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Eutrophication has altered food webs across aquatic systems, but effects of nutrient stoichiometry (varying nutrient ratios)
on ecosystem structure and function have received less attention. A prevailing assumption has been that nutrients are not
ecologically relevant unless concentrations are limiting to phytoplankton. However, changes in nutrient stoichiometry funda-
mentally affect food quality at all levels of the food web. Here, 30-year records of nitrogen and phosphorus concentrations and
ratios, phytoplankton, zooplankton, macroinvertebrates, and fish in the San Francisco Estuary (Bay Delta) were examined
to collectively interpret ecosystem changes within the framework of ecological stoichiometry. Changes in nutrient concen-
trations and nutrient ratios over time fundamentally affect biogeochemical nutrient dynamics that can lead to conditions
conducive to invasions of rooted macrophytes and bivalve molluscs, and the harmful cyanobacterium Microcystis. Several
other aquatic ecosystems considered here have exhibited similar changes in food webs linked to stoichiometric changes.
Nutrient stoichiometry is thus suggested to be a significant driver of food webs in the Bay Delta by altering food quality
and biogeochemical dynamics. Since nitrogen-to-phosphorus ratios have increased over time, an overall implication is that
remediation of fish populations in the San Francisco Estuary will require significant nitrogen reductions to restore the historic
ecological stoichiometric balance and the food web.

Keywords ammonium, Bay Delta, Corbula amurensis, delta smelt, Egeria densa, Microcystis, nitrogen, nutrient ratios,
pelagic organism decline, pH effects, phosphorus, stoichiotrophic imbalance
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INTRODUCTION

This review integrates concepts of eutrophication (e.g.,
Nixon, 1995; Cloern, 2001; Wetzel, 2001), ecological stoi-
chiometry (Sterner and Elser, 2002), and stable state theory
(Scheffer et al., 1993) in an overall framework for evaluating the
extent to which long-term changes in aquatic food webs in the
San Francisco Bay Delta and other aquatic ecosystems have re-

Address correspondence to Dr. Patricia M. Glibert, University of Mary-
land Center for Environmental Science, Horn Point Laboratory, P.O. Box 775,
Cambridge, MD 21613, USA. E-mail: glibert@umces.edu

sulted from human-driven changes in nutrient loads and forms.
Eutrophication is the process whereby systems are enriched
with nutrients with various deleterious effects, whereas eco-
logical stoichiometry—consideration of nutrient ratios—relates
changes in the relative elemental (e.g., nitrogen [N], phosphorus
[P], and carbon [C]) composition in body tissue and the water
column. Stable state theory suggests that external drivers or dis-
turbances (here, nutrients) can shift a system from one stable
state to another via interacting feedbacks.

Nutrient ratios have often been used to infer system lim-
itation when concentrations are known to be limiting to the
phytoplankton assemblage (Reynolds, 1999; Downing et al.,
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2001). A prevailing view has considered nutrient ratios to be
ecologically irrelevant unless concentrations are limiting to phy-
toplankton growth rate. Such a narrow application of nutrient
ratios, conferring importance only when concentrations limit
phytoplankton growth rate, needs to be expanded in recognition
of that fact that changes in nutrient stoichiometry fundamentally
affect food quality—from the base to the apex of aquatic food
webs—as well as system biogeochemistry, whether nutrients are
limiting or not (Sterner and Elser, 2002).

The central premise of this article is that alterations in nu-
trient stoichiometry have profound consequences for aquatic
food webs resulting from different organismal needs for differ-
ent nutrients and different abilities to sequester nutrients, and
that biogeochemical feedbacks associated with species assem-
blage changes may shift systems to new stable states. In this
review, 30 years of records of inorganic N and P concentra-
tions, phytoplankton, zooplankton, invertebrates, and fish in the
San Francisco Estuary were examined to interpret ecosystem
changes within the conceptual framework of nutrient dynamics.
The questions addressed in this article are: To what extent do
ecosystems self-assemble as a function of nutrient stoichiome-
try? Does changing nutrient stoichiometry have ecosystem ef-
fects even when nutrients are not at levels normally taken to
be limiting by primary producers? If the food web changes that
have occurred are related to nutrient loads, what are the bio-
logical, physiological, or biogeochemical processes that help to
explain, mechanistically, why such food web changes may have
occurred? And, what are the management implications of such
relationships?

