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Disinfection for the supply of safe drinking water forms a variety of known and unknown byproducts through
reactions between the disinfectants and natural organic matter. Chronic exposure to disinfection byproducts
through the ingestion of drinking water, inhalation and dermal contact during regular indoor activities (e.g.,
showering, bathing, cooking) may pose cancer and non-cancer risks to human health. Since their discovery in
drinking water in 1974, numerous studies have presented models to predict DBP formation in drinking water.
To date, more than 48 scientific publications have reported 118 models to predict DBP formation in drinking
waters. These models were developed through laboratory and field-scale experiments using raw, pretreated
and synthetic waters. This paper aims to review DBP predictive models, analyze the model variables, assess
the model advantages and limitations, and to determine their applicability to different water supply systems.
The paper identifies the current challenges and future research needs to better control DBP formation. Finally,
important directions for future research are recommended to protect human health and to follow the best
management practices.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

The use of chlorine for drinking water disinfection has virtually
eliminated most waterborne diseases resulting from drinking water
ingestion (USCDC, 1997). However, chlorination forms a number of

disinfection byproducts (DBPs), which are of potential concern. Some
of these DBPs have cancer risks as well as other acute and chronic
effects to human health (King and Marrett 1996; National Cancer
Institute of Canada, 1998; Wigle, 1998; Mills et al., 1998; Waller et al.,
1998; King et al., 2000; Richardson et al., 2002; Villanueva et al., 2004;
Xu and Weisel, 2005). To date, toxicological and epidemiological
studies have characterized the effects of approximately thirty DBPs to
human and animal health (Bull et al., 1985, 1990; Smith et al., 1988;
Pereira, 1996; Richardson, 2005). Since their discovery in 1974, a
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number of DBPs have been investigated, including trihalomethanes
(THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and halo-
ketones (HKs).

A large fraction of people living in urban areas in North America are
routinely exposed to DBPs from supply waters through ingestion of
drinking water, inhalation and dermal contact during regular indoor

activities, such as bathing, showering, cooking as well as swimming in
pools and hot tubs with chlorination or brominated disinfection systems.
To protect human health, regulatory agencies around the world have
imposed regulations to limit the formation of some known DBPs in
drinking waters (USEPA, 2006; Health Canada, 2007; Aus–NZ, 2004;
WHO, 2004;UK, 2000). Active research onDBPs formationhas resulted in

Table 1
Components of DBPs in drinking water, their effects and regulatory limits.

Effects Toxicity to
human

Regulations
(μg/L)

Main Group Compounds Acronym Main
disinfectant*

Animal Human RfD SF HC
(2007)

USEPA
(2006)

WHO
(2004)

Aus–NZ
(2004)

UK
(2000)

Trihalomethanes
(THMs)

Chloroform TCM Chlorine Liver
tumours

B-2 0.01 0.01 300

Bromodichloromethane BDCM Chlorine Kidney
tumour

B-2 0.02 0.062 16 60

Bromoform DBCM Chlorine,
ozone

Colon
tumours

B-2 0.02 0.0079 100

Dibromochloromethane TBM Chlorine Liver
tumours

C 0.02 0.0084 100

TTHMs 100 80 250 100
Haloacetic acids
(HAAs)

Bromochloroacetic acid BCAA Chlorine Liver
tumours

Bromodichloroacetic
acid

BDCAA Chlorine Liver
tumours

Chlorodibromoacetic
acid

CDBAA Chlorine

Dibromoacetic acid DBAA Chlorine Liver
tumours

Dichloroacetic acid DCAA Chlorine Liver
tumours

B-2 0.004 0.05 50 100

Monobromoacetic acid MBAA Chlorine
Monochloroacetic acid MCAA Chlorine 150
Tribromoacetic acid TBAA Chlorine
Trichloroacetic acid TCAA Chlorine Liver

tumours
C 100 100

HAA5 60
Haloacetonitriles
(HANs)

Bromochloroacetonitrile BCAN Chlorine Embryo
death

Dibromoacetonitrile DBAN Chlorine Skin
tumours

70

Dichloroacetonitrile DCAN Chlorine Embryo
death

20

Trichloroacetonitrile TCAN Chlorine Embryo
death

C

Haloketones
(HKs)

1,1-dichloropropanone DCP Chlorine

1,1,1-
trichloropropanone

TCP Chlorine

Aldehydes Formaldehyde Ozone,
chlorine

900 500

Acetaldehyde Ozone,
chlorine

Glyoxal Ozone,
chlorine

Methyl glyoxal Ozone,
chlorine

Carboxylic acids Formate Ozone
Acetate Ozone
Oxalate Ozone

Nitrosamines N-
nitrosodimethylamine

Chloramine B-2 51

Cyanogen
halides

Cyanogen chloride Chloramine 70 80

Cyanogen bromide Chloramine
Chloral hydrate CH Chlorine 10 20
Bromate Ozone B-2 0.004 0.7 10 10 10 20 10
Chlorate Chlorine

dioxide
700

Chlorite Chlorine
dioxide

D 0.03 – 1000 700 300

Primary disinfectant*: themain disinfectants for the respective DBPs are shown here. In case of alternative disinfectants, these DBPs as well as other DBPs can also be formed. If two or
more disinfectants are used (for example, ozone and chlorine, chlorine and chloramine, chlorine dioxide and chlorine/chloramine, UV radiation and chlorine/chloramine, etc.),
THMs, HAAs will still be formed. However, the main causing factors are shown in this column. Please note that these are not the complete list of DBPs and disinfectants. As such,
number of both can be increased in future. B-2: Probable human carcinogen; C=Possible human carcinogen; HC: Health Canada; USEPA: US Environmental Protection Agency; RfD:
Reference dose (mg/kg day); SF: Slope factor (mg/kg day)−1; WHO: World Health Organization; UK: United kingdom; Aus–NZ: Australia–New Zealand.
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the development of at least 118 predictive models, which have been
presented in 48 scientific publications between 1983 and 2008 (Nikolaou
et al., 1999; Sadiq and Rodriguez, 2004). In addition, many other studies
have reported toxicological and epidemiological effects of DBPs to human
and animal health (Mills et al., 1998; Bull et al., 1985, 1990; Cantor et al.,
1998; Villanueva et al., 2004). A number of studies reported chlorine
residual decay in water distribution systems (Clark and Sivaganesan,
2002; Vasconcelos et al., 1997; Rossman et al., 1994; Ginasiyo et al., 2007;
Huang and McBean, 2007; Al-Jasser, 2007; Hass and Karra, 1984; Gang
et al., 2003; Rossman et al., 2001). Some other studies performed risk
based decision-making in the selection of appropriate disinfection
approaches (Chowdhury and Husain, 2006; Chowdhury et al., 2007;
Lykins et al., 1994; Reiff, 1995; Clark and Rice, 2004). Commonly used
disinfectants, their byproducts, possible effects of these DBPs to human
and animal health, as well as their regulatory limits are shown in Table 1.
The four THM species (chloroform, bromodichloromethane, dibromo-
chloromethane and bromoform), dichloroacetic acids, trichloroacetic
acids, trichloroacetonitrile, bromate and chlorite have been reported to
have carcinogenic effects to human health (Table 1). In addition, the
nitrogenous DBPs, such as N-nitrosodimethylamine (NDMA) and other
unknown DBPs may also pose a potential cancer risks to human health
(USEPA, 2006; Mitch and Sedlak, 2002; Richardson, 2005). In Table 1, the
main disinfectants for the corresponding byproducts are shown. In case of
alternative disinfectants or combinations of different disinfectants, similar
byproducts aswell as othermany unregulated byproductsmay be formed
(Miltner et al., 2008; Krasner et al., 2006; Richardson et al., 2008). Such as,
use of ozone followed by chlorine may form bromate as well as THMs,
HAAs and many other unregulated byproducts (Krasner et al., 2006). If
chlorine (for primary disinfection) is followed by chloramine (for residual
protection), NDMA, regulated DBPs and other DBPs may be formed.
However, THMsandHAAswill bemuch less in these cases. Theamountsof
DBP formationmaybe characterizedbasedon the types andcombinations
of disinfectants used. For example, THM and HAA formations may follow
the patterns of chlorineNchlorine/chloramineNozone/chlorineNozone/
chloramineNchlorinedioxide/chloramineNUVradiation/chloramine, etc.
However, type of byproductsmay vary significantly based on the type and
combination of disinfectants employed. More over, Table 1 shows a
fraction of the identified DBPs to date (Krasner et al., 2006). Upon
availability of the regulatory and human health related information, new
byproducts can be added to this Table (Table 1).

The protection of human health from microbiological and chemical
risks, as well as making water supply systems cost-effective has been a
challenge to the research community. The predictive models for DBP
formation reported in the scientific literature use a range of explanatory
parameters for variety of applications. As the models for DBP formation
help to guide decision-making in the drinkingwater supply systems, the
capacity and range of applicability of these models is essential and
should be examined carefully. In this paper, the predictive models for
DBP formation available in the scientific literatures have been reviewed.
The model review examines the models following a number of criteria:
the characteristics of data sources (rawwater, treatedwater or synthetic
water), model performance under a range of environmental conditions,
experimental methods used in model development and estimation,
types of models (mechanistic or empirical), as well as their predictive
ability. An example to demonstrate the potential application of these
models in guiding decision-making processes is presented. Finally,
future research important to the development of improved models is
identified.

2. Disinfection

2.1. Disinfectants and disinfection approaches

Chlorination as a disinfection approach for drinking water supplies
was first introduced in 1902 in Middlekerke (Belgium), followed by
the use of ozone as a disinfectant in Nice (France) in 1906 (MWH,
2005). The USA introduced chlorination of drinking water in Chicago
and Jersey City in 1908 and Canada first started using chlorine for
drinking water disinfection in Peterborough in 1916 (Chlorine
Chemistry Council, 2003; Peterborough Utilities Commission, 1998).
Currently, most of the water supply systems in North America use
chlorine as a disinfectant (USEPA, 2006; Health Canada, 2007). In
addition to chlorine, a number of other disinfectants, such as,
chloramine, chlorine dioxide, ozone and ultraviolet radiation are
also applied to a number of water supply systems (MOE, 2006;
AWWA, 2000). The applications of various disinfectants, as well as
their costs, disinfection efficiencies and stability in distribution
systems are summarized in Table 2. Table 2 shows that chlorine is
very effective and, in most cases, is a relatively inexpensive
disinfectant. The disinfection efficiencies of disinfectants are generally

Table 2
Basic information of disinfectants.

