hours when listed fish are present, generally December through June. When listed fish are not present, sampling intervals are 10 minutes every 2 hours. Fish observed during sampling intervals are identified by species, measured to fork length, examined for marks or tags, and placed in the collection facilities for transport by tanker truck to the release sites in the North Delta away from the pumps. In addition, TFCF personnel are currently required, per the court order, to monitor for the presence of spent female delta smelt in anticipation of expanding the salvage operations to include sub-20 mm larval delta smelt detection.

CDFW is leading studies of fish survival during the collection, handling, transportation, and release process, examining delta smelt injury, stress, survival, and predation. Thus far it has presented initial findings at various interagency meetings (Interagency Ecological Program, Central Valley Fish Facilities Review Team, and American Fisheries Society) showing relatively high survival and low injury. DWR has concurrently been conducting focused studies examining the release phase of the salvage process including a study examining predation at the point of release and a study examining injury and survival of delta smelt and Chinook salmon through the release pipe. Based on these studies, improvements to release operations and/or facilities, including improving fishing opportunities in Clifton Court Forebay (CCF) to reduce populations of predator fish, are being implemented.

CDFW and USFWS evaluated pre-screen loss and facility/louver efficiency for juvenile and adult delta smelt at the Skinner Delta Fish Protective Facility. DWR has also conducted pre-screen loss and facility efficiency studies for steelhead.

3.3.4.2 Harvey O. Banks Pumping Plant and Skinner Delta Fish Protective Facility

SWP facilities in the southern Delta include Clifton Court Forebay, John E. Skinner Delta Fish Protective Facility (Skinner), and the Banks Pumping Plant (Banks PP).

- Clifton Court Forebay will be extensively modified and repurposed under the PA, as described in Section 3.2.5, Clifton Court Forebay, however, the modifications will not impact or change operations of the existing Banks and Skinner facilities.

- Skinner is located west of the CCF, two miles upstream of the Banks PP. Skinner screens fish away from the pumps that lift water into the California Aqueduct. Large fish and debris are directed away from the facility by a 388-foot long trash boom. Smaller fish are diverted from the intake channel into bypasses by a series of metal louvers, while the main flow of water continues through the louvers and towards the pumps. The diverted fish pass through a secondary system of screens and pipes into seven holding tanks,
where a sub-sample is counted and recorded. The salvaged fish are then returned to the Delta in oxygenated tank trucks.

- The Banks PP is in the South Delta, about eight miles northwest of Tracy, and marks the beginning of the California Aqueduct. By means of 11 pumps, including two rated at 375 cfs capacity, five at 1,130 cfs capacity, and four at 1,067 cfs capacity, the plant provides the initial lift of water 244 feet into the California Aqueduct. The nominal capacity of the Banks Pumping Plant is 10,300 cfs, although Corps permits restrict 3- and 7-day averages to 6,680 cfs.

3.3.4.3 Clifton Court Forebay Aquatic Weed Control Program

DWR will apply herbicides or will use mechanical harvesters on an as-needed basis to control aquatic weeds and algal blooms in CCF. Herbicides may include Komeen®, a chelated copper herbicide (copper-ethylenediamine complex and copper sulfate pentahydrate) and Nautique®, a copper carbonate compound. These products are used to control algal blooms that can degrade drinking water quality through tastes and odors and production of algal toxins. Dense growth of submerged aquatic weeds, predominantly *Egeria densa*, can cause severe head loss and pump cavitation at Banks Pumping Plant when the stems of the rooted plant break free and drift into the trashracks. This mass of uprooted and broken vegetation essentially forms a watertight plug at the trashracks and vertical louver array. The resulting blockage necessitates a reduction in the pumping rate of water to prevent potential equipment damage through cavitation at the pumps. Cavitation creates excessive wear and deterioration of the pump impeller blades. Excessive floating weed mats also reduce the efficiency of fish salvage at the Skinner Fish Facility. Ultimately, this all results in a reduction in the volume of water diverted by the SWP. Herbicide treatments will occur only in July and August on an as needed basis in the CCF, dependent upon the level of vegetation biomass in the enclosure.

3.3.4.4 Contra Costa Canal Rock Slough Intake

The CCWD diverts water from the Delta for irrigation and M&I uses under its CVP contract and under its own water right permits and license, issued by SWRCB for users. CCWD’s water system includes the Mallard Slough, Rock Slough, Old River, and Middle River (on Victoria Canal) intakes; the Contra Costa Canal and shortcut pipeline; and the Los Vaqueros Reservoir. The Rock Slough Intake facilities, the Contra Costa Canal, and the shortcut pipeline are owned by Reclamation, and operated and maintained by CCWD under contract with Reclamation. Reclamation completed construction of the fish screen at the Rock Slough intake in 2011, and testing and the transfer of operation and maintenance to CCWD is ongoing. Mallard Slough Intake, Old River Intake, Middle River Intake, and Los Vaqueros Reservoir are owned and operated by CCWD. The operation of the Rock Slough intake is included in the PA; the operation of the other intakes, and Los Vaqueros Reservoir, are not included in the PA.

The Rock Slough Intake is located about four miles southeast of Oakley, where water flows through a positive barrier fish screen into the earth-lined portion of the Contra Costa Canal. The fish screen at this intake was constructed by Reclamation in accordance with the CVPIA and the 1993 USFWS BiOp for the Los Vaqueros Project to reduce take of fish through entrainment at the Rock Slough Intake. The Canal connects the fish screen at Rock Slough to Pumping Plant 1,
approximately four miles to the west. The Canal is earth-lined and open to tidal influence for
approximately 3.7 miles from the Rock Slough fish screen. Approximately 0.3 miles of the Canal
immediately east (upstream) of Pumping Plant 1 have been encased in concrete pipe, the first
portion of the Contra Costa Canal Encasement Project to be completed. When fully completed,
the Canal Encasement Project will eliminate tidal flows into the Canal because the encased
pipeline will be located below the tidal range elevation. Pumping Plant 1 has capacity to pump
up to 350 cfs into the concrete-lined portion of the Canal. Diversions at Rock Slough Intake are
typically taken under CVP contract. With completion of the Rock Slough fish screen, CCWD
can divert approximately 30% to 50% of its total annual supply (approximately 127 TAF)
through the Rock Slough Intake depending upon water quality there.

The Rock Slough fish screen has experienced problems; the current rake cleaning system on the
screens is unable to handle the large amounts of aquatic vegetation that end up on the fish screen
(National Marine Fisheries Service 2015: 2). Reclamation is testing alternative technology to
improve vegetation removal, an action that NMFS (2015: 4) has concluded will improve screen
efficiency by minimizing the risk of fish entrainment or impingement at the fish screen.
Reclamation’s testing program is expected to continue at least until 2018. The PA presumes
continued operation and maintenance of the fish screen design that is operational when north
Delta diversion operations commence, subject to any constraints imposed pursuant to the
ongoing ESA Section 7 consultation on Rock Slough fish screen operations.

3.3.5 Water Transfers

California Water Law and the CVPIA promote water transfers as important water resource
management measures to address water shortages provided certain protections to source areas
and users are incorporated into the water transfer. Parties seeking water transfers generally
acquire water from sellers who have available contract water and available stored water; sellers
who can pump groundwater instead of using surface water; or sellers who will fallow crops or
substitute a crop that uses less water in order to reduce normal consumptive use of surface
diversions.

Water transfers occur when a water right holder within the Sacramento-San Joaquin River
watershed undertakes actions to make water available for transfer. The PA does not address the
upstream operations and authorizations (e.g., consultations under ESA Section 7) that may be
necessary to make water available for transfer.

Transfers requiring export from the Delta are done at times when pumping and conveyance
capacity at the CVP or SWP export facilities is available to move the water. Additionally,
operations to accomplish these transfers must be carried out in coordination with CVP/SWP
operations, such that the capabilities of the projects to exercise their own water rights or to meet
their legal and regulatory requirements are not diminished or limited in any way. In particular,
parties to the transfer are responsible for providing for any incremental changes in flows required
to protect Delta water quality standards. All transfers will be in accordance with all existing
regulations and requirements.

Purchasers of water for transfers may include Reclamation, CVP contractors, DWR, SWP
entitlement holders, other State and Federal agencies, and other parties. DWR and Reclamation
have operated water acquisition programs in the past to provide water for environmental programs and additional supplies to SWP entitlement holders, CVP contractors, and other parties. Past transfer programs include the following.

- Water transfers in the Delta watershed.

- Reclamation operated a forbearance program in 2001 by purchasing CVP contractors’ water in the Sacramento Valley to support CVPIA instream flows and to augment water supplies for CVP contractors south of the Delta and wildlife refuges. Reclamation administers the CVPIA Water Acquisition Program for Refuge Level 4 supplies and fishery instream flows.

- DWR is a signatory to the Yuba River Accord Water Transfer Agreement through 2025 that provides fish flows on the Yuba River and water supply that is exported at DWR and Reclamation Delta Facilities. Reclamation may also become a signatory to that agreement in the future.

- Reclamation and the San Luis Delta-Mendota Water Authority issued a ROD and NOD for the Long-term Transfers Program, which addressed water transfers from water agencies in northern California to water agencies south of the Sacramento-San Joaquin Delta (Delta) and in the San Francisco Bay Area. Water transfers will occur through various methods, including, but not limited to, groundwater substitution and cropland idling, and will include individual and multiyear transfers from 2015 through 2024.

- In the past, CVP contractors and SWP entitlement holders have independently acquired water and arranged for pumping and conveyance through CVP/SWP facilities.

3.3.6 Maintenance of the Facilities

The PA includes the maintenance of the new north Delta facilities (intakes, conveyance facilities, and appurtenance structures), the HOR gate, and the south Delta facilities, as described below. This discussion is provided for informational purposes only; the PA does not seek incidental take authorization for facilities maintenance (see Section 3.1.6 Take Authorization Requested). Accordingly Reclamation will conduct a separate Section 7 consultation addressing facilities maintenance, if and when such a consultation is necessary.

3.3.6.1 North Delta Diversions

Appendix 3.B, Conceptual Engineering Report, Volume 1, Section 6.3, Maintenance Considerations, discusses maintenance needs at the intakes. These include intake dewatering, sediment removal, debris removal, biofouling, corrosion, and equipment needs.

3.3.6.1.1 Intake Dewatering

The intake structure on the land side of each screen bay group (i.e., a group of 6 fish screens) will be dewatered by closing the slide gates on the back wall of the intake structure, installing
bulkheads in guides at the front of the structure, and pumping out the water with a submersible pump; see Appendix 3.C, Conceptual Engineering Report, Volume 2, drawings 15, 16, 17, 19, and 22, for illustrations of this structure. The intake collector box conduits can be dewatered by closing the gates on both sides of the flow control sluice gates and flowmeter and pumping out the water between the gates. Dewatering could be done to remove accumulated sediment (described below) or to repair the fish screens.

Intake dewater would likely be disposed by discharge to conveyance, an activity which would have to potential to affect listed species. Any discharge of dewatering waters to surface water (the Sacramento River) would occur only in accordance with the terms and conditions of a valid NPDES permit and any other applicable Central Valley Regional Water Quality Control Board requirements.

3.3.6.1.2 Sediment Removal
Sediment can bury intakes, reduce intake capability, and force shutdowns for restoration of the intake. Maintenance sediment removal activities include activities that will occur on the river side of the fish screens, as well as activities that will occur on the land side of the fish screens. The former have the potential to affect listed species. They include suction dredging around the intake structure, and mechanical excavation around intake structures using track-mounted equipment and a clamshell dragline. Mechanical excavation will occur behind a floating turbidity control curtain. These maintenance activities will occur on an approximately annual basis, depending upon the rates of sediment accumulation.

Sediment will also be annually dredged from within the sedimentation basins using a barge mounted suction dredge, will periodically be removed from other piping and conduits within the facility by dewatering, and will be annually removed from the sediment drying lagoons using equipment such as a front-end loader. Since these activities will occur entirely within the facility, they have no potential to affect listed species. The accumulated sediment will be tested and disposed in accordance with the materials reuse provisions of AMM6 Disposal and Reuse of Spoils, Reusable Tunnel Material, and Dredged Material.

Maintenance dredging will occur only during NMFS- and USFWS-approved in-water work windows. Potential effects to listed species from maintenance dredging will be further minimized by compliance with terms and conditions issued pursuant to regulatory authorizations for the dredging work. These authorizations typically include a permit for in-water work from the USACE and a water quality certification from the Central Valley Regional Water Quality Control Board. Such certifications include provisions minimizing the risk of turbidity, mobilization of contaminated sediment, or spill of hazardous material (such as diesel fuel).

3.3.6.1.3 Debris Removal
After heavy-to-extreme hydrologic events, the intake structures will be visually inspected for debris. If a large amount of debris has accumulated, the debris must be removed. Intake screens, which remove debris from the surface of the water, are maintained by continuous traveling cleaning mechanisms, or other screen cleaning technology. Cleaning frequency depends on the debris load.
A log boom system will be aligned within the river alongside the intake structure to protect the fish screens and fish screen cleaning systems from being damaged by large floating debris. Spare parts for vulnerable portions of the intake structure will be kept available to minimize downtime, should repairs be needed.

3.3.6.1.4 Biofouling
Biofouling, the accumulation of algae and other biological organisms, could occlude the fish screens and impair function. A key design provision for intake facilities is that all mechanical elements can be moved to the top surface for inspection, cleaning, and repairs. The intake facilities will have top-side gantry crane systems for removal and insertion of screen panels, tuning baffle assemblies, and bulkheads. All panels will require periodic removal for pressure washing. Additionally, screen bay groups will require periodic dewatering (as described above) for inspection and assessment of biofouling rates. With the prospective invasion of quagga and zebra mussels into inland waters, screen and bay washing will become more frequent. Coatings and other deterrents to reduce the need for such maintenance will be investigated during further facility design. In-water work is not expected to be necessary to address biofouling, as the potentially affected equipment is designed for ready removal. However, if needed, in-water work would be performed consistent with NMFS- and USFWS-approved in-water work windows.

3.3.6.1.5 Corrosion
Materials for the intake screens and baffles will consist of plastics and austenitic stainless steels. Other systems will be constructed of mild steel, provided with protective coatings to preserve the condition of those buried and submerged metals and thereby extend their service lives. Passive (galvanic) anode systems can also be used for submerged steel elements. Maintenance consists of repainting coated surfaces and replacing sacrificial (zinc) anodes at multi-year intervals.

3.3.6.1.6 Equipment Needs
Operation and maintenance equipment for the intake facilities include the following.

- A self-contained portable high-pressure washer unit to clean fish screen and solid panels, concrete surfaces, and other surfaces.
- Submersible pumps for dewatering.
- A floating work platform for accessing, inspecting, and maintaining the river side of the facility.
- A hydraulic suction dredge.
- A man basket or bridge inspection rig to safely access the front of the intake structure from the upper deck.

3.3.6.1.7 Sedimentation Basins and Drying Lagoons
The sedimentation system at each intake will consist of a jetting system in the intake structure that will resuspend accumulated river sediment through the box conduits to two unlined earthen sedimentation basins where it will settle out, and then on to four drying lagoons (Appendix 3.C, Conceptual Engineering Report, Volume 2, Sheets 10-13, 18-21, and 28-30; see also Appendix
3.B, Conceptual Engineering Report, Volume 1, Section 6.1.2, Sedimentation System General Arrangement, for detailed description of the sedimentation system. Sediment particles larger than 0.002 mm are expected to be retained (settle out) in the sedimentation basins, while particles smaller than 0.002 mm (i.e., colloidal particles) will flow through to the tunnel system to the IF.

At each intake, a barge-mounted suction dredge will hydraulically dredge the sedimentation basins through a dedicated dredge discharge pipeline to 4 drying lagoons. Dredging will occur annually. Dredged material will be disposed at an approved upland site.

3.3.6.2 Tunnels

Maintenance requirements for the tunnels have not yet been finalized. Some of the critical considerations include evaluating whether the tunnels need to be taken out of service for inspection and, if so, how frequently. Typically, new water conveyance tunnels are inspected at least every 10 years for the first 50 years and more frequently thereafter. In addition, the equipment that the facility owner must put into the tunnel for maintenance needs to be assessed so that the size of the tunnel access structures can be finalized. Equipment such as trolleys, boats, harnesses, camera equipment, and communication equipment will need to be described prior to finalizing shaft design, as will ventilation requirements. As described above, it is anticipated that, following construction, large-diameter construction shafts will be modified to approximately 20-foot diameter access shafts.

At the time of preparation of this Biological Assessment, the use of remotely operated vehicles or autonomous underwater vehicles is being considered for routine inspection, reducing the number of dewatering events and reserving such efforts for necessary repairs.

3.3.6.3 Intermediate Forebay

The IF embankments will be maintained to control vegetation and rodents (large rodents, such as muskrat and beaver, have been known to undermine similarly constructed embankments, causing embankment failure.) Embankments will be repaired in the event of island flooding and wind/wave action. Maintenance of control structures could include roller gates, radial gates, and stop logs. Maintenance requirements for the spillway will include the removal and disposal of any debris blocking the outlet culverts.

The majority of easily settled sediments are removed at the sedimentation basins at each intake facility (see Section 3.3.6.1.2 Sediment Removal). The IF provides additional opportunity to settle sediment. It is anticipated that over a 50-year period, sediments will accumulate to a depth of approximately 4.1 feet, which is less than one-half the height of the overflow weir at the outlet of the IF. Thus maintenance dredging of the IF is not expected to be necessary during the term of the proposed action.

3.3.6.4 Clifton Court Forebay and Pumping Plant

The CCF embankments and grounds, including the vicinity of the consolidated pumping plant as well as the NCCF and SCCF, will all be maintained to control of vegetation and rodents (large rodents, such as muskrat and beaver, have been known to undermine similarly constructed
embankments, causing embankment failure). They will also be subject to embankment repairs in the event of island flooding and wind/wave action. Maintenance of forebay control structures could include roller gates, radial gates, and stop logs. Maintenance requirements for the spillway will include the removal and disposal of any debris blocking the structure. Riprap slope protection on the water-side of the embankments will require periodic maintenance to monitor and repair any sloughing. In-water work, if needed (e.g. to maintain riprap below the ordinary high-water mark), would be performed during NMFS- and USFWS-approved in-water work windows.

The small fraction of sediment passing through the IF is transported through the tunnels to NCCF. Given the upstream sediment removal and the large storage available at the forebay, sediment accumulation at NCCF is expected to be minimal over a even 50-year period, and no maintenance dredging is expected to be needed during the life of the facility.

3.3.6.5 Connections to Banks and Jones Pumping Plants

Maintenance requirements for the canal will include erosion control, control of vegetation and rodents, embankment repairs in the event of island flooding and wind wave action, and monitoring of seepage flows. Sediment traps may be constructed by over-excavating portions of the channel upstream of the structures where the flow rate will be reduced to allow suspended sediment to settle at a controlled location. The sediment traps will be periodically dredged to remove the trapped sediment.

3.3.6.6 Power Supply and Grid Connections

Three utility grids could supply power to the PA conveyance facilities: Pacific Gas and Electric Company (PG&E) (under the control of the California Independent System Operator), the Western Area Power Administration (Western), and/or the Sacramento Municipal Utility District (SMUD). The electrical power needed for the conveyance facilities will be procured in time to support construction and operation of the facilities. Purchased energy may be supplied by existing generation, or by new generation constructed to support the overall energy portfolio requirements of the western electric grid. It is unlikely that any new generation will be constructed solely to provide power to the PA conveyance facilities. It is anticipated the providers of the three utility grids that supply power to the PA will continue to maintain their facilities.

3.3.6.7 Head of Old River Gate

For the operable barrier proposed under the PA, maintenance of the gates will occur every 5 to 10 years. Maintenance of the motors, compressors, and control systems will occur annually and require a service truck.

Each miter or radial gate bay will include stop log guides and pockets for stop log posts to facilitate the dewatering of individual bays for inspection and maintenance. Each gate bay will be inspected annually at the end of the wet season for sediment accumulation. Maintenance dredging around the gate will be necessary to clear out sediment deposits. Dredging around the gates will be conducted using a sealed clamshell dredge. Depending on the rate of sedimentation, maintenance dredging is likely to occur at intervals of 3 to 5 years, removing no more than 25%
of the original dredged amount. The timing and duration of maintenance dredging will comply with the proposed in-water work windows. Spoils will be dried in the areas adjacent to the gate site. A formal dredging plan with further details on specific maintenance dredging activities will be developed prior to dredging. Guidelines related to dredging are given in Appendix 3.F, General Avoidance and Minimization Measures, AMM6 Disposal and Reuse of Spoils, Reusable Tunnel Material, and Dredged Material. AMM6 requires preparation of a sampling and analysis plan; compliance with relevant NPDES and SWRCB requirements; compliance with proposed in-water work windows; and other measures intended to minimize risk to listed species.

3.3.6.8 Existing South Delta Export Facilities

The PA will include maintenance of CVP/SWP facilities in the south Delta after the proposed intakes become operational.

Maintenance means those activities that maintain the capacity and operational features of the CVP/SWP water diversion and conveyance facilities described above. Maintenance activities include maintenance of electrical power supply facilities; maintenance as needed to ensure continued operations; replacement of facility or system components when necessary to maintain system capacity and operational capabilities; and upgrades and technological improvements of facilities to maintain system capacity and operational capabilities, improve system efficiencies, and reduce operations and maintenance costs.

3.4 Conservation Measures

Conservation measures are actions intended to avoid, minimize, and offset effects of the PA on listed species, and to provide for their conservation and management. This section describes the types of effects that require avoidance or minimization, and conservation measures to offset effects by providing compensatory habitat. This section also summarizes the protection and restoration required to meet the species-specific compensation commitments. The compensation commitments provided in this section are based on discussions with CDFW, NMFS, and USFWS and on typical species compensation provided through past Section 7 consultations, including programmatic BiOps, and taking into account the quality of habitat to be impacted relative to quality of the proposed compensation areas.

The PA includes a number of activities that are expected to cause few to no effects on listed species and therefore will not require compensation. These activities include acquisition and protection of mitigation lands for listed species of wildlife, the enhancement and management of protected and restored lands, and monitoring for listed species of fish and wildlife.

The protection of land requires no on-the-ground action or disturbance and thus has no potential to adversely affect species. Properly sited land protection will benefit listed species of wildlife by expanding and connecting existing protected lands. Grassland and vernal pool habitats will be protected to benefit San Joaquin kit fox, California tiger salamander, California red-legged frog, vernal pool fairy shrimp, and vernal pool tadpole shrimp. For details regarding the siting of lands that will be protected to benefit these species, see Section 3.4.5, Terrestrial Species Conservation.
Enhancement and management, and monitoring on protected and restored lands have potential to have some minor effects. For example, individuals could be harmed or harassed by management vehicles or personnel. These effects will be minimized through education and training, as described in Appendix 3.F, *General Avoidance and Minimization Measures*. Monitoring will be performed by qualified biologists. If handling of the species is necessary, this work will be done by qualified personnel with appropriate scientific collection permits.

Construction associated with the PA (Section 3.2, *Conveyance Facility Construction*) will result in the permanent and temporary removal of suitable habitat for listed species. Construction-related effects will be minimized through design, and through avoidance and minimization measures (Appendix 3.F, *General Avoidance and Minimization Measures*). The water conveyance facility design has considered and incorporated elements intended to minimize the total extent of the built facilities footprint, minimize loss of sensitive wildlife habitat, protect water quality, reduce noise and lighting effects, and reduce the total amount of transmission lines. In addition, there are commitments to entirely avoid the loss of habitat from certain activity types. Similarly, a number of operational and design features associated with the new intake facilities, and operational features of the PA, have been designed to minimize effects on fish and their critical habitat. These avoidance and minimization measures, as well as the proposed compensation for the loss of suitable habitat, are described for each species in Section 3.4.3 *Summary of Restoration for Fish Species*, and Section 3.4.5, *Terrestrial Species Conservation*.

The conservation measures include compensation for the loss of habitat for listed species that occurs as a result of restoration actions to be implemented for the mitigation of effects of construction and/or operation of the proposed facilities on listed species and wetlands. These restoration actions are components of the PA and are intended to meet requirements pursuant to various laws and regulations including the California Endangered Species Act, the California Environmental Quality Act, the National Environmental Policy Act, and the Clean Water Act. All lands protected as compensation for effects on habitat will be owned in fee title or through conservation easements, or will be included in approved conservation banks. All such lands will be protected and maintained, in the manner described in this section, in perpetuity. The methods for quantifying loss of listed species habitat from restoration activities are described in Appendix 6.B, *Terrestrial Effects Analysis Methods*.

This biological assessment does not request take authorization for construction and maintenance of habitat restoration sites; such authorization will be sought, as needed, during the siting, design, and permitting work for each restoration site (see Section 3.1.6 *Take Authorization Requested*). The approximate location of the restoration sites is described for each species below. For each species, a technical team consisting of representatives from Reclamation, NMFS, USFWS, DWR and CDFW will be established to develop siting, design, and performance criteria for the needed habitat restoration. This group will work collaboratively to select the most biologically appropriate and cost-effective restoration site(s), design the restoration plan, set performance criteria, and develop the restoration unit management plan for the site(s).

3.4.1 Restoration and Protection Site Management Plans

DWR, as project applicant, will prepare and implement a management plan for each listed species habitat restoration and protection site. Management plans may be for an individual parcel
Chapter 3: Description of the Proposed Action
Conservation Measures

or for multiple parcels that share common management needs. Reclamation and DWR will conduct surveys to collect the information necessary to assess the ecological condition and function of conserved species habitats and supporting ecosystem processes, and based on the results, will identify actions necessary to achieve the desired habitat condition at each site.

Management plans will be prepared in collaboration with CDFW, NMFS, and USFWS, consistent with their authority, and submitted to those agencies for approval within 2 years of the acquisition of each site. This schedule is designed to allow time for site inventories and identification of appropriate management techniques. During the interim period, management of the site will occur using best practices and based on successful management at the same site prior to acquisition or based on management at other similar sites. The plans will be working documents that are updated and revised as needed to incorporate new acquisitions suitable for coverage under the same management plan and to document changes in management approach that have been agreed to by Reclamation, DWR, and the appropriate wildlife agency or agencies (CDFW, NMFS, and USFWS), consistent with their authority.

Each management plan will include, but not be limited to, descriptions of the following elements.

- The species-specific objectives to be achieved with management of each site covered by the plan.
- Baseline ecological conditions (e.g., habitat maps, assessment of listed species habitat functions, occurrence of listed species and other native wildlife species, vegetation structure and composition, assessment of nonnative species abundance and effect on habitat functions, occurrence and extent of nonnative species).
- Vegetation management actions that benefit natural communities and listed species and reduce fuel loads, as appropriate, and that are necessary to achieve the management plan objectives.
- If applicable, a fire management plan developed in coordination with the appropriate agencies and, to the extent practicable, consistent with achieving the management plan objectives.
- Infrastructure, hazards, and easements.
- Existing and adjacent land uses and management practices and their relationship to listed species habitat functions.
- Applicable permit terms and conditions.
- Terms and conditions of conservation easements when applicable.
- Management actions and schedules.
- Monitoring requirements and schedules.
• Established data acquisition and analysis protocols.
• Established data and report preservation, indexing, and repository protocols.
• Adaptive management approach.
• Any other information relevant to management of the preserved parcels.

Management plans will be periodically updated to incorporate changes in maintenance, management, and monitoring requirements as they may occur.

Based on the assessment of existing site conditions (e.g., soils, hydrology, vegetation, occurrence of listed species) and site constraints (e.g., location and size), and depending on biological objectives of the restoration sites, management plans will specify measures for enhancing and maintaining habitat as appropriate.

3.4.2 Conservation Banking

To provide protection and restoration in a timely manner without incurring temporal loss of listed species habitat, DWR may use existing conservation banks, establish its own conservation banks, or provide habitat protection/restoration in advance of anticipated impacts.

DWR may opt to use existing conservation banks to meet its mitigation needs for listed species. An example is the Mountain House Conservation Bank in eastern Alameda County. This bank has available conservation credits for San Joaquin kit fox, California tiger salamander, California red-legged frog, and vernal pool fairy shrimp; and the PA is in the service area for this bank for all four species. However, no approved conservation banks in the action area could address the needs of listed species of fish.

DWR may also opt to create its own conservation banks, subject to conclusion of appropriate agreements with USFWS (noting that no such banks are included in the PA and no such agreements have yet been concluded). If such banks are operational at the time impacts accrue under the PA, DWR may then use bank credits to mitigate for impacts incurred under the PA. Protection and restoration of grasslands, riparian woodlands, and nontidal wetlands may be suitable subjects for this approach.

3.4.3 Summary of Restoration for Fish Species

Similar to the listed species of wildlife, the precise siting of parcels used to achieve habitat restoration for listed species of fish has yet to be determined. In consequence, this biological assessment does not seek take coverage for the performance of habitat restoration; rather, restoration sites will be subject to site-specific ESA Section 7 consultation prior to performance of restoration. The following descriptions of restoration actions offsetting effects to listed fish species, however, describes in general terms how and where restoration will be sited and constructed.

Given species occurrence locations and habitat requirements, the regions where restoration is likely to occur can be generally defined. Impact maximums have been determined for each
species and summarized in Table 3.4-1. The conservation measures provide for the restoration of suitable habitat for Delta Smelt, Chinook salmon, steelhead, and green sturgeon.

The PA will occur, and its effects will be expressed, within designated critical habitat for each of the fish species, which encompasses waters throughout the entire legal Delta. The primary loss of habitat will occur in and around the proposed NDD. DWR and/or Reclamation will develop the siting and design of each individual tidal and channel margin restoration site consistent with the performance standards set by FWS and/or NMFS; final selection of restoration sites will be subject to NMFS and FWS concurrence as applicable. Each restoration site will be managed in accordance with a site-specific management plan, as described in Section 3.4.1, *Restoration and Protection Site Management Plans*.

Table 3.4-1 relies on the analyses presented in Chapters 5 and 6 pertaining to the permanent and temporary construction and operation effects on fish habitat. A GIS analysis was used to determine the acreage of effect for each structure, including areas located in designated critical habitat that could be affected by placement of permanent in-water structures, and the temporary areas of effect (i.e., areas that will only be affected during construction activities; although all Delta Smelt habitat impacts are considered permanent because they are typically an annual fish.) Although there will be dredging and other construction-related disturbances in the Clifton Court Forebay, it is not considered critical habitat for any of the species, and the AMMs associated with construction will minimize effects.
Table 3.4-1. Summary of Maximum Direct Impact, Proposed Compensation, and Potential Location of Restoration for Federally Listed Fish Species

<table>
<thead>
<tr>
<th>Resource</th>
<th>Location of Impact</th>
<th>Maximum Direct Impacts</th>
<th>Mitigation Ratio</th>
<th>Total Compensation, Restoration by Impact Area</th>
<th>Total Compensation, Restoration</th>
<th>Potential Location of Proposed Restoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinook salmon and CCV steelhead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel margin habitat (linear miles)</td>
<td>North Delta Diversions</td>
<td>Construction: 1.02, operations: 0.42</td>
<td>3:1</td>
<td>4.3</td>
<td>4.3 miles</td>
<td>Sacramento River, Steamboat and Sutter Sloughs, or other areas agreed to by NMFS and CDFW(^1)</td>
</tr>
<tr>
<td>Tidal perennial habitat (acres)</td>
<td>North Delta Diversions</td>
<td>6.6</td>
<td>3:1</td>
<td>80.1</td>
<td>154.8 acres</td>
<td>Sherman Island, North Delta, South Delta, or other areas agreed to by NMFS and CDFW, commensurate to area of specific effect</td>
</tr>
<tr>
<td></td>
<td>Head of Old River(^2)</td>
<td>2.9</td>
<td>0</td>
<td>3:1</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barge Landings</td>
<td>22.4</td>
<td>0</td>
<td>3:1</td>
<td>67.2</td>
<td></td>
</tr>
<tr>
<td>Green sturgeon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tidal perennial habitat (acres)</td>
<td>North Delta Diversions</td>
<td>6.6</td>
<td>3:1</td>
<td>80.1</td>
<td>154.8 acres</td>
<td>Sherman Island, North Delta, or other areas agreed to by NMFS and CDFW</td>
</tr>
<tr>
<td></td>
<td>Head of Old River(^2)</td>
<td>2.9</td>
<td>0</td>
<td>3:1</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barge Landings</td>
<td>22.4</td>
<td>0</td>
<td>3:1</td>
<td>67.2</td>
<td></td>
</tr>
<tr>
<td>Delta smelt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shallow water habitat (acres)</td>
<td>North Delta Diversions (intake + wing wall transitions + 1,000 feet downstream suspended sediment effect)</td>
<td>5.6</td>
<td>5:1(^1)</td>
<td>28</td>
<td></td>
<td>Sherman Island, Cache Slough, North Delta or other areas agreed to by USEFWS and CDFW</td>
</tr>
<tr>
<td>Shallow water critical habitat (acres)</td>
<td>Critical habitat near North Delta Diversions(^4)</td>
<td>245 (of which 36 is sandy beach spawning habitat)</td>
<td>Overall 1:1, with 3:1 for sandy beach spawning habitat</td>
<td>245 (of which 108 acres must be sandy beach spawning habitat)</td>
<td>273 acres (of which 108 acres must be sandy beach spawning habitat, and 74.7 acres must be tidal perennial habitat)</td>
<td></td>
</tr>
<tr>
<td>Tidal perennial habitat (acres)</td>
<td>Head of Old River(^2)</td>
<td>2.9</td>
<td>3:1</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barge Landings</td>
<td>22.4</td>
<td>3:1</td>
<td>67.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{1}\) For purposes of estimating impacts of proposed restoration, it was assumed restoration will occur on the Sacramento River or Sutter or Steamboat Sloughs.

\(^{2}\) The impacts of the temporary rock barrier have been mitigated, and therefore approximately 0.5 acres of impact is not assigned to the PA.

\(^{3}\) The 5:1 mitigation ratio assumes in-water work in June; should work not occur in June, the ratio will be 3:1. This may vary by intake.

\(^{4}\) The mitigation is for potential reduced access to shallow water critical habitat because of the higher shoreline velocities expected from the NDD.

For the purpose of estimating impacts of proposed restoration, it was assumed restoration will occur on the Sacramento River or Sutter or Steamboat Sloughs.

