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An updated conceptual model of Delta 
Smelt biology: our evolving understanding 
of an estuarine fish
By Management, Analysis, and Synthesis Team

Executive Summary

The main purpose of this report is to provide an up-to-date assessment and conceptual model of 
factors affecting Delta Smelt (Hypomesus transpacificus) throughout its primarily annual life 
cycle and to demonstrate how this conceptual model can be used for scientific and management 
purposes. The Delta Smelt is a small estuarine fish that only occurs in the San Francisco 
Estuary. Once abundant, it is now rare and has been protected under the federal and California 
Endangered Species Acts since 1993. The Delta Smelt listing was related to a step decline in the 
early 1980s; however, population abundance decreased even further with the onset of the “pelagic 
organism decline” (POD) around 2002. A substantial, albeit short-lived, increase in abundance of 
all life stages in 2011 showed that the Delta Smelt population can still rebound when conditions 
are favorable for spawning, growth, and survival. In this report, we update previous conceptual 
models for Delta Smelt to reflect new data and information since the release of the last synthesis 
report about the POD by the Interagency Ecological Program for the San Francisco Estuary (IEP) 
in 2010. Specific objectives include:

1. Provide decision makers with a practical tool for evaluating difficult trade-offs 
associated with management and policy decisions.

2. Provide scientists with a framework from which they can formulate and evaluate 
hypotheses using qualitative or quantitative models.

3. Provide the general public with a new way of learning about Delta Smelt and their 
habitat. 

Our updated conceptual model describes the habitat conditions and ecosystem drivers affecting 
each Delta Smelt life stage, across seasons and how the seasonal effects contribute to the 
annual success of the species. The conceptual model consists of two nested and linked levels of 
increasing specificity. The general life cycle conceptual model for four Delta Smelt life stages 
(adults, eggs and larvae, juveniles, and subadults) includes stationary ecosystem components and 
dynamic environmental drivers, habitat attributes, and Delta Smelt responses. The more detailed 
life stage transition conceptual models for each of the four Delta Smelt life stages describe 
relationships between environmental drivers, key habitat attributes, and the responses of Delta 
Smelt to habitat attributes as they transition from one life stage to the next.

Our analyses and conceptual model show that good larval recruitment is essential for setting 
the stage for a strong year class; however, increased growth and survival through subsequent 
life stages are also needed to achieve and sustain higher population abundance. We used our 
conceptual model to generate 16 hypotheses about the factors that may have contributed to 
the 2011 increase in Delta Smelt relative abundance. We then evaluated these hypotheses by 
comparing habitat conditions and Delta Smelt responses in the wet year 2011 to those in the 
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prior wet year 2006 and in the drier years 2005 and 2010. Larval recruitment was similarly 
high in both wet years and lower in the drier antecedent years, but juvenile and adult abundance 
increased only in 2011. In 2005 and 2006, the population was limited by very poor survival from 
the larval to the juvenile life stage. We found that in 2011, Delta Smelt may have benefitted from 
a combination of favorable habitat conditions throughout the year, including:

1. Adults and larvae benefitted from prolonged cool spring water temperatures, high 2011 
winter and spring outflows which reduced entrainment risk and possibly improved other 
habitat conditions, and possibly enhanced food availability in late spring.

2. Juveniles benefitted from cool water temperatures in late spring and early summer as 
well as from improved food availability and low levels of harmful Microcystis.

3. Subadults also benefitted from improved food availability and from favorable habitat 
conditions in the large, low salinity zone (salinity 1-6) located more toward Suisun Bay 
in 2005-2006 and 2010. 

Our comparisons of other habitat attributes either produced inconclusive results or were limited 
by a lack of suitable data or other necessary information. This was especially true for predation 
risk and toxicity, and other contaminant effects. Clearly more monitoring and studies are needed 
on these two topics, but we also found many other data and information gaps. Overall, we did not 
entirely reject any of our hypotheses. Together with the large amount of published information 
used to construct our conceptual model, this gives us some confidence that the majority of the 
elements and linkages of our conceptual model are relevant and (qualitatively) correct. However, 
the mechanisms they describe are likely variable in the degree to which they drive population 
outcomes, depending on the conditions in any given year and prior Delta Smelt abundance levels. 
In addition, the scientific merit of some linkages for which data are sparse (e.g., predation and 
contaminants effects) is impossible to evaluate without additional information. 

Importantly, while this report identifies many data and information gaps that must be filled 
before some hypotheses can be objectively evaluated, the report includes a very large amount of 
pertinent data and information that is currently available. The San Francisco Estuary is clearly 
an intensely monitored and studied ecosystem and Delta Smelt may well be one of the most 
thoroughly studied endangered fish species in the world. The most critical data for this report 
came from four long-term Interagency Ecological Program fish monitoring surveys. These 
surveys provide sound, high-quality data about the annual distribution and relative abundance 
of Delta Smelt for time periods ranging from one to more than five decades. These four surveys, 
other monitoring surveys, and numerous research studies provide data about many habitat 
attributes and ecosystem drivers. 

The report ends with key conclusions, a discussion of our hypothesis testing approach, and 
recommendations for future work and adaptive management applications. The final report 
Chapter contains many concrete examples of studies, modeling approaches, and management 
applications that are directly derived from the conceptual model. These examples are not meant 
to be exhaustive lists. Rather, they are primarily intended to illustrate science and management 
applications of our conceptual model. 

We strongly recommend that analysis, synthesis and modeling efforts, such as this report, be 
a high priority for the management and science organizations that oversee monitoring and 
research in the estuary. Without these types of integrative efforts, ongoing and proposed adaptive 
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management processes must conduct such efforts in an ad hoc manner, often driven by unrealistic 
schedules that are unlikely to be fulfilled. Such adaptive management processes in the estuary 
include the ongoing adaptive management of fall outflow for Delta Smelt, the new “Collaborative 
Science and Adaptive Management Program,” the California Delta Stewardship Council’s Delta 
Plan, and the multi-agency Bay Delta Conservation Plan. On a more basic level, such synthesis 
efforts identify data gaps that serve to focus research and management efforts on scientifically 
relevant topics rather than the “crisis of the day.” 

The 2011 increase in the Delta Smelt abundance index demonstrated that the species still has the 
ability to rebound to higher abundance levels. Delta Smelt has often been called an indicator – 
or canary in the coalmine – for overall ecosystem conditions in the estuary. The 2011 increase 
suggests that the system has not yet irreversibly shifted into an altered state that will no longer 
support native species. Given the profound habitat alterations in the San Francisco Estuary, 
continued study of the environmental drivers and habitat attributes and the subsequent responses 
of the Delta Smelt population seem critical to the wise management of the species. Some possible 
topics for future synthesis groups include:

1. Reviews and updates to existing conceptual and mathematical models. 

2. Further development of mathematical models of Delta Smelt population abundance 
drawn specifically from the conceptual models described in this report; applications 
and extensions of recently published models to help make management decisions and 
guide new modeling efforts; additional modeling efforts and future research projects to 
improve resolution and understanding of the particular factors identified as critical to 
reproduction, recruitment, survival, and growth.

3. Review and refinement of new models such as the emerging comprehensive state-
space population model (K. Newman, U.S. Fish and Wildlife Service, personal 
communication); development of additional models or modules of models specifically 
aimed at estimating effects of inadequately monitored or difficult to measure and 
evaluate habitat attributes such as predation risk and toxicity; development of new 
“nested” and/or “linked” mathematical modeling approaches that can accommodate 
multiple drivers and their interactive effects across temporal and spatial scales. 

4. Interdisciplinary collaboration among scientists, managers, and stakeholders to develop 
and model management scenarios and strategies based on principles of integrative 
ecosystem and landscape-based management rather than relatively crude distinctions 
among categorical “water year types.”

Continued growth of California’s human population, climate change, new species invasions, and 
other changes will increase management challenges. Science and management have to go hand in 
hand to constantly identify, implement, evaluate, and refine the best management options for this 
ever-changing system. We hope that the conceptual model and information in this report will be 
useful for achieving these goals.
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Chapter 1: Introduction

The San Francisco Estuary

Estuarine ecosystems are among the most complex ecosystems on earth (Wilson 1998). They are 
constantly changing ecosystems that respond to dynamic “drivers” of change (Healey et al. 2008, 
Baxter et al. 2010). Natural drivers include the geological and geographic setting, climatic and 
oceanic variability, dynamic hydrological and nutrient regimes, weather and disturbance regimes, 
biogeochemical processes, species assemblages, and many other biotic and abiotic features. 
Estuaries also respond to a broad range of human activities. Some of these “human drivers” 
have negative impacts on ecosystems. These negative human drivers are often called “stressors.” 
Human stressors on estuarine ecosystems include water and land use, pollutant discharges, 
species introductions, and fishing (Townend 2004, Lotze et al. 2006, Cloern and Jassby 2012). 
The interplay of natural and human drivers and their effects on the San Francisco Estuary and in 
particular on the Delta Smelt (Hypomesus transpacificus), an endemic fish species, is the subject 
of this report.

The San Francisco Estuary (SFE; Fig. 1) is comprised of an upstream region consisting of 
channels and islands associated with the confluence of the Sacramento and San Joaquin Rivers 
known as the “Delta” and a series of downstream bays and marshes that are separated from 
the Pacific Ocean by the “Golden Gate,” the sea passage between the San Francisco and Marin 
peninsulas. Because of California’s Mediterranean climate, the SFE experiences large interannual 
and seasonal flow variations, which are modulated by tides and human management of the 
rivers within the Delta watershed (Moyle et al. 2010). These hydrological variations lead to a 
dynamic estuarine salinity gradient. In the winter and spring fresh water often extends into San 
Pablo Bay, while in the summer and fall brackish water can intrude into the western Delta. These 
seasonal differences are exacerbated by pronounced interannual differences in precipitation in 
the watershed. Extremely dry years with little precipitation and very wet years with widespread 
flooding do not occur in predictable patterns (Dettinger 2011).

The SFE has undergone dramatic morphological, hydrological, chemical, and biological 
alterations since the onset of the California Gold Rush in the middle of the 19th century (Nichols 
et al. 1986, Arthur et al. 1996, Baxter et al. 2010, Brooks et al. 2012, NRC 2012, Whipple et al. 
2012, Cloern and Jassby 2012). These alterations include five human activities that have changed 
ecological functions and habitats in many riverine and estuarine systems with increasingly dense 
human populations: diking, draining, dredging, diverting, and discharging. Specifically, diking 
and draining have reduced the vast wetlands that once covered and surrounded the SFE to small 
remnants. There has been an 80-fold decrease in the ratio of wetland to open water area in the 
Delta, from a historical ratio of 14:1 to a current ratio of 1:6 (Whipple et al. 2012, Herbold et 
al. 2014). Diking and dredging have led to a substantial reconfiguration of the bays, sloughs, 
and channels, while large-scale water diversions, and discharge of contaminants have altered 
water quantity and quality. Small water diversions occur throughout the freshwater portion of the 
estuary, but the largest water diversions are at the pumping facilities of the federal Central Valley 
Project (CVP) and the State Water Project (SWP) that export water from the southwestern Delta 
to agricultural and urban areas to the south (Fig. 2). In addition, a wide variety of non-native 
plants and animals have been introduced and have become established in the SFE (Cohen and 
Carlton 1998, Light et al. 2005, Winder et al. 2011).
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Figure 1. Map of the San Francisco estuary. The inset shows various values of X2, the distance in 
kilometers from the Golden Gate to the near bottom salinity 2 isohaline.
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Figure 2. Map of the upper San Francisco estuary. The upper estuary includes the Suisun Bay region 
and the Sacramento-San Joaquin Delta, which are west and east of Chipps Island respectively. 
The area from approximately Chipps Island to the west end of Sherman Island is referred to as the 
“confluence.”
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Many of the more recent ecological changes in the SFE have been documented by long-term 
monitoring surveys. Most of these surveys are conducted under the auspices of the Interagency 
Ecological Program (IEP), an interagency science consortium with three State and six federal 
member agencies (http://www.water.ca.gov/iep/). Together with monitoring conducted by others, 
these monitoring surveys provide one of the longest and most comprehensive environmental and 
biological data records in a U.S. coastal ecosystem. With each additional year of monitoring, this 
data record serves as an increasingly valuable tool for observing gradual changes or abrupt shifts 
in ecological conditions and for identifying their underlying causes (Cloern and Jassby 2012).

The modern SFE continues to be a dynamic and complex ecosystem that supports many 
important ecosystem services (Millennium Ecosystem Assessment 2005), including the provision 
of fresh water, agricultural crops, commercial and recreational fisheries, and other recreational 
opportunities. However, it no longer provides adequate habitat for many of its native species as 
evidenced by severe declines in several of its native fish populations (e.g., Bennett and Moyle 
1996, Brown and Moyle 2005, Sommer et al. 2007).

Pelagic fish declines

Among the native fishes of the upper SFE (Fig. 2), the endemic Delta Smelt is of high 
management concern because of a decline of its annual abundance indices (see Chapter 3 for 
details of fish surveys and indices), particularly longer term indices for juveniles and subadults, 
to persistent low levels (Fig. 3). This decline led to its listing under the federal Endangered 
Species Act in 1993. The Delta Smelt is a slender-bodied pelagic fish with a maximum size of 
about 120 mm standard length (length from snout to end of vertebral column) and a maximum 
age of two years. It is the most estuary-dependent of the native fish species in the SFE (Moyle et 
al. 1992, Bennett 2005). The continued existence of the species is dependent upon its ability to 
successfully grow, develop, and survive in the SFE.

Delta Smelt is not the only fish species currently in decline in the Delta. Abundance indices of 
Longfin Smelt (Spirinchus thaleichthys), age-0 Striped Bass (Morone saxatilis), and Threadfin 
Shad (Dorosoma petenense) declined simultaneously with those of Delta Smelt in about 2002. 
This simultaneous decline has become known as the pelagic organism decline (POD) (Sommer 
et al. 2007, Baxter et al. 2008, 2010) (Fig. 4). Given the very different life histories of these 
four pelagic species, it is unlikely that a single environmental variable could account for the 
POD declines. In general, researchers have suggested that the POD declines were likely multi-
causal (Sommer et al. 2007, Baxter et al. 2008, 2010, Mac Nally et al. 2010, Cloern and Jassby 
2012, NRC 2012). Several researchers have suggested that the SFE has undergone an ecological 
regime shift (Moyle and Bennett 2008, Baxter et al. 2010, Glibert et al. 2011, Cloern and Jassby 
2012). In the present system, an invasive aquatic macrophyte (Egeria densa) dominates the 
littoral zone of many areas of the Delta and provides favorable habitat for many invasive fishes 
(e.g., Largemouth Bass Micropterus salmoides; Brown and Michniuk 2007); invasive clams 
(Potamocorbula amurensis and Corbicula fluminea) consume a large portion of the available 
pelagic phytoplankton (Alpine and Cloern 1992, Lopez et al. 2006, Lucas et al. 2002, Lucas 
and Thompson 2012); agricultural, industrial, and urban discharges transport large quantities 
of nutrients and a plethora of contaminants into many regions of the estuary; and current 
management of water for agricultural, industrial and urban purposes is focused on optimizing the 
reliability of water exports by the CVP and SWP.
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Figure 3. Delta Smelt abundance index for life stages of Delta Smelt including 
the larvae-juveniles (20 mm Survey), juveniles (Summer Townet Survey), 
subadults (Fall Midwater Trawl), and adults (Spring Kodiak Trawl). The initiation 
of each individual survey is indicated by the initial bar with subsequent missing 
bars indicating when an index could not be calculated. See Chapter 3 for details 
of sampling programs, including geographic coverage, and Appendix B for 
details of calculationg abundance indices.
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Figure 4. Abundance indices from Fall Midwater Trawl for Delta Smelt, Longfin 
Smelt, age-0 Striped Bass, and Threadfin Shad. Missing bars indicate when 
an index could not be calculated. See Chapter 3 for details of sampling 
programs, including geographic coverage, and Appendix B for details of 
calculationg abundance indices.
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Changes in Delta Smelt distribution and abundance

Long-term monitoring surveys conducted by the IEP have documented substantial changes in the 
distribution and abundance of Delta Smelt in its small native geographic range which extends 
from the upstream boundaries of tidal influence in the northern, eastern and southern Delta region 
of the estuary to Suisun and San Pablo Bays in the north-western region of the estuary. The 
geographic range of Delta Smelt also includes some of the larger tidal sloughs and tributaries 
adjacent to Suisun and San Pablo Bays, including some Suisun Marsh sloughs and the lower 
Napa River (Bennett 2005, Hobbs et al. 2007, Sommer et al. 2011, Merz et al. 2011, Sommer 
and Mejia 2013, Murphy and Hamilton 2013). Delta Smelt are generally considered a pelagic 
species. While they are commonly found in shallow shoal areas such as Honker and Grizzly Bays 
in the Suisun Bay region of the estuary and larger marsh sloughs such as Suisun and Montezuma 
Sloughs in Suisun Marsh and the lower reaches of Cache and Lindsey Sloughs in the northern 
Delta, they are less commonly encountered in near-shore areas and only rarely in smaller marsh 
sloughs (Bennett 2005, Merz et al. 2011, Sommer and Mejia 2013).

The Delta Smelt has been characterized as a “semi-anadromous” fish species that spawns in fresh 
water and rears in fresh to brackish water (Fig. 5; Dege and Brown 2004, Bennett 2005, Sommer 
et al. 2011, Merz et al. 2011). While Delta Smelt have been documented throughout their 
geographic range during most months of the year (Sommer et al. 2011, Merz et al. 2011, Murphy 
and Hamilton 2013), their distribution varies seasonally in response to dynamic abiotic and biotic 
habitat attributes such as salinity, temperature, turbidity, and presumably food supplies (Bennett 
et al. 2005, Sommer et al. 2013, Brown et al. 2014). In years with high freshwater discharge 
in winter and spring, spawning and rearing of larval and early post-larval fish can temporarily 
extend seaward into San Pablo Bay, while in years with less discharge it usually occurs in the 
Delta, Suisun Bay and Suisun Marsh. Juveniles and adults are distributed across a broader 
salinity range (0 to about 18) than larval and post-larval fishes which tend to be most abundant 
in the low salinity zone (salinity 1-6). Dege and Brown (2004) and Sommer et al. (2011) found 
that the center of the Delta Smelt distribution is associated with salinities of about 2 during most 
months and moves with the estuarine salinity gradient as the salinity gradient responds to flow.

Historically, Delta Smelt were commonly observed throughout the fresh and low salinity portions 
of their geographic range (Erkkila et al. 1950, Radke 1966). Over the last two decades, their 
geographic distribution has become more constricted during the summer and fall. At present, 
Delta Smelt are less commonly found in the southern and eastern Delta during the winter and 
spring and are largely absent from this region in the summer and fall (Nobriga et al. 2008, 
Sommer et al. 2011). While Delta Smelt continue to be found in the northern Delta year-
round and individual catches in this region are sometimes large, particularly during winter and 
spring, the majority of the population is usually observed in the region near to and west of the 
Sacramento-San Joaquin River confluence, especially in the summer and fall (Sweetnam 1999, 
Feyrer et al. 2007, Nobriga et al. 2008, Merz et al. 2011, Sommer et al. 2011, Sommer and Mejia 
2013). 

In addition to documenting changes in distribution, long-term IEP surveys also reveal that the 
annual abundance indices of Delta Smelt have greatly declined since the first long-term pelagic 
fish monitoring survey began in summer 1959 (Fig. 3). Both a gradual, long-term decline and 
step changes, most recently around 2002, have been described using a variety of qualitative and 
statistical approaches for subadult Delta Smelt caught in the fall (e.g., Bennett and Moyle 1996, 
Bennett 2005, Manly and Chotkowski 2006, Thomson et al. 2010). These declines have not been 
smooth or entirely unidirectional and also include a great deal of interannual variability (Fig. 3). 
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Since the beginning of the POD in 2002, the Delta Smelt abundance indices have often been at 
record low levels, leading to concerns about declines in effective population size (Fisch et al. 
2011) and a loss of population-level resilience, meaning the ability of the population to recover to 
higher population abundances when conditions are suitable. For example, population sizes might 
become too small to produce enough eggs or larvae to outpace predation on eggs and larvae.

Delta Smelt had previously rebounded from low population abundances, most recently in the 
wet years of the late 1990s (Fig. 3). The lack of increase in Delta Smelt in the wet year of 
2006 combined with new evidence for genetic bottlenecks and a significant decline in effective 
population size from 2003 to 2007 (Fisch et al. 2011) were thus a source of great concern. 
However, during 2011, the next wet year after 2006, the species did increase in abundance (Fig. 
3). Unfortunately, the increase in Delta Smelt abundance was short-lived and did not carry over 
into the following year-class in 2012, a drier year. Nevertheless, the temporary increase gave 
some cause for renewed optimism about the resilience of the species and its potential recovery. 
In addition, the contrasts between habitat conditions and Delta Smelt responses in 2006 and 2011 
provided an opportunity to gain new insights into the Delta Smelt habitat requirements that might 
help better manage this species and its habitat.

Protecting Delta Smelt

Delta Smelt are currently protected under both California and federal endangered species 
legislation. The protection and recovery of Delta Smelt and its estuarine habitat in the SFE will 

Summer

SpringFall

Upstream migration
after first flushWinter

Maturation in low
salinity zone

Spawning in
fresh water

Migration to and rearing in
low salinity zone

Figure 5. Simplified life cycle of Delta Smelt (modified from Bennett 
2005). Colors correspond to different seasons with the low salinity 
zone changing position with season.
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likely require the human population of California to reduce its dependence on some of the natural 
resources provided by the SFE. This will become even more challenging in the future because 
of climate change and the continued growth of California’s human population. California’s 
population has increased by approximately 38 million people compared to the population when 
California became a state in 1850 and has increased by about 22.5 million compared to 1959 
when Delta Smelt monitoring started 55 years ago (U.S. Census Bureau data). More than three 
quarters of today’s 38 million Californians live south of the SFE, and the majority of these 
Californians and millions of acres of farmland rely on fresh water diverted from the Delta 
for all or part of their water supply. The conflicts and trade-offs between species protection 
measures and actions to provide water and other natural resources to California’s growing 
human population have resulted in repeated attempts to reconcile these seemingly irreconcilable 
objectives through regulatory requirements, new institutional arrangements, and management 
plans.

Among the regulatory requirements are the State water right decisions issued by the California 
State Water Resources Control Board, which grant SWP and CVP water rights permits, but also 
include requirements to protect fish. State regulations also include increasingly more stringent 
waste discharge permits. For example, the new permit recently issued to the Sacramento Regional 
County Wastewater Treatment Plant includes new requirements for major treatment upgrades to 
better protect downstream water uses and the health of the estuary. Federal regulations include 
water quality requirements under the Clean Water Act and Biological Opinions (BiOps) issued 
under the federal Endangered Species Act. Two BiOps assess the effects of the coordinated 
operations of the SWP and CVP on Delta Smelt, Green Sturgeon, and salmonid fish populations, 
and their designated critical habitat. These BiOps include “reasonable and prudent alternatives” 
to lessen negative impacts of SWP and CVP operations and avoid jeopardy to the species, while 
at the same time trying to avoid major reductions in water exports from the Delta. 

Recent institutional reconciliation attempts include the multiagency, State and federal CALFED 
Bay-Delta Program and Authority (CALFED) and the California Delta Stewardship Council 
(DSC), a new State agency. From 1994 to 2010, CALFED attempted to reconcile water allocation 
and ecosystem restoration efforts in the estuary in a way that would allow them to “get better 
together” (Doremus 2009). After the demise of CALFED, the State of California created the DSC 
to address what the legislature termed the “co-equal goals” of providing a more reliable water 
supply for California and protecting, restoring, and enhancing the Delta ecosystem (CA Water 
Code §85054, http://deltacouncil.ca.gov/). 

Among the many management plans aimed at reconciling species protection and human 
water and land use objectives are plans by the DSC, SWRCB, and new groupings of multiple 
agencies and stakeholders. The DSC recently completed and is now starting to implement its 
comprehensive “Delta Plan” (http://deltacouncil.ca.gov/delta-plan-0) to achieve the co-equal 
goals, while the SWRCB is on track to complete a major update to its “Bay-Delta Plan” which 
may result in changes to water right permits (http://www.waterboards.ca.gov/waterrights/water_
issues/programs/bay_delta/). Three California State agencies recently completed a new California 
Water Action Plan that includes actions to help achieve the co-equal goals (http://resources.
ca.gov/california_water_action_plan/). A multi-agency planning effort that includes State 
and federal agencies as well as local Public Water Agencies (water contractors) is working to 
complete the “Bay-Delta Conservation Plan” (BDCP, http://baydeltaconservationplan.com). The 
BDCP is a proposed Habitat Conservation Plan under the federal Endangered Species Act and a 
Natural Community Conservation Plan under the California Natural Community Conservation 
Planning Act. It proposes to implement habitat restoration measures, stressor reduction activities, 

http://deltacouncil.ca.gov/
http://deltacouncil.ca.gov/delta-plan-0
http://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/
http://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/
http://resources.ca.gov/california_water_action_plan/
http://resources.ca.gov/california_water_action_plan/
http://baydeltaconservationplan.com
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improved water project operations criteria, and new water conveyance infrastructure. If approved 
by the regulatory agencies, this plan would provide long-term permits for the various projects and 
water operations to proceed over a 50-year time frame. 

Management actions, regulatory requirements, and institutional arrangements in the SFE have 
undergone substantial and complex changes over the last 150 years. Hanak et al. (2011) describe 
a progression from an early disorganized “laissez-faire” era of California and SFE water 
management followed by increasingly organized and large-scale management schemes, from 
local water use to state-wide water projects, which led to a current “era of conflict” and the hope 
for a new “era of reconciliation.” A complete review of these changes is outside the scope of this 
report and the reader is referred to Hanak et al. (2011) and other existing reports on this topic. 
It is important to note, however, that increasingly, these changes have been “adaptations” based 
on the results of monitoring, studies, and other scientific activities in the SFE. Many of these 
scientific activities have been conducted under the auspices of the IEP (Herrgesell 2013). It can 
be argued that some of the activities preceding and ultimately leading to the creation of the IEP in 
1970 ushered in an era of increasingly intense and formalized “adaptive management” before the 
term itself was coined. 

Adaptive management is a formal approach to natural resource management that closely connects 
science with management to devise, track, and improve management outcomes. This connection 
started to become an important aspect of fisheries management in the 1950s (e.g., Beverton and 
Holt 1957), although the term itself was not coined until 1978 when Holling (1978) and Walters 
and Hilborn (1978) provided a conceptual framework for adaptive resources management. This 
framework was later refined to distinguish between “passive” and “active” adaptive management. 
According to Williams (2011), “active adaptive management actively pursues the reduction 
of uncertainty through management interventions, whereas passive adaptive management 
focuses on resource objectives, with learning a useful but unintended byproduct of decision 
making […]. In practice this means that a key difference between passive and active adaptive 
management is the degree to which the objectives that guide decision making emphasize the 
reduction of uncertainty.” In active adaptive management, management actions are designed as 
“experimental treatments” with clear hypotheses about outcomes that are tested through rigorous 
data collection and analyses. This accelerates learning, but can come at the expense of achieving 
resource objectives because potentially less effective management actions may be included in 
the experimental design. Moreover, the more intense science efforts needed for active adaptive 
management can be costly over the short term (Williams 2011). This may explain why passive 
adaptive management, while not always referred to by this name or implemented in the formal 
and rigorous way now advocated by the DSC’s Delta Plan (DSC 2013), has been and continues 
to be common in the SFE, but active adaptive management – viewed by some as the only “real” 
adaptive management – is still rare.

Of all current management actions and requirements affecting Delta Smelt, the actions required 
in the 2005 and 2008 BiOps issued by the U.S. Fish and Wildlife Service (FWS) are most 
directly aimed at the protection of Delta Smelt. The 2008 BiOp takes a life cycle approach to 
protecting Delta Smelt and includes an explicit requirement for adaptive management of fall 
outflow. After initial steps to design a passive adaptive management program, the U.S. Bureau 
of Reclamation (Reclamation) decided to take a more active approach aimed at more rapidly 
reducing uncertainties about the underlying mechanisms and effects of fall outflow management 
on Delta Smelt (Reclamation 2011, 2012, Brown et al. 2014). The study component of the fall 
outflow adaptive management plan, also known as the “fall low salinity habitat” (FLaSH) studies, 
was developed with the help of a new conceptual model (FLaSH conceptual model, Brown et 
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al. 2014) and has been implemented by the IEP starting in 2011. The FLaSH studies provided an 
opportunity to intensely study the increase in the Delta Smelt abundance index observed in 2011. 
At this initial stage of the adaptive management program and the FLaSH studies, the 2011 data 
were compared to data gathered in the previous wet year, 2006, during which fall outflow was 
lower. The intitial data analysis effort also considered antecedent conditions in 2010 and 2005, 
resulting in a simple comparative approach focusing on four years (Brown et al. 2014).

Report Purpose and Organization

It is clear that the recovery of Delta Smelt and other listed and unlisted native species will be 
a key requirement of any plan to manage the resources of the SFE. Understanding the factors 
driving Delta Smelt population dynamics is a major goal of resource management agencies. 
The main purpose of this report is to provide an up to date assessment of factors affecting Delta 
Smelt throughout its primarily annual life cycle. Specific goals are to provide decision makers 
with scientific information for evaluating difficult trade-offs associated with management and 
policy decisions, provide scientists with a resource for formulating and testing hypotheses and 
mathematical models, and provide the general public with a new way for learning about Delta 
Smelt and their habitat.

We address these goals through a synthesis of scientific information about Delta Smelt with an 
emphasis on new information since the release of the last POD synthesis report in 2010 (Baxter 
et al. 2010). As in previous reports, conceptual models play a key role in this report. Conceptual 
models are useful tools for organizing and synthesizing information, designing research and 
modeling studies, and for evaluating potential outcomes of management actions. Here, we revisit 
previously developed conceptual models for Delta Smelt, and synthesize new information about 
factors affecting Delta Smelt and Delta Smelt responses to those factors. This comprehensive 
body of information is then used to construct and populate a Delta Smelt conceptual model, 
within a new framework. 

Numerous conceptual models have been developed to describe the relationships and linkages 
among environmental drivers of ecosystem change, ecosystem and habitat attributes, and Delta 
Smelt responses. In Chapter 2 of this report, we provide a brief introduction to conceptual models 
and review some of the conceptual models developed for the SFE and for Delta Smelt. In Chapter 
3, we introduce a new conceptual model framework for Delta Smelt and describe our approach 
to updating the previously developed Delta Smelt conceptual models. We also describe the data 
sources and analytical approaches used in this report. In Chapter 4, we review and synthesize 
recent information about drivers and habitat attributes affecting Delta Smelt and Delta Smelt 
responses to habitat attributes. In Chapter 5, we present an updated conceptual model for Delta 
Smelt that include key drivers, habitat attributes, interactions between them, and Delta Smelt 
responses discussed in Chapter 4. In Chapter 6, we review and synthesize recent information 
about Delta Smelt population dynamics, life history, and population trends. In Chapter 7, we use 
the updated conceptual model to formulate hypotheses about Delta Smelt responses and changing 
habitat conditions and test them using a simple comparative approach similar to the FLaSH 
approach (Brown et al. 2014), but for all life stages of Delta Smelt. The purpose of Chapter 7 is to 
put the new conceptual model along with the comparative approach to an immediate test that is of 
high relevance to the management of Delta Smelt. Chapter 8 presents key results and conclusions 
from the preceding Chapters. In Chapter 9, we discuss next steps for future conceptual, 
qualitative, and quantitative modeling as well as the science and management implications of the 
information contained in this report. 
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Chapter 2: Conceptual Models

Overview

We learn and think about the world we live in through mental models of how the world looks and 
how it works. Our mental models guide all our conscious decisions and actions. They are never 
static; we constantly update them with new information gained by observing the world around us 
and by assessing the outcomes of our decisions and actions. In our minds, we compare the new 
information against our existing mental models. Observations that agree with our mental models 
strengthen them, observations that don’t agree with our mental models force us to modify, adjust, 
and update them.

Conceptual models are formalized versions of mental models that are communicated to others 
verbally and graphically. Ecologists and environmental managers use them to communicate 
hypotheses about “how ecosystems work” and to explore how human actions and other drivers 
change ecosystems. They usually use a combination of narrative text and graphical illustrations 
about ecosystem components and the relationships among them. More informal narrative 
conceptual models verbally describe cause-effect relationships, while more formal conceptual 
models may express them through scientific hypotheses or mathematical equations.

Conceptual model illustrations often take the form of pictures, plots, schematic images or 
diagrams, matrices, or tables (Fischenich 2008). For example, the IEP Estuarine Ecology Team 
used elaborate matrices to illustrate and assess the likely mechanisms underlying the statistically 
determined relationships between SFE fishes and “X2,” an indicator of estuarine salinity 
dynamics (Estuarine Ecology Team 1997), while Reclamation (2011, 2012) used a table format 
to illustrate how fall outflow interacts with other features of Delta Smelt habitat and affects Delta 
Smelt. Schoellhamer et al. (2012) used a series of conceptual X-Y plots to illustrate a conceptual 
model of sediment supply reduction and downstream propagation in the SFE. Glibert (2012) 
and Glibert et al. (2011) used schematic images to conceptualize changes in nutrients, flows, 
biogeochemical processes, and the food web of the SFE. Many schematic conceptual model 
diagrams use boxes to depict ecosystem components and arrows to illustrate the relationships, 
flows, and interactions among them. The conceptual models developed by the IEP for its POD 
investigations (see below) include examples of schematic conceptual model depictions with 
few boxes and arrows, while some of the conceptual models developed for the “Delta Regional 
Ecosystem Restoration Implementation Plan” (DiGennaro et al. 2012, see below) and the “effects 
hierarchy” of factors affecting Delta Smelt abundance developed by Miller et al. (2012) provide 
examples of more complex schematics with a large number of boxes and arrows.

Conceptual models have become essential tools for summarizing, synthesizing, and 
communicating scientific understanding of ecosystem structure and functioning. They are also 
key to successful planning and implementation of ecological research and mathematical modeling 
as well as to adaptive management, restoration and recovery of ecosystems, and environmental 
science education (e.g., Thom 2000, Ogden et al. 2005, Fortuin et al. 2011). Conceptual models 
are also essential tools for identifying management and science priorities and for the selection 
of key ecological attributes to be used to evaluate the performance of management actions (i.e., 
performance measures) and assess the present relative to a desired state of an ecosystem (i.e., 
indicators) (Washington State Academy of Sciences 2012).



1 7

A n  Updated Conceptual  Model  of  D elta  Smelt  Biology 

I E P  M A S T  2 0 1 4

Conceptual models have clear limitations. For example, even the most complex conceptual 
models are highly simplified descriptions of a small part of an ecosystem – they can never 
tell the “whole” story. Just like our every-day mental models, they are also never final. To 
remain relevant, ecological conceptual models must evolve and change with the evolution of 
our knowledge about ecosystems. Furthermore, conceptual models identify key ecosystem 
components and relationships, but they do not quantify them and unless they are coupled with 
mathematical models, conceptual models cannot be used to make quantitative predictions.

Conceptual models can be used to make qualitative predictions about changes in ecosystem 
components and their relationships. These qualitative predictions can serve as testable hypotheses 
that help design scientific analyses and studies. The creation or revision of the conceptual 
models themselves usually forces the formulation of hypotheses and their testing with available 
data and information, as will be demonstrated in the later Chapters of this report. Qualitative 
predictions and testable hypotheses are also at the heart of active adaptive management. They 
are needed to design experimental adaptive management actions and the studies and monitoring 
needed to assess the outcomes from such actions. The fall outflow adaptive management plan 
(Reclamation 2011, 2012) provides an example of how a conceptual model was used to make 
qualitative predictions and design a comprehensive set of studies, the FLaSH studies. Finally, the 
formulation of conceptual models is usually the essential first step for constructing quantitative 
models. Mathematical models are sets of mathematical expressions that quantify the components 
and relationships in the conceptual models and can be used to make quantitative predictions 
about the state of ecosystem components and linkages under specific circumstances (Jackson 
et al. 2000). The (few) quantitative predictions in the fall outflow adaptive management plan 
(Reclamation 2011, 2012) are based on such mathematical models.

Ecological conceptual models generally link ecological “drivers” with ecological effects or 
“outcomes.” Drivers are physical, chemical, or biological factors of human or natural origin (for 
example, nutrients from natural soils and applied fertilizers). Outcomes can be physical, chemical 
or biological responses to the drivers (for example, phytoplankton growth and biomass), but 
can also be social and economic impacts on human components of the ecosystem (for example, 
harmful algal blooms that affect recreational use or costs of water treatment for drinking water 
supply). Drivers and outcomes are the components of the system under consideration. They are 
linked by mechanistic cause-effect relationships. Conceptual models can also be nested within 
each other, for example, to accommodate different temporal or spatial scales, or conceptual 
models can be coupled so that the outcome of one conceptual model becomes a driver in the next 
one. Drivers are often categorized in various ways, including their causal proximity to specific 
outcomes, whether they are natural or anthropogenic, and whether they can be altered by human 
management strategies and actions. Graphically, drivers are often arranged in hierarchical tiers 
that reflect these categories.

For example, Gentile et al (2001) describe a basic three-tiered approach that links environmental 
outcomes (tier 1) to proximal anthropogenic drivers termed “stressors” (tier 2) and the natural and 
anthropogenic drivers that act on these stressors (tier 3). Davis et al. (2010) show how different 
ecological regimes in Australian lakes (outcomes, tier 1) arise from the interplay of stressors (tier 
2) and hydrological changes (tier 3) acting on the original ecological regime (tier 4). Carr et al. 
(2007) review a widely used five-tiered “Driver–Pressure–State–Impact–Response” (DPSIR) 
framework that focuses on identifying human-caused environmental problems and solutions. 
In this framework, the ultimate drivers (D) are social processes that result in specific human 
activities that manifest as proximal “pressures” (P) that change the “state” (S), or condition, 
of the environment. This can have “impacts” (I) on human well-being that are recognized as 
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problems. Some impacts are so severe that they require a human response (R), usually in the form 
of institutional solutions aimed at reducing high-priority impacts. The Puget Sound Partnership 
Science Panel (2012) recently used the DPSIR framework to develop a conceptual model that 
links management strategies (i.e., responses; e.g., reduce pollution) to anthropogenic drivers 
(e.g., human population growth) and pressures (e.g., pollution) that affect the state of ecosystem 
components (e.g., habitats and species) and impact the provisioning of ecosystem services (e.g., 
fishing). This model helped identify scientific knowledge gaps and decision-critical issues and 
questions that needed to be answered in response to management priorities. 

Recent Conceptual Models for the San Francisco 
Estuary

Over the last decade, two integrated sets of conceptual models have been developed for portions 
of the SFE. The first conceptual model set was developed by the Ecosystem Restoration 
Program (http://www.dfg.ca.gov/ERP/) to evaluate restoration actions in the Delta under the 
“Delta Regional Ecosystem Restoration Implementation Plan” (DRERIP; DiGennaro et al. 
2012). DRERIP conceptual models were developed for ecological processes, habitats, specific 
species, and stressors. The DRERIP conceptual models were built around environmental 
drivers, their expected effects termed “outcomes,” and cause-and-effect relationships between 
the two shown as one-way arrows termed “linkages.” In the graphical depiction of the DRERIP 
conceptual models, different arrow widths, colors, and styles denote the importance, degree of 
understanding, and predictability, respectively, of the driver-linkage-outcome relationships, while 
symbols next to the arrows denote the direction and nature of the effect (positive, negative, or 
non-linear) (DiGennaro 2012, Opperman 2012). The DRERIP species conceptual models include 
“transition matrix” diagrams depicting how environmental drivers affect the probability of one 
life stage successfully transitioning to the next. 

The second set of conceptual models was developed by the IEP as a comprehensive conceptual 
framework intended to guide investigations of the POD and to synthesize and communicate 
results (Sommer et al. 2007, Baxter et al. 2010). This framework includes a “basic” POD 
conceptual model about key drivers of change affecting pelagic fish and their habitat (Fig. 6), 
more narrowly focused “species-specific” conceptual models about drivers affecting the different 
life stages of each of the four POD fish species (e.g., Fig. 7), and a broader “ecological regime 
shift” conceptual model that placed the POD decline in a longer-term historical context (not 
shown; see Baxter et al. 2010). The basic POD conceptual model placed the four fish species in 
the center of interacting drivers affecting the quantity and quality of their habitat (Fig. 6), while 
the species-specific models identified key seasonal drivers in red, with proximal causes and 
effects in yellow (Fig. 7).

The National Research Council Committee on Sustainable Water and Environmental 
Management in the California Bay-Delta (NRC Committee) (NRC 2012) called the POD 
conceptual model framework “an important example of supporting science. This framework 
identifies and links, in the context of both ecosystem structure and functioning, the key stressors 
that help to explain the decline of pelagic organisms.” The NRC Committee further noted that the 
“drivers of change” identified in the POD conceptual models “are quantifiable” and “suitable for 
model evaluation” and that the: 

http://www.dfg.ca.gov/ERP/
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“types of stressors identified are integrative, reflecting co-occurring physical, 
chemical, and biotic changes. They also apply to multiple structural (food web 
structure, biodiversity) and functional (food transfer changes, biogeochemical 
cycling) changes taking place in the Delta. The framework and associated 
detail are both comprehensive and useful in terms of linking these drivers to 
changes taking place at multiple levels of the food web. This type of conceptual 
approach will also be useful for examining other drivers and impacts of 
ecological change, including observed changes in fish community structure 
and production; specifically, how these changes are affected and influenced 
by changes in physico-chemical factors (e.g., salinity, temperature, turbidity, 
nutrients/contaminants) and at lower trophic levels (phytoplankton, invertebrate 
grazers, and prey)” (NRC 2012, p. 34-35).

Since the release of the 2012 NRC report, the POD conceptual model framework has been used 
as the basis for additional conceptual models developed to aid planning and quantifying the 
ecological effects of active adaptive management of Delta outflow to improve fall low salinity 
habitat for Delta Smelt and to guide the associated fall low salinity habitat (FLaSH) studies 
(Reclamation 2011, 2012). A more complete summary of the POD and FLaSH conceptual 
models along with additional information about related conceptual and quantitative models in 
the SFE can be found in the initial FLaSH report (Brown et al. 2014, see also http://deltacouncil.
ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-
review-0).

Figure 6. The basic conceptual model for the pelagic organism decline (Baxter et 
al. 2010). 

http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-review-0
http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-review-0
http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-review-0
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One important new feature of the conceptual model developed for the fall outflow adaptive 
management plan and the FLaSH studies was the explicit consideration of interacting dynamic 
and relatively more stationary (geographically and temporally fixed) habitat components that was 
based on a conceptual model of environment-habitat-production linkages in tidal river estuaries 
developed by Peterson (2003). In the FLaSH conceptual model, the interactions among dynamic 
and stationary habitat components determine the characteristics of Delta Smelt habitat in the fall 
and lead to varying Delta Smelt outcomes. In essence, the dynamic flow and salinity regimes 
of the SFE move water, particles, and organisms across the estuary’s stationary topography, 
which has distinct physical features that modulate the dynamic habitat components. Together, 
these stationary and dynamic habitat components are hypothesized to control the survival, 
health, growth, fecundity, and, ultimately, the reproductive success of estuarine pelagic species, 
such as Delta Smelt. The interplay between stationary and dynamic habitat components also 
helps explain the distribution and movement of Delta Smelt across its range which cannot be 
understood – or managed – based on geography alone.

Numerous other conceptual and quantitative models have been developed for the SFE. Kimmerer 
(2004) summarized many of the earlier conceptual models. More recent conceptual model 
examples include those by Glibert (2012) and Glibert et al. (2011) as well as the five-tiered 
effects hierarchy by Miller et al. (2012). Recent examples of mathematical models of habitat use 
and population dynamics of Delta Smelt include models based on statistical approaches (e.g., 

Figure 7. Species-specific conceptual model for Delta Smelt. This is one of 
four species-specific conceptual models developed as part of the conceptual 
framework for the pelagic organism decline (Baxter et al. 2010). The low salinity 
zone (LSZ) is defined as salinity 1-6. The Vernalis Adaptive Management Plan 
(VAMP) included reductions in spring exports with possible effects on Delta 
Smelt.
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Manly and Chotkowski 2006, Feyrer et al. 2007, Nobriga et al. 2008, Feyrer et al. 2010, Thomson 
et al. 2010, Mac Nally et al. 2010, Miller et al. 2012). There is also a rapidly developing body 
of life cycle models for Delta Smelt and other SFE fish species that use statistical and numerical 
simulation approaches (e.g. Blumberg et al., 2010, Maunder and Deriso 2011, Massoudieh et al. 
2011, Rose et al. 2011, Rose et al. 2013a,b).

Chapter 3: Approach
This report is the result of a team effort by the IEP Management, Analysis, and Synthesis Team 
(MAST, often referred to as “we” in this report). Appendix A briefly describes the MAST and the 
report development process and schedule which included a public and independent expert peer 
review step that led to major revisions to the draft report.

General Approach

Our general approach in this report was to develop a new conceptual model framework for 
Delta Smelt and to use this framework to synthesize new scientific information and update 
and integrate existing conceptual models including the “basic” and “species-specific” POD 
conceptual models, the DRERIP “transition matrix” models, the tabular FLaSH conceptual model 
and the hierarchical conceptual model in Miller et al. (2012) described in Chapter 2. 

The development of the new conceptual model framework was guided by the conceptual model 
literature (see Chapter 2) and by recommendations from the independent “FLaSH Panel” of 
national experts convened by the Delta Science Program. The FLaSH Panel recommended to:

“develop a schematic version of the [FLaSH] conceptual model that matches 
the revised, written version of the conceptual model in the draft 2012 FLaSH 
study report. The conceptual model in written and schematic form should 
continue to emphasize processes and their interactions over simple correlations, 
should ensure Delta Smelt vital rates remain central to thinking, and should be 
designed for routine use by scientists as an organizational tool and for testing 
hypotheses associated with the AMP [adaptive management plan]; it should 
be as complex as necessary to achieve these purposes. The conceptual model 
should also be able to encompass processes and interactions that extend before 
and after Fall Outflow Action periods, including areas both upstream and 
downstream of the LSZ” (FLaSH Panel 2012, page ii).

The conceptual modeling approach in this report is intended to provide a basis, not a substitute 
for the development or use of mathematical models. While mathematical models are outside of 
the scope of this report, we briefly discuss the promise and challenges of mathematical models 
for Delta Smelt, summarize some of the highlights of existing mathematical modeling efforts 
for Delta Smelt, and offer a brief description of two additional proposed mathematical modeling 
efforts — one qualitative and the other quantitative — we think are natural outgrowths of the 
information in this report (see Chapter 8). Development of a variety of flexible working tools to 
facilitate discussion of elements of the conceptual model is one intended outcome of the MAST 
effort. Even simple quantitative and qualitative models based on our revised conceptual model 
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will serve to further organize thinking and characterize weaknesses in current data collection and 
analysis efforts.

