

ENGINEERING REBUTTAL TESTIMONY

TOPICS OF DISCUSSION

- Responses to previously identified concerns
 - Large tunnel projects
 - Levees and proposed CWF construction
 - Existing/planned facilities and proposed CWF construction
 - Water supply from existing diversions and CWF facilities
 - Sea Level Rise

CALIFORNIA WATER FIX- OVERALL PROGRAM

TUNNEL PORTIONS OF PROGRAM

MAIN TUNNELS

- 100 year life
- Twin bore main tunnels
- 150 ft below grade
- Concrete segmental liner
- Pressurized face Tunnel Boring Machine construction
- 45 ft excavated diameter
- 40 ft finished internal diameter

Photo Courtesy: Port of Miami Tunnel

LARGE DIAMETER TUNNEL BORING MACHINE PROJECTS

REVIEW OF OTHER MEGA-TUNNEL PROJECTS

- The Eurasia Tunnel Turkey
- Lee Tunnel London
- Port Of Miami Tunnel Florida
- East Side Access New York
- Blue Plains Tunnel Project District of Columbia
- Bay Tunnel San Francisco
- Willamette River Combined Sewer Outfall Program -Portland
- Gotthard Base Tunnel Swiss Alps
- SR-99 Alaskan Way Replacement Seattle

THE EURASIA TUNNEL – TURKEY

2.1 miles ———

THE EURASIA TUNNEL – TURKEY

- Transportation Tunnel
 45 ft Internal Diameter (ID) x 2.1 miles
- 320 ft deep
- Completed Dec 2016
 - 3 months ahead of schedule
- Challenges
 - Complex geology, seismic deformations, and high groundwater pressure

LEE TUNNEL - LONDON

LEE TUNNEL – LONDON

- 23.6 ft ID x 4.3 mile Combined Sewer Outfall (CSO) Tunnel
- 160 ft deep
- Completed December 2015
 - on schedule
 - Within budget
- Challenges
 - Groundwater contamination, complexity of Tunnel Boring Machine launch, and spoil removal

PORT OF MIAMI TUNNEL - FLORIDA

PORT OF MIAMI TUNNEL

- (2) 39 ft ID x 4,200 ft Long Transportation Tunnels
- 120 ft deep
- Completion May 2014
 - On schedule
 - Within budget
- Challenges
 - Additional geotechnical investigations were critical to confirm the ground model

EAST SIDE ACCESS – NEW YORK

MANHATTAN TUNNELS & CAVERNS

63RD STREET TUNNELS

NORTHERN BOULEVARD CROSSING

QUEENS BORED TUNNELS

Long Island Rail Road East Side Access

EAST SIDE ACCESS – NEW YORK

- (4) 19 ft Railroad Tunnels
- 60 ft deep
- Completion June 2013
- Challenges
 - Small work areas, shallow ground cover, difficult ground conditions, active rail lines directly above tunnels

BLUE PLAINS TUNNEL PROJECT-DISTRICT OF COLUMBIA

BLUE PLAINS TUNNEL PROJECT

Project Information

- 23 ft ID x 24,200 ft CSO Tunnel
- 160 ft deep
- Completed Dec 2015
 - 3 months ahead of schedule
 - Under budget

• Challenges

 Institutional resistance to change, existing infrastructure above tunne, and environmental permitting

BAY TUNNEL – SAN FRANCISCO

BAY TUNNEL – SAN FRANCISCO

- 15 ft ID x 5 mile water tunnel
- 110 ft deep
- Completed Oct, 2014
 - on schedule
 - Within budget
- Challenges
 - Variable ground, contaminated soil, disposal of tunnel material, long tunnel drive, and high ground water pressure (3.5 bar)

WILLAMETTE RIVER COMBINED SEWER OUTFALL PROGRAM – PORTLAND

WILLAMETTE RIVER COMBINED SEWER OUTFALL PROGRAM – PORTLAND

- (1) 14 ft ID x 3.5 mile 120 ft deep and (1)
 22 ft ID x 6 mile
- 150 ft deep CSO tunnels
- Construction Complete Feb 2012
 - 8 months ahead of schedule
 - Under budget
- Challenges
 - Schedule, existing infrastructure, groundwater, difficult ground conditions, soil modification, and subcontract changes