The impacts of the temporary rock barrier have been mitigated, and therefore approximately 0.5 acres of impact is not assigned to the PA.

The 5:1 mitigation ratio assumes in-water work in June; should work not occur in June, the ratio will be 3:1. This may vary by intake.

The mitigation is for potential reduced access to shallow water critical habitat because of the higher shoreline velocities expected from the NDD.

The 245 acres estimate is based on 210 total acres from downstream end of intake 5 to I Street bridge, Sacramento, minus the footprint of the three intakes + wing wall transitions and associated in-water work during construction (3.7 acres) + acreage 1000 feet downstream of intakes 2 and 3 (1.3 acres) because of suspended sediment; these acreages are already accounted for with the direct impact from the NDD.

1 For purposes of estimating impacts of proposed restoration, it was assumed restoration will occur on the Sacramento River or Sutter or Steamboat Sloughs.

2 The impacts of the temporary rock barrier have been mitigated, and therefore approximately 0.5 acres of impact is not assigned to the PA.

3 The 5:1 mitigation ratio assumes in-water work in June; should work not occur in June, the ratio will be 3:1. This may vary by intake.

4 The mitigation is for potential reduced access to shallow water critical habitat because of the higher shoreline velocities expected from the NDD.

5 The 245 acres estimate is based on 210 total acres from downstream end of intake 5 to I Street bridge, Sacramento, minus the footprint of the three intakes + wing wall transitions and associated in-water work during construction (3.7 acres) + acreage 1000 feet downstream of intakes 2 and 3 (1.3 acres) because of suspended sediment; these acreages are already accounted for with the direct impact from the NDD.
3.4.3.1 Chinook Salmon and CCV Steelhead

3.4.3.1.1 Avoidance and Minimization Measures
AMMs that will be implemented to avoid or minimize effects on Chinook salmon and steelhead are detailed in Appendix 3.F, General Avoidance and Minimization Measures, and are summarized in Table 3.2-2. General AMMs specifically applicable to Chinook salmon and CCV steelhead include AMMs 1 to 10, AMM14, AMM15, and AMM17. Furthermore, in-water activities associated with the proposed action will, as described in Section 3.2 Conveyance Facility Construction, comply with the proposed in-water work windows. In addition, the following species-specific avoidance and minimization measure will be implemented to minimize the potential for adverse effects on Chinook salmon and CCV steelhead.

3.4.3.1.1.1 Nonphysical Fish Barrier at Georgiana Slough
Installation and seasonal operation of nonphysical barriers are hypothesized to improve survival of juvenile salmonids migrating downstream by guiding fish into channels in which they experience lower mortality rates (Welton et al. 2002; Bowen et al. 2012; Bowen and Bark 2012; Perry et al. 2014; California Department of Water Resources 2012b). The need to reduce juvenile salmonid entry into the interior Delta was recognized in the NMFS BiOp (2009a, 2011), which requires that engineering solutions be investigated to achieve a reduction in entrainment and that an approach be implemented if a NMFS-approved solution is identified by the process outlined in NMFS (2009a). Like other CVP/SWP operations, operation of any implemented engineering solution will be governed by the 2009 NMFS and 2008 USFWS biological opinions until this proposed action is operational; at that time, the operations of any barrier will be governed by the biological opinion(s) issued for this biological assessment. This AMM does not directly offset the effect of the operation of the NDD (that is, it does not reduce the extent of harm to fish that pass the NDD). However, it is expected to provide a higher probability of survival for fish that pass the NDD and encounter the Sacramento River-Georgiana Slough junction since the reduced Sacramento River flows that result from the operation of the NDD could increase the potential for entrainment into Georgiana Slough.

Since 2011, DWR has been testing various engineering solutions in the Sacramento River at Georgiana Slough. Two types of structures have been tested at this location and are considered options for this AMM. The first is a true nonphysical barrier that functions by inducing behavioral aversion to a noxious stimulus, e.g., visual or auditory deterrents (Noatch and Suski 2012). In 2011 and 2012 DWR tested a BioAcoustic Fish Fence (BAFF), which employs a three-component system comprising an acoustic deterrent within a bubble curtain that is illuminated by flashing strobe lights. The second type of structure, a floating fish guidance structure (FFGS), was tested in 2014. Though not a true nonphysical barrier because the structure contains physical screens, the structure induces behavioral aversion while essentially all the flow maintains its direction.

Because the design of the barrier associated with the PA has not yet been determined, construction of the barrier is not included in the PA and will instead be a separate Section 7 consultation, as required by NMFS (2009a) RPA IV.1.3, completed prior to the initiation of NDD operations (e.g., a Corps permit for installation and removal of the barrier will provide a future Federal nexus requiring consultation). At that time, the results of the investigations of various engineering solutions as required by the NMFS BiOp (2009a, 2011) are expected to be
adequate to develop a proposal for barrier design, seasonal installation and removal, and detailed, design-specific protocols for operation. These design and operation specifics will be detailed in a biological assessment supporting what is expected to be a formal consultation.

In 2011 and 2012, DWR began to study the effectiveness of a BAFF at the Georgiana Slough–Sacramento River junction in preventing outmigrating juvenile Chinook salmon from entering Georgiana Slough (California Department of Water Resources 2012b; Perry et al. 2014). This type of nonphysical barrier has shown promising results in field studies at other locations such as a field experiment on Atlantic salmon (Salmo salar) smolts in the River Frome, UK (Welton et al. 2002). For the studies at the Georgiana Slough junction, approximately 1,500 acoustically tagged juvenile late fall–run Chinook salmon produced at the Coleman National Fish Hatchery (and, in 2012, approximately 300 steelhead) were released into the Sacramento River upstream of Georgiana Slough and their downstream migrations past the BAFF and divergence with Georgiana Slough were monitored (California Department of Water Resources 2012b; Perry et al. 2014). During the 2011 study period, the percentage of salmon smolts passing the junction that were entrained into Georgiana Slough was reduced from 22.1% (barrier off) to 7.4% (barrier on) due to implementation of the barrier (California Department of Water Resources 2012b; Perry et al. 2014). This improvement produced an overall efficiency rate of 90.8%; that is, 90.8% of fish that entered the area when the barrier was on exited by continuing down the Sacramento River. There was some indication that the behavior and movement patterns of juvenile salmon were influenced by the high river flows that occurred in spring 2011. However, at high (> 0.25 meter per second) and low (< 0.25 meter per second) across-barrier velocities, BAFF operations resulted in statistically significant increases in overall efficiency for juvenile salmon.

A second evaluation of the BAFF system at this location in 2012, a much drier year than 2011, showed somewhat lower fish exclusion rates into Georgiana Slough. During the 2012 study period, the percentage of salmon smolts passing the junction that were entrained into Georgiana Slough was reduced from 24.2% (barrier off) to 11.8% (barrier on) due to implementation of the barrier, with a similar reduction for steelhead (26.4% to 11.6%) (California Department of Water Resources 2015). This lower rate may be because of the notably lower river flow conditions in 2012 compared to 2011 (California Department of Water Resources 2015).

Perry et al. (2014) observed that fish more distant (i.e., across the channel) from the BAFF were less likely to be entrained into Georgiana Slough than those closer to the BAFF as they passed the slough, suggesting that guiding fish further away from the Georgiana Slough entrance would reduce entrainment into the slough. In essence, fish on the Georgiana Slough side of the critical streakline (the streamwise division of flow vectors entering each channel, or the location in the channel cross section where the parcels of water entering Georgiana Slough or remaining in the Sacramento River separate) have a higher probability of entering Georgiana Slough; by inducing a behavioral aversion to barrier stimuli, the BAFF increases the likelihood that fish remain on the Sacramento River side of the critical streakline. With this understanding, in 2014 DWR began a study of the effectiveness of a floating fish guidance structure at Georgiana Slough (California Department of Water Resources 2013). This structure uses steel panels suspended from floats to change water currents so that fish are guided towards the center of the river (away from the entrance to Georgiana Slough), but it does not substantially change the amount of water entering the slough. Studies of this technology in other locations have found it to be successful for guiding fish toward more desirable routes, e.g., at the Lower Granite Dam on the Snake River,
Washington (Adams et al. 2001, as cited by Schilt 2007). This technology is considered as a potential design for this AMM because the large majority of flow does not change its destination; as with the BAFF, the structure’s purpose is to keep fish on the Sacramento River side of the critical streakline. The results from the study of the FFGS are not yet available.

The uncertainties regarding the effectiveness of nonphysical barriers on all listed species, and at different flow rates, are continuing to be evaluated. While the response by juvenile hatchery-origin late fall–run Chinook salmon to the nonphysical barrier at Georgiana Slough appears positive, it does not necessarily reflect the response of other salmonids, particularly the smaller wild-origin winter-run (California Department of Water Resources 2012b) and spring-run Chinook salmon and young-of-the-year fall-run Chinook salmon.

Given the uncertainty of the structure design, the nascent science behind the effectiveness of any design at this location, and the lack of availability of FFGS results, the PA assumes that the operation of this AMM will provide a similar reduction in entrainment as was observed during the low flow conditions of 2012.

3.4.3.1.2 Restoration Actions
The PA includes restoration of 154.8 acres of tidal perennial habitat suitable for Chinook salmon and steelhead and 4.3 miles of channel margin habitat to offset permanent and temporary losses of migration and rearing habitat.

3.4.3.1.2.1 Tidal Perennial Habitat Restoration
The PA includes 154.8 acres of tidal perennial habitat restoration to offset effects on salmonid rearing and migration habitat, as shown in Table 3.4-1.

Tidal perennial habitat restoration site selection and design will occur in coordination with CDFW, USFWS and NMFS. Restoration will primarily occur through breaching or setback of levees, thereby restoring tidal fluctuation to land parcels currently isolated behind those levees. Factors to be considered when evaluating sites for potential location and design of tidal perennial habitat restoration include the potential to create small (1st and 2nd order) dendritic tidal channels (channels that end in the upper marsh) for rearing (Fresh 2006); tidal freshwater sloughs with rich production of such insects as chironomid (midge) larvae; brackish marshes with emergent vegetation providing insect larvae, mysids, and epibenthic amphipods; and open-water habitats with drifting insects, zooplankton such as crab larvae, pelagic copepods, and larval fish (Quinn 2005).

Shallow subtidal areas in large portions of the Delta support extensive beds of nonnative submerged aquatic vegetation (SAV) that adversely affect listed species of fish (Nobriga et al. 2005; Brown and Michniuk 2007; Grimaldo et al. 2012). In other portions of the Delta, shallow subtidal areas provide suitable habitat for native species, such as Delta Smelt in the Liberty Island/Cache Slough area, and do not promote the growth of nonnative SAV (Nobriga et al. 2005; McLain and Castillo 2009). Tidal perennial habitat restoration is not intended to restore large areas of shallow subtidal aquatic habitat, which would collateralistically create habitat for nonnative predators; rather, shallow subtidal aquatic habitat restoration is proposed in association with tidal habitat, which will provide more heterogeneity and support pelagic habitat adjacent to emergent wetland. Additionally, bench habitats will be incorporated into site selection and
design to provide added specific benefits to salmonids, such as shallow-water foraging and refuge habitat. Tidal perennial habitat restoration will be sited in consultation with NMFS, USFWS, and CDFW, within areas of the Delta appropriate for offsetting effects of the PA.

Where practicable and appropriate, portions of restoration sites will be raised to elevations that will support tidal marsh vegetation following levee breaching. Depending on the degree of subsidence and location, lands may be elevated by grading higher elevations to fill subsided areas, importing clean dredged or fill material from other locations, or planting tules or other appropriate vegetation to raise elevations in shallowly subsided areas over time through organic material accumulation (Ingebritsen et al. 2000). Surface grading will create a shallow elevation gradient from the marsh plain to the upland transition habitat. Based on assessments of local hydrodynamic conditions, sediment transport, and topography, restoration activities may be designed and implemented in a manner that accelerates the development of tidal channels within restored marsh plains. Following reintroduction of tidal exchange, tidal marsh vegetation is expected to establish and maintain itself naturally at suitable elevations relative to the tidal range. Depending on site-specific conditions and monitoring results, patches of native emergent vegetation may be planted to accelerate the establishment of native marsh vegetation on restored marsh plain surfaces. A conceptual illustration of restored tidal perennial habitat is presented in Figure 3.4-1.

A technical team consisting of representatives from Reclamation, NMFS, USFWS, DWR and CDFW will be established to develop siting, design, and performance criteria for tidal perennial habitat restoration. This group will work collaboratively to select the most biologically appropriate and cost-effective restoration site(s), design the restoration plan, set performance criteria, and develop the restoration unit management plan for the site(s).

Completion of construction at each site will precede the corresponding impacts associated with conveyance facility construction. Full compliance with the conservation measures in this biological assessment will be based on performance of the completed site consistent with the success criteria stated in the site-specific design documents, as demonstrated in reports to be provided to CDFW, USFWS and NMFS by Reclamation.

General AMMs described in Appendix 3.F General Avoidance and Minimization Measures will be implemented during tidal restoration construction. General AMMs applicable to tidal restoration work include AMMs 1 to 10, AMM14, AMM15, and AMM17.

Construction of tidal perennial habitat restoration could affect salmonids by potential spills of construction equipment fluids; increased turbidity; increased exposure to methylmercury, pesticides and other contaminants when upland soils are inundated; and increased exposure to contaminants from disturbed aquatic sediments. However, these effects will be temporary and will be offset by the long-term benefits of the restored habitat (any sites so contaminated as to produce contrary results will be deemed unsuitable for restoration).

Actions to be taken during restoration are expected to include pre-breach management of the restoration site to promote desirable vegetation and elevations within the restoration area and levee maintenance, improvement, or redesign. This may require substantial earthwork outside but adjacent to tidal and other aquatic environments. Levee breaching will require removing
Figure 3.4-1 Conceptual Design for Restored Tidal Perennial Habitat
levee materials from within and adjacent to tidal and other aquatic habitats. Levee breaching will entail in-water work using construction equipment such as bulldozers and backhoes; any in-water work will be performed during an in-water work window to be approved by CDFW, NMFS and USFWS. Removed levee materials will be placed on the remaining levee sections, placed within the restoration area, or hauled to a disposal area previously approved by CDFW, NMFS and USFWS. Construction at tidal habitat restoration sites is expected to involve the following activities.

- Excavating channels to encourage the development of sinuous, high-density dendritic channel networks within restored marsh plain.
- Modifying ditches, cuts, and levees to encourage more natural tidal circulation and better flood conveyance based on local hydrology.
- Removal or breaching of existing levees or embankments or creation of new structures to allow restoration to take place while protecting adjacent land.
- Prior to breaching, recontouring the surface to maximize the extent of surface elevation suitable for establishment of tidal marsh vegetation by scalping higher elevation land to provide fill for placement on subsided lands to raise surface elevations.
- Prior to breaching, importing dredge or fill material and placing it in shallowly subsided areas to raise ground surface elevations to a level suitable for establishment of tidal marsh vegetation.
- Tidal habitat restored adjacent to farmed lands may require construction of dikes to maintain those land uses.

3.4.3.1.2.2 Channel Margin Habitat Restoration

The PA includes 4.3 linear miles of channel margin restoration to offset effects on salmonid rearing and migration habitat caused by the reduction in frequency of inundation of existing restored benches and habitat loss due to the NDD. The proposed compensation is based on GIS analysis of the permanent and temporary footprint for the NDD, and a review of the magnitude of change for the select benches in the analysis. GIS was used to determine the acreage of effect for each structure, including areas located in designated critical habitat that could be affected by placement of permanent in-water structures as well as the temporary areas of effect. The construction-related portion reflects the footprint of the combined three NDD (5,367 linear feet, or 1.02 miles), including their association wing wall transitions. The operations-related portion reflects potentially less frequent inundation of riparian benches because of NDD water diversions. The total linear extent of riparian bench effects (2,212 feet, or 0.42 miles) was derived as follows, based on the greatest differences between NAA and PA from the analysis presented in Section 5.4.1.3.1.2.2.1.1, Operational Effects, in Chapter 5, Effects Analysis for Chinook Salmon, Central Valley Steelhead, Green Sturgeon, and Killer Whale:

- 29% lower riparian bench inundation index under PA in the Sacramento River from Sutter Steamboat sloughs to Rio Vista (1,685 feet of bench): $0.29 \times 1,685 = 489$ feet;
• 24% lower riparian bench inundation index under PA in the Sacramento River below the NDD to Sutter/Steamboat sloughs (3,037 feet of bench): $0.24 \times 3,037 = 729$ feet;

• 19% lower riparian bench inundation index under PA in Sutter/Steamboat Sloughs (5,235 feet of bench): $0.19 \times 5,235 = 995$ feet.

Channel margin restoration will be accomplished by improving channel geometry and restoring riparian, marsh, and mudflat habitats on the water side of levees along channels that provide rearing and outmigration habitat for juvenile salmonids, similar to what is currently done by the USACE and others when implementing levee improvements. Channel margin enhancements associated with federal project levees will not be implemented on the levee, but rather on benches to the waterward side of such levees, and flood conveyance will be maintained as designed. Channel margin enhancements associated with federal project levees may require permission from USACE in accordance with USACE's authority under the Rivers and Harbors Act (33 USC Section 408) and USACE levee vegetation policy. Accordingly, sites for the channel margin enhancements have not yet been determined, but they will be sited within the action area at locations along the Sacramento River, Steamboat and Sutter Sloughs, or in other areas subject to approval by NMFS and CDFW. On behalf of the State of California, DWR and the Central Valley Flood Protection Board are in coordination with USACE to minimize issues and identify a pathway for compliance. Any such enhancements will be designed, constructed, and maintained to ensure no reduction in performance of the federal flood project. Linear miles of enhancement will be measured along one side of a given channel segment (e.g., if both sides of a channel were enhanced for a length of 1 mile, this would account for a total of 2 miles of channel margin enhancement).

Chinook salmon and steelhead use channel margin habitat for rearing and protection from predators, and the primary purpose of channel margin habitat restoration is to offset shoreline effects caused by permanent habitat removal. Vegetation along channel margins contributes woody material, both instream and on channel banks, which increases instream cover for fish and enhances habitat for western pond turtle. Channel margin habitat is expected to provide rearing habitat and improve conditions along important migration corridors by providing increased habitat complexity, overhead and in-water cover, and prey resources for listed species of fish. This conservation measure is intended to increase habitat diversity and complexity, provide long-term nutrient storage and substrate for aquatic macroinvertebrates, moderate flow disturbances, increase retention of leaf litter, and provide refuge for fish during high flows. Channel margin habitat is expected to increase rearing habitat for Chinook salmon fry in particular, through enhancement and creation of additional shallow-water habitat that will provide foraging opportunities and refuge from unfavorable hydraulic conditions and predation.

Channel margin enhancement will be achieved by implementing site-specific projects. The following habitat suitability factors will be considered when evaluating sites for potential location and design of enhanced channel margins.

• Existing poor habitat quality and biological performance for listed species of fish combined with extensive occurrence of listed species of fish.
• Locations where migrating salmon and steelhead are likely to require rest during high flows.

• The length of channel margin that can be practicably enhanced and the distance between enhanced areas (there may be a tradeoff between enhancing multiple shorter reaches that have less distance between them and enhancing relatively few longer reaches with greater distances between them).

• The potential for native riparian plantings to augment breeding and foraging habitat for listed species using riparian habitat, such as Swainson’s hawk, western yellow-billed cuckoo, tricolored blackbird, or riparian brush rabbit, in proximity to known occurrences.

• The potential cross-sectional profile of enhanced channels (elevation of habitat, topographic diversity, width, variability in edge and bench surfaces, depth, and slope).

• The potential amount and distribution of installed woody debris along enhanced channel margins.

• The extent of shaded riverine aquatic overstory and understory vegetative cover needed to provide future input of large woody debris.

A technical team consisting of representatives from Reclamation, NMFS, USFWS, DWR and CDFW will be established to develop siting, design, and performance criteria for channel margin restoration. This group will work collaboratively to select the most biologically appropriate and cost-effective restoration site(s), design the restoration plan, set performance criteria, and develop the restoration unit management plan for the site(s).

Prior to channel margin enhancement construction (the on-the-ground activities that will put the channel margin enhancements in place) for each project, preparatory actions will include interagency coordination, feasibility evaluations, site acquisition, development of site-specific plans, and environmental compliance. Completion of construction at each site will precede the corresponding impacts associated with conveyance facility construction, but full compliance with the conservation measures in this biological assessment will be based on performance of the completed site consistent with the success criteria stated in the site-specific design documents, as demonstrated in reports to be provided to CDFW, USFWS and NMFS by Reclamation.

General AMMs described in Appendix 3.F, *General Avoidance and Minimization Measures* will be implemented, and an in-water work windows subject to approval by CDFW, USFWS and NMFS will be observed, during implementation of channel margin enhancement. General AMMs applicable to channel margin enhancement work include AMMs 1 to 10, AMM14, AMM15, and AMM17. After construction, each project will be monitored and adaptively managed to ensure that the success criteria outlined in the site-specific restoration plan are met.

Channel margin enhancement actions are expected to be performed in the following manner.

• Use large mechanized equipment (typically, a trackhoe) to remove riprap from channel margins.
Chapter 3: Description of the Proposed Action

Conservation Measures

- Use grading equipment such as trackhoes and bulldozers to modify the channel margin side of levees or setback levees to create low floodplain benches with variable surface elevations that create hydrodynamic complexity and support emergent vegetation.

- Use construction equipment such as trackhoes, bulldozers and cranes to install large woody material (e.g., tree trunks and stumps) into constructed low benches or into existing riprapped levees to provide physical complexity.

- Use personnel and small powered equipment such as off-road vehicles (ORV) to plant riparian and emergent wetland vegetation on created benches.

3.4.3.1.3 South Delta Habitat Restoration

The PA includes construction in the central and south Delta of the HOR gate and several barge landings. This construction will convert areas that are considered aquatic habitat for salmon into physical structures that commonly attract predatory fish and may reduce habitat complexity for native fishes. The affected habitat largely consists of rip-rap, and effects on this habitat will be offset by the restoration shown, for each listed species, in Table 3.4-1. Mitigation proposed as part of the PA includes restoration actions that will offset, at a 3:1 ratio, any habitat impacts that may occur due to HOR gate and barge landing construction. The PA restoration actions will adhere to the following principles, which assure that the proposed habitat restoration benefits salmonids.

- Habitat restoration and mitigation efforts will target migration routes commonly used by San Joaquin River basin salmonids to the extent possible. Highest priority for restoration site selection will apply to sites near the south Delta construction sites. Sites upstream of the head of Old River will also be considered if those locations provide greater benefit.

- The restoration will focus on creating benefits for salmonids through improved habitat function. Some combination of channel margin and tidal perennial habitat, cited and designed in coordination with NMFS and CDFW, will be targeted to achieve these benefits, consistent with restoring south Delta historical habitat function and processes (see Whipple et al. 2012). Habitat functions most beneficial to salmonids and native species will therefore be the focus on the restoration mitigation efforts. Examples include restoration of floodplain habitat, riparian habitat with appropriate vegetation to deliver organic inputs and terrestrial invertebrates to the adjacent riverine system, refugia from predators or elevated velocities resulting from high flows, and seasonal flooding during winter and spring even in drier water year types.

- As part of the restoration of tidal perennial and/or channel margin habitat restoration, features may include small-scale levee setbacks or benches that provide seasonally inundated terraces during high runoff events. Restoration plans will consider areas where this functionality can be restored or created. An Engineer Technical Letter variance will need to be obtained from the Corps of Engineers, and may limit the areas that can be restored.

- Restoration areas will promote benefits for native species and deterrents to non-native species. For instance, seasonal flooding and draining with varying inundation periods are
a natural deterrent to colonization of invasive plants and species. Vegetation on the created terraces or floodplains will be monitored for invasive plant species. Control of invasive plants will be performed in a manner to be determined in consultation with the resource agencies to avoid infestations.

3.4.3.2 **Green Sturgeon**

3.4.3.2.1 **Avoidance and Minimization Measures**
The AMMs shown in Table 3.2-2 also apply to green sturgeon. Details of each of these measures are provided in Appendix 3.F, *General Avoidance and Minimization Measures*.

3.4.3.2.2 **Tidal Perennial Habitat Restoration Actions**
Based on the current estimate of effects, the PA includes restoration of 154.8 acres of tidal perennial habitat suitable for green sturgeon, with a focus on intertidal and subtidal areas for foraging (Israel and Klimley 2008). The general approach to tidal perennial habitat restoration will parallel that described in Section 3.4.3.1.2.1 *Tidal Perennial Habitat Restoration*. As with tidal habitat restoration benefitting Chinook salmon and steelhead, a technical team consisting of representatives from Reclamation, NMFS, USFWS, DWR and CDFW will be established to develop siting, design, and performance criteria for tidal perennial habitat restoration. This group will work collaboratively to select the most biologically appropriate and cost-effective restoration site(s), design the restoration plan, set performance criteria, and develop the restoration unit management plan for the site(s). To the extent practicable, tidal perennial habitat restoration benefitting green sturgeon will be colocated with tidal perennial habitat restoration benefitting Chinook salmon and steelhead.

Tidal perennial habitat will be sited in areas suitable for creation of intertidal and subtidal habitat, which will provide important foraging habitat for green sturgeon (Israel and Klimley 2008). On the basis of the observed areas occupied by acoustically tagged juvenile green sturgeon (Klimley et al. 2015), it is expected that areas prioritized for salmonid restoration will also provide suitable function for green sturgeon if including elevations to yield intertidal and subtidal habitat.

3.4.3.3 **Southern Resident Killer Whale**

3.4.3.3.1 **Avoidance and Minimization Measures**
Since the proposed action is not identified as having adverse effects on Southern Resident killer whale, and the species is not known to occur in the action area, no avoidance and minimization measures are proposed for this species.

3.4.3.3.2 **Restoration Actions**
Since the proposed action is not identified as having adverse effects on Southern Resident killer whale, and the species is not known to occur in the action area, no compensation measures are proposed for this species.
3.4.3.4 Delta Smelt

3.4.3.4.1 Avoidance and Minimization Measures
AMMs that will be implemented to avoid or minimize effects on Delta Smelt are detailed in Appendix 3.F, General Avoidance and Minimization Measures, and are summarized in Table 3.2-2. General AMMs specifically applicable to Delta Smelt include AMMs 1 to 7, AMM8, AMM9, AMM14, AMM15, and AMM17. Furthermore, in-water activities associated with the proposed action will, as described in Section 3.2 Conveyance Facility Construction, comply with the proposed in-water work windows.

3.4.3.4.2 Conservation Measures
The following conservation measure is proposed for Delta Smelt: Restoration of nearly 348 acres of habitat suitable for Delta Smelt, of which nearly 103 acres is intended to offset construction impacts on Delta Smelt and their habitat, and 245 acres are intended to offset potential impaired Delta Smelt access to shallow water critical habitat in the vicinity of the NDDs (Table 3.4-1). Restoration will be performed at a site in the vicinity of Sherman Island, Cache Slough, or the north Delta to be approved by USFWS. The proposed habitat restoration, shown in Table 3.4-1, will offset effects on Delta Smelt spawning, rearing, and migration habitat. Of this total, the PA proposes to mitigate 245 acres of shallow water habitat for impacts related to the potential changes in access to shallow water critical habitat upstream of the proposed NDD. GIS was used to calculate that the total shallow water critical habitat located above the NDD (including both banks of the Sacramento River) is 250 acres. In addition to potential use of this habitat during the early part of the life cycle, Delta Smelt may also use this critical habitat during spawning, which is believed to occur in sandy beach areas. Of the 250 acres of designated shallow water critical habitat located above the NDD, examination of aerial photographs combined with GIS analysis suggests that 36 acres are sandy beach area and therefore potentially suitable for spawning. The effects analysis hypothesizes that this potential spawning area may become inaccessible to Delta Smelt because of the presence of the NDD (see Chapter 6). Monitoring of Delta Smelt use of this area will occur to evaluate whether this effect is occurring, and the consultation will be reinitiated if it is found that Delta Smelt continue to use the area. The 245 acres of proposed restoration represents a 1:1 mitigation ratio for the entire area of shallow water critical habitat, minus the approximately 5 acres of habitat related to construction of the NDD that would be mitigated at a 5:1 ratio. Of the 245 acres included in the overall 1:1 mitigation ratio, sandy beach habitat will be mitigated at a 3:1 ratio, and therefore will comprise 108 acres of the total 245 acres related to the presence of the NDD.

Habitat restoration site selection and design will occur in coordination with USFWS and NMFS. Restoration will primarily occur through breaching or setback of levees, thereby restoring tidal fluctuation to land parcels currently isolated behind those levees. Factors to be considered when evaluating sites for potential location and design of habitat restoration include the potential to create desirable habitat features, as summarized by Sommer and Mejia (2013) in their suggestions for pilot Delta Smelt restoration projects: low salinity (< 6 ppt); moderate temperature (7–25°C); high turbidity (>12 NTU); sand-dominated substrate; at least moderately tidal; high copepod density; low SAV; low Microcystis; and open water habitat adjacent to long residence time habitat. These factors are similar to those considered in terms of crediting restoration sites in the Delta:
• Improved rearing habitat: High order, marsh-adjacent channels; energetic; turbid, cool, low salinity water over a diverse landscape for capturing prey and decreased predation; accessible to Delta Smelt for direct use.

• Improved spawning habitat: Sandy beaches with appropriate water velocities and depths to maintain the habitat and is accessible to Delta Smelt for direct use. Must have appropriate water quality conditions for Delta Smelt.

Geographic priority will be given to sites in the vicinity of Sherman Island, Cache Slough, and the North Delta. Tidal perennial habitat restoration will replace loss of such habitat at barge landings and the HOR gate, whereas shallow water habitat restoration will replace loss of such habitat in the north Delta as a result of NDD construction and operations.

Shallow subtidal areas in large portions of the Delta support extensive beds of nonnative SAV that adversely affect listed species of fish (Nobriga et al. 2005; Brown and Michniuk 2007; Grimaldo et al. 2012). In other portions of the Delta, shallow subtidal areas provide suitable habitat for native species, such as Delta Smelt in the Liberty Island/Cache Slough area, and do not promote the growth of nonnative SAV (Nobriga et al. 2005; McLain and Castillo 2009). Shallow water and tidal perennial habitat restoration is not intended to restore large areas of shallow subtidal aquatic habitat, which would collaterally create habitat for nonnative predators; rather, shallow subtidal aquatic habitat restoration is proposed in association with tidal habitat, which will provide more heterogeneity and support pelagic habitat adjacent to emergent wetland. Tidal perennial habitat restoration will be sited in the vicinity of Sherman Island, Cache Slough, or at other sites in the north Delta.

Where practicable and appropriate, portions of restoration sites will be raised to elevations that will support tidal marsh vegetation following levee breaching. Depending on the degree of subsidence and location, lands may be elevated by grading higher elevations to fill subsided areas, importing clean dredged or fill material from other locations, or planting tules or other appropriate vegetation to raise elevations in shallowly subsided areas over time through organic material accumulation (Ingebritsen et al. 2000). Surface grading will create a shallow elevation gradient from the marsh plain to the upland transition habitat. Based on assessments of local hydrodynamic conditions, sediment transport, and topography, restoration activities may be designed and implemented in a manner that accelerates the development of tidal channels within restored marsh plains. Following reintroduction of tidal exchange, tidal marsh vegetation is expected to establish and maintain itself naturally at suitable elevations relative to the tidal range. Depending on site-specific conditions and monitoring results, patches of native emergent vegetation may be planted to accelerate the establishment of native marsh vegetation on restored marsh plain surfaces. A conceptual illustration of restored tidal perennial habitat is presented in Figure 3.4-1.

A technical team consisting of representatives from Reclamation, NMFS, USFWS, DWR and CDFW will be established to develop siting, design, and performance criteria for tidal perennial habitat restoration. This group will work collaboratively to select the most biologically appropriate and cost-effective restoration site(s), design the restoration plan, set performance criteria, and develop the restoration unit management plan for the site(s).
Completion of construction at each site will precede the corresponding impacts associated with conveyance facility construction. Full compliance with the conservation measures in this biological assessment will be based on performance of the completed site consistent with the success criteria stated in the site-specific design documents, as demonstrated in reports to be provided to CDFW, USFWS and NMFS by Reclamation.

General AMMs described in Appendix 3.F *General Avoidance and Minimization Measures* will be implemented during tidal restoration construction. General AMMs applicable to tidal restoration work include AMMs 1 to 10, AMM14, AMM15, and AMM17.

Construction of shallow water and tidal perennial habitat restoration could affect Delta Smelt by potential spills of construction equipment fluids; increased turbidity; increased exposure to methylmercury, pesticides and other contaminants when upland soils are inundated; and increased exposure to contaminants from disturbed aquatic sediments. However, these effects will be temporary and will be offset by the long-term benefits of the restored habitat (any sites so contaminated as to produce contrary results will be deemed unsuitable for restoration).

Actions to be taken during restoration are expected to include pre-breach management of the restoration site to promote desirable vegetation and elevations within the restoration area and levee maintenance, improvement, or redesign. This may require substantial earthwork outside but adjacent to tidal and other aquatic environments. Levee breaching will require removing levee materials from within and adjacent to tidal and other aquatic habitats. Levee breaching will entail in-water work using construction equipment such as bulldozers and backhoes; any in-water work will be performed during an in-water work window to be approved by CDFW, NMFS and USFWS. Removed levee materials will be placed on the remaining levee sections, placed within the restoration area, or hauled to a disposal area previously approved by CDFW, NMFS and USFWS. Construction at tidal habitat restoration sites is expected to involve the following activities.

- Excavating channels to encourage the development of sinuous, high-density dendritic channel networks within restored marsh plain.
- Modifying ditches, cuts, and levees to encourage more natural tidal circulation and better flood conveyance based on local hydrology.
- Removal or breaching of existing levees or embankments or creation of new structures to allow restoration to take place while protecting adjacent land.
- Prior to breaching, recontouring the surface to maximize the extent of surface elevation suitable for establishment of tidal marsh vegetation by scalping higher elevation land to provide fill for placement on subsided lands to raise surface elevations.
- Prior to breaching, importing dredge or fill material and placing it in shallowly subsided areas to raise ground surface elevations to a level suitable for establishment of tidal marsh vegetation.
• Tidal habitat restored adjacent to farmed lands may require construction of dikes to maintain those land uses.