In this Chapter, we introduce the new conceptual model framework for Delta Smelt. This 
framework consists of a series of nested and tiered conceptual models: a general life cycle 
conceptual model and more detailed life stage transition conceptual models. It was developed 
following recommendations by the FLaSH Panel (FLaSH Panel 2012) and extensive reviews 
of a draft version of this report (see http://www.water.ca.gov/iep/pod/mast.cfm and Appendix 
A). In Chapter 4 we review and synthesize existing information about drivers, habitat attributes, 
and Delta Smelt responses with a focus on new information since 2010. We use the drivers in 
the basic POD conceptual model as the basis for this synthesis. This information is then used to 
populate the nested conceptual models in the new conceptual model framework with key drivers 
and their linkages to Delta Smelt responses. The fully populated nested conceptual models are 
presented in Chapter 5. Chapter 6 focuses on Delta Smelt life history and population dynamics 
and trends. Chapters 4 and 6 include some new analyses of long-term monitoring data, but are 
largely based on a review and synthesis of the existing published literature. In Chapter 7, we 
compare data pertaining to ecosystem drivers (drivers), habitat attributes (drivers or outcomes) 
and Delta Smelt responses (outcomes) in four recent years with moderate to wet hydrology: the 
two most recent wet years (2006 and 2011) and the two drier years immediately before them 
(2005 and 2010). The intent is to assess the utility of the conceptual model for formulating and 
testing hypotheses that expand the comparative FLaSH approach (Brown et al. 2014) that focused 
on the fall to a more comprehensive year-round  investigation of why Delta Smelt abundance 
increased in the wet year of 2011, but failed to respond to wet conditions in 2006. In each of the 
sections in Chapter 7 covering a specific life stage, the hypotheses inherent in the conceptual 
model are stated and the reasoning for including each hypothesis is explained. Although we 
attempted to develop independent hypotheses, this was not always possible because many 
drivers were related and important habitat attributes were influenced by multiple drivers and their 
interactions, as shown in the conceptual model diagrams and explored in Chapter 4.

Key insights from Chapters 4–7 are summarized in Chapter 8. In Chapter 8, we also discuss 
limitations of the analytical approaches in this report. In Chapter 9, we describe additional 
data and analyses needed to test hypotheses that could not be conclusively tested with the 
available data and our simple comparative analysis approach. We also present some ongoing or 
possible next steps for future years, including some recommendations for future synthesis and 
mathematical lifecycle modeling efforts aimed at Delta Smelt and other species and for future 
adaptive management, including the fall outflow adaptive management and FLaSH studies effort. 

Framework for the Delta Smelt Conceptual Model  

The updated Delta Smelt conceptual model framework in this report integrates and modifies 
features of the “basic” and “species specific” POD conceptual models (Baxter et al 2010), the 
FLaSH conceptual model (Brown et al. 2014), the DRERIP “transition matrix” conceptual 
models (DiGennaro et al. 2012), and the hierarchical conceptual model in Miller et al. (2012). It 
consists of two nested and linked conceptual models of increasing specificity: 

1. A general life cycle conceptual model for the four Delta Smelt life stages (adults, eggs 
and larvae, juveniles, and subadults) that includes stationary landscape attributes and 
dynamic environmental drivers, habitat attributes, and Delta Smelt responses; and 

http://www.water.ca.gov/iep/pod/mast.cfm
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2. More detailed life stage transition conceptual models for each of the four Delta Smelt 
life stages that describe relationships between environmental drivers, key habitat 
attributes, and the population-level probability of successfully transitioning from one 
life stage to the next. This probability is dependent on the effects of environmental 
drivers and habitat attributes on the growth, survival, reproduction, and movements of 
Delta Smelt but data are currently inadequate to provide causal links for most of these 
processes individually. 

General Life Cycle Conceptual Model

The updated general life cycle conceptual model for Delta Smelt (Fig. 8) follows the FLaSH 
Panels (2012) recommendation to “ensure Delta Smelt vital rates remain central to thinking” 
and is structurally similar to the basic POD conceptual model (Fig. 6). The general life cycle 
conceptual model is divided vertically and horizontally into four sections representing four 
Delta Smelt life stages from eggs and larvae to adults occurring in four “life stage seasons” 
indicated in the center of the diagram (Fig. 8; tier 5 box, green shading). This is similar to the 
four seasonal compartments of the species-specific conceptual model diagram in Baxter et al. 
(2010). Importantly, these life stage seasons are not exactly the same as calendar-based seasons. 
Instead, they have somewhat variable duration and overlapping months. This is because life 
stage transitions from eggs to adults are gradual and different life stages of Delta Smelt often 
overlap for a period of one to three months. Delta Smelt responses (Fig. 8; tier 4 box with dark 
blue shading) to important habitat attributes throughout their usually annual life cycle are placed 
within a box representing habitat attributes important to their growth and survival, which conveys 
the idea that biotic and abiotic habitat elements drive Delta Smelt responses (Peterson 2003; 
Fig. 8; tier 3 box with light blue shading). For each life stage season, there are a set of natural 
and anthropogenic environmental drivers associated with the estuarine environment (Fig. 8; tier 
2 box with purple shading) that generate the habitat attributes important to Delta Smelt growth 
and survival. Surrounding the environmental drivers box is a fourth, outer box that represents the 
stationary (geographically and temporally fixed) landscape attributes of the estuarine ecosystem 
associated with its physical geometry and the orientation and connections of its component 
waterbodies (Fig. 8; tier 1 box with grey shading). In contrast to this outer box, the components 
and processes described in the inner boxes of this conceptual model are dynamic in space and 
time. Note that the fixed landscape attributes are considered fixed in the context of Delta Smelt 
population biology in any particular year rather than across longer time scales. The different 
spatial and temporal scales for each tier of the conceptual model are shown in Figure 9.

The tiered components of the general life cycle conceptual model for Delta Smelt can vary over 
a wide range of spatial and temporal scales (Fig. 9). Landscape attributes of the San Francisco 
Estuary (tier 1) encompass local to estuarine-wide features and change slowly over decades or 
longer periods. Environmental drivers (tier 2) that affect Delta Smelt habitat attributes vary and 
manifest over the broadest range of spatial and temporal scales, from local variations over tidal 
or daily cycles to long-term changes at the watershed or even larger geographic scales. Similar 
to environmental drivers, habitat attributes of Delta Smelt (tier 3) can be highly dynamic at small 
spatial and temporal scales or change gradually over many years, but they don’t extend beyond 
the geographic range of the species, which in the case of Delta Smelt is the SFE. Delta Smelt 
responses (tier 4) vary in response to changing habitat attributes within subregions of the estuary. 
In this small fish species with its maximum age of two years and extremely small geographic 
range, population-level responses can range from rapid (e.g., in response to toxic spills) to more 
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slowly over the course of one or more years. Life stage seasons (tier 5) occur over the course of a 
year in seasonally occupied areas of the estuary.

Similar to the POD and DRERIP conceptual models, the updated Delta Smelt life cycle 
conceptual model includes only those landscape attributes and environmental drivers with 
plausible mechanistic linkages to outcomes, which in this case are changes in habitat attributes 
and resulting Delta Smelt responses in the four life stage seasons. These mechanistic linkages 
are depicted as arrows in a series of four new conceptual models for each life stage season (Fig. 
10). These life stage season conceptual models are nested components of the general life cycle 
conceptual model as shown in Fig. 8. They will be described in detail in Chapter 5. 

Data Sources

Our examination of environmental drivers in Chapter 4, Delta Smelt life history and population 
dynamics and trends in Chapter 6, and the evaluation of hypotheses about Delta Smelt responses 
to changing habitat attributes in Chapter 7 rely largely on results of previously published data and 
analyses, but in several cases we update these analyses with more recent data. We also include 
some additional analyses (described below). All these analyses depend largely on environmental 
monitoring data collected by IEP agencies during routine, long-term monitoring surveys  

Figure 8. A new conceptual model for Delta Smelt showing Delta Smelt responses 
(dark blue box) to habitat attributes (light blue box), which are influenced by 
environmental drivers (purple box) in four “life stage seasons” (green box). 
Environmental drivers are influenced by landscape attributes (grey box).
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(http://www.water.ca.gov/iep/products/data.cfm). These surveys provide the long-term records 
and geographic coverage necessary and the data collected by these surveys are publicly available. 
Available data includes data on fish, invertebrates, phytoplankton, water quality variables, and 
flow. Use of these particular data sources does not reflect any preference for those data. Results 
from other ongoing research efforts were included as appropriate.

For the purposes of this report, we consider each stage, larvae through adults, of the Delta 
Smelt life cycle in the context of the monitoring programs that provide data on the Delta Smelt 
population. Delta Smelt eggs are not monitored and have in fact never been found in the wild. 
Monitoring surveys in the late winter and spring include the spring Kodiak trawl (SKT, Fig. 11), 
which samples maturing, spawning and post-spawning adults. The SKT is conducted monthly 
from January through May. Spring also includes the 20 mm survey (20 mm, Fig. 12), which 
samples larval and post-larval Delta Smelt and is conducted every two weeks from mid-March 
through mid-July. Summer includes the summer townet survey (TNS, Fig. 13); which samples 
juvenile fish and currently runs every two weeks from June through August. The Fall Midwater 
Trawl (FMWT, Fig. 14) survey samples subadult Delta Smelt monthly from September through 
mid-December. Each of these surveys samples fishes broadly within the upper SFE and generally 
covers the geographic habitat range used by Delta Smelt (Merz et al. 2011). Exceptions to 
complete coverage occur in some high outflow years when Delta Smelt can temporarily inhabit 
San Pablo Bay in association with decreased salinities caused by increased Delta outflows 
(Moyle 2002) and in other years when some adult fish move upstream of the geographic range 
of these surveys (probably to spawn) in the Yolo Bypass and Sacramento River (e.g., Feyrer et 
al. 2006, Merz et al. 2011). Also, FMWT and TNS sampling in the Cache Slough complex was 
instituted over several years starting in the 1990s for FMWT and 2000s for TNS. The current 
sampling locations have been in place since 2011. These exceptions to complete spatial coverage 
are believed to reflect small fractions of the population. Additional geographic coverage along 

Figure 9. Spatial and temporal scales of the component tiers in the general life 
cycle conceptual model framework for Delta Smelt.

http://www.water.ca.gov/iep/products/data.cfm
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or outside of the margins of the other four monitoring surveys is provided by other IEP fish 
monitoring surveys such as the San Francisco Bay Study, trawling and seining conducted by the 
Delta Juvenile Fish Monitoring Program in the Sacramento River and the north Delta, as well 
as the fish salvage monitoring at the fish protection facilities associated with the SWP and CVP 
export pumps in the south Delta. All Delta Smelt life stages (larvae-adult) are also commonly 
collected from nearshore habitats and in shallow open water where trawls cannot be used 
effectively (e.g., Aasen 1999, Nobriga et al. 2005, Brown and May 2006); however, there are no 
data indicating these are preferred habitats, that these fish represent different populations (see 
Fisch et al. 2011), or that their abundance varies differently than data from the aforementioned 
trawl surveys would suggest. 

Annual abundance indices for Delta Smelt life stages are calculated from the catch data provided 
by each of the four surveys (See Appendix B for details). Together, they provide a comprehensive 
account of long-term changes in the relative abundance of Delta Smelt (Fig. 3). The long 
series of abundance index records for the summer and fall have provided the basis for many 
data analyses and modeling studies (e.g., Jassby et al. 1995, Kimmerer 2002a,b, Bennett 2005, 
Manly and Chotkowski 2006, Thomson et al. 2010, MacNally et al. 2010, Maunder and Deriso 
2011, Miller et al. 2012) and for regulatory actions (USFWS 2008). They have also been used 
to estimate absolute population abundance (Newman 2008). The Delta Smelt and other SFE 
fish abundance indices are generally considered useful indicators of the status and trends of the 
Delta Smelt population as well as of the status of other resident fishes in the SFE in general and 
serve as performance metrics for the success of management actions. All monitoring surveys 
have strengths and weaknesses, and the long-term fish monitoring programs in the SFE are no 
exception (Honey et al. 2004). In the case of Delta Smelt, strengths include reasonably good 
coverage of the geographic extent of Delta Smelt habitat and coverage of all life stages except 

Figure 10. Framework for the Delta Smelt life stage season conceptual models.
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eggs (Gaines et al. 2006). They also include exceptionally long and consistent data records 
going back to 1959 in the case of the TNS, the oldest of the four surveys described here. There 
is a large amount of ancillary data (covariates), including data collected during the fish surveys, 
additional fish data from other monitoring surveys (Honey et al. 2004) as well as invertebrate, 
phytoplankton, water quality and hydrological data. Possible weaknesses include no measure 
of precision of abundance indices and imprecise estimates due to a high frequency of zero 
catches of Delta Smelt. These problems combine with survey design issues such as differences 
in Delta Smelt catchability with different nets and trawl regimes under changing environmental 
conditions, behavioral changes in distribution (Newman 2008) and the current low abundance 
of the species. For example, several studies have shown that Delta Smelt can exhibit lateral 
and vertical movements associated with tide and time of day (Bennett et al. 2002, Feyrer et al. 
2013, Bennett and Burau 2014) but the overall frequency or effects of such local movements on 
abundance indices are unclear. Studies to further evaluate and address these issues are currently 
underway. 

Two of the four fish monitoring surveys described here specifically target Delta Smelt; the 
other two do not. The SKT was designed and implemented specifically to improve detection 
of maturing adult Delta Smelt moving upstream in the winter and spring, particularly into 
the central and south Delta (Souza 2002). The 20 mm survey was designed and implemented 
specifically to capture late-stage larval Delta Smelt of about 20 mm in length; the SKT and 20 
mm survey data help managers assess the risk of entrainment of these life stages by south Delta 
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Figure 11. Map of Spring-Kodiak Trawl Survey sampling stations.
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export pumps (Dege and Brown 2004). The TNS was designed to target small juvenile Striped 
Bass of about 17-50 mm fork length (the distance from the snout to the indentation of the tail fin) 
(Stevens 1977, Turner and Chadwick 1972); however, Delta Smelt tend to be of appropriate size 
for capture by the TNS net during the survey period. This occurs because Delta Smelt (see below) 
and  Striped Bass spawning overlaps in time and growth of both are linked to water temperature, 
such that peak larval abundance occurs in April or May in most years. The TNS traditionally 
started and ended based on mean length of Striped Bass; however, young Delta Smelt attain sizes 
vulnerable to the TNS net during the same time period Striped Bass are vulnerable (Miller 2000). 
The survey ends when young Striped Bass surpassed 38 mm fork length (Miller 2000). Thus, 
regardless of the particular number of sampling surveys in a year or the index calculation method, 
Delta Smelt juveniles are generally vulnerable to the TNS whenever it samples. Similarly, the 
FMWT survey was designed to capture young-of-the-year Striped Bass, but in the 60-140 mm 
fork length size range (Stevens 1977). Although the survey and gear is generally effective for 
small pelagic fishes, the cod-end mesh (1.3 mm stretch mesh) on the net is large enough to allow 
some smaller sub-adult Delta Smelt to escape during the first couple survey months (see Newman 
2008 for an approach to correct this effect). Even though the gear is not completely effective at 
retaining all sub-adult Delta Smelt, FMWT provides a reasonable relative measure of sub-adult 
abundance through time (Kimmerer and Nobriga 2005), albeit with low precison at the current 
low catch levels and given additional variation related to changes in growth, and thus changes in 
retention in the net from year to year. With the aforementioned caveats, we believe these surveys 
provide useful and valid relative abundance measures to examine the various life stage transition 
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relationships described in this report as well as in many of the previously published studies cited 
in this report.

In addition to the annual abundance indices for Delta Smelt provided by the monitoring surveys 
described above, we also present annual indices of recruitment and survival. In this report, a 
survival index is simply the ratio of an abundance index for a particular life stage divided by the 
abundance index for a preceding life stage of the same Delta Smelt cohort. A recruitment index 
is the ratio of an abundance index for a particular life stage divided by an abundance index for 
a life stage of the preceding Delta Smelt year-class. These types of indices have been used in 
previous analyses (e.g. Miller et al. 2012), but it is important to note that they may compound the 
observation errors inherent in the annual abundance indices in complicated ways. This is likely 
more problematic for survival and recruitment indices that use the TNS and FMWT abundance 
indices because these surveys were not specifically designed to target Delta Smelt. It may be less 
problematic for the recruitment index calculated by dividing the 20 mm abundance index for 
larval and post-larval Delta Smelt by the preceding SKT abundance index for adult Delta Smelt 
because both surveys specifically target Delta Smelt. We use this recruitment index in some 
additional analyses included in this report. All other survival and recruitment indices are only 
used as a rough approximation and illustration of differences in recruitment and survival rates 
among different annual cohorts and life stages; they are not used for additional analyses.
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Figure 13. Map of Summer Townet Survey sampling stations.
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Data Analysis

As noted previously, we review long-term trends in this report using published results, but in 
some cases include some additional analyses of long-term monitoring data (Chapters 4 and 7). 
These analyses are kept deliberately simple, for example, simple graphical explorations of time 
series, examinations of simple statistics such as medians and arithmetic means, and investigation 
of univariate relationships using simple correlation and least squares regression analyses. Such 
analyses are readily reproducible with the publicly available data described above. The purpose 
of presenting the results of these new analyses is to update previously published information 
with the most recent data. In many cases, the data presented in this report are summarized using 
boxplots. The center horizontal line in each box represents the median of the data. The upper and 
lower ends of the box represent the upper and lower quartiles of the data. These are also known 
as “hinges.” The “whiskers” are the lines extending above and below the box. The whiskers show 
the range of values falling within 1.5 times the inter-quartile distance from the nearest hinge. 
Values outside this range are shown as individual symbols. Asterisks denote values within 1.5 to 
3.0 times the inter-quartile distance and circles denote values greater than 3.0 times the inter-
quartile distance. Other types of plots are explicitly identified in the figure caption.

Some graphs and analyses refer specifically to the POD period. Analyses suggest the POD 
period started as early as 2002 or as late as 2004 (Thomson et al. 2010). We somewhat arbitrarily 
selected 2003-present as the POD period for this report. This period is not being recommended 
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as the baseline for management agencies to use when considering recovery of Delta Smelt. The 
time period simply reflects the consistently low level of Delta Smelt abundance in recent years 
and a useful baseline for identifying years with improved Delta Smelt abundance indices, which 
would indicate improved environmental conditions for Delta Smelt. Similarly, we also consider 
the 1982-2001 period between the two major step declines in Delta Smelt abundance identified 
by Thomson et al. (2010) separately in some graphs and analyses. Finally, some graphs and 
analyses refer to calendar years while others refer to water years. In California, a water year 
starts on October 1 and ends on September 30 of the next calendar year. California water year 
classifications are based on calculations of annual unimpaired runoff, which represents the natural 
water production of a river basin, unaltered by upstream diversions, storage, and export of water 
to or import of water from other basins.

In Chapter 7, we explore a series of hypothesized driver-outcome linkages using a comparative 
approach. The purpose is to demonstrate the utility of our conceptual model framework for 
generating hypotheses about the factors that may have contributed to the 2011 increase in Delta 
Smelt abundance. Specifically, we compare Delta Smelt responses to habitat conditions in four 
recent years with moderate to wet hydrology: the two most recent wet years (2006 and 2011) and 
the two drier years immediately before them (2005 and 2010). This comparative approach and 
data sources (described in Chapter 4) are deliberately similar to the comparative approach used in 
the FLaSH investigation (Brown et al. 2014). This approach allows us to place the results of the 
FLaSH investigation in a year-round, life cycle context and to more comprehensively evaluate 
factors that may have been responsible for the strong Delta Smelt abundance and survival 
response in 2011, including any possible relevant antecedent conditions from 2010. We attempt 
to draw comparisons with a similar set of data collected during 2005 and 2006. Our working 
assumption is that different Delta Smelt abundances in 2006 and 2011 should be attributable 
to differing environmental conditions, in some cases attributable to management actions, and 
subsequent ecological processes affecting the Delta Smelt population.

In Chapter 9 we briefly describe three examples of additional mathematical modeling approaches 
that can be used to further explore some of the linkages and interactions in our conceptual models 
and complement previously published and other ongoing mathematical modeling efforts for 
Delta Smelt. Importantly, results from the three modeling examples in Chapter 9 are included 
for illustrative purposes only; peer-reviewed publications of these analyses need to be completed 
before they can be used to draw firm conclusions.

Chapter 4: Environmental Drivers 
and Habitat Attributes
The general approach of this Chapter is to focus on how environmental drivers and interactions 
among them create habitat attributes of importance to Delta Smelt. Specifically, we review and 
synthesize existing information about drivers and habitat attributes and Delta Smelt responses to 
habitat attributes with a focus on new information since Baxter et al. (2010). We use the drivers 
and habitat attributes depicted in the basic POD conceptual model (Fig. 6) as the basis for this 
synthesis. We consider habitat attributes important when there are published studies suggesting 
ecological responses by Delta Smelt. Each section focuses on a habitat attribute that can be the 
outcome of one or more environmental drivers. Physical habitat attributes are presented first, 
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followed by biological habitat attributes. The order of presentation does not imply any kind of 
ranking of relative importance. For simplicity, we consider all habitat attributes discussed here 
as equally important because, as noted in Chapter 2, habitat arises from the combination of all 
physical and biological attributes affecting a species. We fully acknowledge that as Delta Smelt 
research proceeds and the system continues to change, additional habitat attributes my need to be 
added to the conceptual model, while others may be deemphasized or even deleted. 

Each section starts with the general importance of a specific habitat attribute for estuarine biota 
followed by a brief discussion of its linkages with environmental drivers and its dynamics in 
space and time. Each habitat attribute is then placed in the context of Delta Smelt biology. 

Water Temperature

Water temperature is fundamental to aquatic ecosystem health and function. It directly influences 
biological, physical, and chemical properties such as metabolic rates and life histories of aquatic 
organisms, dissolved oxygen levels, primary productivity, and cycling of nutrients and other 
chemicals (Vannote and Sweeney 1980, Poole and Berman 2001, Null et al. 2013). Water 
temperature is an important variable for ectothermic (“cold-blooded”) animals, including all 
fishes and invertebrates in the SFE. In the most extreme case, when water temperature exceeds 
the thermal tolerance of an organism, it will die. Temperatures within the thermal tolerance of 
an organism control the rate and efficiency of many physiological processes, including activity, 
digestion, growth, reproductive development, and reproductive output. We return to these 
processes after giving an overview of water temperature variability and its drivers in the Delta.

Long term temperature records from selected sites in the SFE show substantial seasonal and daily 
fluctuations in water temperature (Kimmerer 2004). While daily variations are evident and likely 
important to organisms, seasonal variations are much greater (Wagner et al. 2011). Median water 
surface temperatures across all stations monitored by the IEP Environmental Monitoring Program 
(EMP) (Fig. 15) from 1975-2012 range from 9 °C in January (minimum: 6 °C) to 22 °C in July 
(maximum: 28 °C). There are also clear regional variations in water temperature (Fig. 16). In July 
and August, the hottest summer months, water temperatures are usually highest at monitoring 
stations in the south Delta (average 23-26 °C, maximum 28 °C), lower at stations in the northern 
and western Delta (average 21-23 °C, maximum 25 °C) and lowest at stations in Suisun and San 
Pablo Bays (average 19-21 °C, maximum 24 °C). In January, the coldest winter month, average 
water temperatures are uniformly below 10 °C in the entire Delta, but above 10 °C in San Pablo 
Bay. 

There is currently little evidence for increasing water temperatures in the Delta, although with 
climate change such increases are expected over the course of the century (Cloern et al. 2011, 
Wagner et al. 2011, Brown et al. 2013). In Spring (March-June) water temperature at IEP EMP 
water quality monitoring stations in the Delta increased during 1996–2005 by about 0.2 °C per 
year, but a similar trend was not apparent for the longer-term data record from 1975-2005 or for 
stations in Suisun Bay (Jassby 2008). These findings are similar to the results of Nobriga et al. 
(2008) who found no long-term (1970-2004) trends in temperature data collected during summer 
fish monitoring surveys in the Delta. Nobriga et al. (2008) also noted that the long-term (1970-
2004) mean July water temperature at TNS fish monitoring stations in the southern region of the 
Delta is 24 °C, with current mid-summer temperatures often exceeding 25 °C. This agrees with 
average monthly EMP data from 1975-2012 which shows July and August water temperatures at 
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a monitoring station located in Old River (station D28A) and in the San Joaquin River near the 
Port of Stockton (station P8) of more than 24 °C and 25 °C, respectively (Fig. 16).

In tidal systems, water temperature at a particular location is determined by the interaction 
between atmospheric forcing (e.g., air temperature and wind), tidal dispersion and riverine flows 
across the estuarine landscape (Monismith et al. 2009). In particular, estuarine water temperature 
is driven by heat exchange at the air–water interface and mediated by tidal and riverine flow 
dynamics and estuarine geomorphology (Enright et al. 2013). Wagner et al. (2011) found that 
regional weather patterns including air temperature and insolation (sunlight), are the primary 
drivers of water temperature variations in the SFE. Water flow and interaction with the stationary 
topography of the system also affects water temperature in the SFE, especially over shorter time 
scales and at smaller spatial scales. For example, Enright et al. (2013) showed that interaction 

Figure 15. Map of active and historic IEP Environmental Monitoring Program (EMP) sampling stations.
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of tides with tidal marsh topography 
can have a mediating effect on water 
temperature in tidal sloughs and on 
thermal variability at smaller spatial 
scales. Wagner et al. (2011) showed 
that high winter and spring flows can 
temporarily lower water temperatures. 
Greenberg et al. (2012) found that the 
present riparian vegetation on Delta 
levees lowers insolation by about 9% 
compared to a hypothetical situation 
without vegetation and suggested that 
riparian vegetation thus contributes 
to locally cooler water temperatures. 
This suggests that at least to some 
degree, water temperature can be 
managed locally and for short periods. 
Over larger scales, however, these 
types of locally mediated effects are 
overwhelmed by the effects of air 
temperature and insolation. 

Air temperature and insolation in the 
SFE are correlated with each other 
(Wagner 2012) and vary strongly with 

proximity to the Pacific Ocean because of the contrasting climate regimes prevailing in inland 
central California and the central California coast. While inland central California has a large 
annual air temperature range with hot, dry, sunny summers and cool, wet, and often foggy 
winters, the central California coast has a smaller annual air temperature range with cooler and 
often foggy summers and milder winters (Conomos et al. 1985). The SFE has a transitional 
climate with greater spatial and temporal variability in air temperature than either the coastal or 
the inland regions (Whipple et al. 2012). This is due to the interplay of the dynamic air masses 
from these regions across the stationary estuarine topography. In the summer, this interplay often 
results in strong afternoon winds from the ocean locally known as the “Delta breeze.” These 
onshore winds usually advance into the western and central Delta and, depending on the depth 
of the marine layer, often also into its marginal areas. In the Delta, these southwest to northeast 
winds can persist throughout the night and into the next morning and produce a marked decline 
in daily temperature. In the morning, this low is often followed by rapid warming once the winds 
subside and the high temperature inland air masses return to dominance (National Weather 
Service 2003). In the winter, ocean winds are weak and, during calm periods, cold air flows from 
the mountains into the estuary. This results in the formation of dense, overnight, near-surface 
fog locally known as “tule fog.” These calm and foggy periods are interrupted by winter storms. 
Many of these storms arrive from the south and southeast as “atmospheric rivers” that can often 
produce gale force winds and heavy rains lasting several days (Conomos et al. 1985, Dettinger 
and Ingram 2013). 

The large variability in air temperature in the Delta is reflected by the larger annual variability 
in water temperature measured from 1998-2002 at continuous monitoring stations in the interior 
Delta compared to stations further upstream or downstream (Wagner et al. 2011). This high 
variability is also apparent in monthly water temperature data collected by the IEP Environmental 

Figure 16. Average monthly water 
temperature for stations monitored by the 
Environmental Monitoring Program from 
1975-2012.
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Monitoring Program since 1975 (Fig. 11). From 1975 to 2012, annual fluctuations in average 
monthly water temperature were greatest at stations in the south Delta (14-16 °C), smaller at 
stations in the northern and western Delta (12-13 °C), and lowest at stations in Suisun and San 
Pablo Bays (9-12 °C). Jassby (2008) reported that maximum daily air temperature could explain 
almost half the variability in maximum daily water temperature at the continuous monitoring 
station at Antioch during the summer months. The relationship between air and water temperature 
was also strong in all other months except January.

Wagner et al. (2011) and Wagner (2012) developed simple regression models for predicting 
water temperature at fixed temperature monitoring stations in the SFE using only air temperature 
and insolation on the day of interest and the water temperature from the previous day. Water 
temperature from the previous day accounts for both previous air temperature and the sources of 
water to the site, including advective flow from rivers or dispersive flow from more downstream 
reaches of the SFE. Each model had a different set of coefficients because of the differing 
influences of incoming river water or tidal exchange with San Francisco Bay. For stations with 
greater than 1 year of calibration data, model R2 for daily average temperature exceeded 0.93, 
indicating that water temperature was highly predictable within the limits of the calibration data 
sets. High winter and spring flows were responsible for the largest divergences of the model 
outputs from measured temperatures. 

The simple statistical models for water temperature developed by Wagner et al. (2011) and 
Wagner (2012) should be used with caution because they only predict temperature at the site 
of the recording instrument and do not explicitly account for mechanistic heat exchange. The 
analyses therefore do not incorporate the possible effect of site-specific features such as shading 
by riparian vegetation (Greenberg et al. 2012). Similarly, there are lateral and vertical variations 
in temperature on daily time scales (Wagner 2012) that could be important to organisms. For 
example, such variation might include substantial heterogeneity and formation of thermal refugia, 
which may be important to Delta Smelt. 

In contrast to statistical modeling, which produces site-specific results, water temperature across 
regions is commonly modeled with computation-intensive deterministic simulation models. 
Such models use energy budgets to predict water temperature. Simple stochastic models are also 
possible. Like most statistical models, these stochastic models generally rely on the relationship 
between air and water temperature (Caissie 2006, Null et al. 2013). We are not aware that these 
types of models have been developed for the San Francisco Estuary.

Upper temperature limits for juvenile Delta Smelt survival are based on laboratory studies and 
corroborated by field data. Interpretation of the laboratory results is somewhat complicated as 
temperature tolerances can be affected by various factors including acclimation temperature, 
salinity, turbidity, and feeding status. Based on the critical thermal maximum, CTmax, juvenile 
Delta Smelt acclimated to 17 °C could not tolerate temperatures higher than 25.4 °C (Swanson et 
al. 2000). However, for juvenile Delta Smelt acclimated to 11.9, 15.7 and 19.7 °C, consistently 
higher CTmax were estimated (27.1, 28.2 and 28.9 °C, respectively; Komoroske et al. 2014), 
which corresponded closely to the maximum water temperatures recorded in the TNS and 
FMWT surveys. Swanson et al. (2000) used wild-caught fish, while Komoroske et al. (2014) 
used hatchery-reared fish, which may have contributed to the differences in results. Based on 
the TNS (Nobriga et al. 2008) and the 20 mm Survey (Sommer and Mejia 2013), most juvenile 
Delta Smelt were predicted to occur in field samples when water temperature was below 25 °C. 
In a multivariate autoregressive modeling analysis with 16 independent variables, MacNally et 
al. (2010) found that high summer (June – September) water temperature had a negative effect 
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on Delta Smelt subadult abundance in the fall. Water temperature was also one of several factors 
affecting Delta Smelt life stage dynamics in the state-space model of Maunder and Deriso (2011) 
and in an individual-based Delta Smelt life-cycle model (Rose et al. 2013a,b).

In addition to lethal effects, water temperature also has direct effects on the bioenergetics 
(interaction of metabolism and prey density) of Delta Smelt (Bennett et al. 2008) and it may 
affect their tolerance to other habitat attributes, such as toxicity (Brooks et al. 2012) and 
predation risk. Responses of different life stages of Delta Smelt to various temperature, salinity, 
and turbidity conditions are currently being further assessed as part of a larger UC Davis 
laboratory study about the “fundamental niche” of Delta Smelt (Komoroske et al. 2014, R. 
Connon et al., U.C. Davis, unpublished data).

The topic of bioenergetics is an important consideration in much of the remainder of this report, 
so we address it in more detail here. In general, the total metabolic rate of a fish will increase with 
temperature to an optimum temperature at which, given unlimited food, there is the maximum 
ability to grow and develop reproductive products (eggs or sperm) in addition to maintaining 
the basal metabolic rate required for survival, which also increases with temperature (Houde 
1989, Hartman and Brandt 1995). As temperature increases beyond the optimum, metabolic rate 
continues to increase but physiological processes become less and less efficient and more energy 
is required just to meet the basal metabolic rate of the organism. Eventually, the metabolic rate 
begins to decline as temperatures approach the physiological limits of the organism and the basal 
metabolic rate can no longer be maintained.

At temperatures beyond the optimum, the ability to grow and mature becomes increasingly 
impaired. Long-term exposure to such stressful temperatures can eventually be lethal. In addition, 
resistance to disease and contaminants can also be affected (Brooks et al. 2012). The responses 
to contaminants can vary depending on the type of contaminant. For example, low temperatures 
can decrease the toxicity of organophosphate insecticides, but increase the toxicity of pyrethroid 
and organochlorine insecticides (Harwood et al. 2009), a characteristic that has been used in 
toxicity identification and evaluation (Weston and Lydy 2010). The previous discussion assumes 
unlimited food, which is unlikely to be the case for Delta Smelt or any organism in nature. Even 
at the optimum temperature, growth and reproductive development will depend on the quantity 
and quality (energy and nutrient content) of the food consumed. If the fish is unable to ingest 
enough food to meet its nutrient and energetic requirements, including the energy expended 
to capture and digest prey, it will starve, after first depleting any available energy stores (fat 
or muscle). Given an array of food items, fish will generally choose larger prey items. This is 
because the energy required to detect, chase, and capture multiple smaller prey that are equivalent 
in nutritional value to a single large prey item will, in many cases, exceed the energy required 
to capture the single prey item. Note that these same ideas apply to predatory fish that might 
consume Delta Smelt. 

Water temperature is also thought to affect the number of eggs produced by female Delta Smelt. 
Egg production (i.e., fecundity) of the population is influenced not only by individual female 
size and number (Bennett 2005, DFW unpublished), but also by the duration of a temperature 
“spawning window” (Bennett 2005, Mac Nally et al. 2010), variously defined as: 15-20 °C by 
Bennett (2005); 7-15 °C by Wang (1986); and 12-15 °C by Baskerville-Bridges et al. (2004b). 
Bennett (2005) further stated that during cool springs this spawning window persists longer, 
allowing more cohorts to recruit. Given a sufficiently long spawning window, individual females 
may also repeat-spawn during the spawning season. This has been documented in culture (see 
Bennett 2005; J. Lindberg, U.C. Davis, personal communication 2013) and appears to occur 
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in the wild as well (L. Damon, CDFW, written communication 2012). Lindberg (U.C. Davis, 
personal communication 2013) observed that most females in culture spawned twice, some 
spawned three times and a very small number spawned four times. Each spawning was separated 
by a 4-5 week refractory period during February through June when water temperatures remained 
within the spawning window. Though laboratory conditions may not necessarily be representative 
of conditions in the wild, ripe females ready to release their second complete batch of eggs 
and developing a third batch have been detected in the wild during March and April (i.e., mid-
season) suggesting that three spawns are possible (L. Damon, CDFW, written communication 
2012). Thus, a longer spawning window would allow more females to repeat spawn adding 
both additional cohorts hatching under different conditions, and multiplying the fecundity of 
each repeat spawner (i.e., increasing the total fecundity of the individual), and thus, the total 
fecundity of the population. Moreover, in culture, individual females continued to grow through 
the spawning season and become more fecund with each batch of eggs (J. Lindberg, U.C. Davis, 
personal communication 2013). In the wild, the size of mature females generally increases month 
to month through the spawning season (Fig. 17), suggesting a potential increase in fecundity with 
each batch, but this has yet to be confirmed for wild fish. However, in culture, fish hatched later 
in the spawning season (mid-May to mid-June) grew up to be smaller-sized adults that started 
spawning later and had progeny with lower survival than the progeny of fish hatched earlier 
in the season (Lindberg et al. 2013). These observations are consistent with the reproductive 
patterns suggested for the wild Delta Smelt population (Bennett 2011). Overall, the effect of 
a prolonged spawning season on Delta Smelt population size and dynamics would seem to be 
positive; however, there is some uncertainty.

In the culture experiments reported by Bennett (2005), temperature strongly influenced hatching 
success of eggs. Specifically, Bennett (2005) reported that optimal hatching success and larval 
survival were estimated to occur at 15–17 °C based on studies conducted at 10, 15, and 20 °C. 
The data indicated that as incubation and early rearing temperatures increased, size at hatching 
and size at first feeding linearly decreased, possibly because basal metabolism of the developing 
embryo used more energy leaving less for growth. Fish that hatch relatively late in the season 
may experience high temperatures at a small size, which may reduce larval survival by several 
possible mechanisms. First, small size would limit the size of food items that the larvae could 
ingest because of smaller mouth size (see Nobriga 2002). Temperature may also affect food type 
and availability as discussed below. Second, small larvae are likely vulnerable to a larger range 
of predators for a longer period compared to larger larvae (e.g., “stage duration hypothesis;” 
Anderson 1988). Third, these fish could be potentially more vulnerable to transport toward the 
CVP and SWP export facilities, when Old and Middle River (OMR) flow restrictions are lifted. 
Restrictions are lifted when the 3-day mean water temperatures in Clifton Court Forebay (CCF) 
reach 25 °C or by the end of June. 

As explained above, higher water temperatures increase energetic requirements and thus the food 
requirements of fish. To meet the increased need for food, it is possible that Delta Smelt spend 
more time foraging during the day. Since greater foraging time during the day increases visibility 
to predators, and those predators would also increase their foraging rates at higher temperatures, 
the encounter rate of predator and prey would likely increase at higher water temperatures. The 
net effect could be an increase in Delta Smelt predation risk (e.g., Walters and Juanes 1993). High 
temperatures can also decrease antipredator behavior, as described for Sacramento River Chinook 
Salmon (Oncorhynchus tshawytscha) (Marine and Cech 2004). In other words, the fish may make 
a behavioral choice to feed, grow, and become less vulnerable to predators as rapidly as possible, 
even though the short-term predation risk might increase. Water temperatures in the upper SFE 
are usually highest from June to September and decline rapidly between October and December 
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(Fig. 16). The reported optimal culture temperatures for Delta Smelt larvae and late-larvae are 
16.4 ± 0.25 °C (Komoroske et al 2014). Moreover, the chronic lethal thermal maximum for 
Delta Smelt varies by life stage (Komoroske et al. 2014). Juvenile and subadult Delta Smelt are 
observed in the field most commonly at temperature near or below 20 °C (Bennett et al. 2008, 
Nobriga et al. 2008), a temperature which is often exceeded beginning in May or June and 
continuing through September and more rarely in October (see Chapter 7). Thus, we suggest that 
the same tradeoffs between feeding and predation risk may persist through the warmer months 
and into early fall, but become less likely as the season progresses into late fall and winter. 
Note, however, that predation risk is also influenced by a complex suite of other factors such as 
turbidity, life stage, and proximity to predator habitat, so the level of risk to Delta Smelt can’t be 
determined. 

Another possible indirect effect of higher water temperatures is that they may promote harmful 
agal blooms (HAB) (Lehman et al. 2005), which may degrade Delta Smelt habitat quality in 
the summer and early fall (Baxter et al. 2010). In the Delta, Lehman et al. (2013) found that 
blooms of the harmful cyanobacteria (blue-green algae) Microcystis aeruginosa required a water 
temperature of at least 19 °C for initiation. Other drivers of HABs and the possible effects of 
HABs are discussed more fully in a separate section of this Chapter. The combination of large 
seasonal and regional water temperature variability in the SFE and substantial direct and indirect 
effects of water temperature for all life stages of Delta Smelt means that this variable should be 
considered one of the most important habitat attributes for Delta Smelt. Differences in water 
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temperature between regions or time periods may have important effects on the Delta Smelt 
population (Rose et al. 2013b).

Salinity and the Size and Location of the Low Salinity 
Zone

A dynamic salinity gradient from fresh water to salt water is one of the most characteristic 
features of an estuary (Kimmerer 2004). It originates from the mixing of fresh inland water with 
salty ocean water through tidal dispersion and gravitational circulation (Monismith et al. 2002). 
Many estuarine-dependent organisms occur in distinct salinity ranges (e.g., Kimmerer 2002a) and 
the extent and location of water with suitable salinities is thus an important habitat attribute for 
estuarine organisms. Over the time period of available monitoring data, there is no clear long-
term trend in salinity levels and distributions in the estuary. Significant increases and decreases 
linked to changing flow patterns have been detected for various stations and months (e.g., Jassby 
et al. 1995, Enright and Culberson 2009, Shellenbarger and Schoellhamer 2011, Cloern and 
Jassby 2012).

The brackish (oligohaline) “low salinity zone” (LSZ) is an important region for retention of 
organisms and particles and for nutrient cycling. In the SFE, the LSZ provides important habitat 
for numerous organisms including Delta Smelt (Turner and Chadwick 1972, Kimmerer 2004, 
Bennett 2005). In this report we define the LSZ as salinity 1-6; however, other salinity ranges 
have been used by others, such 0.5-6 (Kimmerer et al. 2013) or 0.5-5 (Jassby 2008).

In the SFE, the position of the LSZ is commonly expressed in terms of X2, which is the distance 
from the Golden Gate in km along the axis of the estuary to the salinity 2 isohaline measured near 
the bottom of the water column (Jassby et al. 1995). X2 represents the approximate center of the 
LSZ (Kimmerer et al. 2013).

X2 is an index of the physical response of the estuary to freshwater outflow from the Delta; it 
decreases with increasing outflow because increasing freshwater outflow prevents seawater from 
moving landward. The X2 index was developed two decades ago as an easily-measured, policy-
relevant “habitat indicator.” Its ecological significance for multiple species and processes was 
established through statistical analyses of biological responses to seasonally or annually averaged 
X2 values (Jassby et al. 1995) and has since been reaffirmed in additional studies (e.g., Kimmerer 
et al. 2002a,b, 2009, 2013, Thomson et al. 2010, Mac Nally et al. 2010). There is, however, still 
much uncertainty regarding the causal mechanisms for the observed biological responses of biota 
to X2. As with all statistically derived functional relationships, biological responses to X2 do 
not necessarily reflect direct causal relationships and it is generally recognized that some of the 
causal mechanisms may not be directly linked to the size and location of the LSZ. 

Most of the scientific and management attention has focused on the LSZ and X2 from late winter 
to early summer (hereafter “spring X2”) depending on the species of interest, but in recent years 
the LSZ and X2 during the fall months (“fall X2”) has also received considerable scientific and 
policy attention. Annual abundance indices of several estuarine fish and invertebrate species have 
a negative relationship with spring X2, meaning that abundance indices increase when X2 and the 
LSZ are more westward and Delta outflow is higher in the late winter and spring months (Jassby 
et al. 1995, Kimmerer 2002a, Kimmerer et al. 2009). Delta Smelt summer abundance indices 
have a significant relationship with prior fall X2 and fall abundance (USFWS 2008, Mount et al. 
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2013). Changes in spring and fall X2 have also been linked to long-term fish declines in the SFE 
(Thomson et al. 2010, Mac Nally et al. 2010).

The size and location of the LSZ are considered key factors determining the quanity and quality 
of low salinity rearing habitat available to Delta Smelt and other estuarine species. LSZ size and 
location are determined by the interaction of dynamic tidal and river flows with the stationary 
topography of the region (Reclamation 2011, 2012, Kimmerer et al. 2013). In a recent study, 
Kimmerer et al. (2013) used the three-dimensional hydrodynamic “UnTRIM” model which has 
an unstructured grid (Casulli and Zanolli 2002, 2005) to produce detailed maps of the distribution 
of salinity in the SFE under different outflow conditions. These maps (figure 2 in Kimmerer et al. 
2013 and Fig. 18 and 19 in this report) show that under low outflow conditions typical of summer 
and fall months (outflow = 140 m3 s-1, X2 = 85 km), the LSZ is in the western Delta confluence 
region, including the Sacramento and San Joaquin Rivers upstream of Chipps Island (Fig. 18), 
while under high outflow conditions typical of wet winter months (outflow = 1,440 m3 s-1, X2 = 
51 km), the LSZ is much further west in San Pablo Bay. At intermediate outflows (intermediate 
X2 = 74 km). ), it is located east of Carquinez Strait and covers Suisun Bay and parts of Suisun 
Marsh (Fig. 19).

Kimmerer et al. (2013) also examined the relationships between X2 and the area, average depth, 
and volume of the LSZ. They found that these relationships were bimodal, with the largest 
volumes and areas and shallowest depths at X2 values below 50 km when the LSZ is located in 
the large San Pablo Bay, and secondary peaks at X2 values between 60 and 75 km when the LSZ 
overlays the smaller Suisun Bay (Fig. 20). Area and volume were smallest and depth greatest 
when the LSZ was constricted in Carquinez Strait (X2~50-60 km) and in the confluence region of 
the Sacramento and San Joaquin Rivers (X2~80-85 km).

Paleosalinity investigations going back several thousand years indicate that the Delta has 
historically been largely fresh, while the Suisun region has alternated between brackish 
(oligohaline) and fresh (Ingram and Malamud-Roam 2013, Drexler et al. 2014). The LSZ 
and X2 likely moved according to predictable annual and interannual rhythms. Interannually, 
X2 was most variable in the higher-flow winter and spring months and least variable in the 
low-flow fall months. Seasonally X2 moved from the west in winter and spring to the east 
in summer and fall. CDWR (CDWR 2007) computes monthly “unimpaired” outflows which 
remove the effects of dam operations and water diversions. Annual X2 dynamics based on these 
unimpaired flows may give a sense of these historical fluctuations (Fig. 21). It is important to 
note, however, that unimpaired flows are not the same as historical “natural” flows because they 
do not take into account upstream water losses (e.g., consumption and evaporation) or physical 
water body alterations such as channelization, groundwater depletion, draining of wetlands, 
and disconnection of floodplains. The historical wetlands, floodplains, and groundwater basins 
would have naturally retained and released water (Whipple et al. 2012) and likely affected flows 
and the LSZ in different ways than today’s man-made reservoirs. Work is currently underway 
at UC Davis, the San Francisco Estuary Institute, and elsewhere to explore these issues, but 
results have not yet been published (W. Fleenor, U.C. Davis, personal communication). At this 
time, considerable uncertainty remains regarding the natural ranges in the timing and volume of 
the historical seasonal and interannual freshwater flows and how they caused the LSZ to spread 
out and contract across the estuary’s historical landscape. There is, however, little doubt that 
interannual variations in precipitation and hence river flows caused a high degree of interannual 
variability in the size and location of the low-salinity zone (Dettinger 2011).
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There is also no doubt that human water use and landscape alterations have changed flows 
into and out of the Delta and, consequently, salinity dynamics in the SFE, though changing 
precipation patterns also play a role (Enright and Culberson 2009). Before the construction of 
today’s major reservoirs, upstream water diversions coupled with the isolation of floodplains and 
wetlands, which had naturally stored runoff, from river channels by levees exacerbated salinity 
intrusions into the Delta in dry years. This was especially evident during the severe drought from 

Figure 18. Salinity distribution at low outflow. The upper panel shows the area 
of the low-salinity zone (4,262 hectares) at X2 = 85 km, when positioned mostly 
between Antioch and Pittsburg. Connections to Suisun Bay and Suisun Marsh are 
minimal. The lower panel shows the percentage of day that the low-salinity zone 
occupies different areas.
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1929 to 1934 when salinities of 2 were observed at Paintersville Bridge which is located on the 
Sacramento River at a distance of about 136 km from the Golden Gate (Mathew 1931). Operation 
of the large CVP and SWP reservoirs that were constructed after this drought has prevented 
such severe salinity intrusions since then and X2 has remained west of Rio Vista located on the 
Sacramento River 100 km upstream of the Golden Gate. Beginning with the salinity requirements 
in SWRCB water right decision D-1275 of 1967, salinity and the position of the LSZ have also 

Figure 19. Salinity distribution at intermediate outflow. The upper panel shows 
the area of the low-salinity zone (9,140 hectares) at X2 = 74 km (at Chipps Island). 
The lower panel shows the percentage of day that the low-salinity zone occupies 
different areas.
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been increasingly regulated to protect “beneficial uses,” including habitat and fish protections 
(see Chapter 1).