These questions are highly relevant to the issue of cultural
eutrophication, which is one of the most pressing problems af-
fecting both coastal and freshwater ecosystems worldwide (e.g.,
Vitousek et al., 1997a,b; Howarth et al., 2002; Galloway and
Cowling, 2002; Turner et al., 2003; Conley et al., 2009; Doney,
2010). Nutrient pollution is on the rise because of dramatic in-
creases in human population in many regions, and concomitant
increasing demands for energy, increases in N and P fertilizer use
for agriculture, changes in diet that are leading to more meat pro-
duction and animal waste, and expanding aquaculture industries
(e.g., Smil, 2001; Galloway and Cowling, 2002; Galloway et al.,
2002; Howarth et al., 2002; Glibert et al., 2010). Although eu-
trophication is occurring globally, nutrient exports from coastal
watersheds are not evenly distributed (Seitzinger et al., 2002a,
2005; Howarth et al., 2005; Glibert et al., 2006a, 2010), nor is
the export of N and P changing proportionately. Much remains
to be understood about the implications of changes in N:P sup-
plies, globally and regionally for aquatic food webs. Differen-
tiating food web changes due to changes in nutrient loads from
those due to stochastic events has important implications for
restoration and management. A major management implication
stressed here is the importance of co-management of N and P. A
common practice has been to reduce P in point sources without
concomitant reductions in N while overlooking the fact that nu-
trient loading results in large sediment deposits of nutrients that
influence the overall system for an extended period (years) after
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loading rates are reduced. Reductions in anthropogenic P loads
can initially result in a decline in phytoplankton biomass, but
the sediment “pump” of stored P replenishes P supplies in the
water column, promoting benthic productivity, which, in turn,
has multiple effects on the food web. If the system additionally
receives N, especially in the form of ammonium (NH}), it can
be expected to shift to undesirable dominant species among pri-
mary producers, with ramifications extending to higher trophic
levels.

Nutrient enrichment interacts with aquatic food web dynam-
ics in complex ways. At the planktonic level, many of these
changes are well understood for phytoplankton. With nutrient
enrichment, biomass may increase without a change in the pro-
portion of the dominant planktonic organisms, but, more com-
monly, as nutrients continue to increase, a shift in plankton
assemblage composition is observed, with large diatoms giving
way to smaller phototrophs, such as cyanobacteria and various
flagellates (e.g., Smayda 1989; Marshall et al., 2003; MaclIntyre
et al., 2004; Finkel et al., 2010). Many of these species can be
harmful to higher trophic levels, disrupting normal ecosystem
function. The dominance of such species can result in a failure
of normal predator—prey interactions, which, in turn, enhances
the transfer of nutrients that sustain the harmful algal blooms
at the expense of competing algal species (Irigoien et al., 2005;
Mitra and Flynn, 2006; Sunda et al., 2006). Such changes have
ramifications at all levels of the food web. Increased phyto-
plankton and macroalgal proliferations at high nutrient levels
affect seagrasses and benthic microalgae that compete for light
(Harlin, 1993; Deegan, 2002; Burkholder et al., 2007), altering
the food web structure by changing the habitat needed to sup-
port fish and shellfish. Fundamentally, all aspects of metabolism,
predator—prey interactions, and species success are altered when
a system is stressed by nutrient over-enrichment (Breitburg
et al., 1999; Breitburg 2002).

Adding to the complexity of understanding system and food
web changes due to increased nutrients is the relatively recent
phenomenon of changing stoichiometry of nutrient supplies. In
many parts of the developed world, P reductions have been un-
dertaken (e.g., in sewage effluents and laundry detergents), as
a means to reduce or control algal blooms whereas N loads
often are allowed to remain elevated (Glennie et al., 2002; Eu-
ropean Environment Agency, 2005). Thus, not only have many
systems undergone eutrophication, but many are showing signs
of reversal due to this single nutrient reduction. Nevertheless,
even when many eutrophication symptoms are reduced, such as
hypoxia and algal blooms, the systems only appear to partially
recover (Burkholder, 2001; Burkholder and Glibert, 2011); their
food webs do not appear to return to their pre-eutrophic state.

