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SUMMARY

1. High densities of cyanobacteria can interfere with the use of lakes and reservoirs for recreation

and as sources for drinking water, and one approach for reducing the amount of cyanobacteria is to

reduce nutrient concentrations in the waterbody.

2. An approach is described for deriving numeric targets for concentrations of total phosphorus (TP)

and total nitrogen (TN) that are associated with a pre-specified probability of cyanobacterial biovo-

lume that exceeds the recommended World Health Organization thresholds for recreation in the

water. The analysis consisted of two phases. First, a divisive tree algorithm was used to identify

groups of lakes in which the relationship between nutrients and cyanobacterial biovolume was simi-

lar. Second, hierarchical Bayesian models were used to estimate relationships between cyanobacterial

biovolume, TP and TN, while partitioning the observed variance in biovolume into components asso-

ciated with sampling variability, temporal variability, and among-lake differences.

3. The final model accounted for 91% of the variance in cyanobacterial biovolume among different

lakes and was used to identify nutrient concentrations that maintain a low probability of excessively

high cyanobacterial biovolumes.

4. When no classes of lakes were specified and the relationship between cyanobacterial biovolume

and nutrient concentrations was modelled using a national data set, mean targets of 87 and

1100 lg L�1 were derived for TP and TN, respectively, to maintain cyanobacterial biovolume below

moderate risk levels as defined by the World Health Organization. After classification, mean nutrient

targets in lakes that were found to be most susceptible to high biovolumes of cyanobacteria (i.e. deep

lakes) were 61 and 800 lg L�1 for TP and TN, while higher nutrient thresholds were observed for

other classes of lakes.
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Introduction

Cyanobacteria are important natural components of lake

biological communities, but, under certain environmen-

tal conditions, their abundance can increase to levels

that interfere with the use of the waterbody for recrea-

tion and as a source of drinking water. During these

periods of high abundance and biovolume, cyanobacte-

ria can form unsightly and odorous surface scums and

substantially increase concentrations of cyanotoxins

in the water. These toxins, in turn, restrict the use of the

lake as both a source of drinking water and for recrea-

tion. One well-known health advisory has established

cyanobacterial abundances of 20 000 and 100 000 cells

mL�1 as the thresholds at which low and moderate

human health risks exist for recreational users of a

waterbody (WHO 2003). Other epidemiological studies

have identified similar or lower thresholds of concern

(Pilotto et al., 1997; Stewart et al., 2006; L�evesque et al.,

2014).

Many different environmental factors have been asso-

ciated with increased amounts of cyanobacteria and

increased occurrence of algal blooms (Paerl & Otten,

2013). Among anthropogenic pollutants, increased nutri-

ent concentrations (i.e. nitrogen and phosphorus) have

been identified as one of the main causes of increased
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densities of cyanobacteria (Downing, Watson & McCau-

ley, 2001; Ahn, Oh & Park, 2011). Other environmental

factors that have been observed to increase the density

of cyanobacteria include increased water temperature

(Paerl & Huisman, 2008), alkalinity (Carvalho et al.,

2011), water colour (Carvalho et al., 2011), light intensity

(Huisman et al., 1999) and stratification strength (Wag-

ner & Adrian, 2009). Lack of wind stress and the result-

ing increased stability of the water column have also

been noted as conditions that are favourable for the for-

mation of cyanobacterial blooms (Wynne et al., 2010).

Of the aforementioned, concentrations of nitrogen and

phosphorus in a waterbody typically are the environ-

mental factors that are more controllable by manage-

ment actions, and hence, efforts to reduce the amount of

cyanobacteria often focus on reductions in nutrient loads

(Paerl & Otten, 2013). To facilitate these efforts, target

concentrations for these nutrients, below which high

densities of cyanobacteria occur with an acceptably low

frequency, would be particularly useful. From a broader

perspective, an empirical relationship relating ambient

nutrient concentrations to the likelihood of high densi-

ties of cyanobacteria (e.g. >100 000 cells mL�1) would

allow water quality managers to specify nutrient concen-

trations that confer protection of source water and recre-

ational activities.

Here, we ask whether analysis of large-scale synoptic

data can yield nutrient thresholds that are useful for

managing cyanobacteria. To this end, we describe an

analysis of a national data set to estimate empirical rela-

tionships between the concentrations of phosphorus,

nitrogen and cyanobacterial biovolume in lakes and res-

ervoirs of the United States. Because many other envi-

ronmental factors in addition to nutrient concentrations

can potentially influence cyanobacteria, we describe an

approach for classifying lakes to account for the effects

of these other factors and to increase the precision of

estimated relationships between nutrients and cyanobac-

teria. Relationships estimated between cyanobacteria

and nutrients within each of the classes are then used to

derive management targets for nitrogen and phospho-

rus.

Methods

Data

Data used for this analysis were collected by the U.S.

Environmental Protection Agency’s National Lake

Assessment (NLA) in the summer (May–September) of

2012 (US EPA 2011). Lakes >1 ha were selected from the

contiguous United States using a combination of a strati-

fied random sampling design and a small number of

hand-picked lakes and reservoirs. At each of the sam-

pled lakes, an extensive suite of abiotic and biological

variables was measured, but here we only provide sam-

pling details regarding the parameters used in the pres-

ent analysis.

At each lake, two sampling locations were established:

one in open water at the deepest point of each lake (up

to a maximum depth of 50 m) or in the midpoint of res-

ervoirs, and one littoral zone sampling location approxi-

mately 10 m out from a randomly selected point on the

shoreline. At the open water site, a vertical, depth-inte-

grated methodology was used to collect a water sample

from the photic zone of the lake (to a maximum depth

of 2 m). Multiple sample draws were combined in a

rinsed, 4-L cubitainer. When full, the cubitainer was

gently inverted to mix the water, and a subsample was

poured off to obtain a water chemistry sample. This sub-

sample was placed on ice and shipped overnight to the

Willamette Research Station in Corvallis, Oregon, U.S.A.

which quantified total nitrogen (TN), total phosphorus

(TP), true colour and acid neutralising capacity at pre-

specified levels of precision and accuracy (US EPA

2012). A second subsample for characterising the phyto-

plankton community was poured off and preserved with

a small amount of Lugol’s solution. At the littoral zone

site, a grab water sample was collected 0.3 m below the

surface at a depth of at least 1 m and also preserved

with a small amount of Lugol’s solution.