Issue Chlorine Chloramine Chlorine
dioxide

Ozone Ultraviolet
radiation

Reference

Application Most
common

Common Occasional Common Emerging use USEPA (2006)

Cost Lowest Moderate (Nchlorine) High High Extremely
high

Clark et al. (1994)

Disinfection
efficiency

Bacteria (V. chloerae, Coliform, E. coli,
etc)

Excellent Good Excellent Excellent Good MWH (2005), Sadiq and
Rodriguez (2004)

Viruses (Polio virus, Rota virus, MS2
coliphase, etc)

Excellent Fair Excellent Excellent Fair

Protozoa (G. lamblia, C. parvum, E.
intestinalis, etc)

Fair to
poor

Poor Good Good Excellent

Endospores Good to
poor

Poor Fair Excellent Fair

Organisms
regrowth

Unlikely Unlikely Likely More likely More likely MWH (2005)

Limits on free
residuals

4 mg/L 4 mg/L 0.8 mg/L – – USEPA (2006)

Byproducts Regulated 4 THMs,
HAAs

Traces of THMs and
HAAs

Chlorite Bromate None USEPA (2006)

Unregulated Many Many: cyanogen
halides, NDMA

Many:
chlorate

Biodegradable
organics

None known Richardson (2005)

Oxidation Strong Weak Selective Strongest None Chlorine Chemistry Council
(2003)

Odor and taste
removal

Excellent Good Excellent Good to poor None

Stability Stable Stable Unstable Unstable Unstable
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affected by physico-chemical and biological factors. Disinfection
efficiencies can be determined from the product of residual disin-
fectant concentration (C) and the contact time of the disinfectant in
the water (t). Generally, the inactivation of microorganisms increases
with increasing Ct value (MWH, 2005; Connell, 1997). This value,
which differs as a function of disinfectant, is typically used as a design
parameter for the water supply systems (Gates, 1998). The types and
nature of microorganisms, as well as the treatment plant operational
conditions (temperature, pH) also affect disinfection efficiencies
(Sadiq and Rodriguez, 2004). Chlorine is more effective against
microorganisms under acidic rather than alkaline conditions. In
addition, higher water temperatures typically require a lower Ct to
inactivate microorganisms (Clark et al., 1994). For a specific contact
time, higher chlorine doses are required for disinfection in winter
compared to that of summer conditions. On the other hand,
microbiological activities are higher in warmer waters than in cold
waters within the water distribution systems (Arora et al., 1997).
Consequently, disinfectant residuals decay rapidly when the water
temperature is high, which often makes maintaining minimum
residuals difficult in larger distribution systems during the summer
months, especially at the extremities of the distribution systems. To
maintain adequate concentrations of disinfectant residuals in the
distribution systems, higher disinfectant doses are applied during the
summer period. Higher temperatures and higher disinfectant resi-
duals in the distribution systems during the summer period have also
been shown to affect DBP formation (Elshorbagy et al., 2000).

The drinkingwater disinfection and supply systems include several
physico-chemical processes (screening, coagulation, flocculation,
settling and filtration) for the treatment and disinfection of drinking
waters. Different treatment approaches are employed to reduce DBP
precursors (NOM), turbidity and pathogens from source waters
(Dempsey et al., 1984; Reckow and Singer, 1984; Edzwald, 1993;
Shorney et al., 1999). A typical treatment configuration is shown in
Fig. 1. Treatment systems may also include granular activated carbon
(GAC) in addition to conventional filtration depending on the type of
organics contained in the water (Fig. 1b). Use of GAC effectively
reduces NOM and other chemicals through adsorption and catalytic
degradation; consequently, reducing the formation of DBPs (Chang

et al., 2001). However, the introduction of GAC increases operational
and maintenance costs by 30–50% (Chowdhury et al., 2007). More-
over, none of the currently available treatment approaches can
completely remove pathogens and the precursors to DBP formation
(Clark et al., 1998; Chang et al., 2001).

2.2. Disinfection byproducts formation and operational challenge

During disinfection for drinking waters, most of the chlorine
demand is exhausted by reactions with NOM. Chlorine also reacts
with various inorganic compounds in the water treatment plants and
distribution systems (e.g., ammonia to form chloramine, Fe2+, Mn2+,
S2−, Br−, pipe materials, biofilms). The NOM and/or other inorganic
substances in water react with disinfection agents such as chlorine,
chloramine, chlorine dioxide and ozone to produce DBPs in drinking
water during the disinfection process and in the water distribution
system (Montgomery, 1993; Rathbun, 1996a,b; Chen and Weisel,
1998; Rodriguez and Sérodes, 2001). Table 1 shows that most of the
THMs and HAAs are formed as a result of chlorination, while
chloramine, ozone and chlorine dioxide form lower quantities of
THMs, HAAs and other DBPs. However, some of the DBPs formed with
chloramine, chlorine dioxide and ozone can be more toxic than those
formed during chlorination. For example, N-nitrosodimethylamine
(NDMA) and bromate, which are typically formed during chloramine
and ozone disinfection respectively, are more toxic than THMs and
HAAs (Table 1; IRIS, 2006; Richardson, 2005).

It has been shown that increases in pH can increase THM
formation. As such, a reduction in pH can be employed to reduce
THM formation (Stevens et al., 1976; Chowdhury and Champagne,
2008). However, a decrease in pH can lead to an increase in HAAs
formation (Singer 1994; Singer et al., 1995; Nokes et al., 1999). Hence,
the determination of the optimum pH range for disinfection is often
necessary during the operation of water supply systems. Increase in
contact time has also been noted to increase DBP formation. However,
controlling contact time in water treatment plants and distribution
systems is often a challenge due to variable hydraulic properties and
water demands imposed in distribution systems. Temperature and
seasonal variability have also been reported to affect THM formation,

Fig. 1. Typical configuration of water treatment plant; (a). Conventional water treatment plant; (b). Addition of granular activated carbon (GAC).
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where the formation of THMs during the summer months was
reported to be higher than during the winter months (Golfinopoulos
et al., 1998; Golfinopoulos and Arhonditsis, 2002a,b; Elshorbagy et al.,
2000). Because organic/inorganic substances act as precursors for
DBP formation, their removal prior to disinfection has proven to be an
effective approach for reducing the DBP formation potential. Pre-
treatments prior to chlorination can partially remove NOM and this
removal can be enhanced by using GAC, enhanced coagulation and
membrane filtration, which may increase operating and maintenance
costs significantly (Chowdhury et al., 2007). Formation of DBPs can
also be reduced by introducing alternative disinfectants or a
combination of disinfectants, including chloramine, ozone, chlorine
dioxide and ultraviolet radiation followed by post chlorination to
inhibit microbiological recontamination in distribution systems.
However, the use of these alternative disinfectants can still lead to
the formation of the more toxic DBPs as shown in Table 1 (Richardson,
2005; IRIS, 2006). Moreover, the combination of different disinfec-
tants or disinfection processes could significantly increase capital and
operating costs of the disinfection system (USEPA, 2006; Clark et al.,
1994; Lykins et al., 1994).

In addition to the difficulties associated with controlling opera-
tional parameters (pH, reaction time) and environmental conditions
(seasonal variability, water temperature), water quality variables such
as the types and amounts of NOM, as well as the presence of bromide
ions (Br−) contribute further challenges to the design of drinking
water supply systems and the production of safe drinking water. The
organic matter in the source waters contains both hydrophobic and
hydrophilic fractions of NOM. The hydrophobic fractions are generally
composed of the higher molecular weight NOM with activated
aromatic rings, phenolic hydroxyl groups and conjugated double
bonds, while the hydrophilic fractions are typically composed of the
lower molecular weight NOM with aliphatic ketones and alcohols
(Liang and Singer, 2003). The hydrophobic fractions of NOM exhibit
higher ultraviolet absorbance (UV254) and higher specific ultraviolet
absorbance (SUVA, defined as 100UV254/DOC) and these tend to be
more reactive with chlorine than bromine, while the hydrophilic
fractions of NOM exhibit lower UV254 and lower SUVA and are
generally more reactivewith bromine than chlorine (Liang and Singer,
2003). Waters without Br− mainly form chlorinated THMs (CHCl3)
due to reactions between hypochlorous acid (HOCl) and the
hydrophobic fractions of NOM. As such, a significant fraction of the
hydrophilic NOMmay be left unreacted in thesewaters. Conversely, in
waters with Br−, the hydrophilic fractions of NOM form brominated
THMs through reactions with hypobromous acid (HOBr), while these
brominated THMs may not be adequately characterized by the low
SUVA or low UV254 values. Hellur-Grossman et al. (2001) reported
similar observations of hydrophilic fractions of NOM and brominated
THM formation. The rawwater from the Sea of Galilee (Lake Kinneret)
in Israel contained TOC between 4 and 6 mg/L and very high Br− ion
concentrations (up to 1.9 mg/L). This water was composed mainly of
hydrophilic fractions of NOM, which showed low UV254 and low SUVA
values. Therefore, the hydrophilic fractions of NOM favored bromi-
nated THMs formation in the Lake Kinneret water. The brominated
THMs consisted of more than 96% of the total THMs in Lake Kinneret
water (in summer, brominated THMs=595.5 ppb and total
THMs=606 ppb; in winter, brominated THMs=487 ppb and total
THMs=507 ppb). The UV254 and SUVA values could not be employed
to characterize the brominated THM formation for this specific source
water. In addition, Br− forms HOBr in chlorinated water, which is
approximately 20 times more reactive with NOM than the HOCl (Uyak
and Toroz, 2007); thus, favoring brominated THM formation.
Increases in Br− concentrations gradually shift chlorinated THM and
HAA formation to bromochloro THM and HAA formation (Uyak and
Toroz, 2007; Hellur-Grossman et al., 2001; Nokes et al., 1999). Further
complexities arise, as the conversion of Br− to brominated DBPs is not
100%. This conversion varies between 18 and 28% for THMs and

approximately 10% for HAAs formation, which also depends on the pH,
water temperature and the relative distributions of hydrophobic and
hydrophilic fractions of NOM (Sohn et al., 2006; Liang and Singer,
2003).The removal of hydrophilic NOM through coagulation processes
is often difficult because of their low molecular weights. As such,
hydrophilic NOM tends to remain in finished waters. As a result,
formation of brominated THMs in finished water in the presence of
bromide ions is more likely to occur.

2.3. Regulating DBP exposure concentrations

The safety of human health from drinking water contaminants
(chemical and/or microbiological) has been a concern in the USA
since the beginning of 19th century. In 1915, the USA imposed
bacterial standards for drinking water, which became more stringent
in 1925. In the early 1970s, USEPA scientists (Bellar et al., 1974) first
determined that drinking water chlorination could form a group of
byproducts known as trihalomethanes (THMs). In 1972, the USA
passed the Clean Water Act for restoring and maintaining surface
water quality. Two years later, the Safe Drinking Water Act (SDWA)
was passed, which allowed the US Environmental Protection Agency
to set water quality standards, which each of the States would enforce.
The USEPA set the first regulatory limits for THMs in 1979. In 1996, the
SDWAwas amended to incorporate source water protection, operator
training, funding for water system improvements and public informa-
tion. In 1998, the Stage 1 Disinfectants and Disinfection Byproducts
Rule (DBPR) was introduced (USEPA, 1998a,b). The Stage 1 DBPR was
amended and the Stage 2 DBPR was finalized in 2006 (USEPA, 2006),
which represents the current regulations on DBPs concentrations. In
the Stage 2 DBPR, water supply systems must comply with maximum
contaminant levels (MCLs) of 80 μg/l for total trihalomethanes
(THMs) and 60 μg/l for the sum of 5 haloacetic acids (HAA5) as
locational running annual averages (LRAAs). In Canada, Health Canada
imposed regulatory limits on THMs concentrations in 1996. These
regulations were reviewed periodically and the latest updated version
for 2007 is currently available. The Canadian guidelines set the
maximum allowable concentrations of total THMs to 100 μg/l
(running annual average of quarterly samples). Regulations for
HAAs are still under consideration (Health Canada, 2007). Health
Canada (2007) also limits BDCM and bromate concentrations to
16 μg/l and 10 μg/l, respectively. In addition to the USA and Canada,
the World Health Organization (WHO, 2004), Australia–New Zealand
(Aus–NZ, 2004) and United Kingdom (UK, 2000) have imposed
regulatory limits on exposure concentrations of a number of DBPs. The
WHO regulated DBPs exposure concentrations in 1993, which was
updated in 2004. Australia–New Zealand regulations were also
updated in 2004. The regulatory limits on different DBPs of USEPA
(2006), Health Canada (2007), WHO (2004), Aus–NZ, (2004) and UK
(2000) are shown in Table 1.