The San Francisco Estuary, or Bay Delta, California,
USA (Figure 1) is an ideal ecosystem for addressing the
questions posed above. The Bay Delta is one of the largest
estuarine systems on the U.S. Pacific coast, as well as one of
the nation’s largest managed and engineered water systems.
It is the largest source of municipal and agricultural fresh
water in California and is home to economically important
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Figure 1 Map of the San Francisco Estuary and the Sacramento—San Joaquin Bay Delta. The region outlined in the box represents the region where virtually all
of the stations examined in this article were located. The diamond indicates the Sacremento Regional Wastewater Treatment site. Stations D4-D8 represent the
stations where water chemistry data were used for this analysis (color figure available online).

fisheries. From phytoplankton to fish, the food web of this
system has changed significantly over the past several decades
(Alpine and Cloern, 1992; Jassby et al., 2002; Kimmerer,
2004, Kimmerer et al., 2010; Jassby, 2008). The Bay Delta has
been extensively monitored for most biological constituents
since the 1970s, so this is a system rich in data with which
to explore these relationships. It has also been influenced by
major changes in nutrient loads and nutrient composition (e.g.,
Van Nieuwenhuyse, 2007; Dugdale et al., 2007; Jassby, 2008;
Glibert, 2010). N loads have increased substantially since the
mid-1980s, while P loads increased and then declined in the
mid-1990s to levels that approximate earlier conditions.

The Bay Delta is an inverse delta and receives the majority of
its flow from the Sacramento and San Joaquin Rivers (Atwater
et al., 1979; Nichols et al., 1986). The Sacramento River is the
larger river, contributing ~80% of the freshwater to the system
(Jassby, 2008). The upper reaches drain 61,721 km?, while
the upper San Joaquin River drains 19,030 km? (Sobota et al.,
2009). Major modifications to the Bay Delta have occurred
over the past century, including drainage of marshes to support
agriculture, installation of dikes to prevent farmland flooding,
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expansion and deepening of shipping lanes, and significant
diversion of water to various users throughout the state (Atwater
et al., 1979). The Sacramento and San Joaquin Rivers converge
at the confluence of the delta, then flow into Suisun Bay, San
Pablo Bay, flow ultimately into the Central and South Bays.
River flow has varied about ten-fold in the past decades due
to the effects of prolonged droughts and El Nifio — Southern
Oscillation wet years (Jassby, 2008).

The Bay Delta ecosystem has also been significantly modi-
fied by invasive species, including clams, bay grasses, various
species of copepods, and fish over the past several decades
(Carlton et al., 1990; Cohen and Carlton, 1995, 1998; Kim-
merer, 2002). In fact, this system has been characterized as
one of the most heavily invaded estuaries in the world (Cohen
and Carlton, 1995, 1998), with most of these invasions traced
to increased trading with Asia and “discharge of ballast water,
inadvertent or deliberate release of aquarium organisms, delib-
erate introduction for fisheries, and inadvertent release of bait
organisms” (Kimmerer, 2004, p. 8; National Research Coun-
cil of the National Academies [NRC], 2010; Winder et al.,
2011). The Bay Delta has been used as an example of a system
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undergoing “invasion meltdown,” implying that frequent inva-
sions alter habitat and promote additional invasions (Simberloff
and Von Holle, 1999; Simberloff, 2006), perhaps to the “point
of no return.” The extent to which habitat changes related to
nutrient enrichment have contributed to these successful inva-
sions or other food web changes in the Bay Delta has not been
explored, because it was earlier concluded that nutrients were
in excess of phytoplankton demand and therefore not regulating
(Alpine and Cloern, 1992; Cloern and Dufford, 2005).

The fundamental question of whether changes in the food
web are a result of anthropogenic changes, especially changes
in nutrient loads and balance, or whether they are the result
of stochastic events, has more than academic relevance. Many
management questions and actions are directly affected by the
extent to which the factors contributing to the food web changes
can be identified and managed. Several fish, including the delta
smelt (Hypomesus transpacificus) and longfin smelt (Spirinchus
thaleichthys), are on the Federal Endangered Species List or are
considered threatened (Wanger, 2007a,b). Water exports have
been restricted by court order in recent years in an attempt to
restore these species; new habitat is being created with the hope
that it will contribute positively to the restoration of the system;
and major re-engineering of the flow is also being debated for
the coming decades (e.g., Bay Delta Conservation Plan, 2010,
http://baydeltaconservationplan.com/BDCPPlanningProcess/
ReadDraftPlan/ReadDraftPlan_copyl.aspx). Costs of these
efforts are estimated in the hundreds of millions to billions of
dollars.

