

ENGINEERING OVERVIEW

TOPICS OF DISCUSSION

- California WaterFix proposed facilities and refinements
- Construction potential affects on other users of water and mitigation
- Flood protection measures

PROPOSED FACILITIES

- Intake facilities
- Tunnels
- Forebays
- Clifton Court Pumping Plant
- Head of Old River Operable Gate

ENGINEERING REFINEMENTS

INTAKE CHANGES

2013 Intake Facility with Northern Pumping Plant

INTAKE CHANGES

2014 Intake Facility with Southern Pumping Plant

INTAKE CHANGES

2015 Intake Facility with Southern Pumping Plant

INTERMEDIATE FOREBAY CHANGES

CLIFTON COURT CHANGES

CALIFORNIA WATER FIX FACILITIES

CONVEYANCE SCHEMATIC

9,000 CFS GRAVITY SYSTEM

GENERAL INTAKE DESIGN CRITERIA

General	
Intake	On-bank
Number of Intakes	3
Maximum Single Intake Capacity	3,000 cfs
Maximum System Flow Capacity	9,000 cfs
Hydraulic Intake Criteria	
Screen Approach Velocity	.20 fps
Screen Sweeping Velocity	≥0.20 fps

TYPICAL RIVER INTAKE RENDERING

ISOMETRIC VIEW OF AN INTAKE BAY

OUTLET STRUCTURE

GROUNDWATER CONTROL MEASURES

- Slurry Cutoff Walls
 - Hydraulically isolate construction areas for dewatering
 - Control Seepage from forebays and sedimentation basins
- Toe drains
- Tunnel lining system
- Geotechnical studies and monitoring program

DEWATERING

Long-Term Groundwater Elevation Prior to Construction

Groundwater Elevation
During Dewatering
Actions

Groundwater Elevation
During Dewatering with
Slurry Cutoff Walls

INTAKE CONSTRUCTION

EXISTING WATER DIVERSIONS

- Total number of affected water rights
 - Temporarily affected: 10
 - Permanently affected: 5
- Mitigations for temporarily affected diversions
 - Provide new groundwater wells
 - Provide alternate water supply from a permitted source

EXISTING WATER DIVERSIONS

Mitigations for permanently affected diversions

- Provide temporary mitigation measures until the mitigation measures below are completed:
 - Relocate existing diversions outside of the intake structure footprint
 - Provide a new turnout from the proposed CWF sedimentation basins

INTAKE 2 DIVERSIONS

INTAKE 3 DIVERSIONS

INTAKE 5 DIVERSIONS

MAIN TUNNELS

TUNNEL BORING MACHINE EXCAVATION ANIMATION

TUNNEL SEGMENT INSTALLATION ANIMATION

SHAFT CONSTRUCTION

- Excavate diaphragm wall
- Install reinforcing steel
- Place concrete
- Remove soil inside shaft
- Install tremie concrete bottom
- Dewater shaft
- Install dewatering pump

FOREBAY EMBANKMENT

INTERMEDIATE FOREBAY RENDERING

CLIFTON COURT FOREBAY

CLIFTON COURT PUMPING PLANT RENDERING

CLIFTON COURT PUMPING PLANT RENDERING

HEAD OF OLD RIVER OPERABLE GATE LOCATION

HEAD OF OLD RIVER OPERABLE GATE

- Located where San Joaquin and Old Rivers diverge
- Consists of five bottom-hinged gates, fish passage structure, boat lock, and other appurtenant facilities
- Within the confines of the existing channel (no levee relocation)

HEAD OF OLD RIVER OPERABLE GATE RENDERING

FLOOD PROTECTION

At intake sites

- Temporary and long term protection measures
- In accordance with USACE Section 408 permitting

Along surrounding levees

- Assessment of existing conditions
- Improvements to be performed
- Monitoring program before and during construction