3. Models and their potential applications

3.1. Predictive models for DBPs formation

Since the discovery of DBPs in drinking waters (Rook, 1974; Bellar
et al., 1974), considerable research has been focused on characterization
of the significant parameters involved in DBP formation. Some studies
have correlated DBPs with NOM contents in raw waters (Singer and
Chang,1989;White et al., 2003). Other studies have also investigated the
relationships between precursors, operational parameters and DBP
formation, aswell as the relationships between different species of DBPs
(Singer et al.,1995; Chen andWeisel,1998;Arora et al.,1997;Gallard and
Von-Gunten, 2002; Gang et al., 2003). In the past three decades,
numerous models have been developed to predict DBP formation in
drinking waters. These models have investigated the effects of different
water quality and operational parameters in controlling DBP formation
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Table 3
Models for DBPs formation.

Author and year Model descriptions R2 Unit

1. Minear and
Morrow (1983)

THMs=−3.91+(Br−)0.15+0.23log(D)+0.24(pH)+100.009T+0.26(NVTOC) N0.90 (μmol/L)

2. Urano et al.
(1983)

THMs=0.00082(pH−2.8)TOC.D0.25.t0.36 NR (μg/L)

3. Engerholm and
Amy (1983)

CHCl3 = k1k2 TOCð Þ0:95 D
TOC

� �0:28
tz

4. Morrow and
Minear (1987)

(a) THMs=−3.91+(Br−)0.15+0.23 log(D)+0.24(pH)+100.009T+0.26(NVTOC) (μmol/L)
(b) THMs=−3.94+(Br−)0.19+0.35 log(D)+0.24(pH)+100.009T+0.27(NVTOC) NR
(c) THMs=−2.42+(Br−)0.15+0.24 log(D)+0.24(pH)+10−204.5T+0.25(NVTOC) NR

5. Amy et al.
(1987)

THMs=0.0031(UV254.TOC)0.440(D)0.409(t)0.265(T)1.06(pH−2.6)0.715(Br−+1)0.0358 0.90 (μmol/L)

6. Adin et al.
(1991)

THMs=K1.K2.TOC. [(1/((K1+K3)(K2+0.19)))+(1/(K1+K3−K2−0.19))×(((1/(K1+K3))
exp(−(K1+K3) (tc))−((1/(K2+0.19))exp(−(K2+0.19)(tc))]; K1=4.38×10−8

(D); K2=11.36×10−7 (D); K3=7.14×10−13 (D)2

0.90 (μg/L)

7. Harrington
et al. (1992)

THMs=0.00309 (TOC .UV254)0.44.D0.409 t0.265 T1.06 (pH−2.6)0.715 (Br−+1)0.03 NR (μg/L)

8. Malcolm Pirnie
Inc. (1992)

CHCl3=0.078 (TOC .UV254)0.616.D0.391 t0.265 T1.15 (pH−2.6)0.8 (Br−+1)−2.23 NR (μg/L)
BDCM=0.863 (TOC .UV254)0.177.D0.309 t0.271 T0.72 (pH−2.6)0.925 (Br−+1)0.722 NR

DBCM = 2:57 UV254
TOC

� �−0:184
:D−0:0746t0:252T0:57 pH−2:6ð Þ1:35 Br− + 1ð Þ2:08 NR

9. Malcolm Pirnie
Inc. (1993)

(a). THMs=7.21(TOC)0.004(UV254)0.534(D−7.6×NH3–N)0.224 (t)0.255 (Br−+1)2.01 (T)0.480(pH−2.6).719 NR (μg/L)
(b). BDCM=4.05(TOC)0.567(UV254)0.567(D−7.6×NH3–N)−0.351 (t)0.366 (Br−)0.291 (T)0.568(pH−2.6)0.568 NR
(c). CHCl3=0.997(TOC)0.580(UV254)0.580(D)0.814 (t)0.278 (Br−+1)−4.27 (T)0.569(pH−2.6)0.759 NR
(d). DBCM=22.9(TOC)0.253(UV254)0.253(D−7.6×NH3–N)−0.352 (t)−0.292 (Br−)1.04 (T)0.491 (pH−2.6).0.325 NR
(e). CHBr3=1.28(TOC)−0.167(UV254)−0.167(D−7.6×NH3–N)−2.22 (t)0.294 (Br−)1.48 (T)0.553 (pH−2.6)0.198 NR

10. Montgomery
Watson (1993)

(a). CHCl3=0.064(TOC)0.329(UV254)0.874(Br−+0.01)0.404 (pH)1.161 (D)0.561 (t)0.269 (T)1.018 0.88 (μg/L)
(b). BDCM=0.0098(Br−)0.181(pH)2.55(D)0.497(t)0.256(T)0.519 (for D/Br−b75) 0.8
(c). BDCM=1.325(TOC)−0.725(Br−)0.794(D)0.632(t)0.204(T)1.441 (for D/Br−N75) 0.92
(d). DBCM=14.998(TOC)−1.665(Br−)1.241(D)0.729(t)0.261(T)0.989 (for D/Br−b50) 0.82
(e). DBCM=0.028(UV254)−1.175(TOC)−1.078(Br−)1.573(pH)1.956(D)1.072(t)0.2(T)0.596 (for D/Br−N50) 083
(f). CHBr3=6.533(TOC)−2.031(Br−)1.388(pH)1.603(D)1.057(t)0.136 0.86
(g). MCAA=1.634(TOC)0.753(Br−+0.01)−0.085(pH)−1.124(D)0.509(t)0.300 0.82
(h). DCAA=0.606(TOC)0.291(UV254)0.726 (Br−+0.01)−0.568(D)0.48(t)0.239(T)0.665 0.97
(i). TCAA=87.182(TOC)0.355(UV254)0.901(Br−+0.01)0.679(pH)1.732(D)0.881(t)0.264 0.98
(j). MBAA=0.176(TOC)1.664(UV254)−0.624(Br−)−0.795(pH)−0.927(t)0.145(T)0.45 0.80
(k). DBAA=84.945(TOC)−0.62(UV254)0.651(Br−)1.073 (D)−0.2(t)0.12(T)0.657 0.95

11. Lou and
Chiang (1994)

THMs=THMo+7.01(pH−2.3)0.11 (NVTOC)1.06 (t)0.748(D)0.764(β) NR (μg/L)

β =
R∞
0 e−0:0393 NVTOC½ �t� �

1

2
ffiffiffiffiffiffi
πθD

p exp 1−θð Þ2
4θD

h i
dθ

� �0:764

12. Ibarluzea
et al. (1994)

CHCl3=10.8+0.04(Flu)+1.16(pH)+0.12(T)+1.91 (Co) 0.82 (μg/L)

13. Ozekin (1994) Bromate=1.55×10−6(DOC)−26(pH)5.82(O3)5.82(Br−)0.73(tm)0.28 when tb20 °C (μg/L)
For higher temperature, 230ABRO3

−230BT=230ABRO3
−230B20 °C(1.035)T−20

14. Siddiqui
et al. (1994)

CHBr3=2.68(DOC)1.28(pH)−1.31(O3)0.742(Br−)1.55(T)0.956(tm)0.353 0.78 (μg/L)
TOBr=5.1(DOC)1.07(pH)105(O3)0.766(Br−)1.53(T)01.08; time=24 h 0.95
Bromate=1.5×10−3(DOC)−0.74(pH)−2.26(O3)0.64(Br−)0.61(Toz)2.03 0.88
Bromate=1.5(DOC)−0.75(pH)−2.25(π+1)1.31(Br−)0.60 0.64
Bromate=0.26(DOC)0.86(pH)3.27(DO3)0.22(tm+1)0.25(Br−)0.67; (0b tb1 h) 0.68

15. Song
et al. (1996)

Bromate=10−6.11(DOC)−1.18(NH3–N)−0.18(pH)5.11(O3)1.42(Br−)0.88(IC)0.18(tm)0.27 0.93 (μg/L)

16. Rathbun
(1996a)

CHCl3=0.442(pH)2(D)0.229(DOC)0.912(Br−)−0.116 0.97 (μg/L)
BDCM=17.5(pH)1.01(D)0.0367(DOC)0.228(Br−)0.513 0.86
DBCM=26.6(pH)1.80(D)−0.0928(DOC)−0.758(Br−)1.2 0.94
CHBr3=0.29(pH)3.51(D)−0.347(DOC)−0.330(Br−)1.84 0.78

17. Rathbun
(1996b)

THMs=14.6 (pH−3.8)1.01 (D)0.206 (UV254)0.849 (t)0.306 0.98 (μg/L)
NPTOX=42.0(13−pH)1.07 (D)0.21 (Br−+1)−2.75 (UV254)0.847 (t)0.142 0.96

18. Chang et al.
(1996)

(a). THMs=12.72 (TOC)0.291 (t)0.271 (D) −0.072 0.94 (μg/L)
(b). THMs=108.8(TOC)0.2466 (t)0.2956(UV254)0.9919 (D)0.126 0.97 (μg/L)
(c). THMs=131.75(t)0.2931(UV254)1.075 (D)0.1064 0.95 (μg/L)

19. G.-Villanova
et al. (1997a)

ln(CHCl3)=0.348+0.00059(T)3−0.000023(T)4+0.0237(pH)2+d+e 0.65 (μg/L)

20. G.-Villanova
et al. (1997b)

ln(CHCl3)=0.81Y+0.162N+0.00047(T)3−0.0000204(T)4+0.00339(pH)2+e 0.86 (μg/L)

21. Huixian et al.
(1997)**

(a). POX=7.2t0.008 TOC0.49D0.41 (pH+8.6)exp(−468.5/T) 0.94 (μg/L)
(b). NPOX=28.7t0.02 TOC0.53D0.44 (20.9−pH)exp(−632.4/T) 0.92

22. Clark and
Sivaganesan
(1998)

THMs = A CAo − CAo 1 − Kð Þ
1 − Ke− utm

� �� �
K=0.71 (μg/L)

u=M(1−K); K=e0.32(CAo)−0.44(TOC)0.63(pH)−0.29(T)0.14; A=e1.49(CAo)−0.48(TOC)0.18(pH)−0.96(T)0.28 A=0.78
M=e(−2.46− 0.19TOC−0.14pH−0.07T−0.01pH.T) M=0.42

23. Golfinopoulos
et al. (1998)

THMs=13.5ln(Chla)−14.5(pH)+230(Br−)−140(Br−)2−25.3(S)+110.6(Sp)−6.6(T.Sp)+1.48(T.D) 0.98 (μg/L)

24. Amy et al.
(1998)

THMs=0.00412(DOC)1.10(D)0.152(Br−)0.068(T)0.61 (pH)1.60 (t)0.260 NR (μg/L)
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Table 3 (continued)

Author and year Model descriptions R2 Unit

25. Nokes et al.
(1999)

Function of various reaction coefficients of intermediate products, HOBr and HOCl NR (μg/L)

26. Rodriguez et al.
(2000)

(a). THMs=0.044(DOC)1.030 (t)0.262 (pH)1.149 (D)0.277 (T)0.968 0.90 (μg/L)
(b). THMs=1.392(DOC)1.092(pH)0.531(T)0.255 0.34

27. Milot et al. (2000) P = exp a:treatment + b:region + c:season + d:source + eð Þ
1 + exp a:temperature + b:region + c:season + d:source + eð Þ

28. Sung et al. (2000) (a). THMs=a(OH−)j(D(1−e−kt))(UV254)n(algae)p (μg/L)
(b). CHCl3=2.3×106(OH−)0.52(D(1−e−kt))0.56(UV254)0.57(algae)−0.10 0.93
(c). HAA5=4.8×104(OH−)0.35(D(1−e−kt))0.43(UV254)0.34 0.74
(d). TCAA=4.7×104(OH−)0.41(D(1−e−kt))0.70(UV254)0.18 0.87

29. Westerhoff et al.
(2000)

THMs=bo+b1(DOC)+b2(D1)+b3(Br−10%)+b4(T)+b5(pH)+b6(t) NR (μg/L)