Cyanobacterial biovolume was quantified from the

field samples in the laboratory. Samples collected from

both open water and littoral zone locations where exam-

ined by taxonomists, who identified at least 400 natural

algal units to species under 10009 magnification. Cyano-

bacteria were aggregated, and abundance was calculated

as cells per mL. In each sample, the dimensions of the

taxa that accounted for the largest proportions of the

observed assemblage were measured and used to esti-

mate biovolume. Biovolumes of the most abundant taxa

were based on the average of measurements from at

least 10 individuals, while biovolumes for less abundant

taxa were based on somewhat fewer measurements. The

overall biovolume of cyanobacteria was reported as

lm3 mL�1 (US EPA 2012), which we converted to

mm3 L�1. We focussed our analysis on cyanobacterial

biovolume as this measure most accurately reflected the

cyanobacterial density in the water column.

Physical characteristics of lake were estimated from

mapped data (NHD+ version 2). These characteristics

included lake surface area (Area), geographic location
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(latitude and longitude), altitude (Alt) and lake perime-

ter. From these characteristics, we calculated the follow-

ing composite variables: (i) the shoreline development,

which is defined as the ratio between the perimeter of

the lake and the perimeter of circle with the same area

as the lake and characterises the geometric complexity

of the lake shore, and (ii) the lake geometry ratio, which

is defined as Area0.25/Depth, or the ratio between fetch

and lake maximum depth, and has been shown to dif-

ferentiate lakes that stratify seasonally (low values of the

geometry ratio) from lakes that are polymictic (Gorham

& Boyce, 1989; Stefan et al., 1996).

Variables quantifying the mean annual precipitation

(Precip) and maximum monthly average air temperature

(Temp) at the lake location were extracted from 30-year

averaged climatic data (Daly et al., 2008). Lakes were

also noted as being man-made (i.e. reservoirs) or natu-

ral.

With the exception of cyanobacterial biovolume, TP

and TN, the measurements described above were

selected as candidate classification variables because of

their potential influence on the amount of cyanobacteria.

For example, as noted earlier, the amount of cyanobacte-

ria has been observed to increase with increased stratifi-

cation strength (Wagner & Adrian, 2009), and so we

included lake geometry ratio as a candidate classification

variable. Similarly, many studies have shown relation-

ships between temperature and the amount of cyanobac-

teria (Paerl & Huisman, 2008; Beaulieu, Pick & Gregory-

Eaves, 2013), so we included maximum monthly air

temperature at the lake location (Temp) as a candidate

classification variable. Similar rationales exist for the

other selected classification variables.

Statistical analysis

Statistical analyses to estimate relationships between TN,

TP and cyanobacterial biovolume consisted of two

phases. First, TREED regression was used to classify

lakes into groups in which the relationships between

increased nutrient concentrations and cyanobacterial bio-

volume were similar (see below). Second, hierarchical

Bayesian models were used to partition the variance in

cyanobacterial biovolume into sampling variability, tem-

poral variability and among-lake components.

Observed values of cyanobacterial biovolume were first

Box–Cox-transformed (with the power parameter,

lambda, set to 0.05) such that repeat samples of biovo-

lume at each lake approximated a normal distribution.

Concentrations of TN and TP were log-transformed to

reduce the skewness of their distributions. Cyanobacterial

biovolume was also corrected a priori for small differ-

ences attributed to the identity of the taxonomist that

processed the sample (see Supplemental Information).

Candidate classification variables were not transformed

because the TREED algorithm is not sensitive to the dis-

tribution of each variable.

TREED analysis

To increase the precision of the estimated relationships

between nutrient concentrations and cyanobacterial bio-

volume, we grouped lakes by applying a variant of clas-

sification and regression trees (Breiman et al., 1984)

known as TREED analysis (Alexander & Grimshaw,

1996). In classification and regression trees, the data set

is partitioned in a stepwise manner to minimise the

residual deviance about mean values of the response

variable in each group. In contrast, in TREED analysis,

the data set is partitioned to minimise the residual devi-

ance about a functional relationship within each group.

In the present analysis, each end node of the tree con-

sisted of a multiple linear regression model that mod-

elled cyanobacterial biovolume as a function of TN and

TP, and the data set was partitioned to minimise the

residual deviance in these estimated relationships across

all end nodes. By using a function in the end node rather

than a single value, the classification tree can be less

complex, and therefore more interpretable (Alexander &

Grimshaw, 1996; Yuan & Pollard, 2014).

Selection of classification variables and specifying the

classification tree proceeded as follows. We first com-

puted mean values of TN, TP and cyanobacterial biovo-

lume for all available samples from each lake because in

this phase of the analysis, we were only interested in

accounting for sources of variance that varied among

different lakes. The classification tree was then built

sequentially. For each level of the tree, each candidate

classification variable was considered in turn, and

approximately 50 values spanning the observed range of

that variable were selected as possible splitting values.

With categorical variables (e.g. lake origin), the variable

itself explicitly defined discrete categories so no splitting

values were needed. The data set was divided into two

groups based on each of the possible splitting values,

and a multiple linear regression model relating cyano-

bacterial biovolume to TN and TP was fit, specifying

group membership as a dummy variable and allowing

different values of the regression coefficients for each

group. The residual deviance of the model was then

computed and retained. This procedure was repeated for

each of the classification variables, and the combination
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of classification variable and splitting value that yielded

the greatest reduction in residual deviance was saved.

Splitting the data set and building the classification tree

continued recursively using this procedure until any fur-

ther splits would have reduced the number of samples

in a group to <100 lakes or until a pre-specified maxi-

mum number of lake groups was defined (see below).

The minimum number of samples required for each

lake group was established to ensure that a sufficient

number of independent samples were available to

reliably fit the regression relationship in each of the end

nodes (Harrell, 2001), and sufficient samples were avail-

able to minimise the possible errors associated with

estimating separate effects for TN and TP, which were

correlated (Mason & Perreault, 1991).

To select the maximum number of lake groups to

specify in the classification tree, we applied a 10-fold

cross-validation procedure. Available data were ran-

domly assigned to 10 equally sized partitions, and then

each partition was sequentially held out as independent

validation data. The classification tree and associated

regression model were then calibrated using the remain-

ing 90% of the data. This model was then used to pre-

dict cyanobacterial biovolume in both the calibration

and held-out validation data, and root-mean-square

(RMS) predictive errors were computed for both data

sets. The process was repeated for each of the 10 parti-

tions, yielding average estimates of the overall RMS

calibration and validation error for the entire data set.

We repeated the 10-fold cross-validation calculation for

25 different random assignments to the partitions and

for trees with the maximum number of lake groups

ranging from two to five. We expected both calibration

and validation RMS error to decrease with increased

numbers of lake groups, but also expected decreases in

validation error to cease as the model became overfit

(i.e. when too many lake groups were specified). The

point at which performance on validation data no longer

improved was selected as the maximum number of lake

groups for subsequent modelling.