CVP and SWP water exports from the Delta began in the early 1950s with the completion of 
the CVP C.W. Bill Jones Pumping Plant (formerly known as the Tracy Pumping Plant) in 1951 
and then increased with the completion of SWP’s Harvey O. Banks Pumping Plant in 1968. 
Long-term variability in the trend of Delta outflow has been reduced seasonally for the period 
1921-2006, in part due to water project operations (Enright and Culberson 2009), but also due 
to overriding climate changes. Analyzing data from 1956–2010, Cloern and Jassby (2012) found 
significant increases in water exports from the Delta in all  months of the year except May, but in 
the first half of the year, these increases in exports did not significantly affect Delta outflow. We 

Figure 20. Modeled volume, area, and depth of the low salinity zone (salinity 0.5 
to 6 at various values of X2 for 9 steady state values of outlow using bottom 
salinity (green diamonds) and depth-averaged salinity (black diamonds and for 
daily values based on variable values from April 1994 through March 1997 (blue 
circles) (modified from Kimmerer et al. 2013). The top axis gives the Delta outflow 
corresponding to the 9 steady state scenarios.
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show this by plotting the relationship between the Sacramento River Water Year Index, a measure 
of runoff, and average spring X2 (February-June) for two periods before (1956 to 1999) and after 
(2000-2013) the current flow and salinity requirements in SWRCB water right decision D-1641 
became mandatory. The relationship appeared to remain essentially unchanged when the two 
time periods were compared (Fig. 22a). Cloern and Jassby (2012) further found that inflow to the 
Delta significantly increased in July and August, but these increases in inflow did not translate 
into significant increases in Delta outflow due to concurrent increases in exports during these 
months. Nevertheless, plots of recent data show that July and August outflows increased and the 
relationship between the Sacramento River Water Year Index and summer-time X2 (July-August) 
shifted downward in the years since the SWRCB water right decision 1641 went into effect in 
2000 relative to previous years (Fig. 22b). The wet year 2006 did not fit this pattern because it 
had high summer X2 in spite of a high water year index. This means that with the exception of 
2006, the LSZ has generally been located somewhat more westward in July and August since 
2000 than from 1956 to 1999 under similar runoff conditions. 

Figure 21. Plot of monthly X2 (km) values calculated from mean monthly 
unimpaired Delta outflows from 1921-2003. X2 values are categorized by water 
year type for the Sacramento Valley. Also shown are the median X2 values from 
1921-2003 across all water year types (grey circles) C, red dots: critically dry; 
D, orange dots: dry; BN, yellow dots: below normal; AN, light blue dots: above 
normal; W, dark blue dots: wet. Water year type data from http://cdec.water.
ca.gov/cgi-progs/iodir/WSIHIST. Unimpaired flow data from DWR 2007 (available 
at http://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/
bay_delta_plan/water_quality_control_planning/docs/sjrf_spprtinfo/dwr_2007a.pdf 
). X2 equation from Jassby et al. 2005.

http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST
http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST
http://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/bay_delta_plan/water_quality_control_planning/docs/sjrf_spprtinfo/dwr_2007a.pd
http://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/bay_delta_plan/water_quality_control_planning/docs/sjrf_spprtinfo/dwr_2007a.pd
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Figure 22. Plots of monthly X2 as a function of the Sacramento River Water Year 
Index (a measure of runoff) for the years 1956 to 1999 and 2000 to 2013 for: a, 
winter/spring; b, summer; and c, fall. The regression equation for each set of 
points is also shown. The index is calculated as: 0.4 * Current April to July Runoff 
Forecast (in millions of acre feet, maf) + 0.3 * Current October to March Runoff 
in (maf) + 0.3 * Previous Water Year’s Index (if the Previous Water Year’s Index 
exceeds 10.0, then 10.0 is used) (see http://cdec.water.ca.gov/cgi-progs/iodir/
WSIHIST for futher detail).

http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST
http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST
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Cloern and Jassby (2012) also showed that significantly increasing exports combined with 
declining inflows led to significant declines in Delta outflow in each month from September to 
December. In plots of recent data, this led to a shallower slope of the relationship between the 
Sacramento River Water Year Index and fall X2 (September-December) and a more eastward 
LSZ location in the fall months of wetter years (below normal, above normal, and wet water 
year types) during 2000-2012 compared to 1956-1999, with the exception of two wet years at 
the end of the time series, 1997 and 1999, which fall on the 2000-2012 line (Fig. 16c, see also 
Feyrer et al. 2007, 2010). The areas with light blue shading in the three plots shown in Figure 16 
show the range of X2 that places the LSZ over Suisun Bay and are associated with a high LSZ 
volume, area, and shallow LSZ depths (Kimmerer et al. 2013, Fig. 14). Fall X2 commonly fell 
into this range from 1956-1999 (in 18 of 44 years; Fig. 22c), but never after 2000. In 2011, the 
most recent wet year, fall X2 was lower than in the preceding wet years of 2006, 1997, and 1999, 
but still elevated relative to the majority of previous wet years. Overall, the changes in flows in 
the summer and fall months described by Cloern and Jassby (2012) have resulted in more muted 
seasonal and interannual variations in X2 and in the size and location of the LSZ in more recent 
years and possibly also relative to historical variability (Fig. 21).

Delta Smelt are found in the estuary at salinities up to 18 (Bennett 2005), but are most common 
in the in the LSZ (< 6) (Moyle et al. 1992, Sommer and Mejia 2013, Kimmerer et al. 2013). 
Sommer et al. (2011a) described Delta Smelt as a “diadromous species that is a seasonal 
reproductive migrant.” In the winter, adult Delta Smelt move upstream into fresh water for 
spawning. In the spring and summer, young Delta Smelt are transported or swim downstream into 
the LSZ (Dege and Brown 2004). Delta Smelt usually rear in low salinity habitat in the summer 
(Nobriga et al. 2008) and fall (Feyrer et al. 2007), although some Delta Smelt remain year-round 
in fresh water (Sommer et al. 2011a, Merz et al. 2011, Sommer and Mejia 2013).

The recruitment success of Longfin Smelt and age-0 Striped Bass increases linearly with more 
westward positions of the LSZ during spring (Jassby et al. 1995, Kimmerer 2002a). In contrast, 
the relationships of annual Delta Smelt indices with spring X2 are more complex because they 
have not been consistent over the period of record (Fig. 23). Jassby et al. (1995) found that from 
1968-1991, the highest fall abundance indices for Delta Smelt coincided with intermediate values 
of average April-July X2 when the LSZ was positioned in Suisun Bay. Low fall abundances were, 
however, also observed at these intermediate X2 values. The analyses by Jassby et al. (1995) 
were later updated and augmented with an analysis of the relationship between Delta Smelt 
summer abundance and spring X2 (Kimmerer 2002a, Kimmerer et al. 2009).

We updated the analyses by Jassby et al. (1995) with more recent data and data from additional 
monitoring surveys to examine the hypothesis that during periods of relatively stable abundance 
(i.e. without step changes, Thomson et al. 2010), the abundance of different Delta Smelt life 
stages is related to spring outflow and the position of the LSZ as expressed by spring X2. To 
obtain spring X2, we first calculated mean monthly X2 values calculated from daily X2 values. 
We then averaged the mean monthly X2 values for February to June. This is different from the 
April-July period used by Jassby et al. (1995) for their Delta Smelt analyses, but similar to the 
spring X2 averaging period used by Kimmerer (2002a). Note that different averaging methods 
for calculating seasonal X2 values account for the small quantitative differences between results 
presented here and those of previously published analyses that used the same data, but this does 
not affect the overall patterns. We partitioned the data into the periods before, between, and 
after the 1981 and 2002 step declines in Delta Smelt abundance identified by Thomson et al. 
(2010). The 1981-1982 partition, but not the 2002-2003 partition, has been previously applied by 
Kimmerer (2002a) and Kimmerer et al. (2009). 
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Kimmerer (2002a) and Kimmerer et al. (2009) found that the relationship between spring X2 
and Delta Smelt juvenile abundance indices was positive before the step decline in Delta Smelt 
abundance that started in 1981 (Thomson et al. 2010), suggesting that historically, Delta Smelt 
population recruitment may have benefitted from lower outflows and a more upstream LSZ 
in the late winter and spring. In our analysis, we found that the relationship was perhaps more 
unimodal than linear (Table 1, Fig. 23a) because a model that included a quadratic spring X2 
term explained more of the variation in the data than a linear model that did not, although the 
statistical significance of the linear model was slightly higher than that of the quadratic model 
because of the loss of a degree of freedom due to the additional quadratic term included in 
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abundance index and b) Delta Smelt Fall Midwater Trawl Survey abundance index, 
in relation to monthly averaged daily X2 position from February to June. Lines 
are either simple linear least squares regression (lines) or quadratic regression 
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the quadratic model. Similar to Kimmerer (2002a) and Kimmerer et al. (2009), we found that 
in the period after the 1981 step change and also in the period after the 2002 step change, the 
relationship of log-transformed summer abundance with spring X2 shifted downward and became 
more clearly negative than unimodal (Fig. 23a). The relationship remained statistically significant 
at the P < 0.05 level in the period after the 1981 step decline, but is no longer statistically 
significant after 2001. Similarly, the relationship is also not significant across the entire 52-year 
time series (Table 1).

Kimmerer et al. (2009) found a non-significant and essentially flat relationship between spring 
X2 and the entire log-transformed sub-adult abundance time series for Delta Smelt; this remains 
the case when data from the five most recent years is included in the analysis (Table 1). Similar 
to Jassby et al. (1995), we found a weakly unimodal relationship between spring X2 and log-
transformed Delta Smelt subadult abundance indices before the first step change, but this 
relationship was not statistically significant at the P < 0.05 level (Table 1, Fig. 23b). Similar 
to juvenile abundance, the relationship of log-transformed subadult abundance with spring X2 
shifted downward in the periods after each of the two step changes and became more negative 
than unimodal (Fig. 23b), but again these relationships were not statistically significant at the P < 
0.05 level (Table 1).

Taken together, these findings are generally consistent with previous conclusions that moderate 
hydrological conditions in the late winter and spring and a large LSZ located in the Suisun region 
can be beneficial to Delta Smelt population abundance (Jassby et al. 1995). Historically, this may 
have been the case for several life stages. At present, however, juvenile and subadult Delta Smelt 
seem to barely respond to spring X2. As Jassby et al. (1995) point out, this does not mean that 
there is no longer an effect of spring X2 on juveniles and subadults; the spring X2 effect may 
just be masked or weakened by changes in other habitat attributes. The relationships between 
these life stages and spring X2 clearly underwent downward shifts after each step decline. These 
persistent downward shifts indicate that occasional years with beneficial spring X2 conditions 
continue to have a positive effect on Delta Smelt, but they are by themselves not enough to 
overcome the depressed abundance levels and recover the population. 

The downward shifts and changes in shape of the spring X2-Delta Smelt abundance index 
relationships (Fig. 23) also illustrate the difficulties of determining and understanding functional 
responses of biota to dynamic physical habitat attributes in changing ecosystems; the species 
of interest, other habitat attributes, and their interactions may all change as much or more than 
the habitat attribute under consideration. Further, these changes may not always be gradual, but 
can take the form of sudden step changes that may be associated with system-wide regime shifts 
(Davis et al. 2010, Baxter et al. 2010, Cloern and Jassby 2012). Moreover, prior conditions and 
prior abundance may also influence outcomes. In Chapter 9 of this report we give a relatively 
simple example of additional multivariate analyses aimed at exploring the effects of hydrology 
and prior abundance on the abundance and recruitment of Delta Smelt larvae. More sophisticated 
multivariate life cycle modeling that greatly exceeds the scope of this report is needed to account 
for these simultaneous changes and interactive effects on all life stages.

Changes in the size, location, and dynamics of the LSZ likely also interact in complex ways with 
other changes, such as changes in sediment and nutrient loadings and resulting turbidity and 
nutrient dynamics and their effects on Delta Smelt and the food web. For example, LSZ position 
affects recruitment of the invasive clam Potamocorbula amurensis, which may in turn affect 
phytoplankton and zooplankton biomass, size, and production (Thompson 2005, Winder and 
Jassby 2011), and has likely affected fish-X2 relationships (Kimmerer et al. 2002a).
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Ongoing studies coordinated by the IEP as part of the POD and FLaSH studies focus on the 
processes that link physics, chemistry, and biology in the LSZ and its habitat value for Delta 
Smelt and other native and non-native species. Similar to Monismith et al. (2002), preliminary 
results indicate that the strength of physical mixing (lateral dispersion) in the LSZ changes with 
the volume of freshwater outflow, underscoring the importance of variable hydrodynamics on not 
just the location of the LSZ, but how ecological services (nutrient mixing, organism dispersal) are 
influenced by variable estuarine outflow (Monismith, U.C. Berkeley, personal communication).

Turbidity

In this report, turbidity is considered an environmental driver that interacts with other 
environmental drivers, resulting in habitat attributes that directly affect Delta Smelt responses, 
rather than a stand-alone habitat attribute. Clearly, studies have shown that distribution of Delta 
Smelt is correlated with turbidity (e.g., Feyrer et al. 2007, Nobriga et al. 2008, Grimaldo et al. 
2009, Sommer and Mejia 2013). In the conceptual model we chose to incorporate turbidity as a 
modifier of several important linkages between environmental drivers and habitat attributes that 
are important to Delta Smelt, primarily food visibility for small larvae and predation risk for all 
life stages. If we had incorporated turbidity as a habitat attribute and, for example, predation risk 

Life Stage Season Survey Period Regression n P R2
Adjusted 

R2

Juvenile Summer TNS 1959-
2013

Linear 52 0.614 0.005

Juvenile Summer TNS 1959-
1981

Linear 20 0.033 0.230 0.187

Juvenile Summer TNS 1959-
1981

Quadratic 20 0.052 0.295 0.212

Juvenile Summer TNS 1982-
2002

Linear 21 0.023 0.243 0.203

Juvenile Summer TNS 2002-
2013

Linear 11 0.689 0.019  

Subadult Fall FMWT 1968-
2013

Linear 43 0.290 0.027 0.003

Subadult Fall FMWT 1968-
1981

Linear 11 0.699 0.017

Subadult Fall FMWT 1968-
1981

Quadratic 11 0.295 0.263 0.079

Subadult Fall FMWT 1982-
2002

Linear 21 0.394 0.038

Subadult Fall FMWT 2002-
2013

Linear 11 0.107 0.263 0.181

Table 1. Summary of relationships between log-transformed annual abundance indices for four Delta 
Smelt life stages (response variable) and spring X2 (February-June, see text): Survey: see description 
of monitoring surveys in Chapter 3; Regression: least squares linear or quadratic regression: n, 
number of observations (years); P, statistical significance level for the model; R2, coefficient of 
determination; adjusted R2, R2 adjusted for the number of predictor terms in the regression model. 
Bold font indicates statistically significant relationships.
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was discussed separately from turbidity, there would have been a great deal of overlapping text 
between the two sections because turbidity interacts with the presence of predators to determine 
predation risk. Our approach is not ideal but should reduce redundant text and contribute to 
clarity of presentation. Nonetheless, we recognize that turbidity by itself could reasonably be 
considered as a habitat attribute. For example, it is possible that Delta Smelt experience stress in 
low turbidity habitat, which would in turn affect survival (likely through predation) but also in 
other direct ways such as lower growth and reduced egg production. However, we do not have 
evidence at this point to support that hypothesis.

In addition to salinity gradients, estuaries often have turbidity gradients. Turbidity is an optical 
property of water, which is the loss of transparency due to scattering of light by suspended 
particles. Typically, the upper reaches of estuaries have areas with high levels of suspended 
particles known as “estuarine turbidity maxima.” In many estuaries, these areas are located in 
or near the low salinity zone and are associated with higher numbers and enhanced growth for 
larvae of some species (Sirois and Dodson 2000a, b, Shoji et al. 2005). In the SFE, turbidity is 
largely determined by the amount of suspended inorganic sediment in the water (Cloern 1987, 
Ganju et al. 2007, Schoellhamer et al. 2012), although organic components can also play a role 
(USGS 2008). Sediment particles are constantly deposited, eroded, and resuspended, and are 
transported into, within, and out of the estuary. The amount of sediment that is suspended in 
the water column depends on the available hydrodynamic energy, which determines transport 
capacity, and on the supply of erodible sediment in the estuary and suspended sediments from the 
watershed.

In the upper SFE there are two main physical processes controlling turbidity. Suspended sediment 
is transported from the tributary watersheds into the system during high flows associated with 
winter and spring storm runoff (Schoellhamer et al. 2012). The first large storm of the rainy 
season often carries the highest concentrations of suspended sediment. Some portion of the 
transported sediment moves through the system to San Pablo and San Francisco Bay and the 
remainder is stored within the system as bottom sediment. During the remainder of the year, 
turbidity is primarily caused by interactions of this stored sediment with other environmental 
drivers (Schoellhamer et al. 2012). Water moving with the tides can resuspend fine sediments 
because of turbulence resulting from interactions between the bottom and water moving at high 
tidal velocities. At a larger scale, irregularities in the bottom topography may define geographic 
regions of greater turbulence and greater turbidity. In the upper estuary, such regions occur at a 
large bathymetric sill between Carquinez Strait and Suisun Bay and at another location within 
Suisun Bay (Schoellhamer 2001). Sediments may also be resuspended by turbulence related to 
wind waves. This process is mainly limited to areas with fine sediments on relatively shallow 
shoals where wind wave turbulence reaches the bottom. This process is most important in the 
shallows of Suisun, Grizzly, and Honker Bays and Liberty Island (Ruhl and Schoellhamer 2004, 
Warner et al. 2004, Morgan-King and Schoellhamer 2013). Thus, turbidity at any particular 
location is the result of several environmental drivers, including hydrology (transport from the 
watershed) and weather (wind and precipitation) interacting with the physical configuration of the 
upper SFE. Further, annual variation in these factors may have important effects. For example, 
during a drought there is little transport of suspended sediment and the same wind patterns during 
the summer may result in less turbidity than would occur after a wet year because less sediment 
was stored as benthic sediment during the winter. There is also evidence of longer term changes 
in turbidity (Schoellhamer et al. 2011, Hestir et al. 2013), along with regional differences.

In addition to the inorganic component of turbidity, organic matter (e.g., phytoplankton) also 
contributes to both suspended solids and the sediment load on the bed that is re-suspended with 
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wind and wave action (McGann et al. 2013). In the SFE, phytoplankton concentration varies 
spatially, seasonally, and on an inter-annual scale (Cloern et al. 1985, Jassby 2008, Cloern and 
Jassby 2012), and is controlled by multiple factors, including benthic grazing, climate, river 
inflows (Jassby et al. 2002), and nutrient dynamics (Glibert et al. 2011, Parker et al. 2012, 
Dugdale et al. 2013), which in turn are likely to affect the organic component of turbidity. 
Phytoplankton dynamics are discussed in detail in the ‘Food and Feeding’ section (below), but it 
is important to note here that plankton concentration comprises part of the SFE turbidity and is 
significant as it relates to productivity at higher trophic levels.

Among the geographic regions of the upper SFE, the Suisun region is one of the most turbid, 
when the system is not being influenced by storm flows. This results from strong turbulent 
hydrodynamics in the Suisun region caused by strongly interacting tidal and riverine flows, 
bathymetric complexity, and high wind speeds, which create waves that resuspend erodible 
benthic sediment in the large and open shallow bays of the Suisun region. The North Delta, 
especially the large open expanse of Liberty Island (flooded since 1998) and the adjacent Cache 
Slough region are also relatively turbid. Recent evidence suggests that Liberty Island acts as a 
sediment sink in the winter and a sediment source for the surrounding Cache Slough complex in 
the summer (Morgan-King and Schoellhamer 2013).

Turbidity is usually lower in the channels of the confluence of the Sacramento and San Joaquin 
Rivers compared to the Suisun region and North Delta region. Turbidity dynamics in the deep 
channels of the river confluence are driven more by riverine and tidal processes while high wind 
and associated sediment resuspension has little if any effect (Ruhl and Schoellhamer 2004). 
Turbidity is generally lowest in the south Delta (Nobriga et al. 2008). This may in part be due to 
sediment trapping by large, dense beds of Egeria densa, an invasive species of submerged aquatic 
vegetation (Hestir 2010). In winter/spring during the comparison years the highest Secchi disc 
depths (lowest turbidity) were found in the freshwater regions of the estuary (< 1 salinity), except 
for the Cache Slough region in the north Delta which was as turbid as the saltier regions of the 
estuary (Fig. 24).

There is strong evidence for an initial increase followed by a more recent long-term decline in 
sediment transport into the upper estuary, likely due to anthropogenic activities during the last 
century and a half (Schoellhamer et al. 2013, Wright and Schoellhamer 2004). Schoellhamer 
et al. (2013) presented a conceptual model of the effects of human activities on the sediment 
supplies in the SFE with four successive regimes: 

1. The natural state. 

2. Increasing sediment supplies due to mining, deforestation, agricultural expansion, etc. 

3. Decreasing sediment supply due to sediment flushing during high flow events and 
sediment trapping behind dams and dikes.

4. A new altered state of low sediment supplies. The pulse of increased sediment inputs 
during and after the California gold rush and the more recent decline in these inputs is 
apparent in isotopic data from sediment cores taken in the estuary (Drexler et al. 2014).

The recent declines in sediment supplies have led to a long-term increase in water clarity in 
the upper Estuary (Jassby et al. 2002, Feyrer et al. 2007, Jassby 2008). Jassby et al. (2002) 
documented a 50% decrease in total suspended-solids concentration (TSS, a laboratory 
measurement of total suspended solids), approximated by suspended sediment concentration 
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(SSC, an optical measurement done in the field for these data) in the Delta from 1975-1995. 
Jassby (2008) found that the downward trend continued in the decade after 1995, although at a 
slower pace than over the entire 1975-2005. From 1975-2005, there were significant declines in 
SSC of up to 6% per year at 8 of 10 Delta stations (Jassby 2008). Jassby et al. (2005) showed that 
TSS concentrations in the north Delta dropped sharply toward the end of the 1982–1983 El Niño-
Southern Oscillation (ENSO) event, which was associated with extremely high outflows, and 
did not recover afterward. This step decrease after 1983 has been corroborated by further trend 
analyses of TSS (Hestir 2013). Following the El Niño event of 1997–1998, there was a 36% step 
decrease in SSC in San Francisco Bay as the threshold from transport to supply regulation was 
crossed as an anthropogenic erodible sediment pool was depleted (Schoellhamer 2011). Sediment 
trapping by dense beds of Egeria densa may be further reducing available sediment in the Delta 
(Hestir 2010). While other anthropogenic factors may have also contributed to long-term changes 
in turbidity (e.g., export operations; Arthur et al. 1996), quantitative analyses of the effects of 
these factors have not been conducted.

Figure 24. Secchi depth data collected during the 20 mm Survey. Surveys are 
conducted biweekly March-July. See Chapter 3: Data Analyses for explanation of 
boxplots.
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Before the step decline in SSC and the onset of the pelagic organism decline in the late 1990s and 
early 2000s (i.e. the “pre-POD” period), water transparency (roughly the opposite of turbidity) 
measured with a Secchi disc at all IEP EMP stations was usually highest in November and lowest 
in June (Fig. 25). From 2003-2012 (i.e. the “POD” period), average water transparency was not 
only higher (by an average of 16 cm Secchi depth) than in the previous period, but the annual 
dynamics also shifted forward by a month, to greatest transparency (i.e. lowest turbidity) in 
October and lowest transparency in May. The greatest differences in average water transparency 
between the pre-POD and POD periods occurred in September and October (28 and 30 cm 
difference between monthly averages, respectively) and the smallest differences in January-
May (10 cm). While the EMP has collected turbidity data (nephelometric turbidity (NTU) 
measurements) since 1975, long-term fish monitoring surveys have traditionally collected Secchi 
disc data and only in recent years have incorporated turbidity. Therefore, Secchi disc data are 
presented in the majority of this report when relating Delta Smelt abundance to water clarity 
conditions. 

Multiple field and modeling studies have established the association between elevated turbidity 
and the occurrence and abundance of Delta Smelt. The abundance of larval/postlarval Delta 
Smelt larvae was well explained by salinity and Secchi depth, a proxy for turbidity (Kimmerer et 
al. 2009). Sommer and Mejia (2013) and Nobriga et al. (2008) found that late-larval and juvenile 
Delta Smelt are strongly associated with turbid water, a pattern that continues through fall (Feyrer 
et al. 2007). Long term declines in turbidity may also be a key reason that juvenile Delta Smelt 
now rarely occur in the south Delta during summer (Nobriga et al. 2008). Thomson et al. (2010) 
found that turbidity (water clarity) was the only significant predictor variable that was shared 
by three of the four POD species; all other significant predictor variables were unique to each 
species. Grimaldo et al. (2009) found that the occurrence of adult Delta Smelt at the fish salvage 
facilities was linked, in part, with high turbidity associated with winter “first flush” events. 
Turbidity may also serve as a behavioral cue for small-scale (lateral and vertical movements 
in the water column) and larger-scale (migratory) Delta Smelt movements (Bennett and Burau 
2014).

Delta Smelt are visual feeders, and feed primarily between dawn and dusk (Hobbs et al. 2006, 
Slater and Baxter 2014). As for all visual feeders, visual range and prey density determine 
feeding success of Delta Smelt. Visual range depends on size, contrast and mobility of the 
prey, retinal sensitivity and eye size of the visual feeder, and on the optical habitat attributes 
such as light scattering, absorption, and intensity (Aksnes and Giske 1993). Optical habitat 
attributes are affected by turbidity from suspended organic particles, such as algae and detritus, 
and inorganic particles, such as sand and silt. Somewhat counterintuitively, some level of 
turbidity appears important to the feeding success of larval Delta Smelt. Baskerville-Bridges 
et al. (2004a) conducted laboratory experiments in which alga densities (0, 0.5 x 106 cell/mL, 
and 2 x 106 cell/mL or 1, 3, and 11 NTU) and light levels (range tested: 0.01 μmoles/s x m2, 0.3 
μmoles/s x m2, 1.9 μmoles/s x m2) were manipulated and first-feeding success of larval Delta 
Smelt was quantified. They found that maximum feeding response occurred at the highest alga 
concentrations and light levels tested. In a subsequent experiment, when algae were removed 
entirely, the feeding response was very low. The addition of algae or some other form of 
suspended particle is standard practice for successfully rearing Delta Smelt larvae in culture 
facilities (Mager et al. 2004, Baskerville-Bridges et al. 2005, Werner et al. 2010b, Lindberg et 
al. 2013). Presumably the suspended particles provide a background of stationary particles that 
helps the larvae detect moving prey. Sufficient turbidity also appears to be important to reduce 
overall environmental stress and increase survival of larval Delta Smelt (Lindberg et al. 2013). 
Thus, it seems likely that turbidity is important to the feeding success and survival of larval Delta 
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Smelt in the wild. Recent research on juvenile Delta Smelt, however, suggests that influence of 
turbidity on feeding success may vary across life stages and field conditions. Hasenbein et al. 
(2013) exposed juveniles to varying turbidities (5-250 NTU) and observed a negative relationship 
between turbidity and feeding rates, with a marked decline in feeding at 250 NTU. However, 
feeding rates were highest at 12 NTU and stable in the 12-120 NTU turbidity range, which is 
likely within the range experienced by juvenile Delta Smelt in typical summer conditions in the 
Delta. Turbidity values of 250 NTU are generally not observed during the summer; therefore, the 
typical summer turbidity range in the Delta likely does not limit juvenile feeding success.

In addition to its effects on feeding, turbidity may also reduce predation risk. Based on the 
general recognition that fish assemblages are often partitioned between turbid-water and clear-
water assemblages (Rodríguez and Lewis 1997, Whitfield 1999, Quist et al. 2004), and that 
turbidity can influence the predation rate on turbid-adapted fishes (Rodríguez and Lewis 1997, 
Gregory and Levings 1998, Quist et al. 2004), it has generally been assumed that juvenile and 
adult Delta Smelt are closely associated with turbidity in order to minimize their risk of predation 
in their generally open-water habitat. There may also be complex interactions between feeding 
and predation risk that are mediated by turbidity. Recent laboratory work has shown that in light 
(as opposed to dark) conditions, the vertical distribution of larval Delta Smelt shifts upward in 
the water column when turbidity is increased from clear (< 2 NTU) to 24 NTU (L. Sullivan, 
San Francisco State University, unpublished data), suggesting that larval Delta Smelt may use 
turbidity to safely forage in surface waters that may be more food-rich. Interestingly, when a 
predator cue (water, after containing juvenile Striped Bass for 1 hr) is added to clear water, the 
distribution of larval Delta Smelt becomes bimodal, with increased densities near the surface and 
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closer to the bottom (L. Sullivan, San Francisco State University, unpublished data). Thus, while 
laboratory studies have demonstrated that larvae have improved feeding success at higher (but 
not too high, see above) turbidities, in natural settings, turbidity and predation risk may interact 
(e.g., Miner and Stein 1996) to affect Delta Smelt habitat choice and feeding success. 

Turbidity may also be a migration cue for Delta Smelt. A recent field study investigated 
behavioral responses of Delta Smelt to winter “first flush” events in the Sacramento and San 
Joaquin Rivers near their confluence (W. Bennett, U.C. Davis, unpublished data). A first flush 
is defined as an increase in flow and turbidity associated with the onset of winter rain. This 
study found lateral turbidity gradients that changed with the tides and before and after first flush 
events and coincided with lateral Delta Smelt movements toward the channel during flood tides 
and toward the shoreline during ebb tides. The researchers concluded that this behavior likely 
facilitates maintaining channel position or moving upriver and cross-channel gradients in water 
turbidity may act as a behavioral cue. Feyrer et al. (2013) also found small-scale lateral and 
vertical gradients in turbidity in the lower Sacramento River just prior to a winter-time first flush 
event. In their study, turbidity and salinity were highest in the lower half of the water column and 
during flood tides and lowest during ebb tides in the center of the channel in the upper half of 
the water column. This coincided with observations of Delta Smelt which were more frequently 
caught throughout the water column during flood tides than during ebb tides when they were 
observed only in the lower half of the water column and sides of the channel. Feyrer et al. (2013) 
concluded that Delta Smelt may actively move in the water column by keying in on turbidity and 
salinity gradients or because of the physics underlying them.

Entrainment and Transport

The egg, larval, and juvenile stages of estuarine fishes and invertebrates along with small and 
weakly swimming adult stages are subject to involuntary transport (advection) by riverine and 
tidal flows. Entrainment is a specific case of involuntary transport. It refers to situations when 
altered flows misdirect and transport fish and other organisms in directions in which they would 
not normally travel or where they will encounter unfavorable conditions and increased risk of 
mortality. In this report, we use the term entraiment to specifically refer to the incidental removal 
of fishes and other organisms in water diverted from the estuary, primarily by CVP and SWP 
export pumping (Arthur et al. 1996, Grimaldo et al. 2009, Castillo et al. 2012). 

Ultimately, watershed hydrology determines how much water can flow into and through the 
Delta; however, water flows into, within, and out of the Delta are manipulated in many ways. 
Water is: routed through and around artificial channels, gates, and barriers; stored in and released 
from reservoirs; discharged from agricultural and urban drains; and diverted with large and small 
pumps. Perhaps the greatest flow alterations in the Delta have taken place in Old and Middle 
Rivers (collectively referred to as “OMR”) in the central Delta (Fig. 2). Historically, these river 
channels were part of the tidal distributary channel network of the San Joaquin River (Whipple 
et al. 2012). Today, they are a central component of the CVP and SWP water conveyance system 
through the Delta. Water from the Sacramento River in the north now flows through the northern 
Delta (down Georgiana Slough, through Three-Mile Slough and around Sherman Island) and 
eastern Delta (via the artificial “Delta cross-channel” and down the forks of the Mokelumne 
River) to OMR in the central Delta, then to the SWP and CVP. The SWP and CVP pumps are 
capable of pumping water at rates sufficient to cause the loss of ebb tide flows and to cause 
negative net flows (the advective component of flow after removal of the diffusive tidal flow 
component) through OMR toward the pumps (see Grimaldo et al. 2009), thus greatly altering 
regional hydrodynamics and water quality (Monsen et al. 2007). Under these conditions, fish 
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and other aquatic species in the Delta may be transported toward the pumps (Arthur et al 1996, 
Brown et al. 1996, Moyle et al. 2010), may swim toward the pumps if they are behaviorally 
inclined to follow net flow (Grimaldo et al. 2009), or may move toward the pumps if they are 
employing tidal surfing behavior (Sommer et al. 2011).

The SWP and CVP have large fish salvage facilities intended to reduce fish loss from the system 
due to entrainment - the State Skinner Fish Protective Facility (SFPF) and the federal Tracy 
Fish Collection Facility (TFCF). The SFPF and TFCF are located at the intakes to the State and 
federal export pumps on Old River in the southwestern Delta (Fig. 2). Both facilities have fish 
directing louvers and collecting screens that are used to capture and collect fish before they reach 
the pumps. The “salvaged” fish are then trucked to and released back into the western Delta. 
A variable fraction of these fish survive the capture, handling, trucking and release process 
(Miranda et al. 2010a,b, Aasen 2013, Afentoulis et al. 2013, Morinaka 2013a). The number of 
salvaged fish is monitored and reported as an index of SWP and CVP salvage and entrainment 
losses (Morinaka 2013b, more information and data available at http://www.dfg.ca.gov/delta/
apps/salvage/Default.aspx). The SWP differs from the CVP in having a regulating reservoir, 
Clifton Court Forebay that temporarily stores water from Old River to improve operations of the 
SWP pumps. A change in the location of SWP water diversion from Italian Slough to Old River 
through CCF in 1969 may have led to a substantial increase in pre-screen losses at the SWP 
(Heubach ca. 1973, Kano 1990).

Fish have been salvaged since 1958 at the TFCF and since 1968 at SFPF, and the quality of the 
historical salvage data has improved over time. Delta Smelt salvage data is available since May 
1979 for both the TFCF and SFPF (ftp://ftp.delta.dfg.ca.gov/salvage/). Juveniles less than 30 
mm fork length are less efficiently captured in the salvage facilities (Kimmerer 2008, Morinaka 
2013a) and Delta Smelt larvae less than 20 mm fork length have not been reported in the salvage 
data, although entrainment losses of Delta Smelt larvae have been calculated to be substantial 
under some circumstances (Kimmerer 2008). Development of a quantitative monitoring 
methodology for entrained Delta Smelt larvae at the CVP and SWP was recognized as necessary 
to refine triggers for protective actions (USFWS 2008). The current methodology for monitoring 
larval Delta Smelt at the TFCF and SFPF has provided presence-absence data since 2008 
(Morinaka 2013b). Improved methods for sampling fish larvae have been reported at the TFCF 
(Reyes et al. 2012).

Despite these caveats salvage of Delta Smelt has been used as a rough index of entrainment 
losses. Delta Smelt salvage data since 1993 is considered more reliable than salvage data from 
earlier years. The difference in reliability is due to a change in count frequency from twice a day 
(0100 and 1300) from July 1978 to July 1992 to every two hours thereafter and an increased 
focus on proper identification of Delta Smelt following its State and federal listings as threatened 
(Morinaka 2013b).

Similar to the TNS and FMWT results for Delta Smelt, Delta Smelt salvage has declined 
dramatically since the beginning of this time series (Fig. 26). This is similar to trends for Chinook 
Salmon and Striped Bass salvage (not shown), but opposite to trends for Largemouth Bass and 
Bluegill (Lepomis macrochirus) salvage (Fig. 27), two species that may be benefiting from 
conditions resulting from an apparent ecological regime shift (Baxter et al. 2010). The ratio 
of Delta Smelt salvage divided by the previous year’s FMWT index has been used as a simple 
indicator of relative interannual entrainment losses. For adult (December-March) salvage, this 
ratio has been variable over time, but particularly high in the first three years of this time series 
(1980-1982, with 1982 being a wet year) and again during the beginning of a series of drought 
years in 1989 and in the fairly dry “POD” years 2003-2005 (Fig. 26). Current management 

http://www.dfg.ca.gov/delta/apps/salvage/Default.aspx
http://www.dfg.ca.gov/delta/apps/salvage/Default.aspx
ftp://ftp.delta.dfg.ca.gov/salvage/
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provisions to protect Delta Smelt (USFWS 2008) are aimed at keeping this ratio at no more than 
the average during the period of 2006-2008. 

Delta Smelt were salvaged nearly year-round in the beginning of this time series. Delta Smelt 
salvage since 2005 has occurred mostly from January through June, with substantial decline 
of May-June juvenile salvage since the mid 2000s (Fig. 28) and virtual disappearance of older 
juveniles from July-August salvage since the year 2000 (Fig. 29) and subadults since the early 
1990s (Fig. 30). These patterns coincide with the near disappearance of Delta Smelt from the 
central and southern Delta in the summer (Nobriga et al 2008) and in the south Delta in the fall 
(Feyrer et al. 2007). Historically, adult and larval-juvenile (> 20 mm FL) Delta Smelt salvaged 
were not separately recorded and reported, but based on length measurements of a subset of 
salvaged fish, adults were predominantly salvaged between December and March or April 

A

B

Figure 26. A: Total reported October-March salvage for adult Delta Smelt and the 
corresponding mean salvage density based on the total monthly salvage and 
water volume exported by CVP and SWP. B: Both salvage and salvage density 
standardized by the Fall Midwater Trawl (FMWT) index for the previous year.
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and most Delta Smelt larvae and juveniles were historically salvaged from April through July 
(Kimmerer 2008, Grimaldo et al. 2009). 

Salvage data are routinely used to track and manage incidental take at the SWP and CVP and 
have been used to explore factors affecting entrainment and to estimate the effects of the SWP 
and CVP on Delta fishes. For example, Grimaldo et al. (2009) found that OMR flows and 

Figure 27. Annual time series of Largemouth Bass (top graph) and Bluegill 
(bottom graph) salvage at the CVP (blue bars) and SWP (green bars) fish 
protection facilities. Also shown are the annual San Joaquin Valley Water Year 
Index (SJWY Index) (blue line) and the combined annual (water year) SWP and 
CVP water export volume (purple line; MAF, million acre feet).
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turbidity account for much of the intra-annual variability in the salvage for juvenile and adult 
Delta Smelt.

It is important to remember, however, that salvage is only a very rough indicator of Delta Smelt 
entrainment. Based on mark-recapture experiments using cultured Delta Smelt, salvage was a 
very small fraction of total entrainment losses because of major pre-screen losses and low fish 
facility efficiency (Castillo et al. 2012). Experimental studies with cultured Chinook Salmon, 
Steelhead (Oncorhynchus mykiss), and Striped Bass have consistently shown that a large fraction 
(63% to 100%) of the entrained fish are not salvaged due to pre-screen losses and capture 
inefficiencies at the SWP fish facility (Brown et al. 1996, Gingras 1997, Clark et al. 2009). In 
addition, a mark–recapture test using field collected juvenile Chinook Salmon in CCF resulted in 
only 0.32% of the fish being salvaged (see Castillo et al. 2012). Pre-screen losses are generally 

A

B

Figure 28. A: Total reported May-June salvage for juvenile Delta Smelt and the 
corresponding mean salvage density based on the total monthly salvage and 
water volume exported by CVP and SWP. B: Both salvage and salvage density 
standardized by the Fall Midwater Trawl (FMWT) index for the previous year.
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attributed to increased predation and other unfavorable habitat conditions near the SWP and 
CVP pumps (e.g. Kano 1990, Brown et al. 1996, Gringas and McGee 1997, Clark et al. 2009, 
Castillo et al. 2012). For juvenile and adult Delta Smelt, Castillo et al. (2012) found that 94.3% 
to 100% of marked fish groups released into the SWP CCF were never salvaged and that salvage 
of marked fish decreased as the distance from the release site to SFPF increased and as residence 
time in CCF increased. 

Large pre-screen losses of Delta Smelt in CCF are likely due to increased predation, especially 
when Delta Smelt spend a relatively long time in the reservoir in the presence of predators. 
MacWilliams and Gross (2013) used a particle tracking model to estimate residence time of 
passive particles, which can be considered surrogates for weakly swimming Delta Smelt. In 21-

A

B

Figure 29. A: Total reported July-August salvage for juvenile Delta Smelt and the 
corresponding mean salvage density based on the total monthly salvage and 
water volume exported by CVP and SWP. B: Both salvage and salvage density 
standardized by the Fall Midwater Trawl (FMWT) index for the previous year.
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day simulations with the three-dimensional (3D) hydrodynamic model UnTRIM, MacWilliams 
and Gross (2013) found that the time particles spend in CCF varies greatly with wind and SWP 
operating conditions. They estimated transit times for passive particles (e.g., larval Delta Smelt) 
from the radial gates to the SFPF of 4.3 days under moderate export conditions (average daily 
SWP export rate of 2,351 cfs) and 9.1 days under low export conditions (689 cfs). The CVP 
does not have a regulating reservoir in the Delta and CVP pre-screen losses in the river channels 
leading to the TFCF are likely different from SWP pre-screen losses, but there are no studies 
quantifying these differences.

 In general, Delta Smelt salvage increases with increasing net OMR flow reversal (i.e., more 
negative net OMR flows) and when turbidity exceeds 10-12 NTU (USFWS 2008, Grimaldo et 
al. 2009). Based on field and salvage data, Kimmerer (2008) calculated that from near 0% to 
25% of larval-juvenile and 0% to 50 % of the adult Delta Smelt population can be entrained at 

Figure 30. A: Total reported July-August salvage for sub-adult Delta Smelt and 
the corresponding mean salvage density based on the total monthly salvage and 
water volume exported by CVP and SWP. B: Both salvage and salvage density 
standardized by the Fall Midwater Trawl (FMWT) index for the same year.
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the CVP and SWP annually, in years with periods of high exports. Although methods to calculate 
proportional loss estimates have since been debated (Kimmerer 2011, Miller 2011), a number of 
modeling efforts suggest that entrainment losses can adversely affect the Delta Smelt population 
(Kimmerer 2011, Maunder and Deriso 2011, Rose et al. 2013a, b).

High winter entrainment of Delta Smelt has been suspected as a contributing cause of both the 
early 1980s (Moyle et al. 1992) and the POD-era declines of Delta Smelt (Baxter et al. 2010). 
In addition to entraining Delta Smelt, water exports may likely also have indirect effects on 
Delta Smelt by contributing to adverse alterations of their habitat, for example, by changing 
Delta outflow and the size and location of the LSZ (see above) or by entraining food organisms 
(Jassby et al. 2002). The magnitude of these indirect effects of water exports on the Delta Smelt 
population has, however, not yet been quantified.

Delta Smelt are most vulnerable to entrainment when, as adults, they move from brackish water 
into fresh water, or as larvae, when they move from freshwater in the southern and central 
Delta into the brackish water of Suisun Bay. While some Delta Smelt live year-round in fresh 
water far from the CVP and SWP, most rear in the low-salinity regions of the estuary, also at a 
relatively safe distance from the SWP and CVP pumps. The timing, direction and geographic 
extent of the spawning movements of adult Delta Smelt affect their entrainment risk (Sweetnam 
1999, Sommer et al. 2011a). Unlike the years prior to the 1990s, when high salvage of adult and 
juvenile Delta Smelt occurred at high, intermediate or low export levels, the risk of entrainment 
for fish that move into the central and south Delta is currently highest when net Delta outflow 
is at intermediate levels (~20,000 to 75,000 cfs) and OMR flow is more negative than -5000 cfs 
(USFWS 2008). In contrast, when adult Delta Smelt move upstream to the Sacramento River 
and into the Cache Slough region or do not move upstream at all, entrainment risk is appreciably 
lower. As explained later in this report, adult Delta Smelt may not move very far upstream during 
extreme wet years because the region of low salinity habitat becomes fresh and suitable for 
spawning (e.g., Suisun Bay or Napa River).

Transport mechanisms are most relevant to larval fishes, which have comparatively little ability to 
swim or otherwise affect their location. Dispersal from hatching areas to favorable nursery areas 
with sufficient food and low predation is generally considered one of the most important factors 
affecting the mortality of fish larvae (Hjort 1914, Hunter 1980, Anderson 1988, Leggett and 
Deblois 1994). Larvae of various smelt species exhibit diverse behaviors to reach and maintain 
favorable position within estuaries (Laprise and Dodson 1989, Bennett et al. 2002). Such nursery 
areas provide increased feeding success, growth rates and survival (Laprise and Dodson 1989, 
Sirois and Dodson 2000a, b, Peterson 2003, Hobbs et al. 2006). Until recently it was thought 
that larval Delta Smelt were transported from upstream hatching areas to downstream rearing 
areas, particularly the shallow productive waters of Suisun Bay (Moyle et al. 1992). Spring 
distributions of post-larval and small juvenile Delta Smelt support this view (Dege and Brown 
2004). The distributions of these life stages were centered upstream of X2, but approached X2 
as fish aged. These distributions could be displaced, and shifted up or down estuary with outflow 
and the shifting position of X2 (Dege and Brown 2004). More recent evidence suggests, however, 
that the timing and extent of downstream movement by young Delta Smelt is more variable than 
previously thought and that some may remain in upstream areas throughout the year (Sommer et 
al. 2011a, Contreras et al. 2011, Merz et al. 2011, Sommer and Mejia 2013). 