30. Elshorbagy
et al. (2000)

THMst+Δt=THMst+0.582(Clt+Δt−Clt) NR (μmol/L)

31. Clark et al. (2001) THMs = α CAo − CAo 1 − Kð Þ
1 − Ke− utm

� �� �
; u = M 1− Kð Þ; K = e1:89 pHð Þ−0:13: Br− + 1ð Þ0:1: Cloð Þ−0:75

M = e3:96:e−0:305 Br−ð Þ:e0:0145 Clo :pHð Þ:Cl−2:32
o :e8:46 pð Þ:e−0:231pH

K=0.95 (μg/L)
M=0.70

32. Golfinopoulos and
Arhonditsis (2002a)

(a). THMs=−0.26chla+1.57pH+28.74Br−66.72Br2−43.63S+1.13Sp+2.62T.S−0.72T.D 0.52 (μg/L)
(b). CHCl3=−0.32chla+0.68pH+2.51D+1.93Sp−22.07S+1.38T.S−0.12T.D 0.51
(c). BDCM=−0.37chla+0.32pH+1.16Br−29.82Br2+1.88D+5.17S−0.37T.Sp−0.12T.D 0.62

33. Golfinopoulos and
Arhonditsis (2002b)

Vd THMs½ �
dt = Qoutflow THMs½ � + kVa3TOC

a1 Halogen½ �a2 (μg/L)

34. Korn et al. (2002) log(Chlorite)=−0.346−0.07log(pH)−0.025log(T)−0.597log(C+1)−0.136log(t+1)−0.0038log(NPOC.UV254)+
0.293log(T).log(C+1)+0.393log(pH).log(C+1)+0.67log(NPOC.UV254).log(C+1)−0.161log(NPOC.UV254).log(t+1)

0.95 Mg/L

35. Gang et al. (2002) (a). THMs=αD(1− fe−k
r
t−(1− f)e−k

s
t) NR (μg/L)

(b). HAAs=βD(1− fe−k
r
t−(1− f)e−k

s
t) NR

36. Serodes et al. (2003) (a). log(HAAs)=2.72+0.653(TOC)+0.458(D)+0.295(t) 0.89 (μg/L)
(b). log(HAAs)=1.33+2.612(TOC)+0.102(D)+0.255(T)+0.102(t) 0.80
(c). HAAs=−8.202+4.869(TOC)+1.053(D)+0.364(t) 0.92
(d). THMs=16.9+16.0(TOC)+3.319(D)−1.135(T)+1.139(t) 0.78
(e). log(THMs)=−0.101+0.335THMo+3.914(TOC)+0.117(t) 0.89
(f). THMs=21.2+2.447(D)+0.499(t) 0.56

37. Nikolaou et al. (2004) (a). logTHMs=0.33pH−0.02pH2+0.12t−0.004t2 0.53 (μg/L)
(b). logTHMs=−0.44pH+7.53logpH−1.10D+0.2D2 0.58
(c). logHAAs=0.33pH−0.02pH2+0.48t−0.09D 0.28
(d) logTHMs=0.98log(pH)+1.1log(t)−0.01(t).(D)+1.59log(D) 0.38

38. Al-Omari et al. (2004) [THMs]=4.527t0.127D0.595 TOC0.596 Br0.103 pH0.66 (μg/L)
39. Kolla (2004) THMs=0.0001D3.14 pH1.56 TOC 0.69 t0.175 0.77 (μg/L)

DCAN=3.567D1.03 pH−1.64 R0.18 t0.234 0.69
TCP=0.785D3.474 pH−4.659 t0.147 0.68

40. Lekkas and Nikolaou
(2004)

(a). logTHMs=1.546+0.631pH2+0.569log(t)+0.385log(D) 0.87 (μg/L)
(b). logHAAs=−0.00189−1.7pH2+1.5log(pH)−0.9Br−+0.875(pH)(Br−)+
0.710log(t)−0.28(pH)(t)+0.215log(D)

0.51

41. Sohn et al. (2004) (a) THMs=10−1.385(DOC)1.098(D)0.152 (Br)0.068(T)0.609(pH)1.601(t)0.263 0.90 (μg/L)
(b) THMs=0.42(UV254)0.482(D)0.339(Br−)0.023 (T)0.617(pH)1.601(t)0.261 0.70
(c) THMs=0.283(DOC*UV254)0.421(D)0.145 (Br−)0.041 (T)0.614(pH)1.606(t)0.261 0.81
(d) THMs=3.296(DOC)0.801(D)0.261 (Br)0.223(t)0.264 0.87
(e) THMs=75.7(UV254)0.593(D)0.332 (Br)0.0603(t)0.264 0.90
(f) THMs=23.9(DOC*UV254)0.403(D)0.225 (Br−)0.141(t)0.264 0.92
(g) THMs=(THM@pH=7.5, T=20 °C)*1.156(pH−7.5)1.0263(T−20) 0.92
(h) HAA6=9.98(DOC)0.935(D)0.443 (Br)−0.031(T)0.387(pH)−0.655(t)0.178 0.87
(i) HAA6=171.4(UV254)0.584(D)0.398 (Br)−0.091(T)0.396(pH)−0.645(t)0.178 0.80
(j) HAA6=101.2(DOC. UV254)0.452(D)0.194 (Br)−0.0698(T)0.346(pH)−0.6235(t)0.18 0.85
(k) HAA6=5.228(DOC)0.585(D)0.565 (Br)−0.031(t)0.153 0.92
(l) HAA6=63.7(UV254)0.419(D)0.640 (Br)−0.066 (t)0.161 0.92
(m) HAA6=30.7(DOC.UV254)0.302(D)0.541 (Br)−0.012(t)0.161 0.94
(n) HAA6=(HAA6@pH=7.5, T=20C)*0.932(pH−7.5)1.021(T−20) 0.85
(o). TOBr=(Br−)1.68.DOC−0.652.O3

1.1.pH−3.62.TIC−0.168.(NH3–N)0.085.(H2O2)−2.25 0.98
(p). TOBr=0.9(Br−)1.53.DOC−1.07.O3

0.766.pH−1.05.T1.927 0.95
44. Uyak et al. (2005) THMs=0.0707(TOC+3.2)1.314(pH−4.0)1.496 (D−2.5)−0.197(T+10)0.724 0.98 (μg/L)
44. Uyak and Toroz
(2005)

Log(THMs)=1.078+0.398log(TOC)+0.158log(T)+0.702log(D) 0.83 (μg/L)

44. Tyrovola and
Diamadopoulos (2005)

Bromate=e−19.4(Br−)0.8(pH)7.28(O3)1.26(tm)0.89 0.80 (μg/L)

45. Rodrigues
et al. (2007)

THMs=16.0+1.6FA+0.1D+0.3T−0.8FA×T−1.2FA2−2.8D2 NR (μg/L)
CHCl3=3.5+0.8FA+0.02D+0.07T−0.3T2 NR
BDCM=4.5+0.7FA+0.04D−0.8D2+0.4T2 NR
DBCM=4.0+0.4FA+0.05D+0.1T−1.0D2−0.7FA2 NR
CHBr3=4.0−0.2FA+0.03D+0.09T−0.6 FA×T−0.5 FA2−0.8D2 NR

46. Uyak and Toroz
(2007)

Developed several models as a function of various reaction coefficients and the ratio between HOBr
and HOCl

NR (μg/L)

47. Hong et al. (2007) THMs = 10−1:375t0:258 D=DOCð Þ0:194 :pH1:695T0:507 Br−ð Þ0:218 0.87 (μg/L)
BDCM=10−3.201t0.297.pH2.878T0.414(Br−)0.371 0.87
CHCl3 = 10−0:748t0:210 D=DOCð Þ0:221:pH1:374T0:532 Br−ð Þ−0:184 0.86

(continued on next page)
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under a variety of environmental conditions, as well as the kinetics for
DBP formation. More than 48 scientific publications have reported at
least 118models that have been presented for predicting DBP formation
since 1983. A number of these models have been developed through
field and laboratory-scaled investigations using raw, pretreated and
synthetic waters (generated using commercial humic acid or NOM
collected from designated sources), while others were developed from
the analysis of passively collected data obtained from a range of
databases.Out of 48 existingpublications, 42have focused onmodels for
predicting THM formation, while 8 studies examined HAA formation
models, 5 reports focused on bromate formationmodels and 1 reported
on chlorite formationmodel. A comprehensive chronologic summary of
DBP model developed since 1983 is outlined in Table 3. In terms of the
118models presented, the greatest area of focus was onTHM formation,
for which 49 models have been proposed, followed by HAAs, chloro-
form, bromodichloromethane, dibromochloromethane and bromate
eachwith 14,12, 8, 6 and 6,models respectively (Table 3). Most of these
models have been developed using empirical relationships among
different parameters andDBP concentrations, while a limited number of
studies (6 studies) have reported DBP formation models based on
kinetic relationships (Engerholm and Amy,1983; Adin et al., 1991; Clark
and Sivaganesan,1998; Clark et al., 2001;Golfinopoulos andArhonditsis,
2002b;Gang et al., 2002). Only 3 studies employed statistically designed
experiments (e.g., factorial designs) to better determine the effects of
the main factors, as well as the effects of their interactions through
simultaneous variation of a limited number of parameters (Clark et al.,
2001; Korn et al., 2002; Rodrigues et al., 2007). Other studies employed
one-factor-at-a-time approaches by keeping the other parameters
constant or used passively collected data from available databases to
develop their models. However, the use of factorial designs with
replications and center points of all factors for determining the
significant factors and their interactions involved in DBP formation is
very limited in the existing literature to date.

A number of parameters have been incorporated in the development
of DBP predictive models. The parameters most frequently incorporated
include total organic carbon (TOC), dissolved organic carbon (DOC),
ultraviolet absorbanceat254nm(UV254), specificultraviolet absorbance,
defined as 100UV254/DOC, (SUVA), pH, temperature (T), bromide ion
concentrations (Br−), chlorine dose (D) and reaction time (t). The TOC,
DOC, UV254 and SUVA are often used as surrogatemeasures representing
NOM in water. TOC indicates the total mass of organic substances
(suspended anddissolved fractions),whileDOC indicates themass of the
dissolved fractions and UV254 represents the specific structure and
functional groups ofNOM(Edzwald et al.,1985; Croueet al.,1998;USEPA,
2001a,b). The SUVA is an indicator of NOM reactivity. A fewother studies
have incorporated chlorophyll-a and fluorescence as the surrogates for
NOM in water (Golfinopoulos et al., 1998; Ibarluzea et al., 1994). A
number of these models use more than one parameter from TOC, DOC,

UV254, SUVA and algae to address the effects of NOM (Amy et al., 1987;
Malcolm Pirnie Inc., 1992, 1993; Sung et al., 2000; Sohn et al., 2004). In
addition, a number of studies have reported using NH3–N (Malcolm
Pirnie Inc, 1993), seasonal variation (Golfinopoulos and Arhonditsis,
2002a), regional effects (Milot et al., 2000) and ratios betweenHOCl and
HOBr (Nokes et al., 1999; Uyak and Toroz, 2007) in developing DBP
formationmodels. As shown in Table 3, the number of water quality and
operational parameters used in the reported models ranged from 2 to 8
(Garcia-Villanova et al., 1997a; Malcolm Pirnie Inc., 1993).