An enormous number of different trees are possible

because of the number of candidate classification vari-

ables and the number of possible values at which splits

can be specified for each of the variables. The stepwise,

or ‘greedy’ algorithm described above only minimises

the residual deviance at each level of the tree, an

approach that is locally optimal, but may not yield the

best global model (Chipman, George & McCulloch,

1998). After specifying the maximum number of lake

groups, we explored the space of possible classification

trees more broadly using a ‘bootstrap umbrella of model

parameters’, or ‘bumped’ trees (Tibshirani & Knight,

1999; Yuan & Pollard, 2014a). More specifically, we fit

500 classification trees to bootstrap replicates of the data

set. For each bumped tree, we fit the linear regression

model relating TN and TP concentrations to the amount

of cyanobacteria using group membership as a dummy

variable. We then evaluated the resulting trees in terms

of the degree to which each tree accounted for variabil-

ity in the response variable. We selected one final tree

that best accounted for variability in cyanobacterial bio-

volume to examine the structure and performance in

greater detail. We also examined all of the classification

variables selected in the five trees with the lowest resid-

ual deviance to identify variables that were most fre-

quently identified and therefore, potentially more

important.

Hierarchical Bayesian models

Like most biological abundance measurements, cyano-

bacterial biovolume varies strongly over time and space

within any particular lake. Blooms of extremely high

levels of cyanobacteria can appear and then disappear

quickly because of changes in the environmental condi-

tions and because of differences in the life cycles of dif-

ferent species of cyanobacteria (Pinckney et al., 1998).

Estimates of cyanobacterial biovolume can also vary

strongly between different locations in a lake because of

its patchy distribution and because of the inherent sam-

pling variability associated with estimating an aggregate

measure of cyanobacterial biovolume from a relatively

small (i.e. 400 algal units) number of individuals. The

sampling design of the NLA was synoptic, but data

were available to directly estimate both the temporal

and sampling variability in cyanobacterial densities.

More specifically, as part of the NLA sampling design,

10% of sampled lakes were randomly selected and re-

sampled on 1–2 different days at least 6 weeks apart,

and these repeat visits provided data that could be used

to estimate temporal variability. Furthermore, prelimin-

ary exploratory analysis indicated that cyanobacterial

biovolume in samples collected at littoral sites did not

differ systematically from samples collected at open

water sites. That is, the location at which a sample was

collected was not a statistically significant predictor of

cyanobacterial biovolume. So, these two different sam-

ples collected on each lake visit were used to estimate

the variability attributed to the combined effects of sam-

pling and within-lake spatial variability (hereafter

referred to only as sampling variability). We included

both types of repeat samples in the data set and used
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hierarchical Bayesian models to partition the overall var-

iance of cyanobacterial biovolume into contributions

from temporal, spatial and among-lake sources (Gelman

& Hill, 2007).

We fit three hierarchical Bayesian models with differ-

ent fixed effects. Our base model was a simple intercept-

only model, in which cyanobacterial biovolume was

modelled as a constant term plus a random effect associ-

ated with the specific lake and a random effect associ-

ated with a particular lake visit. This model can be

written as follows:

yi ¼ aþ bj½i� þ ck½i� þ ri

where yi is cyanobacterial biovolume in sample i, a is

the overall mean value of yi, bj[i] is a normally distrib-

uted random effect of lake j, with each sample i

assigned to a particular lake j, ck[i] is a normally distrib-

uted random effect of lake visit k, with each sample i

assigned to a particular lake visit, k and where ri is the

random contribution of sampling variance to the

observed yi. The variables, bj, ck and ri are normally dis-

tributed with bj �Nð0; s2amongÞ, ck �Nð0; s2timeÞ and

ri �Nð0; s2sampleÞ.This base model partitioned the overall

variance of cyanobacterial biovolume into among-lake

(samong), temporal (stime) and sampling (ssample) variance

components.

In our second model, we introduced nutrient concen-

trations, which accounted for a portion of the among-

lake variance:

yi ¼ aþ d1TPj½i� þ d2TNj½i� þ bj½i� þ ck½i� þ ri

where the effects of differences in nutrient concentra-

tions are modelled with the regression coefficients, d1
and d2, and the mean TN and TP concentrations over all

samples available in lake j. TN and TP were also stan-

dardised by subtracting their overall mean value and

dividing by their standard deviations prior to using

them in the model. This standardisation improved the

convergence of the hierarchical Bayesian models and

facilitated interpretation of the relative effects of TN and

TP (Gelman & Hill, 2007).

Third, we added the effect of lake classification, as

specified by TREED regression:

yi ¼ an½i� þ d1;n½i� TPj½i� þ d2;n½i� TNj½i� þ bj½i� þ ck½i� þ ri

where each group of lakes was allowed different regres-

sion coefficients, an, d1,n and d2,n, indexed by n for differ-

ent groups of lakes.

After fitting the models, we compared the magnitude

of among-lake variance across the different models to

quantify the degree to which each model accounted for

differences among lakes in the data. We calculated the

proportion of among-lake variance explained by the 2nd

and 3rd models (i.e. models including nutrient concentra-

tions as fixed effects) as the difference between 1 and the

ratio between the among-lake variance of each of these

models and the among-lake variance of the intercept-only

model. This value is comparable to a conventional R2 sta-

tistic, except that it excludes the contribution of sampling

and temporal variance (which models of among-lake dif-

ferences cannot be expected to explain).

For the 2nd and 3rd models, we also estimated man-

agement target values for nutrient concentrations as fol-

lows. We first converted WHO management thresholds

expressed as cyanobacterial cells per unit volume to

thresholds expressed in terms cyanobacterial biovolume

per unit volume using a major axis regression between

cyanobacterial abundance and biovolume. Then, for each

model and each class of lakes (in the case of the 3rd

model), we calculated the mean cyanobacterial biovo-

lume that yielded a 10% chance of exceeding each man-

agement threshold. The selection of a 10% chance is

only illustrative in this analysis, but one would generally

expect that a low probability would be selected when

deriving a management threshold. The 10% chance of

exceeding the cyanobacterial threshold corresponds to

the 90th percentile of the distribution of possible cyano-

bacterial biovolumes within a lake over the course of a

sampling season. This distribution was computed from

the estimated mean biovolume of cyanobacteria in each

lake and the temporal variance estimated by the hierar-

chical Bayesian model. Sampling variability was not con-

sidered in this computation because the random effects

of sampling variability generally should not influence

management decisions for a particular lake.