Despite current management efforts, delta smelt have under-
gone further significant population declines in the past decade,
along with longfin smelt, threadfin shad (Dorosoma petenense),
and young-of-the-year striped bass (Morone saxatilis; Rosen-
field and Baxter, 2007; Sommer et al., 2007; Baxter et al. 2010).
Accelerated losses during the past decade have been termed the
pelagic organism decline (POD) (Sommer et al., 2007; Baxter
et al. 2010). Much of the debate about the declines in fish popu-
lations have been centered on the effect of the export pumps that
supply the water to large aqueducts that transport it throughout
the state for municipal and agricultural use.

The complexity of the Bay Delta system—hydrologically
and ecologically—cannot be underestimated. Kimmerer (2004,
p- 12) noted that “complex environments such as estuaries of-
ten seem not to obey general rules, but to respond in specific
ways for which the general literature on estuaries provides little
guidance.” The frequent changes, invasions, and effects of en-
gineering and other management actions complicate these rela-
tionships. This article focuses on nutrient issues that heretofore,
for the most part, have not been emphasized, and it suggests
some general rules by which aquatic ecosystems may respond.
This article develops the hypothesis that nutrient changes under-
lie this complexity. While there have been multiple freshwater
systems to which ecological stoichiometric (Sterner and Elser,
2002) and stable state principles (Scheffer et al., 1993) have
been applied (described in more detail throughout this article),
there have been relatively few examples where these principles
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have been applied to estuaries. Recent evidence suggests that
the changes in trophodynamics in the Bay Delta system may be
related to nutrient changes (e.g., Wilkerson et al., 2006; Dugdale
etal., 2007; Van Nieuwenhuyse, 2007; Glibert, 2010). However,
ecosystem changes have not been collectively interpreted in the
conceptual framework of nutrient dynamics. The multiple stres-
sors on fish and the aquatic system in general have been, and are,
the subject of multiple working groups, panels, and a National
Academy Study (NRC, 2010) as the management implications
are far reaching.

This article is written in six parts, bringing to bear the eco-
logical principles of eutrophication (sensu Nixon, 1995; Cloern,
2001), ecological stoichiometry (sensu Sterner and Elser, 2002),
and alternative state theory (sensu Scheffer et al., 1993). Part
I outlines the conceptual overviews of eutrophication, elemen-
tal stoichiometry, nutrient ratios, and alternative stable states
and their inter-relations. Part II probes the long-term nutrient
and organismal changes in the Bay Delta and their ecologi-
cal stoichiometric relationships, beginning with phytoplankton,
then zooplankton, macroinvertebrates, fish, and macrophytes,
along with their trophic interactions. This analysis extends that
of Glibert (2010) with a more comprehensive examination of
the changes in trophic components and their interactions. Part
IIT considers the complexities of biogeochemical processes and
how they relate to changes in the food web. Biogeochemical
feedbacks provide the mechanisms whereby food web changes
are facilitated when stoichiometry changes. This section exam-
ines apparent relationships between the emergence and produc-
tion of macrophytes, establishment of exotic bivalve molluscs,
and blooms of the toxic cyanobacterium Microcystis aerugi-
nosa. Part IV compares the Bay Delta to selected freshwater
and estuarine ecosystems that have exhibited similar patterns,
and Part V compares the ecological stoichiometric and alternate
stable state interpretations with some prevailing views of system
change in the Bay Delta. Finally, Part VI concludes with a sum-
mary of the implications of these ideas with respect to current
debates and challenges associated with nutrient management,
the development of nutrient criteria, and predictions for system
recovery upon nutrient removal. Directions for further study are
also suggested.

PART I: EUTROPHICATION, ECOLOGICAL
STOICHIOMETRY, NUTRIENT RATIOS, AND
ALTERNATE STABLE STATE THEORY

Eutrophication

Although the term “eutrophication’ has been variably defined
(e.g., Nixon, 1995; Richardson and Jgrgensen, 1996; Andersen
et al., 2006; Ferriera et al., 2010), central to all definitions is
the concept that the enrichment of water by nutrients causes
an enhanced biomass and/or growth rate of algae which, in

vol. 19 4 2011



Downloaded by [Univ of Md Lib/D Windsor], [Patricia Glibert] at 06:43 17 October 2011