GOTTHARD BASE TUNNEL - SWISS ALPS

GOTTHARD BASE TUNNEL - SWISS ALPS

- (2) 30 ft ID x 35 mile rail tunnel
- Up to 6,560 ft deep
- For the 2 main tunnels and the safety, ventilation and cross cuts, a total of 95 miles tunnel was bored
- Completed June 2016
 - within schedule (17 years)
- Challenges: Safety, geology

SR-99 ALASKAN WAY REPLACEMENT-SEATTLE

SR-99 ALASKAN WAY TUNNEL-SEATTLE

- 53 ft ID x 2 mile transportation tunnel
- Construction schedule
 - approximately 2 year delay
- Challenges
 - Equipment malfunction, existing pile foundations and other infrastructure, difficult ground

SR-99 ALASKAN WAY TUNNELING PROGRESS

LESSONS LEARNED

- Conduct an extensive and thorough geotechnical program
- Utilize TBM technology that is well understood and projectproven
- Select only experienced tunneling contractors
- Implement a comprehensive monitoring and inspection program
- Implement proactive risk management strategy at all stages

RELEVANT EXAMPLES OF PILE DRIVING AND LEVEE/STRUCTURE PERFORMANCE

- Alternative Intake on Victoria Canal
- Freeport Intake
- Sankey Diversion Facility
- Cosumnus Power Plant
- Several DWR projects in the Delta- Extensive Experience

ALTERNATIVE INTAKE ON VICTORIA ISLAND

- 2008-2009
- On the Victoria Canal North Bank
- Approx. 390 sheet and concrete piles driven
- Driven by impact hammer for foundation piles
- No observed damage

FREEPORT INTAKE ON SACRAMENTO RIVER

- 2007-2008
- On the Sac River East Levee Bank
- ~ 800 ft. from the West Levee bank
- Approx. 520 sheet and H piles driven
- Driven by vibratory and impact hammers
- No observed damage

SANKEY DIVERSION FACILITY ON SACRAMENTO RIVER

- 2010-2011
- On the Sac River East Levee Bank
- ~550 ft. from the West Levee Bank
- Approx. 270 piles driven
- Driven by impact and vibratory hammers
- No observed damage

COSUMNUS POWER PLANT

• 2004

- 1,800 feet from Rancho Seco plant
- Approx. 2,000 piles
- driven by impact hammer
- No observed damages

SHEET AND PILE DRIVING TECHNOLOGIES

• Sheet Piles

- Used for coffer dam (in-water) construction
- Vibratory hammers (70%)
- Impact hammers (30%)

• Foundation Piles

- Either Driven piles or Cast-in-drilled hole piles
- Type depends on final geotech studies

DWR SHEET AND PILE DRIVING COMMITMENTS (ENVIRONMENTAL COMMITMENTS 3B.2.1.1-2)

- Perform pre-construction surveys to establish baseline conditions
- Collect subsurface data
- Perform geotechnical analyses
- Select appropriate pile types and installation methods
- Implement monitoring programs during construction

ENCROACHMENT INTO RIVER CHANNEL

- Under jurisdiction of USACE and CVFPB
- Modifications must meet USACE's 408 requirements
- Safety assurance review by an independent panel of experts
- Must maintain "project" conditions, purposes or outputs

TRAFFIC ON LEVEES

- Very little project traffic is planned to traverse on levees
 - SR-160 is constructed on top of a levee
 - Suitable for H20 loading
 - Already experiences extensive traffic

LEVEE ROAD USAGE FOR WATERFIX

BACON ISLAND: 1.6 MILES MANDEVILLE ISLAND: 4.6 MILES

TRAFFIC ON LEVEES

• DWR's commitments to levees and levee roads

- Preconstruction assessment
- Ground stabilization, if needed
- Monitoring during construction
- Return roadways to preconstruction condition

• Final EIR/EIS Commitments

- Mitigation Measures: TRANS-2a, 2b and 2c
- Environmental Commitment 3B.2.1.2
 - Settlement Monitoring and Response Program