In general,models based onfield data aremore realistic as these data
incorporate the responses of specific series ofwater treatmentprocesses
and their corresponding distribution systems (Sadiq and Rodriguez,
2004). However, some parameters affecting DBP formation are difficult
to estimate in field-scale studies. For example, estimating the reaction
time within distribution systems requires hydraulic simulation models,
which are time consuming and not always very accurate. Moreover,
field-scale models are generally site specific (Rodriguez et al., 2000).
Conversely, empirical models developed through laboratory experi-
ments have been found to be more reliable than field-scale studies
because they employ controlled conditions, where effects of a particular
parameter can be determined by keeping the other parameters
constants or by performing factorial analyses following a statistical
design of experiments. However, theDBP occurrences through reactions
with residual NOM in distribution systems are not typically included in
these laboratory-scale models. Table 4 briefly describes the water
sources, experimental conditions, performances, advantages and limita-
tions of the models listed in Table 3. From Table 3, it can be noted that
most of the models were developed using multivariate regression
techniques. Some studies developed first- and second-order kinetic
models and the coefficients were estimated using multivariate regres-
sion analyses. A number of studies have reported developing DBP
formation models using two parallel first-order reactions (e.g., fast and
slow reactions). As can be seen from Table 3, laboratory-scale models
generally considered a greater number of parameters and larger
numbers of data points than models based on field-scaled studies.
This may be due to the shorter time required to obtain a comprehensive
data set, as well as the greater flexibility and control over experimental
variables and operational conditions possible in a laboratory environ-
ment compared to a field-scale environment.

To evaluate the performance of different models, it is often
required that the models be developed under similar water quality
and operational conditions. It is often difficult to make precise
judgments regarding the performance of reported models, as these
models were generally developed using different modelling
approaches, parameters and pretreatments, as well as variable water
quality characteristics. A large number of models were evaluated
using statistical techniques, where coefficients of determination,
correlation coefficients, mean absolute errors between measured

Table 3 (continued)

Author and year Model descriptions R2 Unit

48. Semerjian
et al. (2008)

THMs2=17.31+10.52D2+259728.60(SUVA)2 0.39 (μg/L)
THMs2=42.10+29.23D2+353375.0(UV254)2 0.33
THMs2=−471.11+0.48t2+1856.07(Br−)2+404.38D2 0.31

THMs=total trihalomethanes; CHCl3=chloroform; BDCM=bromodichloromethane; DBCM=dibromochloromethane; CHBr3=bromoform; HAAs=haloacetic acids;
MCAA=monochloroacetic acid; DCAA=dichloroacetic acid; TCAA= trichloroacetic acid; MBAA=monobromoacetic acid; DBAA=dibromoacetic acid;
BCAA=bromochloroacetic acid; HAA5=(MCAA+DCAA+TCAA+MBAA+DBAA); HAA6=HAA5+BCAA; POX=purgeable organic halide; NPOX=nonpurgeable organic
halide; NPTOX=nonpurgeable organic halide; BRO3

−=bromate; TOBr=total organic bromide; P=probability of exceedence from the regulatory limit; a=ratio between THMs
formed (μg/L) and chlorine consumed (mg/L); β=ratio between HAAs formed (μg/L) and chlorine consumed (mg/L); NVTOC=nonvolatile total organic carbon (mg/L);
TOC=total organic carbon (mg/L); DOC=dissolved organic carbon (mg/L); UV254=ultraviolet absorption at 254 nm wavelength (cm−1); D=chlorine dose (mg/L);
T=temperature (°C); t=reaction time (hour); tm=reaction time in minute; u=rate constant (min−1); CAo=initial concentration of chlorine (mg/L); K=dimensionless
constant; Br−=bromide ion concentrations (mg/L); NH3–N=ammonia nitrogen (mg/L); q=dimensionless time; Flu: fluorescence (%); Co=residual chlorine at plant (mg/l);
O3=transferred ozone doses; IC=inorganic carbon (mg/L); DO3=dissolved ozone doses (mg/L); TOBr=total organic bromine (μg/L); NPOC=nonpurgeable organic carbon; S,
Sp=dummy variables for summer and spring; Chla=chlorophyll-a (mg/m3); OH−=hydroxide concentration; N=dummy variable; k=rate constant; C=chlorine dioxide
concentration (mg/L); p=peroxone ratio (H2O2/O3); Toz=ozonation temperature (°C); f=fraction of chlorine demand for rapid reactions; kr, ks=rate constants for rapid and
slow reactions (/h); Qoutflow=outflows in the finished water reservoir; V=volume of the tank; FA=fulvic acid (mg/L); R=residual chlorine (mg/L); DCAN=dichloroacetonitrile
(μg/L); TCP=1,1,1- trichloropropanone (μg/L).
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and predicted data, and distributions of residuals are often considered
as indicators of model performance. However, regression models
often have limitations in that these models should be used within the
experimental conditions for which the models were developed
(Montgomery and Runger, 2007). Despite the fact that most models
presented in Table 3 are multiple regression models estimated from
field or laboratory data, operating regions in the factors over which
the models provide reliable predictions were seldom reported. In
addition, most of the models did not consider actual water supply
systems and/or external databases for model validation. Natural
systems, such as water supply systems are typically associated with
uncertainty from a number of sources, including model parameter
selection, the distributions of model parameter values, limited data
and/or lack of proper knowledge. Most of the models presented
Table 3 do not include discussions on possible uncertainty associated
with their respective regression coefficients and model parameter
values. The model parameters may also vary temporally and spatially.
As a result, it is recommended that studies also investigate the effects
of simultaneous variability of different model parameters to assess
possible interaction effects. This could be performed using factorial
analysis for all of the model parameters using replications and center
points. Only three studies in Table 3 conducted factorial analysis;
however, incorporation of all of the parameters, replications and
centre points were not considered in those studies. As such,
interaction effects for the full set of combinations of the model para-
meters were generally absent in these studies.

3.2. Potential application of models

Predictive models for DBP formation have a wide range of
applications in the design and management of drinking water supply
systems, for regulatory agencies, in toxicological and epidemiological
risk assessment studies, as well as in risk–cost trade-off analyses. These
models can be employed to determine the effects of different water
quality and operational parameters on DBP formation. Based on the
analyses, different water quality and/or operational parameters can be
adjusted to control DBP formation in drinking waters. Managers and
operators of drinking water supply systems can use these models as a
decision-making tool to achieve better operational control during the
treatment process. This can be accomplished in different ways: (i) DBP
concentrations can be controlled within regulatory limits by adjusting
different parameters; (ii) operational parameters such as, pH can be
controlled to prevent corrosion/scaling in water distribution systems;
(iii) locations of chlorine boosting stations can be determined to ensure
that free chlorine residuals aremaintained for the protection of drinking
water quality throughout distribution systems; and (iv) concentrations
of DBPs at the extremities of distribution systems can be predicted to
identify the worst case scenarios in terms of possible health risks.

Regulatory agencies can use the models to verify the status of the
water supply systems. A significant number of water supply systems in
theUSA and Canada aremore than 50 years old. These systems generally
involve conventional pretreatment processes, which do not include
enhancedpretreatments prior todisinfection.Anumberof these systems
often reported relatively high concentrations of DBPs in their finished
waters (USEPA, 2006; MOE, 2006). To provide a better control of DBP
formation, many of these water supply systems in USA and Canada may
require improvements in thenear future. Upgrading these systems could
reduce the risks associated with DBP exposure, however the increased
cost to the municipalities may not make this option feasible. Regulatory
agencies evaluate the benefits of risk reduction resulting fromupgrading
systems and compare these with the associated costs required for such
improvements. The predictive models can be used to evaluate the
required reduction in precursors (in combinationwith available models
to determine the organic precursor removal efficiencies of different
treatment processes), which allow for compliance with DBP standards,
and thus estimate the needs for the upgrading of water supply systems.

In the recent years, there has been an increasing concern over the
possible health risks associated with DBP exposure. Regulatory agencies
are often guided by the risks predicted through toxicological and
epidemiological studies, which are generally conducted through
laboratory investigations. However, these studies are often time
consuming, costly and not available for all water supply systems. As
such, generation of DBP data through laboratory investigations are
typically limited. DBP concentrations at a desired location can be
estimated using the predictive models. These data can then be useful in
estimating human exposure to DBPs through drinking water ingestion,
as well as inhalation and dermal contacts. As such, human health risks
can be predicted for different exposure routes. Fig. 2 presents the
framework for possible use of DBP formation models in risk assessment
studies. It should be noted thatwater quality and operational parameters
can be imprecise and are often associated with uncertainty (Fig. 2).
Uncertainty can be incorporated using statistical distributions as input
parameter values. A hypothetical example, which incorporates uncer-
tainty associated with DBP concentrations, is presented using the DOC
based THM formation model for raw waters developed by Sohn et al.
(2004) (Table 3: No. 41a). As input parameters, thismodel requires DOC,
chlorine dose, pH, temperature, reaction time and bromide ion
concentrations to predict THM concentrations. For this example, values
of DOC, chlorine dose, pH, temperature, reaction time and bromide ion
concentrations are assumed to be imprecise, where the minimum, most
likely and maximum value are known. The parameter values are
assumed to be DOC=1.9, 3.8, 8.1 mg/L; pH=5.4, 6.5, 8.7; chlorine
dose (D)=2.1, 3.5, 7.8 mg/L; water temperature (T)=9, 15, 21 °C;
bromide ion concentrations (Br−1)=10, 60,150 μg/L; and reaction time
(t)=7, 12, 23 h. Using the minimum, most likely and maximum values,
random data for each of the parameters have been generated following
triangular distributions and the THM concentrations have subsequently
been predicted using the predictive model for THM formation by Sohn
et al. (2004). The frequency distributions and probability density
function of the predicted THMs concentrations are shown in Fig. 3. The
predicted THMs ranged between 19.5 and 246.6 μg/L with a most likely
value of 78.2 μg/L (Fig. 3). These predicted THMs concentrations can
then be used to estimate the human health risks associated with THMs
exposure (Fig. 2). Risk assessment approaches addressing exposure to
drinking water contaminants have been presented in other studies
(USEPA,1998a,b; Joet al.,1990; LouvarandLouvar,1998; Chowdhuryand
Champagne, 2009). In addition to riskassessment studies, thismodel can
also be used to estimate desired operational parameters, such as pH or
reaction time by knowing THM concentrations. In these cases, the THM
concentrationscanbeapproximated through statistical distributions and
used in the models to predict the desired pH or temperature.

4. Future research needs

Significant research has been conducted to develop predictive models
for DBP formation in drinking water. The models can be used to identify
factors influencing DBP formation and the decay of disinfectants inwater
distribution systems. The relative contributions of water quality and
operational parameters to the formation of DBPs can also be determined
using these models. The application of a number of these models may be
limited as themodels are often derived from specific data sources and/or
source water quality and operational parameters. In addition to the
knowledge acquired in the last three decades, there is a need for
investigations that can lead to a better understanding and control DBP
formation in water treatment and distribution systems; perform
toxicological and epidemiological risk assessments; and, will assist in
decision-making process and implementation of water treatment and
supply system upgrades. Some of the existing knowledge gaps, which
must be addressed in the near future, are outlined below.

○ The organic content, pH, water temperature, reaction time,
bromide ion concentrations and free residual chlorine are generally
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Table 4
Model descriptions, advantages and limitations.

No. Model description Advantages Limitations

1.Minear and
Morrow (1983)

This study developed multiple regression model for
THMs formation through controlled chlorination in
the laboratory. Raw water from the Holston River
(Knoxville, Tennessee) was filtered using 0.45 μm
filter paper for the experiments. The organic
content was varied by adding commercially
available humic acid. A series of experiments was
carried out under controlled pH, temperature,
bromide ion concentrations and chlorine doses at
constant reaction time of 96 h. The study varied one
factor by keeping the other factors constant.

The model was verified using data developed from
field-sampling program. The model has strong
predictive ability

Model does not consider reaction time as an
explanatory variable. In waters with insignificant
bromide ions, the model performance may be
reduced as the formation of brominated THMs
depends on the fractional characteristics of NOM in
water.