Adult spawning site selection affects the potential importance of transport and entrainment to 
larvae. The risk of larval entrainment appears to increase with proximity to the south Delta export 
pumps (Kimmerer and Nobriga 2008). Larvae hatching in the San Joaquin River channel from 



6 3

A n  Updated Conceptual  Model  of  D elta  Smelt  Biology 

I E P  M A S T  2 0 1 4

Big Break upstream to the city of Stockton and tidal channels south of these locations, can be 
affected by several interacting processes. Flows from the San Joaquin, Calaveras, Mokelumne 
and Cosumnes rivers act to cause net downstream flow, whereas export levels at the south 
Delta pumps act to reverse net flows in the lower San Joaquin River. High export rates can 
create negative flows past Jersey Point on the lower San Joaquin River (“Qwest,” see Dayflow 
documentation: http://www.water.ca.gov/dayflow/output/Output.cfm) and negative OMR flows 
(Fig. 31). Since the onset of the POD in 2002, positive average monthly OMR flows have only 
occurred in 9 months (6%) during the wettest years and average monthly Qwest flows were 
negative in just under half (49%) of all months (Fig. 31). Tidal conditions can also act in favor of 
downstream transport or entrainment depending upon whether the Delta is filling or draining in 
response to the fortnightly spring-neap cycle (Arthur et al. 1996). The combination of high export 
and low inflow can create very asymmetrical tides in OMR that covary with net negative flow 
resulting in stronger floods compared to ebbs, which may also contribute to fish entrainment.

Predation Risk

Small planktivorous fishes, including osmerids, serve as prey for larger fishes, birds and 
mammals. As prey, they have the critically important trophic function of transferring energy 
to higher trophic levels. Consequently, they are often subjected to intense predation pressure 
(Gleason and Bengsten 1996, Jung and Houde 2004, Hallfredsson and Pedersen 2009). Prey fish 
populations compensate for high mortality through high reproductive rates, including strategies 
such as repeat spawning by individuals and rapid maturation (Winemiller and Rose 1992, Rose et 
al. 2001). Predation can be a dominant source of mortality for fish larvae, along with starvation 
and dispersion to inhospitable habitats (Hjort 1914, Hunter 1980, Anderson 1988, Leggett and 
Deblois 1994). 

Since predation is a natural part of functional aquatic ecosystems, predators are likely not 
responsible for long-term declines in populations of prey fishes, such as Delta Smelt, without 
some additional sources of stress that disrupt the predator-prey relationship (Nobriga et al. 2013). 
Predation may become an issue when established predator-prey relationships are disrupted by 
habitat change or species invasions (Kitchell et al. 1994). As described in Chapter 1, the SFE has 
been extensively modified (Nichols et al. 1986, Cohen and Carlton 1998, Whipple et al. 2012, 
Cloern and Jassby 2012) so disrupted relationships between predators and prey are certainly 
plausible. For example, prey may be more susceptible to predation if they are weakened by 
disease, contaminants, poor water quality, or starvation. Similarly, the creation of more “ambush 
habitat” (e.g. structures, weed beds), declines in turbidity levels, or the introduction of a novel 
piscivore also may dramatically shift the existing predator-prey relationships (Ferrari et al. 2014). 
All of these changes have in fact taken place in the estuary, especially in the central and south 
Delta (Feyrer and Healey 2003, Nobriga et al. 2005, Brown and Michniuk 2007).

Virtually all fishes of appropriate size will feed on fish larvae when available and predation is 
theoretically maximal when larvae lengths are 10% of the length of the predator (Paradis et al. 
1996). Presently, Mississippi Silverside (Menidia audens) is thought to be the most substantial 
predator of Delta Smelt larvae (Bennett and Moyle 1996, Bennett 2005, Baerwald et al. 2012). 
Juvenile and adult Delta Smelt have also been reported from the stomach contents of Striped 
Bass (Stevens 1963, Stevens 1966, Thomas 1967), White Catfish (Ictalurus catus) and Black 
Crappie (Pomoxis nigromaculatus) (Turner 1966a,b). Stevens (1963) reported “freshwater smelt” 
to be a very common component of Striped Bass stomach contents (nearly 100% frequency of 
occurrence in fifteen stomachs with food) on the Sacramento River near Paintersville Bridge 

http://www.water.ca.gov/dayflow/output/Output.cfm
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during March-April 1963. During 1963-1964, Stevens (1966) also evaluated seasonal variation 
in the diets of juvenile Striped Bass throughout the Delta; only age 2 and age 3 Striped Bass 
contained more than trace amounts of Delta Smelt. The highest reported predation on Delta Smelt 
was 8% of the age 2 Striped Bass diet by volume during the summer. Thomas (1967) reported 
on spatial variation in Striped Bass diet composition based on collections throughout the SFE 
and the Sacramento River above tidal influence. The field collections occurred from 1957-1961; 
data were collected on age 1 and older Striped Bass but data were only summarized as all ages 
combined. Delta Smelt accounted for 8% of the spring diet composition and about 16% of the 
summer diet composition in the Delta.

Several authors tested hypotheses about inverse correlations between estimates of adult and 
juvenile Striped Bass abundance and indices of Delta Smelt relative abundance or survival (Mac 
Nally et al. 2010, Thomson et al. 2010, Maunder and Deriso 2011, Miller et al. 2012, Nobriga 
et al. 2013). None of these statistical analyses has found evidence for the expected inverse 
correlation. Modeling studies indicate that Striped Bass predation rates on prey are affected by 
temperature and predator abundance (mostly the latter; Loboschefsky et al. 2012). However, 
the links between prey abundance and predator abundance vary from strong to non-existent, 
depending on the strength of their interaction in the food web (Essington and Hansson 2004). It 
is not currently known if changes in juvenile Striped Bass abundance correspond with changes in 
population-level or per capita Striped Bass predation rate on Delta Smelt (Nobriga et al. 2013).

Recent modeling efforts show that Delta Smelt declines are negatively associated with metrics 
assumed to reflect the abundance of predators in the estuary (Maunder and Deriso 2011, Miller 

Figure 31. Flows in cubic feet per second for Qwest (positive values are seaward), 
Old and Middle River (OMR) (positive values are seaward), and total exports 
for years since the beginning of the pelagic organism decline (POD). Maximum 
monthly average Qwest values in 2006 and 2011 omitted to improve graph display, 
values are 50,086 cfs in April 2006, 35,477 in May 2006, and 32,884 cfs in April 2011 
(Qwest and Export data are from 2013 Dayflow, OMR data are from USGS).
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et al. 2012). These metrics are composites of the relative abundance of Mississippi Silverside, 
Largemouth Bass and other centrarchids; species that are potential predators of concern because 
of their increasing abundance (Fig. 27; Bennett and Moyle 1996, Brown and Michniuk 2007, 
Thomson et al. 2010), and because of inverse correlations between Largemouth Bass abundance 
and Delta Smelt abundance (Nobriga and Feyrer 2007, Thomson et al. 2010, Maunder and 
Deriso 2011). These correlations could represent predation on Delta Smelt by Largemouth Bass, 
or alternatively, the very different responses of the two species to changing habitat within the 
Delta (Moyle and Bennett 2008). Current data suggest that Largemouth Bass populations have 
expanded as the SAV Egeria densa has expanded and have come to dominate parts of the Delta 
(Brown and Michniuk 2007). E. densa and Largemouth Bass are particularly prevalent in the 
central and southern Delta (Brown and Michniuk 2007) and Largemouth Bass may contribute to 
the pre-screen losses of Delta Smelt entrained into the SWP and CVP export pumps (see above). 
Largemouth Bass will readily eat Delta Smelt when the opportunity exists (Ferrari et al. 2014). 
However, there is little evidence that Largemouth Bass are major consumers of Delta Smelt 
due to low spatial co-occurrence (Nobriga et al. 2005, Baxter et al. 2010; L. Conrad, California 
Department of Water Resources, unpublished data). Thus, the inverse correlations between these 
species may not be mechanistic. Rather, they may reflect adaptation to, and selection for, different 
environmental conditions.

As noted above, predation on fish larvae can also be an important source of mortality. Juvenile 
and small adult fishes of many species will consume fish larvae when they are available. Major 
predators of the eggs and larvae of nearshore coastal and pelagic estuarine forage fishes can 
include invertebrates (DeBlois and Leggett 1993) and numerous small fishes not typically 
thought of as “piscivorous” (Johnson and Dropkin 1992), including adults of their own species 
(Takasuka et al. 2003). Bennett and Moyle (1996) and Bennett (2005) noted this and specifically 
identified Mississippi Silversides (hereafter, Silversides) as potential predators on Delta Smelt 
larvae. These authors also documented increases in the Silverside population from the mid-
1970s through 2002. Consumption of Delta Smelt larvae by Silversides in the Delta was recently 
verified using DNA techniques (Baerwald et al. 2012). Larval predation is discussed in more 
detail in the next Chapter.

Contaminants

Fish are particularly sensitive to alterations in the chemical composition of the natural aquatic 
environment, as these changes can have significant impacts on their behavioral and physiological 
systems (Radhaiah et al. 1987). Chemical alterations can be the result of natural processes, for 
example the changes in local water quality associated with tidal water movements or natural 
biogeochemical processes, or they can be caused by pollution from watershed- or land-based 
sources of nutrients, such as nitrogen compounds, and contaminants, such as pesticides, metals, 
and contaminants of emerging concerns (CECs). The movement of contaminants through aquatic 
ecosystems is complex and dynamic, and many contaminants are difficult to detect and expensive 
to monitor (Scholz et al. 2012).

Portions of the SFE are listed as “impaired” on California’s 303(d) list of Impaired Water Bodies 
due to metals, pesticides, legacy pollutants, and nutrients that exceed established water quality 
objectives (SWRCB 2010). In particular, the entire SFE has been listed as impaired due to 
pollution with metals, such as mercury and selenium, and pesticides such as chlorpyrifos, DDT 
(Dichlorodiphenyltrichloroethane), and diazinon. The entire Delta, but not the bays of the SFE, 
is also listed for observed toxicity to aquatic organisms. In addition, the Stockton Ship Channel 
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in the southeastern Delta is listed for enrichment with nutrients, organic compounds, and low 
dissolved oxygen levels; Old River in the south-central Delta is listed for elevated salinity 
(electrical conductivity; EC) and total dissolved solids (TDS). Delta Smelt are likely exposed to a 
variety of these contaminants throughout their life cycle; however, the frequency and magnitude 
of the effects of contaminants on Delta Smelt health and reproduction are not very well 
understood in the SFE (Johnson et al. 2010, Brooks et al. 2012). The following sections describe 
the potential effects of key contaminants on Delta Smelt.

Pesticides

Pesticides produce many physiological and biochemical changes in freshwater organisms through 
their influence on the activities of several enzymes (Khan and Law 2005). Specifically, pesticides 
can have an adverse effect on hormones or other chemical messengers important to the health of 
an individual. Previous work has shown that chronic exposure to low levels of pesticides may 
even have a more adverse effect on fish than a single acute exposure to high levels. Chronic 
exposures were associated with changes in behavior and physiology that could influence survival 
and reproduction of wild fish (Ewing 1999). Biochemical and physiological stresses induced 
by exposure to pesticides can result in metabolic disturbances, retardation of growth, as well as 
reduction in longevity and fecundity (Murty 1986).

Pesticides are among the key contaminants believed to have contributed to the Delta Smelt 
decline (Johnson et al. 2010, Brooks et al. 2012, NRC 2012). Because pesticide concentrations 
in surface water are typically highest during the winter and spring, pesticides are most likely 
to affect the adult and larval life stages; however, effects may occur during any life stage as 
pesticides are seasonally and geographically widespread (Kuivila and Hladik 2008). Kuivila and 
Moon (2004) found that peak densities of larval and juvenile Delta Smelt sometimes coincided in 
time and space with elevated concentrations of dissolved pesticides in the spring. These periods 
of co-occurrence lasted for up to 2–3 weeks. While concentrations of individual pesticides were 
lower than would be expected to cause acute mortality, little is known of the sublethal effects of 
pesticides on Delta Smelt. Although little evidence exists for acute effects of pesticides on fish 
or invertebrates, several studies have documented sublethal effects on fish health (Werner et al. 
2008, Werner et al. 2010a, Werner et al. 2010b).

Herbicides and fungicides were among the most commonly detected classes of pesticides 
observed in water and sediment in the Delta and are also found in fish tissue (Orlando et al. 
2013, Smalling et al. 2013). Herbicides are known to affect primary producers, while insecticides 
can affect invertebrate prey species (e.g., Brander et al. 2009, Weston et al. 2012), which could 
lead to contaminant-mediated food limitation for Delta Smelt. Fungicides have been found to 
cause endocrine disruption in fish, including reduced fecundity (Ankley et al. 2005). Recent 
work has shown that the insecticide esfenvalerate affects swimming behavior of exposed larval 
Delta Smelt (Connon et al. 2009). It was also found to alter the expression of genes involved 
in neuromuscular activity and immune response, detoxification, and growth and development 
(Connon et al. 2009). Additionally, insecticides are known to affect predator-prey relationships 
for fish, as well as lead to endocrine disruptions (Scholz et al. 2000, Junges et al. 2010, Relyea 
and Edwards 2010, Riar et al 2013, Forsgren et al. 2013). Contamination of aquatic systems by 
pyrethroid insecticides was recently found to lead to genetic point mutations in the nontarget, 
aquatic amphipod Hyalella azteca, resulting in differences in pyrethroid sensitivity. Wild 
populations of H. azteca collected from areas with high sediment concentrations of pyrethroids 
exhibited remarkable resistance to pyrethroids compared to laboratory cultures and the observed 
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resistance was highly coupled to the presence of a genetic mutation. The LC50s (concentration 
that is lethal to 50% of the exposed population) of previously-exposed wild populations were up 
to two orders of magnitude greater than LC50s of laboratory cultures. Moreover, the presence of 
a genetic mutation was detected in 100% of H. azteca that survived exposure to high pyrethroid 
concentrations. The development of such resistance can result in costs to genetic and biological 
diversity, including reduced fitness, and may lead to impacts to the food web (Weston et al. 
2013). The presence of such resistance and genetic mutations in Delta Smelt as a result of 
pyrethroids or other pesticide exposure has not been investigated

It is also important to note that environmental factors such as temperature and salinity affect 
pesticide toxicity in fish (Coats et al. 1989, Lavado et al. 2009). For that reason, seasonal 
variation in environmental factors may result in greater risk to certain life stages. The results 
above are for dissolved pesticides; pesticides may also be bound to sediments, representing 
another possible mechanism of exposure. Pesticides, such as pyrethroids and organochlorines, 
that strongly bind to sediment may be particularly important to the adult and larval life stage of 
Delta Smelt as these life stages occur during the winter and spring, when rain events (including 
the “first flush”) transport sediment and associated contaminants into the Delta; however, as 
the mechanisms that influence the desorption rates of pesticides are complex (e.g., temperature, 
contact time, pesticide) (e.g., Xu et al. 2008, Cornelissen et al. 1998), exposure rates for Delta 
Smelt lifestages are likely multifaceted and difficult to predict. 

Ammonia and Ammonium

Agricultural operations, wastewater treatment plant effluent, and other sources contribute to the 
accumulation of nutrients in the Delta. Nutrients, such as ammonium (a cation) and ammonia 
(its toxic, unionized form) are of particular concern in the Delta, as they can have significant 
negative effects on Delta Smelt and their habitat. Ammonium is increasingly converted into 
ammonia as pH rises. Delta Smelt spawning and larval nursery areas in the northern Delta are at 
particular risk to exposure to ammonia/um, mainly due to discharge by the Sacramento Regional 
Wastewater Treatment Plant (SRWTP) into the lower Sacramento River (Connon et al. 2011a). 
However, effects of nutrients such as ammonia/um are likely at all Delta Smelt life stages, as 
nutrients are discharged throughout the Delta year-round. 

Recent work demonstrated that Delta Smelt exposed to ammonia exhibited membrane 
destabilization, which may lead to increased membrane permeability as well as increased 
susceptibility to synergistic effects of multi-contaminant exposures (Connon et al. 2011a, 
Hasenbein et al. 2013b); however, the concentrations of ammonia used in these studies were 
higher than the concentrations typically experienced by Delta Smelt in the wild. In other fish 
species, sublethal concentrations of ammonia/um have also led to histological effects such as gill 
lamellae fusions and deformities (Benli et al. 2008). Other work has also shown that neurological 
and muscular impacts of ammonia/um resulted in slowed escape response and subsequent 
mortality (McKenzie et al. 2008). 

Metals and Other Elements of Concern

Historic mining sites, industrial and domestic wastewater discharges, and agricultural runoff are 
largely responsible for the presence of metals and other elements of concern in the Delta. Metals 
of particular importance in the Delta include copper and mercury; selenium is a trace element 
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of concern. Delta Smelt exposed to copper exhibited reduced swimming velocities and suffered 
digestive and neurological effects (Connon et al. 2011b). Other sublethal effects on fish caused 
by exposure to these elements include reduced fertility and growth, impaired neurological and 
endocrine functions, and skeletal deformities that affect swimming performance (Boening 2000, 
Chapman et al. 2010). These elements are often associated with sediment and may be particularly 
important to the adult and larval life stages, since sediment is transported with significant rain 
events, including the “first flush.”

Contaminants of Emerging Concern

Contaminants of emerging concern (CECs) such as pharmaceuticals, hormones, personal care 
products, and industrial chemicals are of increasing concern because they are widespread 
in the aquatic environment, biologically active, and are relatively unregulated (Kolpin et 
al. 2002, Pal et al. 2010). The California State Water Resources Control Board is currently 
investigating CECs in the Delta (http://www.sccwrp.org/ResearchAreas/Contaminants/
ContaminantsOfEmergingConcern/ EcosystemsAdvisoryPanel.aspx). CECs originate from many 
sources including industrial and domestic wastewater. They are responsible for a myriad of 
sublethal effects in fish including endocrine disruption, changes in gene transcription and protein 
expression, and morphological and behavioral changes (Brander 2013). Though the effects of 
CECs have been well studied in other fish species, the extent to which they influence Delta Smelt 
remains unclear.

Polycyclic Aromatic Hydrocarbons (PAHs) 
and Polychlorinated Biphenyls (PCBs)

The PAHs and PCBs found in the Delta are largely from urban and industrial sources. PAHs are 
formed during the incomplete burning of coal, oil, gas, garbage, and other organic substances. 
PCBs are synthetic organic chemicals that were used in many industrial and commercial 
applications. PCBs were banned in 1979, but continue to persist in the environment. PAHs and 
PCBs bind strongly to sediment and therefore are likely to be associated with the “first flush” 
and may be particularly important to the adult and larval life stages of Delta Smelt. Almost all 
sediments sampled in the Delta in 2006 contained PAHs (mean concentration of 0.3 parts per 
million in Suisun Bay) and PCBs (mean concentration of 0.8 parts per million in Suisun Bay) 
(SFEI 2007). Studies have found PAHs and PCBs in surface water, with concentrations in excess 
of established water quality objectives (Thomson et al. 2000, Oros et al. 2006). Both PCBs and 
PAHs can cause endocrine disruption in fish (Brar et al. 2010, Nicolas, 1999); however, specific 
impacts on Delta Smelt have not been documented. 

Contaminant Mixtures

While the individual effects of the aforementioned contaminants can be severe, recent work has 
demonstrated that the interaction of the contaminants within mixtures can have both synergistic 
and antagonistic effects, exacerbating potential impacts on fish physiology (e.g., Jordan et 
al. 2012). There is increasing evidence that compounds in mixtures show adverse effects at 
concentrations at which no effects were observed for single toxicants (e.g., Baas et al. 2009, 
Silva et al. 2002, Walter et al. 2002). For example, recent work on Mississippi Silversides 
has demonstrated that contaminant mixtures resulted in endocrine disruptions such as varied 

http://www.sccwrp.org/ResearchAreas/Contaminants/ContaminantsOfEmergingConcern/ EcosystemsAdvisoryPanel.aspx
http://www.sccwrp.org/ResearchAreas/Contaminants/ContaminantsOfEmergingConcern/ EcosystemsAdvisoryPanel.aspx
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expression of mRNA levels for estrogen-responsive genes, reduced mean gonadal somatic indices 
(GSI), testicular necrosis, and biased sex ratios (Brander et al. 2013). Studies have also shown 
that mixtures can affect predator-prey interactions (Relyea and Edwards 2010) and cause liver 
abnormalities (Sacramento Splittail, Pogonichthys macrolepidotus; Greenfield et al. 2008). Other 
work on Striped Bass has demonstrated that contaminant mixtures can be maternally-transferred 
to fish eggs, resulting in larvae with impaired growth and abnormal brain and liver development 
(Ostrach et al. 2008).

Due to the unpredictability of their effects on organisms, the synergistic effects of contaminant 
mixtures have received a great deal of attention both within pharmacology and environmental 
sciences (Arnold et al. 1996, Ashby et al. 1997, Berenbaum 1989, Greco et al. 1995, Liang and 
Lichtenstein 1974). Currently, one of the greatest challenges in chemical mixture research is 
how to deal with the infinite number of combinations of chemicals and other stressors, as well as 
their interactive effects, on organisms (Baas et al. 2010). Additional challenges also exist trying 
to relate lab-based findings to wild populations for studies examining the effects of individual 
contaminants and contaminant mixtures on organisms using exposure concentrations that are 
environmentally representative. Therefore, while the potential for exposure to contaminant 
mixtures in all Delta Smelt life stages is highly probable, any specific effects of such interactions 
on Delta Smelt remain unknown.

Food and Feeding

The presence of food is, obviously, a critical habitat attribute for any organism; however, the 
factors determining the quantity and quality of available food can be quite complex. In this 
section, we begin with a brief review of information about trophic processes in the upper SFE. 
We then discuss the available data on prey consumed by Delta Smelt. Finally, we provide a 
review of information on factors possibly affecting abundance and quality of food organisms.

Estuaries are commonly characterized as highly productive nursery areas for a suite of organisms. 
Productivity of estuarine ecosystems is often fueled by detritus-based food webs. In the SFE, 
much of the community metabolism in pelagic waters does result from microbial consumption 
of organic detritus. However, evidence suggests that metazoan production in pelagic waters 
is primarily driven by phytoplankton production (Sobczak et al. 2002, 2005, Mueller-Solger 
et al. 2002, 2006, Kimmerer et al. 2005). Protists (flagellates and ciliates) consume both 
microbial and phytoplankton prey (Murrell and Hollibaugh 1998, York et al. 2010) and are an 
additional important food source for many copepod species in the estuary (Rollwagen-Bollens 
and Penry 2003, Bouley and Kimmerer 2006, Gifford et al. 2007, McManus et al. 2008). 
However, the conversion of dissolved and particulate organic matter to microbial biomass and 
then to zooplankton is a relatively slow and inefficient process. Shifts in phytoplankton and 
microbial food resources for zooplankton might favor different zooplankton species. Moreover, 
phytoplankton production and biomass in the SFE is low compared to many other estuaries (e.g., 
Jassby et al. 2002, Kimmerer et al. 2005, Wilkerson et al. 2006, Cloern and Jassby 2012). The 
recognition that phytoplankton production might impose limits on pelagic fishes, such as Delta 
Smelt, through food availability has led to intense interest in factors affecting phytoplankton 
production and species composition and in management actions aimed at enhancing high-quality 
phytoplankton production. In addition, there is a major need to understand other trophic pathways 
given the observation that larger Delta Smelt periodically can take advantage of epibenthic prey 
(see below).
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Phytoplankton biomass (measured as chlorophyll-a) has been routinely monitored in the estuary 
since the 1970s. The 1975-2012 median chlorophyll-a concentration across all IEP EMP stations 
is 2.8 µg/L (n = 13482, interquartile range (IQR) = 5 µg/L). Seasonally, the highest chlorophyll-a 
concentrations tend to be observed in May and June and the lowest concentrations in December 
and January (Fig. 32). Regionally, monitoring stations in the South Delta/San Joaquin River 
usually have the highest chlorophyll-a concentrations. There has been a well-documented long-
term decline in phytoplankton biomass (chlorophyll-a) and primary productivity (estimated 
from measurements of chlorophyll-a and of water column light utilization efficiency) to very 
low levels in the Suisun Bay region and the lower Delta (Jassby et al. 2002). Jassby et al. (2002) 
detected a 47% decline in June–November chlorophyll-a and a 36% decline in June–November 
primary production between the periods 1975–1985 and 1986–1995. Jassby (2008) updated the 
phytoplankton analysis to include the more recent data (1996–2005) from the Delta and Suisun 
Bay. Jassby (2008) confirmed a long-term decline in chlorophyll-a from 1975 to 2005 but also 
found that March–September chlorophyll-a had an increasing trend in the Delta from 1996 to 
2005. Suisun Bay did not exhibit any trend during 1996–2005. A similar pattern was noted for 
primary production in the Delta. These chlorophyll-a patterns continued to hold through 2008 
according to a more recent study by Winder and Jassby (2011). In the most recent decade (2003-
2012), the median chlorophyll-a concentration across all IEP EMP stations was 2 ug/L (n = 2620, 
IQR = 2 ug/L), compared to the 1975-2002 median chlorophyll-a concentration of 3 ug/L (n = 
10862, IQR = 6 ug/L) (Fig. 32). Most of the decrease was due to declines during May-October 
and especially the near-elimination of the formerly common “spring bloom” of phytoplankton in 
May (Fig. 32). In summary, phytoplankton biomass and production in the Delta and Suisun Bay 
seem to have reached a low point by the end of the 1987–1994 drought. While they recovered 
somewhat in the Delta, chlorophyll-a stayed consistently low in Suisun Bay through the POD 
years.

Figure 32. Interquartile ranges (boxes) and medians (lines) for chlorophyll-a 
measured monthly at all IEP EMP stations from 1975-2002 (blue) and 2003-2012 
(red). Data from http://www.water.ca.gov/bdma/.

http://www.water.ca.gov/bdma/
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A major reason for the long-term phytoplankton reduction in the upper SFE after 1985 is benthic 
grazing by the invasive overbite clam (Potamocorbula amurensis also known as Corbula 
amurensis) (Alpine and Cloern 1992), which became abundant by the late 1980s (Kimmerer 
2002). The overbite clam was first reported from San Francisco Estuary in 1986 and it was 
well established by 1987 (Carlton et al. 1990). Prior to the overbite clam invasion, the invasive 
Asiatic freshwater clam (Corbicula fluminea) (introduced in the 1940s) colonized Suisun 
Bay during high flow periods and the estuarine clam Mya arenaria (also known as Macoma 
balthica, an earlier introduction) colonized Suisun Bay during prolonged (> 14 month) low 
flow periods (Nichols et al. 1990). Thus, there were periods of relatively low clam grazing rates 
while one species was dying back and the other was colonizing, resulting in neither reaching 
high abundances. The P. amurensis invasion changed this formerly dynamic clam assemblage 
because P. amurensis, which is tolerant of a wide range of salinity, can maintain large, permanent 
populations in the brackish water regions of the estuary. P. amurensis biomass and grazing 
usually increase from spring to fall which contributes to the reduction in phytoplankton biomass 
from May to October relative to historical levels. In addition, the grazing influence of P. 
amurensis extends into the freshwater Delta beyond the clam’s typical brackish salinity range, 
presumably due to tidal dispersion of phytoplankton-depleted water between regions of brackish 
water and fresh water (Kimmerer and Orsi 1996, Jassby et al. 2002).

Phytoplankton production in the SFE has been considered primarily light-limited because nutrient 
concentrations commonly exceed concentrations limiting primary production. According to some 
recent work, shifts in nutrient concentrations and ratios may, however, also contribute to the 
phytoplankton reduction and changes in algal species composition in the SFE. Nutrients may also 
play a larger role in regulating phytoplankton dynamics in the estuary as the estuary clears and 
light availability increases (see turbidity section above).

While phosphorus (total phosphorous and soluble reactive phosphorous) concentrations declined 
in the Delta and Suisun Bay region over the last few decades, nitrogen (total nitrogen and 
ammonium) concentrations increased. These changes have been attributed to the operation of 
the Sacramento Regional Wastewater Treatment Plant (SRWTP), a large secondary treatment 
facility that was completed in 1984 (VanNieuwenhuyse 2007, Jassby 2008). As stated previously, 
ammonia has two forms, un-ionized ammonia (NH3) which is toxic to aquatic organisms and 
the ammonium ion (NH4+) which is considerably less toxic to animals and an important nutrient 
for plants and algae (Thurston et al. 1981). Ammonia exists in equilibrium between the two 
forms dependent primarily on the pH of the water, but also temperature, with increases in pH 
and temperature favoring the un-ionized form (Thurston et al. 1981). Dugdale et al. (2007) and 
Wilkerson et al. (2006) found that high ammonium concentrations prevented the formation of 
diatom blooms but stimulated flagellate blooms in the lower estuary. They propose that this 
occurs because diatoms preferentially utilize ammonium in their physiological processes even 
though it is used less efficiently and at high concentrations ammonium can prevent uptake of 
nitrate (Dugdale et al. 2007). Thus, diatom populations must consume available ammonium 
before nitrate, which supports higher growth rates, can be utilized or concentrations of 
ammonium need to be diluted. A recent independent review panel (Reed et al. 2014) found 
that there is good evidence for preferential uptake of ammonium and sequential uptake of first 
ammonium and then nitrate, but that a large amount of uncertainty remains regarding the growth 
rates on ammonium relative to nitrate and the role of ammonium in suppressing spring blooms. 

Glibert (2012) analyzed long-term data (from 1975 or 1979 to 2006 depending on the variable 
considered) from the Delta and Suisun Bay and related changing forms and ratios of nutrients, 
particularly changes in ammonium, to declines in diatoms and increases in flagellates and 
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cyanobacteria. Similar shifts in species composition were noted by Brown (2009), with loss of 
diatom species, such as Thalassiosira sp., an important food for calanoid copepods, including 
Eurytemora affinis and Sinocalanus doerri (Orsi 1995). More recently, Parker et al. (2012) 
found that the region where blooms are suppressed extends upstream into the Sacramento River 
to the SRWTP, the source of the majority of the ammonium in the river (Jassby 2008). Parker 
et al. (2012) found that at high ambient ammonium concentrations, river phytoplankton cannot 
efficiently take up any form of nitrogen including ammonium, leading to often extremely low 
biomass in the river. A study using multiple stable isotope tracers (Lehman et al. 2014) found 
that the cyanobacteria M. aeruginosa utilized ammonium, not nitrate, as the primary source 
of nitrogen in the central and western Delta. In 2009, the ammonia concentration in effluent 
from SRWTP was reduced by approximately 10%, due to changes in operation (K. Ohlinger, 
Sacramento Regional County Sanitation District, personal communication). In spring 2010 
unusually strong spring diatom blooms were observed in Suisun Bay that co-occurred with low 
ammonia concentrations (Dugdale et al. 2013). 

Jassby (2008) suggested the following comprehensive explanation for his observations. 
Phytoplankton production in the lower Delta is associated with flow and residence time; however, 
other factors introduce a substantial degree of interannual variability. Benthic grazing by C. 
fluminea is likely a major factor as grazing can exceed rates of primary production (Lucas et 
al. 2002, Lopez et al. 2006) and are abundant year round at some locations in the Delta (Fuller 
2012). Current data are inadequate to estimate the overall magnitude of the grazing effect of 
C. fluminea. In Suisun Bay, benthic grazing by P. amurensis is a controlling factor that keeps 
phytoplankton at low levels. Thus, metazoan populations in Suisun Bay are dependent on 
importation of phytoplankton production from the upstream portions of the Delta. Upstream 
Delta phytoplankton can be lost via exports and within-Delta depletion; Cloern and Jassby 
(2012) reported phytoplankton losses equivalent to 30% of the primary production in the 
Delta. Ammonium concentrations and water clarity have increased; however, these two factors 
should have opposing effects on phytoplankton production. These factors likely also contribute 
to variability in the interannual pattern but the relative importance of each is unknown. The 
interactions among primary production, grazing, and transport time can be complex (Lucas et al. 
2002, 2009a,b, Lucas and Thompson 2012).

The changes in phytoplankton production and invasion and establishment of the overbite clam P. 
amurensis were also accompanied by a series of major changes in consumers (Winder and Jassby 
2011). Many of these changes likely negatively influenced pelagic fish production, including 
Delta Smelt. The quantity of food available to Delta Smelt is a function of several factors, 
including but not limited to seasonal trends in prey abundance and prey species specific salinity 
tolerances, which influence distribution (Kimmerer and Orsi 1996, Hennessy and Enderlein 
2013). Seasonal peaks in abundance vary among calanoid copepods consumed as prey by Delta 
Smelt, E. affinis in April-May (Fig. 33), P. forbesi in July (Fig. 34), and A. sinensis in Sep-Oct 
(Fig. 35). Upstream, the calanoid copepod S. doerrii is most abundant May-June (Fig. 36). The 
seasonal trend in cladocerans (Fig. 37) and mysid (Fig. 38) prey are similar, being most abundant 
in summer.

From March through June, larval Delta Smelt rely heavily on first juvenile, then adult stages of 
the calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi, as well as cladocerans 
(Nobriga 2002, Hobbs et al. 2006, Slater and Baxter 2014), and Sinocalanus doerrii (Fig. 39). 
Nobriga (2002) found that Delta Smelt larvae expressed positive selection for E. affinis and P. 
forbesi, consuming these prey species in greater proportion than available in the environment. 
Such selection was not noted for other zooplankton prey. Regional differences in food use occur, 
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with E. affinis and P. forbesi being major prey items downstream in the LSZ with a transition 
to S. doerrii and cyclopoid copepods as major prey items upstream into the Cache Slough-
Sacramento River Deepwater Ship Channel (CS-SRDWSC) (Fig. 39).

Juvenile Delta Smelt (June-September) rely extensively on calanoid copepods such as E. 
affinis and P. forbesi, especially in freshwater (salinity < 1) and CS-SRDWSC but there is great 
variability among regions (figs. 40-43). Larger fish are also able to take advantage of mysids, 

Figure 33. Density (number/m3) of adult Eurytemora affinis (E. affinis) by month 
for three salinity ranges. Each month 16 stations were sampled across all salinity 
ranges. Horizontal lines represent single samples within a salinity range and 
boxes without whiskers indicate 2 samples within a salinity range. Data from 
the IEP Zooplankton Study index stations. See Chapter 3: Data Analyses for 
explanation of boxplots.
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cladocerans, and amphipods (Moyle et al. 1992, Lott 1998, Feyrer et al. 2003, Steven Slater, 
California Department of Fish and Wildlife, unpublished data) (Figs. 34-37). The presence of 
several epibenthic species in diets therefore indicates that food sources for this species are not 
confined to pelagic pathways. Such food sources may be especially important in regions of the 
estuary where there is extensive shoal habitat such as Liberty Island (Steven Slater, California 
Department of Fish and Wildlife, unpublished data).

Figure 34. Density (number/m3) of adult Pseudodiaptomus forbesi (P. forbesi) by 
month for three salinity ranges. Each month 16 stations were sampled across all 
salinity ranges. Horizontal lines represent single samples within a salinity range 
and boxes without whiskers indicate 2 samples within a salinity range. Data 
from the IEP Zooplankton Study index stations. See Chapter 3: Data Analyses for 
explanation of boxplots.
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Subadult Delta Smelt (September through December) prey items are very similar to those of 
juvenile Delta Smelt but with increased variability in diet composition (Moyle et al. 1992, Lott 
1998, Steven Slater, California Department of Fish and Wildlife, unpublished data) (Figs. 40-43) 
coinciding with the seasonal decline in pelagic zooplankton, such as P. forbesi (Fig. 34) and 
mysids (Fig. 38). Food habits of adult Delta Smelt during the winter and spring (January-May) 
have been less well documented (Moyle et al. 1992). In 2012, diet of adults in the LSZ and         

Figure 35. Density (number/m3) of adult Acartiella sinensis (A. sinensis) by month. 
Each month 16 stations were sampled across all salinity ranges. Horizontal lines 
represent single samples within a salinity range and boxes without whiskers 
indicate 2 samples within a salinity range. Data from the IEP Zooplankton Study 
index stations. See Chapter 3: Data Analyses for explanation of boxplots.

Figure 36. Density (number/m3) of adult Sinocalanus doerrii (S. doerri) by month. 
Each month 16 stations were sampled across all salinity ranges. Horizontal lines 
represent single samples within a salinity range and boxes without whiskers 
indicate 2 samples within a salinity range. Data from the IEP Zooplankton Study 
index stations. See Chapter 3: Data Analyses for explanation of boxplots.
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< 1 ppt were found to include cyclopoid copepods, other than Limnoithona spp., with a mix of 
larger prey types, amphipods, cladocerans, cumaceans, and larval fish and in CS-SRDWSC the 
calanoid copepod S. doerrii continued to be a large portion of the diet (Steven Slater, California 
Department of Fish and Wildlife, unpublished data) (Fig. 44). Larval fish found in stomachs of 
Delta Smelt in the higher salinity areas were primarily Pacific Herring (Clupea pallasii), with 

Figure 37. Density (number/m3) of all cladoceran taxa by month. Each month 16 
stations were sampled across all salinity ranges. Horizontal lines represent single 
samples within a salinity range and boxes without whiskers indicate 2 samples 
within a salinity range. Data from the IEP Zooplankton Study index stations. See 
Chapter 3: Data Analyses for explanation of boxplots.

Figure 38. Density (number/m3) of all mysid shrimp taxa by month. Each month 16 
stations were sampled across all salinity ranges. Horizontal lines represent single 
samples within a salinity range and boxes without whiskers indicate 2 samples 
within a salinity range. Data from the IEP Zooplankton Study index stations. See 
Chapter 3: Data Analyses for explanation of boxplots.
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some Longfin Smelt, and Prickly Sculpin (Cottus asper) in the Sacramento River and CS-
SRDWSC region; no Delta Smelt larvae were found in the stomachs of adults (Steven Slater, 
California Department of Fish and Wildlife, unpublished data).

The large proportion of benthic amphipods, cumaceans, and some cladocerans (Camptocercus 
spp.) in the diet is a notable change from Delta Smelt diet in the 1970s. Delta Smelt diets 
historically did include amphipods, notably Corophium spp. (Moyle et al. 1992), yet it was a 
small fraction of a mostly pelagic based diet. The considerable use of benthic invertebrates for 
food in recent years is believed to be in large part due to food limitation associated with the 
long-term decline and changes in composition of the pelagic food web (Slater and Baxter 2014). 
The quality of benthic invertebrates as food is not currently understood, but amphipods are lower 
in energy (calories per gram) than copepods (Cummins and Wuychek 1971, Davis 1993) and 
mysids (Davis 1993).

As noted previously, the changes in phytoplankton production and phytoplankton species 
abundances observed and the invasion of P. amurensis may have had important consequences 
for consumer species preyed upon by Delta Smelt. For example, there has been a decrease in 
mean zooplankton size (Winder and Jassby 2011) and a long-term decline in calanoid copepods, 
including a major step-decline in the abundance of the copepod E. affinis. These changes are 
possibly due to predation by the overbite clam (Kimmerer et al. 1994) or indirect effects of clam 
grazing on copepod food supply. Predation by P. amurensis may also have been important for 
other zooplankton species (Kimmerer 2008). Northern Anchovy Engraulis mordax abandoned 
the low salinity zone coincident with the P. amurensis invasion, presumably because the clam 
reduced planktonic food abundance to the point that occupation of the low-salinity waters was 
no longer energetically efficient for this marine fish (Kimmerer 2006). Similarly, Longfin Smelt 
Spirinchus thaleichthys shifted its distribution toward higher salinity in the early 1990s, also 
presumably because of reduced pelagic food in the upper estuary (Fish et al. 2009). There was 
also a decline in mysid shrimp (Winder and Jassby 2011), including a major step-decline in 
1987–1988, likely due to competition with the overbite clam for phytoplankton (Orsi and Mecum 
1996). Mysid shrimp had been an extremely important food item for larger fishes like Longfin 
Smelt and juvenile Striped Bass (Orsi and Mecum 1996), and may be consumed by larger Delta 
Smelt (Moyle et al. 1992). The decline in mysids was associated with substantial changes in the 
diet composition of these and other fishes, including Delta Smelt (Feyrer et al. 2003, Bryant and 
Arnold 2007). The population responses of Longfin Smelt and juvenile Striped Bass to winter–
spring outflows changed after the P. amurensis invasion. Longfin Smelt relative abundance was 
lower per unit outflow after the overbite clam became established (Kimmerer 2002b). Age-
0 Striped Bass relative abundance stopped responding to outflow altogether (Sommer et al. 
2007). One hypothesis to explain these changes in fish population dynamics is that lower prey 
abundance reduced the system carrying capacity (Kimmerer et al. 2000, Sommer et al. 2007).

In addition to a long-term decline in calanoid copepods and mysids in the upper Estuary, there 
have been numerous copepod species introductions (Winder and Jassby 2011). P. forbesi, a 
calanoid copepod that was first observed in the estuary in the late 1980s, has replaced E. affinis 
as the most common Delta Smelt prey during the summer. It may have a competitive advantage 
over E. affinis due to its more selective feeding ability. Selective feeding may allow P. forbesi to 
utilize the remaining high-quality algae in the system while avoiding increasingly more prevalent 
low-quality and potentially toxic food items such as M. aeruginosa (Mueller-Solger et al. 2006, 
Ger et al. 2010a). After an initial rapid increase in abundance, P. forbesi declined somewhat in 
abundance from the early 1990s in the Suisun Bay and Suisun Marsh regions but maintained its 
abundance, with some variability, in the central and southern Delta (Winder and Jassby 2011). 
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Figure 39. Percentage by weight of prey types found in the digestive tracts of 
larval and young juvenile Delta Smelt (≤ 20 mm fork length) collected from 1-6 
ppt, < 1 ppt, and Cache Slough-Sacramento River Deepwater Ship Channel (CS-
SRDWSC) in A) 2005, B) 2006, C) 2010, and D) 2011. Number of digestive tracts 
examined are shown above the columns. Mean fork length (mm) of Delta Smelt is 
also shown.
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Figure 40. Percentage by weight of prey types found in stomachs of age-0 Delta 
Smelt collected from > 6 ppt during April through December in A) 2005, B) 2006, C) 
2010, and D) 2011. Number of stomachs examined are shown above the columns. 
One fish examined in August 2006 had an empty stomach. Mean fork length (mm) 
of Delta Smelt is also shown.

10

20

30

40

50

60

70

0%

20%

40%

60%

80%

100%

Apr May Jun Jul Aug Sep Oct Nov Dec

10

20

30

40

50

60

70

0%

20%

40%

60%

80%

100%

Apr May Jun Jul Aug Sep Oct Nov Dec

10

20

30

40

50

60

70

0%

20%

40%

60%

80%

100%

Apr May Jun Jul Aug Sep Oct Nov Dec

10

20

30

40

50

60

70

0%

20%

40%

60%

80%

100%

Apr May Jun Jul Aug Sep Oct Nov Dec

Pseudo. spp. A. sinensis S. doerri Tortanus spp.
Other calanoids Other cyclopoids Limno. spp.E. affinis

Harpacticoids Cladocerans Mysids
Amphipods OtherCumaceans Fish

Copepod nauplii

Month

Fo
rk

 le
ng

th
 (m

m
)

Mean lengthX

0

0

0

0

0

0

0

0

0

0

0

0

2

0

11

0

2

1

0

4

7

0

0

0

0

0

0

0

0

0

0

6

10

0

3

17

A)

B)

C)

D)

Pe
rc

en
ta

ge
 w

ei
gh

t



8 0

Interagenc y Ecologic al  Program: Management,  Analysis,  and Synthesis  Team

I E P  M A S T  2 0 1 4

Figure 41. Percentage by weight of prey types found in stomachs of age-0 Delta 
Smelt collected from 1-6 ppt during April through December in A) 2005, B) 2006, C) 
2010, and D) 2011. Number of stomachs examined are shown above the columns. 
Mean fork length (mm) of Delta Smelt is also shown.
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Figure 42. Percentage by weight of prey types found in stomachs of age-0 Delta 
Smelt collected from < 1 ppt during April through December in A) 2005, B) 2006, C) 
2010, and D) 2011. Number of stomachs examined are shown above the columns. 
Mean fork length (mm) of Delta Smelt is also shown.
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Figure 43. Percentage by weight of prey types found in stomachs of age-0 Delta 
Smelt collected from Cache Slough-Sacramento River Deepwater Ship Channel 
(CS-SRDWSC) during April through December in A) 2005, B) 2006, C) 2010, and 
D) 2011. Number of stomachs examined are shown above the columns. Mean fork 
length (mm) of Delta Smelt is also shown.
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Figure 44. Percentage by weight of prey types found in stomachs of adult Delta 
Smelt collected in 2012 during January through May from A) > 6 ppt, B) 1-6 ppt, 
C) < 1 ppt, and D) Cache Slough-Sacramento River Deepwater Ship Channel (CS-
SRDWSC). Number of stomachs examined are shown above the columns. One 
fish examined from 1-6 ppt in May had an empty stomach. Mean fork length (mm) 
of Delta Smelt is also shown.
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Although substantial uncertainties about mechanisms remain, the decline of P. forbesi in the 
Suisun region may be related to increasing recruitment failure and mortality in this region due to 
competition and predation by P. amurensis, contaminant exposures, and entrainment of source 
populations in the Delta (Mueller-Solger et al. 2006, Winder and Jassby 2011, Durand 2010). 

The abundance of a more recent invader, the cyclopoid copepod Limnoithona tetraspina, 
significantly increased in the Suisun Bay region beginning in the mid-1990s. It is now the most 
abundant copepod species in the Suisun Bay and confluence region of the estuary (Bouley and 
Kimmerer 2006, Winder and Jassby 2011). Gould and Kimmerer (2010) found that it grows 
slowly and has low fecundity. Based on these findings they concluded that the population success 
of L. tetraspina must be due to low mortality and that this small copepod may be able to avoid 
visual predation to which larger copepods are more susceptible. It has been hypothesized that L. 
tetraspina is an inferior food for pelagic fishes including Delta Smelt because of its small size, 
generally sedentary behavior, and ability to detect and avoid predators (Bouley and Kimmerer 
2006, Gould and Kimmerer 2010). Nevertheless, this copepod has been found in the guts of Delta 
Smelt when Limnoithona spp. occurrs at extremely high densities relative to other zooplankton 
(Slater and Baxter 2014). Recent experimental studies addressing this issue suggest that larval 
Delta Smelt will consume and grow on L. tetraspina, but growth is slower than with P. forbesi 
(Kimmerer et al. 2011). It remains unclear if consuming this small prey is energetically beneficial 
for Delta Smelt at all sizes or if there is a breakpoint above which larger Delta Smelt receive little 
benefit from such prey. Acartiella sinensis, a calanoid copepod species that invaded at the same 
time as L. tetraspina, also reached considerable densities in Suisun Bay and the western Delta 
over the last decade (Hennessy 2010), although its suitability as food for pelagic fish species 
remains unclear. 

Preliminary information from studies on pelagic fish growth, condition, and histology provide 
additional evidence for food limitation in pelagic fishes in the estuary (IEP 2005). In 1999 and 
2004, Delta Smelt growth was low from the Sacramento-San Joaquin confluence through Suisun 
Bay relative to other parts of the system. Delta Smelt collected in 2005 from the Sacramento-
San Joaquin confluence and Suisun Bay also had high incidence of liver glycogen depletion, 
a possible indicator of food limitation (Bennett et al. 2008). As previously noted, warm water 
temperatures during the summer period may have exacerbated lack of food by raising the 
metabolic rate of Delta Smelt. Based on data for histopathology, date of birth from otoliths, and 
growth rates from otoliths of Delta Smelt in 2005, Bennett et al. (2008) proposed a novel strategy 
for Delta Smelt survival in 2005. Natural selection appeared to favor individuals with a specific 
set of characters, including relatively slow larval development, but faster than average juvenile 
growth in July. Water temperatures in July typically include the annual maximum (Fig. 16). The 
salinity field can also change rapidly as freshwater flow out of the Delta changes. Many of these 
fish surviving into the pre-adult stage had also hatched earlier in the spawning season (i.e., before 
May). 