3.4.4 Spatial Extent, Location, and Design of Restoration for Listed Species of Wildlife

The spatial extent of restoration and protection activities will be determined by the spatial extent of impacts and the applied mitigation ratios. While actual impacts and compensation will be determined on an annual basis during construction of the PA, as detailed in Section 3.4.1, Restoration and Protection, maximum impact limits will be set to define the upper bounds of effects on suitable habitat for listed species of wildlife. Table 3.4-2 summarizes the maximum impact limit, mitigation ratios, and total proposed compensation. This includes compensation for species protected under CESA because this compensation is a component of the PA. The maximum impact on habitat for listed species is estimated using the methods described in Appendix 6.B, Terrestrial Effects Analysis Methods. The total compensation proposed to offset effects if all impacts occur is described in Section 3.4.5 Terrestrial Species Conservation. The results of the impact analysis are summarized in Chapter 6, Effects Analysis for Delta Smelt and Terrestrial Species.

The precise siting of parcels used to achieve habitat restoration and protection has yet to be determined. Compensation will be sited near the location of impacts if and when practicable and feasible. Given species occurrence locations and habitat requirements, the regions where restoration and protection are likely to occur can be generally defined. The regions are summarized in Table 3.4-2 and further described below. Impacts on habitat for listed species of wildlife as a result of conservation measures are described and quantified in Chapter 6, Effects Analysis for Delta Smelt and Terrestrial Species. If, during construction, impacts exceed the limits set forth here, the Section 7 consultation will need to be reinitiated. The conservation measures provide for the restoration of suitable habitat for giant garter snake, valley elderberry longhorn beetle, vernal pool fairy shrimp, and vernal pool tadpole shrimp.

Restoration of nontidal wetlands for the giant garter snake is likely to occur in the central or east central portion of the legal Delta, or to the east of the legal Delta. Recent sightings of giant garter snake on Webb Island, Empire Tract, Bacon Island, and Decker Island suggest the species could benefit from nontidal wetland restoration in the central or east central Delta. Other potential locations for restoration include the Stone Lakes Wildlife Refuge, the Cosumnes-Mokelumne area, and the Caldoni Marsh/White Slough region.

Restoration of valley elderberry longhorn beetle suitable habitat will likely occur in the north Delta. This region includes several known occurrences (just southwest of West Sacramento) and will allow riparian restoration to be part of a larger tidal or riparian restoration effort as part of the California WaterFix. Valley elderberry longhorn beetle restoration could also be achieved as part of channel margin enhancement efforts as part of the California WaterFix (Section 3.4.3 Summary of Restoration for Fish Species).

Vernal pool restoration to compensate for effects on vernal pool fairy shrimp and vernal pool tadpole shrimp will be prioritized in the Altamont Hills recovery area, just northwest of the Clifton Court Forebay, which also coincides with the vernal pool fairy shrimp critical habitat unit that will be affected by the PA. Other restoration opportunities might exist in this region, but
outside the recovery area. This region is nearest the impact location, includes occurrences of these two species, and is located at the urban edge of a larger complex of protected, intact vernal pools where restoration opportunities likely exist. There is also potential to mitigate effects on these species through use of a conservation bank. The restoration locations for all listed species will be determined in coordination with USFWS staff. Siting criteria for restoration activities is detailed in Section 3.4.5, *Terrestrial Species Conservation*.
Table 3.4-2. Summary of Maximum Direct Impact, Proposed Compensation, and Potential Location of Restoration and Protection for Federally Listed Species of Wildlife

<table>
<thead>
<tr>
<th>Resource</th>
<th>Total Modeled Habitat in the Action Area (Acres)</th>
<th>Maximum Direct Impacts</th>
<th>Mitigation Ratios</th>
<th>Total Proposed Compensation if All Impacts Occur</th>
<th>Potential Location of Proposed Restoration and Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Permanent (Acres)</td>
<td>Temporary Disturbance (Acres)</td>
<td>Protection</td>
<td>Restoration</td>
<td>Total Compensation, Protection</td>
</tr>
<tr>
<td>San Joaquin kit fox</td>
<td>2,956</td>
<td>47</td>
<td>11</td>
<td>3:1</td>
<td>-</td>
</tr>
<tr>
<td>Western yellow-billed cuckoo</td>
<td>11,224</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>2:1</td>
</tr>
<tr>
<td>Giant garter snake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquatic habitat</td>
<td>26,328</td>
<td>205</td>
<td>0</td>
<td>2:1 to 3:1</td>
<td>410 to 615</td>
</tr>
<tr>
<td>Upland habitat</td>
<td>62,619</td>
<td>570</td>
<td>7</td>
<td>2:1 to 3:1</td>
<td>1,140 to 1,710</td>
</tr>
<tr>
<td>California red-legged frog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquatic habitat</td>
<td>118</td>
<td>1<sup>i</sup></td>
<td>0</td>
<td>3:1</td>
<td>3</td>
</tr>
<tr>
<td>Upland cover and dispersal habitat</td>
<td>3,498</td>
<td>51<sup>33</sup></td>
<td>17</td>
<td>3:1</td>
<td>-</td>
</tr>
<tr>
<td>California tiger salamander</td>
<td>12,724</td>
<td>50<sup>34</sup></td>
<td>8</td>
<td>3:1</td>
<td>-</td>
</tr>
<tr>
<td>Valley elderberry longhorn beetle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riparian vegetation</td>
<td>16,300</td>
<td>49</td>
<td>19</td>
<td>-</td>
<td>-<sup>c</sup></td>
</tr>
<tr>
<td>Nonriparian channels and grasslands</td>
<td>15,195</td>
<td>227</td>
<td>87</td>
<td>-</td>
<td>-<sup>c</sup></td>
</tr>
<tr>
<td>Vernal pool fairy shrimp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal pool complex - Direct</td>
<td>89</td>
<td>6</td>
<td>0</td>
<td>-</td>
<td>2:1/3:1<sup>d</sup></td>
</tr>
</tbody>
</table>

³¹ Maximum direct impacts presented here do not include effects from restoration/mitigation because take associated with restoration/mitigation will not be authorized under the biological opinion.

³² Temporary disturbance will be mitigated by returning disturbed areas to pre-project conditions. This disturbance mostly includes overland travel and temporary work areas in grasslands and agricultural lands.

³³ Includes 47 acres within the construction footprint and 4 acres of upland habitat potentially subject to vibrations adjacent to construction.

³⁴ Includes 47 acres within the construction footprint and 3 acres of upland habitat potentially subject to vibrations adjacent to construction.
Conservation Measures

Resource

<table>
<thead>
<tr>
<th>Total Modeled Habitat in the Action Area (Acres)</th>
<th>Maximum Direct Impacts</th>
<th>Mitigation Ratios</th>
<th>Total Proposed Compensation if All Impacts Occur</th>
<th>Potential Location of Proposed Restoration and Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temporary Disturbance (Acres)</td>
<td>Protection</td>
<td>Restoration</td>
<td>Total Compensation, Protection</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Vernal pool tadpole shrimp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal pool complex – Direct</td>
<td>89</td>
<td>6</td>
<td>0</td>
<td>2:1/3:1<sup>d</sup></td>
</tr>
<tr>
<td>Least Bell’s vireo</td>
<td>11,224</td>
<td>32</td>
<td>0</td>
<td>2:1</td>
</tr>
</tbody>
</table>

^a Giant garter snake upland habitat will be created or protected in association with the protected and restored aquatic habitat.

^b Aquatic and upland compensation is primarily based on the loss of aquatic habitat, however, the loss of upland habitat patches that are not adjacent to effected aquatic habitat will be mitigated 3:1. There is 52 acres of upland habitat loss that is not adjacent to effected aquatic habitat therefore 156 acres of protection and restoration is required for compensation. 1/3 (52 acres) of the 156 acres of compensation will be achieved through aquatic protection and restoration and 2/3 (104 acres) will be achieved by upland protection and restoration.

^c The impact assessment is based on the loss of elderberry bush stems and the compensation is based on the required number of transplants, elderberry seedlings, and native plant plantings.

^d Compensation varies for vernal pool crustaceans, depending on whether the compensation is achieved with by conservation bank/or non-bank means.
Chapter 3: Description of the Proposed Action
Conservation Measures for Valley Elderberry Longhorn Beetle

3.4.5 Terrestrial Species Conservation

The following sections detail aspects of the PA intended to avoid and minimize adverse effects on listed species of wildlife and describe offsetting measures intended to compensate for adverse effects on listed species of wildlife. In addition to species-specific avoidance and minimization measures (AMMs) discussed below, general avoidance and minimization measures that would be implemented uniformly during construction and maintenance/management of proposed water facilities and performance of conservation measures are fully detailed in Appendix 3.F, General Avoidance and Minimization Measures.

3.4.5.1 Riparian Brush Rabbit

3.4.5.1.1 Habitat Description
Riparian brush rabbit suitable habitat is defined in Appendix 4.A, Status of the Species and Critical Habitat Accounts, Section 4.A.5.6, Suitable Habitat Definition. Within the action area, based on the known distribution of the species, suitable habitat is defined to include the area south of SR 4 and Old River Pipeline. Within this area, suitable riparian habitat includes the vegetation types that comprise a dense, brushy understory shrub layer with a minimum patch size of 0.05 acres. Riparian brush rabbit grassland habitat includes grasslands with a minimum patch size of 0.05 acres that are adjacent to riparian brush rabbit riparian habitat. As described in Section 4.A.6.7, Head of Old River Gate Habitat Assessment, there is no suitable habitat within the project footprint.

3.4.5.1.2 Avoidance and Minimization Measures

3.4.5.1.2.1 Head of Old River Gate
Construction of the HOR gate will fully avoid loss of riparian brush rabbit habitat. As described in Section 4.A.5.7, Head of Old River Gate Habitat Assessment, there is no potentially suitable habitat for riparian brush rabbit within the construction footprint. As stated in Section 3.2.8.2.2, Gate Construction, the gate construction site, including the temporary work area, has for many years been used for seasonal construction and removal of a temporary rock barrier, and all proposed work will occur within the area that is currently seasonally disturbed for temporary rock barrier construction. Site access roads and staging areas used in the past for rock barrier installation and removal will be used for construction, staging, and other construction support facilities for the proposed barrier.

DWR will implement the following measures to avoid and minimize noise and lighting related effects on riparian brush rabbit:

- Establish a 1,200-foot nondisturbance buffer between any project activities and suitable habitat.
- Establish a 1,400-foot buffer between any lighting and pile driving and suitable habitat.
- Screen all lights and direct them down toward work activities away from potential occupied habitat. A biological construction monitor will ensure that lights are properly directed at all times.
• Operate portable lights at the lowest allowable wattage and height, while in accordance with the National Cooperative Highway Research Program’s *Report 498: Illumination Guidelines for Nighttime Highway Work*.

• Limit construction during nighttime hours (10:00 p.m. to 7:00 a.m.) such that construction noise levels do not exceed 50 dBA L_{max} at the nearest residential land uses.

• Limit pile driving to daytime hours (7:00 a.m. to 6:00 p.m.).

3.4.5.1.2.2 Geotechnical Exploration

Geotechnical exploration for the PA will not occur in or near riparian brush rabbit suitable riparian habitat.

3.4.5.1.2.3 Power Supply and Grid Connections

Power supply and grid connections for the PA will not occur within or near riparian brush rabbit suitable riparian habitat.

3.4.5.1.2.4 Restoration Activities

Restoration activities for the PA will not occur within riparian brush rabbit suitable riparian habitat, or within 100 feet of such habitat.

3.4.5.2 San Joaquin Kit Fox

3.4.5.2.1 Habitat Definition

San Joaquin kit fox suitable habitat is defined in Section 4.A.6.6, *Suitable Habitat Definition*. Within the action area, based on the known distribution of the species, suitable habitat as grasslands in the area depicted in Figure 6.3-1 and 6.3-2. San Joaquin kit fox preconstruction surveys will be required for activities occurring on, or within 200 feet of, suitable habitat. A USFWS-approved biologist will conduct these pre-construction surveys.

3.4.5.2.2 Avoidance and Minimization Measures

AMMs are described below first for activities with fixed locations including the Clifton Court Forebay canal. Additional AMMs are then described for activities with flexible locations: habitat restoration, transmission lines, and geotechnical investigations. General AMMs are discussed in Appendix 3.F, *General Avoidance and Minimization Measures*.

3.4.5.2.2.1 Activities with Fixed Locations

Construction of the Clifton Court Forebay canal and any operations and maintenance activities involving use of heavy equipment associated with these facilities in the vicinity of San Joaquin kit fox habitat, will follow the avoidance and minimization measures described below. Additionally, once the transmission lines have been sited, construction associated with these activities will follow the avoidance and minimization measures described below.

35 200 feet is the distance from the activity within which a natal/pupping den survey is required as stated in the *Standardized Recommendations for Protection of the Endangered San Joaquin Kit Fox prior to or during Ground Disturbance* (U.S. Fish and Wildlife Service 2011).
Workers will confine ground disturbance and habitat removal to the minimal area necessary to facilitate construction activities. Additionally, to avoid direct effects of the PA on San Joaquin kit fox, the following measures will be implemented. These measures are based on USFWS’s Standardized Recommendations for Protection of the Endangered San Joaquin Kit Fox prior to or during Ground Disturbance (U.S. Fish and Wildlife Service 2011).

3.4.5.2.2.1.1 San Joaquin Kit Fox Surveys
Within 14 to 30 days prior to ground disturbance related to PA activities, a USFWS-approved biologist with experience surveying for and observing the species will conduct preconstruction surveys in those areas identified as having suitable habitat per the habitat model described in Section 4.A.6.6, Suitable Habitat Definition, or per the recommendation of the USFWS approved biologist. The USFWS-approved biologist will survey the worksite footprint and the area within 200 feet beyond the footprint to identify known or potential San Joaquin kit fox dens. Adjacent parcels under different land ownership will not be surveyed unless access is granted within the 200-foot radius of the construction activity. The USFWS-approved biologist will conduct these searches by systematically walking 30- to 100-foot-wide transects throughout the survey area; transect width will be adjusted based on vegetation height and topography (California Department of Fish and Game 1990). The USFWS-approved biologist will conduct walking transects such that 100% visual coverage of the worksite footprint is achieved. Dens will be classified in one of the following four den status categories outlined in the Standardized Recommendations for Protection of the Endangered San Joaquin Kit Fox Prior to or During Ground Disturbance (U.S. Fish and Wildlife Service 2011).

- **Potential den.** Any subterranean hole within the species’ range that has entrances of appropriate dimensions for which available evidence is sufficient to conclude that it is being used or has been used by a kit fox. Potential dens comprise any suitable subterranean hole or any den or burrow of another species (e.g., coyote, badger, red fox, or ground squirrel) that otherwise has appropriate characteristics for kit fox use. If a potential den is found, the biologist will establish a 50-foot buffer using flagging.

- **Known den.** Any existing natural den or artificial structure that is used or has been used at any time in the past by a San Joaquin kit fox. Evidence of use may include historical records; past or current radiotelemetry or spotlighting data; kit fox sign such as tracks, scat, and/or prey remains; or other reasonable proof that a given den is being or has been used by a kit fox.

- **Natal or pupping den.** Any den used by kit foxes to whelp and/or rear their pups. Natal/pupping dens may be larger with more numerous entrances than dens occupied exclusively by adults. These dens typically have more kit fox tracks, scat, and prey remains near the den and may have a broader apron of matted dirt and/or vegetation at one or more entrances. A natal den, defined as a den in which kit fox pups are actually whelped but not necessarily reared, is a more restrictive version of the pupping den. In practice, however, it is difficult to distinguish between the two; therefore, for purposes of this definition, either term applies. If a natal den is discovered, a buffer of at least 200 feet will be established using fencing.
• **Atypical den.** Any artificial structure that has been or is being occupied by a San Joaquin kit fox. Atypical dens may include pipes, culverts, and diggings beneath concrete slabs and buildings. If an atypical den is discovered, the biologist will establish a 50-foot buffer using flagging.

The USFWS-approved biologist will flag all potential small mammal burrows within 50 feet of the worksite to alert biological and work crews of their presence.

3.4.5.2.1.2 Avoidance of San Joaquin Kit Fox Dens

Disturbance to all San Joaquin kit fox dens will be avoided, to the extent possible. Limited den destruction may be allowed, if avoidance is not a reasonable alternative, provided the following procedures are observed.

- If an atypical, natal, known or potential San Joaquin kit fox den is discovered at the worksite, the den will be monitored for three days by a USFWS-approved biologist using a tracking medium or an infrared beam camera to determine if the den is currently being used.

- Unoccupied potential, known, or atypical dens will be destroyed immediately to prevent subsequent use. The den will be fully excavated by hand, filled with dirt, and compacted to ensure that San Joaquin kit foxes cannot reenter or use the den during the construction period.

- If an active natal or pupping den is found, USFWS will be notified immediately. The den will not be destroyed until the pups and adults have vacated and then only after further coordination with USFWS. All known dens will have at least a 100-foot buffer established using fencing.

- If kit fox activity is observed at the potential, known, or atypical den during the pre-construction surveys, den use will be actively discouraged, as described below, and monitoring will continue for an additional five consecutive days from the time of the first observation to allow any resident animals to move to another den. For dens other than natal or pupping dens, use of the den can be discouraged by partially plugging the entrance with soil such that any resident animal can easily escape. Once the den is determined to be unoccupied, it may be excavated under the direction of the Service-approved biologist. Alternatively, if the animal is still present after five or more consecutive days of plugging and monitoring, the den may have to be excavated by hand when, in the judgment of a Service-approved biologist, it is temporarily vacant (i.e., during the animal’s normal foraging activities). If at any point during excavation a kit fox is discovered inside the den, the excavation activity will cease immediately and monitoring of the den, as described above, will be resumed. Destruction of the den may be completed when, in the judgment of the biologist, the animal has escaped from the partially destroyed den.

- Construction and operational requirements from *Standardized Recommendations for Protection of the San Joaquin Kit Fox prior to or during Ground Disturbance* (U.S. Fish and Wildlife Service 2011) or the latest guidelines will be implemented.
• If potential, known, atypical, or natal or pupping dens are identified at the worksite or within a 200-foot buffer, exclusion zones around each den entrance or cluster of entrances will be demarcated. The configuration of exclusion zones will be circular, with a radius measured outward from the den entrance(s). No activities will occur within the exclusion zones. Exclusion zone radii for atypical dens and suitable dens will be at least 50 feet and will be demarcated with four to five flagged stakes. Exclusion zone radii for known dens will be at least 100 feet and will be demarcated with staking and flagging that encircle each den or cluster of dens but do not prevent access to the den by the foxes.

Written results of the surveys will be submitted to USFWS within five calendar days of the completion of surveys and prior to the beginning of ground disturbance and/or construction activities in San Joaquin kit fox modeled habitat.

3.4.5.2.2.1.3 Construction Related Avoidance and Minimization Measures

During construction, the following measures will be implemented for all activities in suitable San Joaquin kit fox habitat (as determined by a USFWS-approved biologist):

• Vehicles will observe a daytime speed limit of 20-mph throughout the worksite, where it is practical and safe to do so, except on county roads and state and Federal highways; vehicles will observe a nighttime speed limit of 10-mph throughout the worksite; this is particularly important at night when kit foxes are most active. Nighttime construction in or adjacent to San Joaquin kit fox habitat will be minimized to the greatest extent practicable.

• To prevent inadvertent entrapment of kit foxes or other animals during construction, all excavated, steep-walled holes or trenches more than 2 feet deep will be covered at the close of each working day by plywood or similar materials. If the trenches cannot be closed, one or more escape ramps constructed of earthen-fill or wooden planks will be installed. Before such holes or trenches are filled, they will be thoroughly inspected for trapped animals. If at any time a trapped or injured kit fox is discovered, USFWS will be contacted.

• Kit foxes are attracted to den-like structures such as pipes and may enter stored pipes and become trapped or injured. All construction pipes, culverts, or similar structures with a diameter of 4 inches or greater that are stored at a construction site within suitable kit fox habitat for one or more overnight periods will be thoroughly inspected for kit foxes before the pipe is subsequently buried, capped, or otherwise used or moved in any way. If a kit fox is discovered inside a pipe, that section of pipe will not be moved until USFWS has been consulted. If necessary, and under the direct supervision of the USFWS-approved biologist, the pipe may be moved only once to remove it from the path of construction activity until the fox has escaped.

• All food-related trash items such as wrappers, cans, bottles, and food scraps will be disposed of in securely closed containers and removed at least once a week from a construction site in suitable kit fox habitat.

• No firearms will be allowed at worksites.
• No pets, such as dogs or cats, will be permitted at worksites to prevent harassment, mortality of kit foxes, or destruction of dens.

• Use of rodenticides and herbicides in areas that are in modeled kit fox habitat will be prohibited.

• The USFWS-approved biologist for San Joaquin kit fox will be the contact source for any employee or contractor who might incidentally kill or injure a kit fox or who finds a dead, injured, or entrapped kit fox.

• An employee education program (AMM1 Worker Awareness Training) will be conducted for any activities that will be conducted in San Joaquin kit fox habitat. The program will consist of a brief presentation by the USFWS-approved biologist for San Joaquin kit fox to explain endangered species concerns to all personnel who will be working in the construction area. The program will include the following: A description of the San Joaquin kit fox and its habitat needs; a report of the occurrence of kit fox at the worksite; an explanation of the status of the species and its protection under the Endangered Species Act; and a list of measures being taken to reduce impacts on the species during construction and operations. A fact sheet conveying this information will be prepared for distribution to all worksite personnel.

• Upon completion of construction at a worksite, all areas subject to temporary ground disturbances will be re-contoured if necessary, and revegetated to promote restoration of the area to pre-construction conditions. An area subject to “temporary” disturbance means any area that is disturbed during construction, but after construction will be revegetated. Appropriate methods and plant species used to revegetate such areas will be determined on a site-specific basis in consultation with USFWS.

• Any personnel who are responsible for incidentally killing or injuring a San Joaquin kit fox will immediately report the incident to the USFWS-approved biologist. The USFWS-approved biologist will contact USFWS immediately in the case of a dead, injured, or entrapped kit fox. USFWS will be contacted at the numbers below.

• The San Francisco-Bay-Delta Fish and Wildlife Office will be notified immediately of the accidental death or injury to a San Joaquin kit fox. Notification must include the date, time, and location of the incident or of the finding of a dead or injured animal and any other pertinent information. The USFWS contact is the Assistant Field Supervisor of Endangered Species, at the addresses and telephone numbers below.

• New sightings of kit fox will be reported to the California Natural Diversity Database (CNDDB). A copy of the reporting form and a topographic map clearly marked with the location of where the kit fox was observed will also be provided to USFWS at the address below.

Any information required by USFWS or questions concerning the above conditions or their implementation may be directed in writing to USFWS at: Bay-Delta Fish & Wildlife Office, 650 Capitol Mall, Suite 8-300, Sacramento, CA 95814, (916) 930-5604 office).
3.4.5.2.1.4 Clifton Court Forebay Operations and Maintenance
Following completion of Clifton Court Forebay modifications, the area to be operated and
maintained within suitable kit fox habitat will be fenced with chain link fencing that prevents
entry of San Joaquin kit fox. The fencing will be inspected annually to ensure there are no holes
or gaps in the fencing that would allow kit foxes to enter.

3.4.5.2.2 Activities with Flexible Locations
3.4.5.2.2.1 Geotechnical Exploration

- Geotechnical work in and within 200 feet of San Joaquin kit fox habitat will be limited to
daytime hours.

- Vehicles will access the work site following the shortest possible route from the levee
road. All site access and staging shall limit disturbance to the riverbank, or levee as much
as possible and avoid sensitive habitats. When possible, existing ingress and egress points
shall be used. The USFWS-approved biologist for San Joaquin kit fox will survey the
sites for kit fox no less than 14 days and no more than 30 days prior to beginning of
Geotechnical exploration activities.

- Project activities will not take place at night when kit foxes are most active.

- Off-road traffic outside of designated project areas will be prohibited.

- A USFWS-approved biological monitor will be stationed near the work areas to assist the
construction crew with environmental issues as necessary. If kit foxes are encountered by
a USFWS-approved biological monitor during construction, activities shall cease until
appropriate corrective measures have been completed or it has been determined that the
species will not be harmed.

- To prevent inadvertent entrapment of kit foxes or other animals during the construction
phase of a project, all excavated, steep-walled holes or trenches more than 2 feet (0.6 m)
deep will be covered at the close of each working day by plywood or similar materials, or
provided with one or more escape ramps constructed of earth fill or wooden planks.
Before such holes or trenches are filled, they will be thoroughly inspected for trapped
animals.

- All construction pipes, culverts, or similar structures with a diameter of 4 inches (10 cm)
or greater that are stored at a construction site for one or more overnight periods should
be thoroughly inspected for kit foxes before the pipe is used or moved in any way. If a kit
fox is discovered inside a pipe, construction activities will be halted and that section of
pipe will not be moved until the USFWS-approved biologist monitoring the project
construction site has contacted the USFWS. Once the Service has given the construction
monitor instructions on how to proceed or the kit fox has escaped on its own volition, the
pipe may be moved.

- No firearms shall be allowed on the project site.
• Noise will be minimized to the extent possible at the work site to avoid disturbing kit foxes.

• To prevent harassment, mortality of kit foxes or destruction of dens by dogs or cats, no pets are permitted on project sites.

• Rodenticides and herbicides will not be used during geotechnical exploration.

• If a San Joaquin kit fox is incidentally injured or killed or entrapped, the USFWS-approved biological monitor shall immediately report the incident to the USWFS. Notification must include the date, time, and location of the incident or of the finding of a dead or injured animal and any other pertinent information.

3.4.5.2.2.2.2 **Power Supply and Grid Connections**

Prior to final design for the transmission line alignments, a USFWS-approved biologist will survey potential transmission line locations where suitable San Joaquin kit fox habitat is present. These surveys will be conducted as described in Section 3.4.5.2.2.1.1, *San Joaquin Kit Fox Surveys*, except that the surveys will be conducted early enough to inform the final transmission line design but no less than 14 days and no more than 30 days prior to beginning of PA activities. Therefore, multiple surveys may be required.

If any occupied dens are found, USFWS will be immediately contacted and the project will be designed to avoid the occupied dens by 200 feet. After the final transmission line alignment has been determined, the avoidance and minimization measures described in Section 3.4.5.2.1.1, *Activities with Fixed Locations*, will be followed. These measures will be applied to both transmission line construction and long-term maintenance.

3.4.5.2.2.2.3 **Restoration**

Prior to final design for vernal pool restoration, a USFWS-approved biologist will survey potential restoration locations where suitable San Joaquin kit fox habitat is present. These surveys will be conducted as described in Section 3.4.5.2.2.1.1, *San Joaquin Kit Fox Surveys*, except that the surveys will be conducted early enough to inform the restoration design but no less than 14 days and no more than 30 days prior to beginning of PA activities. Therefore, multiple surveys may be required. If any occupied dens are found, USFWS will be immediately contacted and the project will be designed to avoid the occupied dens by 200 feet. After the final restoration design is completed, the avoidance and minimization measures described in Section 3.4.5.2.1.1, *Activities with Fixed Locations*, will be followed during construction and management of the vernal pool habitat.

3.4.5.2.3 **Compensation for Effects**

DWR will protect San Joaquin kit fox habitat at a ratio of 3:1 (protected: lost) at a location subject to USFWS approval, adjacent to other modeled San Joaquin kit fox habitat to provide a large, contiguous habitat block. 47 acres of suitable San Joaquin kit fox habitat will be affected and therefore 141 acres of habitat will be protected (Table 3.4-3). San Joaquin kit fox protection will be accomplished either through the purchase of mitigation credits through an existing, USFWS-approved conservation bank or will be purchased in fee-title by DWR or a DWR partner.
organization with approval from the USFWS. If purchased in fee-title, a permanent, USFWS-approved conservation easement will be placed on the property.

Table 3.4-3. Compensation for Effects on San Joaquin Kit Fox Habitat.

<table>
<thead>
<tr>
<th>San Joaquin Kit Fox Modeled Habitat</th>
<th>Maximum Total Impact (Acres)</th>
<th>Habitat Protection Compensation Ratio</th>
<th>Total Habitat Protection (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breeding, Foraging, and Dispersal Habitat</td>
<td>47</td>
<td>3:1</td>
<td>141</td>
</tr>
</tbody>
</table>

3.4.5.2.4 Siting Criteria for Compensation of Effects
Suitable San Joaquin kit fox habitat will be acquired for protection in the Byron Hills area, subject to USFWS approval, where there is connectivity to existing protected habitat and to other adjoining kit fox habitat. Grassland protection will focus in particular on acquiring the largest remaining contiguous patches of unprotected grassland habitat, which are located south of SR 4. This area connects to over 620 acres of existing habitat that was protected under the East Contra Costa County HCP/NCCP. Grasslands will also be managed and enhanced to increase prey availability and to increase mammal burrows, which could benefit the San Joaquin kit fox by increasing potential den sites, which are a limiting factor for the kit fox in the northern portion of its range. These management and enhancement actions are expected to benefit the San Joaquin kit fox by increasing the habitat value of the protected grasslands. Alternatively, credits may be purchased at a FWS-approved conservation bank.

3.4.5.2.5 Management and Enhancement
Management and enhancement activities on protected San Joaquin kit fox habitat will be designed and conducted in coordination with (or by) the East Contra Costa County Habitat Conservancy or East Bay Regional Park District. Both of these entities have extensive experience conducting successful grassland management and to benefit San Joaquin kit fox in the area where this habitat will be protected to mitigate the effects of the PA. Management plans on San Joaquin kit fox conservation land will be subject to Service approval.

- **Vegetation management.** Vegetation will be managed to reduce fuel loads for wildfires, reduce thatch, minimize nonnative competition with native plant species, increase biodiversity, and provide suitable habitat conditions for San Joaquin kit fox. Grazing will be the primary mechanism for vegetation management on protected San Joaquin kit fox habitat.

- **Burrow availability.** Grasslands (including the grassland natural community and grasslands within vernal pool complex and alkali seasonal wetland complex natural communities) will be enhanced and managed to increase the availability of burrows and to increase prey availability for San Joaquin kit fox. Ground-dwelling mammals are important prey for San Joaquin kit fox, and kit foxes in the northern extent of their range often modify ground squirrel burrows for their own use. Some rodent control measures will likely remain necessary in certain areas where dense rodent populations may compromise important infrastructure (e.g., pond berms, road embankments, railroad beds, levees, dam faces). The land manager will introduce livestock grazing (where it is not currently used) to reduce vegetative cover and thus encourage ground squirrel expansion and colonization. Burrow availability may also be increased on protected grasslands by
encouraging ground squirrel occupancy through the creation of berms, mounds, edges, and other features designed to attract and encourage burrowing activity. The use of any rodenticides on San Joaquin kit fox conservation lands is prohibited as its use does not meet the general standards for San Joaquin kit fox conservation areas and does not align with San Joaquin kit fox management.

3.4.5.3 California Least Tern

3.4.5.3.1 Habitat Definition
California least tern suitable habitat is defined in Appendix 4.A, Status of the Species and Critical Habitat Accounts, Section 4.A.7.6, Suitable Habitat Definition. The implementation of general construction avoidance and minimization measures including best management practices and worker awareness training (Appendix 3.F, General Avoidance and Minimization Measures) will minimize the effects of construction on California least tern foraging habitat.

3.4.5.3.2 Avoidance and Minimization Measures
If suitable nesting habitat for California least tern (flat, unvegetated areas near aquatic foraging habitat) is identified during planning-level surveys, at least three preconstruction surveys for this species will be conducted during the nesting season by a qualified biologist with experience observing the species and its nests. Projects will be designed to avoid loss of California least tern nesting colonies. No construction will take place within 200 feet of a California least tern nest during the nesting season (April 15 to August 15, or as determined through surveys).

Only inspection, maintenance, research, or monitoring activities may be performed during the least tern breeding season in occupied least tern nesting habitat with USFWS and CDFW approval under the supervision of a qualified biologist. General AMMs are discussed in Appendix 3.F, General Avoidance and Minimization Measures.

Safe havens, RTM, and transmission lines will fully avoid California least tern foraging habitat. Transmission lines may cross waterways, but must avoid disturbance of open water habitat.

3.4.5.4 Western Yellow-Billed Cuckoo

3.4.5.4.1 Habitat Definition
AMMs for western yellow-billed cuckoo will be required for activities occurring within suitable habitat, or in the vicinity of suitable habitat, as defined in Appendix 4.A, Status of the Species and Critical Habitat Accounts, Section 4.A.8.6, Suitable Habitat Definition. To conservatively estimate effects of the PA on western yellow-billed cuckoo, a model for western yellow-billed cuckoo migratory habitat was created (Appendix 4.A, Section 4.A.8.7, Species Habitat Suitability Model). Prior to disturbing an area potentially supporting habitat for the species, a USFWS approved biologist will evaluate the area to identify suitable habitat as described in Section 3.4.8.2, Required Compliance Monitoring. The following avoidance and minimization measures will be applied within suitable habitat for western yellow-billed cuckoo.

3.4.5.4.2 Avoidance and Minimization Measures
3.4.5.4.2.1 Activities with Fixed Locations
Activities with fixed locations include all construction activities described in Section 3.2, Conveyance Facility Construction except geotechnical exploration, safe haven intervention sites,
and transmission lines. The following measures will be required for construction, operation, and maintenance related to fixed location activities in suitable migratory habitat. The following measures will also be required for activities with flexible locations once their locations have been fixed, if they occur in suitable habitat. Permanent or temporary loss of all suitable migratory habitat will be minimized by all activities associated with the PA through project design and no more than 33 acres of migratory habitat will be removed by activities associated with the PA.

- Prior to construction, all suitable western yellow-billed cuckoo habitat in the construction area will be surveyed, with surveys performed in accordance with any required USFWS survey protocols and permits applicable at the time of construction.

- If surveys find cuckoos in the area where vegetation will be removed, vegetation removal will be done when cuckoos are not present.