362

turn, leads to an undesirable disturbance in the balance of or-
ganisms present in the water and to the quality of the water
body concerned (Burkholder, 2001; Duarte et al., 2008; Glibert
et al., 2010; Burkholder and Glibert, 2011). The effects of eu-
trophication are generally characterized in terms of increased
phytoplankton (chlorophyll a) in the water column, loss of
dissolved oxygen leading to hypoxia or anoxia, loss of sub-
mersed aquatic vegetation (SAV), shifts in species dominance
across trophic levels, and loss of certain fisheries (Hutchin-
son, 1973; Cloern, 2001; Schindler, 2006). Increases in many
harmful algal species have also been associated with eutrophi-
cation (Hallegraeff, 1993; Anderson et al. 2002; Glibert et al.,
2005, 20064, 2010; Glibert and Burkholder, 2006; Heisler et al.,
2008).

The ecosystem response to eutrophication is a continual pro-
cess rather than a static condition or a trophic state (Hutchinson,
1973; Cloern, 2001; Smayda, 2006). Historically, the concept
of eutrophication was mostly applied to the natural aging of
lakes (Wetzel, 2001); more recently, the terms “accelerated”
or “cultural” eutrophication have been used in recognition of
major human influences (e.g., Burkholder et al., 2006, 2007).
Cloern (2001) suggested three conceptual phases of the under-
standing of eutrophication and its effects in coastal ecosystems.
The first phase considers responses in ecosystems directly re-
lated to changes in nutrient loading, including such changes as
chlorophyll a, primary production, dissolved oxygen, or other
measures of system metabolism. The second phase recognizes
that estuaries act as filters, modulating the responses, in turn
leading to indirect as well as direct effects. Such filters include
system typology (e.g., Kurtz et al., 2006; Madden et al., 2010) as
well as inherent optical properties. The third phase stresses in-
teractive effects of multiple stressors on a system, including con-
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taminants, exotic or invasive species, aquaculture development,
climate change, and hydrological changes, and proposes link-
ages to synthetic tools to guide management (Figure 2). Here,
the suggested conceptual Phase III model of Cloern (2001) is
coupled with the ecological stoichiometric framework (Sterner
and Elser, 2002) to further understanding not only of the ef-
fects of nutrient loading, but also the effects of disproportionate
nutrient loading (or nutrient removal).

Ecological Stoichiometry

Ecological stoichiometry provides a framework for “taming”
the complexity of both the direct and the indirect responses of
ecosystems to eutrophication. Ecological, or elemental, stoi-
chiometry relates the organismal needs for different elements
with those of available substrates or, at higher trophic levels,
those of available food. Ecological stoichiometry suggests that
different organisms will dominate under different relative pro-
portions of critical elements (C, N, or P) due to differences in
allocation of C, N, and P in the various structures that form
the biomass of different types of organisms (Sterner and Elser,
2002). As noted by Hall (2009, p. 504), “Ecological stoichiom-
etry formalizes what should be obvious: Organisms interacting
in food webs are composed of different elements, such as C, N,
or P. As a result, energy and nutrient flow through consumer-
resource interactions obey fundamental constraints.”

Thus, ecological stoichiometry is basically a comparison of
nutrient ratios in solution or food and in consumer biomass.
An ecological stoichiometric perspective asks the questions: Do
organisms have an elemental balance reflective of their food
or their available substrates? If not, why not, and what are the

Drivers of Change — System System Responses Social and Science-Based
Y
Multiple Stressors Typology and Effects Economic Management
Costs Tools
Population growth and Nutrient pathways,
anthropogenic activities fluxes and Ecological
b Nutrient loading biogeochemistry Indices
b Habitat change > )
(wetland loss, canals, riprap) g’ l I DA":? l
Resource removal _8. :o rﬁ:lzel.:‘r?i(:ies 4 Indirect
(over-harvesting) '2. Food web _¥ and Im;())icts Ecosystem
b Species introductions £ dynamics ’processes Economy Models
(ballast exchange) o and Society
Climate variability and changg E. T l l
Weather driven change| n -
(climatology) Benthic _ Outreach
Event driven change Pg):r:'giﬁn‘ > and
(storms, hurricanes) water column Communication
L Regional warming coupling
1 | Cross-system comparisons |