For many fishes, success at first feeding is believed to be critical to larval survival and a major 
cause of year-class variability (e.g., “critical period hypothesis,” Hjort 1914, Leggett and DeBlois 
1994). In Rainbow Smelt Osmerus mordax a related smelt species, calculated larva mortality 
rates were related to feeding conditions at first feeding that varied on a predictable cycle of 15 
days associated with tide and photoperiod (Sirois and Dodson 2000b). In feeding experiments, 
copepod evasion behavior affected capture by larval Striped Bass, and E. affinis was among 
the more easily captured species (Meng and Orsi 1991). There has been a long-term decline in 
calanoid copepods in the upper estuary, particularly in the Suisun Region (Winder and Jassby 
2011), potentially reducing feeding success, growth and thereby survival. Currently, E. affinis 
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abundance peaks in spring (Hennessy 2010, 2011) coincident with hatching of Delta Smelt. E. 
affinis abundance has been negatively related to X2 since the overbite clam invasion (Kimmerer 
2002b). When X2 is “high” outflow is low and E. affinis densities are low. These lines of 
evidence suggest that the first feeding conditions may improve in springs with higher outflow.

Changes in the quality and quantity of available prey may have contributed to the observed 
reduction in the mean size of Delta Smelt in fall since the early 1990s (Sweetnam 1999, Bennett 
2005); however, mean size subsequently increased. The importance of food resources as a driver 
is supported by Kimmerer (2008), who showed that Delta Smelt survival from summer to fall 
is correlated with biomass of copepods in the low salinity zone, the central 50% of the summer 
Delta Smelt distribution. Other variations of this correlation were shown by Maunder and 
Deriso (2011) and Miller et al. (2012). Miller et al. (2012) have tested for an explicit influence 
of prey density during the fall. Miller et al. (2012) found a stronger correlation between Delta 
Smelt abundance during the fall and prey density during the fall than for prey density during the 
summer.

Harmful algal blooms

Periodic blooms of the toxic blue-green alga Microcystis aeruginosa during late summer, most 
commonly August and September are an emerging concern for Delta Smelt (Lehman et al. 2005, 
Lehman et al. 2013). Although this harmful algal bloom (HAB) typically occurs in the San 
Joaquin River away from the core summer distribution of Delta Smelt, some overlap is apparent 
during blooms and as cells and toxins are dispersed downstream after blooms (Baxter et al. 
2010). Density rankings of Microcystis at TNS stations were highest in the south Delta, east Delta 
and lower San Joaquin River  regions; yet Microcystis distribution may be expanding north over 
time (Morris 2013). Moreover, studies by Lehman et al. (2010) suggest that Delta Smelt likely 
are exposed to microcystins, which may degrade their habitat and perhaps affect the distribution 
of Delta Smelt (Baxter et al. 2010). For example, these HABs are known to be toxic to another 
native fish of the region, Sacramento Splittail (Acuña et al. 2012a) and the alien Threadfin Shad 
(Acuña et al. 2012b). Histopathology evidence from Lehman et al. (2010) suggested the health of 
two common fish in the estuary, Striped Bass, and Mississippi Silversides, was worse at locations 
where microcystin concentrations were elevated.

Indirect effects are also likely as Microcystis blooms are toxic to copepods that serve as the 
primary food resources of Delta Smelt (Ger et al. 2009, 2010a,b). Ger et al. (2009) determined 
toxicity of one form of microcystin (LR) to two species of calanoid copepods, E. affinis and P. 
forbesi, which are important as food to Delta Smelt. They found that, although the copepods 
tested were relatively sensitive to microcystin-LR compared to other types of zooplankton, 
ambient concentrations in the Delta were unlikely to be acutely toxic. However, chronic effects 
were not determined and Lehman et al. (2010) found that Microcystis may indeed contribute to 
changes in phytoplankton, zooplankton and fish populations in the Delta.

Factors that are thought to cause more intensive Microcystis blooms include warmer 
temperatures, lower flows, high nitrogen levels, and relatively clear water (Lehman et al. 2005, 
Baxter et al. 2010, Lehman et al. 2013, Morris 2013). These conditions occur during dry years in 
the SFE. Both Microcystis abundance and microcystin concentrations have been greater in recent 
years with dry year conditions (Lehman et al. 2013). These factors can also interact. For example, 
low flows can provide less dilution of ammonium from wastewater treatment plants (Jassby 
and Van Nieuwenhuyse 2005, Dugdale et al. 2012, Dugdale et al. 2013) and Microcystis can 



8 6

Interagenc y Ecologic al  Program: Management,  Analysis,  and Synthesis  Team

I E P  M A S T  2 0 1 4

readily utilize ammonium as a primary nitrogen source during blooms (Lehman et al. 2013). The 
intensity and duration of Microcystis blooms are expected to increase over the long-term, along 
with any negative impact on aquatic organisms, due to increased frequency of drought conditions 
associated with climate change (Lehman et al. 2013).

Chapter 5: Updated Conceptual 
Models for Delta Smelt 
In this Chapter we transfer the information on drivers and Delta Smelt responses reviewed and 
presented in Chapter 4 into the conceptual model framework established in Chapter 3. The Delta 
Smelt general life cycle conceptual model recognizes the pervasive, year-round importance of 
the tier 1 landscape attributes and the seasonal importance of the various tier 2 environmental 
drivers and tier 3 habitat attributes to the tier 4 life stage transitions of Delta Smelt in the four tier 
5 “transition seasons” (Fig. 45). Some habitat attributes – food, toxicity, and predation – affect 
life stage transitions in all seasons, while other habitat attributes – temperature, entrainment 
and transport, size and location of the low salinity zone, and harmful algal blooms – affect 
some life stage transition more than others. Clearly, adequate food must be available at all life 
stages for Delta Smelt to survive. Toxicity is included during all seasons because we know that 
contaminants of various types are present throughout the year; however, little is known about the 
direct or indirect effects of contaminants at ambient concentrations on individual Delta Smelt 
or the population as a whole. Predation is included in all seasons because we recognize that 
predation is likely the ultimate cause of mortality for most individual fish; however, responses 
of Delta Smelt to other habitat attributes and environmental drivers such as food availability and 
turbidity can modify predation risk.

The mechanistic linkages between landscape attributes, environmental drivers, habitat attributes 
and Delta Smelt responses in the four life stage seasons are depicted as one-way arrows in four 
new “life stage transition” conceptual models (Figs. 46-49). As mentioned in Chapter 3, the life 
stage transition conceptual models are nested components of the general life cycle conceptual 
model (Fig. 8). Each life stage transition conceptual model (Figs. 46-49) includes the habitat 
attributes hypothesized to affect the transition of Delta Smelt from one life-stage to the next. 
Hypotheses selected for detailed consideration in Chapter 7 are indicated by “H” in the diagrams. 
The models also show the landscape attributes and environmental drivers. While the models 
include many linkages among individual landscape attributes, environmental drivers, and habitat 
attributes, they do not include linkages between individual habitat attributes and the specific 
biological processes (growth, survival, reproduction) underlying the life stage transitions. The 
primary reason for this simplification is that the available data are generally inadequate to fully 
describe and differentiate among specific functional relationships and mathematical modeling that 
could help estimate them is beyond the scope of this report. Instead, the combined effects of all 
habitat attributes on the life stage transition probability are depicted by one upward arrow in each 
life stage transition conceptual model. This does not imply, however, that all habitat attributes 
have an equal role in determining life stage transition probability and population success or that 
the role of each habitat attribute remains constant from year to year.

In the remainder of this Chapter we briefly describe the linkages and associated hypotheses 
depicted in each of the life stage transition conceptual model diagrams (figs. 46-49). These 
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Figure 46. Conceptual model of drivers affecting the transition from Delta 
Smelt adults to larvae. Hypotheses addressed in Chapter 7 are indicated by the 
“H-number” combinations.
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Figure 45. Delta Smelt general life cycle conceptual model.
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Figure 47. Conceptual model of drivers affecting the transition from Delta Smelt 
larvae to juveniles. Hypotheses addressed in Chapter 7 are indicated by the 
“H-number” combinations.

Figure 48. Conceptual model of drivers affecting the transition from Delta Smelt 
juveniles to subadults. Hypotheses addressed in Chapter 7 are indicated by the 
“H-number” combinations.
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hypotheses are stated and addressed in more detail in Chapter 7. All hypotheses focus on the life 
stage that is transitioning to (i.e. occurs prior to) the next life stage, for example, adults but not 
eggs and larvae, larvae and post-larvae but not juveniles, and so on. That said, it is important 
to remember that all life stages overlap and all transitions except for the transitions from adults 
to eggs and from eggs to freshly hatched larvae are gradual, not abrupt, and delineations of life 
stages are somewhat arbitrary (see Chapter 3).

The life stage conceptual model for the transition of adult Delta Smelt to eggs and larvae (Fig. 
46) includes 5 habitat attributes. Because of the lack of information about specific contaminant 
effects on Delta Smelt noted above, there are no specific hypotheses regarding the effects of 
contaminants and possible direct or indirect toxicity on Delta Smelt, but based on the information 
discussed in Chapter 4, the model does recognize that effects on Delta Smelt or its food supply 
may be occurring. Food availability and visibility are hypothesized to be important with respect 
to providing nutrition that allows Delta Smelt to grow into healthy, large adults that can produce a 
large numbers of high quality eggs as well as multiple clutches of eggs over the spawning season. 
The availability of food is considered dependent on both food production and the availability of 
such food to the fish. There are two hypotheses related to predation risk. The first is that turbidity, 
created by the interaction of high winter and spring flows with the erodible sediment supply 
in the watershed and within the Delta, influences the vulnerability of Delta Smelt to predators 
that co-occur with them. The second is that Delta Smelt behaviors that bring Delta Smelt close 
to channel edges may increase their vulnerability to Largemouth Bass, which generally occupy 
nearshore and vegetated habitats such as SAV beds. Entrainment risk in this life stage transition 
conceptual model is focused on adults. Entrainment of adults would reduce the reproductive 

Figure 49. Conceptual model of drivers affecting the transition from Delta Smelt 
subadults to adults. Hypotheses addressed in Chapter 7 are indicated by the 
“H-number” combinations.
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potential of the population. Entrainment risk depends on the distribution of the adult Delta Smelt 
in relation to water diversions, and the magnitudes of water diversions and flows. Delta water 
temperature determines the beginning and duration of the spawning season (hereafter “spawning 
window”).

The life stage conceptual model for the transition of Delta Smelt eggs and larvae to juveniles 
includes 4 habitat attributes (Fig. 47). Food production and availability is important for the 
survival of larvae to juveniles. Food quantity is dependent on multiple interacting factors. 
Turbidity is important for early feeding by delta smelt larvae. Predation risk focuses on 
predation of Mississippi Silversides on Delta Smelt larvae because of recent evidence that 
such predation occurs. Predation risk is hypothesized to depend on co-occurrence of the two 
species, with Mississippi Silverside generally being associated with shallower waters, turbidity, 
which decreases the effectiveness of predators, and water temperature, which affects energy 
requirements of predators (hunger level). In addition to its effect on predator bioenergetics, water 
temperature is hypothesized to affect the length of the spawning season (spawning window). If 
food availability is sufficient, then a longer spawning window may allow the adult population to 
produce multiple clutches of eggs, resulting in more young. This hypothesis could arguably be 
included in the previous life stage transition conceptual model, but considering it here allows for 
consideration of predation on larvae in the context of the time period over which larvae are being 
produced. Larvae are also at risk of entrainment or transport to unfavorable areas. The magnitude 
of this risk is hypothesized to depend on an interaction of spring hydrology and water exports. 
As indicated by numerous arrows, winter and spring hydrology affect Delta Smelt spawning and 
larval rearing habitat in many ways. We thus also include a more general hypothesis about the 
hydrological effects on Delta Smelt larval abundance and recruitment.

The life stage conceptual model for the transition of Delta Smelt juveniles to subadults includes 4 
habitat attributes (Fig. 48). In addition, there is a stand-alone hypothesis dealing with population 
dynamics. Juvenile growth and survival is hypothesized to depend on availability and quantity of 
food. Food production during this summer period is hypothesized to involve complex interactions 
of clam grazing, nutrients, hydrology and harmful algal blooms. The probability of observing a 
harmful algal bloom is hypothesized to be a function of the same factors but with temperature 
playing an important role. Harmful algal blooms may also affect Delta Smelt directly through 
production of toxic microcystins. Summer water temperatures are hypothesized to have a very 
direct effect on juvenile Delta Smelt with water temperatures hypothesized to reach stressful 
levels, affecting their bioenergetics and the area of suitable habitat. The transition probability 
hypothesis is that at the currently small population sizes, survival from juvenile to subadult is 
density independent, meaning independent of the number of individuals present (see Chapter 6 
for details).

The life stage conceptual model for the transition of Delta Smelt subadults to adults includes 
6 habitat attributes (Fig. 49). As for the previous conceptual model, there is a stand-alone 
hypothesis dealing with population dynamics. As in the previous conceptual model, growth and 
survival are hypothesized to depend on food availability and food production and availability 
depends on interactions of a variety of landscape attributes and environmental drivers. Toxicity 
is recognized as potentially important but no specific hypotheses have been tested. Harmful 
algal blooms may still be present with hypothesized direct effects on Delta Smelt subadults and 
indirect effects on their food. Predation risk on subadult Delta Smelt is hypothesized to depend 
on co-occurrence of Delta Smelt with the two most likely predators, Largemouth Bass and 
Striped Bass. Largemouth Bass occurrence is linked with that of SAV and the vulnerability of 
prey to both predators is affected by turbidity and bioenergetics. Water temperature is mainly 
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hypothesized to have an effect through bioenergetics because water temperature becomes 
less stressful than in the summer. In this conceptual model the size and location of the LSZ is 
considered both a landscape attribute and a habitat attribute. In the earlier conceptual models, the 
LSZ was mainly viewed as a landscape attribute that interacted with other landscape attributes 
and environmental drivers to create habitat attributes. In this conceptual model the size and 
position of the LSZ is hypothesized to have certain characteristics that directly determine 
habitat quantity and quality for Delta Smelt. The transition probability hypothesis is that at the 
currently small population sizes, survival from subadult to adult is density independent, meaning 
independent of the number of individuals present (see Chapter 6 for details).

Chapter 6: Delta Smelt 
Population Biology
This Chapter consists of two main parts. In the first part, we introduce general concepts in 
population biology that are utilized in the following sections of this Chapter and to generally 
describe Delta Smelt population dynamics. Explaining these concepts and population trends now 
is intended to reduce repetitive text in the remaining sections and to reduce possible confusion 
for readers unfamiliar with the concepts. The concepts are discussed specifically in the context of 
Delta Smelt. 

In the second part of this Chapter, we review information about the life history and population 
trends of each Delta Smelt life stage represented in our conceptual models, starting with adults. 
While we describe trends over the entire available time series for each life stage, we pay 
particular attention to differences in Delta Smelt abundance and life stage transitions between 
the two most recent wet years, 2006 and 2011. Our working assumption is that these differences 
should be attributable to differing habitat conditions and, in some cases, management actions. 
Differences in habitat conditions between these two years will be further explored in Chapter 7.

Population Biology

Recruitment is the addition of new individuals to a population through reproduction or 
immigration. In fisheries science, the term recruitment was first used by Ricker (1954) to describe 
the addition of fish of a new generation to a fish population, in other words, the number of young 
surviving to a particular age or life stage. We use the term recruitment to refer to production of 
larvae, juveniles, subadults, or adults by adults of the previous generation. Relationships between 
numbers of spawning fish or other measures of potential spawning stock (e.g., numbers of 
subadult or mature prespawning fish) and the numbers of fish of a given age or life stage in the 
subsequent generation are known as stock-recruitment relationships.

Stock-recruitment relationships have been described for many species and are a central part of 
the management of commercially and recreationally fished species (Myers et al. 1995, Touzeau 
and Gouze 1998). Different forms of stock-recruitment relationships are possible, including 
density-independent, density-dependent, and density-vague types. The density-independent type 
occurs when the current size of the population has little or no effect on the number of recruits 
(except possibly when stock size is extremely low). This type of population growth is rare in fish 
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populations and occurs when environmental factors largely determine the survival and number 
of recruits (e.g., the Longfin Smelt outflow abundance relationship; see Myers 1998). Density 
dependence occurs when the current population size affects survival and abundance of recruits 
and thus population growth. In such populations, within the lower range of stock size, the number 
of recruits is strongly and positively related to stock size. At some point as stock size increases, 
competition for food (or some other limiting factor) between the adult population and recruits 
affects survival and abundance of recruits; cannibalism is another means by which recruitment 
can be affected by stock size. Thus, the growth and survival of the recruit population strongly 
depends on the density of the stock population. In reality it’s difficult to determine which type of 
response is occurring (e.g., Myers and Barrowman 1996). Moreover, a predominantly annual fish, 
such as Delta Smelt, is predicted to conform poorly to models that assume density-dependent 
recruitment (Winemiller 2005), which appears to be the case (e.g., Rose et al. 2013). 

The idea of density dependence is related to the idea of carrying capacity. The carrying capacity 
of an ecosystem is the number of individuals of all species that can be supported by the available 
resources. In reality it can be very difficult to apply this idea to a single species in an ecosystem 
because of the complex relationships among species and the seasonal, annual, and other changes 
in resource availability. The density vague type of population growth refers to situations where 
there is not a statistically demonstrable stock-recruitment relationship observable in available 
data. 

In density-dependent stock-recruitment relationships, the factors causing the density dependence 
can operate at various points in the life cycle of the new generation. For some species, the 
concept of density dependence is separated into two concepts. In this formulation, density-
dependent stock recruitment is limited to the direct effects of the adult stock on recruitment of 
the next generation, as described above. For example, if a large spawning stock has a limited 
spawning area, as in the case of salmonids, then successive waves of female spawners are known 
to re-excavate previous nests while building their own, substantially increasing mortality of the 
eggs. Density dependence could also occur at the larval or juvenile stage if adults are predatory 
and feed on young, or if adults are in direct competition for food or space with young. The second 
concept of density-dependent survival is often inextricably linked to density-dependent stock-
recruit relationships because the mechanisms causing declines in recruits at high stock levels are 
unknown. In density-dependent survival, the abundance of young affects their own survival.

In the case of Delta Smelt, density dependent survival could occur if many of the larvae starved 
because of insufficient food supplies due to competition with other Delta Smelt larvae, or other 
species. Because many Delta Smelt die after their first spawning, density-dependent survival is 
certainly the dominant mechanism for the species and for the remainder of this report the direct 
effects of adults on survival of eggs and larvae are assumed to be minimal. If resources were 
sufficient for larvae and juvenile fish to survive in large numbers, the surviving subadults might 
overwhelm food sources (i.e., surpass carrying capacity), resulting in low survival and poor 
reproductive output. Thus, it is important to understand species ecology and survival between 
life stages to understand how density dependence is affecting a population. This is particularly 
important for fishes in estuaries where environmental factors can create large variation in habitat 
size and food web productivity from season to season and year to year, thus affecting carrying 
capacity and the potential for density-dependent survival. 

Density-independence is more straightforward. In this case, the population is controlled by 
factors unrelated to the density of the population. For example, high water temperatures will 
affect individual fish, whether the population is large or small. In reality, populations can be 
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affected by both density-dependent and density-independent factors at different times. This 
interaction is the basis for the idea of compensatory density dependence. In this formulation, 
a population is governed by density independent factors when population size is small. As the 
population increases and approaches the carrying capacity, density-dependent factors become 
important and the population growth rate declines. Fluctuations in carrying capacity, as noted 
above, are an added complication. Again, it is essential to understand the ecology of the species 
and survival between life stages to understand the relative importance of density dependent and 
density independent factors.

Unfortunately, Delta Smelt were never of sufficient interest as a commercial or recreational 
species to warrant development of stock-recruitment models until they were listed. Data now 
used to develop stock-recruitment models for Delta Smelt started becoming available after the 
initiation of fisheries studies and monitoring surveys in the late 1950s (TNS initiated 1959; 
FMWT initiated 1967) in association with the planning and operation of the CVP and SWP. 
These IEP fish monitoring surveys were designed to produce relative abundance indices or 
catch-per-unit-effort (CPUE, e.g., number per trawl) that could be used to monitor trends in 
abundance over time. More recently, annual abundance indices based on these surveys have 
also been incorporated into stock-recruit relationships (e.g., Moyle et al. 1992, Sweetnam and 
Stevens 1993, Miller 2000, Bennett 2005, Maunder and Deriso 2011). Neither of these early 
IEP fish monitoring surveys (TNS, FMWT) were specifically designed to monitor Delta Smelt, 
but instead targeted primarily the commercially and recreationally more important Striped 
Bass. As researchers began using TNS and FMWT indices for Delta Smelt analyses, they began 
investigating how the indices performed and means to improve them (see Wadsworth and 
Sommer 1996, Miller 2000, Newman 2008). This work is ongoing and also includes similar 
investigations for the newer SKT (initiated in 2002) and 20 mm survey (initiated in 1995) 
monitoring surveys.

The two stock-recruitment relations based on the longest data records include the relationsip 
of the FMWT abundance index with the FMWT adundance index in the previous year and the 
relationship of the TNS abundance index with the FMWT adundance index in the previous year 
(Fig. 50). Because of the large changes that have occurred in the Delta ecosystem, including the 
invasion by P. amurensis and the POD, these plots can be difficult to interpret because carrying 
capacity is assumed to have changed (Bennett 2005, Kimmerer et al. 2000, Sommer et al. 
2007). It does appear that there is much more variability associated with the FMWT relationship 
compared to the TNS relationship. This might indicate variable survival between the juvenile and 
subadult life stage.

In any form of a stock-recruitment model, there is a point at which low adult stock will result in 
low juvenile abundance and subsequent low recruitment to future adult stocks. This can occur 
even under favorable environmental conditions while the stock “rebuilds” itself. From a stock-
recruitment perspective, the recent low abundance of Delta Smelt is of particular concern. Since 
about 2002, the current population is smaller than at any time previously in the record, with the 
exception of the 2011 year class. This strong year class suggests that Delta Smelt have yet to 
reach low levels where the stock will need years to rebuild, at least to pre-POD levels (Fig. 3).

In addition to their use in exploring stock-recruitment relationships, ratios of annual Delta Smelt 
abundance indices can also be used to obtain rough estimates of relative annual recruitment and 
survival rates (figs. 51 and 52). As for the stock-recruitment relationships these recruitment and 
survival indices should be interpreted with caution given the large changes that have taken place 
in the Delta and the absence of estimates of variability for the indices. The main utility of these 
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indices is identifying years with relatively high or low survival for a specific life stage transition 
or life stage transitions with differences in annual variability.

Here, we use the ratios of abundance indices for different life stages of the same generation 
as indices of survival (survival indices, Fig. 51) and the ratios of current to preceding year 
abundance indices as indices of recruitment (recruitment indices, Fig. 52). For the density-
independent case, recruitment rate is independent of the size of the adult population. The number 

Figure 50. Scatterplots and LOWESS splines depicting 
the relationship of the Fall Midwater Trawl index of 
Delta Smelt relative abundance (FMWT) (1968-2012) 
and Summer Townet Survey (TNS) (1969-2012) with 
the FMWT in the previous year.
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of recruits produced is the product of recruitment rate and the size of the adult population. For 
this report, we assume that the estimates have sufficiently low and comparable uncertainty 
to provide worthwhile interpretations, as long as caution is exercised. It is also important to 
remember that abundance, survival, and recruitment index values are only meaningful in a 
relative, not in an absolute sense. 

The annual stage to stage survival indices from larvae to juveniles, subadults, and adults are 
shown in Figure 51. The relative recruitment rates from adults and subadults in one year to 
larvae, juveniles, and subadults the next year are shown in Figure 52. We recognize that a life 
cycle model with environmental covariates is needed to fully assess the combined effects of 
stock-recruitment and stage-to-stage survival indices on Delta Smelt population dynamics. 
Nevertheless, examination of the recruitment and survival index data sets reveal several 
interesting patterns for the POD period (2003-2013).

Figure 51. Stage to stage survival indices based on data from Summer Townet 
Survey (TNS), Fall Midwater Trawl (FMWT), and Spring Kodiak Trawl (SKT).
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Figure 52. Delta Smelt recruitment indices based on the annual adult, larval, 
juvenile, and subadult abundance indices provided by the Spring Kodiak Trawl 
(SKT, adults), 20 mm Survey (20 mm, larvae), Summer Townet Survey (TNS. 
juveniles), and Fall Midwater Trawl (FMWT, subadults).
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First, interannual variability in these stock and survival indices declines from larval recruitment 
(coefficient of variation (CV): 92%), to subsequent larvae to juvenile survival (CV: 67%), 
juvenile to subadult survival (CV: 43%), to subadult to adult survival (CV: 38%). This result 
is consistent with expected highly dynamic patterns of recruitment and survival for an annual 
opportunistic species such as Delta Smelt. The pattern of reduced variability in survival for larger 
fish suggests that older fish may no longer be vulnerable to some forms of mortality affecting 
earlier life stages either because a factor is no longer important when larger fish are present (e.g., 
effect of summer high water temperatures on juveniles) or that larger fish escape some forms of 
mortality (e.g., larger fish are no longer eaten by the large variety of predators able to consume 
larvae). 

Second, the patterns of adult and larval abundance (Fig. 3) and adult to larvae recruitment (Fig. 
52a) suggest: (1) even a small adult Delta Smelt stock can produce a large number of larvae 
under the right habitat conditions; but (2) larval recruitment is not a good predictor of juvenile 
survival and subsequent adult stock size. In other words, good larval recruitment sets the stage 
for population recovery, but good survival through subsequent life stage transitions is needed to 
realize its potential.

Third, there are clear contrasts in Delta Smelt responses between the two wet years 2006 and 
2011 (the years of particular interest in this report) (Figs. 51 and 52). Since the initiation of the 
SKT survey for adult Delta Smelt in 2002 (indices calculated beginning in 2003), the recruitment 
of larvae from adults was greatest in the two wet years 2006 and 2011 (Fig. 52a) compared to 
the other, drier years in the time series, but in 2006 very strong adult to larvae recruitment was 
followed by very poor larvae to juvenile survival in the summer (Fig. 51a) and only average 
survival in the fall (Fig. 51b) and winter (Fig. 51c). This led to low abundance of the subsequent 
life stages of the 2006 cohort. Survival from larvae to juveniles and subadults was much better in 
2011 and, along with good recruitment, led to the highest juvenile and adult abundance indices 
since the onset of the POD (Fig. 3). In other words, good recruitment set the stage for population 
recovery in both recent wet years, but a substantial abundance increase was realized only in 2011. 
Unfortunately the 2011 abundance increase was short-lived; it was immediately followed by 
poor recruitment and survival in 2012 and abundance indices for the 2012 and 2013 cohorts were 
once again at the low levels typical for the POD period (Fig. 3). Several consecutive years of 
good recruitment and survival are likely needed for a more sustained increase of the Delta Smelt 
population abundance to pre-POD abundance levels. Population declines such as the decline 
experienced by Delta Smelt do not only reduce the number of individuals, but can also reduce 
the genetic diversity present in the population. While the 2011-2012 data suggest that recovery 
of Delta Smelt abundance can still be fairly rapid via high larval recruitment followed by good 
survival (Figs. 51 and 52) recovery of genetic diversity is a much slower process which is an 
important conservation concern (Fisch et al. 2011). 

Small Delta Smelt population size affects the effective population size (Ne), a measure of the 
genetic properties of a population and the abundance at which significant genetic diversity is lost 
due to inbreeding (Falconer and Mackay 1996, Schwartz et al. 2007, Antao et al. 2010). In many 
species Ne may be orders of magnitude smaller than the census population size (N) and low Ne/N 
ratios indicate the population may be in danger of losing genetic variability, potentially resulting 
in reduced adaptability, population persistence, and productivity (Hauser et al. 2002). For Delta 
Smelt, Fisch et al. (2011) detected a genetic bottleneck in each of four sampling years (2003, 
2005, 2007 and 2009) and observed a significant decline in effective population size between 
sampling years 2003 and 2007 (Fisch et at. 2011). The genetic signal of the decline in Ne is 
corroborated by the observed abundance index declines and support the hypothesis that decreases 
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in Ne and allelic richness have likely occurred over the last few decades (Fisch et al. 2011). 
Genetic changes within the Delta Smelt population deserve continued evaluation with respect to 
changes in population size.

In addition, Delta Smelt recruitment and the fecundity of adult Delta Smelt likely vary 
substantially from year to year (Rose et al. 2013b). Delta Smelt fecundity is a function of female 
size (Bennett 2005, Lindberg et al. 2013). The mean size of adult Delta Smelt declined in the 
early 1990s (Sweetnam 1999), possibly due to changes in the food web (see Chapter 4), but 
substantially recovered in the late 2000s. Another possible reason is that in some recent years, 
there may have been selection for smaller, late-spawned larvae as a result of export pumping 
schedules (Bennnett 2011). For example, Bennett (2011) proposed that high export pumping in 
late winter may have resulted in high entrainment mortality of offspring from larger, fitter, early 
spawning females, which produced larger, fitter offspring (Bennett 2011). Further, Bennett et al. 
(2008) and Bennett (2011) posited that curtailment of export pumping in mid-April related to the 
Vernalis Adaptive Management Program (VAMP), allowed for greater survival of later-spawned, 
smaller larvae. The major concern is that these smaller later-spawned larvae have less opportunity 
to grow to large adult size, especially when food is scarce. If correct, the combined effects of 
export pumping and food supply on Delta Smelt growth and size could have a nonlinear impact 
on overall fecundity and population success. This is corroborated by the results from individual-
based modeling which showed that growth in fall-winter and the subsequent number of eggs 
produced per adult were the most important factor determining the success of the next generation 
(Rose et al. 2013b). Moreover, repeated losses of early-spawned larvae could potentially have a 
negative effect on expression of this important phenotype and result in eventual loss of genetic 
variability in the population, and contribute to the genetic bottlenecks reported by Fisch et al. 
(2011).

Given the unprecedented low abundance of Delta Smelt since 2002 (Fig. 3, summer and fall), 
serious consideration should be given to evaluation of Allee effects. Allee effects occur when 
reproductive output per fish declines at low population levels (Berec et al. 2006). In other words, 
below a certain threshold the individuals in a population can no longer reproduce rapidly enough 
to replace themselves and the population, exhibiting inverse density dependence, spirals to 
extinction. For Delta Smelt, possible mechanisms for Allee effects include processes directly 
related to reproduction and genetic fitness such as difficulty finding mates, genetic drift, and 
inbreeding (Gascoigne et al. 2009), although none of these effects have been documented yet 
in Delta Smelt (Fisch et al. 2011). Other mechanisms related to survival such as increased 
vulnerability to predation (Gascoigne and Lipcius 2004) are also possible. While theoretical work 
suggests that Allee effects might be common in nature, empirical evidence for Allee effects in 
natural populations of fishes remains relatively sparse (Myers et al. 1995, Liermann and Hillborn 
1997), possibly because they are often masked by measurement errors (Gregory et al. 2010). 
Recent meta-analytical work by Keith and Hutchings (2012) suggests that Allee effects in marine 
fish species might be more common than previously thought. But even in the absence of “true” 
Allee mechanisms, small population size (Hutchings 2013) can produce an emergent Allee effect 
and prevent recovery of collapsed fish populations even when threats are reduced (Kuparinen 
et al. 2012). This may be one of the reasons why recovery of many collapsed fish populations 
remains slow despite large reductions in fishing (Pauly et al. 1998, Hutchings et al. 2010). This 
finding challenges the traditional fisheries management view that depleted populations will grow 
and recover rapidly when fishing pressure is relaxed (Hilborn and Walters 1992). In addition, 
the interactive effects of multiple Allee effects may have important implications for species 
conservation, but have not yet been well explored in ecology (Berec et al. 2006).
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Compensatory density dependence predicts that a fish’s population growth or survival rates 
can increase when abundance is low and decrease if abundance increases beyond a carrying 
capacity (Rose et al. 2001). If compensatory density dependence occurred in 2011, Delta Smelt 
survival would be expected to increase as long as the carrying capacity of the environment was 
not exceeded. Therefore, the sudden increase in subadult abundance in 2011 is consistent with 
the higher survival predicted by compensatory density dependence at low population abundance 
coupled with widespread availability of good habitat conditions throughout the year. Among the 
remaining comparison years, both 2005 and 2006 show evidence of compensatory recruitment 
to larvae (Fig. 52a). Adult abundance was moderately high in 2005, but low in 2006 and 2010 
(Fig. 3). As predicted by compensatory density dependence processes, the recruitment index 
to larvae was higher in 2006 than in 2005. However, low adult abundance in 2010 did not give 
way to a similarly high recruitment index (Fig. 52a). In addition, the relatively high recruitment 
index in 2006 did not result in a higher larval abundance index compared to 2005 (Fig. 3). These 
inconsistences, combined with a small number of comparison years, prevent any firm conclusion 
regarding compensatory recruitment or survival. 

Similarly, if compensatory density-dependent survival was important we might expect larva 
to juvenile survival to be lower when larva production per adult was higher assuming similar 
adult populations. This was not the case for 2006, 2010, and 2011, which had relatively similar 
values for the SKT abundance index (figs. 3). In 2006, larval survival was low with high larval 
production per adult, and 2010 and 2011 had very similar larval survivals with similar adult 
abundances. Finally, in 2011, the highest population of juveniles led to the highest population of 
subadults and adults (2012 SKT), which argues against compensatory density-dependent survival. 
These comparisons argue against strict compensatory density dependence operating within the 
POD years. It seems more likely that population dynamics are driven by density independent 
relationships with factors such as summer water temperatures and resource availability 
(fluctuations in carrying capacity); however, the evidence is not conclusive. In particular, we do 
not understand how carrying capacity fluctuates over seasons and years or how other factors, such 
as predation, affect carrying capacity (Walters and Juanes 1993; Walters and Korman 1999).

Adults

Life History

The Delta Smelt is generally considered a diadromous seasonal reproductive migrant, and in the 
winter, many adult Delta Smelt move upstream into fresh water for spawning (Moyle et al. 1992, 
Bennett 2005, Sommer et al. 2011). These movements may be a specific change in behavior 
in response to one or more environmental cues, for example, to the rapid and often dramatic 
environmental changes during winter first flush periods (Sommer et al. 2011, Bennett and 
Burau 2014). Focused, fixed-station sampling in the winters of 2009-10 and 2010-11 revealed 
higher catch of Delta Smelt at higher turbidity levels, as well as an asymmetry in probability 
of catch with respect to tidal phase; catch was highest in the channels during flood tide, but 
highest near the shoreline during ebb tides (Bennett and Burau 2014). This change in horizontal 
channel position with respect to tidal direction has recently been confirmed by a second study 
in the fall of 2012 that used the “SmeltCam,” an underwater video camera attached to the cod-
end of the FMWT net to detect Delta Smelt (Feyrer et al. 2013). This study demonstrated that 
during flood tides, Delta Smelt were relatively abundant throughout the water column, but less 
abundant during ebb tides, and found only in the lower portion of the water column and closer 
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to shorelines. This asymmetry in catch supports the idea of a “tidal surfing” behavior during 
migration that may minimize energetic costs of upstream movement and allow Delta Smelt to 
follow favorable conditions with respect to turbidity and salinity (Feyrer et al. 2013). Variations 
of this behavior would allow fish to maintain position in the channel (stay on the edge during 
flood or ebb tide) or move downstream (move into the channel on ebb tide).

It is also possible that Delta Smelt movements do not represent a change in behavior; rather, fish 
are simply expanding their foraging or refuge distribution to habitat upstream when it becomes 
turbid or otherwise more suitable during and after the first flush period (Murphy and Hamilton 
2013). The specific mechanism for the seasonal change in distribution, however, may be more a 
matter of terminology than of ecological relevance for a fish with as small a home range as Delta 
Smelt. Here, we acknowledge the existence of both possibilities, but will use the term “spawning 
migration” to simply refer to a directed movement upstream or downstream occurring prior to 
and during the spawning season. Using this definition, this seasonal change counts as a migration 
since it represents a relatively predictable and substantial change in distribution that has adaptive 
value including potential spawning, foraging and refuge functions (Lucas and Bara 2001). 

The Delta Smelt spawning migration from their low-salinity rearing habitat into freshwater 
usually occurs between late December and late February, typically during first flush periods when 
inflow and turbidity increase on the Sacramento and San Joaquin Rivers (Grimaldo et al. 2009, 
Sommer et al. 2011a). Increased catches of Delta Smelt in the Delta Juvenile Fish Monitoring 
Program’s Chipps Island Trawl Survey and at the south Delta salvage facilities are unimodal in 
most years and occur within a couple of weeks of first flush events, suggesting that adult Delta 
Smelt are responding to environmental changes and migrating rapidly upstream once the first 
flush occurs (Grimaldo et al. 2009, Sommer et al. 2011a). However, spawning migrations are 
not always upstream. During occasional periods of very high river flows that spread freshwater 
habitat throughout much of the estuary, some Delta Smelt “migrate downstream” from rearing 
habitats in Suisun Bay and the Delta to freshwater spawning habitats as far west as the Napa 
River (Hobbs et al. 2007). Also under high flow conditions, it is possible that some Delta Smelt 
may not migrate in any direction; if their brackish-water rearing habitat becomes fresh, they can 
presumably spawn in suitable areas nearby. In addition, there is a small subset of the population 
that appears to remain in the Cache Slough complex year around; these fish presumably stay in 
the region for spawning (Sommer et al. 2011). 

Osmerids generally spawn in shallow waters (Moulton 1974, Murawski et al. 1980, Hirose and 
Kawaguchi 1998, Martin and Swiderski 2001, Bennett 2005). It is believed that Delta Smelt 
spawn over sandy substrates in shallow areas based on the observation that first hatch larvae 
are collected in high concentrations in areas near expansive sandy shoals (Bennett 2005, L. 
Grimaldo, U.S. Bureau of Reclamation, unpublished data); confirmation of this hypothesis has 
not been verified through egg collections or observations of spawning adults, except in mesocosm 
studies (J. Lindberg, U.C. Davis, unpublished data). Pilot studies to identify egg deposition areas 
have been conducted by the IEP but these efforts were unsuccessful; it is unknown whether it was 
due to the method used, locations selected, or because of the low probability of detecting eggs 
from a relatively rare species. 

The Delta Smelt is an opportunistic strategist (Nobriga et al. 2005). Opportunistic strategists are 
characterized by their short life spans, but high intrinsic rates of population increase driven by 
rapid maturation and repeat spawns over a protracted spawning season (Winemiller and Rose 
1992). The importance of per capita fecundity to the success of the Delta Smelt population was 
recently highlighted in an individual-based modeling study (Rose et al. 2013a,b). In culture, 
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Delta Smelt can spawn up to four times per year depending on water temperature (J. Lindberg, 
U.C. Davis, unpublished data). Recent evidence indicates that Delta Smelt can spawn multiple 
times in the wild if water temperatures stay cool in the later winter and early spring (Wang 2007, 
L. Damon, CDFW, written comm. 2013). The ability of Delta Smelt to spawn multiple times in 
the wild could substantially increase per capita fecundity over previous estimates for individuals 
of a specific size. It could also be a contributing factor to the large interannual variability in adult 
to larvae recruitment (Fig. 52a). 

Population Trends

Adult Delta Smelt are monitored by the Spring Kodiak Trawl (SKT) survey which was initiated 
by CDFW (then CDFG) in 2002 and runs from January to May each year (Honey et al 2004). 
An indexing method was recently developed by CDFW for the SKT survey, allowing for year to 
year comparisons as well as comparisons with the abundance indices for other life stages (Fig. 
3). The SKT index time series used in this report comprises 11 annual indices, from 2003 to 
2013; no index is available for 2002. Each index represents the abundance of adult fish hatched 
in the previous calendar year that survive to spawn at the beginning of the next calendar year. 
The highest SKT index on record occurred in 2012 (147), as a result of the high 2011 abundance 
of younger fish, and the lowest in 2006 (18). Of the four comparison years, 2005 had the highest 
SKT index (51), followed by 2010 (27) and 2011 (20) and then 2006 (18). While the SKT 
index was thus lower in the two wet years than in the two drier years, the SKT index increased 
substantially in each of the years following the two wet years; however it increased only 2-fold 
from 2006 to 2007 while it increased 7-fold from 2011 to 2012 (Fig. 3). It is also possible that the 
SKT is less effective during very high flow events. Delta outflow at times exceeded 200,000 cfs 
in winter 2011 and 300,000 cfs in winter 2006. These high flow events might have contributed 
to the low SKT indices in these two wet years, if Delta Smelt remained near shore to avoid 
displacement or moved into San Pablo Bay with the LSZ. In both cases they would be outside of 
SKT sampling range. Further evaluations are needed, however, to investigate and quantify this 
hypothesized effect.

The annual adult Delta Smelt abundance indices track the annual abundance indices of sub-
adults calculated from the previous years’ FMWT survey closely (Fig. 53; see also Kimmerer 
2008). The relationship is particularly strong at higher fall abundance indices (FMWT index > 
50), with more variability at lower abundance indices. Before the POD decline in 2002, all Delta 
Smelt FMWT indices were greater than 50 (Fig. 3). Thus, the FMWT might provide a useful 
surrogate for estimating long-term abundance trends in the adult Delta Smelt population prior to 
the initiation of the SKT survey in 2002, but great caution is warranted with the approach because 
this hindcasting would rest on only four data points with high leverage (2003-2005, 2012) and 
assume stable subadult to adult survival relationships and habitat conditions, neither of which is 
likely true. Moreover, the Kodiak trawl more efficiently captures Delta Smelt than the FMWT 
net. The SKT survey was set up to target Delta Smelt, while the FMWT survey was designed to 
monitor young Striped Bass, which tend to be larger than Delta Smelt during fall; however, there 
is no reason to expect the difference in capture efficiency to affect the relationship, unless such 
differences were a function of population size (i.e., efficiency was different above and below 
FMWT = 50). The utility of the FMWT as a descriptor of long-term adult population trends in the 
absence of long-term data from the SKT will benefit from ongoing IEP efforts to quantitatively 
estimate the efficiency of the FMWT and to compare efficiencies of different trawling gear and 
protocols. While survival from subadults in the fall (FMWT) to adults in the winter and spring 
(SKT) (Fig. 53) has been more stable than adult to larvae recruitment and survival between other 
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life stages (Figs. 51 and 52), it nevertheless shows some variability, especially when abundance is 
low. These data suggest that at least in the POD decade, adult numbers appear largely driven by 
juvenile abundance and the influence of changes in winter-time habitat attributes is less important 
and relatively stable from year to year. 

The number of adult spawners affects population dynamics through production of eggs. Potential 
reproductive output is proportional to the number of adult female spawners, the clutch size for 
females of a specific size, and the number of egg clutches produced by each female. Although 
egg production in the wild has not yet been documented, we can evaluate the relationship of the 
SKT adult population index to the 20 mm Survey abundance index (Fig. 54). This relationship 
does not appear to be strong during the POD period (linear regression, P > 0.05). This suggests 
that egg production or subsequent hatching of eggs and survival of larvae and thus overall 
recruitment of larvae from the previous generation’s adults is affected by other factors than adult 
population size. Hypotheses about the effects of habitat attributes in our conceptual model on 
adult growth and fecundity and recruitment of young are explored in Chapter 7.

Clutch sizes of fish collected in the SKT were not measured, but annual fork lengths of Delta 
Smelt collected in the SKT did not vary greatly (Fig. 55). It does not appear that clutch size 
should have varied much in the POD years, including the four comparison years 2005-6 and 
2010-11, with 2003 as the exception where the median length was greater than 70 mm standard 
length (Fig. 55). For Delta Smelt, which are now considered seasonal indeterminant spawners 
(i.e., they spawn multiple times), total reproductive output of an individual female should 
vary with: 1) size at the onset of the spawning window because batch fecundity is a function 
of size (Bennett 2005, CDFW unpublished data), 2) length of the spawning window, which is 
the number of days with suitable water temperatures for spawning (see larvae section below) 
and determines the number of batches possible; and 3) growth during the spawning window, 
which can potentially improve batch fecundity over time (see larval section below). Obviously, 
reproductive output will be higher in years when adult females are larger, abundances are higher, 
and the spawning window is prolonged such that multiple clutches are produced. Note that 
maximum reproductive output of the adult population at the beginning of spawning is not often 
realized due to mortality arising from density-dependent (e.g., food limitation or predation) 
or density-independent (e.g., entrainment, contaminants) mechanisms. According to Bennett 
(2011), larvae from bigger, early-spawning females may be disproportionally lost to CVP and 
SWP entrainment. In this report, we consider years when there are bigger females and/or a higher 
spawning stock size to be better in terms of reproductive potential than years when adult female 
size and spawning stock are smaller.

Larvae

Life History

Adult Delta Smelt, through their selection of spawning sites and spawn timing, largely determine 
the early rearing habitat and environmental conditions encountered by larvae. Given the Delta 
Smelt’s annual life cycle, small size at maturity, relatively low fecundity, and small egg size 
compared to other fishes, life history theory suggests that parental care, here limited to selection 
of spawning sites and spawn timing, should be an important factor in reproductive success 
(Winemiller and Rose 1992). Since eggs have not been detected routinely in the wild, spawning 
and early rearing habitat locations are inferred from collection of ripe adults and early stage 
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larvae, which occur from the Delta margins through eastern Suisun Bay (see: http://www.dfg.
ca.gov/delta/projects.asp?ProjectID=SKT; Wang 1986, 1991, 2007). In culture, Delta Smelt 
begin spawning as water temperatures increase to 10-12 °C, at which time individual females 
accompanied by several males select appropriate water velocities and release gametes close to 
the substrate from dusk to dawn (Baskerville-Bridges et al. 2004b). In lab experiments, females 
deposited significantly more eggs on sand and gravel substrates as compared to other substrates 
offered for egg deposition (J. Lindberg, U.C. Davis, unpublished data). Based on periodicity in 
egg deposition in culture, Bennett (2005) proposed that spawning likely coincides with peak tidal 
currents (i.e., spring tides), which would result in hatching near neap tides. Such a strategy would 
limit the initial tidal dispersal of larvae.