- If an activity is to occur within 1,200 feet of western yellow-billed cuckoo habitat (or within 2,000 feet if pile driving will occur) during the period of from June 15 through September 136, the following measures will be implemented to avoid noise effects on migrating western yellow-billed cuckoos.
 - Prior to the construction, a noise expert will create a noise contour map showing the 60 dBA noise contour specific to the type and location of construction to occur in the area.
 - During the period between June 15 and September 1, a USFWS-approved biologist will survey any suitable migratory habitat for yellow-billed cuckoos within the 60 dBA noise contour on a daily basis during a two-week period prior to construction. While construction is occurring within this work window, the USFWS-approved biologist will conduct daily surveys in any suitable habitat where construction related noise levels could exceed 60 dBA (A-weighted decibel) L eq (1 hour). If a yellow-billed cuckoo is found, sound will be limited to 60dBA in the habitat being used until the USFWS-approved biologist has confirmed that the bird has left the area.

- Limit pile driving to daytime hours (7:00 a.m. to 7:00 p.m.).

- Locate, store, and maintain portable and stationary equipment as far as possible from suitable western yellow-billed cuckoo habitat.

- Employ preventive maintenance including practicable methods and devices to control, prevent, and minimize noise.

- Route truck traffic in order to reduce construction noise impacts and traffic noise levels within 1,200 feet of suitable western yellow-billed cuckoo migratory habitat during migration periods.

36 Based on occurrence data, this is the period within which yellow-billed cuckoos have been observed in the legal Delta.
• Limit trucking activities (e.g., deliveries, export of materials) to the hours of 7:00 a.m. to 10:00 p.m.

• Screen all lights and direct them down toward work activities away from migratory habitat. A biological construction monitor will ensure that lights are properly directed at all times.

• Operate portable lights at the lowest allowable wattage and height, while in accordance with the National Cooperative Highway Research Program’s Report 498: Illumination Guidelines for Nighttime Highway Work.

3.4.5.4.2.2 Activities with Flexible Locations

3.4.5.4.2.2.1 Geotechnical Exploration
During geotechnical activities, a USFWS approved biologist will be onsite to avoid the loss or degradation of suitable western yellow-billed cuckoo habitat by exploration activities.

3.4.5.4.2.2.2 Safe Haven Work Areas
During the siting phase of safe haven construction, a USFWS approved biologist will work with the engineers to avoid loss or degradation of suitable western yellow-billed cuckoo migratory habitat. This includes ensuring that safe haven work areas are not sited in western yellow-billed cuckoo habitat. This also includes ensuring noise from safe haven work areas do not exceed 60 dBA at nearby western yellow-billed cuckoo migratory habitat.

3.4.5.4.2.2.3 Power Supply and Grid Connections
The final transmission line alignment will be designed to minimize removal of western yellow-billed cuckoo migratory habitat by removing no more than four acres of this habitat. To minimize the chance of western yellow-billed cuckoo bird strikes at transmission lines, bird strike diverters will be installed on project and existing transmission lines in a configuration that research indicates will reduce bird strike risk by at least 60% or more. Bird strike diverters placed on new and existing lines will be periodically inspected and replaced as needed until or unless the project or existing line is removed. The most effective and appropriate diverter for minimizing strikes on the market according to best available science will be selected.

3.4.5.4.2.2.4 Safe Havens
Safe haven sites will avoid western yellow-billed cuckoo migratory habitat. All work associated with safe haven sites will be conducted during daylight hours, and will not require any lighting.

3.4.5.4.2.2.5 Restoration/Mitigation Activities
A USFWS biologist will work with the restoration siting and design team to avoid the permanent loss of suitable western yellow-billed cuckoo migratory habitat. (Furthermore, the biological opinion for the PA will not authorize take resulting from restoration/mitigation actions.

3.4.5.4.3 Compensation to Offset Impacts
DWR will offset the loss of 32 acres of western yellow-billed cuckoo migratory habitat through the creation or restoration at a 2:1 ratio, for a total of 64 acres of migratory riparian habitat creation or restoration in the action area. DWR will develop a riparian restoration plan that will
identify the location and methods for riparian creation or restoration, and this plan will be subject to USFWS approval.

3.4.5.5 Giant Garter Snake

3.4.5.5.1 Habitat Definition
Giant garter snake suitable habitat is defined in Appendix 4.A, Status of the Species and Critical Habitat Accounts, Section 4.A.9.6, Suitable Habitat Definition. The giant garter snake habitat model, described in Appendix 4.A, Section 4.A.9.2, Life History and Habitat Requirements, was created to conservatively estimate effects to habitat, because access to activity areas is not possible at this time.

During project implementation and prior to project construction, DWR, in agreement with CDFW and USFWS, will:

1. When each site is available for surveys, a giant garter snake expert, approved by USFWS and CDFW, will then delineate giant garter snake habitat at each project site, based on the definition of suitable habitat, including both aquatic and upland habitat.

2. Once habitat has been delineated, the giant garter snake expert may use giant garter snake surveys performed using a method approved by the USFWS to determine presence/absence of the species on the project site to enable further determination of mitigation requirements as described below in Section 3.4.5.5.3, Compensation for Effects.

3. For sites where such surveys are performed, the surveys will conform to protocol and reporting need per a plan to be jointly developed by DWR and USFWS to provide population and occurrence data for the species in the Delta.

4. To the greatest extent possible, identified and delineated habitat will be completely avoided.

5. When avoidance is not possible, the measures discussed below in Section 3.4.5.5.2, Avoidance and Minimization Measures, are required.

3.4.5.5.2 Avoidance and Minimization Measures
AMMs for giant garter snakes will be required for activities occurring within suitable aquatic and upland habitat. For general AMMs see Appendix 3F, General Avoidance and Minimization Measures).

3.4.5.5.2.1 Activities with Fixed Locations
Activities with fixed locations include all construction activities described in Section 3.2, Conveyance Facility Construction, except geotechnical exploration, safe haven intervention sites, and transmission lines. DWR will implement the following AMMs for construction, operation, and maintenance related to fixed location activities in delineated habitat. DWR will also implement the following measures for activities with flexible locations once their locations have been fixed, if they occur in delineated habitat.
• Initiate construction and clear suitable habitat in the summer months, between May 1 and October 1, and avoid giant garter snake habitat during periods of brumation (between October 1 and May 1). Suitability of aquatic and upland habitat characteristics will be determined by the USFWS-approved biologist consistent with the USFWS habitat description outlined in Section 4.A.9.6, *Suitable Habitat Definition*. Once a construction site has been cleared and exclusionary fencing is in place, work within the cleared area can occur between October 1 and May 1.

• To the extent practicable, conduct all activities within paved roads, farm roads, road shoulders, and similarly disturbed and compacted areas; confine ground disturbance and habitat removal to the minimal area necessary to facilitate construction activities.

• For construction activities, dredging, and any conveyance facility maintenance involving heavy equipment, giant garter snake aquatic and upland habitat that can be avoided will be clearly delineated on the work site, with exclusionary fencing and signage identifying these areas as sensitive. The exclusionary fencing will be installed during the active period for giant garter snake (May 1–October 1) and will consist of 3-foot-tall non-monofilament silt fencing extending to 6 inches below ground level.

• For activities requiring exclusionary fencing, the biological monitor and construction supervisor will be responsible for checking the exclusionary fences around the work areas daily to ensure that they are intact and upright. Any necessary repairs will be immediately addressed. The exclusionary fencing will remain in place for the duration of construction. For additional detail on exclusionary fencing type, size, and height, see Appendix 3.F, *General Avoidance and Minimization Measures*, Section 3.F.2.2, *AMM2 Construction Best Management Practices and Monitoring*.

• The USFWS-approved biologist will also survey suitable aquatic and upland habitat in the entire work site for the presence of giant garter snakes, as well at 50 feet outside the work site exclusion fencing in suitable habitat.

• If exclusionary fencing is found to be compromised, a survey of the exclusion fencing and the area inside the fencing will be conducted immediately preceding construction activity that occurs in delineated giant garter snake habitat or in advance of any activity that may result in take of the species. The biologist will search along exclusionary fences, in pipes, and beneath vehicles before they are moved. Any giant garter snake found will be captured and relocated to suitable habitat a minimum of 200 feet outside of the work area in a location that is approved by USFWS and CDFW prior to resumption of construction activity.

• All construction personnel, and personnel involved in operations and maintenance in or near giant garter snake habitat, will attend worker environmental awareness training as described in Appendix 3.F, *General Avoidance and Minimization Measures, AMM1 Worker Awareness Training*. This training will include instructions to workers on how to recognize giant garter snakes, their habitat(s), and the nature and purpose of protection measures.
• Within 24 hours prior to construction activities, dredging, or maintenance activities requiring heavy equipment, a USFWS-approved biologist will survey all of the activity area not protected by exclusionary fencing where giant garter snake could be present. This survey of the work area will be repeated if a lapse in construction or dredging activity of two weeks or greater occurs during the aestivation period (October 1 through May 1) or if the lapse in construction activity is more than 12 hours during active season (May 1–October 1). If a giant garter snake is encountered during surveys or construction, cease activities until appropriate corrective measures have been completed, it has been determined that the giant garter snake will not be harmed, or the giant garter snake has left the work area.

• The USFWS-approved biological monitor will help guide access and construction work around wetlands, active rice fields, and other sensitive habitats capable of supporting giant garter snake, to minimize habitat disturbance and risk of injuring or killing giant garter snakes.

• Report all observations of giant garter snakes to the USFWS-approved biological monitor.

• Maintain all construction and operations and maintenance equipment to prevent leaks of fuel, lubricants, and other fluids and use extreme caution when handling and or storing chemicals (such as fuel and hydraulic fluid) near waterways, and abide by all applicable laws and regulations. Follow all applicable hazardous waste best management practices (BMPs) and keep appropriate materials on site to contain, manage, and clean up any spills as described in Appendix 3.F, General Avoidance and Minimization Measures, AMM5 Spill Prevention, Containment, and Countermeasure Plan.

• Conduct service and refueling procedures in uplands in staging areas and at least 200 feet away from giant garter snake upland habitat and waterways when practicable. See also Appendix 3.F, General Avoidance and Minimization Measures, AMM5, Spill Prevention, Containment, and Countermeasure Plan.

• During construction and operation and maintenance activities in and near giant garter snake habitat, employ erosion (non-monofilament silt fence), sediment, material stockpile, and dust control (BMPs on site). Avoid fill or runoff into wetland areas or waterways to the extent practicable.

• Return temporary work areas to pre-existing contours and conditions upon completion of work. Where re-vegetation and soil stabilization are necessary in non-agricultural habitats, revegetate with appropriate non-invasive native plants at a density and structure similar to that of pre-construction conditions.

• Properly contain and remove from the worksite all trash and waste items generated by construction and crew activities to prevent the encouragement of predators such as raccoons and coyotes from occupying the site.

• Permit no pets, campfires, or firearms at the worksite.
Chapter 3: Description of the Proposed Action
Conservation Measures for Valley Elderberry Longhorn Beetle

- Store equipment in designated staging area areas at least 200 feet away from giant garter snake aquatic habitat to the extent practicable.

- Confine any vegetation clearing to the minimum area necessary to facilitate construction activities.

- Limit vehicle speed to 10 miles per hour (mph) on access routes (except for public roads and highways) and within work areas that are within 200 feet of giant garter snake aquatic habitat but not protected by exclusion fencing to avoid running over giant garter snakes.

- Visually check for giant garter snake under vehicles and equipment prior to moving them. Cap all materials onsite (conduits, pipe, etc.), precluding wildlife from becoming entrapped. Check any crevices or cavities in the work area where individuals may be present including stockpiles that have been left for more than 24 hours where cracks/crevices may have formed.

For activities that will occur within the giant garter snake inactive season (October 2 through April 30), and will last more than two weeks, DWR will implement the following additional avoidance and minimization measures.

- For proposed activities that will occur within suitable aquatic giant garter snake habitat, during the active giant garter snake season (May 1 through October 1) prior to proposed construction activities that will commence during the inactive period, and when unavoidable, all aquatic giant garter snake habitat will be dewatered for at least 14 days prior to excavating or filling the dewatered habitat. De-watering is necessary because aquatic habitat provides prey and cover for giant garter snake; de-watering serves to remove the attractant, and increase the likelihood that giant garter snake will move to other available habitat. Any deviation from this measure will be done in coordination with, and with approval of, the U.S. Fish and Wildlife Service.

- Following de-watering of aquatic habitat, all potential impact areas that provide suitable aquatic or upland giant garter snake habitat will be surveyed for giant garter snake by the USFWS-approved biologist. If giant garter snakes are observed, they will be passively allowed to leave the potential impact area, or the USFWS will be consulted to determine the appropriate course of action for removing giant garter snake from the potential impact area.

- Once habitat is deemed giant garter snake-free, exclusion fencing will be constructed around the construction site so not snakes may re-enter prior to or during construction.

Maintenance activities such as vegetation and rodent control, embankment repair, and channel maintenance will occur at conveyance facilities with permanent structures (e.g., NDD, pumping plant, etc.). The following avoidance and minimization measures will be applied to maintenance activities in suitable aquatic habitat and uplands within 200 feet of suitable aquatic habitat, to minimize effects on the giant garter snake.
Vegetation control will take place during the active period (May 1 through October 1) when snakes are able to move out of areas of activity.

Trapping or hunting methods will be used for rodent control, rather than poison bait. All rodent control methods will be approved by USFWS. If trapping or other non-poison methods are ineffective, the USFWS will be consulted to determine the best course of action.

Movement of heavy equipment will be confined to outside 200 feet of the banks of giant garter snake aquatic habitat to minimize habitat disturbance.

All construction personnel, and personnel involved in operations and maintenance in or near giant garter snake habitat, will attend worker environmental awareness training as described in Appendix 3.F General Avoidance and Minimization Measures, AMMI Worker Awareness Training. This training will include instructions to workers on how to recognize giant garter snakes, their habitat(s), and the nature and purpose of protection measures.

Activities with Flexible Locations
Activities with flexible locations are activities that cannot yet be precisely sited because they require design or site-specific information that will not be available until the PA is already in progress. These include geotechnical exploration, safe haven intervention sites, transmission lines, and habitat restoration.

Geotechnical Activities
Geotechnical activities will avoid giant garter snake aquatic habitat. To the extent practicable, all activities within giant garter snake upland habitat, as delineated by a USFWS approved biologist and based on the suitable habitat definition in Section 4.A.9.6, will be avoided. The following avoidance and minimization measures will be used to minimize unavoidable effects on the giant garter snake upland habitat.

- Geotechnical activity in giant garter snake upland habitat will be confined to the giant garter snake’s active period (May 1 through October 1).
- Movement of heavy equipment will be confined to existing roads as much as possible, and will avoid suitable upland giant garter snake habitat.
- Construction personnel will receive USFWS-approved worker environmental awareness training instructing workers to recognize giant garter snakes and their habitat.

Safe Haven Work Areas
Safe haven work areas will avoid giant garter snake aquatic and upland habitat.

Power Lines and Grid Connections
Giant garter snake avoidance and minimization measures for transmission lines will be the same as described in Section 3.4.5.5.2.1, Activities with Fixed Locations. These power lines and grid connections will be designed to avoid giant garter snake aquatic habitat.
Maintenance

Maintenance activities such as vegetation and rodent control, embankment repair, and channel maintenance will occur at conveyance facility and restoration sites with flexible locations (e.g., transmission line right of ways, restoration locations, etc.). The following avoidance and minimization measures will be applied to maintenance activities in suitable aquatic habitat, as delineated by an USFWS approved biologist, and uplands within 200 feet of suitable aquatic habitat, to minimize effects on the giant garter snake.

- Vegetation control will take place during the active period (May 1 through October 1) when snakes are able to move out of areas of activity.

- Trapping or hunting methods will be used for rodent control, rather than poison bait. All rodent control methods will be approved by USFWS. If trapping or other non-poison methods are ineffective, the USFWS will be consulted to determine the best course of action.

- Movement of heavy equipment will be confined to outside 200 feet of the banks of potential giant garter snake habitat to minimize habitat disturbance.

- Construction personnel will receive USFWS-approved worker environmental awareness training instructing workers to recognize giant garter snakes and their habitat.

Maintenance activities that cannot avoid giant garter snake habitat will implement the avoidance and minimization measures described in Section 3.4.5.5.2.1, *Activities with Fixed Locations*.

3.4.5.5.3 Compensation for Effects

- Where identified and delineated giant garter snake habitat cannot be avoided, compensation for the loss of the habitat will occur at a rate of 3:1 for each, aquatic and upland habitat, with in-kind habitat type compensation (Table 3.4-4). An estimated 775 acres of giant garter snake habitat will be affected, therefore 2,325 acres of giant garter snake habitat will be protected or restored. Insofar as mitigation is created/protected in a USFWS agreed-to high-priority conservation area, such as the eastern protection area between Caldoni Marsh and Stone Lakes, a mitigation rate of 2:1 for each, aquatic and upland habitat type, will apply which may lower the above example to 1,550 acres of mitigation. A combination of in-kind and high-priority mitigation may be used.

- Giant garter snake upland mitigation will be placed and protected adjacent to aquatic habitat protected for giant garter snake. The upland habitat will not exceed 200 feet from protected aquatic habitat (unless research shows a larger distance is appropriate and USFWS agrees).

- Incidental injury and/or mortality of giant garter snakes within protected and restored habitat will be avoided and minimized by establishing 200-foot buffers between protected giant garter snake habitat and roads (other than those roads primarily used to support adjacent cultivated lands and levees).
Chapter 3: Description of the Proposed Action
Conservation Measures for Valley Elderberry Longhorn Beetle

- Protected and restored giant garter snake habitat will be at least 2,500 feet from urban areas or areas zoned for urban development.

- Characteristics of restored and protected habitat may change from the above descriptors if new information and best available science indicate greater benefits as agreed upon by USFWS.

<table>
<thead>
<tr>
<th>Table 3.4-4. Compensation for Direct Effects on Giant Garter Snake Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Habitat Loss</td>
</tr>
<tr>
<td>Total Maximum Habitat Loss (Acres)</td>
</tr>
<tr>
<td>Aquatic Total</td>
</tr>
<tr>
<td>Upland Total</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

¹ The 3:1 mitigation ratio will be applied when “in-kind” mitigation is used. In-kind mitigation is that mitigation that replaces a habitat of similar quality, character, and location as that which was lost within the known range of the giant garter snake as described in Section 4.A.9.6, Suitable Habitat Definition. DWR will mitigate at a rate of 2:1 for each acre of lost aquatic and upland habitat if the mitigation is created/protected in a USFWS agreed-to high-priority conservation location for GGS, such as the eastern protection area between Caldoni Marsh and Stone Lakes.
² Compensation can be achieved through restoration or protection. The protection component of habitat compensation will be limited to up to 1/3 of the total compensation.

3.4.5.5.4 **Siting Criteria for Compensation for Effects**
Siting and design requirements for the restoration and protection of giant garter snake nontidal wetland habitat are listed below.

- For in-kind mitigation sites, those site mitigated at a ratio of 3:1, the aquatic and upland habitat quality, character, and location must be of equal or greater value than the habitat quality which was lost.

- For conservation mitigation sites, those sites mitigated at a 2:1 ratio, restored or protected giant garter snake habitat will either be adjacent to, or connected to, Caldoni Marsh or the White Slough Wildlife Area, or will create connections from the White Slough population to other areas in the giant garter snake’s historical range in the Stone Lakes vicinity or at another location, or corridors between these areas, to be selected by DWR, subject to USFWS approval.

- Conservation mitigation sites, those mitigated at a 2:1 ratio, will be characterized as nontidal marsh and will meet the following design criteria.
 - Restored nontidal marsh will be characterized by sufficient water during the giant garter snake’s active summer season (May 1 – October 1) to supply constant, reliable cover and sources of food such as small fish and amphibians.
 - Restored nontidal marsh will consist of still or slow-flowing water over a substrate composed of soil, silt, or mud characteristic of those observed in marshes, sloughs, or irrigation canals.
Restoration designs will not create large areas of deep, perennial open water that will support nonnative predatory fish. The restored marsh will be characterized by a heterogeneous topography providing a range of depths and vegetation profiles consisting of emergent, herbaceous aquatic vegetation that will provide suitable foraging habitat and refuge from predators.

Aquatic margins or shorelines will transition to uplands consisting of grassy banks, with the dense grassy understory required for sheltering. These margins will consist of approximately 200 feet of high ground or upland habitat above the annual high water mark to provide cover and refugia from floodwaters during the dormant winter season.

The upland habitat will have ample exposure to sunlight to facilitate giant garter snake thermoregulation and will be characterized by low vegetation, bankside burrows, holes, and crevices providing critical shelter for snakes throughout the day. All giant garter snake upland and aquatic habitat will be established at least 2,500 feet from urban areas or areas zoned for urban development.

The loss of tidal aquatic habitat for giant garter snake may be mitigated through restoration of tidal habitat with a design that provides equal or greater habitat value for the species as agreed upon by USFWS.

Topography of the restored wetlands will be designed to provide adjacent terrestrial refuge persisting above the high water mark. Terrestrial features will be sited in close proximity to aquatic foraging areas at all tide levels, with slopes and grading designed to avoid exposing largely denuded intertidal mud flats during low tide. Management and Enhancement

The following management actions will be implemented for giant garter snake habitat to be restored at high-priority mitigation sites. In-kind mitigation sites will be managed in a manner that maintains or exceeds the quality of habitat impacted by project activities. If a USFWS approved mitigation bank is used to fulfill the restoration requirement, then the management and enhancement that is in place for that mitigation bank will suffice.

- Manage vegetation density (particularly nonnatives such as water primrose) and composition, water depth, and other habitat elements to enhance habitat values for giant garter snakes.
- Maintain upland refugia (islands or berms) within the restored marsh.
- Maintain permanent upland habitat at least 200 feet wide around all restored nontidal freshwater emergent wetland habitats to provide undisturbed (uncultivated) upland cover, basking and overwintering habitat immediately adjacent to aquatic habitat.
• Manage bank slopes and upland habitats to enhance giant garter snake use, provide cover, and encourage burrowing mammals for purposes of creating overwintering sites for giant garter snake.

3.4.5.6 California Red-Legged Frog

3.4.5.6.1 Habitat Definition
AMMs for California red-legged frogs will be required for activities occurring within suitable aquatic and upland habitat, and also, whenever the species is incidentally encountered. Within the action area, based on the known distribution of the species, suitable habitat is defined to include the area south and west of SR 4 from Antioch (Bypass Road to Balfour Road to Brentwood Boulevard) to Byron Highway; then south and west along the county line to Byron Highway; then west of Byron Highway to I-205, north of I-205 to I-580, and west of I-580. Within this area, suitable aquatic habitat is defined to include perennial and intermittent streams, managed wetland, freshwater emergent wetland, and perennial aquatic natural communities. Suitable upland habitat is defined as upland areas within 300 feet of the top of bank of a creek, stream, waterbody, or wetlands that provide aquatic habitat for the species (U.S. Fish and Wildlife Service 2014). A USFWS-approved biologist will conduct a field evaluation of the California red-legged frog modeled habitat to ascertain the distribution of suitable upland and aquatic habitat in the worksite vicinity. Surveys within suitable upland habitat will identify suitable aquatic features that may not have been identified during the habitat modeling.

Modeled upland dispersal habitat includes agricultural lands within the area described above and within 1 mile of aquatic habitat, except for agricultural lands where dispersal is bounded on the west by Byron Highway. There is no known, high-value breeding habitat east of that significant boundary.

3.4.5.6.2 Avoidance and Minimization Measures
AMMs are described below first for activities with fixed locations including the Clifton Court Forebay canal and the Clifton Court Embankment. Additional AMMs are then described for activities with uncertain locations: habitat restoration, transmission lines, and geotechnical investigations.

3.4.5.6.2.1 Activities with Fixed Locations
If aquatic habitat cannot be avoided, aquatic habitats in potential work areas, will be surveyed for tadpoles and egg masses. If California red-legged frog tadpoles or egg masses are found, and the aquatic habitat cannot be avoided, USFWS will be contacted, and if determined to be appropriate, measures will be developed to relocate tadpoles and eggs to the nearest suitable aquatic habitat, as determined by the USFWS-approved biologist.

If the PA does not fully avoid effects on suitable habitat, the following measures will be required.

• The USFWS-approved biologist will conduct employee education training for employees working on earthmoving and/or construction activities. Personnel will be required to attend the presentation that will describe the California red-legged-frog avoidance, minimization, and conservation measures, legal protection of the animal, and other
related issues. All attendees will sign an attendance sheet along with their printed name, company or agency, email address, and telephone number. The original sign-in sheet will be sent to the USFWS within seven (7) calendar days of the completion of the training.

- Preconstruction surveys will be implemented after the planning phase and prior to any ground-disturbing activity.

- The biological monitor and construction supervisor will be responsible for checking the exclusion fences around the work areas daily to ensure that they are intact and upright. This will be especially critical during rain events, when flowing water can easily dislodge the fencing. Any necessary repairs will be immediately addressed. The amphibian exclusion fencing will remain in place for the duration of construction.

- If the exclusion fence is found to be compromised at any time, a survey will be conducted immediately preceding construction activity that occurs in designated California red-legged frog habitat or in advance of any activity that may result in take of the species. The USFWS-approved biologist will search along exclusion fences, in pipes, and beneath vehicles before they are moved. The survey will include a careful inspection of all potential hiding spots, such as along exclusion fencing, large downed woody debris, and the perimeter of ponds, wetlands, and riparian areas. Any California red-legged frogs found will be captured and relocated to suitable habitat, a minimum of 300 feet outside of the work area that has been identified in the relocation plan (described below) and approved by a USFWS-approved biologist prior to commencement of construction.

- Initial ground-disturbing activities will not be conducted between November 1 and March 31 in areas identified during the planning stages as providing suitable California red-legged frog habitat, to avoid the period when they are most likely to be moving through upland areas. Once the initial ground disturbance has occurred, the area has been cleared, and exclusionary fencing is in place, work within the disturbed area can occur outside the construction window.

- Surface-disturbing activities will be designed to minimize or eliminate effects on rodent burrows that may provide suitable cover habitat for California red-legged frog. Surface-disturbing activities will avoid areas with a high concentration of burrows to the greatest extent practicable. In addition, when a concentration of burrows is present in a worksite, the area will be staked or flagged to ensure that work crews are aware of their location and to facilitate avoidance of the area.

- No initial clearing activities will occur during rain events or within 24-hours following a rain event, prior to clearing a site and installing exclusionary fencing. An approved biologist will check the exclusion fencing daily to ensure it is intact, and if there are any breaches in the fencing, the approved biologist will survey the work area of California red-legged frogs. If the species is found, the approved biologist will relocate the frog consistent with an approved relocation plan.

- To the maximum extent practicable, nighttime construction will be minimized or avoided by DWR, as project applicant, when working in suitable California red-legged frog
Chapter 3: Description of the Proposed Action
Conservation Measures for Valley Elderberry Longhorn Beetle

habitat. Because dusk and dawn are often the times when the California red-legged frog is most actively moving and foraging, to the greatest extent practicable, earthmoving and construction activities will cease no less than 30 minutes before sunset and will not begin again prior to no less than 30 minutes after sunrise. Except when necessary for driver or pedestrian safety artificial lighting at a worksite will be prohibited during the hours of darkness when working in suitable where California red-legged frog habitat. No more than 24 hours prior to any ground disturbance that could affect potential California red-legged frog habitat, preconstruction surveys for California red-legged frog will be conducted by a USFWS-approved biologist. These surveys will consist of walking the worksite limits. The USFWS-approved biologists will investigate all potential areas that could be used by the California red-legged frog for feeding, breeding, sheltering, movement or other essential behaviors. This includes an adequate examination of mammal burrows, such as California ground squirrels or gophers. If any adults, subadults, juveniles, tadpoles, or eggs are found, the USFWS-approved biologist will contact the USFWS to determine if moving any of the individuals to pre-approved location within the relocation plan is appropriate. If the USFWS approves moving animals, the USFWS-approved biologist will be given sufficient time to move the animals from the work site before ground disturbance is initiated. Only USFWS-approved biologists will capture, handle, and monitor the California red-legged frog.

- If work must be conducted at night, all lighting will be directed away and shielded from California red-legged frog habitat outside the construction area to minimize light spillover to the greatest extent possible. If light spillover into adjacent California red-legged frog habitat occurs, a USFWS-approved biologist will be present during night work to survey for burrows and emerging California red-legged frogs in areas illuminated by construction lighting. If California red-legged frog is found above-ground the USFWS-approved biologist has the authority to terminate the project activities until the light is directed away from the burrows, the California red-legged frog moves out of the illuminated area, or the California red-legged frog is relocated out of the illuminated area by the USFWS-approved biologist.

- At least 15 days prior to any ground disturbance activities, DWR, as project applicant, will prepare and submit a relocation plan for USFWS’s written approval. The relocation plan will contain the name(s) of the USFWS-approved biologist(s) to relocate California red-legged frogs, the method of relocation (if different than described), a map, and a description of the proposed release site(s) within 300 feet of the work area or at a distance otherwise agreed to by USFWS, and written permission from the landowner to use their land as a relocation site.

- Aquatic habitats within the areas that will be permanently affected by the proposed action will be surveyed for California red-legged frog adults and metamorphs. Any California red-legged frog adults or metamorphs found will be captured and held for a minimum amount of time necessary to relocate the animal to suitable habitat a minimum of 300 feet outside of the work area. Prior to and after handling frogs, the biologist will observe the appropriate decontamination procedures to ensure against spread of chytrid fungus or other pathogens.
• If construction activities will occur in streams, temporary aquatic barriers such as hardware cloth will be installed both up and downstream of the stream crossing, and animals will be relocated and excluded from the work area. The USFWS-approved biologists will establish an adequate buffer on both sides of creeks and around potential aquatic habitat and will restrict entry during the construction period.

• The USFWS-approved biologist(s) will kill any aquatic exotic wildlife species, such as bullfrogs and crayfish from the worksite, to the greatest extent practicable.

• Each encounter with the California red-legged frog will be treated on a case-by-case basis in coordination with the USFWS, but the procedure will follow the pre-approved Relocation Plan and will be conducted as follows: (1) the animal will not be disturbed if it is not in danger; or (2) the animal will be moved to a secure location if it is in any danger. These procedures are further described below:

 o When a California red-legged frog is encountered, all activities that have the potential to result in the harassment, injury, or death of an individual will cease immediately and the Onsite Project Manager and USFWS-approved biologist will be notified. The USFWS-approved biologist will then assess the situation and select a course of action to avoid or minimize adverse effects to the animal. To the maximum extent possible, contact with the frog will be avoided and the applicant will allow it to move out of the potentially hazardous situation to a secure location on its own volition. This measure does not apply to animals that are uncovered or otherwise exposed or in areas where there is not sufficient adjacent habitat to support the species should the individual move away from the hazardous location.

 o California red-legged frogs that are at risk of being injured or killed will be relocated and released by the USFWS-approved biologist outside the construction area within the same riparian area or watershed. If such relocation is not feasible (e.g., there are too many individuals observed per day), the USFWS-approved biologist will relocate the animals to a location previously approved by USFWS. Prior to the initial ground disturbance, DWR, as project applicant, will obtain approval of the relocation plan from the USFWS in the event that a California red-legged frog is encountered and needs to be moved away from the worksite. Under no circumstances will a California red-legged frog be released on a site unless the written permission of the landowner has been obtained.

 o The USFWS-approved biologist will limit the duration of the handling and captivity of the California red-legged frog to the minimum amount of time necessary to complete the task. If the animal must be held in captivity, it will be kept in a cool, dark, moist, aerated environment, such as a clean and disinfected bucket or plastic container with a damp sponge. The container used for holding or transporting the individual will not contain any standing water.

 o The USFWS will be immediately notified once the California red-legged frog and the site is secure.
• For onsite storage of pipes, conduits and other materials that could provide shelter for California red-legged frogs, an open-top trailer will be used to elevate the materials above ground. This is intended to reduce the potential for animals to climb into the conduits and other materials.

• Plastic monofilament netting (erosion control matting), loosely woven netting, or similar material in any form will not be used at the worksite because California red-legged frogs can become entangled and trapped in such materials. Any such material found on site will be immediately removed by the USFWS-approved biologist or construction personnel. Materials utilizing fixed weaves (strands cannot move), polypropylene, polymer or other synthetic materials will not be used.

• Dust control measures will be implemented during construction, or when necessary in the opinion of the USFWS-approved biologist, USFWS, or their authorized agent. These measures will consist of regular truck watering of construction access areas and disturbed soil areas with water or organic soil stabilizers to minimize airborne dust and soil particles generated from graded areas. Regular truck watering will be a requirement of the construction contract. Guidelines for truck watering will be established to avoid any excessive runoff that may flow into contiguous or adjacent areas containing potential habitat for the California red-legged frog.

• Trenches or pits one (1) foot or deeper that are going to be left unfilled for more than forty eight (48) hours will be securely covered with boards or other material to prevent the California red-legged frog from falling into them. If this is not possible, DWR, as project applicant, will ensure wooden ramps or other structures of suitable surface that provide adequate footing for the California red-legged frog are placed in the trench or pit to allow for their unaided escape. Auger holes or fence post holes that are greater than 0.10 inch in diameter will be immediately filled or securely covered so they do not become pitfall traps for the California red-legged frog. The USFWS-approved biologist will inspect the trenches, pits, or holes prior to their being filled to ensure there are no California red-legged frogs in them. The trench, pit, or hole also will be examined by the USFWS- and CDFW-approved biologist each workday morning at least one hour prior to initiation of work and in the late afternoon no more than one hour after work has ceased to ascertain whether any individuals have become trapped. If the escape ramps fail to allow the animal to escape, the biologist will remove and transport it to a safe location, or contact the USFWS for guidance.

• To minimize harassment, injury death, and harm in the form of temporary habitat disturbances, all vehicle traffic related to the PA will be restricted to established roads, construction areas, equipment staging, and storage, parking, and stockpile areas. These areas will be included in pre-construction surveys and, to the maximum extent possible, established in locations disturbed by previous activities to prevent further adverse effects.

• All vehicles will observe a 20-mile per hour speed limit within construction areas where it is safe and feasible to do so, except on County roads, and state and Federal highways. Off-road traffic outside of designated and fenced work areas will be prohibited.
• If a work site is to be temporarily dewatered by pumping, intakes shall be completely screened with wire mesh not larger than five millimeters to prevent California red-legged frogs from entering the pump system. Water shall be released or pumped downstream at an appropriate rate to maintain downstream flows during construction. Upon completion of construction activities, any barriers to flow shall be removed in a manner that would allow flow to resume with the least disturbance to the substrate.