Once the targeted mean cyanobacterial biovolume was

computed, the relationships between mean TP, mean TN

and cyanobacterial biovolume were used to estimate tar-

get concentrations for TP and TN. Because the effects of

TN and TP were modelled simultaneously, an infinite

combination of TP and TN concentrations could possibly

be selected to achieve the targeted amount of cyanobac-

teria. We selected unique target values from this set of

possibilities by identifying the combination of TP and

TN that corresponded with a major axis regression

through TP and TN. These values represent the mean

expected combination of TP and TN, given the observa-

tions of TP and TN in the data set, or within a group of

lakes (Fig. 1).

A range of possible values was computed for each TP

and TN target by combining the effects of uncertainty in

the estimates of the regression parameters (i.e. traditional
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confidence limits) and the effects of among-lake variabil-

ity, as quantified by the value of samong estimated from the

hierarchical Bayesian models. Confidence limits quantify

uncertainty in estimates of the mean relationships

between TN, TP and cyanobacterial biovolume among all

lakes, whereas among-lake variability represents differ-

ences in the relationships between TN, TP and cyanobac-

terial biovolume that one might observe in different

individual lakes within a lake group (or within the entire

data set in the case of the national model). Hence, selec-

tion of the mean value of the among-lake distribution (i.e.

the mean reported TN and TP targets) would achieve the

desired frequency of excessive cyanobacterial biovolumes

in approximately half of the lakes within the lake group.

Selection of a lower value within the distribution would

yield desired frequencies in a larger proportion of lakes.

Since the full distributions of sampled values were avail-

able for all parameters estimated in the hierarchical

Bayesian models, calculating the combined effects of

among-lake variability and mean confidence limits was

straightforward.

Finally, generalised additive models (GAM) (Wood &

Augustin, 2002) were used to explore functional relation-

ships between TN, TP and cyanobacterial biovolume

that were more complex than the linear relationships

used in the hierarchical Bayesian models.

All statistical calculations were performed with R (R

Core Team 2013). Regression trees were fit by adapting

scripts provided in the partykit library (Hothorn and

Zeileis 2013). Parameters for the hierarchical Bayesian

models were estimated using the rstan library (http://

mc-stan.org/rstan.html).

Results

A total of 2418 samples with complete environmental

and cyanobacterial biovolume measurements were avail-

able from the NLA data set. These samples were col-

lected from 1109 distinct sites. Of these sites, 100 were

sampled on at least two different days during the sam-

pling season.

A total of 58 different cyanobacteria genera were

observed in the data set. Chroococcus and Anabaena were

the most commonly observed genera (Table 1). Chroococ-

cus, Aphanocapsa and Planktolyngbya each occurred in

densities exceeding 100 000 cells mL�1 in more than 90

samples in the data set. Cyanobacterial genera that are

known to produce toxins such as Anabaena, Aphanizome-

non, and Cylindrospermopsis were also commonly

observed in many samples and in high densities.

Median measured biovolume for cyanobacterial cells

was 16 lm3 per cell, but varied greatly among different

cyanobacterial species. Management thresholds for cy-

anobacterial abundance have been specified as 20 000

and 100 000 cells mL�1 (WHO 2003), and based on the

relationship between cyanobacterial abundance and bio-

volume, we converted these thresholds to biovolumes of

0.45 and 2.3 mm3 L�1 (Fig. 2).

Median cyanobacterial biovolume in different lakes in

the final data set was 0.18 mm3 L�1, and exceeded

2.3 mm3 L�1 in 17% of the samples (Table 2). A total of

607 of the sampled lakes were designated as man-made

reservoirs, while the remaining 502 were designated as

natural in origin.

Table 1 Frequently occurring cyanobacteria genera. Genera occur-

ring in >10% of samples shown or exceeding 100 000 cells mL�1 in

at least 5 samples

Genus

Proportion

of samples

Number of samples in

which >100 000 cells mL�1

Chroococcus 0.65 104

Anabaena 0.47 18

Aphanocapsa 0.41 95

Aphanizomenon 0.32 52

Pseudanabaena 0.29 41

Merismopedia 0.27 20

Planktolynbya 0.24 96

Cylindrospermopsis 0.16 62

Synechocystis 0.11 4

Planktothrix 0.09 41

Phormidium 0.06 19

Microcystis 0.05 5

Fig. 1 Example showing calculation of total phosphorus (TP) and

total nitrogen (TN) targets using predicted cyanobacterial biovo-

lume and major axis regression relationship between TN and TP.

Contour lines: predicted mean cyanobacterial biovolume, dashed

line: estimated major axis regression between TN and TP, circles

show the observed values of TN and TP with the observed values

of cyanobacterial biovolume indicated by the colour of the circle,

white square: example of unique TN and TP target for maintaining

mean cyanobacterial biovolume at 0.29 mm3 L�1.
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Cross-validation of the classification trees indicated

that the data could support up to three different lake

groups (Fig. 3). Validation error increased when the

maximum number of lake groups allowed was greater

than three, whereas calibration error continued to

decrease even up to five lake groups. Overall, use of the

classification tree improved cross-validated RMS predic-

tion error from 3.81 for the no-classification case (in

units of Box–Cox-transformed cyanobacterial biovolume)

to 3.77 for the three-group tree.

The best classification schemes identified by the

bumped TREED analysis were very similar. Classifica-

tion variables that were selected included lake depth

and TN:TP (Fig. 4), and these same classification vari-

ables were identified in all five of the best-performing

classification trees.

In the intercept-only hierarchical Bayesian model, we

estimated the standard deviation of among-lake variabil-

ity as 3.59, while the standard deviations of temporal and

sampling variability were 2.94 and 2.18, respectively.

When TN and TP were included as explanatory variables,

the standard deviation of among-lake variability

decreased to 1.71, so nutrient concentrations accounted

for approximately 77% of among-lake variance in cyano-

bacterial biovolume. Incorporating the three-group classi-

fication scheme into the hierarchical Bayesian model

further reduced the standard deviation of among-lake

variability to 1.06. This third model accounted for approx-

imately 91% of the among-lake variance in biovolume.

Estimated regression slopes and intercepts provided

an indication of the sensitivity of cyanobacterial biovo-

lume to increases in nutrient concentrations, and these

slopes and intercepts varied across different lake groups.

Fig. 2 Relationship between cyanobacterial abundance and biovo-

lume in National Lakes Assessment samples. Solid line: estimated

major axis regression relationship, dashed line segments: WHO

threshold of 20 000 and 100 000 cells mL�1 and the associated bio-

volume thresholds.