In culture, larvae hatch after an 11-13 day incubation period at 14.8-16.0 °C and begin a short 
period of buoyancy (or positive phototaxis; Baskerville-Bridges et al. 2004b) prior to slowly 
settling to the bottom (Mager et al. 2004). After this buoyant period, Mager et al. (2004) found 
that larvae were demersal unless actively swimming to feed, which occurred only during daylight 
hours. Exogenous feeding begins at 5-6 days post-hatch as the last of the yolk sac is absorbed; 
the lipid globule is absorbed at 10 days (Mager et al. 2004) providing some nutritional reserve 
if feeding conditions are poor. Larvae probably remain somewhat bottom oriented until swim 
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Figure 53. Relationship of annual indices of Delta Smelt abundance from the 
Spring Kodiak Trawl (SKT) and Fall Widwater Trawl (FMWT) from the previous 
year. Year labels correspond to the year of the SKT. The linear regression with all 
index values log-transformed to address non-normal distributions in the raw data 
is: Log SKT Index = 0.4997 + 0.6381(Log FMWT Index Year-1), n = 11, p < 0.001, R2 
= 0.79.

http://www.dfg.ca.gov/delta/projects.asp?ProjectID=SKT
http://www.dfg.ca.gov/delta/projects.asp?ProjectID=SKT
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bladder and fin development are complete at about 65 days of age and about 20 mm TL (Mager 
et al. 2004, Baskerville-Bridges et al. 2004b), at which time they can fully control their buoyancy 
and efficiently use tidal and river currents to migrate. The center of distribution for Delta Smelt 
larvae and young juveniles is generally downstream of the spawning habitat, but upstream of and 
varying in association with X2 during spring (Dege and Brown 2004). 

Early larval stages of Delta Smelt (4-15 mm) tended to be poorly collected by gear previously 
used in historical SFE egg and larval surveys (Striped Bass Egg and Larva Survey; sled-mounted 
500 micron mesh net with 0.38 m2 mouth area), but with growth and development greater 
proportions of the population become vulnerable. This observation led to a sampling gear change 
in the mid-1990s from the historical egg and larval gear to new gear targeting more vulnerable 
post-larvae and early juvenile Delta Smelt (i.e., 20 mm Survey). The improved catch and 
distribution information resulting from this change has since proven valuable to the management 
of Delta Smelt, and the 20 mm Survey results are now considered essential information (USFWS 
2008). In the mid-2000s, an abundance index was developed from 20 mm data (Gleason and 
Adib-Samii 2007) that has since been used to index abundance trends of larvae in spring (e.g., 
Hieb et al. 2005, Contreras et al. 2011). We use 20 mm Survey abundance indices as one Delta 
Smelt end-point to evaluate the support for our hypotheses concerning the environmental drivers 
and habitat attributes responsible for abundance and survival of larvae.

Figure 54. Plot of the Spring Kodiak Trawl (SKT) adult 
abundance index against the 20 mm Survey larval 
abundance index 2003-2012. The comparison years of 
2005, 2006, 2010, and 2011 are labeled.
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Population Trends

The highest larval abundance indices on record occurred in the late 1990s, shortly after the 
initiation of the 20 mm survey in 1995. The lowest larval abundances were observed in 2007-
2010 (Fig. 3). In 2011, larval abundance improved substantially from the recent minimum in 
2007, and achieved levels comparable to those earlier in the 2000s (Fig. 3). Although 2011 larval 
abundance compared favorably to that of 2010, it remained below levels of 2005 and 2006. Thus, 
the modest larva abundance in 2011 did not appear sufficient to explain the high FMWT index 
observed in 2011 (Fig. 3). As explained above, larval abundance does not track the abundance of 
the parent generation very well (Fig. 54). In contrast, subsequent life stages of the same cohort 
track larval abundance and abundance relationships of larvae (log 20 mm index) with juveniles 
(log TNS index) and subadults (log FMWT index) in the same year are statistically significant 
(Fig. 56). However, the linear regression based on the FMWT explains less variance than the 
linear regression based on the TNS suggesting more variability in the abundance of the older life 
stages. This suggests that factors affecting juvenile mortality rates also play an important role in 
eventual recruitment.

Figure 55. Median fork length (mm) of Delta Smelt collected in January and February by the Spring 
Kodiak Trawl by year, 2002-2012. See Chapter 3: Data Analyses for explanation of boxplots.
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Juveniles

Life History

During summer, juvenile Delta Smelt primarily rear in the west Delta, Suisun Bay, and Cache 
Slough complex (Moyle 2002, Bennett 2005, Merz et al. 2011, Sommer and Mejia 2013). As in 
late spring and fall, the center of distribution of the fish occurs in the low salinity zone, with the 
exception of the Cache Slough complex. The degree to which the fish use particular geographic 
areas depends on salinity, temperature, and turbidity (Nobriga et al. 2008); other factors that 
may affect their summer distribution include Microcystis distribution, and possibly prey density, 
bathymetric features, or other water quality constituents. As noted previously, Delta Smelt used 
to be common in the central and south Delta during the summer months, but this is no longer the 
case (Nobriga et al. 2008).

Population Trends

Relative abundance of juvenile Delta Smelt is presently indexed by the Summer Townet Survey 
(TNS). The survey was not designed specifically to measure Delta Smelt abundance and catches 
are low (Honey et al. 2004). Nonetheless, patterns in the annual abundance index provide a useful 
basic measure of population trends.

The TNS index rebounded substantially in 2011, but declined to a value consistent with low 
recent year indices in 2012 (Fig. 3). This pattern of persistently low abundance is consistent with 
the POD, which began over a decade ago (Sommer et al. 2007, Thomson et al. 2010). During the 
last decade, TNS abundance indices were especially low from 2005-2009 (Fig. 3). The onset of 
the 2005-2009 period of low juvenile abundance was characterized by extremely low larvae to 
juvenile survival in 2005 and 2006 (Fig. 51). Larval survival to juveniles recovered somewhat in 
the following years, but TNS indices stayed low (Fig. 3). Historically (e.g., early 1970s),  high 
levels of Delta Smelt abundance during summer apparently allowed density dependent effects 
to occur between summer and fall in some years; this conclusion was still supported after the 
species declined in the early 1980s, but the apparent carrying capacity was lower (Bennett 2005). 
The available trawl data suggest that this trend of declining carrying capacity has continued as 
suggested by the very low Fall Midwater Trawl indices produced by a range of juvenile TNS 
abundance levels, during the POD years (Fig. 57).

Subadults

Life History

During fall, subadult Delta Smelt primarily rear in the western Delta, Suisun Bay, and Cache 
Slough complex (Moyle 2002, Bennett 2005, Sommer and Mejia 2013). The center of 
distribution is in the low-salinity zone (Sommer et al. 2011), with the exception of the Cache 
Slough complex. The degree to which the fish use particular geographic areas depends on salinity 
and turbidity (Feyrer et al. 2007). Other factors that may affect their distribution during the fall 
include Microcystis distribution and water temperature in the early fall (September-October), and 
possibly prey density.
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Population Trends

Population trends for subadult Delta Smelt are presently indexed by the FMWT. Like the TNS, 
the FMWT was not designed specifically to measure Delta Smelt relative abundance and catches 
are low (Honey et al. 2004, Newman 2008). The data are nonetheless a useful basic measure of 
population trends, except perhaps at very low abundance (i.e., FMWT index values less than 
about 50; Fig. 53). However, the general agreement between the FMWT and subsequent Spring 
Kodiak Trawl (SKT) sampling (Fig. 53), suggests that FMWT results are a reasonable indicator 

Figure 56. Relationship of annual index of Delta Smelt abundance from 
the 20 mm survey (20 mm) with the annual indices from the summer 
townet survey (TNS) and fall midwater trawl survey (FMWT). Year labels 
correspond to the comparison years of interest. The linear regressions with 
all index values log-transformed to address non-normal distributions in 
the raw data are: Log 20 mm index = 0.57 + 0.87(Log TNS index), n = 19, p < 
0.05, R2 = 0.44 and Log 20 mm index = 1.30 + 0.81(Log FMWT index), n = 19, 
p < 0.05, R2 = 0.27.
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of general trends in abundance of 
adult Delta Smelt.

The FMWT index rebounded 
substantially in 2011, but declined 
to a value consistent with low 
recent-year indices in 2012 
(Fig. 3). During the last decade, 
FMWT indices were especially 
low from 2005-2010 (Fig. 3). 
After the rebound in 2011, the 
index went back to a lower 
level similar to the 2005-2010 
period. Since 2003, the juvenile 
to subadult survival index was 
lowest in 2004. During the four 
comparison years, the juvenile 
to subadult survival index was 
lowest in 2010, but relatively 
high in the other three years and 
highest in 2011 (Fig. 51). 

Historically, high levels of Delta 
Smelt abundance during summer 
apparently resulted in density-
dependent mortality between 
summer and fall in some years 
(Bennett 2005). This conclusion 
was still supported after the 
species declined in the early 
1980s, but the apparent carrying 
capacity, meaning the magnitude 
of the FMWT index relative 
to the TNS index, was lower 
(Fig. 57). The available FMWT 
data suggest that these trends 
of density-dependent mortality 
during the summer-fall and 
declining carrying capacity have 
continued (Fig. 57). The close 
correlation of the FMWT and 
SKT (Fig. 53) indicates that the 

factors likely affecting survival of Delta Smelt to the adult spawning population operate earlier in 
the life cycle (i.e., between the egg and subadult life stages). Additional mortality certainly occurs 
between the FMWT and SKT but the lack of variability around the regression line suggests there 
is not a lot of variability in the rate of that mortality. Thus, the relative annual spawning stock 
appears to be largely determined by fall of the birth year. 

Figure 57. Plots of fall midwater trawl (FMWT) 
abundance index as a function of summer townet 
survey (TNS) abundance index for 1982-2013 and 
2003-2013. Note the very different scales for both 
axes. Lines are LOWESS smooths.
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Chapter 7: Using the Conceptual 
Model–Why did Delta Smelt 
abundance increase in 2011?
In this Chapter, we further explore Delta Smelt responses and habitat attributes as depicted in the 
driver and life stage transition conceptual model diagrams presented in Chapter 5. The purpose 
is to demonstrate the utility of our conceptual model framework for generating hypotheses about 
the factors that may have contributed to the 2011 increase in Delta Smelt abundance. For each 
life stage transition, we explore a series of hypothesized linkages among ecosystem drivers, 
habitat attributes, and Delta Smelt responses. We evaluate these hypotheses by comparing habitat 
conditions and Delta Smelt responses in the wet year 2011 to those in the prior wet year 2006 and 
in the drier years 2005 and 2010. 

In this Chapter we briefly describe the comparative approach and the hydrological conditions 
during the four years that are the focus of our comparisons. We then state and explore each 
hypothesis for the adult, larval, juvenile, and subadult life stages of Delta Smelt using data 
sources described in Chapter 3. Key points from these evaluations, as well as previous report 
Chapters, along with benefits and limitations of the comparative approach are summarized and 
discussed in Chapter 8. In several cases, we lacked suitable data or other necessary information 
to evaluate our hypotheses; these data and information gaps are described in Chapter 9. Chapter 
9 also includes a brief review of some of the more complex mathematical analyses used in recent 
peer-reviewed publications, such approaches currently being used by others, and three examples 
of additional mathematical modeling approaches that can be used to further explore some of the 
linkages and interactions in our conceptual model and complement previously published and 
other ongoing mathematical modeling efforts for Delta Smelt.

Comparative Approach

The comparative approach used for evaluating the hypotheses stated in this Chapter is similar to 
the approach taken in the FLaSH investigation (Brown et al. 2014, see also http://deltacouncil.
ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-
review-0). This allowed us to place the results of the FLaSH investigation in a year-round, 
life cycle context as recommended by the FLaSH Panel (FLaSH Panel 2012). Specifically, 
we compared data from the two most recent wet years, 2006 and 2011, and the two years that 
immediately preceded them, 2005 and 2010. To conduct our comparisons, we determined how 
Delta Smelt responses or habitat attributes would be expected to respond in the different years 
and then compared the expected response to the observed response. If the expected and observed 
responses were similar, the hypothesis was considered to be supported. 

Moderate to wet hydrological conditions tend to benefit many estuarine organisms, including 
Delta Smelt (Sommer et al. 2007). But low recruitment or low survival at any point in the 
predominantly annual Delta Smelt life cycle can lead to low abundance even in a wet year. 
Identifying the reason(s) for low abundance in a wet year may give important insights into key 
habitat attributes and environmental drivers that could be managed in a way that would improve 
the likelihood of abundance increases in all wet years. 

http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-review-0
http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-review-0
http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-review-0
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The two wettest years after the onset of the POD were 2006 and 2011 (Fig. 58). Delta Smelt 
abundance increased substantially in 2011, but not in 2006 (Fig. 3). The failure of the Delta Smelt 
population to increase in the wet year 2006 and the increase of Delta Smelt in the wet year 2011 
provides an opportunity to compare and contrast habitat attributes in these two years and possibly 
identify new options for management actions. As stated in Chapter 3, our working assumption 
is that different Delta Smelt abundances in 2006 and 2011 should be attributable to differing 
environmental conditions, in some cases attributable to management actions, and subsequent 
ecological processes influencing the Delta Smelt population. 

Preceding habitat conditions may have important implications for the response of a population 
to the environmental conditions present during a wet year; therefore, we also consider data from 
2005 and 2010. Further, we also consider adult and larval abundance in 2012 following the wet 
year of 2011. We did not include any years predating the POD period in this analysis. This was 
done to prevent the possibly more subtle, but management-relevant, environmental changes 
occurring during the POD period from being overwhelmed by effects of the strong POD step 
changes in the early 2000s as well as similarly strong changes that occurred before the POD (e.g., 
after the invasion of the clam Potamocorbula amurensis). 

For the purpose of this report, we call 2005, 2006, 2010, and 2011 our “study years.” We use 
“year” rather loosely because the Delta Smelt life cycle does not follow the calendar year. 
As already explained, life stages can overlap and can be observed during different months in 
different years. Mature adults of a cohort produced in one year are generally not observed until 
the following year. Similarly, the life cycle does not strictly follow the water year type. We do our 
best to explain these mismatches when they occur and keep the presentation focused on the life 
cycle and the conceptual models.

Note that we do not examine the complex interactions that may occur when more than one 
hypothesis is true (or false), nor do we rule out that a hypothesis may be true in some years 
and false in others. Therefore, it is important to recognize that data contrary to a hypothesis 
may indicate that the habitat attribute was not controlling in the selected years, or that complex 
interactions among multiple habitat attributes (and corresponding hypotheses) contributed to the 
observed effects. Addressing such complexities is more appropriate for quantitative models as 
discussed in Chapter 9.

Hydrological Conditions 

According to annual water year indices and classifications for overall hydrological conditions in 
the Sacramento and San Joaquin Valleys that provide the freshwater inflow into the Delta, 2005, 
2006 and 2011 were the wettest years of the POD period (Fig. 58, see also http://cdec.water.
ca.gov/cgi-progs/iodir/WSIHIST). In the San Joaquin Valley, 2010 was the fourth wettest year of 
this period. In the Sacramento Valley, 2003 and 2004 were wetter than 2010. Specifically, water 
year 2010 was classified as “below normal” in the Sacramento Valley and “above normal” in 
the San Joaquin Valley and 2011 was classified as wet in both areas, according to the water year 
index classifications. Water year 2005 was classified as “above normal” in the Sacramento Valley 
and “wet” in the San Joaquin Valley and 2006 was classified as wet in both areas. (Fig. 58). 
Water year 2012 was classified as “below normal” in the Sacramento Valley and “dry” in the San 
Joaquin Valley. 

http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST
http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST
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Figure 58. Annual water year indices for the a) Sacramento and b) San Joaquin 
Valleys since the initiation of the Summer Townet Survey in 1959. Horizontal 
dashed lines: threshold levels for water year type classifications as wet (W), 
above normal (AN), below normal (BN), dry (D) and critically dry (C). Darker grey 
bars indicate the four study years (2005, 2006, 2010, 2011) examined in Chapter 7 
of this report. (Data are from http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST).

The overall wet hydrological conditions in the Sacramento and San Joaquin Valleys in 2005-6 
and 2010-11 resulted in relatively prolonged periods of high Delta inflow and outflow and low 
X2 values in the winter and spring months of the four study years (Fig. 59). In the first half of the 
year, 2006 had the highest outflow and lowest X2 values followed by 2011, 2005, and 2010. In 
the second half of 2011, outflow was higher and X2 values were lower than in the second half of 
2006 and of all other years during the POD period. In spite of having the lowest spring X2, 2006 

http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST
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had the highest fall X2 (September to October) of all study years, followed by 2005, 2010, and 
2011 (Fig. 60). 

The overall high flows during these four years allowed for periods of very high fresh water 
exports from the Delta (Fig. 59). This led to record high volumes of fresh water exported in water 
year 2011 (6.7 maf) and in water year 2005 (6.5 maf) and a somewhat lower export volume in 
water year 2006 (6.3 maf). The total water export volume was substantially lower in water year 
2010 (4.8 maf) because 2010 immediately followed a three-year drought and the below normal 
hydrological conditions in the Sacramento Valley (Fig. 58) were not sufficient to rapidly replenish 
reservoirs and allow for greater exports.

Hypotheses

Individual hypotheses are indicated in the life stage transition conceptual model diagrams next 
to the arrows depicting each hypothesized linkage or outcome (figs. 46-49). While all linkages 
are considered important, we only developed hypotheses for selected linkages. We developed 
hypotheses for linkages with sufficient data for quantitative assessments and where there is 
disagreement or uncertainty regarding the outcome resulting from a driver. We also developed 
hypotheses for linkages considered important but where we found critical information was 
missing; thus, highlighting topics where new work is needed. For each of these hypotheses, 
we then considered the available data to examine whether the Delta Smelt response expected 
under the hypothesis was consistent with the observed trends in habitat attributes or population 
dynamics. While we would have liked to test hypotheses about the linkages between habitat 
attributes and the specific life stage transition processes shown in the life stage transition 
conceptual model diagrams, the available data often only allowed us to test “lower tier” 
hypotheses about the linkages between ecosystem drivers and habitat attributes. 

Note that we have not examined the complex interactions that may have occurred when more 
than one hypothesis was true (or false), nor have we ruled out that a hypothesis may be true in 
some years and false in others. Therefore, it is important to recognize that data contrary to a 
hypothesis may indicate that the habitat attribute was not controlling in the selected years, or 
that complex interactions among multiple habitat attributes (and corresponding hypotheses) 
contributed to the observed effects. Addressing such complexities is likely more appropriate for 
quantitative models as discussed in Chapter 9. Our overall objective in this Chapter is to provide 
a demonstration of how the conceptual model can be used to generate and test hypotheses and 
highlight data gaps while addressing a specific topic of management interest—the increased Delta 
Smelt abundance index in 2011.

Adult Hypotheses

Hypothesis 1:  Hydrology and water exports interact to 
influence entrainment risk for adult Delta Smelt.

As discussed earlier, we do not currently have a reliable measure of actual entrainment of 
fishes by the SWP and CVP export pumps. We also do not have actual population abundance 
estimates for Delta Smelt. As discussed by Kimmerer (2008, 2011) and Miller (2011), it is thus 
difficult to estimate proportional population losses due to entrainment. We consider the published 
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Figure 59. Net daily flows in cubic feet per second for a) Delta inflow from all 
tributaries, b) Delta outflow into Suisun Bay, and d) total freshwater exports from 
the Delta. Also shown are daily values for c) X2 (see Chapter 4 for explanation). 
Flow data are from Dayflow (http://www.water.ca.gov/dayflow/). X2 values are 
calculated from daily Delta outflow with the equation in Jassby et al. (1995.)

http://www.water.ca.gov/dayflow/
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proportional loss estimates for adult Delta Smelt entrainment losses for the two years for which 
they are available (2005 and 2006; Kimmerer 2008). However, we otherwise restrict our analysis 
– and this hypothesis – to an assessment of entrainment risk based on salvage and OMR flow 
data. Note that high entrainment risk for an individual fish does not automatically lead to a high 
proportion of the population lost to entrainment mortality. For example, in wetter years when 
large numbers of fish are present but most of the population is distributed farther away from 
the pumps, a large number of fish can be entrained but only a small percentage of the entire 
population. 

Adult (December-March) Delta Smelt salvage was highest in 2005 followed by 2006 and 2010 
and lowest in 2011 (Fig. 61). In 2005, most salvage occurred in January, while in the other three 
years it occurred in February and March (Fig. 62). Overall, adult Delta Smelt salvage in the four 
comparison years was on the very low end of the historical time series starting in 1980 (Fig. 26). 
On the other hand, the ratio of adult salvage divided by the previous year’s FMWT index was 
high in 2005 (6th highest on record since 1979), but much lower in 2006 and 2010, and lowest in 
2011 (Fig. 26).

Low salvage levels in these years and especially in 2010 and 2011 were not particularly 
surprising due to the low FMWT levels of the POD years along with more active management 
of OMR flows for Delta Smelt and salmonid protection after 2008 in accordance with the 
USFWS (2008) and NMFS (2009) BioOps. For management purposes, the onset of increased 

Figure 60. Daily X2 values in January to December for each of the four study 
years. Seasonal X2 averages are indicated by horizontal lines for spring X2 
(February to June), summer X2 (July and August), and fall X2 (September to 
December). See Fig. 15 for seasonal X2 in other years. 
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adult Delta Smelt entrainment risk is inferred from distributional patterns of Delta Smelt 
detected by the SKT survey, Delta Smelt salvage and, more recently, consideration of Delta 
conditions, including turbidity patterns. Since 2009, net OMR flows during periods of increased 
adult Delta Smelt entrainment risk are now always less negative than they were in years prior 
to the BioOps. Prior to 2008, net OMR flows often reached -8,000 to -10,000 cfs (see Fig. 31, 
Kimmerer 2008, Grimaldo et al. 2009), when outflow was low. An exception to these strongly 
negative flows occurred during April-May export curtailments associated with the Vernalis 
Adaptive Management Program (VAMP, 2000-2012). These curtailments were especially 
pronounced in the first half of the VAMP period (2000-2005). During the four comparison years, 
winter (December-March) net OMR flows were least negative in 2006 followed by 2011 and 
2010 with the most negative net OMR flows in 2005 (Fig. 63). High inflows particularly from 
the San Joaquin River during 2005, 2006 and 2011 moderated effects of negative OMR flows, 
while export pumping generally remained high. In 2010 at the end of a three-year drought, there 
was little water in storage to provide for Delta exports prior to the first substantial inflows in 
mid-January. Subsequently, export levels had to be curtailed to achieve the desired OMR flows. 
Average winter-time net flows past Jersey Point on the San Joaquin River were positive in all four 
study years and greatest in 2006 followed by 2011, 2005, and 2010 (Fig. 63). 

Kimmerer (2008) used salvage, OMR flows, and fish survey data to estimate proportional 
population losses due to entrainment for the years 1995-2006. The years 2005 and 2006 represent 
some of the lower loss estimates in the years examined by Kimmerer (2008); mean population 
losses reached up to 22% of the adult population in some years when OMR flows were more 
negative than -5000 cfs (Kimmerer 2008). Even if Kimmerer’s estimation method provides a 
potential overestimate of loss (Miller 2011), proportional losses of the adult population were less 
than 10% in the two years that coincide with our comparison years (2005 ≈ 3% , 2006 ≈ 9%; 
from Fig. 12 in Kimmerer 2008). These types of proportional loss estimates are not available for 

Figure 61. Annual adult (December-March) Delta Smelt salvage at the CVP (blue 
bars) and SWP (green bars) fish protection facilities for 2005-2012.
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2010 and 2011, but would likely be even smaller than for 2005 due to less negative OMR flows 
and fish distributions away from the CVP and SWP pumps. Salvage was also lower in these two 
years than in 2005 and 2006.

In summary, we conclude that hydrology and water exports do interact to influence entrainment 
risk for adult Delta Smelt and that adult Delta Smelt entrainment risk during the four comparison 
years was perhaps higher in 2005 than in the other years, but was low relative to historical levels 
in all four years. 

Hypothesis 2: Hydrology interacting with turbidity 
affects predation risk for adult Delta Smelt. 

At present, we do not have information about differences in actual predation mortality between 
the comparison years. As with entrainment, we thus limit this hypothesis and our analysis to 
to a general discussion of predation risk. Fully characterizing predation risk is exceptionally 
complicated, making it difficult to generate simple hypotheses that describe associated losses of 
all life stages of Delta Smelt. We thus limit our hypotheses about predation risk to a few factors 
for each life stage. For adults, we consider hydrology and turbidity as well as overlap with 
predators (next hypothesis). 

Because Delta Smelt migrate during higher flow conditions when the water is generally turbid, it 
is assumed that losses to visual predators are lower or at least not substantially higher during the 
migration period than during other periods. First flush studies led by the USGS and UC Davis 

Figure 62. Annual combined adult (December-March) Delta Smelt salvage at 
the CVP and SWP fish protection facilities by month for 2005-2012.
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suggest that Delta Smelt aggregate in the water column away from channel edges during daytime 
flood tides during upstream migration events (Bennett and Burau 2014), but it is not known if 
Striped Bass or Sacramento Pikeminnow Ptychocheilus grandis, the most likely predators of 
Delta Smelt in the water column, can detect and exploit these aggregations.

In the winters of 2005, 2006, 2010, and 2011 the highest Secchi depths (lowest turbidity) were 
found in the freshwater regions of the estuary (< 1 salinity), except for the Cache Slough region 
in the north Delta which was as turbid as the saltier regions of the estuary (Fig. 64). Winter-time 
Secchi depths in the freshwater region recorded during the SKT surveys (Fig. 64) were often 
higher (water clearer) than the average Secchi depths across all IEP EMP monitoring sites during 
these months since 2003 (about 60 cm) and especially when compared to pre-POD winter Secchi 
depths (around 50 cm on average) recorded by the EMP (Fig. 25). Winter-time Secchi depths in 
the other salinity regions were generally lower (water more turbid) than the EMP Secchi depth 
averages for the POD years and more similar to historical averages. In all four comparison years, 
predation risk associated with turbidity levels was thus likely not different from the historical risk 
in the more saline regions and the Cache Slough complex, but possibly higher in the freshwater 
regions, except for the Cache Slough region.

The salinity region differences were much more pronounced than the interannual differences 
between the four comparison years. Based on these data, it is not clear that higher flows in 2006 
and 2011 contributed to higher turbidity in the winter months. The exception might be near the 
end of the Delta Smelt spawning season in early April when Secchi depths in the freshwater 

Figure 63. Annual average daily net flows for December through March in cubic 
feet per second (cfs) in Old and Middle River (OMR), past Jersey Point on the 
lower San Joaquin River (QWEST) and total exports in millions of acre feet (MAF), 
2005-2013. Error bars are 1 standard deviation.
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region were often substantially lower in the two wetter years 2006 and 2011 than in the two drier 
years 2005 and 2010 (Fig. 64). This will be discussed further in the report section about larval 
Delta Smelt. For adults, we conclude that interannual differences in turbidity between the wetter 
and drier of the four comparsion years did not likely contribute substantially to reduced predation 
risk and increased survival in the two wetter years.

Hypothesis 3: Predator distribution affects 
predation risk of adult Delta Smelt

Spatial and temporal overlap with predators is a likely factor contributing to predation risk for 
all life stages. At present, we do not have information about how predator distribution varied 
between our comparison years but it is recognized that adult Delta Smelt could be vulnerable to 
predation if the distributions of predators and Delta Smelt populations overlapped. As already 
mentioned, Striped Bass and Sacramento Pikeminnow are the most likely open-water predators 
of adult Delta Smelt. If Delta Smelt utilize littoral habitats to a greater extent than presently 
assumed, then increased overlap with the distributions of Largemouth Bass and other centrarchid 
populations is possible. Results of field studies (Feyrer et al. 2013, Bennett and Burau 2014), 
described for Adult Hypothesis 2, found that adult Delta Smelt did move nearshore on a tidal 
basis to avoid displacement or move upstream during the “first flush.” Such movements would 
increase proximity to shoreline predators like Largemouth Bass, albeit during periods of 
increased turbidity when such visual predators would be at a disadvantage. Clearly, Hypothesis 2 
and Hypothesis 3 are closely linked because predation risk is a function of predator presence and 
prey vulnerability. More information about predator presence is needed to evaluate this aspect of 
predation risk.

Hypothesis 4: Variability in prey availability during winter 
and spring affects growth and fecundity (eggs per clutch 
and number of clutches) of female Delta Smelt.

The hypothesis is that increased food availability leads to not only increased adult survivorship, 
but also growth, which in turn increases reproductive output (number of eggs per female 
increases with size; Bennett 2005). In addition, with cooler temperatures and lower metabolic 
rates, sufficient food resources during winter can contribute to energetically demanding multiple 
spawning events (three spawns possible in wild fish; L. Damon, CDFW, written communication 
2012). 

For adult females, the ability to meet the bioenergetic demands of reproductive development 
with sufficient food consumption may be particularly important for fish that spawn multiple 
times in a year. Preliminary findings from January through April 2012 indicated that adult Delta 
Smelt are indeed consuming large prey items, such as amphipods, mysids, and larval fish during 
their spawning period (Fig. 44) with feeding incidence near 98% for the period (Table 2). For 
this report, we cannot address whether food limitation is a relevant factor during the late winter-
spring spawning period because we do not have sufficient data about adult Delta Smelt feeding, 
but we hypothesize that it may be a critical issue for spawners that need energy for multiple egg 
clutches. Evidence in support of this hypothesis comes from the modeling simulation experiment 
by Rose et al. (2013b) who found that food availability along with water temperature affected fall 
and winter growth and egg production prior to spawning and ultimately population success.
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Based on trajectories in adult fork lengths, it appears that adult growth may have been somewhat 
higher in 2005 and 2011 than in 2006 and 2010, although differences were not pronounced (Fig. 
17) and as noted in Chapter 6, annual fork lengths of Delta Smelt collected in the SKT were 
similar in the four study years (Fig. 55). From these data we infer that environmental conditions 
were generally good, supporting both continued growth in length and maturation of eggs, 
except perhaps in 2010. In 2011, only 13 mature females were collected, so growth estimates 
are uncertain. In general, the number of mature females collected each year reflected year-class 
strength as measured by the SKT (Fig. 3), except in 2011 when only 13 ripe or ripening females 
were collected. Adults may use more energy for egg production than for continued somatic 
growth, but we do not have data on clutch sizes to evaluate this for the four study years. 

Data on prey availability for current IEP sampling locations is also limited. Adult Delta Smelt 
diet is varied (Fig. 44) and includes pelagic and demersal invertebrates, as well as larval 
fish. Current mesozooplankton (copepod and cladoceran) and mysid sampling by the EMP 

Figure 64. Secchi depth data collected during the Spring Kodiak Trawl Survey. 
Surveys are conducted monthly January-May. See Chapter 3: Data Analyses for 
explanation of boxplots.
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Zooplankton Study and invertebrate sampling by the EMP Benthic Monitoring Study does not 
sample the full geographic range occupied by adult Delta Smelt, including Cache Slough and the 
Sacramento River Deep Water Ship Channel. In addition, epibenthic cumaceans and amphipods 
consumed by Delta Smelt might not be effectively sampled with current methods (substrate 
grabs using a Ponar dredge), which are more suited to sampling organisms in or attached to the 
substrate. Amphipods found in stomachs of adult Delta Smelt collected January 2012-May 2012 
(Fig. 44) were 95% Corophium spp., and of those, 90% were juveniles ranging 0.8 to 1.3 mm in 
body length. These amphipods are believed to be mostly juvenile Americorophium spinicorne 
and A. stimpsoni, which as adults are tube building amphipods (Hazel and Kelley 1966). Dirt, 
substrate debris, and tube pieces were not found in Delta Smelt stomachs with the amphipods, so 
it is possible these juveniles amphipods are epibenthic or pelagic prior to settling and building 
tubes. Size distribution of amphipods collected by the DWR EMP Benthic Monitoring Study is 
not currently available. The IEP Smelt Larva Survey does collect larval fish data during winter 
(January-March) over a wide section of the estuary, but comparisons with larval fish consumption 
by adult Delta Smelt are limited because this survey is still new; it was initiated in 2009. 

Data were insufficient to conclusively test the hypothesis that variability in prey availability 
affects growth and fecundity of adult Delta Smelt. More data are needed on growth, clutch 
number and size, and prey availability. 

Larval Hypotheses

Hypothesis 1: Delta Smelt larvae numbers are positively affected 
by increased duration of the temperature spawning window 

To evaluate this hypothesis, we developed two water temperature measures. The first is 
the number of days in the temperature spawning window as indexed by mean daily water 
temperatures at Rio Vista between 12 and 20 °C. This temperature range was selected as 
representing a reasonable balance between the various temperature ranges observed in laboratory 

 Month 

YEAR REGION JAN FEB MAR APR MAY
GRAND 
TOTAL

2012 > 6 100% 100%    100%

 1 - 6 100% 100% 100% 100% 0% 99%

 < 1 100% 93% 100% 90% 89% 94%

 CS-
SRDWSC

100% 100% 100% 96% 100% 99%

GRAND 
TOTAL 100% 99% 100% 95% 90% 98%

Table 2. Percent of age-1 Delta Smelt captured during the Spring Kodiak Trawl Survey 
with food present in the stomach collected January through May 2012 for three salinity 
regions and the freshwater Cache Slough-Sacraramento River Deepwater Ship Channel 
(CS-SRDWSC).
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and field studies (Wang 1986, Baskerville-Bridges et al. 2004b, Bennett 2005) and reviewed 
in earlier sections of this report. Presumably, a longer duration spawning window would result 
in more repeat spawning for individual females and greater total fecundity. The second water 
temperature measure is the number of days in the optimal temperature for egg survival to hatch. 
We referred to Fig. 10a in Bennett (2005) and selected the temperature range of 12-17 °C as 
optimal for egg survival. As explained in previous sections, adult abundance, based on SKT 
sampling, peaked in 2012 as the 2011 year-class of Delta Smelt reached maturity (Fig. 3). In 
contrast, the spawning stock (i.e., 2011 SKT) that produced the 2011 year-class ranked second 
lowest to 2006 (Fig. 3, Adults). Despite this low level, the 2011 spawning stock produced the 
highest adult abundance observed to date in 2012. This suggests that adult stock size has not 
limited subsequent adult recruitment from rebounding to levels comparable to those of immediate 
pre-POD years (see Fig. 3, Subadult). As mentioned in Chapter 6, this suggests that even a 
severely depleted adult stock can still produce a substantial number of larvae and a rebound in the 
Delta Smelt population, albeit with potentially lower genetic variability than before (Fisch et al. 
2011). It also suggests that factors acting on the survival of larval, juvenile and later stages have a 
substantial effect on recruitment of adults, because relatively low larval abundance in 2011, was 
associated with the high 2012 adult abundance (Fig. 3). 

As mentioned in the adult section, mature adult female Delta Smelt appeared to grow throughout 
the spawning seasons of the years compared, except 2010 (Fig. 17). We used water temperatures 
at the Rio Vista Bridge as a surrogate for temperatures experienced by spawning Delta Smelt 
(Fig. 65) and calculated the duration of the spawning window and of optimal temperatures to 
hatch. We calculated each as the number of days between the date of first achieving the lower 
temperature and the date of first achieving the upper temperature. The onset of the spawning 
window occurred earliest in 2010, followed by 2005 and 2011 (Fig. 65; Table 3). The spawning 
window occurred latest in 2006 (Fig. 65; Table 3). The spawning window was broad in both 2005 
and 2010 at 128-129 days, intermediate in 2011 at 113 days (20 °C not achieved until July 4, not 
shown), and was shortest in 2006 at 85 days (Fig. 65; Table 3). Assuming that female Delta Smelt 
undergo a 35-day refractory period, based on a 4-5 week refractory period (J. Lindberg, U.C. 
Davis, personal communication, 2013) between each spawning, even in 2006 three spawning 
events were possible, assuming fish were mature and ready to spawn at the initiation of the 
spawning window. In all other years, four spawning events were possible, so this measure does 
not discriminate among years well. The duration of optimal hatch temperature was also lowest 
in 2006, but other durations ranked differently across years than did spawning window duration 
(Table 3).

The data for the four study years do not provide conclusive support for the hypothesis that 
the duration of the spawning window or duration of optimal hatching temperature affected 
larval production. Relatively high larval abundance in 2005 was consistent with a long 
spawning window and moderate duration of optimal hatch temperatures (129 days and 68 days, 
respectively; not shown). However, 2006 with the shortest spawning window (85 days) and 
shortest optimal hatch duration among the 4 study years also had relatively good larva abundance 
(Fig. 3). In contrast, larval abundance was low in 2010 although the spawning window and 
optimal hatch duration were both relatively long. Other factors likely contributed to poor larval 
abundance in 2010, because ripening and ripe females were not detected after early April 2010 
and female growth through the winter was poor (Fig. 17). Finally, both the spawning window 
and optimal hatch duration were fairly long in 2011 as compared to 2006, so slightly lower larval 
production in 2011 is inconsistent with these durations. This hypothesis was not supported.
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Hypothesis 2: Increased food availability results 
in increased larval abundance and survival.

This hypothesis focuses on seasonal changes in phytoplankton biomass and the zooplankton 
community and resulting changes in abundances of food items most often consumed by Delta 
Smelt larvae. Phytoplankton biomass data (chlorophyll-a) collected at 10 stations by the IEP 

Figure 65. Mean daily temperatures (°C) at Rio Vista from February 1 through 
June 30, 2005, 2006, 2010, 2011. The green lines enclose the spawning window, 
which represents temperatures at which successful spawning is expected to 
occur.

Table 3. Delta Smelt spawning window (12 to 20 °C inclusive) and optimal hatching 
period (12 to 17 °C inclusive) for 2005, 2006, 2010, and 2011, defined as number of 
days of water temperatures, based on mean daily water temperatures measured at 
Rio Vista. Data are calendar day when water temperature achieved 12, 17, and 20 
°C and the duration (days) between those calendar days. The upper limit in 2011 
was not reached until July 4, outside the spring season.

Year

Day 
12 °C 
Achieved

Day 
17 °C 
Achieved

Day 20 °C 
Surpassed

Duration 
12-20

Duration 
12-17

Duration 
17-20

2005 50 118 179 129 68 61

2006 84 120 169 85 36 49

2010 46 136 174 128 90 38

2011 72 163 185 113 91 22
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EMP show that the highest spring biomass levels were observed in May of 2010 and 2011 (Fig. 
66). Median biomass levels were lower in April and May of 2005 and 2006 than in April and 
May of 2010 and 2011. This suggests that more food was available for zooplankton growth 
in the spring of 2010 and 2011 than in 2005 and 2006. In all four years, however, chlorophyll 
concentrations were lower than 10 ug/L at almost all stations, suggesting that zooplankton 
may have generally been food limited in these years (see Chapter 4). Nevertheless, greater 
phytoplankton biomass in late spring of 2010 and 2011 may have contributed to overall greater 
food availability and better survival of late larvae and early juveniles in these years.

Juvenile and adult calanoid copepods, particularly E. affinis and P. forbesi, comprise most of 
the larval diet through June (Nobriga 2002, Slater and Baxter 2014). E. affinis is moderately 
abundant only during winter and spring and rare in summer and fall, whereas P. forbesi is 
abundant only in summer and fall (Durand 2010, Hennessy 2010, 2011, Winder and Jassby 2011). 
It is not clear whether the seasonal decline in abundance of E. affinis is related to temperature, 
potential competitive interactions with P. forbesi, differences between the species in vulnerability 
to consumption by P. amurensis (Miller and Stillman 2013), or a combination of such factors. The 
transition between high abundances of the two species, may create a seasonal “food gap” during 
late spring or early summer. This food gap has been hypothesized to be an important period for 
Delta Smelt larval survival (Bennett 2005, Miller et al. 2012).

To assess whether a gap in prey availability existed between periods of high abundance of 
E. affinis and P. forbesi, we evaluated abundance patterns in 20 mm Survey copepod data for 
stations with and without Delta Smelt. The food gap hypothesis was only weakly supported by 
the data. The density of E. affinis (in the presence of Delta Smelt larvae) typically reached 100 m3 
by week 16 (Figs. 67 and 68). Assuming 100 m3 as a baseline density for E. affinis, this baseline 
was generally maintained until about week 22, when they declined at about the same time that P. 
forbesi densities increased to 100 m3 (Figs. 67 and 68). After combining the densities of both E. 
affinis and P. forbesi and tracking them through time, we detected a gap in food during week 22 
(late May – early June) of 2005 (Fig. 67), which is inconsistent with 2005 exhibiting the highest 
larva abundance among our comparison years (Fig. 3). Such density gaps were not observed in 
the other three comparison years (Figs. 67 and 68), which exhibited lower abundance than 2005 
(Fig. 3). Survival of larvae to juveniles was very low in 2005, but was also low in 2006 (Fig. 
51) with no evidence for a food gap in 2006. Survival of larvae to juveniles was relatively high 
in 2010 and 2011 (Fig. 51). This analysis does not support the hypothesis that differences in 
zooplankton availability affected larval abundance and survival in the four study years, but higher 
phytoplankton biomass in April and May of 2010 and 2011 could have contributed to overall 
greater food availability and better survival of late larvae and early juveniles in these years.

Hypothesis 3: Distributional overlap of Mississippi 
Silverside with Delta Smelt and high abundance of 
Mississippi Silverside increases predation risk/rate 
on larval Delta Smelt, whereas, increased turbidity, 
decreases predation risk/rate on larval Delta Smelt.

Silversides are ubiquitous within the Delta (Brown and May 2006) and have long been proposed 
(Bennett 1995) and more recently confirmed as a predator of Delta Smelt larvae (Baerwald et al. 
2012). We do not have estimates of predation losses to Silversides during the four study years and 
thus focus on assessing predation risk by evaluating fish distributions, predator and prey sizes, 
and prey growth, which is related to temperature. 
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Silversides large enough to consume fish larvae are present in the Delta during spring and are 
likely to prey upon Delta Smelt larvae. Silverside habitat has been characterized as open water 
shoals and shoreline (Brown and May 2006, Grimaldo et al. 2012); however, the species also 
occurs in low density in deep open water primarily in summer (Grimaldo et al. 2012). Catches in 
the SKT confirm silverside presence in open water in spring as well, though catches tended to be 
low. However, SKT sampling does not occur at night when offshore Silverside densities may be 
higher, if foraging patterns follow those observed in Clear Lake, California (see Wurtsbaugh and 
Li 1985). Compared to the open embayments, SKT Silverside catches were higher in channels 
such as Montezuma Slough, Cache Slough, the San Joaquin River, and especially the Sacramento 
Deepwater Ship Channel (Table 4). This Silverside distribution matched higher March through 
May regional catches of Delta Smelt larvae (Table 4, see http://www.dfg.ca.gov/delta/data/20mm/
CPUE_map.asp), except that larvae catches in Suisun Bay and the lower Sacramento River 
were occasionally high and Silversides catches were usually low. Delta Smelt larvae were found 
in significantly higher densities in offshore-open water habitats (Grimaldo et al. 2004), which 
corresponds to the habitat where Silversides consuming Delta Smelt larvae were captured 
(Baerwald et al. 2012). As discussed above, the relatively large-sized silversides present in the 
Spring Kodiak Trawl indicates some offshore movement and overlap of predator-sized foraging 
silversides with Delta Smelt larval habitat. 

The frequency and magnitude of Silverside catches by the Spring Kodiak Trawl increased as 
Secchi depths approached and dropped below 50 cm (Fig. 69), suggesting that Silversides 
may venture offshore more frequently and in higher numbers in turbid water. This might also 
represent a displacement effect resulting from high flows, but high catches were most common in 
Montezuma Slough and the Sacramento Deepwater Ship Channel (Table 4) where displacement 
by flow should not have been a factor.

The hypothesis is somewhat supported in that: 1) Silversides are captured in Spring Kodiak Trawl 
in March and April (Fig. 70), when early stage Delta Smelt larvae are common; 2) Silverside 

Figure 66. Trends in chlorophyll-a concentrations (µg/L) in samples collected 
by the IEP Environmental Monitoring Program during each the four study years 
(2005, 2006, 2010, and 2011). Sample site locations shown in figure 15. See 
Chapter 3: Data Analyses for explanation of boxplots. 

http://www.dfg.ca.gov/delta/data/20mm/CPUE_map.asp
http://www.dfg.ca.gov/delta/data/20mm/CPUE_map.asp
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catches offshore increase with increased turbidity (i.e., declining Secchi depth; Fig. 69), and 3) 
there is regional overlap in Cache Slough and the Sacramento Deepwater Ship Channel, and 
some in Montezuma Slough (cf. Table 4 and http://www.dfg.ca.gov/delta/data/20mm/CPUE_

Figure 67. Catch per unit effort (CPUE) of adult Eurytemora affinis and 
Pseudodiaptomus forbesi (Zoo; number individuals/m3 sampled) and Delta 
Smelt (DS; number individuals/10,000 m3 sampled) by calendar week from 
mesozooplankton sampling and Delta Smelt catch by the 20 mm and Summer 
Townet surveys, 2005 (top) and 2006 (bottom) 

http://www.dfg.ca.gov/delta/data/20mm/CPUE_map.asp
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map.asp), known larval rearing regions. It is also possible the nighttime offshore foraging by 
silversides is a more common strategy (Wurtsbaugh and Li 1985), but one that goes undetected 
by current sampling. Silverside catch per trawl (Table 4) indicates low offshore densities and 
the same turbidity that facilitates offshore movement may also inhibit predation effectiveness. 

Figure 68. Catch per unit effort (CPUE) of adult Eurytemora affinis and 
Pseudodiaptomus forbesi (Zoo; number individuals/m3 sampled) and Delta 
Smelt (DS; number individuals/10,000 m3 sampled) by calendar week from 
mesozooplankton sampling and Delta Smelt catch by the 20 mm and Summer 
Townet surveys, 2010 (top) and 2011 (bottom).

http://www.dfg.ca.gov/delta/data/20mm/CPUE_map.asp
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Overall, the conclusion regarding the effects of species distributions and abundances on predation 
risk is unclear. If there is an effect, it is most likely to occur in smaller channels, such as 
Montezuma Slough and those in the Cache Slough and the Sacramento Deepwater Ship Channel 
where Silversides are present in high numbers along the shoreline and larval Delta Smelt occur 
offshore.

Hypothesis 4: Hydrology and water exports interact 
with one another to influence direction of transport 
and risk of entrainment for larval Delta Smelt. 

As for adults, we do not have proportional entrainment estimates for all four study years, so the 
entrainment portion of this hypothesis cannot be directly evaluated. Also, larvae (< 20 mm fork 
length) entrained in the State and federal water export systems are generally not quantified. To 
test this hypothesis we use data for the distribution and density of larvae (≥ 20 mm fork length) 

Region 2005 2006 2010 2011
Total 
Catch

Total 
Catch 
per 
Trawl

SUISUN BAY 
(N=10)

1 1 2 1 5 0.04

MONTEZUMA 
SL (N=3)

51 4 17 22 94 2.61

LOWER 
SACRAMENTO 
R (N=4)

10 1 1 3 15 0.31

CACHE SL 
(N=3)

9 2 4 2 17 0.47

SAC 
DEEPWATER 
SHIP CHANNEL 
(N=1)

14 20 45 22 101 8.42

SAN JOAQUIN 
R (N=8)

39 9 11 14 73 0.76

MOKLEMNE R. 
(N=5)

1 1 1 8 11 0.18

SOUTH DELTA 
(N=3)

1 0 1 1 3 0.08

ANNUAL 
TOTAL FOR 
REGIONS

126 38 82 73 319  

Table 4. Mississippi Silverside catch by region (monthly sample number in 
parentheses) and year by the Spring Kodiak Trawl Survey sampling monthly 
March through May (months when Delta Smelt larvae are present), 2005, 2006, 
2010 and 2011; distribution survey data only. Annual sampling effort summarized 
consisted of 3 surveys and 37 stations. Tow volume varied substantially, but 
averaged 6,300 m3 per tow for the 4 years.
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in the central and south Delta and estimates of channel flows to infer risk of entrainment. Among 
the study years only 2005 larval entrainment was estimated by Kimmerer (2008), and loss to 
the population was relatively low. However, Delta Smelt density and distribution in the central 
and south Delta were greater in 2005 than in the three other study years (Table 5). This simple 
analysis suggests that in our 4-year comparison, entrainment risk for larval Delta Smelt may have 
been highest in 2005. Hardly any larval Delta Smelt were caught in this region in the two wet 
years, 2006 and 2011.