• Uneaten human food and trash attracts crows, ravens, coyotes, and other predators of the California red-legged frog. A litter control program will be instituted at each worksite. All workers will ensure their food scraps, paper wrappers, food containers, cans, bottles, and other trash are deposited in covered or closed trash containers. The trash containers will be removed from the worksite at the end of each working day.

• All grindings and asphaltic-concrete waste may be temporally stored within previously disturbed areas absent of habitat and at a minimum of 150 feet from any culvert, pond, creek, stream crossing, or other waterbody. On or before the completion of work at the site, the waste will be transported to an approved disposal site.

• Loss of soil from runoff or erosion will be prevented with straw bales, straw wattles, or similar means provided they do not entangle, block escape or dispersal routes of the California red-legged frog.

• Insecticides or herbicides will not be applied at the worksite during construction or long-term operational maintenance where there is the potential for these chemical agents to enter creeks, streams, waterbodies, or uplands that contain potential habitat for the California red-legged frog.

• No pets will be permitted at the worksite, to avoid and minimize the potential for harassment, injury, and death of the California red-legged frog.

• No firearms will be allowed at the worksite except for those carried by authorized security personnel, or local, state, or Federal law enforcement officials to avoid and minimize the potential for harassment, injury, and death of the California red-legged frog.

3.4.5.6.2.2 Activities with Flexible Locations

3.4.5.6.2.2.1 Geotechnical Exploration

Geotechnical exploration will be sited outside of California red-legged aquatic habitat. Geotechnical exploration within suitable upland habitat will include the following measures, adopted from the September 3, 2010 BiOp on Engineering Geotechnical Studies for the Bay Delta Conservation Plan (BDCP) and/or the Preliminary Engineering Studies for the Delta Habitat Conservation and Conveyance Program (DHCCP) (81410-2010-F-0022).

• To the extent practicable, all activities will avoid impacts to California red-legged frog suitable habitat that possesses cracks or burrows that could be occupied by California red-legged frogs.
• Pre-construction surveys will be conducted by a qualified biologist. A biological monitor will be present during all drilling activities in California red-legged frog upland habitat to ensure there are no significant impacts to California red-legged frog.

• Work will be done outside the wet season and measures, such as having vehicles follow shortest possible routes from levee road to the drill or CPT sites, will be taken to minimize the overall project footprint.

3.4.5.6.2.2.2 **Power Lines and Grid Connections**
The final transmission line alignments will be designed to avoid California red-legged frog aquatic habitat, and to minimize effects on upland habitat. The transmission lines will be sited at least 300 feet from occupied California red-legged frog aquatic habitat as determined through protocol-level surveys of any suitable aquatic habitat in the potential transmission line alignment. Occupancy may be assumed, in order to forego the need for protocol-level surveys. After the final transmission line alignment has been determined, the avoidance and minimization measures described in Section 3.4.5.6.2.1, *Activities with Fixed Locations*, will be followed.

3.4.5.6.2.2.3 **Restoration**
Restoration activities will avoid effects on California red-legged frog and its habitat with the exception of vernal pool complex restoration that may occur in California red-legged frog upland habitat. Any vernal pool creation or restoration will be sited at least 300 feet from occupied California red-legged frog aquatic habitat as determined through protocol-level surveys of any suitable aquatic habitat in the potential restoration area. Occupancy may be assumed to forego the need for protocol-level surveys.

3.4.5.6.3 **Compensation to Offset Impacts**
California red-legged frog upland habitat will be protected at a ratio of 3:1 within the East San Francisco Bay core recovery area, at locations subject to USFWS approval. This compensation ratio is typically applied to upland habitat within 300 feet of aquatic habitat, based on the Programmatic Biological Opinion for Issuance of Permits under Section 404 for the species (U.S. Fish and Wildlife Service 2014). For the purposes of the PA, this compensation ratio is applied to all modeled upland cover and dispersal habitat, regardless of its distance to aquatic habitat. Therefore, 51 acres of upland habitat will be affected (including 47 acres within the construction footprint and four acres adjacent to the construction footprint, potentially subject to vibrations) and 153 acres of upland cover and dispersal habitat will be protected.

California red-legged frog aquatic breeding habitat will be protected at a ratio of 3:1 within the East San Francisco Bay core recovery area as described in the Recovery Plan for the California Red-Legged Frog (U.S. Fish and Wildlife Service 2002), at a location subject to USFWS approval. The increased habitat extent and connectivity will increase opportunities for genetic exchange and allow for colonization of extirpated populations and restored habitats. Therefore, 1 acre of aquatic habitat will be affected and 3 acres of aquatic habitat will be protected (Table 3.4-5).

The above compensation ratios apply only if protection occurs prior to or concurrent with the impact. If protection occurs after an impact, the ratio will increase as shown in Table 3.4-5.
Chapter 3: Description of the Proposed Action

Conservation Measures for Valley Elderberry Longhorn Beetle

All lands protected and restored for compensation of effects on California red-legged frog habitat will be protected and managed in perpetuity. Adequate funds will be provided by DWR to ensure that the Conservation Area is managed in perpetuity. DWR, as project applicant, will dedicate an endowment fund or similar perpetual funding mechanism for this purpose, and designate the party or entity that will be responsible for long-term management of the Conservation Area. USFWS will be provided with written documentation that funding and management of the Conservation Area will be provided in perpetuity.

Improve habitat linkages by controlling the height and density of grassland and improving culverts to facilitate California red-legged frog movement across the landscape and thus enhance habitat linkages. Increasing opportunities for California red-legged frog to move through grassland habitats will enhance genetic exchange and the ability to recolonize any areas where the species may have been locally extirpated.

Table 3.4-5. Compensation for Direct Effects on California Red-Legged Frog Habitat.

<table>
<thead>
<tr>
<th>California Red-Legged Frog Modeled Habitat</th>
<th>Maximum Total Impact (Acres)</th>
<th>Habitat Protection Compensation Ratio</th>
<th>Total Habitat Protection if all Direct Impacts Occur (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland and dispersal</td>
<td>51</td>
<td>3:1</td>
<td>153</td>
</tr>
<tr>
<td>Aquatic</td>
<td>1</td>
<td>3:1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
<td>–</td>
<td>156</td>
</tr>
</tbody>
</table>

3.4.5.6.4 Siting Criteria for Compensation for Effects

Grassland (and associated vernal pools and alkali seasonal wetlands) protection to benefit California red-legged frog will be prioritized based on the following characteristics.

- Grasslands containing stock ponds and other aquatic features that provide aquatic breeding habitat for California tiger salamander.

- Lands that connect with existing protected grassland, vernal pool complex, and alkali seasonal wetland complex landscapes, including those in the East San Francisco Bay core recovery area for California red-legged frog.

3.4.5.6.5 Management and Enhancement

The following management and enhancement measures will be implemented on protected California red-legged frog habitat. These management and enhancement activities will be designed and conducted in coordination with (or by) the East Contra Costa County Habitat Conservancy or East Bay Regional Park District. Both of these entities have extensive experience conducting successful grassland and aquatic habitat management and restoration to benefit California red-legged frog in the area where this habitat will be protected to mitigate the effects of the PA.

Aquatic features in protected grasslands will be maintained and enhanced for California red-legged frog to provide suitable inundation depth and duration and suitable composition of vegetative cover to support breeding for California red-legged frog. Stock ponds, intermittent drainages, and other aquatic features are common in grasslands throughout the Byron Hills area.
Grasslands that support suitable aquatic features for California red-legged frog will be prioritized for acquisition.

California red-legged frogs require vegetation, usually emergent vegetation, on which to deposit egg masses and cattle using a pond can trample the necessary vegetation. Stock ponds within grasslands protected for California red-legged frog will be managed for livestock exclusion to promote growth of aquatic emergent vegetation with appropriate characteristics favorable to breeding California red-legged frogs and other native amphibians and aquatic reptiles. The surrounding grassland will provide dispersal and aestivation habitat.

The appropriate depth and duration of aquatic features will be maintained for California red-legged frog to ensure that conditions are favorable for supporting the entire aquatic life cycle from breeding through metamorphosis from larval to adult stages. If appropriate, aquatic features may be managed such that they are dry in late summer, to reduce habitat suitability for bullfrogs and nonnative fish that prey on California red-legged frog.

3.4.5.7 California Tiger Salamander

3.4.5.7.1 Habitat Definition
AMMs for California tiger salamander will be required for activities occurring within suitable aquatic or upland habitat, or wherever the species is encountered. Within the action area, based on the known distribution of the species, suitable habitat is defined to occur within the area west of the Yolo Basin but including the Tule Ranch Unit of the California Department of Fish and Wildlife (CDFW) Yolo Basin Wildlife Area; east of the Sacramento River between Freeport and Hood-Franklin Road; east of I-5 between Twin Cities Road and the Mokelumne River; and in the area south and west of SR 4 from Antioch (Bypass Road to Balfour Road to Brentwood Boulevard) to Byron Highway; then south and west along the county line to Byron Highway; then west of Byron Highway to Interstate 205 (I 205), north of I-205 to Interstate 580 (I 580), and west of I-580. Within this area, suitable terrestrial cover and aestivation habitat is defined as grassland with a minimum patch size of 100 acres (40.5 hectares), and suitable aquatic habitat is defined to consist of vernal pools and stock ponds. Once a construction area has been cleared, it will no longer be considered suitable habitat.

A USFWS-approved biologist familiar with the species and its habitat will conduct a field evaluation of suitable upland or aquatic habitat for California tiger salamander for all activities in the PA that occur within modeled habitat (as described in Appendix 4.A, Status of the Species and Critical Habitat Accounts, Section 4.A.11, California Tiger Salamander), or within areas of suitable habitat located by a USFWS-approved biologist during the field evaluation.

3.4.5.7.2 Avoidance and Minimization Measures

3.4.5.7.2.1 Activities with Fixed Locations
AMMs are described below first for activities with known locations including the Clifton Court Forebay canal. Additional AMMs are then described for activities with uncertain locations: habitat restoration, transmission lines, and geotechnical exploration.
3.4.5.7.2.2 Activities with Fixed Locations
The following measures will be implemented for activities with known locations. No aquatic habitat for California tiger salamander will be affected.

Site Preparation-

- The perimeter of construction sites will be fenced with amphibian exclusion fencing by October 15 or prior to the start of construction. The Onsite Project Manager and the USFWS-approved biologist (in cooperation with USFWS) will determine where exclusion fencing will be installed to protect California tiger salamander habitat adjacent to the defined site footprint and to minimize the potential for California tiger salamanders to enter the construction work area. The locations of exclusion fencing will be determined, in part, by the locations of suitable habitat for the species (defined above). A conceptual fencing plan will be submitted to USFWS prior to the start of construction and the California tiger salamander exclusion fencing will be shown on the final construction plans. DWR, as project applicant, will include the amphibian exclusion fence specifications including installation and maintenance criteria in the bid solicitation package special provisions. The amphibian exclusion fencing will remain in place for the duration of construction and will be regularly inspected and fully maintained. The biological monitor and construction supervisor will be responsible for checking the exclusion fencing around the work areas daily to ensure that they are intact and upright. This will be especially critical during rain events, when flowing water can easily dislodge the fencing. Repairs to the amphibian exclusion fence will be made within 24 hours of discovery. Where construction access is necessary, gates will be installed with the exclusion fence.

- At least 15 days prior to any ground disturbance activities, DWR, as project applicant, will prepare and submit a Relocation Plan for USFWS’s written approval. The Relocation Plan will contain the name(s) of the USFWS-approved biologist(s) to relocate California tiger salamanders, the method of relocation (if different than described), a map, and a description of the proposed release site(s) within 300 feet of the work area or at a distance otherwise agreed to by USFWS, and written permission from the landowner to use their land as a relocation site.

- Preconstruction surveys will be conducted by a USFWS-approved biologist immediately prior to the initiation of any ground disturbing activities or vegetation clearing in areas identified as having suitable California tiger salamander habitat. Prior to initiating surveys, water trucks will spray the work area to influence emergence. Watering will occur at dusk, trucks will make a single pass, and the USFWS-approved biologist(s) will survey the watered area for one hour following the spraying. If California tiger salamander are found, they will be relocated consistent with the Relocation Plan described above. Also see Species Observation and Handling Protocol, below.

Initial Clearance/Ground Disturbance

- Except for limited vegetation clearing necessary to minimize effects to nesting birds, initial suitable habitat clearance and disturbance will be confined to the dry season,
generally May through October 15. All initial clearing will be limited to periods of no or low rainfall (less than 0.08 inches per 24-hour period and less than 40% chance of rain). Clearing activities within California tiger salamander habitat will cease 24 hours prior to a 40% or greater forecast of rain from the closest National Weather Service (NWS) weather station. Clearing may continue 24 hours after the rain ceases, if no precipitation is in the 24-hour forecast. If clearing must continue when rain is forecast (greater than 40% chance of rain), a USFWS-approved biologist will survey the worksite before clearing begins each day rain is forecast. If rain exceeds 0.5 inches during a 24-hour period, clearing will cease until the NWS forecasts no further rain. Modifications to this timing may be approved by USFWS based on site conditions and expected risks to California tiger salamanders. Once the ground has been cleared and perimeter fencing is in place, these restrictions do not apply.

During Construction

- The USFWS-approved biologist shall conduct clearance surveys at the beginning of each day and regularly throughout the workday when construction activities are occurring that may result in take of California tiger salamander. These surveys will consist of walking surveys within the worksites and investigating suitable aquatic and upland habitat including refugia habitat such as small woody debris, refuse, burrow entries, etc. All mammal burrows within the worksite limits that cannot be avoided will be hand-excavated and collapsed so that they do not attract California tiger salamanders during construction.

- If the exclusion fence is compromised during the rainy season, when California tiger salamanders are likely to be active, a survey will be conducted immediately preceding construction activity that occurs in modeled or suitable California tiger salamander habitat, as determined by a USFWS-approved biologist, or in advance of any activity that may result in take of the species. The biologist will search along exclusion fences, in pipes, and beneath vehicles each morning before they are moved. The survey will include a careful inspection of all potential hiding spots, such as along exclusion fencing, large downed woody debris, and the perimeter of ponds, wetlands, and riparian areas. Any tiger salamanders found will be captured and relocated to suitable habitat with an active rodent burrow system at a location predetermined prior to commencement of construction in the Relocation Plan (as described below).

- To avoid entrapment of animals during construction, pipes or similar structures will be capped if stored overnight. Excavated holes and trenches will have escape ramps, and any open holes and trenches more than 6 inches deep will be closed with plywood at the end of each workday. The USFWS-approved biologist will inspect all holes and trenches at the beginning of each workday and before the holes and trenches are filled. All pipes, culverts, or similar structures stored in the work area overnight will be inspected before they are subsequently moved, capped, and/or buried. If a California tiger salamander is discovered, the Onsite Project Manager and USFWS-approved biologist will be notified immediately, and the USFWS-approved biologist will move the animal to a safe nearby location (as described by the species observation and handling protocol below) and monitor it until it is determined that it is not imperiled by predators, or other dangers.
Chapter 3: Description of the Proposed Action
Conservation Measures for Valley Elderberry Longhorn Beetle

• If verbally requested before, during, or upon completion of ground disturbance and construction activities where suitable California tiger salamander habitat is present, DWR, as project applicant, will ensure that USFWS can immediately access and inspect the worksite for compliance with the description of the PA, and avoidance and minimization measures, and to evaluate effects on the California tiger salamander and its habitat. A USFWS-approved biologist will be onsite during all activities that may result in take of California tiger salamander. This biologist will carry a working mobile phone whose number will be provided to USFWS prior to the start of construction and ground disturbance. USFWS will consider the implementation of specific activities without the oversight of an onsite USFWS-approved biologist on a case-by-case basis.

• The USFWS-approved biologist will have the authority to stop activities at the worksite if they determine that any of avoidance and minimization measures are not being fulfilled.

• The USFWS-approved biologist will maintain monitoring records that include (1) the beginning and ending time of each day’s monitoring effort; (2) a statement identifying the covered species encountered, including the time and location of the observation; (3) the time the specimen was identified and by whom and its condition; (4) the capture and release locations of each individual; (5) photographs and measurements (snout to vent and total length) of each individual; and (6) a description of any actions taken. The USFWS-approved biologist will maintain complete records in their possession while conducting monitoring activities and will immediately provide records to USFWS upon request. If requested, all monitoring records will be provided to USFWS within 30 days of the completion of monitoring work.

• To the extent possible, earthmoving and construction activities will cease no less than 30 minutes before sunset and will not begin again until no less than 30 minutes after sunrise within 300 feet of California tiger salamander habitat. Except when necessary for driver or pedestrian safety, to the greatest extent practicable, artificial lighting at a worksite will be prohibited during the hours of darkness.

• If work must be conducted at night within 300 feet of California tiger salamander habitat, all lighting will be directed away and shielded from California tiger salamander habitat outside the construction area to minimize light spillover to the greatest extent possible. If light spillover into adjacent California tiger salamander habitat occurs, a USFWS-approved biologist will be present during night work to survey for burrows and emerging California tiger salamanders in areas illuminated by construction lighting. If California tiger salamander is found above-ground the USFWS-approved biologist has the authority to terminate the project activities until the light is directed away from the burrows, the California tiger salamander moves out of the illuminated area, or the California tiger salamander is relocated out of the illuminated area by the USFWS-approved biologist.

• No rodenticides will be used during construction or long-term operational maintenance in areas that support suitable upland habitat for California tiger salamander.
• To prevent California tiger salamander from becoming entangled, trapped, or injured by erosion control structures, erosion control measures that use plastic or synthetic monofilament netting will not be used within areas designated to have suitable California tiger salamander habitat. This includes products that use photodegradable or biodegradable synthetic netting, which can take several months to decompose. Acceptable materials include natural fibers such as jute, coconut, twine, or other similar fibers. Following site restoration, erosion control materials, such as straw wattles, will be placed so as not to block movement of the California tiger salamander.

• **Species Observation and Handling Protocol** If a California tiger salamander is observed, the USFWS-approved biologist will implement the following species observation and handling protocol. Only USFWS-approved biologists will participate in activities associated with the capture, handling, and monitoring of California tiger salamanders. If a California tiger salamander is encountered in a construction area, activities within 50 feet of the individual will cease immediately and the Onsite Project Manager and USFWS-approved biologist will be notified. Based on the professional judgment of the USFWS-approved biologist, if activities at the worksite can be conducted without harming or injuring the California tiger salamander, it may be left at the location of discovery and monitored by the USFWS-approved biologist. All personnel on site will be notified of the finding and at no time will work occur within 50 feet of the California tiger salamander without a USFWS-approved biologist present. If it is determined by the USFWS-approved biologist that relocating the California tiger salamander is necessary, the following steps will be followed:

 o Prior to handling and relocation, the USFWS-approved biologist will take precautions to prevent introduction of amphibian diseases in accordance with the *Interim Guidance on Site Assessment and Field Surveys for Determining Presence or a Negative Finding of the California Tiger Salamander* (U.S. Fish and Wildlife Service 2003). Disinfecting equipment and clothing is especially important when biologists are coming to the action area to handle amphibians after working in other aquatic habitats. California tiger salamanders will also be handled and assessed according to the *Restraint and Handling of Live Amphibians* (U.S. Geological Survey National Wildlife Health Center 2001).

 o California tiger salamanders will be captured by hand, dipnet, or other USFWS-approved methodology, transported, and relocated to nearby suitable habitat outside of the work area and released as soon as practicable the same day of capture. Individuals will be relocated no greater than 300 feet outside of the work area to areas with an active rodent burrow or burrow system (unless otherwise approved by USFWS). Holding/transporting containers and dipnets will be thoroughly cleaned, disinfected, and rinsed with freshwater prior to use within the action area. USFWS will be notified within 24 hours of all capture, handling, and relocation efforts. USFWS- and CDFW-approved biologists will not use soaps, oils, creams, lotions, repellents, or solvents of any sort on their hands within two hours before and during periods when they are capturing and relocating individuals. To avoid transferring disease or pathogens of handling of the amphibians, USFWS-approved biologists will follow the Declining Amphibian Populations Task Force’s “Code of Practice.”
o If an injured Central California tiger salamander is encountered and the USFWS-approved biologist determines the injury is minor or healing and the salamander is likely to survive, the salamander will be released immediately, consistent with the pre-approved Relocation Plan as described above. The California tiger salamander will be monitored until it is determined that it is not imperiled by predators or other dangers.

o If the USFWS-approved biologist determines that the California tiger salamander has major or serious injuries because of activities at the worksite, the USFWS-approved biologist, or designee, will immediately take it to a USFWS-approved facility. If taken into captivity, the individual will not be released into the wild unless it has been kept in quarantine and the release is authorized by USFWS. DWR, as project applicant, will bear any costs associated with the care or treatment of such injured California tiger salamanders. The circumstances of the injury, the procedure followed and the final disposition of the injured animal will be documented in a written incident report. Notification to USFWS of an injured or dead California tiger salamander in the action area will be made as described under the Reporting Requirements measure (described above), and reported whether or not its condition resulted from activities related to the PA. In addition, the USFWS-approved biologist will follow up with USFWS in writing within two calendar days of the finding. Written notification to USFWS will include the following information: the species, number of animals taken or injured, sex (if known), date, time, location of the incident or of the finding of a dead or injured animal, how the individual was taken, photographs of the specific animal, the names of the persons who observe the take and/or found the animal, and any other pertinent information. Dead specimens will be preserved, as appropriate, and held in a secure location until instructions are received from the USFWS regarding the disposition of the specimen.

3.4.5.7.2.3 Activities with Flexible Locations
3.4.5.7.2.3.1 Geotechnical Exploration
Geotechnical exploration will be sited outside of California tiger salamander aquatic habitat. Geotechnical exploration within suitable upland habitat will include the following measures, adopted from the September 3, 2010 BiOp on Engineering Geotechnical Studies for the Bay Delta Conservation Plan (BDCP) and/or the Preliminary Engineering Studies for the Delta Habitat Conservation and Conveyance Program (DHCCP) (81410-2010-F-0022).

- To the extent practicable, all project activities within California tiger salamander suitable habitat will avoid impacts to areas that possess cracks or burrows that could be occupied by California tiger salamanders.

- Pre-construction surveys will be conducted by a qualified biologist. A biological monitor will be present during all drilling activities to ensure there are no significant impacts to California tiger salamander.

- Work will be done outside the wet season and measures, such as having vehicles follow shortest possible routes from levee road to the drill or CPT sites, will be taken to minimize the overall project footprint.
• Geotechnical exploration activities will cease no less than 30 minutes before sunset and will not begin again until no less than 30 minutes after sunrise within 300 feet of California tiger salamander habitat.

3.4.5.7.2.3.2 Safe Havens
Safe havens will avoid suitable California tiger salamander habitat.

3.4.5.7.2.3.3 Power Supply and Grid Connections
The final transmission line alignments will be sited to avoid California tiger salamander aquatic habitat, and to minimize effects on upland habitat. The transmission lines will be sited at least 300 feet from occupied California tiger salamander aquatic habitat as determined through protocol-level surveys of any suitable aquatic habitat within the potential transmission line alignment. Occupancy may be assumed, in order to forego the need for protocol-level surveys. After the final transmission line alignment has been determined, the avoidance and minimization measures described in Section 3.4.5.7.2.1, Activities with Fixed Locations, will be followed, with the following exception.

• Transmission line construction activities will cease no less than 30 minutes before sunset and will not begin again until no less than 30 minutes after sunrise within 300 feet of California tiger salamander habitat.

3.4.5.7.2.3.4 Restoration
3.4.5.7.2.3.4.1 Vernal Pool Restoration
Vernal pool complex restoration may result in temporary effects on California tiger salamander upland habitat. These effects will be minimized to the greatest extent practicable. Vernal pool restoration is expected to provide long-term benefit to California tiger salamander.

During the restoration planning phase, suitable habitat in potential work areas will be surveyed for California tiger salamander larvae, eggs, and adults. If California tiger salamander larvae or eggs are found, the restoration will be designed to avoid impacts on the aquatic habitat and these life stages.

Vernal pool restoration activities in upland habitat will be minimized during the wet season. Surface-disturbing activities will be designed to minimize or eliminate effects on rodent burrows that may provide suitable aestivation habitat. Areas with a high concentration of burrows will be avoided by surface-disturbing activities to the greatest extent practicable. In addition, when a concentration of burrows is present at a worksite, the area will be staked or flagged to ensure that work crews are aware of their location and to facilitate avoidance of the area.

After the restoration design is completed, the avoidance and minimization measures described in Section 3.4.5.7.2.1, Activities with Fixed Locations, will be followed.

3.4.5.7.2.3.4.2 Tidal Restoration
Tidal restoration activities have potential to affect California tiger salamander habitat in the Jepson Prairie area. This includes portions of critical habitat that overlap with the western terminus of Lindsey Slough, west of Rio Dixon Road. Tidal restoration projects will be designed
to avoid areas within 250 feet of any of the physical or biological features (PBFs)37 of California tiger salamander habitat within the designated critical habitat unit, or some lesser distance if it is determined through project review and concurrence by USFWS that tidal restoration actions will not result in changes in hydrology or soil salinity that could adversely modify these PBFs. With the application of the AMM, adverse modification to PBFs of California tiger salamander critical habitat will be avoided.

\subsection*{3.4.5.7.3 Compensation for Effects}

DWR will protect California tiger salamander habitat at a ratio of 3:1 (protected to lost) at locations subject to USFWS approval, adjacent to or near occupied upland habitat that is on a conservation easement, has a management plan, and endowment, or similar funding mechanism, to fund management in perpetuity. The 3:1 ratio applies if protection occurs prior to or concurrent with the impacts. If protection occurs after the impacts, the ratio will increase as shown in Table 3.4-6. California tiger salamander habitat protection will be located in the Byron Hills area, west of the worksite. While there is no recovery plan available for California tiger salamander to inform the location of conservation lands, conservation in this area will benefit the California tiger salamander by providing habitat in a region where high-quality habitat and extant occurrences are known to exist. Grasslands targeted for protection will be located near important areas for conservation that were identified in the \textit{East Contra Costa County HCP/NCCP} (East Contra Costa County Habitat Conservancy 2006) (not all of which will be acquired by that plan) and will include appropriate upland and aquatic features, e.g., rodent burrows, stock ponds, intermittent drainages, and other aquatic features, etc. An estimated 50 acres of habitat will be affected (47 acres within the construction footprint and 3 acres adjacent to construction, potentially subject to vibrations); therefore, 150 acres of habitat will be protected.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
 & Maximum Total Impact (Acres) & Habitat Protection Compensation Ratio & Total Habitat Protection if all Direct Impacts Occur (Acres) \\
\hline
Terrestrial cover and aestivation & 50 & 3:1 & 150 \\
Total & 50 & - & 150 \\
\hline
\end{tabular}
\caption{Compensation for Direct Effects on California Tiger Salamander Habitat.}
\end{table}

\subsection*{3.4.5.7.4 Siting Criteria for Compensation for Effects}

Grasslands, associated vernal pools, and alkali seasonal wetlands will be protected in perpetuity as compensation for effects on California tiger salamander. Land acquisition for California tiger salamander grassland habitat management lands will be prioritized based on the following characteristics:

37 The designations of critical habitat for listed species have generally used the term primary constituent elements (PCEs). NMFS and USFWS' recently issued a final rule amending the regulations for designating critical habitat (81 FR 7414; February 11, 2016), which replaced the term PCEs with physical or biological features (PBFs). In addition, NMFS and USFWS' recently issued a final rule revising the regulatory definition of "destruction or adverse modification" of critical habitat (81 FR 7214; February 11, 2016), which refers to PBFs, not PCEs. The shift in terminology does not change the approach used in conducting an analysis of the effects of the proposed action on critical habitat, which is the same regardless of whether the original designation identified PCEs or PBFs. In this biological assessment, we use the term PBFs to include PCEs, as appropriate for the specific critical habitat.
• Large contiguous landscapes that consist of grasslands, vernal pool complex, and alkali seasonal wetland complex and encompass the range of vegetation, hydrologic, and soil conditions that characterize these communities.

• Lands that maintain connectivity with protected grassland, vernal pool complex, and alkali seasonal wetland complex landscapes near proposed construction sites, including connectivity with lands that have been protected or may be protected in the future under the East Contra Costa County HCP/NCCP.

• Grasslands containing stock ponds and other aquatic features that provide aquatic breeding habitat for California tiger salamander.

3.4.5.7.5 Management and Enhancement
The following management and enhancement activities will be implemented on grasslands protected to benefit California tiger salamander. These management and enhancement activities will be designed and conducted in coordination with (or by) the East Contra Costa County Habitat Conservancy or East Bay Regional Park District. Both of these entities have extensive experience conducting successful grassland and aquatic habitat management and restoration to benefit California tiger salamander in the area where this habitat will be protected to mitigate the effects of the PA.

• Maintain hydrology and water quality. Hydrologic functions to be maintained within vernal pool and alkali seasonal wetland complexes include surface water storage in the pool, subsurface water exchange, and surface water conveyance (Butterwick 1998:52). Aspects of surface water storage such as timing, frequency, and duration of inundation will be monitored, enhanced, and managed to benefit California tiger salamander. Techniques used to enhance and manage hydrology may include invasive plant control, removal of adverse supplemental water sources into reserves (e.g., agricultural or urban runoff), and topographic modifications. Any pesticides used for invasive plant control will be applied during the dry season (typically between July 15 and October 15) when ponds and other aquatic features are not inundated. Disking or mowing will not be used to control vegetation in California tiger salamander habitat.

Repairs may be made to improve water retention in stock ponds that are not retaining water due to leaks and, as a result, not functioning properly as habitat for California tiger salamander. Additionally, pond capacity and water duration may be increased (e.g., by raising spillway elevations) to support California tiger salamander populations. To the greatest extent practicable, repairs will be implemented outside the California tiger salamander breeding season to minimize effects on the species.38

38 Maintaining California tiger salamander use of stock ponds on livestock ranches for breeding appears to be a critical link in the conservation and recovery of this species. In 2004, because of the conservation benefit to the species, USFWS under Section 4(d) of the ESA (Federal Register 69(149):47212-47248), determined that routine management and maintenance activities of stock ponds on private lands are exempt from the take prohibitions under section 9 of the ESA.
To retain the habitat quality of stock ponds over time, occasional sediment removal may be needed to address the buildup of sediment that results from adjacent land use or upstream factors. To the greatest extent practicable, dredging will be conducted during the nonbreeding periods for California tiger salamander to minimize impacts on the species.

- **Control nonnative predators.** Habitat management and enhancement will include trapping and other techniques to control the establishment and abundance of bullfrogs, barred tiger salamander, and other nonnative predators that threaten wildlife species in vernal pools, seasonal wetlands, and stock ponds. DWR, as project applicant, or the land manager will work to reduce and, where possible, eradicate invasive species that adversely affect native species. These efforts will include prescribed methods for removal of bullfrogs, mosquitofish, and nonnative predatory fish from stock ponds and wetlands in the habitat management lands, including limiting the hydroperiod of stock ponds.

DWR, as project applicant, will work to reduce, and if possible eradicate, nonnative predators (e.g., bullfrogs, barred tiger salamander, nonnative predatory fish) from aquatic habitat for covered amphibian species through habitat manipulation (e.g., periodic draining of ponds), trapping, hand-capturing, electroshocking, or other control methods. These activities will be carried out by qualified biologists familiar with California tiger salamander, and will be conducted in a manner that avoids take of California tiger salamanders. Draining ponds annually, sterilizing or removing subsoil, and removing bullfrogs can be effective at reducing predation by bullfrogs and other invasive species on covered amphibians and reptiles (Doubledee et al. 2003). Some ponds in the habitat management lands might be retrofitted with drains if the nonnative species populations cannot be controlled by other means. Ponds without drains and that do not drain naturally may need to be drained annually using pumps. Drainage of stock ponds and other wetlands will be carried out during the summer or fall dry season. Models predict that draining ponds every 2 years will decrease the likelihood that bullfrogs will persist in ponds (Doubledee et al. 2003). Limiting the hydroperiod of stock ponds also shifts the competitive balance from nonnative barred tiger salamander and hybrid salamanders in favor of native California tiger salamanders (Johnson et al. 2010).

- **Maintain or enhance burrow availability.** Ground-dwelling mammals such as California ground squirrel provide burrows for California tiger salamander. Historically, ground squirrel populations were controlled by ranchers and public agencies. Eliminating ground squirrel control measures on habitat management lands may enable increased squirrel populations in some areas. However, some rodent control measures will likely remain necessary in certain areas where dense rodent populations may compromise important infrastructure (e.g., pond berms, road embankments, railroad beds, levees, dam faces). The use of rodenticides or other rodent control measures will be prohibited in habitat management lands except as necessary to address adverse impacts on essential structures in or immediately adjacent to these lands, including recreational facilities incorporated into the reserve system. DWR or the land manager will introduce livestock grazing (where it is not currently used, and where conflicts with worksite activities will be minimized) to reduce vegetative cover and thus encourage ground squirrel expansion and colonization.
• **Manage livestock grazing.** Grazing by livestock and native herbivores is proposed to manage grassland vegetation and thatch to facilitate dispersal of California tiger salamander, for which dense vegetation may hinder movement. Appropriate grazing programs will be developed for enhancing and maintaining habitat for California tiger salamanders based on site-specific characteristics of the community, the spatial location of important ecological features in each pasture, the history of grazing on the site, species composition of the site, grazer vegetation preference, and other relevant information. Grazing exclusion will be used as a management alternative where appropriate.

3.4.5.8 Valley Elderberry Longhorn Beetle

3.4.5.8.1 Habitat Definition

Valley elderberry longhorn beetle suitable habitat is defined in Section 4.A.12.6, *Suitable Habitat Definition*, of Appendix 4.A, *Status of the Species and Critical Habitat Accounts*, AMMs for valley elderberry longhorn beetle will only be required for activities occurring within suitable habitat. Suitable habitat is defined as elderberry shrubs within the action area. Elderberry shrubs in the action area could be found in riparian areas, along levee banks, grasslands, and in agricultural settings where vegetation is not being maintained (e.g., fence rows, fallow fields) (Appendix 4.A, Section 4.A.12.6, *Suitable Habitat Definition*).