Table 2 Summary statistics of nutrient concentrations, cyanobacterial abundance and candidate classification variables

Minimum 25th percentile Median 75th percentile Maximum

Cyanobacterial biovolume (mm3 L�1) 0 0.03 0.18 1.37 337

Cyanobacterial abundance (cells mL�1) 1.48 1.19 9 103 8.48 9 103 5.05 9 104 8.51 9 106

Total phosphorus (TP, lg L�1) 4 20 40 96 3640

Total nitrogen (TN, lg L�1) 14 318 623 1250 54000

Acid neutralising capacity (leq L�1) �3360 374 1570 2930 204 000

Lake surface area (ha) 1.0 10.9 31.6 110.0 167000.0

Colour (PCU) 0 12 19 29 840

Depth (m) 0.8 2.5 4.7 9.0 58.5

Altitude (m a.s.l.) �53 185 331 683 3590

Lake ratio (m�0.5) 0.49 2.81 5.04 9.43 88.00

Latitude 26.10 37.70 41.40 44.80 49.00

Longitude �124.00 �107.00 �94.60 �85.00 �67.20

Mean annual precipitation (mm per year) 67 622 948 1180 3200

Shoreline development 1.01 1.28 1.63 2.27 28.60

Maximum monthly air temperature (Temp, °C) 4.11 12.20 15.20 19.40 31.50

TN:TP 0.3 8.7 14.2 22.5 1690.0

Fig. 3 Average root-mean-square prediction error (RMS) versus the

number of lake groups in classification schemes with different

numbers of groups. Open circles: mean RMS error in cross-vali-

dated data, filled circles: mean RMS error in calibration data.
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In the national, no-classification case, cyanobacterial bio-

volume increased by 2.26 (90% confidence intervals:

1.99–2.53) units for every unit increase in standardised

TN concentration and by 0.98 (0.71–1.25) units for every

unit increase in standardised TP concentration (Fig. 5).

Within lake groups, regression slopes for TN varied

from a low value of 0.92 (0.22–1.62) (lake group 4) to a

high value of 4.45 (2.99–5.89) (lake group 3). Regression

slopes for TP varied from a low value of �2.32 (�3.85 to

�0.82) (lake group 3) to a high value of 3.34 (2.60–4.08)

(lake group 4). The relative effects of TN and TP varied

across lake groups. In lake group 4, which was identi-

fied as having relatively high values of TN:TP, the

effects of TP were strong, while the effects of TN were

relatively weak, whereas in shallow lakes with low val-

ues of TN:TP (lake group 3), the effects of TN were

strong, while the effects of TP were weak.

Since nutrient concentrations were standardised, inter-

cepts for the regression relationships provide an esti-

mate of cyanobacterial abundance in different lake

groups at the overall mean TP and TN concentrations.

In the national, no-classification model, the intercept

was 16.1 (0.14 mm3 L�1), but after classification, the

value of the intercept varied from 15.5 (0.10 mm3 L�1)

in lake group 4 to 17.9 (0.35 mm3 L�1) in lake group 3.

Contour lines superimposed on the distributions of

TN and TP within each of the lake groups provide

another way to visualise the relationships between nutri-

ent concentrations and cyanobacterial biovolumes

(Fig. 6). The nearly vertical contour lines in lake group 5

indicated that TN concentration was a stronger predictor

of cyanobacterial biovolume in this group of lakes than

TP. Conversely, contour lines in lake group 4 indicated

Fig. 4 Selected classification tree for cyanobacterial biovolume.

Depth: lake maximum depth (m), total nitrogen (TN): total phos-

phorus (TP): mass ratio of TN to TP.

Fig. 5 Comparison of regression coefficients estimated for different

lake groups. Coefficients labelled ‘National’ were estimated using

full data set. Group numbers refer to groups defined in Fig. 4.

Open circles: mean estimated coefficient value, thick line segment:

50th percentile confidence intervals, thin line segment: 90th percen-

tile confidence intervals.

Fig. 6 Relationships between total nitrogen (TN) and total phosphorus (TP) within each lake group. Filled circles: observed values of TN

and TP, contours: predicted mean cyanobacterial biovolume associated with each combination of TN and TP, white squares: mean TN and

TP target values to achieve targeted mean cyanobacterial biovolume. Colours of circles same as shown in Fig. 1. Group numbers refer to

groups defined in Fig. 4.
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that changes in both TN and TP predicted cyano-

bacterial biovolume. These figures also provided a

visualisation of the degree to which TP and TN were

correlated within each of the lake groups, with lake

groups 3 and 4 exhibiting strong correlations. Correla-

tion coefficients (r) between TN and TP confirmed these

qualitative observations, as r was 0.92 in lake group 3,

0.82 in lake group 4 and 0.63 in lake group 5.

We characterised the temporal distribution of cyano-

bacterial biovolumes within a given lake using a mean

standard deviation of temporal variability of 3.12, as

estimated by the hierarchical Bayesian model that

included the lake classification scheme. Based on this dis-

tribution, we estimated that when mean cyanobacterial

biovolume was 0.29 mm3 L�1, the 90th percentile of the

distribution of observed values during the sampling

season was 2.3 mm3 L�1, the WHO moderate risk thresh-

old value. In other words, maintaining mean cyanobacte-

rial biovolume below 0.29 mm3 L�1 should also maintain

the frequency of cyanobacterial biovolumes that exceed

the WHO moderate risk threshold to <10% of samples. A

similar calculation yields a threshold of 0.048 mm3 L�1 to

maintain the frequency of cyanobacterial biovolumes

exceeding the WHO low risk threshold at 10%.

Targets for TN and TP that corresponded with mean

cyanobacterial biovolumes at the WHO moderate risk

threshold varied across different lake groups. In the

base, no-classification model, mean management targets

for TN and TP were 1100 and 87 lg L�1, respectively

(Table 3). After incorporating lake groups as selected by

TREED regression, mean target nutrient concentrations

varied from 800 to 1300 lg L�1 for TN and from 61 to

250 lg L�1 for TP (Table 3). Deeper lakes (>3.1 m deep)

were associated with the lowest nutrient targets. These

low targets arose from a relatively high value of the

regression intercept and a relatively strong relationship

between TN, TP and cyanobacterial biovolume (lake

group 5 in Fig. 5). TN and TP targets for the WHO low

risk threshold followed the same pattern as those for the

moderate risk threshold (Table 4).

Confidence limits on mean nutrient targets varied

depending on the number of samples in each lake group

and the confidence with which relationships between cy-

anobacterial biovolume and nutrient concentrations were

estimated (Fig. 7). Mean TP and TN targets using the

national model (with no lake groups) were estimated

very precisely because of the size of the national data-

base. Confidence limits on mean TN and TP targets for

lake groups 3 and 5 were also narrow, reflecting the nar-

row confidence limits of the regression coefficients

(Fig. 5).