Management recommendations, nutrient criteria and other actions

Figure 2 Modified conceptual diagram of the “phase III” model of eutrophication (Cloern, 2001) showing the complexity of interactions and effects of multiple

stressors and eutrophication.
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ecological consequences? The Redfield ratio (Redfield, 1934,
1958), in which organismal C:N:P ratios are assumed to be in the
proportion of 106:16:1 by atoms, is likely the most well-known
stoichiometric relationship. Redfield’s (1934) work indicated
that the N:P ratio of phytoplankton should be approximately
16:1 on a molar basis, and hence, deviations from this ratio
(in both the particulate and the dissolved nutrient pools) have
been interpreted as evidence of limitation. The Redfield ratio
was developed from observations in oligotrophic, pelagic ma-
rine waters, where both phytoplankton biomass and nutrient
concentrations are low and there is minimal interference from
suspended sediments. Changes in this ratio have been compared
to shifts in phytoplankton composition, yielding insights about
the dynamics of nutrient regulation of phytoplankton assem-
blages (e.g., Tilman, 1977; Smayda, 1990; Hodgkiss and Ho,
1997; Hodgkiss, 2001; Heil et al., 2007).

Elemental differences in biomass are found at all levels of
organismal structure across trophic levels, from the subcellular
to the macrocellular structural components (Sterner and Elser,
2002). At the subcellular level, organelles vary in their N:P con-
tent. In particular, ribosomes are high in P relative to N; they
are “the most P rich and lowest N:P organelles in cells” (Sterner
and Elser, 2002, p. 73). Ribosomes are required for growth, and
an increase in ribosomes is required for a cell to have an in-
crease in growth rate. This concept has been well illustrated for
phytoplankton (Geider and LaRoche, 2002; Sterner and Elser,
2002; Quigg et al., 2003; Finkel et al., 2010). Fast-growing cells
have a lower N:P ratio than their more slowly growing counter-
parts. They have proportionately more allocation of resources to
“assembly machinery” (rRNA; high P) than to “acquisition ma-
chinery” (protein; high N) (Elser et al., 2003; Klausmeier et al.,
2004). In contrast, phytoplankton species that can sustain their
metabolism when resources are low—i.e., more slowly growing
cells—have a higher proportion of pigments and proteins with
proportionately higher N:P ratio (Sterner and Elser, 2002; Elser
et al., 2000, Elser, 2006; Arrigo, 2005; Finkel et al., 2010; Fig-
ure 3). Slowly growing cells are also generally, but not always,
larger in size (e.g., Malone, 1981; Kagami and Urabe, 2001;
Finkel et al., 2010). However, slowly growing, nutrient-stressed
phytoplankton may also be capable of short-term “luxury” up-
take of the limiting nutrient in excess of growth, leading to
highly variable N:P ratios under transient conditions (Flynn,
2002); thus, the change in N:P ratio with algal growth rate is not
necessarily a linear function (Agren, 2004).

The question of whether N:P ratios or individual nutrients
regulate phytoplankton growth has long been debated (e.g.,
Tilman and Kilham, 1976; Tilman, 1977; Bulgakov and Levich,
1999; Reynolds, 1999). Reynolds (1999, p. 29) pointedly asked
the question, “When both [N and P] are ‘not limiting’, . .. how
is it possible for the ratio of growth-saturating resources to in-
fluence the growth?” He then answered this question by stating
(p- 31), “...there should be no selective effect, consequential
upon different affinities of storage capabilities for a nutrient
resource, that might distinguish between the potential perfor-
mances of any pair of planktonic algae, so long as the resource
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Figure 3 (A) Generalized relationships between the intrinsic growth rate of
organisms and the N:P ratio in the biomass of those organisms. (B) Size de-
pendence (cell volume, um?) of temperature-corrected growth rate (day ') for
a range of phytoplankton functional groups: diatoms (¢ ), dinoflagellates (L),
and other taxonomic groups (e) (a combination of cyanobacteria, chlorophyte,
haptophyte, cryptophytes, and various other groups). Line indicates the least-
squares regression of all data (log u = —0.06 log V + 0.1; R> = 0.15). This
figure is reproduced from Finkel et al. (2010), Oxford University Press, with
permission. The data were compiled by T. A. V. Rees.

concentrations are able to saturate the growth demand. If that is
true, then the ratio between the (saturating) concentration of any
of the resources also fails to exert any regulatory significance.”
This statement, which summarizes the prevailing view that
nutrients are non-regulating in the Bay Delta because they are
typically above levels that saturate growth demand, is based on
the notion that growth rate (i.e., productivity) is the o