3.4.5.8.2 Avoidance and Minimization Measures

AMMs are described below first for activities with fixed locations including the intake facilities, reusable tunnel material placement areas, intermediate forebay, Clifton Court Forebay expansion area, vent shafts, and retrieval shafts. Additional AMMs are then described for activities with flexible locations: habitat restoration, safe haven intervention sites, transmission lines, and geotechnical investigations.

3.4.5.8.2.1 Activities with Fixed Locations

The following measures will be required for construction, operation, and maintenance related to fixed location activities. The following measures will also be required for activities with flexible locations once their locations have been determined.

Preconstruction surveys for elderberry shrubs will be conducted within all facility footprints and areas within 100 feet by a USFWS-approved biologist familiar with the appearance of valley elderberry longhorn beetle exit holes in elderberry shrubs. Preconstruction surveys will be conducted in the calendar year prior to construction and will follow the guidance of USFWS’s *Conservation Guidelines for the Valley Elderberry Longhorn Beetle* (U.S. Fish and Wildlife Service 1999), herein referred to as the 1999 VELB Conservation Guidelines. The results of preconstruction surveys will be reported to USFWS. Elderberry shrubs will be avoided to the greatest extent practicable. Complete avoidance (i.e., no adverse effects) may be assumed when a buffer of at least a 100 feet is established and maintained around elderberry plants containing stems measuring 1 inch or greater in diameter at ground level. Firebreaks may not be included in the buffer zone. USFWS will be consulted before any disturbances, including construction, within the 100-foot buffer area are considered. Any damaged area within the buffer zones will be restored following the conclusion of construction in the work area.
Elderberry shrubs that must be removed will be transplanted to USFWS-approved Conservation Areas (the areas where plantings will occur to offset impacts). Transplanting, avoidance measures, and associated compensation will follow the 1999 VELB Conservation Guidelines except where modified with site specificity as stated herein. Avoidance measures for shrubs not directly affected by construction but within 100-feet of ground disturbing activities will follow the guidance outline in the 1999 VELB Conservation Guidelines as well.

- For shrubs not directly affected by construction but that occur between 20 feet and 100 feet from ground-disturbing activities, the following measures will be implemented.
 - Fence and flag areas to be avoided during construction activities. In areas where encroachment on the 100-foot buffer has been approved by USFWS, provide a minimum setback of at least 20 feet from the dripline of each elderberry plant.
 - To the greatest extent practicable, construction will be limited during the valley elderberry longhorn beetle active season, March 15th through June 15th.
 - Brief contractors on the need to avoid damaging the elderberry plants and the possible penalties for not complying with these requirements (see AMM1 in Appendix 3.F, General Avoidance and Minimization Measures, for more detail).
 - Erect signs every 50 feet along the edge of the avoidance area with the following information: “This area is habitat of the valley elderberry longhorn beetle, a threatened species, and must not be disturbed. This species is protected by the Endangered Species Act of 1973, as amended. Violators are subject to prosecution, fines, and imprisonment.” The signs will be clearly readable from a distance of 20 feet, and must be maintained for the duration of construction.
 - Instruct work crews about the status of the beetle and the need to protect its elderberry host plant.
 - During construction activities, no insecticides, herbicides, fertilizers, or other chemicals that might harm the beetle or its host plant will be used in the 100-foot buffer area.
 - To the greatest extent practicable, nighttime construction will be minimized or avoided by DWR, as project applicant, between March 15th and June 15th where valley elderberry longhorn beetle is likely to be present. Because there is potential for valley elderberry valley longhorn beetles to be attracted to nighttime light and thus increase the potential for predation, activities will cease no less than 30 minutes before sunset and will not begin again prior to no less than 30 minutes after sunrise. Except when necessary for driver or pedestrian safety, to the greatest extent practicable, artificial lighting at a construction site will be prohibited during the hours of darkness where valley elderberry longhorn beetle is likely to be present.
 - Night lighting of valley elderberry beetle habitat will be minimized to the extent practicable. If night lighting is to be used, to the greatest extent possible it will be
pointed toward work areas and way from riparian, other sensitive habitats, and other areas that contain elderberry shrubs.

- Restore any damage done to the buffer area (area within 100 feet of elderberry plants) during construction. Provide erosion control and re-vegetate with appropriate native plants.

- For those parts of the water conveyance facility that will require ongoing maintenance (e.g., intake facilities, pump facilities at Clifton Court Forebay, in right of ways around permanent transmission lines, around vent shafts, etc.), buffer areas must continue to be maintained for the protection of the species after construction with measures such as fencing, signs, weeding, and trash removal as appropriate.

- A written description of how the buffer areas are to be restored and maintained for the protection of the species will be provided to USFWS.

- To prevent fugitive dust from drifting into adjacent habitat, all clearing, grubbing, scraping, excavation, land leveling, grading, cut and fill, demolition activities, or other dust generating activities will be effectively controlled for fugitive dust emissions utilizing application of water or by presoaking work areas.

- For shrubs directly affected by construction, and within 20 feet of disturbance activities if this area is also disturbed, the following measures will be followed for transplantation.

 - A USFWS-approved biologist (monitor) must be onsite for the duration of the transplanting of the elderberry plants to ensure that no unauthorized take of the valley elderberry longhorn beetle occurs. If unauthorized take occurs, the monitor must have the authority to stop work until corrective measures have been completed. The monitor must immediately report any unauthorized take of the beetle or its habitat to the USFWS and to the CDFW.

 - Elderberry shrubs will be transplanted during their dormant season, which occurs from November, after they have lost their leaves, through the first two weeks in February. If transplantation occurs during the growing season, increased compensation ratios will apply. Compensation ratios could be up to three times the standard compensation ratios as determined in consultation with USFWS staff.

 - Transplantation procedure will be as specified in the 1999 VELB Conservation Guidelines.

 - Elderberry shrubs will be transplanted into the area where plantings will occur to offset impacts (Section 3.4.4, Spatial Extent, Location, and Design of Restoration for Terrestrial Species), referred to in the 1999 VELB Conservation Guidelines as the Conservation Area.

 - If a plant appears to be unlikely to survive transplantation, then transplantation is not required, but a higher compensation ratio may be applied. In this instance, the USFWS will be contacted to determine the appropriate action.
3.4.5.8.2.2 Activities with Flexible Locations
Activities with flexible locations are activities that cannot yet be precisely sited because they require design or site-specific information that will not be available until the PA is already in progress. These include geotechnical exploration, safe haven intervention sites, transmission lines, and habitat restoration.

During the planning phase, for these not fully sited activities, preconstruction surveys for elderberry shrubs will be conducted in potential work areas by a USFWS-approved biologist familiar with the appearance of valley elderberry longhorn beetle exit holes in elderberry shrubs. Preconstruction surveys will be conducted in accordance with the protocol provided in the 1999 VELB Conservation Guidelines, and survey results will be reported to USFWS. Elderberry shrubs will be avoided to the greatest extent practicable. Complete avoidance (i.e., no adverse effects) may be assumed when a buffer of at least a 100 feet is established and maintained around elderberry plants containing stems measuring 1 inch or greater in diameter at ground level. Firebreaks may not be included in the buffer zone. USFWS will be consulted before any disturbances, including construction, within the 100-foot buffer area are considered. Any damaged area within the buffer zones will be restored following the conclusion of construction in work areas.

3.4.5.8.2.2.1 Geotechnical Activities
Based on the planning level surveys, geotechnical exploration activities for the PA will fully avoid effects on valley elderberry longhorn beetle and its habitat. Valley elderberry longhorn beetle avoidance and minimization measures for geotechnical activities will be the same as described in Section 3.4.5.8.2.1, Activities with Fixed Locations.

3.4.5.8.2.2.2 Safe Haven Work Areas
Workers will confine ground disturbance and habitat removal to the minimal area necessary to facilitate construction activities. In addition, avoidance and minimization measures for safe haven interventions will be the same as described in Section 3.4.5.8.2.1, Activities with Fixed Locations.

3.4.5.8.2.2.3 Power Lines and Grid Connections
Based on the planning level surveys, the siting of transmission towers and poles will avoid elderberry shrubs to the extent practicable. Valley elderberry longhorn beetle avoidance and minimization measures for transmission lines will be the same as described in Section 3.4.5.8.2.1, Activities with Fixed Locations.

3.4.5.8.2.2.4 Restoration
Selection of restoration sites will be by DWR, subject to approval by the jurisdictional fish and wildlife agencies (CDFW, NMFS, and USFWS). Based on planning level surveys, restoration activities will be designed to fully avoid valley elderberry longhorn beetle habitat, with the exception of tidal restoration and channel margin enhancement, which may affect elderberry shrubs. These types of restoration will be designed to minimize effects in valley elderberry longhorn beetle habitat. Restoration activities that cannot avoid habitat will implement the avoidance and minimization measures described in Section 3.4.5.8.2.1, Activities with Fixed Locations.
3.4.5.8.3 Compensation to Offset Impacts
DWR will offset impacts on elderberry shrubs by either creating valley elderberry longhorn beetle habitat or by purchasing the equivalent credits at a USFWS approved conservation bank with a service area that overlaps with the action area consistent with the 1999 VELB Conservation Guidelines. These guidelines require replacement of each impacted elderberry stem measuring one inch or greater in diameter at ground level, in the Conservation Area, with elderberry seedlings or cuttings at a ratio ranging from 1:1 to 8:1 (new plantings to affected stems), and planting of associated native riparian plants. These ratios will apply if compensation occurs prior to or concurrent with the impacts. If compensation occurs after the impacts, a higher ratio may be required by USFWS. Table 3.4-7 provides these ratios and the number of elderberry shrubs and associated native riparian plants that will be required to mitigate for the estimated 107 elderberry shrubs that will be affected by fully sited construction activities if all impacts occur. Table 3.4-8 through Table 3.4-15 provide the estimated number of shrubs that will be affected by each covered activity. The planting area will provide at a minimum 1,800 square feet for each transplanted shrub. As many as five additional elderberry plantings (cuttings or seedlings) and up to five associated native species plantings may also be planted within the 1,800 square foot area with the transplant. An additional 1,800 square feet will be provided for every additional 10 conservation plants. Additional detail regarding the Conservation Area within which these plantings will take place is provided in the 1999 VELB Conservation Guidelines and below under Section 3.4.5.8.4, Siting Criteria for Compensation for Effects.
Chapter 3: Description of the Proposed Action
Conservation Measures for Valley Elderberry Longhorn Beetle

Table 3.4-7. Compensation for Direct Effects from All Activities

<table>
<thead>
<tr>
<th>Location of Affected Plants</th>
<th>Stems (maximum diameter at ground level) of Affected Plants</th>
<th>Exit Holes on Affected Shrub (Yes/No)¹</th>
<th>Elderberry Seedling Ratio²</th>
<th>Associated Native Plant Ratio³</th>
<th>Elderberry Seedling Requirement⁴</th>
<th>Associated Native Plant Requirement⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-riparian (25 shrubs, 500 stems)</td>
<td>Greater than or equal to 1 inch, less than 3 inches</td>
<td>280</td>
<td>No</td>
<td>1:1</td>
<td>1:1</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>129</td>
<td>2:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>115</td>
<td>No</td>
<td>2:1</td>
<td>1:1</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>53</td>
<td>4:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>105</td>
<td>No</td>
<td>3:1</td>
<td>1:1</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>48</td>
<td>6:1</td>
<td>2:1</td>
</tr>
<tr>
<td>Riparian (82 shrubs, 1,738 stems)</td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>1,154d</td>
<td>No</td>
<td>2:1</td>
<td>1:1</td>
<td>826</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>378</td>
<td>4:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>From 3 to 5 inches</td>
<td>300d</td>
<td>No</td>
<td>3:1</td>
<td>1:1</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>115</td>
<td>6:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>187d</td>
<td>No</td>
<td>4:1</td>
<td>2:1</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>88</td>
<td>8:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5,569</td>
<td>9,433</td>
<td>15,002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Presence or absence of exit holes indicating presence of valley elderberry longhorn beetle. All stems measuring one inch or greater in diameter at ground level on a single shrub are considered occupied when exit holes are present anywhere on the shrub.

² Ratios in this column correspond to the number of cuttings or seedlings to be planted per elderberry stem (one inch or greater in diameter at ground level) affected by a covered activity.

³ Ratios in this column correspond to the number of associated native species to be planted per elderberry seedling or cutting planted.

⁴ Numbers of elderberry seedlings and associated native plants are the required numbers of plantings for compensation if impacts on all 107 shrubs occur. Total seedlings/cuttings and associated natives = 15,002

107 transplants plus 1,070 seedlings/cuttings and natives x 1,800 sq ft = 192,600 sq ft = 4.42 acres

13,905 remaining seedlings/cuttings and natives and 10 per 1,800 sq ft = 2,502,827 sq ft = 57.5 acres

Total area = 61.9 acres
Table 3.4-8. Compensation for Direct Effects from North Delta Intakes

<table>
<thead>
<tr>
<th>Location of Affected Plants</th>
<th>Stems (maximum diameter at ground level) of Affected Plants</th>
<th>Exit Holes on Affected Shrub (Yes/No)</th>
<th>Elderberry Seedling Ratio</th>
<th>Associated Native Plant Ratio</th>
<th>Elderberry Seedling Requirement</th>
<th>Associated Native Plant Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-riparian (3 shrubs, 60 stems)</td>
<td>Greater than or equal to 1 inch, less than 3 inches</td>
<td>34</td>
<td>No</td>
<td>18</td>
<td>1:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>16</td>
<td>2:1</td>
<td>2:1</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>14</td>
<td>No</td>
<td>7</td>
<td>2:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>6</td>
<td>4:1</td>
<td>2:1</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>13</td>
<td>No</td>
<td>7</td>
<td>3:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>6</td>
<td>6:1</td>
<td>2:1</td>
<td>35</td>
</tr>
<tr>
<td>Riparian (12 shrubs, 240 stems)</td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>161</td>
<td>No</td>
<td>79</td>
<td>2:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>82</td>
<td>4:1</td>
<td>2:1</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>From 3 to 5 inches</td>
<td>41</td>
<td>No</td>
<td>20</td>
<td>3:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>21</td>
<td>6:1</td>
<td>2:1</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>38</td>
<td>No</td>
<td>19</td>
<td>4:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>20</td>
<td>8:1</td>
<td>2:1</td>
<td>157</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,048</td>
</tr>
</tbody>
</table>

1. Presence or absence of exit holes indicating presence of valley elderberry longhorn beetle. All stems measuring one inch or greater in diameter at ground level on a single shrub are considered occupied when exit holes are present anywhere on the shrub.
2. Ratios in this column correspond to the number of cuttings or seedlings to be planted per elderberry stem (one inch or greater in diameter at ground level) affected by a covered activity.
3. Ratios in this column correspond to the number of associated native species to be planted per elderberry seedling or cutting planted.
4. Numbers of elderberry seedlings and associated native plants are the required numbers of plantings for compensation if impacts on all 15 shrubs occur. Total seedlings/cuttings and associated natives = 2,799.

15 transplants plus 150 seedlings/cuttings and natives X 1,800 sq ft = 27,000 sq ft = 0.6198 acres.
2,649 remaining seedlings/cuttings and natives and 10 per 1,800 sq ft = 476,814 sq ft = 10.946 acres.
Total area = 11.566 acres.
Table 3.4-9. Compensation for Direct Effects from RTM Storage Areas

<table>
<thead>
<tr>
<th>Location of Affected Plants</th>
<th>Stems (maximum diameter at ground level) of Affected Plants</th>
<th>Exit Holes on Affected Shrub (Yes/No)</th>
<th>Elderberry Seedling Ratio</th>
<th>Associated Native Plant Ratio</th>
<th>Elderberry Seedling Requirement</th>
<th>Associated Native Plant Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-riparian (6 shrubs, 120 stems)</td>
<td>Greater than or equal to 1 inch, less than 3 inches</td>
<td>67</td>
<td>No</td>
<td>36</td>
<td>1:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>31</td>
<td>2:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>28</td>
<td>No</td>
<td>15</td>
<td>2:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>13</td>
<td>4:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>25</td>
<td>No</td>
<td>14</td>
<td>3:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>12</td>
<td>6:1</td>
<td>2:1</td>
</tr>
<tr>
<td>Riparian (13 shrubs, 260 stems)</td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>174</td>
<td>No</td>
<td>85</td>
<td>2:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>89</td>
<td>4:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>From 3 to 5 inches</td>
<td>44</td>
<td>No</td>
<td>22</td>
<td>3:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>23</td>
<td>6:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>42</td>
<td>No</td>
<td>20</td>
<td>4:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>21</td>
<td>8:1</td>
<td>2:1</td>
</tr>
</tbody>
</table>

Total 1,268 2,113 3,381

1 Presence or absence of exit holes indicating presence of valley elderberry longhorn beetle. All stems measuring one inch or greater in diameter at ground level on a single shrub are considered occupied when exit holes are present anywhere on the shrub.
2 Ratios in this column correspond to the number of cuttings or seedlings to be planted per elderberry stem (one inch or greater in diameter at ground level) affected by a covered activity.
3 Ratios in this column correspond to the number of associated native species to be planted per elderberry seedling or cutting planted.
4 Numbers of elderberry seedlings and associated native plants are the required numbers of plantings for compensation if impacts on all 19 shrubs occur. Total seedlings/cuttings and associated natives = 3,381.

19 transplants plus 190 seedlings/cuttings and natives = 34200 sq. feet = 0.785123967 acres.
3,191 remaining seedlings/cuttings and native and 10 per 1,800 square foot = 574,425 sq ft =13.187 acres.
Total area = 13.972 acres.
Table 3.4-10. Compensation for Direct Effects from HOR Gate

<table>
<thead>
<tr>
<th>Location of Affected Plants</th>
<th>Stems (maximum diameter at ground level) of Affected Plants</th>
<th>Exit Holes on Affected Shrub (Yes/No)</th>
<th>Elderberry Seedling Requirement</th>
<th>Associated Native Plant Requirement</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-riparian (1 shrub, 20 stems)</td>
<td>Greater than or equal to 1 inch, less than 3 inches</td>
<td>No</td>
<td>1:1</td>
<td>1:1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>2:1</td>
<td>2:1</td>
<td>10</td>
</tr>
<tr>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>No</td>
<td>2:1</td>
<td>1:1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>4:1</td>
<td>2:1</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Greater than or equal to 5 inches</td>
<td>No</td>
<td>3:1</td>
<td>1:1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>6:1</td>
<td>2:1</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>Riparian (no shrubs)</td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>No</td>
<td>2:1</td>
<td>1:1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>4:1</td>
<td>2:1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>From 3 to 5 inches</td>
<td>No</td>
<td>3:1</td>
<td>1:1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>6:1</td>
<td>2:1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Greater than or equal to 5 inches</td>
<td>No</td>
<td>4:1</td>
<td>1:1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>8:1</td>
<td>2:1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>79</td>
<td>127</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Presence or absence of exit holes indicating presence of valley elderberry longhorn beetle. All stems measuring one inch or greater in diameter at ground level on a single shrub are considered occupied when exit holes are present anywhere on the shrub.
2. Ratios in this column correspond to the number of cuttings or seedlings to be planted per elderberry stem (one inch or greater in diameter at ground level) affected by a covered activity.
3. Ratios in this column correspond to the number of associated native species to be planted per elderberry seedling or cutting planted.
4. Numbers of elderberry seedlings and associated native plants are the required numbers of plantings for compensation if impacts on 1 shrub occurs. Total seedlings/cuttings and associated natives = 127.

1 transplants plus 10 seedlings/cuttings and natives = 1,800 sq ft = 0.041 acres.
117 remaining seedlings/cuttings and natives and 10 per 1,800 sq ft = 21,046 sq ft = 0.483 acres.
Total area = 0.524 acres.
Table 3.4-11. Compensation for Direct Effects from Water Conveyance Facilities

<table>
<thead>
<tr>
<th>Location of Affected Plants</th>
<th>Stems (maximum diameter at ground level) of Affected Plants</th>
<th>Exit Holes on Affected Shrub (Yes/No)</th>
<th>Elderberry Seedling Ratio</th>
<th>Associated Native Plant Ratio</th>
<th>Elderberry Seedling Requirement</th>
<th>Associated Native Plant Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-riparian (5 shrubs, 100 stems)</td>
<td>Greater than or equal to 1 inch, less than 3 inches</td>
<td>56</td>
<td>No</td>
<td>30</td>
<td>1:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>26</td>
<td>2:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>23</td>
<td>No</td>
<td>12</td>
<td>2:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>11</td>
<td>4:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>21</td>
<td>No</td>
<td>11</td>
<td>3:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>10</td>
<td>6:1</td>
<td>2:1</td>
</tr>
<tr>
<td>Riparian (18 shrubs, 360 stems)</td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>241</td>
<td>No</td>
<td>118</td>
<td>2:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>123</td>
<td>4:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>From 3 to 5 inches</td>
<td>61</td>
<td>No</td>
<td>30</td>
<td>3:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>31</td>
<td>6:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>58</td>
<td>No</td>
<td>28</td>
<td>4:1</td>
<td>1:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>29</td>
<td>8:1</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Presence or absence of exit holes indicating presence of valley elderberry longhorn beetle. All stems measuring one inch or greater in diameter at ground level on a single shrub are considered occupied when exit holes are present anywhere on the shrub.
2. Ratios in this column correspond to the number of cuttings or seedlings to be planted per elderberry stem (one inch or greater in diameter at ground level) affected by a covered activity.
3. Ratios in this column correspond to the number of associated native species to be planted per elderberry seedling or cutting planted.
4. Numbers of elderberry seedlings and associated native plants are the required numbers of plantings for compensation if impacts on all 23 shrubs occur. Total seedlings/cuttings and associated natives = 4,262.

23 transplants plus 230 seedlings/cuttings and natives x 1,800 sq ft = 41,400 sq ft = 0.950 acres.
4,032 remaining seedlings/cuttings and natives and 10 per 1,800 sq ft = 725,744 sq ft = 16.661 acres.
Total area = 17.611 acres.
Table 3.4-12. Compensation for Direct Effects from Clifton Court Forebay Modifications

<table>
<thead>
<tr>
<th>Location of Affected Plants</th>
<th>Stems (maximum diameter at ground level) of Affected Plants</th>
<th>Exit Holes on Affected Shrub (Yes/No)¹</th>
<th>Elderberry Seedling Ratio²</th>
<th>Associated Native Plant Ratio³</th>
<th>Elderberry Seedling Requirement⁴</th>
<th>Associated Native Plant Requirement⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-riparian (6 shrubs, 120 stems)</td>
<td>Greater than or equal to 1 inch, less than 3 inches</td>
<td>67</td>
<td>No</td>
<td>1:1</td>
<td>1:1</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>2:1</td>
<td>2:1</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>28</td>
<td>No</td>
<td>2:1</td>
<td>1:1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>4:1</td>
<td>2:1</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>25</td>
<td>No</td>
<td>3:1</td>
<td>1:1</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>6:1</td>
<td>2:1</td>
<td>70</td>
</tr>
<tr>
<td>Riparian (1 shrub, 20 stems)</td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>13</td>
<td>No</td>
<td>2:1</td>
<td>1:1</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>4:1</td>
<td>2:1</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>From 3 to 5 inches</td>
<td>3</td>
<td>No</td>
<td>3:1</td>
<td>1:1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>6:1</td>
<td>2:1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>3</td>
<td>No</td>
<td>4:1</td>
<td>1:1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>8:1</td>
<td>2:1</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>365</td>
</tr>
</tbody>
</table>

¹ Presence or absence of exit holes indicating presence of valley elderberry longhorn beetle. All stems measuring one inch or greater in diameter at ground level on a single shrub are considered occupied when exit holes are present anywhere on the shrub.

² Ratios in this column correspond to the number of cuttings or seedlings to be planted per elderberry stem (one inch or greater in diameter at ground level) affected by a covered activity.

³ Ratios in this column correspond to the number of associated native species to be planted per elderberry seedling or cutting planted.

⁴ Numbers of elderberry seedlings and associated native plants are the required numbers of plantings for compensation if impacts on all 7 shrubs occur. Total seedlings/cuttings and associated natives = 963.

7 transplants plus 70 seedlings/cuttings and natives x 1,800 sq ft = 12,600 sq ft = 0.289 acres.
893 remaining seedlings/cuttings and natives and 10 per 1,800 sq ft = 160,750 sq ft = 3.690 acres.
Total area = 3.980 acres.
<table>
<thead>
<tr>
<th>Location of Affected Plants</th>
<th>Stems (maximum diameter at ground level) of Affected Plants</th>
<th>Exit Holes on Affected Shrub (Yes/No)</th>
<th>Elderberry Seedling Requirement</th>
<th>Associated Native Plant Requirement</th>
<th>Elderberry Seedling Requirement</th>
<th>Associated Native Plant Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-riparian (3 shrubs, 60 stems)</td>
<td>Greater than or equal to 1 inch, less than 3 inches</td>
<td>No</td>
<td>18</td>
<td>1:1</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>16</td>
<td>2:1</td>
<td>31</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>No</td>
<td>7</td>
<td>2:1</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>6</td>
<td>4:1</td>
<td>25</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>No</td>
<td>7</td>
<td>3:1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>6</td>
<td>6:1</td>
<td>35</td>
<td>70</td>
</tr>
<tr>
<td>Riparian (8 shrubs, 160 stems)</td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>No</td>
<td>52</td>
<td>2:1</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>55</td>
<td>4:1</td>
<td>219</td>
<td>439</td>
</tr>
<tr>
<td></td>
<td>From 3 to 5 inches</td>
<td>No</td>
<td>13</td>
<td>3:1</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>14</td>
<td>6:1</td>
<td>83</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>No</td>
<td>13</td>
<td>4:1</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>13</td>
<td>8:1</td>
<td>105</td>
<td>210</td>
</tr>
<tr>
<td>Total</td>
<td>747</td>
<td>1,246</td>
<td>1,993</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Presence or absence of exit holes indicating presence of valley elderberry longhorn beetle. All stems measuring one inch or greater in diameter at ground level on a single shrub are considered occupied when exit holes are present anywhere on the shrub.
2. Ratios in this column correspond to the number of cuttings or seedlings to be planted per elderberry stem (one inch or greater in diameter at ground level) affected by a covered activity.
3. Ratios in this column correspond to the number of associated native species to be planted per elderberry seedling or cutting planted.
4. Numbers of elderberry seedlings and associated native plants are the required numbers of plantings for compensation if impacts on all 11 shrubs occur. Total seedlings/cuttings and associated natives = 1,993.

11 transplants plus 110 seedlings/cuttings and natives = 19,800 sq ft = 0.455 acres.
1,883 remaining seedlings/cuttings and natives and 10 per 1,800 sq ft = 338,922 sq ft = 7.781 acres.
Total area = 8.235 acres.
Table 3.4-14. Compensation for Direct Effects from Safe Haven Work Areas

<table>
<thead>
<tr>
<th>Location of Affected Plants</th>
<th>Stems (maximum diameter at ground level) of Affected Plants</th>
<th>Exit Holes on Affected Shrub (Yes/No)</th>
<th>Elderberry Seedling Ratio</th>
<th>Associated Native Plant Ratio</th>
<th>Elderberry Seedling Requirement</th>
<th>Associated Native Plant Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-riparian (1 shrub, 20 stems)</td>
<td>Greater than or equal to 1 inch, less than 3 inches</td>
<td>No</td>
<td>6</td>
<td>1:1</td>
<td>1:1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>5</td>
<td>2:1</td>
<td>2:1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>No</td>
<td>2</td>
<td>2:1</td>
<td>1:1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>2</td>
<td>4:1</td>
<td>2:1</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>No</td>
<td>2</td>
<td>3:1</td>
<td>1:1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>2</td>
<td>6:1</td>
<td>2:1</td>
<td>12</td>
</tr>
<tr>
<td>Riparian (6 shrubs, 120 stems)</td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>No</td>
<td>7</td>
<td>2:1</td>
<td>1:1</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>7</td>
<td>4:1</td>
<td>2:1</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>From 3 to 5 inches</td>
<td>No</td>
<td>2</td>
<td>3:1</td>
<td>1:1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>2</td>
<td>6:1</td>
<td>2:1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>No</td>
<td>2</td>
<td>4:1</td>
<td>1:1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>2</td>
<td>8:1</td>
<td>2:1</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Presence or absence of exit holes indicating presence of valley elderberry longhorn beetle. All stems measuring one inch or greater in diameter at ground level on a single shrub are considered occupied when exit holes are present anywhere on the shrub.

2. Ratios in this column correspond to the number of cuttings or seedlings to be planted per elderberry stem (one inch or greater in diameter at ground level) affected by a covered activity.

3. Ratios in this column correspond to the number of associated native species to be planted per elderberry seedling or cutting planted.

4. Numbers of elderberry seedlings and associated native plants are the required numbers of plantings for compensation if impacts on all 7 shrubs occur. Total seedlings/cuttings and associated natives = 1,336.

2 transplants plus 20 seedlings/cuttings and natives = 1,800 sq ft = 3,600 sq ft = 0.0826 acres.

308 remaining seedlings/cuttings and natives and 10 per 1,800 sq ft = 55,519 sq ft = 1.274 acres.

Total area = 1.357 acres.
Table 3.4-15. Compensation for Direct Effects from Restoration

<table>
<thead>
<tr>
<th>Location of Affected Plants</th>
<th>Stems (maximum diameter at ground level) of Affected Plants</th>
<th>Exit Holes on Affected Shrub (Yes/No)</th>
<th>Elderberry Seedling Ratio</th>
<th>Associated Native Plant Ratio</th>
<th>Elderberry Seedling Requirement</th>
<th>Associated Native Plant Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-riparian (0)</td>
<td>Greater than or equal to 1 inch, less than 3 inches</td>
<td>0</td>
<td>No</td>
<td>1:1</td>
<td>1:1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0</td>
<td>2:1</td>
<td>2:1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>0</td>
<td>No</td>
<td>2:1</td>
<td>1:1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0</td>
<td>4:1</td>
<td>2:1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>0</td>
<td>No</td>
<td>3:1</td>
<td>1:1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0</td>
<td>6:1</td>
<td>2:1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Riparian (29)</td>
<td>Greater than or equal to 3 inches, less than 5 inches</td>
<td>444</td>
<td>No</td>
<td>2:1</td>
<td>1:1</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>15</td>
<td>4:1</td>
<td>2:1</td>
<td>59</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>From 3 to 5 inches</td>
<td>120</td>
<td>No</td>
<td>3:1</td>
<td>1:1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>24</td>
<td>6:1</td>
<td>2:1</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Greater than or equal to 5 inches</td>
<td>17</td>
<td>No</td>
<td>4:1</td>
<td>1:1</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>1</td>
<td>8:1</td>
<td>2:1</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>996</td>
</tr>
</tbody>
</table>

1. Presence or absence of exit holes indicating presence of valley elderberry longhorn beetle. All stems measuring one inch or greater in diameter at ground level on a single shrub are considered occupied when exit holes are present anywhere on the shrub.
2. Ratios in this column correspond to the number of cuttings or seedlings to be planted per elderberry stem (one inch or greater in diameter at ground level) affected by a covered activity.
3. Ratios in this column correspond to the number of associated native species to be planted per elderberry seedling or cutting planted.
4. Numbers of elderberry seedlings and associated native plants are the required numbers of plantings for compensation if impacts on all 29 shrubs occur. Total seedlings/cuttings and associated natives = 996.
29 transplants plus 290 seedlings/cuttings and natives = 1.20 acres.
706 remaining seedlings/cuttings and natives and 10 per 1,800 sq ft = 127,151 sq ft = 2.9 acres.
Total area = 4.11 acres.
3.4.5.8.4 **Siting Criteria for Compensation for Effects**
Each Conservation Area will provide at least 1,800 square feet for each transplanted elderberry plant. As many as 10 conservation plantings (i.e., elderberry cuttings or seedlings and/or associated native plants) may be planted within the 1,800 square foot area with each transplanted elderberry. An additional 1,800 square feet will be provided for every additional 10 conservation plants. Each planting will have its own watering basin measuring approximately three feet in diameter. Watering basins will be constructed with a continuous berm measuring approximately eight inches wide at the base and six inches high.

Depending on adjacent land use, a buffer area may also be needed between the Conservation Area and the adjacent lands. For example, herbicides and pesticides are often used on orchards or vineyards. These chemicals may drift or run off onto the Conservation Area if an adequate buffer area is not provided.

3.4.5.8.4.1 **Long-Term Protection**
Each Conservation Area will be protected in perpetuity as habitat for the valley elderberry longhorn beetle. A conservation easement or deed restrictions to protect the Conservation Area must be arranged. Conservation Areas may be transferred to a resource agency or appropriate private organization for long-term management. USFWS must be provided with a map and written details identifying the Conservation Area; and DWR, as project applicant, must receive approval from USFWS that the Conservation Area is acceptable prior to initiating the conservation program. A true, recorded copy of the deed transfer, conservation easement, or deed restrictions protecting the Conservation Area in perpetuity must be provided to USFWS before construction activities begin.

Adequate funds must be provided to ensure that the Conservation Area is managed in perpetuity. DWR, as project applicant, must dedicate an endowment fund, or similar perpetual funding mechanism, for this purpose, and designate the party or entity that will be responsible for long-term management of the Conservation Area. USFWS will be provided with written documentation that funding and management of the Conservation Area will be provided in perpetuity.

3.4.5.8.5 **Management and Enhancement**
The following management and enhancement activities will be implemented to benefit valley elderberry longhorn beetle. If a mitigation bank is used to offset effects, it will be USFWS-approved and will meet the requirements set forth above.

3.4.5.8.5.1 **Levee Maintenance**
All levee maintenance that involves ground-disturbing activities will implement relevant measures described above under Section 3.4.5.8.2, *Avoidance and Minimization Measures*. Vegetation burning or nonselective herbicide use kills elderberry shrubs required by the valley elderberry longhorn beetle. Other methods such as managed goat grazing may be an effective and biologically preferred vegetation management method along levees (with goatherds used to limit grazing on desirable species).
3.4.5.8.5.2 Weed Control
Weeds and other plants that are not native to the Conservation Area will be removed at least once a year, or at the discretion of the USFWS. Mechanical means will be used; herbicides are prohibited unless approved by the USFWS.