Incorporating among-lake variability into the esti-

mated range of possible TN and TP targets provides val-

ues that reflect the different outcomes that one might

expect to observe in different lakes. For example, in the

national model, after incorporating among-lake variabil-

ity, the 25th percentile of the distribution of possible TN

targets was 750 lg L�1 (Table 3, Fig. 7). That is, the

model predicted that maintaining TN concentrations at

750 lg L�1 would ensure that at least 75% of lakes in

the data set would achieve targeted cyanobacterial bio-

Table 3 Management targets for nutrient concen-

trations related to exceedance of WHO moderate

risk threshold

Group

TN (lg L�1) TP (lg L�1)

Mean

50% Conf

Lim

25th and

75th %tile Mean

50th Conf

Lim

25th and

75th %tile

5 800 750–850 670–940 61 56–65 49–73
4 1400 1300–1500 1200–1600 79 73–84 65–93
3 1300 1100–1500 900–1700 250 220–300 170–360
National 1100 990–1200 750–1500 87 79–96 57–130

Mean: mean management target; 50% Conf Lim: 50% confidence limits on mean tar-

get; 25th and 75th %tile: 25th and 75th percentiles of the distribution of possible tar-

gets, including among-site variability; TP: total phosphorus; TN: total nitrogen.

Table 4 Management targets for nutrient concentrations related to

exceedance of WHO low risk threshold

Group

TN (lg L�1) TP (lg L�1)

Mean

50%

Conf

Lim

25th and

75th %tile Mean

50%

Conf

Lim

25th and

75th %tile

5 320 300–340 270–380 22 20–23 18–26
4 600 560–640 510–710 31 29–33 25–37
3 270 220–340 180–390 44 36–57 29–67
National 370 340–410 260–540 25 23–28 16–39

Mean: mean management target; 50% Conf Lim: 50% confidence

limits on mean target; 25th and 75th %tile: 25th and 75th percen-

tiles of the distribution of possible targets, including among-site

variability; TP: total phosphorus; TN: total nitrogen.
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volumes. In contrast, the mean TN target of 1100 lg L�1

would achieve targeted cyanobacterial biovolumes in

approximately half of the lakes in the data set, and

maintaining TN at 1500 lg L�1 would achieve cyanobac-

terial goals in 25% of lakes. The range of possible nutri-

ent target values arises from both among-site variability

and confidence limits on the mean target estimates.

Hence, the ranges of nutrient targets in the national

model were broad because of a large among-site vari-

ability, even though confidence limits for the mean tar-

gets were narrow. Conversely, ranges for lake groups 4

and 5 were relatively narrow, owing to a smaller

among-site variability and precise estimates of the model

parameters (Fig. 7).

Classification and modelling the effects of TN and TP

reduced among-lake variability to nearly negligible lev-

els relative to temporal and sampling variability. The

contribution of temporal variability to overall variance

of cyanobacterial biovolume can be visualised when

cyanobacterial biovolume is plotted as a function of TN

(Fig. 8). In this group of lakes, the effect of TN on

cyanobacterial biovolume is stronger than TP, and so

only TN is plotted. The effects of sampling variability on

the plotted data were reduced by plotting the average

cyanobacterial biovolume across littoral and open water

sites for each lake visit. Then, the magnitude of temporal

variability is displayed with vertical lines connecting

samples collected at the same lake on different days.

The lengths of the vertical lines relative to the spread of

the data points illustrate that temporal variance

accounted for the majority of the residual variability

about the estimated TN-cyanobacterial biovolume rela-

tionship.

Discussion

Increased concentrations of phosphorus and nitrogen

have been associated with increased occurrences of cy-

anobacterial blooms and increased cyanobacterial biovo-

lume in studies conducted at a variety of locations, and

the present analysis provides further support for these

relationships using continental-scale data from the Uni-

ted States. Analysis of data collected from lakes in Flor-

ida (Canfield, Phlips & Duarte, 1989), from Europe

(Carvalho et al., 2013) and from northern temperate

lakes (Downing et al., 2001) all found strong associations

between nutrient concentrations and cyanobacterial

abundance. We observed strong associations between

increases in cyanobacterial biovolume and increases in

nutrient concentration in the vast majority of lakes and

reservoirs of the United States, similar to other analyses

of U.S. data (Beaulieu et al., 2013). Also, the TP targets

identified in the present study were very comparable to

TP targets using the same WHO thresholds and data

from Europe (Carvalho et al., 2013).

The present study expands on previous analyses by

providing results that are easily communicated to stake-

holders and directly applicable to management deci-

sions. The two key components of this analysis

approach were (i) using classification to control for the

effects of covariates and to allow the use of simple mod-

els to represent the relationships between nutrient con-

centrations and cyanobacterial biovolume, and (ii) using

hierarchical Bayesian models to partition variability of

cyanobacterial biovolume observations into among-lake,

Fig. 7 Estimated nutrient targets. Open circle: mean target, thick

line: 50th percentile confidence interval on mean value, thin line:

90th percentile confidence interval on mean values, line with end

caps: 25th and 75th percentiles of distribution of targets, incorporat-

ing among-site variability. Group numbers refer to groups defined

in Fig. 4.

Fig. 8 Plot showing the magnitude of temporal variability relative

to residual variability between total nitrogen and cyanobacterial

biovolume in lake group 5. Circles: average cyanobacterial biovo-

lume for a single lake visit, filled circles and vertical line segments:

cyanobacterial biovolumes observed at the same lake at different

times during the sampling season.
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temporal, and sampling components, which can then

more accurately predict the probability of high cyano-

bacterial biovolume in different lakes.

Classification

To classify lakes, we used TREED analysis to identify

groups of lakes that maximised the degree to which

changes in nutrient concentrations accounted for variations

in cyanobacterial biovolume. TREED analysis provides a

means of screening many different candidate classifica-

tion variables and identifying the most relevant variables

and the appropriate cut points for those variables. As

such, it yields inherent performance advantages over a

priori classifications (e.g. Cheruvelil et al., 2008). In our

bumped search of possible classification schemes, we

identified several similar classifications that improved the

predictive accuracy of the model. Other approaches are

also available for searching the space of possible trees

that may identify a different set of classification trees

(Gramacy, 2007). In cases in which the data support a

greater numbers of discrete classes, many different trees

representing different classification schemes may be iden-

tified with comparable predictive performance (Yuan &

Pollard, 2014). However, in the present analysis, the

three-group trees that best represented the data were

generally similar.