2. Urano et al.
(1983)

This study developed empirical model to predict
THMs formation. Aqueous solution of humic acid,
obtained as a reagent from coal by Wako Chemical
Co. and raw water from Sagami River in Japan were
used for chlorination experiments in this study. The
model's applicability was tested for river and lake
waters using historical data and laboratory
experiments.

The model was tested using river and lake water
samples as well as historical data and found to be
efficient.

Reaction temperature was not considered as an
explanatory variable. The R2 value of the model is
unknown.

3. Engerholm and
Amy (1983)

A kinetic model for predicting chloroform
formation was developed as a function of reaction
time, initial total organic carbon (TOC), initial
chlorine-to-TOC ratio, temperature, and pH. The
laboratory chlorination experiments were
conducted on synthetic water prepared by adding
commercial humic acid to deionized water. This
study characterized the effects of different factors
by varying one-factor-at-a-time keeping the other
factors constant.

The model is effective in predicting chloroform
formation and provide realistic framework for
predicting chloroform formation in different source
waters

Temperature and pH were not included as the
explanatory variables in the model. The model may
not be efficient to predict THMs formation inwaters
with bromide ions.

4. Morrow and
Minear (1987)

This study was an extended work of Minear and
Morrow (1983). In this study, non-linear regression
analysis was performed to develop THMs formation
model using Gaussian, Dud and Marquardt
methods. The effects of bromide ions on THMs
formation were characterized in this study. The
models were validated using twenty Tennessee raw
and finished water supply systems data.

Presented different options and methodologies of
modeling THMs formation. Some of the validation
data showed excellent agreement with the model
predictions.

Model did not consider reaction time as an
explanatory variable.

5. Amy et al.
(1987)

This study developed linear and non-linear
regression models to predict THMs formation in
drinking water using a robust database from
laboratory chlorination experiments on raw waters
of nine US rivers. Boundary conditions of
explanatory variables were defined for the model
development. Different models were developed for
short-term (tb8 h) and long-term (tN24 h) THMs
formation.

The models were based on robust database from
several water sources with variable water quality
characteristics. The R2 value was excellent.

The study used UV254 and TOC in the model;
however, UV254 and TOC are the surrogates of NOM.
Thus, parameters estimation might have suffered
from confounding effects. Raw water characteristics
are different from the treated water characteristics,
which may not represent real water supply systems
in the present days.

6. Adin et al.
(1991)

Authors developed a mechanistic model for THMs
formation based on their formation kinetics. Humic
acids were isolated from the Sea of Galilee (Lake
Kinneret) water in Israel. This humic acid was used
to generate water samples for chlorination
experiments in laboratory scale. Model showed
THMs as a function of TOC, chlorine dose and
contact time.

Modeling approach allows examining the kinetics
of THMs formation.

The model did not consider pH and temperature.
The source had very high bromide ions
concentrations (up to 1.9 mg/L), which might have
effects on THMs formation, while bromide ions
were not considered in the model.

7. Harrington
et al. (1992)

This study developed computer program to
simulate THMs formation, removal of TOC and
ultraviolet absorbance by alum coagulation, and
changes in alkalinity and pH. This study used the
model and databases developed by Amy et al.
(1987).

The model was based on very robust database from
several water sources with variable water quality
characteristics. The R2 value was excellent.

The study used UV254 and TOC in the model. Source
waters have variable water quality and chlorination
characteristics

8. Malcolm Pirnie
Inc. (1992)

This study developed empirical models for CHCl3,
BDCM and DBCM formation in drinking water from
experiments with California State Project and
Colorado River Aqueduct waters. The models
incorporated TOC, UV254, chlorine dose, pH,
reaction time, temperature and bromide ion
concentrations as explanatory variables.

This study developed models to predict individual
THMs species. This was an advantage over the
previous models that predicted total THMs

Models used UV254 and TOC together; however,
UV254 and TOC are surrogates of NOM. R2 values of
the models were not reported.

9. Malcolm Pirnie
Inc. (1993)

This was a follow up study of Malcolm Pirnie Inc.
(1992). In this study, THMs as a whole and species
wise models were developed. This study
incorporated ammonia nitrogen with the other
parameters in modeling THMs formation.

The effects of ammonia nitrogen (NH3–N) were
incorporated in the models, which was a new idea.

Models used UV254 and TOC together; however,
UV254 and TOC are surrogates of NOM. R2 values of
the models were not reported.

10. Montgomery
Watson (1993)

Models for four THMs species and five HAAs were
developed in this study. This study combined three
laboratory scale databases developed in four

Models were validated using independent database. Combined TOC with UV254 in the models; Raw
water characteristics and chlorination do not
represent treated water characteristics and
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Table 4 (continued)

No. Model description Advantages Limitations

different studies across USA including the works of
Amy et al. (1987). Models were developed
according to the ratio between chlorine dose and
bromide ion concentrations in water. Good
predictive abilities of these models were observed.

chlorination.

11. Lou and
Chiang (1994)

Water samples from 18 locations of the Taipei River
in Taiwanwere collected over a period of 6 months.
A predictive regression model for THMs in the
distribution system was developed using THMs in
the treatment plants and other factors. The model
considered the effects of distribution pipes on THMs
formation.

Observed data were within 10.9% of the simulated
results. Model includes water dispersion in the
distribution system.

Model did not consider temperature as an
explanatory variable. Measuring dispersion in a real
system distribution network is extremely difficult.

12. Ibarluzea et al.
(1994)

Authors developed a multiple regression model for
predicting chloroform formation using monthly
samples (during 1 year) from the water treatment
plant and the finished water of the city of San
Sebastian (Spain). In addition to the normal water
quality and operational parameters, they used
fluorescence as an indicator of NOM instead of more
common indicators mentioned in the literature
such as TOC and UV254.

Very simple model with relatively good results Model does not consider reaction time as an
explanatory variable. Use of fluorescence as an
indicator of NOM was not justified in the previous
studies or in their study

13. Ozekin (1994) This study used ten different sources of water to
develop bromate formation model through
ozonation in laboratory. The initial model was
developed at a constant temperature of 20 °C and a
temperature adjustment model was developed as
well.

Temperature adjustment had flexibility to perform
water disinfection at variable temperature. This was
the earliest model to predict bromate formation in
water

Model validation or R2 value was not reported.

14.Siddiqui
et al. (1994)

In this work, a series of empirical models for
predicting brominated byproducts were developed.
The water samples were collected from three water
treatment plants in USA. Data for modelling works
were generated by ozonating water sample in the
laboratory.

Model allowed to consider effects of temperature on
bromate formation

Model showed moderate performance in predicting
brominated byproducts

15. Song
et al. (1996)

This study developed a multiple regression model
for predicting bromate formation in drinking water.
Experimental data were generated through batch
reactions by varying one factor at a time approach.
Isolation and fractionation of NOM was performed
prior to ozonation. The model established boundary
conditions to obtain the reasonable predictions of
bromate formation. The model was validated using
the laboratory-scaled data and with data from
published literature.

The model showed very good performance in
predicting bromate in natural waters. The model
was validated internally by using laboratory data
and externally by using data from published
literature.

Variation of water temperature was not considered
in the experiments. Thus, model did not allow
predicting seasonal variations of bromate. The
boundary conditions may impose limitations in
using the model at diverse environmental
conditions.

16. Rathbun
(1996a)

This study developed multiple regression models
for predicting CHCl3, BDCM, DBCM and CHBr3
formation using water samples from the
Mississippi, Missouri and Ohio Rivers in USA. Water
samples were collected during the summer and fall
of 1991 and spring from 1992 at 12 locations. The
models were developed at a constant temperature
of 25 °C and constant reaction time of 7 days.

Models showed good predictability. The root mean
square of the model predictions and experimental
data were found good.

Raw waters do not represent characteristics and
chlorination of the treated water. The models did
not consider reaction time and temperature as
explanatory variables.

17. Rathbun
(1996b)

In this work, multiple regression models for
predicting THMs and NPTOX formation were
developed using water samples from the three
rivers as of Rathbun (1996a). However, the raw
waters were filtered using prewashed 0.45 μm low-
extractable cellulose acetate membranes prior to
use. A 3×3 orthogonal experimental design for pH
and chlorine dose was followed in this study. The
regression coefficients for the models were found to
be comparable to the previously published
literature.

Models based on a very robust database
representing variable water quality of three rivers.

The models did not consider reaction temperature
as explanatory variable. Interaction effects of the
factors were not identified in this study

18. Chang
et al. (1996)

In this work, THMs formation models were
developed using raw water chlorination
experiments in the laboratory following multiple
regression technique. The water samples were
collected from Pen-Hsing River as well as Pan-
Hsing, Fong-Yuen and Chen-Chin-Hu water
treatment plants in Taiwan to develop and validate
THMs formation models. This study varied followed
one-factor-at-a-time approach. The temperature
was kept constant throughout the experiments.

The models were simple and had very good
predictive ability.

One of the three models used UV254 and TOC, which
could result in erroneous parameter estimation. The
models did not consider water temperature as an
explanatory variable. Raw water and treated water
characteristics are different.

19. G.-Villanova
et al. (1997a)

In this work, samples were collected from eight
different locations of two conventional water
treatment plants in the city of Salamanca (Spain).
The samples were collected on 11 different dates to

This study developed model with reduced number
of variables. The model incorporated spatial and
temporal variability of sampling location and time.

This model did not consider chlorine dose, organic
content, reaction time or bromide ion
concentration. The model contained third and
higher order polynomials of temperature which

(continued on next page)
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Table 4 (continued)

No. Model description Advantages Limitations

represent seasonal variations of chlorinated DBPs
and other water quality parameters. Using these
data, regression model for predicting chloroform
formation was developed.

made it highly sensitive to use for the water
treatment plants

20. G-Villanova
et al. (1997b)

This is a continuous study of G-Villanova et al.
(1997a). Water samples were collected from six
locations of the distribution systems of three water
supply reservoirs in the city of Salamanca (Spain).
This study developed regression model for
predicting chloroform formation in drinking water.
This study used dummy variables to consider the
locational variability within the distribution system
and the effect of time of sampling in the model
development.

The model incorporated spatial and temporal
variability of sampling location and time. Dummy
variable was used to incorporate the effects of
distribution systems on chloroform formation.

This model did not consider chlorine dose, organic
content, reaction time or bromide ion
concentration. The model contained third and
higher order polynomials of temperature which
made it highly sensitive to use for the water
treatment plants

21. Huixian
et al. (1997)**

In this study, non-linear regression models for
predicting the formation of POX and NPOX were
developed using chlorination of water samples that
had fulvic acid as the NOM. The fulvic acid was
isolated from the Taiping Lake in China, which was
used to preparewater samples and chlorinationwas
performed in the laboratory. The effects of ammonia
nitrogen on POX and NPOX formation were also
investigated in this study.

This study characterized the effects of different
factors including ammonia nitrogen. The models
appeared with very accurate predictive abilities

Number of data is unknown. THMs, HAAs cannot be
separated to check the regulatory compliance.

22. Clark and
Sivaganesan
(1998)

In this study, a second-order kinetic model was
developed to predict THMs formation in drinking
water. This study used synthetic water prepared by
adding commercial humic acid to Super-Q water to
perform bench-scale chlorination experiments in
the laboratory. The THMs formation model was
developed using a balanced equation between
hypochlorous acid and substances responsible for
chlorine demand. The model was validated using
two field studies performed in the past (Clark et al.,
1994; Vasconcelos et al., 1997).

The model allows characterizing THMs formation as
a function of chlorine consumption and
fundamental reaction kinetics.

The R2 values for the model coefficients range
between fair and good. It is not proved that the
second-order model would give better predictions
than first-order kinetics. Formation of THMs is a
continuous process; thus, the assumption of
balanced equation may affect the result.