3.4.5.8.5.3 Pesticide and Toxicant Control
Measures will be taken to insure that no pesticides, herbicides, fertilizers, or other chemical agents enter the Conservation Area. No spraying of these agents will be done within 100 feet of the Conservation Area, or if they have the potential to drift, flow, or be washed into the area in the opinion of biologists or law enforcement personnel from the USFWS.

3.4.5.8.5.4 Litter Control
No dumping of trash or other material may occur within a Conservation Area. Any trash or other foreign material found deposited within a Conservation Area will be removed within 10 working days of discovery.

3.4.5.8.5.5 Fencing
Permanent fencing will be placed completely around each Conservation Area to prevent unauthorized entry by off-road vehicles, equestrians, and other parties that might damage or destroy the habitat of the beetle, unless approved by the USFWS. DWR will obtain written approval from the USFWS that the fencing is acceptable prior to initiation of the conservation program. The fence will be maintained in perpetuity, and will be repaired or replaced within 10 working days if it is found to be damaged. Some Conservation Areas may be made available to the public for appropriate recreational and educational opportunities, subject to written approval from the USFWS. In these cases appropriate fencing and signs informing the public of the beetle’s threatened status and its natural history and ecology will be used and maintained in perpetuity.

3.4.5.8.5.6 Signs
A minimum of two prominent signs will be placed and maintained in perpetuity at each Conservation Area, unless otherwise approved by the USFWS. The signs will note that the site is habitat of the federally threatened valley elderberry longhorn beetle and, if appropriate, include information on the beetle’s natural history and ecology. The signs will be subject to USFWS approval. The signs will be repaired or replaced within 10 working days if they are found to be damaged or destroyed.

3.4.5.9 Vernal Pool Fairy Shrimp and Vernal Pool Tadpole Shrimp

3.4.5.9.1 Habitat Definitions
Vernal pool fairy shrimp and vernal pool tadpole shrimp suitable habitat is defined in Section 4.A.13.6, Suitable Habitat Definition, and Section 4.A.14.6, Suitable Habitat Definition, of Appendix 4.A, Status of the Species and Critical Habitat Accounts, respectively. AMMs are described below first for activities with known locations including the CCF canal, Clifton Court expansion area, and RTM placement areas. Additional AMMs are then described for activities with uncertain locations: habitat restoration, transmission lines, and geotechnical investigations. The AMMs listed in Appendix 3.F, General Avoidance and Minimization Measures, will also be applicable to all construction activities.
Chapter 3: Description of the Proposed Action
Conservation Measures

The AMMs below and those listed in Appendix 3.F, General Avoidance and Minimization Measures, will also be applicable to all operations and maintenance activities. AMMs that require exclusion fencing or monitoring will not be required for routine operations and maintenance activities but will be implemented for maintenance activities that involve ground disturbance and/or vegetation removal in suitable habitat for the species.

3.4.5.9.2 Avoidance and Minimization Measures
3.4.5.9.2.1 Activities with Known Locations

Habitat for vernal pool fairy shrimp and vernal pool tadpole shrimp in the action area is defined as vernal pools, seasonal wetlands, and alkali seasonal wetlands. Vernal pool fairy shrimp can also be found in artificial features such as seasonal ditches and un-vegetated low spots that pool during the winter, though these areas may not be suitable for vernal pool tadpole shrimp if they are not inundated for a sufficient period of time.

- Staging areas will be designed so that they are more than 250 feet from vernal pool fairy shrimp or vernal pool tadpole shrimp habitat. All vehicles will access the work site following the shortest possible route from the levee road. All site access and staging shall limit disturbance to the riverbank, or levee as much as possible and avoid sensitive habitats. When possible, existing ingress and egress points shall be used.

- A vehicle inspection and fueling area will be established at least 250 ft away from any vernal pools or seasonal wetlands to reduce the potential for chemical pollution such as oil, diesel, or hydraulic fluid. An inspection and fueling plan will be developed and construction workers trained so that any contamination is minimized. An emergency spill response plan will be completed and all workers will be trained on how to respond to emergency spills of chemicals.

- If habitat is avoided (preserved) at the site, a USFWS-approved biologist (monitor) will inspect any construction-related activities at the activity site to ensure that no unnecessary take of listed species or destruction of their habitat occurs. The USFWS-approved biologist will have the authority to stop all activities that may result in take or destruction until appropriate corrective measures have been completed. The USFWS-approved biologist also will be required to immediately report any unauthorized impacts to USFWS.

- Topographic depressions that are likely to serve as seasonal vernal pools will be flagged and avoided where possible.

- Silt fencing will be installed wherever activities occur within 250 ft of vernal pool type seasonal wetlands. To avoid additional soil disturbances caused by silt fence installation, the bottom portion of the fence will be secured by waddles instead of buried.

- All onsite construction personnel will receive instruction regarding the presence of listed species and the importance of avoiding impacts on the species and their habitat (AMM1 in Appendix 3.F, General Avoidance and Minimization Measures).
• DWR, as project applicant, will ensure that activities that are inconsistent with the maintenance of the suitability of remaining habitat and associated onsite watershed that supports vernal pool fairy shrimp or vernal pool tadpole shrimp habitat are prohibited. This includes, but is not limited to (1) alteration of existing topography or any other alteration or uses for any purposes; (2) placement of any new structures on these parcels; (3) dumping, burning, and/or burying of rubbish, garbage, or any other wastes or fill materials; (4) building of any new roads or trails; (5) killing, removal, alteration, or replacement of any existing native vegetation; (6) placement of storm water drains; (7) fire protection activities not required to protect existing structures at the site; and (8) use of pesticides or other toxic chemicals.

3.4.5.9.2.2 Activities with Uncertain Locations
Geotechnical exploration activities, the construction and operation and maintenance of transmission lines, and restoration activities for the PA will fully avoid effects on vernal pool fairy shrimp and vernal pool tadpole shrimp and their habitat. Full avoidance requires a minimum 250-foot no-disturbance buffer around all vernal pools and other aquatic features potentially supporting vernal pool fairy shrimp or vernal pool tadpole shrimp.

3.4.5.9.3 Compensation for Effects
Conservation measures for vernal pool fairy shrimp and vernal pool tadpole shrimp are listed below.

• For every acre of habitat directly or indirectly affected, at least two vernal pool credits will be purchased within a USFWS-approved ecosystem preservation bank. Alternatively, based on USFWS evaluation of site-specific conservation values, three acres of vernal pool habitat may be preserved at the affected site or on another non-bank site as approved by the USFWS (Table 3.4-16).

• For every acre of habitat directly affected, at least one vernal pool creation credit will be dedicated within a USFWS-approved habitat mitigation bank, or, based on USFWS evaluation of site-specific conservation values, two acres of vernal pool habitat will be created and monitored at the affected site or on another non-bank site as approved by the USFWS (Table 3.4-16).

• Compensation ratios for non-bank compensation may be adjusted to approach those for banks if the USFWS considers the conservation value of the non-bank compensation area to approach that of USFWS-approved conservation banks.
Table 3.4-16. Compensation for Effects on Vernal Pool Fairy Shrimp and Vernal Pool Tadpole Shrimp Habitat

<table>
<thead>
<tr>
<th>Covered Activity/Proposed Compensation</th>
<th>Direct Effect (Acres)</th>
<th>Indirect Effect (Acres)</th>
<th>Habitat Compensation Ratio</th>
<th>Total Habitat Compensation if all Impacts Occur (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conservation Bank(^1)</td>
<td>Non-bank Site(^2,3)</td>
</tr>
<tr>
<td>RTM Storage Areas</td>
<td>0</td>
<td>0.2</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Clifton Court Forebay Modifications</td>
<td>6</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Protection (direct and indirect effects)</td>
<td>6</td>
<td>0.2</td>
<td>2:1</td>
<td>3:1</td>
</tr>
<tr>
<td>Restoration/Creation (direct effects only)</td>
<td>6</td>
<td>NA</td>
<td>1:1</td>
<td>2:1</td>
</tr>
</tbody>
</table>

1. Compensation ratios for credits dedicated in Service-approved mitigation banks
2. Compensation ratios for acres of habitat outside of mitigation banks
3. Compensation ratios for non-bank compensation may be adjusted to approach those for banks if the Service considers the conservation value of the non-bank compensation area to approach that of Service-approved mitigation banks.

3.4.5.9.4 Siting Criteria for Compensation for Effects

3.4.5.9.4.1 Protection
If protection occurs outside a USFWS-approved conservation bank, protection will be prioritized in the Livermore recovery unit, which is one of the core recovery areas identified in the *Vernal Pool Recovery Plan* (U.S. Fish and Wildlife Service 2005) and is adjacent to existing protected vernal pool complex. Protected sites will be prioritized within the affected critical habitat unit for vernal pool fairy shrimp, unless rationale is provided to USFWS for lands to be protected outside of the critical habitat unit. Protected sites will include the surrounding upland watershed necessary to sustain the vernal pool functions (e.g., hydrology, uplands to provide for pollinators, etc.)

3.4.5.9.4.2 Restoration
If vernal pool restoration is conducted outside of a USFWS-approved conservation bank, the restoration sites will meet the following site selection criteria.

- The site has evidence of historical vernal pools based on soils, remnant topography, remnant vegetation, historical aerial photos, or other historical or site-specific data.
- The site supports suitable soils and landforms for vernal pool restoration.
- The adjacent land use is compatible with restoration and long-term management to maintain natural community functions (e.g., not adjacent to urban or rural residential areas).
- Sufficient land is available for protection to provide the necessary vernal pool complex restoration and surrounding grasslands to provide the local watershed for sustaining vernal pool hydrology, with a vernal pool density representative of intact vernal pool complex in the vicinity of the restoration site.

Acquisition of vernal pool restoration sites will be prioritized based on the following criteria.
• The site will contribute to establishment of a large, interconnected vernal pool and alkali seasonal wetland complex reserve system (e.g., adjacent to existing protected vernal pool complex or alkali seasonal wetland complex).

• The site is close to known populations of vernal pool fairy shrimp or vernal pool tadpole shrimp.

3.4.5.9.4.3 Site-Specific Restoration Plans
A site-specific restoration plan will be developed for the vernal pool restoration site. The restoration plan will include the following elements.

• A description of the aquatic functions, hydrology/topography, soils/substrate, and vegetation, for the design reference site, the existing condition of the restoration site, and the anticipated condition of the restored site.

• Success criteria for determining whether vernal pool or alkali seasonal wetland functions have been successfully restored.

• A description of the restoration monitoring, including methods and schedule consistent with relevant monitoring actions, metrics, and timing and duration, for determining whether success criteria have been met.

• An implementation and management plan and schedule that includes a description of site preparation, seeding, and irrigation.

• A management plan which includes a description of maintenance activities and a maintenance schedule to be implemented until success criteria are met.

Contingency measures will be implemented if success criteria are not met within the established monitoring timeframe.

3.4.5.9.5 Management and Enhancement
The following management and enhancement activities will be provided to USFWS for review in a management plan and implemented to benefit vernal pool fairy shrimp and vernal pool tadpole shrimp, subject to USFWS approval. These management and enhancement activities will be designed and conducted in coordination with (or by) the East Contra Costa County Habitat Conservancy or East Bay Regional Park District. Both of these entities have extensive experience conducting successful habitat management to benefit vernal pool fairy shrimp in the area where this habitat will be protected to mitigate the effects of the PA. If a USFWS-approved mitigation bank is used to fulfill the restoration requirement, then the management and enhancement that is in place for that mitigation bank will suffice.

3.4.5.9.5.1 Vegetation Management
On sites where vernal pools are protected or restored, vegetation will be managed to control invasive species and minimize thatch build-up. Grazing will be the preferred approach for vegetation management. Mechanical control may be employed as needed for highly invasive species: this method involves the use of machinery such as bulldozers, backhoes, cable yarders,
and loaders, and may be used where invasive plant density is high and it would not result in adverse effects on sensitive resources such as rare plant populations or critical habitat for vernal pool species.

3.4.5.9.5.2 Hydrologic Function of Vernal Pools

Hydrologic functions to be maintained within vernal pool wetland complexes include surface water storage in the pool, subsurface water exchange, and surface water conveyance (Butterwick 1998:52). Aspects of surface water storage such as timing, frequency, and duration of inundation will be monitored, enhanced, and managed to benefit the vernal pool crustaceans. Techniques used to enhance and manage hydrology may include invasive plant control, removal of adverse supplemental water sources into restored or protected vernal pool complexes (e.g., agricultural or urban runoff), and topographic modifications.

3.4.5.10 Least Bell’s Vireo

3.4.5.10.1 Habitat Definition

AMMs for least Bell’s vireo will be required for activities occurring within suitable habitat, or in the vicinity of suitable habitat, as defined in Appendix 4.A, Status of the Species and Critical Habitat Accounts, Section 4.A.15.6, Suitable Habitat Definition. The model for least habitat is described in Appendix 4.A, Section 4.A.15.7, Species Habitat Suitability Model). Prior to disturbing an area potentially supporting habitat for the species, a USFWS approved biologist will evaluate the area to identify suitable habitat as described in Section 3.4.8.2, Required Compliance Monitoring. The following avoidance and minimization measures will be applied within suitable habitat for least Bell’s vireo.

3.4.5.10.2 Avoidance and Minimization Measures

3.4.5.10.2.1 Activities with Fixed Locations

Activities with fixed locations include all construction activities described in Section 3.2, Conveyance Facility Construction except geotechnical exploration, safe haven intervention sites, and transmission lines. The following measures will be required for construction, operation, and maintenance related to fixed location activities in suitable habitat. The following measures will also be required for activities with flexible locations once their locations have been fixed, if they occur in suitable habitat.

- Prior to construction, all suitable least Bell’s vireo habitat in the construction area will be surveyed, with surveys performed in accordance with any required USFWS survey protocols and permits applicable at the time of construction.

- If surveys find least Bell’s vireos in the area where vegetation will be removed, vegetation removal will be done when the birds are not present.

- If an activity is to occur within 1,200 feet of least Bell’s vireo habitat (or within 2,000 feet if pile driving will occur) during the breeding period for least Bell’s vireos, the following measures will be implemented to avoid noise effects on least Bell’s vireo.
Prior to the construction, a noise expert will create a noise contour map showing the
60 dBA noise contour specific to the type and location of construction to occur in the
area.

During the breeding period for least Bell’s vireo, a USFWS-approved biologist will
survey any suitable habitat for least Bell’s vireo within the 60 dBA noise contour on a
daily basis during a two-week period prior to construction. While construction is
occurring within this work window, the USFWS-approved biologist will conduct
daily surveys in any suitable habitat where construction related noise levels could
exceed 60 dBA (A-weighted decibel) Leq (1 hour). If a least Bell’s vireo is found,
sound will be limited to 60dBA in the habitat being used until the USFWS-approved
biologist has confirmed that the bird has left the area.

- Limit pile driving to daytime hours (7:00 a.m. to 7:00 p.m.).
- Locate, store, and maintain portable and stationary equipment as far as possible from
suitable least Bell’s vireo habitat.
- Employ preventive maintenance including practicable methods and devices to control,
prevent, and minimize noise.
- Route truck traffic in order to reduce construction noise impacts and traffic noise levels
within 1,200 feet of suitable least Bell’s vireo habitat during migration periods.
- Limit trucking activities (e.g., deliveries, export of materials) to the hours of 7:00 a.m. to
10:00 p.m.
- Screen all lights and direct them down toward work activities away from migratory
habitat. A biological construction monitor will ensure that lights are properly directed at
all times.
- Operate portable lights at the lowest allowable wattage and height, while in accordance
with the National Cooperative Highway Research Program’s Report 498: Illumination
Guidelines for Nighttime Highway Work.

3.4.5.10.2.2 Activities with Flexible Locations
3.4.5.10.2.2.1 Geotechnical Exploration
During geotechnical activities, a USFWS approved biologist will be onsite to avoid the loss or
degradation of suitable least Bell’s vireo habitat by exploration activities.

3.4.5.10.2.2 Safe Haven Work Areas
During the siting phase of safe haven construction, a USFWS approved biologist will work with
the engineers to avoid loss or degradation of suitable least Bell’s vireo habitat. This includes
ensuring that safe haven work areas are not sited in least Bell’s vireo habitat. This also includes
ensuring noise from safe haven work areas do not exceed 60 dBA at nearby least Bell’s vireo
habitat.
3.4.5.10.2.2.3 **Power Supply and Grid Connections**

The final transmission line alignment will be designed to minimize removal of least Bell’s vireo habitat by removing no more than three acres of this habitat. To minimize the chance of least Bell’s vireo bird strikes at transmission lines, bird strike diverters will be installed on project and existing transmission lines in a configuration that research indicates will reduce bird strike risk by at least 60% or more. Bird strike diverters placed on new and existing lines will be periodically inspected and replaced as needed until or unless the project or existing line is removed. The most effective and appropriate diverter for minimizing strikes on the market according to best available science will be selected.

3.4.5.10.2.2.4 **Safe Havens**

Safe haven sites will avoid least Bell’s vireo habitat. All work associated with safe haven sites will be conducted during daylight hours, and will not require any lighting.

3.4.5.10.2.2.5 **Restoration/Mitigation Activities**

A USFWS biologist will work with the restoration siting and design team to avoid the permanent loss of suitable least Bell’s vireo habitat. (Furthermore, the biological opinion for the PA will not authorize take resulting from restoration/mitigation actions.

3.4.5.10.3 **Compensation to Offset Impacts**

DWR will offset the loss of 32 acres of least Bell’s vireo habitat through the creation or restoration at a 2:1 ratio, for a total of 64 acres of riparian habitat creation or restoration in the action area. DWR will develop a riparian restoration plan that will identify the location and methods for riparian creation or restoration, and this plan will be subject to USFWS approval.

3.4.6 **Collaborative Science and Adaptive Management Program**

Considerable scientific uncertainty exists regarding the Delta ecosystem, including the needs of the species, the effects of CVP/SWP operations and the related operational criteria for the PA. To address this uncertainty, Reclamation, DWR, USFWS, NMFS, CDFW, and the public water agencies will establish a robust program of collaborative science, monitoring, and adaptive management. It is expected that this program will be based on the draft framework described in Appendix 3.H *Adaptive Management Framework for the California Water Fix (CWF) and 2008/2009 Biological Opinions on the combined operations of the Central Valley Project (CVP) and State Water Project (SWP).* The draft adaptive management framework describes concepts to develop an adaptive management program for the CWF joint ESA Biological Opinion and 2081(b) Incidental Take Permit, and the CVP/SWP 2008/2009 BiOps and CESA authorizations.

3.4.7 **Monitoring and Research Program**

Monitoring will be performed to measure a population’s state and structure, to characterize the condition of a species’ habitat and to detect and track presence or occupancy by listed species. Four general types of monitoring will occur:

- Continuation of existing monitoring required by the current BiOps (U.S. Fish and Wildlife Service 2008; National Marine Fisheries Service 2009) related to continuing operations of existing facilities and their effects on listed species.
• Monitoring required by permits and authorizations for construction of the proposed new facilities (i.e., NDD, HOR gate, CCF), including the MMRP that will be required under CEQA approvals and any additional monitoring required to assess effectiveness of AMMs and inform any necessary revision.

• Monitoring and studies related to operation of the proposed new facilities that must occur prior to operation of the new facilities, including those necessary to inform design and assess effects of the proposed NDD, HOR gate and modified CCF.

• Monitoring and studies related to operation of the proposed new facilities that must occur after operation of the new facilities has commenced (e.g., to support real-time operation of HOR gate), including those necessary to monitor the condition of both the species and the habitat conditions that may be influenced by the new facilities (e.g., upstream temperatures, potential for redd dewatering, Delta rearing conditions, water quality, etc.).

• Monitoring and studies related to evaluation of the effectiveness of proposed facilities (e.g., non-physical barrier at Georgiana Slough), habitat restoration and other mitigation measures after operation of the new facilities has commenced.

In addition to the monitoring commitments specified in the remainder of this section, monitoring under the PA is expected to also be initiated through the adaptive management framework described in Appendix 3.H Adaptive Management Framework for the California Water Fix (CWF) and 2008/2009 Biological Opinions on the combined operations of the Central Valley Project (CVP) and State Water Project (SWP). Implementation of such monitoring actions would only occur if take authorization for the action were approved by the jurisdictional fish and wildlife agencies.

3.4.7.1 Impacts of Continued Monitoring and Operations on Listed Species

Existing monitoring, which has been mandated under existing BiOps and authorizations (U.S. Fish and Wildlife Service 2008; California Department of Fish and Game 2009; National Marine Fisheries Service 2009), includes monitoring to track the status of each listed species of fish, and also monitoring to ascertain performance of minimization measures associated with operations of the south Delta export facilities and their fish salvage programs. Monitoring programs required under the existing NMFS (2009) BiOp includes the following items, called for under RPA Action 11.2.1.3 Monitoring and Reporting Requirements.

1. Reclamation and DWR shall participate in the design, implementation, and funding of the comprehensive CV steelhead monitoring program on CVP- and SWP-controlled streams.

2. Reclamation and DWR shall ensure that all monitoring programs regarding the effects of CVP and SWP operations and which result in the direct take of winter-run, spring-run, CV steelhead, or Southern DPS of green sturgeon, are conducted by a person or entity that has been authorized by NMFS.

3. Reclamation and DWR shall submit weekly reports to the interagency Data Assessment Team (DAT) regarding the results of monitoring and incidental take of winter-run,
spring-run, CV steelhead, and Southern DPS of green sturgeon associated with operations of project facilities.

4. Reclamation and DWR shall provide an annual written report to NMFS describing the results of real-time monitoring of winter-run, spring-run, CV steelhead, and Southern DPS of green sturgeon associated with operations of the DCC/CVP/SWP Delta pumping facilities, and other Division level operations authorized through this RPA.

5. Reclamation and DWR shall continue the real-time monitoring between October 1 and June 30 each year of winter-run, spring-run, CV steelhead, and Southern DPS of green sturgeon in the lower Sacramento River, the lower San Joaquin River, and the Delta to establish presence and timing to serve as a basis for the management of Delta pumping operations consistent with actions in this RPA.

6. Reclamation and DWR shall submit weekly DAT reports and an annual written report to NMFS describing the results of real-time monitoring of winter-run, spring-run, CV steelhead, and Southern DPS of green sturgeon associated with operations of Delta pumping facilities and other Division level operations authorized through this RPA.

7. Reclamation shall coordinate with NMFS, FWS, and DFW to continue implementing and funding fisheries monitoring of spring-run and CV steelhead in Clear Creek to aide in determining the benefits and effects of flow and temperature management.

8. Reclamation and DWR shall jointly fund these monitoring locations for the duration of the Opinion (through 2030) to ensure compliance with the RPA and assess the performance of the RPA actions.
 a. Upstream: Adult escapement and juvenile monitoring for spring-run, winter-run, and steelhead on the Sacramento River, American River, Feather River, Clear Creek, Mill Creek, Deer Creek and Battle Creek.
 b. Red Bluff Diversion Dam – completed.
 c. Installed and operating at Tisdale Bypass.
 d. Delta: Continuation of the following monitoring stations that are part of the IEP: Chipps Island Trawl, Sacramento Trawl, Knights Landings RST, and beach seining program. Additionally, assist in funding new studies to determine green sturgeon relative abundance and habitat use in the Delta.
 e. San Joaquin River monitoring shall include: Adult escapement and juvenile monitoring for steelhead on the Stanislaus River; Mossdale Kodiak Trawling to determine steelhead smolt passage; steelhead survival studies associated with VAMP; monitoring at HORB to determine steelhead movement in and around the barrier; predation studies in front of HORB and at the three agricultural barriers in the South Delta; and new studies to include the use of non-lethal fish guidance devices (e.g., sound, light, or air bubbles) instead of rock barriers to keep juveniles out of the area influenced by export pumping.
Existing monitoring programs will continue, and information from these programs will facilitate tracking status of listed species of fish and evaluating effectiveness of minimization measures. This existing monitoring to track the status of listed species of fish is performed by the Interagency Ecological Program\(^{39}\), and incidental take associated with this monitoring is authorized via ESA Section 10(a)(1)(A) Research and Enhancement Permits and state Scientific Collection Permits. Monitoring to track performance of the south Delta export facilities and their fish salvage programs is authorized through the existing BiOps (National Marine Fisheries Service 2009, Section 13.4; U.S. Fish and Wildlife Service 2008, Monitoring Requirements). Use of scientific collection permits constitutes a conservative approach to take authorization associated with monitoring activities because such permits need periodic renewal, at which time methodology can be updated to ensure that incidental take is minimized consistent with available knowledge and techniques. Thus it is expected that continuation of existing monitoring would receive take authorization either through issuance of scientific collection permits, or through an alternative consultation pathway.

3.4.7.2 Required Compliance Monitoring

Monitoring required by permits and authorizations for construction of proposed new facilities consists of compliance monitoring. Fulfillment of compliance monitoring and reporting requirements is solely the responsibility of Reclamation, DWR, and their contractors. Reclamation and DWR will track and ensure compliance monitoring is conducted in accordance with provisions of all permits and authorizations provided to the PA, and will provide results to CDFW, NMFS and the USFWS at their request.

The principal permits and authorizations requiring monitoring are those related to ESA, CESA, NEPA and CEQA authorizations. Authorizations related to ESA include the terms and conditions of the BiOp for the PA, as well as the take limits identified in the incidental take statement within the BiOp. Authorizations related to CESA include the terms of the incidental take permit issued for the PA by the CDFW. That permit will be issued subsequent to the record of decision and its terms are additional to those of the other authorizations issued to the PA. Authorizations related to NEPA and CEQA include, respectively, a Record of Decision and a Notice of Determination. Most notably, the CEQA authorization includes a requirement to implement all provisions of the Mitigation Monitoring and Reporting Program (MMRP), as required by CCC §18.04. At this time an MMRP has not been prepared for the PA, but it is a required component prior to issuance of a Notice of Determination; a draft MMRP will be provided to USFWS and NMFS prior to issuance of the BiOp for the PA.

Although the terms and conditions of the BiOp are not known at this time, DWR, as the project applicant, will commit to track impacts of the PA on suitable habitat and the type and extent of habitat protection and restoration completed, and report the results to the jurisdictional fish and wildlife agencies (NMFS, USFWS) on an annual basis. Additionally, DWR will assess impacts anticipated for the following year and determine the type, extent, and timing of future habitat protection and restoration needs. DWR will also perform monitoring to ascertain performance relative to the limits identified in the BiOp incidental take statement. This monitoring will be

\(^{39}\) This program is described and data are archived at http://www.water.ca.gov/iep/activities/monitoring.cfm
achieved by performance, on an ongoing basis during the operational life of the facility, as specified in items 4, 5 and 10 in Table 3.4-18. Those items deal with monitoring of incidental take in the vicinity of the NDDs through the mechanisms of entrainment, impingement, and predation.

Furthermore, DWR commits to track impacts of the PA on habitat related issues associated with the modifications to Clifton Court Forebay and the HOR gate, and report the results to the jurisdictional fish and wildlife agencies (CDFW, NMFS, USFWS) on an annual basis. DWR will work closely with CDFW, USFWS and NMFS to ensure that these monitoring efforts support RTOs for the HOR gate; study drivers/predictors of loss, predation rates and survival; fish presence and movement around these structures and elsewhere in the south Delta; and water quality and circulation patterns in and around CCF.

The effects of the proposed action in this biological assessment have been estimated conservatively to provide an analysis of the maximum potential adverse effects to the listed species. DWR, as the project applicant, has incorporated measures into the description of the proposed action to adequately offset the potential maximum adverse effects to the listed species. DWR will implement the required mitigation commensurate to the level of the actual effect to the listed species, provided that effects remain below the allowable take limits (otherwise reinitiation of consultation would be required, per 50 CFR 402.16).

DWR will ground-truth impact areas prior to initiating proposed actions to determine the extent of suitable habitat present. Suitable habitat is defined for each species in Appendix 4.A, Status of the Species and Critical Habitat Accounts. After work is complete, DWR will field-verify the amount of impacts that have actually occurred with implementation of avoidance and minimization measures. DWR will track predicted and actual impacts at each project site and provide that information in annual compliance reporting.

3.4.7.3 Monitoring Prior to Operations

Monitoring and studies related to operation of the proposed new facilities, that must occur prior to operation of the new facilities, is focused on the conveyance facilities and their potential effects on listed fish species. This monitoring begins with gathering baseline data to compare with post-construction monitoring and studies. While a more detailed effort has already been made regarding monitoring for the NDD, monitoring prior to operations will be required throughout the action area, including CCF, the HOR gate, and key habitat areas downstream and upstream of the new facilities. DWR will commit to working with the fish agencies to develop the specifics of that monitoring, which will be a key charge of both the Clifton Court Forebay Technical Team (Section 3.2.5.1.3 Clifton Court Forebay Technical Team) and HOR gate (Section 3.2.8.1.1 HOR Gate Technical Team).

For the NDD, specific monitoring studies will be also developed in collaboration with USFWS, CDFW, and NMFS that are focused on preconstruction conditions and on design of the diversions. These monitoring efforts prior to operations will build off the work done by the Fish Facilities Technical Team (2011), which identified monitoring associated with the north Delta intakes and their effects. The pre-construction studies identified by this group were focused on specific key questions rather than general monitoring needs and are listed in Table 3.4-17.
Monitoring studies focused on the NDDs were developed during the BDCP process and include items 7 and 8 as listed in Table 3.4-18. These studies and their projected timeframes will be revisited as the final monitoring plan is developed.