Understanding the effects of other environmental fac-

tors on cyanobacterial biovolume was not the primary

focus of this work. Indeed, as noted above, in some

cases, different classification schemes, each using a dif-

ferent combination of classification variables, can pro-

vide a similar improvement in predictive performance,

and so the selection of a particular suite of variables

here should not be interpreted as an indication of their

overall importance in predicting cyanobacterial abun-

dance. Given those caveats, though, we did observe that

the classification variables frequently identified by

TREED analysis were consistent with environmental fac-

tors identified by other studies.

TN:TP was one of the frequently selected classification

variables, and the strength with which this ratio influ-

ences cyanobacterial abundance and biovolume has long

been the subject of debate (Smith, 1983; Downing et al.,

2001). Similar to our current analysis, recent work has

suggested that TN and TP are independently correlated

with cyanobacterial biovolume and that the ratio

between the two may influence the respective relation-

ships with TN and TP (Dolman et al., 2012). In our

model, high values of TN:TP were associated with lakes

in which TP was a strong predictor of cyanobacterial

biovolume (lake group 4), a finding that is consistent

with an intuitive understanding of nutrient limitation.

That is, in lakes with high TN:TP ratio, one might expect

that TP is limiting and therefore the better predictor for

cyanobacterial biovolume. Similarly, in lakes with low

values of TN:TP, we found TN was a better predictor, as

would be expected.

TN:TP is frequently selected as a classification variable

likely because the linear relationships used to model the

effects of TN and TP on cyanobacterial biovolume did

not fully represent the interactions between the two

nutrients in certain types of lakes. To further explore

this possibility, we fit a nonparametric, GAM to the rela-

tionship between TN, TP and cyanobacterial biovolume

in combined data from lake groups 3 and 4, and the

resulting model predictions illustrate the changing

effects of TN and TP with changes in the ratio between

the two nutrients (Fig. 9). At low values of TN:TP (e.g.

below the dashed line that indicates TN:TP = 9.1), the

orientation of the contour lines suggests a combined

effect of TN and TP. However, at higher values of TN:

TP, and especially at high values of TN, the contour

lines are nearly vertical, indicating that TN is the strong-

est predictor of cyanobacterial biovolume. The GAM

represents the smooth transition between different nutri-

ent regimes, and use of this model may provide more

appropriate nutrient targets for shallow lakes (i.e. depth

≤3.1 m) than the separate targets for lake groups 3 and

4. In deeper lakes, the absence of TN:TP as a classifica-

tion variable suggests that the linear models provide an

adequate representation of the observed relationships.

Lake depth was the second variable that was selected

frequently to classify lakes, and its selection is consistent

Fig. 9 Relationship between total nitrogen (TN), total phosphorus

(TP) and cyanobacterial biovolume in lake groups 3 and 4. Open

circles: observed values of TN and TP, contour lines: predicted

mean cyanobacterial biovolume (mm3 L�1) from generalised addi-

tive model, dashed line: threshold value of TN:TP = 9.1.
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with emerging insights into fundamental differences

between shallow and deep lakes. In shallow lakes, nutri-

ent concentrations often exert weaker controls on algal

assemblages as top-down effects can be more important

(Jeppesen et al., 1997). Conditions in shallow lakes also

can settle in alternate turbid or clear stable states (Scheffer

& van Nes, 2007), and growth of macrophytes can con-

tribute substantially to the overall nutrient budget (van

Donk et al., 1993). Elucidating the precise mechanisms

by which lake depth affects the relationships between

nutrients and cyanobacterial biovolume is beyond the

scope of the present analysis, but given the functional dif-

ferences between shallow and deep lakes, the frequent

selection of lake depth as a classification variable was not

surprising.

Overall, TREED regression improved the precision of

the estimated relationships and the predictive accuracy

by accounting for the effects of other environmental fac-

tors. Furthermore, as shown in Fig. 6, the results of the

analysis can be shown as simple contour plots that

clearly illustrate the effects of increased nutrients on cy-

anobacterial biovolume. Other statistical models that

simultaneously quantify the effects of nutrients and

other environmental factors [e.g. random forests (Cutler

et al., 2007) and Bayesian trees (Chipman, George &

McCulloch, 2010)] can provide more accurate predictions

than the TREED regression approach shown here (Yuan

& Pollard, 2014). However, the results from these types

of analyses cannot be easily plotted and are therefore

more difficult to interpret for management decisions.

The TREED regression approach provides a useful

compromise between prediction accuracy and interpret-

ability.

Variance components

Using the hierarchical Bayesian model to partition vari-

ance in the amount of cyanobacteria into among-lake,

temporal and sampling components enhanced our abil-

ity to interpret the data and analysis in at least two

ways. First, we could more accurately assess model per-

formance when we compared the amount of variability

explained by the model to the amount of variability that

the model could reasonably explain. Since the classifica-

tion scheme and the relationships between nutrient con-

centration and cyanobacterial biovolume were based

solely on differences among lakes, we can only expect

this model to account for among-lake variance. Hence,

estimates of the proportion of among-lake variance

explained by the model provide a much more informa-

tive assessment of model performance. Our results sug-

gest that differences in mean nutrient concentrations

accounted for the vast majority of differences in cyano-

bacterial biovolume among U.S. lakes. Then, incorporat-

ing lake classification further increased the proportion of

explained among-lake variance to 91%. A simple R2 cal-

culated for this same model was only 40%, which does

not truly reflect the performance of the model.

Second, quantifying temporal and sampling variability

of cyanobacterial biovolume allows us to accurately

account for temporal variability in the amount of cyano-

bacteria observed within a particular lake, and therefore,

more accurately predict the probability of biovolumes

that exceed a pre-determined threshold. Simple linear

regression only estimates the overall residual variability,

which combines all sources of variance. Using such a

variance estimate that includes sampling, temporal and

among-lake sources would generally overestimate the

variability of the amount of cyanobacteria in a particular

lake. From a practical perspective, overestimating vari-

ability may lead one to target a lower mean cyanobacte-

rial biovolume and lower nutrient concentrations than

would be necessary to reduce occurrences of high

cyanobacterial biovolumes to a desired frequency.

Two issues with regard to the variance estimates

require further discussion. First, we assumed that tem-

poral variability for all lakes in the data set was the

same, as our 100 repeat visits was only sufficient for reli-

ably calculating an average temporal variance for the

entire data set. However, different lakes possibly exhibit

different levels of temporal variability in cyanobacterial

biovolume, and additional repeat sample data, as it

becomes available, would be useful to explore this issue.

Second, to avoid adding another layer of complexity to

the present analysis and again because of the limited

number of repeat samples, we did not include predictor

variables that were associated with within-lake, tempo-

ral changes. However, exploratory analysis (not shown

here) suggested that factors such as the sampling day of

the year may account for a substantial proportion of the

variability in cyanobacterial biovolume over time, and

with additional data, accounting for these known

within-lake effects may further improve the precision of

these models.