EXISTING WATER DIVERSIONS

• Total number of effected water rights

- Temporarily effected: 10
- Permanently effected: 5

• Mitigations for temporarily effected diversions

- Prior to construction, extend pipes and adjust pump locations on landside
- Provide new groundwater wells
- Provide alternate water supply from a permitted source

EXISTING WATER DIVERSIONS

- Mitigations for permanently effected diversions
 - Provide temporary mitigation measures until the mitigation measures below are completed:
 - Relocate existing diversions outside of the intake structure footprint
 - Provide a new turnout from the proposed CWF sedimentation basins

• Diversion S021406

- Falls outside of intake footprint
- Within road relocation
- Will not be permanently affected
- Temporary impacts
- Maintain quality and quantity of flow

INTAKE 3 DIVERSIONS

• Diversion S016915

- Falls outside of intake footprint
- Within road relocation
- Will not be permanently affected
- Temporary impacts
- Maintain quality and quantity of flow

ISSUE: POTENTIAL IMPACT OF TUNNELING UNDER/NEAR EXISTING INFRASTRUCTURE

• EBMUD's Concerns

- Tunnel construction will undermine, cause settlement and reduce ground support of aqueduct foundation piles
- CWF tunnel profile will intersect with existing and planned infrastructure

DWR COMMITMENTS TO AVOID IMPACTS TO INFRASTRUCTURE

- Existing DWR Commitments, outlined in:
 - Appendix 3B, Section 3B.2.1
 - Ground treatment plan, ground settlement monitoring, and response plan
- Additionally, DWR Commits to:
 - Work collaboratively with EBMUD and other agencies on these issues during preliminary and final design
 - Provide contract specs and maintenance requirements to ensure safe tunneling
 - Provide appropriate levels of on-site inspection to ensure successful results

ISSUE: POTENTIAL IMPACT OF TUNNEL SEEPAGE ON EXISTING INFRASTRUCTURE

- Concerns expressed by protestants over potential leakage from tunnels
 - -No estimates of potential leakage rates presented by protestants
 - No analysis of potential impacts presented by protestants

TUNNEL LEAKAGE STUDY – ARUP 2017

• Findings

- Current CWF configuration minimizes potential for tunnel leakage
 - In most cases, tunnel internal pressure is less than external water pressures
- -For 73.5 miles of tunnel:
 - leakage rate estimated at 0.7 cfs
 - Inflow rate estimated at 3.7 cfs
 - Overall inflow rate: 3.0 cfs

SEATTLE TUNNEL INFLOWS 57-FOOT OUTSIDE DIAMETER TUNNEL

HONG KONG TUNNELS INFLOWS 46-FOOT OUTSIDE DIAMETER TUNNELS

Liantang Boundary Control Point Tunnel

Tuen Mun-Chek Lap Kok Tunnel

DWR COMMITMENTS TO REDUCE TUNNEL LEAKAGE/INFLOW

- Specify high-quality concrete in segments, and ensure results with proper QA/QC
- Provide careful details for inserts and grout holes
- Provide high quality segment connections and gasket details
- Specify "tight" build tolerances
- Provide good field inspection to enforce superior construction builds

ISSUE: CONCERN OVER POWER LINES CROSSING AQUEDUCT

- Potential for induced current to lead to corrosion
- Potential for induced current to lead to shock hazard
- Potential for power line to fall and strike aqueduct

DWR COMMITMENTS TO REDUCE POWER LINE RISK POTENTIAL

- Existing DWR Commitments, outlined in:
 - Appendix 3B, Section 3B.2.3, and Section 3b.4.30 (AMM 30)
 - Design and construction transmission lines in accordance with Electrical Power and Transmission Line Design Guidelines

• Additionally, DWR Commits to:

- Work collaboratively with EBMUD and other agencies on these issues during preliminary and final design
- Provide contract specs and appropriate levels of on-site inspection and on-going observation to ensure successful results

SEA LEVEL RISE FOR FLOOD PROTECTION

- Used 55 inches of SLR at Golden Gate Bridge
- SLR impact decreases farther inland
- 18 inches of SLR added above 200-yr flood level for intakes
- To be reviewed and updated during next engineering phase