As for adults, we also used OMR flows (Fig. 31) to assess larval entrainment risk. Mean March 
through May OMR flows were positive during the two wet years 2006 and 2011 (8,221 cfs and 
3,560 cfs respectively) and negative during the two dry years 2005 and 2010 (-417 cfs and -1,302 
cfs, respectively). These OMR values suggest little if any risk during 2006 and 2011, and at 
most moderate risk in 2005 and 2010. Grimaldo et al. (2009) found that juvenile salvage was a 
function of abundance in the 20 mm Survey (positive) and OMR flows (negative). Looking more 
closely at various net daily flows from March to June of 2005, we find that OMR flows were 
moderately negative (i.e., toward the export pumps) only in March, and were zero to weakly 
positive in April and May, except for a brief period in mid-April (Fig. 31); also in 2005, Qwest 
was strongly positive from late March through early June, promoting downstream transport in the 
San Joaquin River, and exports were low from late April through late May (Fig. 31). The other 
dry year, 2010 exhibited a similar pattern, but lower inflows resulted in the magnitude of exports 
more directly influencing OMR flows (Fig. 31), and leading to moderately negative OMR flows 
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Figure 69. Scatter plot of Mississippi Silverside catch plotted on Secchi depth 
(cm) at location of capture from the Spring Kodiak Trawl Survey, 2005, 2006, 2010 
and 2011.
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in March and again in June, but only weakly negative flows in April and most of May coincident 
with positive Qwest. In the high outflow years 2006 and 2011, few larvae were detected in the 
central or south Delta (Table 5) and Qwest flows were strongly positive from March through 
at least early June, while OMR flows were near zero or weakly negative in March and positive 
to strongly positive by April and continuing to early June of both years (Fig. 31). Thus, for 
our comparison years, it appears that the available data generally support our hypothesis, but 
entrainment of larvae was unlikely to be an important factor during either wet year and was 
probably not a substantial factor in either dry year.

Figure 70. Monthly length frequency of Mississippi Silversides captured by the 
Spring Kodiak Trawl during distribution sampling March – May in the Sacramento 
River and Cache Slough sampling stations only, 2002-2012. The months and 
geographic range were selected to overlap with that of Delta Smelt larvae as they 
hatch and begin to grow.

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

Fork length (mm)

Month Mar

Month Apr

Month May



1 3 0

Interagenc y Ecologic al  Program: Management,  Analysis,  and Synthesis  Team

I E P  M A S T  2 0 1 4

Year = 
2005 Months

STATION MARCH APRIL MAY JUNE JULY

809 0.00 0.00 3.14 5.17 0.00

812 0.00 0.00 3.14 6.66 0.00

815 0.00 3.06 3.39 0.00 0.00

901 0.00 0.00 3.21 0.00 3.61

902 0.00 0.00 0.00 0.00 0.00

906 1.65 2.93 3.22 0.00 0.00

910 0.00 0.00 0.00 0.00 0.00

912 0.00 0.00 0.00 0.00 0.00

914 3.18 1.49 1.56 0.00 0.00

915 0.00 0.00 0.00 0.00 0.00

918 1.52 1.41 0.00 0.00 0.00

919 0.00 0.00 0.00 0.00 0.00

Year = 
2006 Months

STATION MARCH APRIL MAY JUNE JULY

809 0.00 0.00 0.00 0.00 0.00

812 0.00 0.00 0.00 0.00 0.00

815 0.00 0.00 1.24 0.00 0.00

901 0.00 0.00 0.00 0.00 0.00

902 0.00 0.00 0.00 0.00 0.00

906 0.00 0.00 0.00 0.00 0.00

910 0.00 0.00 0.00 0.00 0.00

912 0.00 0.00 0.00 0.00 0.00

914 0.00 0.00 0.00 0.00 0.00

915 0.00 0.00 0.00 0.00 0.00

918 0.00 0.00 0.00 0.00 0.00

919 0.00 0.00 0.00 0.00

Table 5. Mean monthly catch of Delta Smelt per 10,000 m3 by station for stations in 
the south and central Delta for the 20 mm Survey, 2005, 2006, 2010, 2011. Non-zero 
values are bolded.
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Year = 
2010 Months

STATION MARCH APRIL MAY JUNE JULY

809 0.00 0.00 1.62 0.00 0.00

812 0.00 0.00 0.00 0.00 0.00

815 0.00 1.77 1.72 0.00 0.00

901 0.00 0.00 0.00 0.00 0.00

902 0.00 0.00 0.00 0.00 0.00

906 0.00 3.36 0.00 1.64 0.00

910 0.00 5.24 0.00 0.00 0.00

912 0.00 0.00 0.00 0.00 0.00

914 0.00 0.00 0.00 0.00 0.00

915 0.00 0.00 0.00 0.00 0.00

918 0.00 0.00 0.00 0.00 0.00

919 0.00 0.00 0.00 0.00 0.00

Year = 
2011 Months

STATION MARCH APRIL MAY JUNE JULY

809 0.00 0.00 0.00 1.73 0.00

812 0.00 0.00 0.00 0.00 0.00

815 0.00 0.00 0.00 0.00 0.00

901 0.00 0.00 3.69 0.00 0.00

902 0.00 0.00 0.00 0.00 0.00

906 0.00 0.00 0.00 0.00 0.00

910 0.00 0.00 0.00 0.00 0.00

912 0.00 0.00 0.00 0.00 0.00

914 0.00 0.00 0.00 0.00 0.00

915 0.00 0.00 0.00 0.00 0.00

918 0.00 0.00 0.00 0.00 0.00

919 0.00 0.00 0.00 0.00 0.00
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Juvenile Hypotheses

Hypothesis 1:  High water temperatures reduce juvenile 
Delta Smelt growth and survival through lethal and sublethal 
(bioenergetic stress; reduced distribution) effects.

High water temperatures have a strong effect on juvenile Delta Smelt survival (Swanson et al. 
2000, Komoroske et al. 2014). In addition to the obvious potential for lethal effects, temperature 
can have sub-lethal effects such as reduced habitat area, higher food requirements, increased 
susceptibility to disease and contaminants, and increased predation. The potential for increased 
prey requirements and increased predation is described below for other hypotheses. 

As noted in the adult section, spring water temperature was generally coolest in 2006 and 2011, 
but warmed up more rapidly toward the end of spring 2006 (May) than in spring 2011. Spring 
water temperature was overall warmest in 2005 (Fig. 71). Following the high late-spring water 
temperatures in 2005 and 2006, summer temperatures in 2005 and 2006 tended to be higher 
than in 2010 and 2011 during July and August (e.g. TNS surveys 3-5; Fig. 72). Temperatures 
during surveys 4 and 5 may have been particularly important as they exceeded lethal levels in 
freshwater at some sites, suggesting the potential for mortality. Note that this does not mean 
that temperatures were universally cooler in 2010 and 2011 than in 2005 and 2006; for example 
the region around Cache Slough had relatively high temperatures in August 2011. Larval to 
juvenile survival (ratio of TNS index to 20 mm index) was highest in 2011 followed by 2010, 
2006, and 2005, suggesting that the cooler late spring and summer temperatures in 2011 and 
2010 may have been beneficial for Delta Smelt. However, juvenile to subadult survival (ratio of 
FMWT index to TNS index) was highest in 2011 and lowest in 2010 (Fig. 51). While relatively 
high water temperature in late spring and early to mid summer of of 2005 and 2006 may thus 
have contributed to low survival of late-stage larvae and early juveniles, water temperature may 
have been less important to survival in the late summer and early fall. Overall, the results of this 
analysis of temperature and survival data support our hypothesis that high water temperatures 
reduce juvenile Delta Smelt growth and survival. 

At this point, our data and analyses are inadequate to address temperature effects on juvenile 
Delta Smelt growth. Although there are some data for Delta Smelt growth during several of the 
target years, it is difficult to separate the relative effects of improved bioenergetics (see below) 
versus simple ontogenetic changes in fish size. Juvenile fish growth rates are typically not 
constant and change with size (“allometric effects;” Fuiman 1983). Specifically, daily growth 
rates (e.g., mm/day) are often faster for smaller fish and slower for older fish. Hence, cooler years 
may delay Delta Smelt transitions from faster to slower growth phases, yielding a relatively fast 
measured growth rate at a specific point in time (e.g., September) because at that specific time the 
fish are still relatively young and still on the “steepest” part of an idealized growth curve. 

Hypothesis 2. Distribution and abundance of 
Striped Bass, temperature, and turbidity influence 
predation risk/rate on juvenile Delta Smelt

We hypothesize that subadult (age 1-3) Striped Bass are the major predator on juvenile Delta 
Smelt and that losses are likely affected by temperature and turbidity patterns. However, other 
factors likely affect predation risk (e.g., other predators such as centrarchids) and several factors 
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may interact. As noted above for temperature and below for food, high temperatures and low prey 
density likely lead to bioenergetics problems and increased foraging activity, which might reduce 
predator avoidance behavior (e.g., Marine and Cech 2004) in Delta Smelt. These effects may be 
compounded by low turbidity, which makes Delta Smelt more visible to predators in their habitat. 
Although higher Striped Bass abundance could theoretically result in greater consumption of prey 
including Delta Smelt (Loboschefsky et al. 2012), changes in habitat variables for both species 
such as food, temperature, and turbidity mean that predation rates on Delta Smelt periodically 
may be independent of predator abundance. Although there has been substantial progress in 
modeling (Lobschefsky et al. 2012, Nobriga et al. 2013) and genetic methods (Baerwald et al. 
2012), there is not yet a standardized way to assess the effects of predation on Delta Smelt. 
Moreover, there are no effective surveys to assess age 1-3 Striped Bass abundance or distribution. 
Therefore, we are unable to directly evaluate this hypothesis. Lacking this information, we can 

Figure 71. Water surface temperature data collected during the Spring Kodiak 
Trawl Survey for three salinity regions and the Cache Slough-Sacramento River 
Deepwater Ship Channel (CS-SRDWSC). Surveys are conducted monthly January-
May. See Chapter 3: Data Analyses for explanation of boxplots.
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at least examine turbidity and temperature patterns for the four years. Temperature responses 
were described for Hypothesis 2. In general, summer 2005 and 2006 temperatures were relatively 
higher than 2010 and 2011 during key summer months (e.g. TNS surveys 3-5; Fig. 72). We 
expect that cooler temperatures in 2010 and 2011 may have contributed to reduced predation 
on Delta Smelt. Turbidity data are limited to 2010 and 2011 (Fig. 73). There were no consistent 
differences between the two years. Secchi depth data did not suggest major differences among the 
4 years except at salinities > 6 when 2005-2006 had higher values in some months (Fig. 74).

Figure 72. Water temperature data collected during the Summer Townet Survey 
for three salinity regions and the Cache Slough-Sacramento River Deepwater 
Ship Channel (CS-SRDWSC). Surveys are conducted biweekly June-August. See 
Chapter 3: Data Analyses for explanation of boxplots.
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Hypothesis 3. Juvenile Delta Smelt growth and 
survival is affected by food availability.

As for Hypothesis 1, we are currently unable to evaluate the growth data because water 
temperature affects development time, and because growth curves are complicated by allometric 
effects. The general conceptual model is that higher food abundance results in faster growth rates 
and larger, healthier fish. In addition, larger, healthier Delta Smelt are presumably less vulnerable 
to predators because of increased size making them difficult for smaller predators to capture and 
consume. In general, the median abundance of some of the key prey for juvenile Delta Smelt 
such as calanoid copepods is highest in summer months (Fig. 75), when juvenile Delta Smelt are 
present; however, the range of observed densities is broad in all months. As noted previously, 
Kimmerer (2008) found that Delta Smelt survival from summer to fall was positively associated 
with calanoid copepod biomass in the low salinity zone. 

Figure 73. Turbidity data collected during the Summer Townet Survey. Surveys 
are conducted biweekly June-August. Note different scales among salinity 
regions. See Chapter 3: Data Analyses for explanation of boxplots.
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Interpretation of the field data is complicated because there are no long-term IEP EMP study 
stations located in some of the core habitats for Delta Smelt, for example, Cache Slough and the 
Sacramento River Deep Water Ship Channel. Moreover, densities of calanoid copepods vary 
among regions based on differing habitat (temperature and salinity) requirements of each species 
(Fig. 76).

Summer-time phytoplankton data (chlorophyll-a) suggest that the base of the food web was 
most enhanced in July and August 2011 and relatively depleted in 2005 (Fig. 66). There is some 
evidence that these changes may have affected zooplankton abundance. For example, summer 
densities of calanoid copepods in the LSZ and <1 ppt regions also tended to be highest in 2011 
as compared to the other years (Fig. 76). This pattern generally held when individual taxa are 
considered including two of the most important food sources for Delta Smelt, Eurytemora affinis 
(Fig. 33) and Pseudodiaptomus forbesi (Fig. 34). 

Figure 74. Secchi depth data collected during the Summer Townet Survey. 
Surveys are conducted biweekly June-August. See Chapter 3: Data Analyses for 
explanation of boxplots.
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As mentioned above (Hypothesis 1), juvenile to subadult survival was highest in 2011 followed 
by 2006 and 2005 and lowest in 2010 (Fig. 51). If food availability was the primary habitat 
attribute driving juvenile survival, our expectation was that summer prey abundance would 
have been higher in 2011 than 2010. Figure 69 suggests that while differences were not very 
pronounced, prey levels were indeed somewhat higher in July and August of 2011 than 2010. 
Calanoid copepod levels varied across the different salinity ranges, but generally followed the 
same pattern (Fig. 76). In addition, calanoid copepod densities in June and August were higher in 
2006 than in 2005 (Fig. 75), which may have contributed to higher juvenile to subadult survival 
in 2006 compared to 2005 (Fig. 51).

Fish bioenergetics are affected by both food and temperature. As mentioned above, both summer 
2010 and 2011 had relatively cool temperatures as compared to 2005 and 2006, which may have 
affected bioenergetics. In addition, recent studies (S. Slater, CDFW, unpublished data) indicate 
that Delta Smelt consumption was not just limited to calanoid copepods, so our assessment does 
not reflect the full dietary range.

In conclusion, our analyses provide some support for the hypothesis that juvenile Delta 
Smelt growth and survival is affected by food availability; greater food availability may have 
contributed to greater juvenile survival in 2011 and 2006 compared to 2010 and 2005. However, 
differences in prey availability among years were not very pronounced and our analyses were 
limited to calanoid copepods; other species may also be important prey items for Delta Smelt.

Figure 75. Trends in calanoid copepods (number/m3 for all taxa combined) 
collected by the IEP Environmental Monitoring Program (EMP) during each the 
four study years (2005, 2006, 2010, and 2011).
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Figure 76. Trends in calanoid copepods (number/m3 for all types combined) 
collected by the IEP Environmental Monitoring Program (EMP) in three salinity 
ranges (> 6 ppt; 1-6 ppt; < 1 ppt) during each the four study years (2005, 2006, 
2010, and 2011). See Chapter 3: Data Analyses for explanation of boxplots.
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Hypothesis 4. Juvenile Delta Smelt survival and 
growth is reduced by harmful algal blooms (HAB) 
because of direct (habitat quality and toxic effects) 
and indirect (food quality and quantity) effects. 

The appearance of late-summer HAB, especially Microcystis, is thought to be another component 
of the decline in habitat quality for Delta Smelt (Baxter et al. 2010, Lehman et al. 2010). Direct 
effects may include toxicity to Delta Smelt and a reduced area of suitable habitat. There also may 
be indirect effects on food quantity and quality, particularly with respect to their zooplankton 
prey (Ger et al. 2009, 2010a,b, Lehman et al. 2010). 

The growth responses of Delta Smelt during the four target years are still unclear (see below), 
but there is evidence that Delta Smelt juvenile to subadult survival was highest in 2011 and 
lowest in 2010 (Fig. 51). If HABs have a negative effect on survival, we would expect that lower 
Microcystis (or other HAB) abundance would be associated with higher survival in 2011. This 
seems to have been the case for 2010 and 2011. Densities of Microcystis near the water surface 
were qualitatively assessed (visually ranked) at all TNS stations in these years. In agreement with 
our expectation, observed levels were low during the TNS in 2011 as compared to 2010 across a 
range of salinities (Fig. 77).

Unfortunately, we do not have data about other HAB species and more quantitative estimates, 
nor is similar data available for 2005 and 2006. In general, our expectation is that 2006 

Figure 77. Summer Townet Survey mean visual rank of Microcystis spp. (ranks 
1-5 possible; 1 = absent) observed at all stations during biweekly surveys (1-6) in 
various salinity regions (> 6, 1-6, and < 1 ppt) and in the CS-SRDWSC during June 
through August 2010 and 2011. Observations were not made in Cache Slough-
Sacramento River Deepwater Ship Channel (CS-SRDWSC) during 2010. 
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Microcystis levels would have been relatively low as a result of higher flow levels that discourage 
blooms (Lehman et al. 2005). Based on the available qualitative data for 2010 and 2011, this 
analysis supports the hypothesis that juvenile Delta Smelt survival and growth is better when 
Microcystis does not bloom as intensely, but more data is needed to more conclusively assess this 
relationship. 

Subadult Hypotheses

Hypothesis 1. Subadult Delta Smelt abundance, growth, 
and survival is affected by food availability.

Similar to juveniles, the general conceptual model is that higher food abundance results in faster 
growth rates and subsequently, lower predation loss and greater survival (e.g., Houde 1987, 
Sogard 1997, Takasuka et al. 2003); however the opposite situation in which the fastest growing 
fishes are most vulnerable to predators has also been observed in at least one east coast estuary 
(Gleason and Bengston 1996). Fall abundance of Delta Smelt was highest in 2011 followed by 
2006, 2010, and 2005 (Fig. 3) while survival of subadults to adults was highest in 2010 followed 
by 2006 and equal in 2011 and 2005 (Fig. 45). In spite of the lower subadult survival in 2011, the 
relatively large number of subadults in 2011 gave rise to the highest adult abundance on record in 
2012. 

In general, fall calanoid copepod abundance and cladocera abundance were higher in 2011 in 
freshwater and the low-salinity zone compared to the other years, particularly 2005 and 2006 
(Fig. 71). However, these data are highly variable, so this conclusion does not apply to each 
region in every month. With that caveat, the data generally support the hypothesis that food 
availability affects Delta Smelt abundance and survival; on average, prey density was higher for 
subadult Delta Smelt in 2011. This may have contributed to the high FMWT abundance index 
in 2011, although it did not contribute to an equally high survival to adults relative to the other 
three years. Nevertheless, it seems likely that the relatively good food availability in 2011 also 
contributed to the high number of adults in 2012. As noted above, we are currently unable to 
evaluate whether Delta Smelt grew faster in 2011 because water temperature affects spawning 
and hatch dates, which complicates the interpretation of growth rates.

Hypothesis 2. Distribution and abundance of 
Striped Bass, temperature, and turbidity influence 
predation risk/rate on subadult Delta Smelt

As already described for other life stages, predation risk is exceptionally complicated, making it 
difficult to generate simple hypotheses that describe associated losses of Delta Smelt. The data 
are not currently available to test this hypothesis (Nobriga et al. 2013). Thus, no firm conclusion 
can be made.
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Hypothesis 3. Subadult Delta Smelt abundance, survival 
and growth are reduced by harmful algal blooms (HAB) 
because of direct (habitat quality and toxic effects) 
and indirect (food quality and quantity) effects. 

The appearance of late-summer harmful algal blooms (HAB), especially Microcystis, is thought 
to be another detriment to habitat quality for Delta Smelt (Baxter et al. 2010, Lehman et al. 
2010). Direct effects may include toxicity to Delta Smelt and a reduced distribution if the fish 
try to limit their overlap with the bloom. There also may be indirect effects on food quantity and 
quality, particularly with respect to their zooplankton prey (Ger et al. 2009; 2010a,b, Lehman et 
al. 2010). 

The growth responses of Delta Smelt during the four target years are still unclear (see above), but 
there is evidence that summer juvenile to subadult survival was highest in 2011, while juvenile 
survival to adults was highest in 2010 (Fig. 45). Our expectation is therefore that HAB were less 
prevalent in the summer of 2011 compared to 2010, but more prevalent in fall 2011. As already 
described for juveniles, the hypothesis that summer Microcystis bloom would be less intense in 
2011 compared to 2010 was generally supported (Fig. 77). In fall, Microcystis levels were also 
overall lower in 2011 than in 2010, except in September 2011 when a high level of Microcystis 
was observed in the LSZ (Fig. 78). This may be an indication that the higher outflow in 
September-October 2011 displaced Microcystis produced in the Delta seaward into the LSZ. The 
comparatively high 2011 Delta Smelt FMWT index that coincided with this shift in Microcystis 
distribution is not consistent with the hypothesis; however, the occurrence of fairly high levels 
of Microcystis in the LSZ in 2011 may help explain the lower subadult to adult survival in 2011 
compared to 2010. It is also important to remember that the visual survey results presented here 
are only qualitative and do not necessarily reflect the potential for differences in actual toxicity 
among years. Overall, these results are inconclusive, although they may provide limited support 
for the hypothesis that high Microcystis levels may have a negative effect on subadult to adult 
survival; this may help explain the lower subadult survival in 2011 compared to 2010.

Hypothesis 4. Subadult Delta Smelt abundance, 
survival and growth are affected by the size and 
position of the low salinity zone during fall.

We do not address this hypothesis in detail because it is the subject of an adaptive management 
experiment (FLaSH) described earlier (Reclamation 2011, 2012; see also Brown et al. 2014, 
http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-
management-plan-review-0). According to the FLaSH conceptual model, conditions are supposed 
to be favorable for Delta Smelt when fall X2 is approximately 74 km or less, unfavorable when 
X2 is approximately 85 km or greater, and intermediate in between (Reclamation 2011, 2012). 
Surface area for the LSZ at X2s of 74 km and 85 km were predicted to be 4000 and 9000 
hectares, respectively (Reclamation 2011, 2012). The data generally supported the idea that lower 
X2 and greater area of the LSZ would support more subadult Delta Smelt (Table 6). The greatest 
LSZ area and lowest X2 occurred in September and October 2011 and were associated with a 
high FMWT index which was followed by the highest SKT index on record, although survival 
from subadults to adults was actually lower in 2011 than in 2010 and 2006. There was little 
separation between the other years on the basis of X2, LSZ area, or FMWT index (Table 6). The 
position and area of the LSZ is a key factor determining the quantity and quality of low salinity 
rearing habitat available to Delta Smelt and other estuarine species (see Chapter 4 for more detail 

http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-review-0
http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-review-0
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and Chapter 8 for additional analysis results). In addition, the complex hydrodynamics produced 
during higher outflows may alter the lateral mixing environment of the Estuary (especially in 
shallower areas like Suisun Bay) in ways that improve the quality of Delta Smelt habitat in 
general (Monismith, personal communication). The limited amount of available data provides 
some evidence in support of this hypothesis, but additional years of data and investigations are 
needed. 

Chapter 8: Conclusions
As with all reports focusing on conceptual models, this report is intended as a working document, 
not as the final word on Delta Smelt ecology, because our knowledge will continue to increase. 
We intend the conceptual model to be used as a framework and tool to further improve our 
understanding of Delta Smelt ecology and to explore and test management options for improving 
conditions for the Delta Smelt population. In essence, the updated conceptual model represents a 
synthesis of our current thinking on the factors affecting vital rates of the Delta Smelt population. 
We fully expect a wide range of opinion about the relevance of the conceptual models presented 
here and about the degree of certainty regarding many of its component dynamics and linkages. 
We have clearly acknowledged that we lack information on many important factors and processes 
that likely affect Delta Smelt, such as predation and toxicity and their functional relationships 

Figure 78. Fall Midwater Trawl mean visual rank of Microcystis spp. (ranks 1-5 
possible; 1 = absent) observed at all stations during monthly surveys in various 
salinity regions (> 6, 1-6, and < 1 ppt) and in the CS-SRDWSC during September 
through December 2010 and 2011.
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 X2 (km)  

Surface 
area LSZ 
(hectares)

FMWT 
index

YEAR MEAN SD MEAN SD

2005 83 2 4889 252 26

2006 82 3 4978 320 41

2010 85 2 4635 226 29

2011 75 1 8366 133 343

Table 6. Mean and standard deviation (SD) for X2, surface area of low salinity zone 
(M. McWilliams, Delta Modeling Associates, unpublished data), and values of the 
Fall Midwater Trawl index (FMWT) for abundance of subadult Delta Smelt. 

with survival and growth. The conceptual model incorporates many hypotheses that should be 
tested via new research, modeling, and ongoing analysis and synthesis of new and previously 
collected data. This is how science advances.

Conceptual models are increasingly used as tools to develop questions or hypotheses about 
specific mechanisms through which stressors or other environmental factors drive ecological 
outcomes. Conceptual models can be used as a basis for communication among managers and 
scientists to plan research activities and assess outcomes of management actions (Ogden et 
al. 2005). Because of their broad utility, conceptual models are viewed as a critical element of 
adaptive management programs (Thom 2000). In the SFE, conceptual models have become 
common and even required as the community moves toward adaptive management and 
collaborative science. A primary outcome of conceptual models is the identification of key areas 
of uncertainty due to lack of information, or areas of disagreement due to different interpretations 
of the available data and information. Careful examination of these areas often identifies critical 
data and information gaps, which if filled, would allow a more robust evaluation of the major 
hypotheses derived from conceptual models. In this way, conceptual models can guide the 
research community to the topics critical for understanding Delta Smelt biology and formulating 
effective management actions.

The development of our conceptual model, based on assessment of recent information, identified 
some key points about conceptual models that are worth highlighting, including the following: 

1. Nested and linked conceptual models of increasing specificity provide a useful 
framework for capturing the dynamics of ecosystem drivers and habitat attributes over 
a large range of temporal and spatial scales and for providing a comprehensive picture 
about their effects. 

2. Our knowledge about Delta Smelt and the SFE is constantly growing and conceptual 
models about them have to be regularly updated and revised to properly reflect this 
knowledge.

3. Construction of our conceptual model and the formulation and evaluation of hypotheses 
greatly benefitted from the large amount of high-quality ecological data and information 
available about Delta Smelt and the SFE. The most critical data about Delta Smelt 
dynamics came from four long-term IEP fish monitoring surveys. Other monitoring 
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and studies provided key data and information about habitat attributes and ecosystem 
drivers.

4. Our conceptual model is also useful for identifying important data and information gaps. 
More data and information is especially needed about predation risk and toxicity, two 
potentially important attributes of Delta Smelt habitat. 

Conceptual models are meant to be useful tools for scientists, managers, and others. But just how 
useful are the new conceptual models in this report? To find out, we used them to generate and 
test hypotheses and highlight data gaps while addressing a specific topic of high management 
interest—the increased Delta Smelt abundance index in 2011. 

We found that our conceptual model allowed us to formulate a variety of testable hypotheses 
about individual components and the linkages among them. Our hypotheses and the analyses we 
conducted to test them had some clear limitations (discussed below), but highlighted some key 
points about Delta Smelt and their habitat. In many respects, the points about Delta Smelt seem 
self-evident from basic biology and earlier conceptual models, but they warrant reinforcement 
because they are crucial to understanding Delta Smelt and to developing and assessing habitat 
management actions. Key points about Delta Smelt include the following:  

1. Environmental conditions occurring in all four seasons contribute to year-class strength 
of Delta Smelt - “it takes a year to make a mature Delta Smelt.”

2. Survival and recruitment are affected by many factors that interact in complex ways and 
the importance of these factors and interactions varies from season to season and year to 
year. 

3. Recovery of Delta Smelt depends on better than average larval production (recruitment) 
and survival in all seasons. The number of eggs and larvae sets an upper limit for the 
production of mature adults. Low survival between any two life stages can substantially 
reduce the actual production of mature adults. Success of Delta Smelt in 2011 was 
related to a high level of larval production (recruitment) followed by moderate to 
high stage-to-stage survival over the entire year. In contrast, the high level of larval 
production (recruitment) in 2006 was followed by very low survival from larvae to 
juveniles which led to low abundance of mature adults.

4. Throughout 2011, Delta Smelt may have benefitted from a combination of favorable 
habitat conditions: 1) adults and larvae benefitted from high winter 2010 and spring 
2011 outflows which reduced entrainment risk and possibly improved other habitat 
conditions, prolonged cool spring water temperatures, and possibly good food 
availability in late spring; 2) juveniles benefitted from cool water temperatures in late 
spring and early summer as well as from relatively good food availability and low levels 
of harmful Microcystis; 3) subadults also benefitted from good food availability and 
from favorable habitat conditions in the large, westward low salinity zone. 

Our hypothesis tests were carried out with the simple comparative approach used in the FLaSH 
investigations (Brown et al. 2014). Specifically, we compared differences in Delta Smelt 
responses and in individual habitat attributes during the two most recent wet years and the two 
years immediately preceding the two wet years. Using this approach allowed us to put the FLaSH 
results into a year-round context as recommended by the FLaSH Panel (FLaSH Panel 2012). 
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It also provided an opportunity to further assess the utility of this approach for evaluating the 
outcome of adaptive management actions such as the fall outflow action. 

As with the FLaSH investigations (Brown et al. 2014), we restricted our analyses to simple 
comparisons among four recent years after the 2002 POD decline for several reasons including 
the following: 

1. Using a comparative approach similar to that in the FLaSH investigation allowed us 
to place the results of the FLaSH investigation in a year-round, life cycle context as 
recommended by the FLaSH Panel (FLaSH Panel 2012).

2. This report is intended for a broad audience. Simple comparisons are easily replicated 
and understood by all.

3. More pertinent data is available for recent years than for earlier years. For example, 
adult Delta Smelt monitoring began in 2002 with abundance index values available 
starting in 2003.

4. The POD regime shift (Baxter et al. 2010) changed ecological relationships and the 
strong pre-POD signals would have likely overwhelmed more subtle, yet meaningful, 
signals in the period after the POD. For example, it appears that high larval recruitment 
may now be positively associated with wet hydrology, but that this may not have been 
the case before the onset of the POD. 

5. Clear differences in habitat conditions among years might point to new or refined 
management strategies aimed at improving specific habitat conditions. 

6. More complex modeling approaches take much more time and effort than was available 
to produce this report. A complex life cycle modeling effort is currently underway (see 
Chapter 9).

As noted above, our analytical approach yielded some interesting results, but it also raised 
more questions than it could answer. In many cases this was due to critical data and information 
gaps; these will be described in more detail in Chapter 9. It also illustrates, however, several 
limitations of our simple comparative approach as well as difficulties associated with posing and 
testing hypotheses about ecological phenomena in general. Examples of specific limitations and 
difficulties include the following: 

1. Our hypotheses focused on individual habitat attributes and were tested with a series 
of separate univariate analyses even though we know that Delta Smelt are affected by 
multiple interacting habitat atributes. We did not conduct multivariate tests or examine 
the complex interactions that may have occurred when more than one hypothesis was 
true (or false), nor did we consider or rule out that a hypothesis may be true in some 
years and false in others. 

2. Our simple comparisons of differences in individual habitat attributes among different 
years cannot conclusively establish whether these differences are indeed mechanistically 
linked to the observed differences in Delta Smelt dynamics. In addition, an absence of 
observed differences does not prove that there is really no effect because actual effects 
can be masked or counteracted by interactions with other causal factors that differ 
among years. For example predation in the South Delta may mask actual entrainment 
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effects and toxicity of anthropogenic contaminants may counteract the effects of 
abundant food in some years, but not in others.

3. Results contrary to our observations may simply indicate different outcomes in other 
years or that complex interactions among multiple habitat attributes (and corresponding 
hypotheses) contributed to the observed effects.

4. We restricted our analyses to observational data collected in a small number of 
moderately and very wet years during the POD period; including data from additional, 
more historical, and drier years may have provided more conclusive results. 

5. Data available for our analyses were not necessarily collected to test hypotheses similar 
to the ones in this report; targeted data collections are needed in addition to routine 
status and trends monitoring. 

Many of these difficulties and limitations were expected because hypothesis testing in an 
ecological context is nearly always problematic. For example, Quinn and Dunham (1983) warned 
that attempts to follow a strictly hypothetico-deductive scheme (Popper 1959, Platt 1964) to 
draw “strong inference” from a series of univariate tests aiming to falsify hypotheses about the 
ecological effects of individual causal factors often lead to inconclusive or even erroneous results. 
One reason for this is that by design, they generally do not consider non-additive interactions 
among causal factors. While we did not necessarily set out to strictly follow such a scheme, we 
nevertheless treated habitat attributes as largely independent from each other and formulated 
a series of distinct hypotheses about their univariate effects on Delta Smelt. But habitat 
attributes are not necessarily additive and habitat is indeed more than the “sum of its parts.” A 
more inductive, multivariate modeling approach with hypotheses about interactive effects and 
evaluations of the relative contributions of multiple interacting habitat attributes to these effects 
would have likely been more appropriate, but would have required analyses beyond the scope of 
this report. 

We give some examples of multivariate approaches in Chapter 9, but note that even with the 
most sophisticated modeling techniques, ecological responses to management manipulations and 
other changes of the SFE have been notoriously difficult to assess and interpret. Reasons for this 
persistent difficulty include limited opportunities for experimental control, multiple interacting 
causal factors, multiple ecological response pathways, and changing environmental conditions 
due to species invasions, species declines, and the many physical and chemical changes and 
management manipulations described in this report. In other words, the signal to noise ratio of 
management actions to environmental variation tends to be low in the SFE because of its size and 
complexity. The fact that Delta Smelt is now a rare species adds another considerable difficulty. 
Together, these difficulties are part of the reason why adaptive management actions such as 
those described in the ongoing Fall Outflow Adaptive Management Plan (Reclamation 2011, 
2012) and the now concluded Vernalis Adaptive Management Plan (VAMP, San Joaquin River 
Group Authority 2013) are planned for a minimum of 10 years, allowing accumulation of data, 
development of appropriate interpretation of these data, and comparison of observations across 
as broad a range of conditions as is possible given a 10-year time frame. But even after such a 
relatively long period of manipulation and observation, questions will likely remain about how 
some factors interact to affect Delta Smelt abundance. 

In summary, we conclude that our new conceptual models can be used successfully to derive 
testable hypotheses about Delta Smelt responses to changing habitat conditions. Our hypotheses 
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and the analyses we conducted to test them highlighted some key points as well as critical data 
gaps and the challenges associated with formulating and testing hypotheses in complex ecological 
contexts. The key points about Delta Smelt and their habitat generally agree with basic biological 
principles and earlier conceptual models, but warrant reinforcement because they are crucial 
to understanding Delta Smelt and to developing and assessing habitat management actions. 
Other results are less conclusive because of data limitations and the shortcomings of our largely 
univariate hypotheses and simple comparative analysis approach. Next steps should include 
addressing critical data gaps, modeling that more fully considers the effects of interacting factors 
on Delta Smelt, and applications of the information in this report in support of management 
actions. Examples of such efforts are provided in Chapter 9. 

Chapter 9: Recommendations 
for Future Work and 
Management Applications
The conceptual model in this report can be viewed as a collection of hypotheses. These 
hypotheses are not limited to the hypotheses posed in Chapter 7 of this report; essentially, each 
component and linkage in the conceptual models can give rise to meaningful questions and 
hypotheses by itself or together with other components and linkages. This is one of the main 
functions of conceptual models. 

Some of the hypotheses that can be derived from our conceptual model have already been 
addressed in the published research reviewed in Chapter 4 of this report. These results provide 
the knowledge base used to construct our conceptual model as well as previous conceptual 
models. They also provide the knowledge base for current Delta Smelt management efforts. The 
results and conclusions in this report add to this knowledge, but they also emphasize the need for 
additional monitoring, focused studies, and/or additional analysis and synthesis of existing data. 
These are the information gaps that can be used to guide future research activities to enhance our 
understanding of how factors interact to control Delta Smelt abundance. 

Filling these information gaps is critically important for improving management strategies for 
Delta Smelt and for constantly adapting them to expected and unexpected future changes. It is 
clear that ecological changes due to continued growth of California’s human population, climate 
change, new species invasions, and other natural and anthropogenic factors will increase the 
challenges associated with Delta Smelt management. Moreover, as discussed in the previous 
Chapter, we will likely never be able to correctly detect or predict all effects of management 
actions and other changes in an ecosystem as complex and constantly changing as the San 
Francisco estuary. Science and management have to go hand in hand to constantly identify, 
implement, evaluate, and refine the best management options for this ever-changing system. 
In this Chapter, we provide examples of next steps in three major areas where additional 
work is needed:  1) filling critical data and information gaps; 2) mathematical modeling; 
and 3) applications to support adaptive management actions. We conclude this report with 
recommendations for future analysis and synthesis efforts.
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Critical Data and Information Gaps 

A short list of the most critical data and information gaps identified by the updated conceptual 
model is given below. It is important to note that this is not an exhaustive list of the potentially 
productive research questions that could be addressed for Delta Smelt. Instead, these are primary 
research topics that emerge as major data and information gaps in multiple places within the 
updated conceptual model. This indicates that additional monitoring and research on these topics 
may be particularly urgently needed and filling these gaps would provide immediately useful 
results. The list of critical data and information gaps is organized around the environmental 
drivers and habitat attributes identified in our conceptual models. 

Contaminants and Toxicity

There is a general awareness that exposure to contaminants can impair the health of Delta Smelt 
and other fishes. A few studies have documented adverse effects, but little is known regarding 
the thresholds at which most contaminants would be toxic to or otherwise adversely affect Delta 
Smelt (or their prey). Even less is known about how various contaminants may interact when 
they co-occur, or how their effects may be enhanced or suppressed by these interactions or by 
other environmental factors.

1. Focused laboratory studies may provide the most efficient way to assess effects of 
metals, pesticides, pharmaceutical products, or mixtures of contaminants as long as 
field-relevant concentrations are used. However, translating results of laboratory tests to 
the field remains a challenging problem (Scholz et al. 2012).

2. Significant work to understand the effect of nutrient loading from municipal sources 
on the food web has been done (Weston et al. 2014) (e.g., Sacramento Wastewater 
Treatment Plant, Parker et al. 2012). A logical next step is to conduct manipulative 
experiments in which effluent is reduced or shut off. This type of work has recently 
begun (T. Kraus, USGS, personal communication), but may require multiple iterations 
during a variety of seasons and environmental conditions in order to understand how 
such manipulations or future treatment upgrades could be used to provide desired food 
web responses. Monitoring should continue after any such upgrades to determine if they 
have the expected outcomes.

Entrainment and Transport

Evaluation of differences in entrainment among years could not be critically evaluated from 
salvage data; better ways to estimate, monitor, and evaluate entrainment losses due to south Delta 
exports are needed. Such improved estimates could be derived from experimental research on 
Delta Smelt and other species along with hydrodynamic modeling. Besides the need to improve 
the estimates of direct proportional population losses due to entrainment, similarly relevant or 
more important needs include assessing the influence of entrainment on key population attributes 
(e.g., genetics, demographics, population dynamics and viability effects).
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Predation Risk

The majority of the hypotheses regarding predation risk could not be fully evaluated due to a lack 
of data regarding co-occurring predator and prey biomass and predation rates of predators on 
Delta Smelt.

1. The distribution and diet of major predators with respect to the distribution of Delta 
Smelt needs further investigation. For some predator species, data may already be 
available that describe distributions over multiple years and one data synthesis effort 
has already begun (Mississippi Silversides, USFWS Beach Seine Survey; analysis 
initiated by B. Schreier, DWR). However, data are lacking for several Striped Bass and 
Largemouth Bass life stages and focused studies are necessary to understand how these 
species’ distributions overlap with the distribution of larval, juvenile, sub-adult, and 
adult Delta Smelt. 

2. The distributional overlaps of Delta Smelt with their predators need to be described over 
varying conditions of turbidity, salinity, temperature, and hydrology. Linking predation 
risk to key environmental drivers and habitat attributes will shed light on how Delta 
Smelt may experience varying degrees of predation across seasons and years.

Food

Food availability is a critical aspect of Delta Smelt habitat throughout the conceptual model. 
However, many of the hypotheses about effects of food availability in the conceptual model could 
not be fully evaluated with available observational data due to incomplete information on prey 
densities and Delta Smelt feeding behavior throughout Delta Smelt habitat.

1. An extension of the IEP EMP into the Cache Slough complex and possibly other areas 
around the margins of the estuary would allow a fuller regional comparison of prey 
densities.

2. Another option is to make concurrent zooplankton sampling a routine part of the 
four major surveys monitoring Delta Smelt (SKT, 20 mm, TNS, FMWT). To varying 
degrees, this has been ongoing since 2005, but lack of trained staff has resulted in 
delayed processing of many samples and concurrent zooplankton samples have never 
been collected during the SKT survey. Adding appropriate zooplankton sampling and 
sample processing capacity to the fish monitoring surveys would allow for broader and 
more timely comparisons of pelagic food availability between monitoring stations with 
and without Delta Smelt present, similar to the analysis conducted in this report for the 
larvae collected during the 20mm survey (Larval Hypothesis #2).

3. Studies of Delta Smelt growth (from otoliths) and feeding habits (from stomach 
contents) concurrent with zooplankton sampling would maximize the utility of the 
concurrent prey sampling by allowing the refinement of functional response models.

4. Studies of Delta Smelt feeding behavior and prey availability with regard to amphipods 
and other prey that are not well sampled by any of the existing monitoring surveys could 
help determine the importance of these types of prey to the Delta Smelt population.
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Harmful Algal Blooms 

While recent research has resulted in improved understanding of the factors influencing the 
quantity, toxicity and location of HABs, there are still many uncertainties about their direct and 
indirect effects on Delta Smelt relative to other factors and about what can be done to prevent 
them. Furthermore and in spite of their importance to ecosystem and human health, there is still 
no routine quantitative monitoring program in place that specifically targets harmful algae. The 
TNS and FMWT surveys now include qualitative, visual assessment of Microcystis, but more 
quantitative techniques and techniques that detect additional harmful species and their toxicity 
would likely provide greater insights. Such techniques are increasingly available (e.g., solid 
phase adsorption tracking; Wood et al. 2011) and some focused studies that quantify and provide 
distributions of HABs have been conducted or are underway. These studies should be continued 
in order to address hypotheses related to the effects of HABs in the conceptual model and 
evaluate the utility of these techniques for routine monitoring applications.

Delta Smelt Responses 

To fully evaluate the interactions of various stressors on Delta Smelt population biology, a 
quantitative life cycle population model is needed. While such models exist, they can be refined 
based on research into important aspects of Delta Smelt reproductive biology, including the 
reproductive output of individual Delta Smelt and the population as a whole, and how it varies 
with environmental conditions.

In particular, fecundity data on adult female Delta Smelt caught in the SKT have only recently 
been collected. This is a critical parameter, necessary to assess the reproductive potential of the 
population in any given year. Continued collection of fecundity data over multiple years and 
hydrological conditions is crucial to understanding the population response to environmental 
conditions in the seasons preceding reproduction. In addition, an understanding of variables 
controlling the number of spawning events in a year for wild Delta Smelt is necessary to 
understand the full reproductive potential of the population. An exploration of whether spawning 
events are discernible on otoliths is ongoing (Hobbs group, UC Davis); if so, retrospective 
analyses relating multiple spawning events to concurrent conditions (e.g., tidal phase, food 
availability, water temperature) may be possible. 

Finally, efforts to better characterize spawning habitat and habitat attributes needed for successful 
egg hatching should also continue. This is needed to more fully evaluate and understand linkages 
between environmental drivers such as hydrology and larval recruitment. Of all the life stages of 
Delta Smelt, we know the least about the egg stage; Delta Smelt eggs have never been found in 
the wild. Because of this, we were not able to construct a life stage transition conceptual model 
that specifically focused on eggs. More information about spawning and egg hatching habitat is 
needed to fill this gap in our conceptual models and to identify management actions that would 
promote beneficial habitat attributes. 

Mathematical Modeling

As demonstrated in this report and by others, conceptual models are useful tools for identifying 
and understanding key ecosystem components and relationships, but they do not quantify them 
and cannot be used to quantitatively define functional responses to environmental drivers or make 
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quantitative predictions. Furthermore, as discussed above, the simple univariate and comparative 
analysis approaches employed throughout this report cannot capture the effects of multiple and 
often interacting drivers on the Delta Smelt population as a whole and on specific processes such 
as growth, mortality, and reproduction. The influences of interspecific interactions and abiotic 
forcing factors on populations and communities in complex ecosystems such as estuaries are also 
difficult to directly measure in any practical way. Only mathematical models can deal with such 
complexities and provide quantitative assessments and predictions.

Fortunately, the number of scientific publications about Delta Smelt that include various types 
of increasingly sophisticated mathematical models is growing rapidly. Recent examples include 
mathematical models based on statistical approaches (e.g., Bennett 2005, Manly and Chotkowski 
2006, Feyrer et al. 2007, Nobriga et al. 2008, Kimmerer 2008, Kimmerer et al. 2009, Feyrer et al. 
2010, Thomson et al. 2010, Mac Nally et al. 2010, Miller et al. 2012, Sommer and Mejia 2013, 
Kimmerer et al. 2013). These efforts generally focused on habitat associations using presence/
absence data from the various monitoring surveys or on changes in Delta Smelt abundance based 
on abundance indices generated by the monitoring surveys and the effects of multiple habitat 
attributes (covariates) on these changes. 

There is also a rapidly developing body of population life cycle models for Delta Smelt and other 
SFE fish species (e.g., Blumberg et al. 2010, Maunder and Deriso 2011, Massoudieh et al. 2011, 
Rose et al. 2011, Rose et al. 2013a, b). These models use either a statistically-based “state–space” 
multistage life cycle modeling approach or a spatially explicit, individual-based simulation 
modeling approach. Both approaches allow for analysis of the importance of drivers that affect 
different life stages of Delta Smelt and vary in space and time. 