Nutrient effects and targets

We estimated separate effects of TN and TP on cyano-

bacterial biovolume and used these relationships to

derive nutrient targets for different types of lakes in the

United States. As with most observations of nutrient

concentrations in lakes, we observed strong correlations
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between TN and TP at the national scale, and within

individual lake groups. Correlations in predictor vari-

ables such as observed here have often posed problems

for statistical models of the relationships between

nutrients and algal biomass. Confronted with strongly

correlated TN and TP, some researchers have chosen

to model only one of the nutrients (Carvalho et al.,

2011; Yuan & Pollard, 2014), reasoning that relation-

ships between algal biomass and the other, unmodelled

nutrient would be similar, given the strong correlations.

Others have developed independent models for TN and

TP and compared the results (Downing et al., 2001;

Beaulieu et al., 2013). We assert here, as others have

(Canfield et al., 1989; Dolman et al., 2012), that for large

data sets such as the national-scale data used here, mod-

els that simultaneously estimate the effects of both TN

and TP provide the most accurate predictions and illu-

minate differences in the relative effects of the two nutri-

ents. Errors in the estimates of the effects of two

correlated predictors are greatly reduced with increased

sample size (i.e. >100 samples) and in models with high

R2 values, as is the case in the current analysis (Mason

& Perreault, 1991), and so, we believe our estimates of

TN and TP effects are minimally affected by the TN-TP

correlation for the majority of lake groups. In lake

groups 3 and 4, the correlations between TN and TP

may be high enough to introduce some variability to the

estimated effects, but even in those cases, the combina-

tion of a high R2 and high sample size suggests that the

errors are not large (Mason & Perreault, 1991).

Our finding that the best nutrient predictors of cyano-

bacterial biovolume varied across lake groups mirrors

the diverse findings regarding nutrient limitation from

experimental studies in lakes. Some manipulative stud-

ies have found that combined increases in TN and TP

caused greater increases in primary productivity than

either TN or TP alone (Maberly et al., 2002; Dzialowski

et al., 2005), and nutrient colimitation has also been

observed with cyanobacteria (Paerl & Otten, 2013). Other

studies have found that either TN (Levine & Whalen,

2001) or TP is the limiting nutrient (Schindler et al.,

2008) and indeed, that the limiting nutrient can vary

over time within the same lake (Maberly et al., 2002).

Our results based on data collected at a broad spatial

scale provides support for the idea that nutrient limita-

tion can vary among different lakes, and these analyses

can potentially guide the selection of lakes for future

comparative experiments.

Because our analyses were based on data collected

within different lakes and did not include nutrient load-

ing data, we could identify TN and TP as the best pre-

dictors of cyanobacterial biovolume in different lake

groups, but our ability to inform appropriate remedia-

tion actions is limited. Some studies have strongly

linked reductions in loadings of phosphorus to decreases

in algal biomass (Effler & O’Donnell, 2010), and some

have advocated that control only of phosphorus will

achieve desired conditions in lakes (Schindler et al.,

2008). Others have advocated that reduced loadings of

both nitrogen and phosphorus would be more effective

(Lewis, Wurtsbaugh & Paerl, 2011). In some lakes, fixa-

tion of N2 by cyanobacteria supplies the necessary nitro-

gen to fuel excess cyanobacterial growth (Beversdorf,

Miller & McMahon, 2013), and in these lakes, reduction

only in phosphorus loads may indeed result in decreases

in observed concentrations of both TN and TP. How-

ever, other studies have found that even nitrogen-fixing

cyanobacteria preferentially use environmental inorganic

nitrogen when it is available (Ferber et al., 2004), and in

lakes with high levels of external nitrogen loading,

reduction in both nitrogen and phosphorus loads would

likely restore desired lake conditions most efficiently. In

general, additional lake-specific consideration of the nat-

ure of external nutrient loads would help identify the

management actions that will most effectively achieve

nutrient targets and desired amounts of cyanobacteria in

a particular lake.

Since both TN and TP are used to predict cyanobacte-

rial biovolume, an additional assumption is required to

identify individual management targets for TN and TP

from the infinite set of possible values. A number of dif-

ferent approaches are possible, and we demonstrated

the simple idea of calculating TN and TP targets based

on major axis regression. This approach yields targets

for TN and TP that, by definition, are located in the

middle of the joint distribution of TN and TP concentra-

tions. As such, the targets for TN and TP derived in this

way represent the overall mean concentrations of TN

and TP across the NLA data set, or within a particular

lake group. Other approaches for selecting individual

management targets are possible, including examining

the upper and lower bounds of the possible combined

values of TN and TP (Yuan et al., 2014), and the final

approach selected depends on the management objec-

tives.

The analyses described here directly links numerical

nutrient targets to a known threshold for cyanobacterial

biovolume in an easily interpreted format. As such,

these analyses can inform management decisions. The

simple model, in which all available data are considered

together, provides single target values for TP and TN

for all lakes and reservoirs in the continental United
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States. These target values maintain the average probabil-

ity of cyanobacterial biovolume exceeding the WHO

moderate risk threshold of 2.3 mm3 L�1 at 10%. How-

ever, differences among lakes, as quantified by the

among-lake variance, indicate that for different lakes,

these target nutrient concentrations value may yield

cyanobacterial biovolumes that exceed the threshold

much more frequently or much less frequently than

10%. The hierarchical Bayesian approach for estimating

these relationships provided the means to explicitly

incorporate different sources of variability into the esti-

mates of nutrient targets, and the ranges provided for

each nutrient target provide values that are associated

with different risks of exceeding the WHO threshold.

The lower end of each range corresponds with an esti-

mated target that ensures that cyanobacterial biovolume

in 75% of the lakes in the group remains below the

WHO threshold at least 90% of the time. Conversely, the

upper end of each range provides assurance that 25% of

lakes in the group will achieve the desired condition.

Hence, values within this range can be selected and

weighed against other factors that inevitably enter into

environmental decisions.

When using these nutrient targets to inform manage-

ment decisions, one should consider all of the manage-

ment objectives for a particular lake. The nutrient targets

described here pertain only to the occurrence of exces-

sive densities of cyanobacteria, and other considerations

regarding the health of a lake likely yield different nutri-

ent targets. For example, the extent of hypoxia in the

lake (Yuan & Pollard, 2015) or the occurrence of high

concentrations of microcystin (Yuan et al., 2014) may be

relevant endpoints to consider when making the man-

agement decisions.
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