Table 3.4-17. Preconstruction Studies at the North Delta Diversions

<table>
<thead>
<tr>
<th>Potential Research Action</th>
<th>Key Uncertainty Addressed</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. This action includes preconstruction study 1, Site Locations Lab Study as described by the Fish Facilities Working Team (2013). The purpose of this study is to develop physical hydraulic models to optimize hydraulics and sediment transport at the selected diversion sites.</td>
<td>What is the relationship between proposed north Delta intake design features and expected intake performance relative to minimization of entrainment and impingement risks?</td>
<td>Ten months to perform study; must be complete prior to final intake design.</td>
</tr>
<tr>
<td>2. This action includes preconstruction study 2, Site Locations Numerical Study as described by the Fish Facilities Working Team (2013). The purpose of this study is to develop site-specific numerical studies (mathematical models) to characterize the tidal and river hydraulics and the interaction with the intakes under all proposed design operating conditions.</td>
<td>How do tides and diversion rates affect flow conditions at the north Delta intake screens and at the Georgiana Slough junction?</td>
<td>Eight months to perform study; must be complete prior to final intake design.</td>
</tr>
<tr>
<td>3. This action includes preconstruction study 3, Refugia Lab Study as described by the Fish Facilities Working Team (2013). The purpose of this study is to test and optimize the final recommendations for fish refugia that will be incorporated in the design of the north Delta intakes.</td>
<td>How should north Delta intake refugia be designed in principle to achieve desired biological function?</td>
<td>Nine months to perform study; must be complete prior to final intake design.</td>
</tr>
<tr>
<td>4. This action includes preconstruction study 4, Refugia Field Study as described by the Fish Facilities Working Team (2013). The purpose of this study is to evaluate the effectiveness of using refugia as part of north Delta intake design for the purpose of providing areas for juvenile fish passing the screen to hold and recover from swimming fatigue and to avoid exposure to predatory fish.</td>
<td>How do alternative north Delta intake refugia designs perform with regard to desired biological function?</td>
<td>Two years to perform study; must be complete prior to final intake design.</td>
</tr>
<tr>
<td>5. This action includes preconstruction study 5, Predator Habitat Locations as described by the Fish Facilities Working Team (2013). The purpose of this study is to perform field evaluation of similar facilities (e.g., Freeport, RD108, Sutter Mutual, Patterson Irrigation District, and Glenn Colusa Irrigation District) and identify predator habitat areas at those facilities.</td>
<td>Where is predation likely to occur near the new North Delta intakes?</td>
<td>One to two years to perform study; must be complete prior to final intake design.</td>
</tr>
<tr>
<td>6. This action includes preconstruction study 6, Baseline Fish Surveys as described by the Fish Facilities Working Team (2013), somewhat modified based on discussions with NMFS during 2014. The purpose of this study is to perform literature search and potentially field evaluations at similar facilities (e.g., Freeport, RD108, Sutter Mutual, Patterson Irrigation District, and Glenn Colusa Irrigation District), to determine if these techniques also take listed species of</td>
<td>What are the best predator reduction techniques, i.e., which techniques are feasible, most effective, and best minimize potential impacts on listed species?</td>
<td>Two years to perform study; must be complete prior to final intake design.</td>
</tr>
</tbody>
</table>
Potential Research Action 1

<table>
<thead>
<tr>
<th>Fish, and to assess ways to reduce such by-catch, if necessary.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Key Uncertainty Addressed</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the water velocity distribution at river transects within the proposed diversion reaches for differing river flow conditions?</td>
<td>One year to perform study; must be complete prior to final intake design.</td>
</tr>
</tbody>
</table>

7. This action includes preconstruction study 7, Flow Profiling Field Study as described by the Fish Facilities Working Team (2013). The purpose of this study is to characterize the water velocity distribution at river transects within the proposed diversion reaches for differing flow conditions. Water velocity distributions in intake reaches will identify how hydraulics change with flow rate and tidal cycle, and this information will be used in fish screen final design and in model-based testing of fish screen performance (preconstruction study 8, below). |

<table>
<thead>
<tr>
<th>What are the effects of fish screens on hydraulic performance?</th>
</tr>
</thead>
</table>

8. This action includes preconstruction study 8, Deep Water Screens Study as described by the Fish Facilities Working Team (2013). The purpose of this study is to use a computational fluid dynamics model to identify the hydraulic characteristics of deep fish screen panels. |

<table>
<thead>
<tr>
<th>What are predator density and distribution in the north Delta intake reaches of the Sacramento river?</th>
</tr>
</thead>
</table>

9. This action includes preconstruction study 9, Predator Density and Distribution as described by the Fish Facilities Working Team (2013); and includes post-construction study 9, Predator Density and Distribution, as described by the Fish Facilities Technical Team (2011). The purpose of this study is to use an appropriate technology (to be identified in the detailed study plan) at two to three proposed screen locations; the study will also perform velocity evaluation of eddy zones, if needed. The study will also collect baseline predator density and location data prior to facility operations, compare that to density and location of predators near the operational facility; and identify ways to reduce predation at the facilities. |

<table>
<thead>
<tr>
<th>How will the new north Delta intakes affect survival of juvenile salmonids in the affected reach of the Sacramento River?</th>
</tr>
</thead>
</table>

10. This action includes preconstruction study 10, Reach-Specific Baseline Juvenile Salmonid Survival Rates as described by the Fish Facilities Working Team (2013); and includes post-construction study 10, Post-Construction Juvenile Salmon Survival Rates as described by the Fish Facilities Technical Team (2011). The purpose of this study is to determine baseline rates of survival for juvenile Chinook salmon and steelhead within the Sacramento River near proposed north Delta diversion sites for comparison to post-project survival in the same area, with sufficient statistical power to detect a 5% difference in survival. Following initiation of project operations, the study will continue, using the same methodology and same locations. The study will identify the change in survival rates due to construction/operation of the intakes. |

<table>
<thead>
<tr>
<th>How will the new north Delta intakes affect delta and longfin smelt density</th>
</tr>
</thead>
</table>

11. This action includes preconstruction study 11, Baseline Fish Surveys as described by the Fish Facilities Working Team (2013) and includes post- |

| Pre-construction study will cover at least 3 years. Post-construction study will be |
Table 3.4-18. Monitoring Actions for Listed Species of Fish for the North Delta Intakes

<table>
<thead>
<tr>
<th>Monitoring Action(s)</th>
<th>Action Description</th>
<th>Timing and Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fish screen hydraulic effectiveness</td>
<td>This action includes post-construction study 2, Long-term Hydraulic Screen Evaluations, combined with post-construction study 4, Velocity Measurement Evaluations, as described by the Fish Facilities Technical Team (2011). The purpose of this monitoring is to confirm screen operation produces approach and sweeping velocities consistent with design criteria, and to measure flow velocities within constructed refugia. Results of this monitoring will be used to "tune" baffles and other components of the screen system to consistently achieve compliance with design criteria.</td>
<td>Approximately 6 months beginning with initial facility operations.</td>
</tr>
<tr>
<td>2. Fish screen cleaning</td>
<td>This action includes post-construction study 3, Periodic Visual Inspections as described by the Fish Facilities Technical Team (2011). The purpose of this monitoring is to perform visual inspections to evaluate screen integrity and the effectiveness of the cleaning mechanism, and to determine whether cleaning mechanism is effective at protecting the structural integrity of the screen and maintaining uniform flow distribution through the screen. Results of this monitoring will be used to adjust cleaning intervals as needed to meet requirements.</td>
<td>Initial study to occur during first year of facility operation with periodic re-evaluation over life of project.</td>
</tr>
<tr>
<td>3. Refugia effectiveness</td>
<td>This action includes post-construction study 5, Refugia Effectiveness as described by the Fish Facilities Technical Team (2011). The purpose is to monitor refugia to evaluate their effectiveness relative to design expectations. This includes evaluating refugia operation at a range of river stages and with regard to effects on target species or agreed proxies. Results of this monitoring will be used to "tune" the screen system to consistently achieve compliance with design criteria.</td>
<td>Approximately 6 months beginning with initial facility operations.</td>
</tr>
<tr>
<td>4. Fish screen biological effectiveness</td>
<td>This action includes post-construction study 7, Evaluation of Screen Impingement as described by the Fish Facilities Technical Team (2011). The purpose of this monitoring is to observe fish activity at the screen face (using technology to be identified in the detailed study plan) and use an appropriate methodology (to be determined).</td>
<td>Study to be performed at varied river stages and diversion rates, during first 2 years of facility operation.</td>
</tr>
<tr>
<td>Monitoring Action(s)</td>
<td>Action Description</td>
<td>Timing and Duration</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>5. Fish screen entrainment</td>
<td>This action includes post-construction study 8, Screen Entrainment as described by the Fish Facilities Technical Team (2011). The purpose of this monitoring is to measure entrainment rates at screens using fyke nets located behind screens, and to identify the species and size of entrained organisms. Results of this monitoring are to be used to assess facility performance relative to take allowances, and otherwise as deemed useful via the collaborative adaptive management process.</td>
<td>Study to be performed at varied river stages and diversion rates, during first 2 years of facility operation.</td>
</tr>
<tr>
<td>6. Fish screen calibration</td>
<td>Perform hydraulic field evaluations to measure velocities over a designated grid in front of each screen panel. This monitoring will be conducted at diversion rates close to maximum diversion rate. Results of this monitoring will be used to set initial baffle positions and confirm compliance with design criteria.</td>
<td>Initial studies require approximately 3 months beginning with initial facility operations.</td>
</tr>
<tr>
<td>7. Fish screen construction</td>
<td>Document north Delta intake design and construction compliance with fish screen design criteria (note, this is simple compliance monitoring).</td>
<td>Prior to construction and as-built.</td>
</tr>
<tr>
<td>8. Operations independent measurement</td>
<td>Document north Delta intake compliance with operational criteria, with reference to existing environmental monitoring programs including (1) Interagency Ecological Program Environmental Monitoring Program: Continuous Multi-parameter Monitoring, Discrete Physical/Chemical Water Quality Sampling; (2) DWR and Reclamation: Continuous Recorder Sites; (3) Central Valley RWQCB: NPDES Self-Monitoring Program; and (4) USGS Delta Flows Network and National Water Quality Assessment Program. The purpose of this monitoring is to ensure compliance and consistency with other relevant monitoring programs, and to ensure that this information is provided to CDFW, NMFS, and USFWS in association with other monitoring reporting.</td>
<td>Start prior to construction of water diversion facilities and continue for the duration of the PA.</td>
</tr>
<tr>
<td>9. Operations measurement and modeling</td>
<td>Document north Delta intake compliance with the operational criteria using flow monitoring and models implemented by DWR. The purpose of this monitoring is to ensure and demonstrate that the intakes are operated consistent with authorized flow criteria.</td>
<td>Start prior to completion of water diversion facilities and continue for the duration of the permit term.</td>
</tr>
<tr>
<td>10. North Delta intake reach salmonid survivorship</td>
<td>Determine the overall impact on survival of juvenile salmonids through the diversion reach, related to the operation of the new North Delta intakes. Use mark/recapture and acoustic telemetry studies (or other technology to be identified in the detailed study plan) to evaluate effects of facility operations on juvenile salmonids, under various pumping rates and flow conditions. Results of this monitoring are to be used to assess whether survival objectives for juvenile salmonids traversing the diversion reach are being met, to determine whether take allowances are exceeded, and otherwise as deemed useful via the collaborative adaptive management process</td>
<td>Study to be performed at varied river flows and diversion rates, during first 2 to 5 years of facility operation.</td>
</tr>
</tbody>
</table>

Notes
1. All monitoring actions are part of the PA. For all proposed monitoring actions, a detailed study design must be developed prior to implementation. The study design must be reviewed and approved by CDFW, NMFS, and USFWS prior to implementation.
3.4.7.4 Monitoring after Operations Commence

Monitoring and studies related to CVP and SWP Delta operations, that must occur after operation of the new facilities has commenced, broadly consists of four types of monitoring, performed to assess system state and effects on listed species: monitoring addressing the operation of the proposed new facilities, monitoring related to species condition and habitat that may be influenced by operations of the new facilities, monitoring to evaluate the effectiveness of the proposed facilities, and monitoring addressing the habitat protection and restoration sites.

3.4.7.4.1 Monitoring Addressing Conveyance Facilities Operations

Monitoring and studies related to operation of the proposed new facilities, that must occur after operation of the new facilities has commenced, is focused on potential effects on listed fish species.

Specific monitoring studies focused on the effects of operating the north Delta diversions will be developed in collaboration with USFWS, CDFW, and NMFS. The Fish Facilities Technical Team (2011) also identified monitoring associated with the north Delta intakes and their post-construction effects. Some of this work was focused on specific key questions rather than general monitoring and is described in Section 3.4.11, Research Program, while the monitoring studies include items 1-6 and 8-10 as listed in Table 3.4-18. Items 6-10 in Table 3.4-18 are studies focused on NDD performance, which were developed after the Fish Facilities Technical Team work during the BDCP process. For Delta Smelt, no specific monitoring plan is proposed, however, a future FWS-approved monitoring plan may be developed once operations commence.

Monitoring and studies will also be developed for the new South Delta facilities, including specifically the modified CCF and HOR gate, as part of the respective tech teams for these components of the PA. These will focus on entrainment and salvage; drivers/predictors of fish loss, predation rates and survival; fish presence and movement around these structures; and water quality and circulation patterns.

3.4.7.4.2 Monitoring Addressing Habitat Affected by Operations of the New Facilities

Overall operational monitoring will also be needed in areas upstream and downstream of the new facilities. The specific monitoring studies will be developed in collaboration with USFWS, CDFW, and NMFS and focus on entrainment into the interior delta, outflow, temperature, redd dewatering, fish presence and movement, and through-delta survival.

3.4.7.4.3 Monitoring Addressing Habitat Protection and Restoration Sites

Metrics and protocols for wildlife species effectiveness monitoring will be developed after land acquisition but before restoration actions or enhancement and management activities are begun. Table 3.4-19 details the proposed effectiveness monitoring actions and success criteria relevant to listed species of wildlife. Effectiveness monitoring actions listed in Table 3.4-19 would be implemented for the duration of the incidental take authorizations provided in the BiOps for the PA.

Research under the PA could also be initiated through the adaptive management framework. Implementation of such research actions would only occur if take authorization for the action were approved by the jurisdictional fish and wildlife agencies.
Table 3.4-19. Proposed Effectiveness Monitoring Actions and Success Criteria

<table>
<thead>
<tr>
<th>Monitoring Type</th>
<th>Action Description</th>
<th>Metric</th>
<th>Success Criteria</th>
<th>Protected Lands Timing and Duration</th>
<th>Restoration Site Timing and Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valley Elderberry Longhorn Beetle – Valley Foothill Riparian</td>
<td>Representative/rotating sampling to assess health of shrubs; survey for signs of valley elderberry longhorn beetle. Survey for stem counts and increased density of shrubs on restoration site.</td>
<td>Health assessment of shrub(s); Dispersal and expansion of valley elderberry longhorn beetle where there are known source populations. Overall shrub health and number of stems and shrubs at restoration locations.</td>
<td>Growth and range expansion of populations above baseline.</td>
<td>All shrubs during the first year; 50% of the shrubs for each of the next two years; every five years thereafter, randomly sampled subset.</td>
<td>All shrubs during each of the first three years; 50% of the shrubs for each of the next six years; every five years thereafter, randomly sampled subset.</td>
</tr>
<tr>
<td>San Joaquin Kit Fox – Grasslands</td>
<td>Camera trap for San Joaquin kit fox, depending on site topography and access. Spotlighting will not be used (Fiehler pers. comm.). Protocol will consist of camera stations baited with a cat food can staked to the ground, on which San Joaquin kit fox will readily deposit scat. Camera station details will be consistent with the methods used by Constable et al. (2009), including tracking of competitors and prey.</td>
<td>Number of individuals; Growth and range expansion of populations.</td>
<td>Growth and range expansion of populations above baseline.</td>
<td>Annual surveys for at least 5 years to establish a baseline of whether or not the action area supports persistent populations (Fiehler pers. comm.). At least 5 years of baseline surveys will be repeated after habitat has been restored or conserved. Additionally, whenever a sighting is reported, baited cameras will be placed in the area to confirm the detection. Surveys must be conducted between May 1 and November 1 (U.S. Fish and Wildlife Service 1999).</td>
<td>Annual surveys for at least 5 years to establish a baseline of whether or not the action area supports persistent populations (Fiehler pers. comm.). At least 5 years of baseline surveys will be repeated after habitat has been restored or conserved. Additionally, whenever a sighting is reported, baited cameras will be placed in the area to confirm the detection. Surveys must be conducted between May 1 and November 1 (U.S. Fish and Wildlife Service 1999).</td>
</tr>
<tr>
<td>California Tiger Salamander – Grasslands</td>
<td>Dip netting and visual surveys.</td>
<td>Number of individuals per site.</td>
<td>Growth and range expansion of populations above baseline.</td>
<td>One year of surveys at each site; 50% in the second year, and 50% in the third year; two of the four sites randomly sampled for presence every three years for 10 years and then every five years thereafter.</td>
<td>One year of surveys at each site; 50% in the second year, and 50% in the third year; two of the four sites randomly sampled for presence every three years for 10 years and then every five years thereafter.</td>
</tr>
<tr>
<td>Monitoring Type</td>
<td>Action Description</td>
<td>Metric</td>
<td>Success Criteria</td>
<td>Protected Lands Timing and Duration</td>
<td>Restoration Site Timing and Duration</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------</td>
<td>--------</td>
<td>------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>California Red-Legged Frog – Grasslands</td>
<td>Eye shine and call surveys for California red-legged frog.</td>
<td>Number of individuals per site.</td>
<td>Growth and range expansion of populations above baseline.</td>
<td>One year of surveys at each site; 50% in the second year, and 50% in the third year; two of the four sites randomly sampled for presence every three years for 10 years and then every five years thereafter.</td>
<td>One year of surveys at each site; 50% in the second year, and 50% in the third year; two of the four sites randomly sampled for presence every three years for 10 years and then every five years thereafter.</td>
</tr>
<tr>
<td>Branchiopods – Vernal Pools/Alkali Seasonal Wetlands</td>
<td>Sample for individuals.</td>
<td>Number of individuals per site.</td>
<td>Growth and range expansion of populations above baseline; self-sustaining populations.</td>
<td>Two branchiopod surveys per site; all pools/wetlands sampled the first year; 50% second year; 50% third year; then 50% sampled every five years thereafter.</td>
<td>Two branchiopod surveys per site; all pools/wetlands sampled the first year; 50% second year; 50% third year; then 50% sampled every five years thereafter.</td>
</tr>
<tr>
<td>Giant Garter Snakes – Nontidal Freshwater Perennial Emergent Wetland</td>
<td>Trapping surveys to detect presence of individuals; measure giant garter snake habitat connectivity.</td>
<td>Number of individuals at each restored site; acreage of connected habitat</td>
<td>Growth and range expansion of populations above baseline; increase in connectivity from baseline.</td>
<td>One year of trapping at each site; 50% of sites sampled in the second year, and 50% of sites sampled in the third year; two of the four sites randomly sampled for presence every three years for 10 years and then every five years thereafter.</td>
<td>One year of trapping at each site; 50% of sites sampled in the second year, and 50% of sites sampled in the third year; two of the four sites randomly sampled for presence every three years for 10 years and then every five years thereafter.</td>
</tr>
</tbody>
</table>
3.5 Reinitiation of Consultation

As provided in 50 CFR 402.16:

Reinitiation of formal consultation is required and shall be requested by the Federal agency or by the Service where discretionary Federal involvement or control over the action has been retained or is authorized by law and:

(a) If the amount or extent of taking specified in the incidental take statement is exceeded;

(b) If new information reveals effects of the action that may affect listed species or critical habitat in a manner or to an extent not previously considered;

(c) If the identified action is subsequently modified in a manner that causes an effect to the listed species or critical habitat that was not considered in the biological opinion; or

(d) If a new species is listed or critical habitat designated that may be affected by the identified action.

Reclamation or USACE as the federal action agencies, with DWR as the project applicant, will re-initiate consultation with USFWS and/or NMFS if any of these circumstances occur. Reinitiation of formal consultation may also be appropriate if there are indications that water operations flow criteria may be eliminated or otherwise modified while maintaining the requirements of Section 7 of the ESA and Section 2081 of the Fish and Game Code.

3.6 Interrelated or Interdependent Actions

Interrelated actions are defined under ESA as actions that are part of a larger action and depend on the larger action for their justification. Interdependent actions are defined as actions that have no independent utility apart from the action under consideration (50 CFR 402.02). To determine if an action is interrelated to or interdependent with a proposed action, the agency “should ask whether another activity in question would occur ‘but for’ the proposed action under consultation” (FWS Consultation Handbook at 4-26). In doing so, the agency must be “careful not to reverse the analysis by analyzing the relationship of the proposed action against the other activity.” Id. For instance, “if the proposed action is the addition of a second turbine to an existing dam, the question is whether the dam (the other activity) is interrelated to or interdependent with the proposed action (the addition of the turbine), not the reverse.” Id. In this case, the PA is the proposed action under consultation, so the agency should determine whether any other action in question would occur “but for” the PA.

Before determining whether an action was considered interrelated or interdependent, actions that are considered ongoing or reasonably foreseeable and occur wholly or in part within the action area, and that may be functionally related to the PA, were evaluated and screened. Functional relationship was defined as applying to projects dealing with surface water resource management and/or habitat protection or restoration actions affecting listed species. Examples of functionally related projects include management of upstream reservoirs, of levees and other flood control works in the Delta, of other surface water intakes located in the action area; and planned habitat
protection restoration connected, for instance, with existing and proposed habitat conservation plans in the action area. With one exception, described below, none of these actions are part of the PA, and their utility does not depend upon the PA, in whole or in part, and are therefore not considered interdependent and interrelated.

Given the close coordination of reservoir operations and Delta operations for the CVP and SWP, the upstream operations have received particular attention in the BA. However, upstream operations of the CVP and SWP (the other activity) will continue—consistent with existing biological opinions--whether or not the PA (the action under consultation) is authorized, constructed, and operated. Thus, upstream actions are not interrelated to or interdependent with the PA.

Additionally, as to why upstream operations are not considered interrelated and interdependent with the PA:

- the PA does not include any changes in the applicable operating criteria of upstream reservoirs;
- the effects of these operations are evaluated and authorized in the existing Biological Opinion (National Marine Fisheries Service 2009) and would continue unless and until Reclamation proposes changes to the criteria and/or re-initiation is triggered; and
- none of the Delta operational changes included in this PA necessitate changes in upstream criteria or operations.

Therefore, continued operations of upstream reservoirs is not considered, for purposes of ESA, interdependent or interrelated to the PA.

The management of levees and other flood works in the action area is also not interdependent or interrelated to the PA. Water diversions and flow changes that would occur under the PA have no potential to alter flood frequency or severity. Although the PA would replace some existing flood control facilities with new engineered structures, the structures would be functionally equivalent in terms of their utility for flood control, and thus would not alter the distribution or utility of flood control infrastructure, or of any planned flood control facilities.

One interrelated or interdependent action has been identified in connection with the PA and is therefore described and analyzed in this BA. As described in Section 3.3.4.4, Contra Costa Canal Rock Slough Intake, and in Section 4.3.2.2.3, Water Supply Facilities and Facility Operations, CCWD’s water system includes the Mallard Slough, Rock Slough, Old River, and Middle River (on Victoria Canal) intakes. The PA includes Reclamation’s operation of the Rock Slough intake to the Contra Costa Canal, but CCWD operates the Mallard Slough, Old River, and Middle River intakes. CCWD can divert approximately 30% to 50% of its total annual supply (approximately 127 TAF) through the Rock Slough Intake, depending upon water quality there; the remainder of their total annual withdrawal (i.e., 50% to 70% of the total) would thus use the CCWD-owned intakes. Most of this diversion would occur at the Old River intake (250 cfs capacity), which is used year-round, and the Middle River intake (250 cfs capacity), used primarily in late summer and fall to provide better water quality than is obtainable from the
Chapter 3. Description of the Proposed Action

Introduction

The Mallard Slough intake (39 cfs capacity) is used primarily in winter and spring during wet periods when water quality is sufficiently high. Thus diversions at the three CCWD-owned intakes are primarily determined by seasonal fluctuations in water quality, rather than by the availability of the Rock Slough diversion. Nonetheless, increased withdrawals at the other intakes, insofar as they provide acceptable water quality, would result if withdrawals at Rock Slough were curtailed for any reason; similarly, increased withdrawals at Rock Slough could result in reduced withdrawals at the other intakes.

3.7 Drought Procedures

Drought is a gradual phenomenon and can best be thought of as a condition of water shortage for a particular user in a particular location. Although persistent drought may be characterized as an emergency, it differs from typical emergency events. Most natural disasters, such as floods or forest fires, occur relatively rapidly and afford little time for preparing for disaster response. Droughts occur slowly, over a period of time. There is no universal definition of when a drought begins or ends. Impacts of drought are typically felt first by those most reliant on annual rainfall -- ranchers engaged in dryland grazing, rural residents relying on wells in low-yield rock formations, or small water systems lacking a reliable water source. Drought impacts increase with the length of a drought, as carry-over supplies in reservoirs are depleted and water levels in groundwater basins decline.

Measurements of California water conditions cover only a small slice of the past. Widespread collection of rainfall and streamflow information began around the turn of the 20th century. During our period of recorded hydrology, the most significant statewide droughts occurred during 1928-34, 1976-77, 1987-92, 2007-10, and 2013-2016. Historical data combined with estimates created from indirect indicators such as tree rings suggest that the 1928-34 event may have been the driest period in the Sacramento River watershed since about the mid-1550s.

3.7.1 Water Management in Drought Conditions

3.7.1.1 Historic Drought Management Actions

Previous droughts that have occurred throughout California’s history continue to shape and spur innovation in the ways in which DWR and Reclamation meet the needs of both public health standards and urban and agricultural water demand, as well as protecting the ecosystem and its inhabitants. The most notable droughts in recent history are the droughts that occurred in 1976-77, 1987-92, and 2013-2016. These periods of drought have helped shape legislation and stressed the importance of maintaining water supplies for all water users.

The impacts of a dry hydrology in 1976 were mitigated by reservoir storage and groundwater availability. The immediate succession of an even drier 1977, however, set the stage for widespread impacts. In 1977 CVP agricultural water contractors received 25 percent of their allocations, municipal contractors received 25 to 50 percent, and the water rights or exchange
contractors received 75 percent. SWP agricultural contractors received 40 percent of their allocations and urban contractors received 90 percent.

Managing Delta salinity was a major challenge, given the competing needs to preserve critical carry-over storage and to release water from storage to meet Bay-Delta water quality standards. In 1977, the present-day Coordinated Operation Agreement between DWR and USBR was not in effect. In February 1977, the SWRCB adopted an interim water quality control plan to modify Delta standards to allow the SWP to conserve storage in Lake Oroville. As extremely dry conditions continued that spring, the SWRCB subsequently adopted an emergency regulation superseding its interim water quality control plan, temporarily eliminating most water quality standards and forbidding the SWP to export stored water. As a further measure to conserve reservoir storage, DWR constructed temporary facilities (i.e., rock barriers, new diversions for Sherman Island agricultural water users, and facilities to provide better water quality for duck clubs in Suisun Marsh) in the Delta to help manage salinity with physical, rather than hydraulic, approaches.

In 1977, SWP and CVP contractors used water exchanges to respond to drought; one of the largest exchanges involved 435 TAF of SWP entitlement made available by MWD and three other SWP Southern California water contractors for use by San Joaquin Valley irrigators and urban agencies in the San Francisco Bay area. The MWD entitlement supplied water to Marin Municipal Water District via an emergency pipeline laid across the San Rafael Bridge and a complicated series of exchanges under which DWR delivered the water to the Bay Area via the South Bay Aqueduct. Public Law 95-18, the Emergency Drought Act of 1977, authorized Reclamation to purchase water from willing sellers on behalf of its contractors; Reclamation purchased about 46 TAF of water from sources including groundwater substitution and the SWP. Reclamation’s ability to operate the program was facilitated by CVP water rights that broadly identified the project’s service area as the place of use, allowing transfers within the place of use. Institutional constraints and water rights laws limited the transfer/exchange market at this time, and transfer activity outside of those exchanges arranged by DWR and Reclamation’s drought water bank was relatively small-scale.

The Western Governors’ Conference named a western regional drought action task force in 1977 and used that forum to coordinate state requests for federal assistance. Multi-state drought impacts led to increased appropriations for traditional federal financial assistance programs (e.g., USDA assistance programs for agricultural producers), and two drought-specific pieces of federal legislation. The Emergency Drought Act of 1977 authorized the Department of the Interior to take temporary emergency drought mitigation actions and appropriated $100 million for activities to assist irrigated agriculture, including Reclamation’s water transfers programs. The Community Emergency Drought Relief Act of 1977 authorized $225 million for the Economic Development Agency’s drought program, of which $175 million was appropriated ($109 million for loans and $66 million for grants) to assist communities with populations of 10,000 or more, tribes, and special districts with urban water supply actions. Projects in California received 41 percent of the funding appropriated pursuant to this act.

Within California, the Governor signed an executive order naming a drought emergency task force in 1977. Numerous legislative proposals regarding drought were introduced, about one-third of which became law. These measures included: authorization of a loan program for
emergency water supply facilities; authorization of funds for temporary emergency barriers in the Delta (the barriers were ultimately funded by the federal Emergency Drought Act instead); prohibition of public agencies' use of potable water to irrigate greenbelt areas if the SWRCB found that recycled water was available; authorization for water retailers to adopt conservation plans; addition of drought to the definition of emergency in the California Emergency Services Act.

During the 1987-92 drought, the state’s 1990 population was close to 80 percent of present amounts and irrigated acreage was roughly the same as that of the present, but the institutional setting for water management differed significantly. Delta regulatory constraints affecting CVP and SWP operations were based on SWRCB water right decision D-1485, which had taken effect in 1978 immediately following the 1976-77 drought. In addition to D-1485 requirements on SWP and CVP operations in the Delta, other operational constraints included temperature standards imposed by the SWRCB through Orders WR 90-5 and 91-01 for portions of the Sacramento and Trinity Rivers. On the Sacramento River below Keswick Dam, these orders included a daily average water temperature objective of 56°F during periods of salmon egg and pre-emergent fry incubation. As part of managing salinity during the drought, DWR installed temporary barriers at two South Delta locations — Middle River and Old River near the Delta-Mendota Canal intake — to improve water levels and water quality/water circulation for agricultural diverters.

In response to Executive Order W-3-91 in 1991, DWR developed a drought water bank that operated in 1991 and 1992. The bank bought water from willing sellers and made it available for purchase to agencies with critical water needs. Critical water needs were understood to be basic domestic use, health and safety, fire protection, and irrigation of permanent plantings.

In 1992, NMFS issued its first biological opinion for the Sacramento River winter-run Chinook salmon, which had been listed as threatened pursuant to the ESA in 1989. The Central Valley Project Improvement Act of 1992 (CVPIA) was enacted just at the end of the drought, so provisions reallocating project yield for environmental purposes were not in effect for 1992 water operations. The CVPIA dedicated 800,000 acre-feet of project yield for environmental purposes. The regulatory framework for the SWP and CVP has changed significantly in terms of new ESA requirements to protect certain fish species, and SWRCB water rights decisions governing the water projects’ operations in the Delta.

When executed in 1994 the Monterey amendments provided that an equal annual allocation would be made to urban and agricultural contractors. The prior provisions in effect during the 1987-92 drought called for agricultural contractors to take a greater reduction in their allocations during shortages than urban contractors, which had resulted in the zero allocation to the agricultural contractors in 1991.

The institutional setting for water management has changed greatly since the 1987-92 drought. Some of the most obvious changes have affected management of the state’s largest water projects, such as the CVP, SWP, Los Angeles Aqueduct, or Colorado River system. New listings and management of fish populations pursuant to the ESA have impacted operations of many of the state’s water projects, including the large projects affected by listing of Central Valley fish
species as well as smaller projects on coastal rivers where coho salmon populations have been listed.

The current regulatory framework for CVP and SWP operations is distinctly different from that of 1987-92. The first biological opinion for the then-threatened winter-run Chinook salmon was issued in 1992, just at the end of the drought; in 1994 winter-run were reclassified as endangered. A significant provision of the initial 1992 biological opinion for winter-run salmon, and also of subsequent opinions, was a requirement to provide additional cold water in Sacramento River spawning areas downstream of Keswick Dam, resulting in increased late-season reservoir storage. Delta smelt were listed as threatened in 1993. Subsequently, other fish species listed pursuant to the federal ESA or the California ESA included the longfin smelt, Central Valley spring-run Chinook salmon, California Central Valley steelhead, and Southern distinct population segment of North American green sturgeon.

The biological opinions for operation of the CVP and SWP, together with changes in SWRCB Bay-Delta requirements, represent a major difference between 1987-92, when SWRCB’s Water Rights Decision D-1485 governed the projects’ Delta operations, and the present. SWRCB’s Water Rights Decision D-1641 reduced water project exports in order to provide more water for Delta outflow. Requirements of the most recent biological opinions for operation of the CVP and SWP afforded additional protections to listed fish species than D-1641 requirements, further reducing the water projects’ delivery capabilities by imposing greater pumping curtailments and Delta outflow requirements. Additionally, the CVPIA mandate to reallocate 800 TAF of CVP yield for environmental purposes and to provide a base water supply for wildlife refuges was not in effect for 1987-92 water operations.

3.7.1.2 Recent Drought Management Processes and Tools

On January 17, 2014, Governor Brown proclaimed a State of Emergency due to severe drought conditions and directed the State Water Board, among other things, to consider modifying requirements for reservoir releases or diversion limitations that were established to implement a water quality control plan. The Proclamation stated that such modifications may be necessary to conserve cold water stored in upstream reservoirs that may be needed later in the year to protect salmon and steelhead, to maintain water supply, and to improve water quality. The Proclamation was followed by several executive orders continuing the State of Emergency and identifying and expediting actions necessary for state and local agencies and Californians to take to reduce the harmful effects of the drought, including streamlined processing of permits and increased enforcement, conservation, and coordination.

Reclamation and DWR reviewed the ability of the CVP and SWP to meet existing regulatory standards and objectives contained in their water rights permits and licenses, as well as environmental laws and regulations, based on the current and projected hydrology, exceedance forecasts, reservoir levels, etc. This included consideration of the requirements of D-1641, and the 2008 USFWS and 2009 NMFS Biological Opinions on the Coordinated Long-term Operation of the CVP and SWP (BiOps). Reclamation and DWR then jointly developed proposed modifications to D-1641 and operations consistent with the BiOps and prepared appropriate documentation to support the permitting and consultation processes. This included preparation of a Temporary Urgency Change Petition (TUCP) for submittal to the SWRCB, and Endangered Species Act (ESA) and California Endangered Species Act (CESA) consultation letters/memorandums for exchange with USFWS, NMFS, and CDFW. These documents
Chapter 3. Description of the Proposed Action

Introduction

typically included the following elements: 1) proposed action description, 2) hydrologic forecasts, 3) modeling output, and 4) biological review. The process relied heavily on on-going communication and coordination among six agencies (Reclamation, DWR, USFWS, NMFS, CDFW, and SWRCB) through the Real Time Drought Operations Management Team (RTDOMT) and frequent meetings of the executive leadership of these agencies. State agencies also provided enhanced monitoring in the Delta. The effectiveness of the actions under the TUCP and BiOps and results of the monitoring activities were reviewed and utilized, in light of the species responses, to inform the continued response to drought.

A variety of tools were used to plan, implement, and monitor WY 2014 and 2015 drought response actions. These included participation by technical staff, managers, and directors in various ongoing and new multi-agency teams, hydrologic and biological modeling efforts, and monitoring activities including:

a. Multi-agency communication and coordination teams, including but not limited to RTDOMT, Delta Operations for Salmon and Sturgeon (DOSS), Smelt Working Group (SWG), and the Water Operations Management Team (WOMT)

b. Modeling

 i. Hydrologic forecasts and exceedances (50%, 90%, 99%)

 ii. Operations plans

 1. Reservoir releases
 2. Salinity levels
 3. Storage levels
 4. Projected inflows and depletions

 iii. Fish survival models

 c. Monitoring, including but not limited to:

 i. Fish

 1. Aerial redd and carcass surveys
 2. Redd dewatering surveys
 3. Fall mid water trawl
 4. Spring Kodiak trawl
 5. Rotary screw trap
 6. Delta smelt early warning survey

 ii. Water quality

 1. Sediment
 2. Turbidity plume
 3. Algae
 4. Temperature
iii. First flush events and runoff associated with precipitation events

3.7.2 Proposed Future Drought Procedures

In order to evaluate the challenges related to the 2013-2016 drought, federal and state agencies (Reclamation, DWR, USFWS, NMFS, CDFW, and SWRCB) relied heavily on on-going communication and coordination through the RTDOMT and frequent meetings of the executive leadership of these agencies. In order to better prepare for future droughts, this type of coordination and communication will need to begin as early as possible.

Therefore, on October 1st, if the prior water year was dry or critical\(^{40}\), Reclamation and DWR will convene a multi-agency drought management team to include representatives from Reclamation, DWR, USFWS, NMFS, SWRCB, and CDFW and be charged with evaluating current hydrologic conditions and the potential for continued dry conditions that may necessitate the need for development of a drought contingency plan for the water year.

The drought management team will commit to convening at least every month to assess hydrologic conditions and forecast predictions and identify the potential need for development of a drought contingency plan until it is clear that drought conditions for that year will not persist. Information and recommendations from the drought management team will be reported back to the executive leadership of the agencies. These assessments would also inform what actions should be included in a drought contingency plan, depending on the updated hydrology assessment and the magnitude and duration of the preceding dry conditions. While a drought contingency plan may recommend adhering to the operations as identified in existing regulatory authorizations, in longer periods of dry conditions, the plan could also propose other drought response actions. Such a contingency plan should, at a minimum, include information pertaining to: an evaluation of current and forecasted hydrologic conditions and water supplies; recommended actions or changes needed to respond to drought (including changes to project operations, contract deliveries, and regulatory requirements) and any associated water supply or fish and wildlife impacts; identified timeframes; potential benefits; monitoring needs and measures to avoid and minimize fish and wildlife impacts; and proposed mitigation (if necessary).

\(^{40}\) For either Sacramento Valley or San Joaquin Water Year classifications
3.8 References

California Department of Fish and Game. 2009. California Endangered Species Act Incidental Take Permit No. 2081-2009-001-03.

University, Stanislaus Endangered Species Recovery Program. Prepared for the U.S. Bureau of Reclamation.

Fish Facilities Technical Team. 2011. BDCP Fish Facilities Technical Team Technical Memorandum.

Chapter 3. Description of the Proposed Action

Introduction

U.S. Fish and Wildlife Service. 2011. Standardized Recommendations for Protection of the Endangered San Joaquin Kit Fox prior to or during Ground Disturbance