23. Golfinopoulos
et al. (1998)

This study developed a multiple regression model
for predicting THMs formation in the finished water
leaving the plant using field sampling from the
Galatsi Treatment Plant of Athens. A particular
feature of this model is that chlorophyll-a was
introduced in the model as an indicator of NOM.
This study included seasonal variability of THMs
formation. Overall 82% of the predicted values were
found to be within ±20% of the measured values.

Model represented actual water supply system and
seasonal variation of THMs formation

The model did not consider reaction time as an
explanatory variable. Moreover, chlorophyll-a is not
a common surrogate measure for NOM in water.

24. Amy
et al. (1998)

This study developed THMs formation models
based on data generated from untreated river
waters in USA. The model used DOC instead of both
TOC and UV254 as indicators of NOM in their original
works Amy et al., 1987).

Empirical based models were developed for
haloacetic acids, chloral hydrate, and bromate.

Raw water characteristics and chlorination do not
represent characteristics of treated water.
Chlorination conditions of data from different
source waters were different.

25. Nokes
et al. (1999)

In this study, kinetic models for predicting THMs
formationwere developed through incorporation of
HOBr and HOCl ratio and activated carbon atoms.
The water samples were collected from drinking
water supplies prior to their chlorination points in
New Zealand. The model constants were estimated
using data from experimental chlorination of 17
surface and ground waters in New Zealand.

The models analyzed the effects of bromide ions in
the THMs formation kinetics

Chlorination conditions for different samples were
not comparable. The models incorporated activated
carbon atom to determining halogen substitution;
however, the reaction kinetics for halogens
substitutions are partially known. Models did not
consider other factors, such as pH, temperature as
explanatory variables.

26. Rodriguez
et al. (2000)

This study developed THMs formation models by
combining data from Amy et al. (1987), Rathbun
(1996a,b) and Montgomery (1993). The models
were validated using field-scale database from
small water utilities in Quebec (Canada). Sensitivity
analysis was also performed using field-scaled
database. Field-scaled models were also developed
for the raw waters in southern Quebec.

A robust database is considered to develop simple
and accurate models.

The field-scaled model's predictability was poor.
Many assumptions have to be made to apply the
models to field-scaled data. Chlorination conditions
for different databases were different. Raw waters
do not represent treated water characteristics.

27. Milot
et al. (2000)

This work developed models for predicting
probabilities of exceeding specified values of THMs
using logistic regression analysis. This study was
designed to estimate the susceptibility of water
utilities to human. The data for modeling were
collected from several utilities in Quebec, Canada. A
sensitivity analysis using this model can identify the
strategy of reducing THMs formation in the
distribution systems.

The probability of exceedance can be useful in
predicting possible carcinogenic and non-
carcinogenic effects to human as well as to perform
epidemiological study.

Models do not consider water quality and
operational characteristics (chlorine dose, pH, t, T,
TOC, DOC or UV254).

28. Sung
et al. (2000)

This study developed semi-mechanistic models for
THMs, HAA5, CHCl3 and TCAA formation in drinking
water using raw waters for the Massachusetts
Water Resources Authority. This work incorporated

The model was developed for an actual water
supply system, which represented seasonal
variability. The models showed very good
performance with the validation data.

The models did not consider temperature as an
explanatory variable. The THMs and CHCl3 models
used UV254 and algae together, while UV254 and
algae represented NOM. Use of hydroxide
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Table 4 (continued)

No. Model description Advantages Limitations

hydroxide concentration and chlorine decay
kinetics in the model development The model
coefficients were determined using data from
October 1997 to July 1999 and the model was
validated with data from August 1999 to January
2000.

concentration as a model explanatory variable was
not common.

29. Westerhoff
et al. (2000)

This study developed regression models to predict
THMs formation and residual chlorine decay for
finished water in the treatment plants. The
historical data for model development were
obtained from three water treatment plants in Paris
from 1990 to 1996. The plants had variable water
quality and operational characteristics. The model
incorporated chlorine consumption and 10% of the
bromide ion concentrations for THMs formation
model development.

This model determined the percentages of bromide
ions converted into THMs.

Model performance was not reported. The model
was based on raw water data. Chlorine
consumption in the plants and water distribution
systems depends on pipe walls, biofilms on the pipe
walls and bulk flow of water in the pipe. Conversion
of bromide ions into THMs depends on temperature
and pH.

30. Elshorbagy
et al. (2000)

This study developed model to characterize kinetics
of THMs formation using non-linear optimization in
a full dynamic water distribution system. This study
incorporated the bromine content factor for the
model development. The model was tested and
verified by applying to a portion of the Abu-Dhabi
water distribution systems in the United Arab
Emirates.

The model was able to predict differences in THMs
formation within different nodes of the distribution
systems. The model predicted bromide ions decay
in the distribution systems.

Model performance was not reported. Conventional
variables were not incorporated in the model
development.

31. Clark
et al. (2001)

This study developed kinetic models for predicting
four THMs and nine HAAs formation in drinking
waters. The laboratory investigations were
performed using synthetic water prepared by
adding commercial humic acid to Super-Q water. A
two block, full factorial design was followed to
perform the laboratory experiments. Two levels of
chlorine doses, three levels of pH and reaction time
and four levels of bromide ion concentrations were
investigated in this study. The authors used a
second-order rate and chlorine decay kinetics to
predict DBPs formation in water distribution
systems. The R2 values for the models were more
than 0.95 except for MCAA, which was 0.53.

The models integrated mechanistic and empirical
methods, which provided higher degree of
flexibility for model applications.

This study conducted experimental investigations
at constant organic content (TOC, DOC or UV254)
and temperature. The interaction effects of the
factors were not characterized. It was not proved
that this approach gave better results than classical
regression models.

32. Golfinopoulos
and Arhonditsis
(2002a)

This study developed multiple regression models
for THMs, CHCl3 and BDCM formation in finished
drinking water using data from the Menidi
Treatment Plant of Athens. Rawwater samples were
collected in duplicates from nine different points
over the plant throughout June 1995–November
1998. The models incorporated the effects of
seasonal variability as one of the explanatory
variables. In general, these models were found to
give acceptable fits over the annual cycle.

The models were developed based on the data from
actual water treatment plant. Models represented
seasonal variability for THMs, CHCl3 and BDCM
occurrences.

Raw water characteristics and chlorination do not
represent the treated water characteristics and
chlorination. The performance of models was
relatively low

33. Golfinopoulos
and Arhonditsis
(2002b)

This study developed a modeling procedure with a
time discretization of 1 min and simulated the
kinetics of THMs formation in water treatment
plants. The fundamental concept of the model was
based on the representation of the water treatment
plant as a mixed flow reactor, where the formation
of THMswas predicated on a generalized reaction of
total halogens with an organic precursor.
Volatilization, flocculation, coagulation and
sedimentation processes were also incorporated in
the model in order to assess their distinct role. All
data for this study were obtained from Menidi and
Galatsi Water Treatment Plants in Athens, Greece
throughout 1993–1998.

This study presented a promising methodological
basis towards the realistic reproduction of the
dynamics of water treatment plants and the
development of reliable numerical tools for the
accurate prediction of THMs formation.

The model was not validated. This model was
developed based on raw water characteristics and
chlorination, while water is pretreated prior to
chlorination in most of the water supply systems.
The conventional water quality and operational
variables, such as water temperature and pH were
not considered as the explanatory variables.

34. Korn
et al. (2002)

This study developed chlorite formation model
through bench-scale experiments using water from
seven drinking water treatment plants in Canada. A
two-level full factorial designwas performed for the
experiments instead of using conventional one-
factor-at-a-time approach. This approach
determined the interaction effects of the factors

This model presented the basic understanding of
chlorine dioxide byproducts formation in water.
Predictive capabilities of the model is high

NPOC and UV254 were simultaneously used;
however, both characterize NOM in water.

35. Gang
et al. (2002)

This research developed kinetic models to predict
THMs and HAAs formation and chlorine decay
kinetics through chlorination of eight Missouri
surface waters (raw and alum-treated). Water
samples were filtered using membrane ultra
filtration prior to experiments to determine
chlorine demands for different fractions of NOM.

This model used chlorine demand other than
conventional chlorine dose in models. Models
allowed examining the effects of molecular weights
of NOM fractions on DBPs formation.

Water quality and operational variables (chlorine
dose, pH, either TOC DOC or UV254, temperature)
were not incorporated in the models. Developed
model is usable for research but may be difficult to
apply to the actual water supply systems.

(continued on next page)
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Table 4 (continued)

No. Model description Advantages Limitations

Two parallel first-order reactions, based on fast and
slow reaction kinetics, were incorporated in these
models.

36. Serodes
et al. (2003)

This study developed regression models for
predicting THMs and HAAs formation through
bench-scale chlorination experiments using treated
waters (prior to final chlorination) from threemajor
drinking water utilities in Quebec (Canada). Water
samples with variable conditions of water quality
were collected over 6 month (May–November
2000) period.

Data from the experimental chlorination allowed
representing the seasonal variations of watering
quality characteristics.

The models did not consider pH as an explanatory
variable. Models showed variable performance.
Models were not validated

37. Nikolaou
et al. (2004)

This study developed multiple regression models
for predicting THMs and HAAs formation through
chlorination of river waters (with different water
quality regarding bromide ion concentration and
organic matter contents) from Lesvos island,
Greece. The study concluded that formation of
THMs and HAAs in water might have some
stochastic character, which was difficult to describe
by the conventional regression techniques.

Themodels usedminimum number of water quality
and operational variables. These models provided
satisfactory estimations of the THMs and HAAs
formation

The models were based on raw water samples.
Models did not consider NOM (either TOC DOC or
UV254) or reaction temperature. The R2 values of the
models were very low

38. Al-Omari
et al. (2004)

This study developed a regression model to predict
THMs formation in drinking water for Zai water
treatment plant (that supplied water to Jabal
Ammanwater supply systems) in Jordan. Themodel
was developed at 20 °C and another temperature
adjustment model was proposed for higher
temperature. The model was tested using data from
different locations throughout the Jabal Amman
water supply systems. WaterCad software was used
to incorporate water age in the distribution pipes.
Results showed good agreement betweenmeasured
and predicted THMs concentrations.

The model showed good agreement between
measured and predicted THMs concentrations.
Model used WaterCad software to simulate the
distribution systems using water flow
characteristics

Model did not incorporate temperature as an
explanatory variable. The R2 values of the model
were not reported

39. Kolla
(2004)

This study developed regression models in
laboratory to predict THMs, DCAN and TCP
formation in drinking water through chlorination of
raw water samples from five water supply systems
in Newfoundland, Canada. The samples were
collected and analyzed throughout January 2003–
May 2004.

In addition to THMs, DCAN and TCP were also
modeled in this study.

Models were developed using unfiltered raw water
samples. Reaction temperature was not
incorporated in the models. The models were not
validated.

40. Lekkas and
Nikolaou
(2004)

This study characterized the effects of bromide ions
on THMs and HAAs formation and developed
regression models for predicting THMs and HAAs
formations through bench-scale experiments in the
laboratory. Water samples for this study were
collected from Tsiknias River in Mytilene, Greece in
March 2000. These samples were spikes with
bromide ions at different concentrations. The study
performed one-factor-at-a-time experiments.

Themodels incorporated the effects of bromide ions
on THMs and HAAs formation. Model showed
excellent R2 value for THMs formation

The models did not consider NOM (TOC, DOC or
UV254) or reaction temperature. The R2 value for
HAAs model was low. Rawwater does not represent
treated water characteristics.

41. Sohn
et al. (2004)

This study developed multiple regression models
for predicting THMs, HAAs and bromate formation
for raw and treated waters. A total of 16 models
(THMs: 7 models; HAAs: 7 models; bromate: 2
models) were developed for raw and coagulated
waters. The models were developed and validated
using historical data assembled from Amy et al.
(1987, 1998) and Montgomery (1991), which were
obtained from 12 raw and a subset of 8 water
sources subjected to alum and iron coagulation in
USA. Different models were based on different
water quality parameters, such as, DOC, DOC*UV254,
as well as raw and treated waters. Boundary
conditions for the models were established.

Models were based on a very robust database that
was developed for variable water characteristics.
The models provided an option of comparing and
using different models at different environmental
conditions.

The models often used DOC and UV254 together as
the explanatory variables. Rawwater characteristics
do not represent the treated water characteristics.
Chlorination conditions for different source waters
were different

42. Uyak
et al. (2005)

Multiple regression model for predicting THMs
formation at finished water of the Kagithane water
treatment plant in Istanbul City, Turkey was
developed in this study. The raw water for the
treatment plant was obtained from the Alibeykoy
Reservoir and Terkos Lake in Istanbul. Data for THMs
and other water quality and operational parameters
were generated through a 12-month sampling
program between January and December 2003. This
model could be used to estimate THMs concentration
for different water quality and treatment processes
with different operational conditions.

The model has excellent predictive ability. The
model was directly applicable to the chlorination of
raw waters.

Raw water characteristics and chlorination do not
represent treated water characteristics and
chlorination. This model did not consider reaction
time as an explanatory variable.

43. Uyak and
Toroz (2005)

This study developed regression model to predict
THMs formation and characterized seasonal
variability of THMs formation within distribution

The model characterized effects of seasonal
variability on THMs formation within the water
distribution systems. Model showed good

The model did not characterize the effects of pipe
walls and biofilms. The model did not consider pH
and reaction time as explanatory variables.
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changed continuously in water treatment plants and distribution
systems. A limited number of studies have determined the
interaction effects from the simultaneous variability of some of
these factors (Rodrigues et al., 2007; Clark et al., 2001; Korn et al.,
2002). Korn et al. (2002) developed a chlorite formation model

using a two-level full factorial design for six factors (chlorine
dioxide, pH, temperature, reaction time, UV254 and NPOC).
However, the authors did not incorporate THMs or HAAs in their
study. Rodrigues et al. (2007) used fractional factorial experimental
designs to investigate THM formation, usingfive factors (fulvic acid,

Table 4 (continued)

No. Model description Advantages Limitations

systems of the Buyukcekmece water treatment
plant in Istanbul City (Turkey). The investigation
was based on a 30-week sampling program,
undertaken during the spring, summer and fall of
the year 2003. THMs and other water quality and
operational parameters were monitored at points
along the distribution system between the
treatment plant and the system's extremity. The
study found that the THMs formation in the
distribution systems were 1.2–1.8 times higher than
the THMs formation in the finished water at the
treatment plants during summer period, while
these were much less during spring and fall.

predictability

44. Tyrovola and
Diamadopoulos
(2005)

This study developed a multiple regression model
for predicting bromate formation in drinking water
during ozonation of groundwater containing
elevated bromide ion concentrations. The
groundwater samples from aquifers in coastal areas
(Northwestern area of Crete, Greece) were
ozonated in a semi-batch reactor under typical
ozonation conditions. This study characterized
effects of different parameters, such as ozone dose,
reaction time, pH and bromide ion concentrations
on bromate formation. The model simulated the
effect of water quality characteristics and treatment
processes on bromate formation.

The model was capable of estimating the
concentration of bromate concentration in
ozonated groundwater, which contain low
concentrations of ammonia and dissolved organic
carbon. The model had very good predictive ability.
Model was developed by considering the seasonal
variability

The model did not consider NOM (TOC, DOC or
UV254) and temperature as explanatory variables.

45. Rodrigues
et al. (2007)

This study developed THMs formation models
through laboratory experiments using synthetic
water, which was prepared by using hydrophobic
fraction of fulvic acid. The fulvic acid was collected
from Caldeirao dam in Guarda, Portugal and the
hydrophobic fractions were isolated using XAD-8
resin. This study performed fractional factorial
design with center points followed by response
surface analysis through Box–Behnken design. The
models incorporated interactions of different
factors.

This study followed statistical design approach to
characterize the effects of different factors. In this
study, interaction effects of different factors were
assessed statistically.

This study did not identify pH and reaction time as
significant factors. This study did not consider any
replication to consider experimental errors.

46. Uyak and
Toroz (2007)

This study developed four THMs and three HAAs
(DBAA, DCAA, BCAA) formation models using
chlorination of Buyukcekmece lake water, Istanbul,
Turkey. The raw water was filtered using 0.45 μm
filter paper prior to chlorination. Bromide ions were
spiked to six different levels ranging from 0.05 to
4.0 mg/L for the experiments. This study
incorporated the ratio between HOBr to HOCl in the
model development. The experiments follow one-
factor-at-a-time approach.

This study characterized the effects of the ratio
between HOBr to HOCl in the formation of THMs
and HAAs species.

The models did not consider the organic contents
(TOC, DOC or UV254), pH, temperature or reaction
time. The models were not validated and R2 values
were not reported.

47. Hong
et al. (2007)

This study developed multiple regression models
for THMs, BDCM and CHCl3 formation in drinking
water under different chlorination conditions using
samples from Dongjiang River in Hong Kong. This
study identified the effects of bromide ions on THMs
formation. This study followed an orthogonal
design, which allows the variation of only one
parameter at a time while other parameters
maintain a designated “baseline” condition.

This study characterized the effects of bromide ions
on different species of THMs formation. This study
included variable water characteristics

Raw water characteristics and chlorination do not
represent treated water characteristics and
chlorination.

48. Semerjian
et al. (2008)

The study developed predictive models for THMs
formation in Lebanon based on field-scale
investigations as well as laboratory-controlled
experimentations. Predictive models showed
variable R2 values. The laboratory-scale simulated
distribution system trihalomethane (SDSTHM) tests
were conducted on selected public drinking water
sources; namely the Kfar HeldaWTP and Zheyma in
Lebanon to predict as well as evaluate THMs
formations under controlled laboratory conditions.
Seasonal variability of THMs formation was
considered n this study.

This study developed models for both laboratory
and field-scale, which provided flexibility in the
model selection

Models did not consider pH and temperature as the
explanatory variables. The R2 values of the models
were very low.
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pH, reaction time, chlorine dose and temperature). They did not
find pH and reaction time to be statistically significant to THM
formation. However, Rodrigues et al. (2007) did not include
replicates in their experimental design, which could be employed
to provide a better estimate of the noise variance for use in
assessing statistical significance, which might have an impact on
their conclusions. Clark et al. (2001) performed a three-level full
factorial design for three factors (pH, reaction time andbromide ion
concentration) keeping total organic carbon (TOC) and tempera-
ture constant. As such, they did not characterize the effects of TOC
and temperature throughout their study. Other studies did not
generally consider interaction effects from the simultaneous
variability of different factors on DBP formation. To fill this critical
gap, it may be beneficial to perform full factorial experimental
designswith replications and center points including all significant
variables in THM formation (e.g., DOC, chlorine dose, pH, water
temperature and reaction time) in the assessment and formulation
of predictive model.

○ The presence of bromide ions has been demonstrated to have a
critical effect on the formation of different DBP species including
bromodichloromethane, dibromochloromethane, bromate, bromo-
form, etc. (Uyak and Toroz, 2007; Hellur-Grossman et al., 2001;
Nokes et al., 1999; Liang and Singer, 2003). The hydrophobic and
hydrophilic fractions of NOM typically follow different reaction
pathways with bromide ions to form DBPs. In general, brominated
DBPs are increased and chlorinated DBPs are decreased in the
presence of bromide ions. In recent years, regulatory agencies (e.g.,
Health Canada, 2007) have imposed limitations on bromodichlor-
omethane concentrations in drinking water to address its possible
chronic and sub-chronic effects on human health. As such, in
addition to total THMs, research should be focused on the prediction
of brominated species formation in water, which could also be
modeled independently.

○ The majority of DBP predictive models have been developed based
on multiple regression techniques by varying one factor at a time
while keeping other factors constant. Future research could
incorporate alternative experimental techniques, such as modeling
based on fundamental reaction kinetics, as well as robust modelling
approaches, such as fuzzy rule-based modeling (Chowdhury and
Husain, 2006), adaptive neuro fuzzy inference system (ANFIS)
modeling and artificial neural networks (Milot et al., 2002). The use
of hybrid modelling methodologies could also be investigated, e.g.,
the use of different approaches to establish DBP kinetic coefficients,
followed by the use of these coefficients relating them to water
quality and operational parameters, thereby reducing uncertainty in
their prediction.

○ A number of models reported in the literature are intended for the
prediction of total THMs and HAAs. Despite the fact that other DBPs
(e.g.,N-nitrosodimethylamine, chlorite and chlorate) have also been
identified as having potential chronic effects on human health,
predictive models for these compounds are very limited. Models to
predict other DBPs are also required to perform comprehensive
investigations on human health effects and compliance to regulatory
limits. The availability of these models would also permit the
evaluation of benefit–cost ratios of specific water supply systems,

leading to consideration of alternatives for possible control of water
quality and operational parameters, as well as water supply system
upgrades should these be necessary.

○ Water supply systems require compliance with regulations
regarding the potential presence of pathogenic microorganisms
and chemical species with effects on human health, which often
creates a need for trade-off studies. To ensure the safety of the
water supply from pathogenic microorganisms, water distribution
systems must provide adequate disinfection and a free residual
disinfectant. An initiative to predict free chlorine residuals and DBP
formation simultaneously would assist in such trade-off studies.
The kinetic models developed by Clark et al. (2001) could be
considered as the initial efforts in this direction.

○ Large-scale databases of DBP concentrations considering data from
15 to 30 years are generally limited as the recognition of the health
effects of these species and their monitoring are relatively new.
Development of systematic databases for DBP concentrations
would accelerate future research to estimate possible effects
from DBP exposure from an epidemiological perspective. These
types of studies are essential in regulating and establishing limits
for DBP formation in drinking water to protect human health.

5. Summary and conclusions

This study performed a review on the availablemodels to predict DBP
formation in drinking waters. Forty eight (48) studies addressing 118
models for predicting DBP formation were included in this review. A
number of challenges have been identified, which relate to water supply
systems in controlling DBP formation under varying water quality and
operational characteristics, as well as the need to maintain the
microbiological safety throughout the water distribution systems. Based
on the literature reviewed, different modelling approaches have been
used to relate water quality and operational parameters with DBP
concentrations inwater. Most of the reported models have used DOC (or

Fig. 2. Use of models in risk assessment studies.

Fig. 3. Predicted THMs concentrations using Sohn et al. (2004) model.
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TOC), disinfectant dose, pH, temperature, and reaction time as the
explanatory parameters. The majority of the studies reported empirical
approaches following multiple linear and non-linear regression techni-
ques in the development of their respective models, while a limited
number of investigations incorporated kinetics into their modelling
approaches. Thenumberof themodels basedon laboratory-scaled studies
was the highest, while a number of other studies proposedmodels based
on actualwater distribution systems. DBP predictivemodels can be useful
for operational purposes during water treatment, water quality manage-
ment for the evaluation of water treatment facilities, exposure assess-
ments in epidemiological studies, human health risk assessments, and
estimating the benefits and impacts of DBP regulations. However,
research is necessary to develop models that are more representative of
real water supply systems by incorporating simultaneous variations of
multiple parameters. In addition, evaluation of models is also required.
Simultaneous predictions of DBP formation and free chlorine residuals
could assist in the analysis of trade-off studies involving risks associated
with pathogenicmicroorganisms and chemical exposures, aswell as costs
associated with the upgrading of water supply systems.
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