Not surprisingly, results of mathematical modeling efforts to date agree strongly that no single 
factor can explain the observed Delta Smelt population dynamics and long-term changes in 
abundance. There is less agreement, however, about which factors are most important (see for 
example Rose et al. 2013b) and about the exact sequence and nature of their interactions that 
led to the 2002-3 Delta Smelt POD decline. It is possible, perhaps even likely, that the natural 
complexity of the estuarine ecosystem coupled with multiple human impacts will prevent 
definitive answers to these types of questions, especially when they are sought through overly 
rigid application of formal hypothetico-deductive reasoning and methods (Quinn and Dunham 
1983). We agree with Rose et al. (2013b) that the inherent complexity of the system and the 
challenges it presents for scientists and managers alike “is perhaps the best reason to develop and 
compare alternative modeling approaches.” Even the most sophisticated modeling oversimplifies 
complex systems and includes many assumptions. This means that instead of a single modeling 
approach, multiple alternative conceptual and mathematical modeling approaches, from the 
simple to the complex, are needed to understand how complex systems work and to predict 
future changes with sufficient confidence to allow for effective management interventions. The 
following sections give a brief overview of some of the alternative mathematical modeling efforts 
currently underway or proposed for the future.

A comprehensive state-space modeling effort that takes advantage of available Delta Smelt 
abundance data from all monitoring surveys and the even larger monitoring data set about habitat 
attributes is currently underway  (Ken Newman, FWS, personal communication) and future 
analyses using the individual-based model developed by Rose et al. (2013a) have been proposed 
(Rose et al. 2013b). As mentioned above, a full description or application of mathematical 
models is outside of the scope of this report, but to illustrate the utility of additional alternative 
approaches and further explore some of the linkages and interactions in our conceptual model, 
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we give three additional examples of alternative mathematical modeling approaches that may 
be used to further test some of the hypotheses in the conceptual models in this report. The first 
is a qualitative modeling approach, the second a multivariate statistical modeling approach, and 
the third a numerical simulation modeling approach. Each of these approaches was explored by 
one of the co-authors of this report. Importantly, these approaches are meant to complement, 
not replace state-space, individual-based, and other modeling approaches for Delta Smelt. 
Furthermore, results are preliminary and included for illustrative purposes only; peer-
reviewed publications of these analyses need to be completed before they can be used to 
draw any conclusions.

Qualitative Models

Qualitative modeling provides a theoretical foundation for understanding system behavior by 
minimizing the loss of generality and realism at the expense of model precision (Levins 1974, 
Levins 1975, Puccia and Levins 1991). Qualitative modeling is based on a mathematically 
rigorous approach that can be used to gain insight on community level process and to examine 
the consequences of intended or inadvertent human-induced perturbations in managed systems. 
Questions often addressed through qualitative modeling include the resilience and stability of 
the system and the direction of population change (Puccia and Levins 1991), the role of  system 
structure on stability (Dambacher et al. 2003, Fox 2006) and the degree of predictability in the 
response of populations to perturbations (Montaňo-Moctezuma et al. 2007, Hosack et al. 2009). 
Such questions have strong implications in terms of stability-complexity relations (May 1972, 
Pimm 1984, Haydon 1994) and the persistence of populations and communities following regime 
shifts (Baxter et al. 2010, Brook and Carpenter 2010, Capitán and Cuesta 2010, Cloern and 
Jassby 2012). 

The increased ecological understanding of the upper SFE and the potential drivers and 
mechanisms underlying the interannual population responses of Delta Smelt reviewed by the 
FLaSH and MAST syntheses provide a strong rationale to further refine and integrate our 
knowledge on community level interactions and ecological drivers in this highly altered system. 
Towards that goal, we envision qualitative modeling as a complementary approach to other 
types of models to evaluate the response of Delta Smelt and other populations in the upper SFE 
over several temporal and spatial scales. Qualitative modeling for Delta Smelt can address some 
relevant system-level knowledge gaps which are usually less amenable to analyses using other 
modeling approaches, namely, the influence of species interactions and multiple feedback levels 
on community stability and population changes in response to perturbations on one or more 
species. For example, understanding the mechanisms leading to Delta Smelt population responses 
under different hydrological conditions is an area of significant interest.

Signed-digraphs are a useful representation of the structure of a system, as defined by the 
community matrix, and have been used in qualitative models exploring food webs (Liu et al. 
2010), extinction events in communities (Vandermeer 2013), and other ecological topics of 
theoretical and conservation relevance. Castillo (unpublished data) used this approach to evaluate 
the predicted response of Delta Smelt to a sustained change in fall outflow as required in the 2008 
FWS Biological Opinion. Recognizing that outflows can control X2 and the size and location of 
the LSZ (see Chapter 4), and affect other segments of the aquatic community supporting Delta 
Smelt, Castillo (unpublished data) modeled the response of subadult Delta Smelt to low (5,000 
cfs; X2 = 85 km), intermediate (8,000 cfs; X2 = 81 km) and high (11,400 cfs; X2 = 74 km) fall 
outflow scenarios. Community composition for each outflow scenario was determined relative 
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to the geographical distribution of species expected to occupy the LSZ. The high outflow model 
included six community components: phytoplankton, zooplankton, Delta Smelt, predators of 
Delta Smelt, the overbite clam Potamocorbula amurensis, and outflow. The intermediate outflow 
scenario included two additional community components: the Asian clam Corbicula fluminea and 
the cyanobacteria Microcystis aeruginosa). The low outflow scenario included the same variables 
as in the intermediate flow scenario, except that the overbite clam was excluded and the Brazilian 
waterweed, Egeria densa was added. For each of these communities, community components 
could exhibit positive or negative feedbacks and positive or negative interactions with other 
community components. For each of the assumed flow conditions, the four alternative types of 
community interactions were assumed and each met the stability criteria, as defined by Puccia 
and Levins (1991). The predicted response of the Delta Smelt population was: 1) predominantly 
positive under the high outflow community scenario, 2) ambiguous under the intermediate 
outflow community scenario and 3) very ambiguous under the low outflow community scenario. 
According to these preliminary results, both outflow and outflow-induced changes in community 
composition and structure seem to play a critical role in determining the population response of 
Delta Smelt. These model predictions supported the hypothesis that a shift in the LSZ towards 
X2 = 74 km is a necessary condition for the fall outflow action to exert a positive influence on the 
Delta Smelt population. Qualitative models like these can provide useful assessments when the 
general direction of community interactions are understood but the data are insufficient to support 
a quantitative model.

Multivariate Statistical Modeling

In this report we reviewed results from many multivariate statistical modeling efforts such as 
the multivariate autoregressive modeling (MAR) conducted by MacNally et al (2010) to discern 
the main factors responsible for the POD declines and the hierarchical log-linear trend modeling 
by Thomson et al. (2010) that used Bayesian model selection to identify habitat attributes 
(covariates) with the strongest associations with abundances of the four POD fish species 
and determine change points in abundance and trends. The state-space life cycle modeling by 
Maunder and Deriso (2011) is also based on multivariate statistical modeling; an extension of this 
work is currently underway by Newman and others (Ken Newman, USFWS, unpublished data). 

We anticipate that insight from the current conceptual model may be used to facilitate additional 
multivariate statistical models. As an example, we present preliminary results (Mueller-Solger, 
USGS, unpublished data) of univariate and multivariate statistical analyses of X2 relationships 
with annual Delta Smelt abundance indices that follow the approach in Jassby et al. (1995). 
The purpose is to further explore some of the hypotheses related to hydrology and the size 
and position of the LSZ included in our conceptual model and to illustrate the importance of 
considering more than one factor when trying to understand Delta Smelt dynamics. We include 
this brief exploration in this report because it serves as a useful and relevant example, but as 
noted above, we advise readers that  these are  preliminary results from an analysis that has 
not yet undergone peer review and should be viewed with caution. Moreover, individual and 
interactive effects of additional factors were not considered in this analysis, but are likely also 
important (see Chapter 8). As noted in Chapter 7, we recognize that “hydrology” by itself does 
not affect Delta Smelt, nor does the “X2” index which is used in this analysis as an index of 
general hydrological (outflow) conditions in the estuary. As shown in our conceptual model (Fig. 
38), hydrology affects Delta Smelt through the combined effects of its interactions with other 
dynamic drivers and stationary landscape attributes (tier 1) on habitat attributes (tier 3). Many of 
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these interactions have been described in this report; others should be explored further in future 
studies.

This analysis is intended to evaluate the effects of prior abundance, step changes, and concurrent 
and prior hydrological conditions in the estuary on the relative abundance of larval to early 
juvenile Delta Smelt (20 mm index, Fig. 3; hereafter referred to as “larval” Delta Smelt). It also 
considers prior hydrological conditions and the entire available abundance index time series for 
larval Delta Smelt provided by the 20 mm survey. The 20 mm survey, one of the newest IEP 
monitoring surveys, was started in 1995. Delta Smelt distribution data from this survey is heavily 
used to assess and manage entrainment risk. Similar to prior analyses of TNS and FMWT data 
(Feyrer et al. 2007, Nobriga et al. 2008), Kimmerer et al. (2009, 2013) and Sommer and Mejia 
(2013) used a generalized additive modeling (GAM) approach to examine the associations 
between Delta Smelt occurrence or catch per trawl at 20 mm survey stations and habitat attributes 
(salinity, temperature, turbidity, and calanoid copepod density) measured concurrently at the same 
stations. There have, however, been few analyses of annual abundance data from this survey. 
After 19 years, the 20 mm survey now provides barely enough annual abundance data points 
(indices) to conduct multiple regression analyses with up to two predictor variables. Clearly more 
years of data collection and more in-depth analyses are needed and the analyses presented here 
are merely a starting point. 

This analysis uses annual abundance indices for larval Delta Smelt (20 mm survey, 1995-2013), 
adult Delta Smelt (SKT survey, 2003-2013), and subadult Delta Smelt during the previous year 
(FMWT survey, 1995-2013) (Fig. 3). It also uses larval recruitment indices calculated from the 
annual abundance indices (20 mm to SKT ratio and 20 mm to FMWTYear-1 ratio, Fig. 46; see 
previous chapters for caveats regarding index ratios). Data from the SKT survey was only used 
for univariate analyses because the SKT index time series only has 11 data points at this time. 
Spring and fall X2 values were obtained by first calculating mean monthly X2 values calculated 
from daily X2 values provided by the DWR Dayflow database and then averaging the mean 
monthly X2 values for the “spring” months February to June and the “fall” months September 
to December. The 2002-2003 step decline in Delta Smelt abundance (Thomson et al. 2010) 
was introduced as a before/after factor (“Step”). Details about the data sources are provided in 
Chapter 3 of this report.

The multivariate analyses presented here were conducted with generalized linear modeling 
(GLM) following the approach of Jassby et al. (1995) and followed with a classical linear 
modeling (LM) approach guided by the GLM results. For the GLM, model parameters were 
estimated with a Poisson error distribution, a log link function describing the relationship 
between the predictor variables(s) and the mean, and a natural spline to represent non-linearities. 
The degrees of freedom for the splines were restricted to only 2 (i.e. one interior knot) because 
of the low number of available data points. Models requiring estimation of more than two 
independent parameters (aside from the intercept) were not considered for the same reason. 
Applying the GLM approach avoids the need for log-transforming the abundance data and using 
natural (quadratic) splines as smoothers allows a more natural representation of non-linearities 
than using polynomials. 

The responses predicted by these models have a fairly high degree of precision as indicated by 
low values of SE/Mean and residuals were consistent with model assumptions. The results show 
significant univariate relationships at the P < 0.05 level (Table 7) between the 20 mm abundance 
index and spring X2, prior fall X2, and prior FMWT abundance index. The relationship is 
strongest with prior fall X2, followed by spring X2 and prior FMWT abundance index (Table 
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7). The relationship with spring X2 appears unimodal with maximum 20 mm indices associated 
with spring X2 values between about 55 and 70 km (Fig. 79a). The relationship with prior fall 
X2 appears negative (Fig. 79b), and the relationship with the prior FMWT abundance index 
(Fig. 79c) appears positive. Each of these univariate relationships was improved by the inclusion 
of one of the other predictor variables (Table 7). Relationships with spring and prior fall X2 
were also improved by including the 2002-3 step change. As mentioned above, multivariate 
analyses with more than two predictor variables were not conducted because of the relatively 
small amount of available data (n = 19, Table 7). Based on AIC comparisons (Table 7), including 
the 2002 step change (introduced as a before/after factor, “Step”) somewhat improved the 
relationship of the 20 mm index with spring X2 (Fig. 73a) and with prior Fall X2 (Fig. 79b), but 
not with the prior FMWT index because that index was the basis for the analyses that detected 
the step change and thus already includes the step change in the actual data (Fig. 79c, model not 
included in Table 7). Including the prior FMWT abundance index improved the relationships with 
spring and fall X2 more substantially, but the model combining the effects of spring and fall X2 
fit the 20 mm index data nearly as well as the model combining the effects of spring X2 and prior 
FMWT (Table 7).

It is interesting to note that while prior fall X2 by itself was a stronger predictor of the 20 mm 
index than spring X2, spring X2 was the stronger predictor when the step change or previous fall 
abundance were taken into account. Baxter et al. (2010) hypothesized that the shift toward higher 
prior fall X2 values (Fig. 17) may have contributed to an ecological “regime shift” associated 
with the step decline in Delta Smelt and other species. This means that prior fall X2 and the 
“step” factor and FMWT decline in this analysis may be related, which could explain the very 
similar outcomes for the two models combining spring X2 with either prior fall X2 or the prior 
FMWT index.

Partial residual plots show the relationship between a predictor variable and the response variable 
given that other independent variables are also in the model; in other words, they show the 
effect of one predictor variable given the effect of one or more additional predictor variables. 
Partial residual plots for the relationships of the 20 mm index with the combinations of spring 
X2 and prior fall X2 (Fig. 80 a and b) and spring X2 and prior FMWT abundance index (Fig 80 
c and d) show that the general shape and direction of the relationships of the 20 mm index with 
each of the individual predictor variables (Fig. 79) remains intact in the models with combined 
predictors, but the partial residuals do not closely follow the fitted lines. This indicates that while 
each variable has its own, distinct effect on the 20 mm index that is maintained in the presence 
of the other variables, interactive effects among these variables are quite strong. In summary, 
low values of prior fall X2, high prior FMWT abundance, and intermediate values of spring X2 
have positive associations with the abundance of larval/postlarval Delta Smelt, but the effects of 
individual variables are mediated by the presence of the other variables.

Because the spline degrees of freedom were strongly restricted in this GLM analysis, the results 
are quite similar to the results of classical linear models (LM) with log-transformed abundance 
data and a quadratic term to represent the unimodal non-linearity in the relationship between 
the 20 mm index and spring X2 (Fig. 81). We include these models here because they are more 
easily reproducible than the GLM models and offer simple equations for making predictions 
about larval abundance that can be used in adaptive management applications. As for the GLM 
analysis (Table 7), the best fits overall were achieved by combining spring X2 with either the step 
change or the prior FMWT abundance index (Table 8). All predictor combinations improved the 
models compared to the univariate relationships (Table 8). Based on a comparison of regression 
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coefficients and P-values, the LM relationships were statistically weaker (Table 8) than in the 
GLM analysis (Table 7).

Another way of including prior abundance in statistical relationships of abundance with habitat 
attributes and environmental drivers is to use abundance indices that are proportional to prior 
abundance indices, in other words, ratios of present to prior abundance indices. In this report, we 
used the ratios of 20 mm to SKT and 20 mm to FMWTYear-1 abundance indices (Fig. 46; see also 
caveats about these indices in Chapter 3) as larval recruitment indices from adults and subadults, 
respectively. We found that recruitment of larvae from adults was linearly related to spring X2 
for the entire available time series (2003-2013, Fig.82a and Table 9). The recruitment index for 
2013 was higher than expected based on the other data points. The relationship of the recruitment 
index from subadults to next year’s larvae with winter-spring X2 was also linear for the POD 
period after the abundance step decline in 2002 (Thomson et al. 2010), but with more scatter at 
higher X2 values. Interestingly, no relationship was apparent at all before the 2002 step decline 
when the proportional larval recruitment from then more abundant subadults was generally low 
(Fig. 82b and Table 9). In the current POD regime, larval recruitment from parental stock appears 
to be highest when flows through and out of the Delta are high and the interface between fresh 
and brackish water is located to the west (i.e. low X2), although it can occasionally also be high 
at lower flows, as was the case in 2013. 

In late winter and spring 2013, CVP and SWP exports were reduced to comply with OMR flow 
requirements in the 2008 USFWS Biological Opinion aimed at reducing the risk of adult and 

Predictor 
Variable(s) n

SE/
Mean P R2

Adjusted 
R2 AIC Δ (AIC)

w 
(AIC)

Spring X2, 
FMWTyear-1

19 0.119 <0.001 0.791 0.731 39.5 0.00 0.53

Spring X2, 
Fall X2year-1

19 0.120 <0.001 0.787 0.726 40.1 0.60 0.39

Fall X2year-1, 
FMWTyear-1

19 0.126 <0.001 0.764 0.697 43.2 3.78 0.08

Spring X2, 
Step (Factor)

19 0.143 <0.001 0.677 0.612 53.6 14.12 0.00

Fall X2year-1, 
Step (Factor)

19 0.135 <0.001 0.712 0.655 55.8 16.35 0.00

Fall X2year-1 19 0.145 <0.001 0.646 0.601 56.0 16.53 0.00

Spring X2 19 0.176 0.006 0.476 0.411 79.9 40.43 0.00

FMWTyear-1 19 0.187 0.015 0.408 0.334 89.4 49.98 0.00

Table 7. Summary of relationships between the 20 mm abundance index for Delta Smelt (response 
variable) and one or more predictor variables: n, number of observations (years); SE/Mean, 
model standard error (square root of mean squared residual) as proportion of mean response, 
P, statistical significance level for the model; R2, coefficient of determination; adjusted R2, R2 
adjusted for the number of predictors in the model; AIC, Akaike information criterion; Δ AIC, AIC 
differences; w (AIC), AIC weights. All relationships modeled with generalized linear models (GLM) 
with a Poisson error distribution, log link function, and a natural cubic spline with two degrees of 
freedom as a smoother for all predictor variables except “Step.”
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Figure 79. Plots of the Delta Smelt 20 mm survey abundance index as a function 
of a) spring (February-June) X2, b) previous year fall (September-December) X2, 
and c) Delta Smelt fall midwater-trawl abundance index in the previous year. 
Details of general linear models (GLM) used to fit the lines are in Table 7.
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Figure 80. Plots of partial residuals for the relationships of the 20 mm index with 
the combinations of spring X2, prior fall X2, and prior FMWT abundance index 
summarized in Table 1 (panels a, b, d, and e). The plots shown here also include 
partial fit lines and their 95% confidence intervals. Values for the time period of 
analysis are shown for: c, X2; and f, the fall midwater trawl abundance index from 
the previous year
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larval Delta Smelt entrainment into the water export pumps. This was the first time since the 
2008 USFWS Biological Opinion was issued that exports were specifically reduced to lower 
Delta Smelt entrainment risk. In other years, flows were high enough to allow for higher export 
levels or export reductions to protect salmon were deemed sufficiently protective for Delta Smelt. 
It is possible that the intentional reduction in Delta Smelt entrainment risk in 2013 contributed 
to the high larval recruitment from adults during relatively low flow conditions, but additional 
years with similar conditions and targeted management actions as well as better estimates of 
entrainment and more in-depth analyses with other flow variables and flow averaging periods 

Figure 81. Plots of the Delta Smelt 20 mm survey abundance index as a function 
of a) spring (February-June) X2, and b) previous year fall (September-December) 
X2. Lines are either simple linear least squares regression (lines) or quadratic 
regression (curves). Details of linear models (LM) used to fit the 1995-2013 lines 
are in Table 8.
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are needed to test this hypothesis and obtain a better understanding of flow effects on larval 
recruitment.

Overall, these preliminary findings suggest that abundance of the larval to early juvenile life 
stages of Delta Smelt may respond quite strongly to spring and prior fall outflow conditions. 
The relationships of the 20 mm index with spring X2 shown in this analysis were much stronger 
than relationships of the TNS and FMWT indices with spring X2 (Table 1, Fig. 17. Similarly, 
hydrological conditions in the fall seem to have a greater impact on subsequent abundance of 
larvae than on subsequent juvenile abundance (TNS index; Mount et al. 2013). This is consistent 
with the findings by Kimmerer et al. (2009) who noted more pronounced relationships of spring 
X2 with earlier than with later life stages of Delta Smelt and explained that this was “probably 
because the earlier life stages occupy areas that are fresher and therefore more responsive to 
changing flow than the more brackish regions.” While the size and location of the LSZ itself 
may be important for maturing adults in the fall, its interface with fresh water may be important 
to larvae and spawning adults. A more westward interface means a larger freshwater habitat for 
spawning and larval rearing that reaches into the shallow eastern region of Suisun Bay and is 
well connected with Suisun Marsh sloughs and, in wetter years, the Napa River. It also means a 
larger distance to the export pumps in the southern Delta and thus a reduced risk of entrainment 
for spawning adults and larvae. Interactions of flow with other drivers and habitat attributes as 
shown in the conceptual models in this report are likely also important. This suggests that at least 

Predictor 
Variable(s) n

SE/
Mean P R2

Adjusted 
R2 AIC Δ (AIC) w (AIC)

Spring X2, 
(Spring 
X2)2, log 
FMWTyear-1

19 0.237 0.000 0.745 0.694 2.1 0.00 0.85

Spring X2, 
(Spring X2)2, 
Fall X2year-1

19 0.274 0.001 0.661 0.593 7.5 5.42 0.06

Fall 
X2year-1, log 
FMWTyear-1

19 0.280 0.000 0.621 0.574 7.7 5.54 0.05

Spring X2, 
(Spring 
X2)2, Step 
(Factor)

19 0.292 0.002 0.616 0.540 9.9 7.78 0.02

Fall X2year-1, 
Step (Factor)

19 0.307 0.002 0.544 0.487 11.2 9.06

Fall X2year-1 19 0.318 0.001 0.479 0.449 11.7 9.58 0.01

Spring X2, 
(Spring X2)2

19 0.329 0.006 0.473 0.407 13.9 11.83 0.00

log 
FMWTyear-1

19 0.333 0.002 0.430 0.397 13.4 11.29 0.00

Table 8. Summary of relationships between the log-transformed 20 mm abundance index for Delta 
Smelt (response variable) and one or more predictor variables. All relationships modeled with 
simple least-squares linear models (LM). For explanation of column headings see Table 6. 
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at present, increased Delta outflow and a more westward LSZ in fall, winter, and spring may 
have important beneficial effects on early life stages of Delta Smelt, but other factors (possibly 
including summer flows which were not included in this analysis) may be more important for 
their survival to adults.

Finally, similar to previously published analyses, this analysis strongly suggests that previous life 
stage abundance should always be taken into account in statistical explorations of habitat effects 

Figure 82. Adult (panel a, SKT) and subadult (panel b, FMWT the previous year) to 
larvae (20 mm Survey) recruitment indices (abundance index ratios) as a function 
of spring X2 (February-June). For 20 mm/SKT a linear regression was calculated 
with and without 2013, which appears to be an outlier. For 20 mm/FMWT the 
previous year separate regressions were calculated for the POD period (2003-
2013), the period before the POD (1995-2002), and the entire data record (not 
shown). See Table 9 for regression results.
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on Delta Smelt. Prior abundance can be introduced into these relationships as actual abundance 
data (e.g. abundance indices or catch per trawl data), periods of relatively constant abundance 
(here introduced as a “step” factor), or by combining it with present abundance in proportional 
abundance indices such as the index ratios used here as recruitment indices. Similar to the 
relationships of juveniles with spring X2 discussed in Chapter 4, the overall depressed abundance 
of larval Delta Smelt during the POD period that started in 2002 leads to less substantial larval 
abundance increases with increasing outflows and decreasing X2 values than before the onset of 
the POD. However, the association of high larval recruitment with high spring outflow suggests 
that winter and spring hydrology, through its effects on habitat attributes, may be an important 
driver of larval recruitment during the current POD period, although it may be less important at 
higher abundance levels. 

In summary, this preliminary analysis provides an example of how relatively simple multivariate 
modeling can yield intereresting insights, in this case about how prior conditions (prior fall 
X2), prior abundance (prior FMWT), step changes in abundance, and concurrent environmental 
conditions (spring X2) may all have important effects on Delta Smelt abundance in the spring. 
While further analyses, more sophisticated life cycle modeling, and publication in a peer-
reviewed journal are needed to draw firm conclusions, these preliminary results support the 
idea discussed throughout this report that neither scientific understanding nor management 
effectiveness can be improved by only considering a single effect, or a single season or life 
stage. High larval recruitment is essential for setting the stage for a strong year class, but higher 
growth and survival through subsequent life stages are also needed to achieve and sustain higher 
population abundance levels.

Numerical Simulation Modeling

Quantitative simulations of the multiple factors and processes that affect Delta Smelt life stage 
transitions in our conceptual model are an obvious next step in the exploration and synthesis 

Index Ratio Period n SE/Mean P R2

20-mm/
SKT

2003-
2013

11 0.556 0.006 0.588

20-mm/
SKT

2003-
2012

10 0.270 0.000 0.918

20-mm/
FMWTYear-1

2003-
2013

11 0.469 0.003 0.648

20-mm/
FMWTYear-1

1995-
2002

8 1.012 0.771 0.015

20-mm/
FMWTYear-1

1995-
2013

19 0.981 0.321 0.058

Table 9. Summary of relationships of larval recruitment indices (abundance 
index ratios) for Delta Smelt (response variable) and spring X2 (predictor 
variable; spring: February-June): n, number of observations (years); SE/Mean, 
model standard error (square root of mean squared residual) as proportion of 
mean response, P, statistical significance level for the model; R2, coefficient of 
determination. All relationships modeled with least-squares linear models (LM).
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of the information presented in this report. The purpose of simulation modeling is to represent 
a phenomenon or process in a way that allows users to learn more about it by interacting with 
the simulation (Alessi and Trollip 2001). In particular, simulations allow users to easily control 
experimental variables and test hypotheses. Guidance from simulation model “dry runs” can 
make actual laboratory and field experimentation much more efficient and effective. Simulations 
are also valuable in visualizing outcomes, thus further promoting learning and understanding. 

The individual-based Delta Smelt model by Rose et al. (2013a, b) is an example of a complex 
simulation model specifically created for Delta Smelt. Another simulation modeling option is 
to utilize “off-the-shelf” simulation software such as the “STELLA” (Structural Thinking and 
Experiential Learning Laboratory) simulation construction kit (http://www.iseesystems.com/
softwares/Education/StellaSoftware.aspx). STELLA is designed to let users easily create their 
own simulations using system dynamics including positive and negative causal loops, and flows, 
accumulations and conversions of materials.

Culberson (USFWS, unpublished data) created a simple quantitative simulation model in 
STELLA that includes several life stages of Delta Smelt and is based on seasonal environmental 
conditions and stage to stage estimates of survival. While this simulation modeling approach 
appears to be feasible, it remains to be seen how such an approach will approximate actual 
population dynamics encountered in the field and how results compare to those of other 
simulation models such as the individual-based life cycle model by Rose et al. (2013a,b). A 
user-friendly STELLA-based model can be useful in the interim, however, to explore the relative 
contribution of lifecycle stage and environmental covariates to the overall status of Delta Smelt 
abundance from year to year and to test hypotheses derived from the conceptual model. In its 
fullest expression, this MAST-associated lifecycle model will be useful for illustrating how 
multiple suites of plausible co-variates can allow for different Delta Smelt abundance outcomes. 
For example, it may be possible to find high abundance under degraded conditions given low 
entrainment losses across successive winters and springs. Conversely, it is possible to encounter 
low Delta Smelt abundance given otherwise good environmental and outflow conditions with 
significantly warmer temperatures during fall pre-adult maturation periods. Moreover, simulated 
changes in survival can provide a useful frame of reference to evaluate alternative outcomes of 
cohort size or population size attained at different life stages. For example, given the reported 
levels of larva, juvenile and sub-adult Delta Smelt in IEP surveys, what levels of daily survival 
between life stages would be required to attain the relative abundances corresponding to each of 
the four years being compared? Could the small anticipated differences in assumed daily survival 
among those four years be attributed to some combination of habitat attributes? Or, could stage-
to-stage survival (e.g., percent of individuals surviving from one stage to the next) provide a 
more useful frame of reference to address that question? Our proposed STELLA simulation 
model and associated modeling exercises will comfortably allow exploration of these questions 
and related ideas.

This type of modeling will best be used iteratively with emerging data and within synthesis 
reports to identify where important gaps exist in the Delta Smelt lifecycle understanding and 
demonstrate how disparate information sources might be brought together to inform our smelt 
population estimates through time. Importantly, our model can be used in combination with the 
narrative description of “a year in the life” of the Delta Smelt population from the conceptual 
model to more effectively describe environmental and management effects on population status 
in the SFE. We are especially interested in using such a model to avoid single-factor outcome 
discussions where smelt populations are seen as the result of “one versus another” environmental 

http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx
http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx
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or management-related trade off, particularly when single factor analysis is aggregated over 
decades of data collection efforts in what we know is a constantly-changing estuary.

Figure 83 shows how output from such a model might be useful for keeping track of the variable 
influence of factors on overall Delta Smelt abundance across seasons within three hypothetical 
years. Six factors are plotted according to their sensitivity rank (their relative influence on 
simulated population outcomes). Specific sensitivity levels can then be identified according to the 
combinations of factors that emerge as important across succeeding seasons and years. Models 
built to simulate these influences can then be closely examined to discern how different years, 
year types, or management practices influence simulated abundance, and to detect where potential 
data gaps or inconsistencies are among the alternative conceptual models or model modes. The 
basis for using such an approach is a comparative one, and an absolute resolution of the size or 
behavior of the real Delta Smelt population is not anticipated – but remains the overall objective. 
Of real interest here is providing a way to interpret our emerging conceptual model within 
potential regime-shifts, and to capitalize on previous specifications of this model to organize 
our ever-improving understanding. Of additional benefit is the ability to use these models easily 
in “learning sessions,” where users interact with the modelers and species experts to deepen 
understanding of Delta Smelt biology and its relationship to Delta ecology and management.

Applications to Support Delta Smelt Management 

We have shown that the conceptual models in this report provide a reasonable and up to date 
conceptual framework that can be used to analyze and synthesize existing data and knowledge 
about Delta Smelt, identify critical data and information gaps, and guide new field and laboratory 
studies as well as mathematical modeling efforts. We have also discussed many challenges that 
limit our ability to reach firm conclusions and make highly confident predictions about the effects 
of management actions and other changes on Delta Smelt. And we have noted that science and 
management have to go hand in hand to constantly identify, implement, evaluate, and refine 
the best management options for Delta Smelt in the highly altered and ever-changing estuarine 
ecosystem that represents the entire range of this species. 

Adaptive management is a well-established approach for systematically integrating science 
and management. As mentioned earlier in this report, it is increasingly required in plans for 
management of the San Francisco estuary, but to date, the Vernalis Adaptive Management 
Program (VAMP) and the Fall Ouflow Adaptive Management Plan are among the few clear 
examples of systematically planned and implemented adaptive management in the estuary. 

We end our report with examples of how our conceptual models can be used to adaptively 
manage and improve Delta Smelt habitat. We conclude with several recommendations for the 
next analysis, synthesis, and modeling efforts. These efforts are a key ingredient for the more 
widespread adoption and success of adaptive management strategies; without the conceptual 
and mathematical models provided by these efforts adaptive management of ecosystems simply 
cannot proceed. 

Table 10 gives examples of adaptive management goals and associated uncertainties to address 
habitat deficiencies (“habitat problems”) identified and discussed in this report. This table is 
intended as an illustration of how our conceptual models can be used to inform the first three 
steps of the nine-step adaptive management framework developed by the DSC Delta Science 
Program (DSP 2013). These three steps are: 1) definition of the problem; 2) establishment of 
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management goals and actions to address the problem; and 3) modeling of linkages between 
management goals and actions. The third step specifically requires conceptual or quantitative 
models for the purpose of evaluating outcomes of alternative management actions and 
identification of uncertainties and data gaps. Conceptual models are also important in the 
other six adaptive management steps, for example to design effective adaptive management 
experiments and appropriate monitoring and to analyze, synthesize and evaluate results. 

Table 10 is organized around the habitat attributes identified in the conceptual models. For each 
habitat attribute, we describe some example categories of management actions that could be 
considered to improve the status of Delta Smelt. In essence, these actions represent an example 
“tool box” for the management of Delta Smelt.

Note that the tool box identified in Table 10 is not meant to be exhaustive. Rather, the list 
is intended as an example set of adaptive management actions suggested by the conceptual 
models. As such, the list provides no insight into the cost-effectiveness or feasibility of any of 
the potential actions. Moreover, we acknowledge that there is substantial uncertainty about the 
potential benefits of actions in the tool box. As mentioned above, identification of uncertainties 
about the feasibility and benefits of proposed management actions is an important step in adaptive 
management that can only be accomplished with the help of conceptual or quantitative models. A 
key point is that these studies are somewhat different than the critical data and information gaps 
presented earlier in this Chapter. Specifically, Table 10 emphasizes information gaps that are most 
relevant to specific management questions, while the earlier list focuses on needs to improve the 
overall scientific understanding that provides the basis for our conceptual models for Delta Smelt. 
Clearly, efforts to resolve uncertainties and gaps in understanding are needed in both categories. 
Overlapping uncertainties may highlight especially urgent data and information needs. For Delta 
Smelt, this includes uncertainties related to contaminants, predation, and entrainment along with 
interactions of physical habitat attributes with other factors. 

Figure 83. Simulated output from a STELLA model for assessing sensitivity of the 
model to variation in model variables.
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Habitat Attribute Management Actions Example Study Efforts

Physical Features Increase habitat area & 
quality

-Identification of key microhabitats for each life stage and attributes.

-Effects of flow/LSZ position on habitat quality, particularly key biotic 
habitat elements (access to prey, evasion of predators).

-Approaches to maintain & expand high turbidity habitat (e.g. supply, 
habitat design, SAV management).

-Approaches to maintain and expand habitat with moderate 
temperatures (e.g. channel configuration, water depth and velocity).

-Evaluation of whether targeted restoration meets habitat needs 
(e.g. temperature, substrate, turbidity)

Chemical Features Reduce toxicity -Identification of chronic effects of contaminants.

-Identification of effects of Harmful Algal Blooms.

-Approaches to reduce toxicity from contaminants and HABs

Food Increase pelagic 
production 

Increase access to 
alternative foods (e.g. 
epibenthic).

Reduce sources of loss

Manage towards higher 
quality foods

Prevention and control 
of non-native species

-Role of tidal wetlands as subsidy habitats (not necessarily occupied 
by smelt)

-Ammonia-bivalve interactive effects on diatom, copepod, mysid, 
amphipod production.

-Relative importance (contribution to smelt growth) of epibenthic 
foods (e.g., mysids, amphipods, aquatic insects).

-Effect of bathymetry, vegetation type (and density) on access to 
epibenthic and pelagic foods.

-Role of tidal wetlands and wetland/open-water complexes.

-Approaches to reduce losses to benthic grazing (e.g. invasive 
clams) and/or to the suppression of bivalve populations

-Value of different food types to Delta Smelt nutrition.

-Effects of habitat conditions (e.g. ammonia, flow) on food quality.

-Identification of nutrient sources and sinks.

-Improved detection methods for invasive species

-Studies to evaluate alternative control methods.

Entrainment Avoid entrainment 
region

Adjustments to timing 
and magnitude of 
exports

-Identification of factors that lead to increased occupancy of South 
Delta.

-Improved measurement of entrainment and its environmental 
correlates

-Effects of exports and entrainment on viability (e.g. abundance, 
genetics, demographics).

-Approaches to reduce entrainment and enhance emigration 
success.

Predation risk Reduction of predator 
population

Reduction of predation 
rate

-Studies on delta smelt responses (behavior, distribution, 
abundance) to variation in predator abundance.

-Identify habitat features that reduce predation rate (e.g. depth, 
turbidity, food, lower water temperatures).

Table 10. Example tool-box for applying the conceptual model to Delta Smelt management.
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Recommendations for future analysis and synthesis

Efforts to resolve the management issues listed in Table 10 or carry out the modeling and fill the 
critical science gaps discussed earlier in this Chapter will not succeed without an organizational 
commitment to continued systematic and long-term collection, synthesis and evaluation of data 
and information about Delta Smelt, its habitat, and important drivers of habitat and abundance 
changes. The importance of Delta Smelt for ecosystem and water supply management in and far 
beyond the SFE is widely recognized. The impressive rate at which we are learning about Delta 
Smelt and the estuarine ecosystem and the large amount of existing information about them is 
less widely recognized by many managers and even by many scientists. Part of the reason for 
this is that it is difficult to track the large quantity of new (since 2010) information documented 
in this report and even more difficult to integrate it with the previously existing information in a 
meaningful way. But without this integration, identification of priorities for additional scientific 
investigations is ad hoc and piecemeal at best and the value of new information cannot be fully 
realized in management applications such as those listed in Table 10. 

Moreover, comprehensive adaptive management efforts simply cannot succeed without adequate 
conceptual and mathematical models and important science and management opportunities will 
be missed. Such efforts currently include the ongoing fall outflow adaptive management for Delta 
Smelt and new efforts called for by the new “Collaborative Science and Adaptive Management 
Program” (CSAMP), the California Delta Stewardship Council’s Delta Plan, and the multi-
agency Bay Delta Conservation Plan (BDCP). The fact that even the incomplete draft version of 
our report released for public review in June 2013 already played a central role in CSAMP work 
planning, court documents, and elsewhere bears clear testimony to the fact that there is a great 
and urgent policy and management need for analysis, synthesis and conceptual models such as 
those provided in this report. 

In consequence, we strongly recommend that there be a continued management, analysis, and 
synthesis effort, whether carried out by the IEP, the Delta Science Program, or some other 
scientist, group or agency. While it is possible for individual scientists to take on such efforts 
(e.g., Bennett 2005), the amount, diversity, and rapid growth of pertinent data and information 
suggests that team efforts may usually be a more feasible and possibly also a more effective 
option. Collaborative, multidisciplinary analysis and synthesis teams are also at the core of 
the National Center for Ecological Analysis and Synthesis in Santa Barbara, CA (NCEAS, 
http://www.nceas.ucsb.edu/), the newer National Socio-Environmental Synthesis Center in 
Annapolis, MD (SESYNC, http://www.sesync.org/) and the Delta Collaborative Analysis and 
Synthesis (DCAS) approach promoted by the Delta Science Program’s Delta Science Plan (DSP 
2013). Important IEP POD and MAST lessons for future synthesis teams are that the role and 
responsibilities of all team members need to be very clear, that lines of communication need to 
always be open and available to all, and that there needs to be strong and fully engaged team 
leadership with a clearly dedicated lead author and/or lead editor for all major team products. 
In addition, to complete analyses and reports on schedule, it is necessary for team members to 
prioritize synthesis efforts for sustained periods of time, without being tasked with additional 
projects that may be urgent for short-term needs. 

Another consideration is the type of publication that results from analysis and synthesis efforts. 
The IEP MAST and POD teams have written comprehensive agency reports, but would have 
preferred writing peer-reviewed books or monographs (e.g., published by the American Fisheries 
Society or by U.C. Press) had the time and resources been available to do so. Such books would 
be considered better scientific products with greater scientific standing and a longer life span 

http://www.nceas.ucsb.edu/
http://www.sesync.org/
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and would reach a much larger audience. Another approach would be to write a series of shorter 
articles that could be published in a special issue of a peer-reviewed scientific journal. This too 
would take more time and effort and would also somewhat restrict the types of topics that could 
be covered. Journal articles are, however, the main target for national analysis and synthesis 
centers such as NCEAS and SESYNC because they have the greatest scientific standing and are 
the most widely accepted and well established method of written science communication. 

Regardless of which analysis, synthesis, and communication approach is chosen, none of these 
efforts can succeed without commitment of adequate funding, staffing, and other resources. 
The IEP MAST team that developed and wrote this report was formed in 2012 for IEP science 
synthesis and work planning, but it has remained a pilot-level effort that was never adequately 
supported. MAST work remained a part-time effort for all co-authors of this report, and for 
most it was an “on the side” task compared to their “regular” agency duties. There is no doubt 
that completion of this report could have proceeded much more rapidly with greater allocation 
of resources. Public and independent peer reviews of a draft version of this report (see http://
www.water.ca.gov/iep/pod/mast.cfm) greatly improved the structure and content, but were 
not an original part of the MAST planning. Preparing and conducting the reviews as well as 
responding to the 355 specific and many more general review comments took considerable time 
(see also Appendix A). Other MAST tasks also added to the delays. In addition to this report, 
the MAST completed a synthesis report for the Fall Low Salinity Habitat (FLaSH) investigation 
component of the Fall Outflow Adaptive Management Program (Brown et al. 2014) and prepared 
a solicitation package for research proposals, which it then also reviewed.

We strongly recommend that adequate, long-term support for these types of efforts be among 
the highest science and adaptive management priorities for the region and the entire State of 
California. Given its pivotal role in adaptive management and the increasingly large amounts 
of new scientific data and information that are produced every year, the authors of this report, 
individually and as a team, cannot think of any science activity that is more urgently in need of 
greater support than analysis, synthesis, and communication of scientific results. 

For additional analysis and synthesis efforts about Delta Smelt, we recommend that the next 
individual or team to take this on should:

 � Build on this report by evaluating the conceptual model with more rigorous analyses that 
include more years of data, developing lifecycle and numerical models as discussed above, 
and/or using the conceptual model to develop a comprehensive list of data and information 
gaps and approaches to addressing these gaps in order to inform management strategies;

 � Early in the process, make clear decisions about the analytical/modeling approaches to be 
used, the scope of the synthesis to be done, and approaches for review and communication of 
results;  

 � Evaluate additional data and information needs concerning Delta Smelt;

 � Consider approaches to understand the effects of the wide variety of management actions 
targeting Delta Smelt, including adaptive management of fall outflow, entrainment, habitat 
restoration, etc (e.g., Table 10);

 � Develop key “indicator” variables that can be used to track and predict the status of 
Delta Smelt and its habitat and serve as “performance metrics” to evaluate the success of 
management actions. Such variables, and a “report card” to summarize them, were considered 
for this report, but the MAST decided that developing them was beyond the scope of 

http://www.water.ca.gov/iep/pod/mast.cfm
http://www.water.ca.gov/iep/pod/mast.cfm
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this report and would require a fairly substantial effort that could be the main focus of an 
additional effort.

An additional recommendation is that an ultimate goal of these efforts should be the integration 
of conceptual and mathematical models such as those described in the previous section of 
this Chapter and the routine use of both types of models in adaptive management. Neither the 
recently published mathematical models nor existing conceptual models for Delta Smelt have 
been applied to management issues in a consistent manner. This is likely at least partially due 
to unfamiliarity of managers with the models and the need for specialists (model developers) 
to apply the mathematical and in some cases even the conceptual models to management 
issues in the absence of easy to use and understandable model interfaces and specifications. 
We also recommend a comprehensive biological modeling forum and/or more specific 
biological modeling teams and “summits” as recommended by the IEP Science Advisory 
Group (2010, available at http://www.water.ca.gov/iep/docs/IEPModelWorkshopReview.
pdf) and, more recently, the Delta Science Plan (DSP 2013). Such groups would not only 
facilitate communication among modelers, but could also help make the connection from model 
development to model applications of interest to managers and policy makers. They would 
complement and could (and likely should) be integrated with the existing, California Water 
and Environmental Modeling Forum (CWEMF, see http://www.cwemf.org), which tends to 
focus on modeling physical processes. As with the overall analysis and synthesis teams, these 
groups could be implemented by the IEP, The Delta Science Program, CWEMF, or others. The 
chosen organizational umbrella is less important than actual implementation and involvement of 
appropriate local and outside scientific and management expertise. Some possible topics for these 
groups include:

1. Reviews and updates to existing conceptual and mathematical models 

2. Further development of mathematical models of Delta Smelt population abundance 
drawn specifically from the conceptual models described in this report; applications 
and extensions of recently published models to help make management decisions and 
guide new modeling efforts; additional modeling efforts and future research projects to 
improve resolution and understanding of the particular factors identified as critical to 
reproduction, recruitment, survival, and growth.

3. Review and refinement of new models such as the emerging comprehensive state-space 
population model (Newman, personal communication); development of additional 
models or modules of models specifically aimed at estimating effects of inadequately 
monitored or difficult to measure and evaluate habitat attributes such as predation risk 
and toxicity; development of new “nested” and/or “linked” mathematical modeling 
approaches that can accommodate multiple drivers and their interactive effects across 
temporal and spatial scales. 

4. Collaboration among physical and biological modelers, experimental and other 
scientists, managers, and stakeholders to develop and model management scenarios 
and strategies that move beyond the current focus on relatively crude distinctions 
among “water year types” toward a more integrative ecosystem and landscape-based 
management approach.

We end this report with the hope that the conceptual models and information presented will be 
used for achieving better management outcomes for Delta Smelt and the estuarine ecosystem on 
which it depends. These precious natural resources are owned by no one, but are held in public 

http://www.water.ca.gov/iep/docs/IEPModelWorkshopReview.pdf
http://www.water.ca.gov/iep/docs/IEPModelWorkshopReview.pdf
http://www.cwemf.org
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trust by the California and U.S. governments for the benefit of all the people. We are grateful for 
the opportunity to serve our State and nation in the collaborative manner afforded by working 
under the interagency umbrella of the Interagency Ecological Program for the San Francisco 
Estuary. 
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Appendix A: How the Delta Smelt 
MAST Report was Written 
The report titled “An updated conceptual model for Delta Smelt: our evolving understanding of 
an estuarine fish” (hereafter referred to as Delta Smelt MAST report) was written in 2013-2014 
by the IEP Management, Analysis, and Synthesis Team (MAST). The Delta Smelt MAST report 
was developed through a series of report drafts and a public technical review and followed a 
set of general report guidelines. This report appendix describes the Delta Smelt MAST report 
guidelines, the report review and revisions, and report milestones.

Delta Smelt MAST Report Guidelines 

Report Purpose and Approach  

The Delta Smelt MAST report is a technical report intended to synthesize the latest scientific 
data and information on Delta Smelt, a topic of particularly high relevance to agency managers 
and decision makers in California. Specifically, it provides an up to date assessment and 
conceptual model of factors affecting Delta Smelt throughout its primarily annual life cycle and 
demonstrates how the conceptual model can be used in science and management. The Delta 
Smelt MAST report updates and redesigns previous conceptual models for Delta Smelt with new 
data and information since the release of the last synthesis report about the “Pelagic Organism 
Decline” (POD) by the Interagency Ecological Program (IEP) in 2010. It then uses the conceptual 
model to generate hypotheses about the factors that may have contributed to the 2011 increase in 
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Delta Smelt abundance and evaluate them using a simple comparative approach. The Delta Smelt 
MAST report ends with key conclusions, a discussion of our hypothesis testing approach, and 
recommendations for future work and adaptive management applications, with examples.

1. Report Development. The 2014 MAST report is a synthesis report developed and 
written by the IEP Management, Analysis, and Synthesis Team (MAST). The MAST 
is co-chaired by the IEP Lead Scientist and IEP Program Manager and includes senior 
scientists from IEP member agencies tasked with data analysis, synthesis, and work 
planning. The MAST report is the collective product of a dynamic and collaborative 
interagency team process involving focused team discussions at monthly MAST 
meetings, intensive conceptual model and report development at additional multi-day 
off-site meetings, presentations and discussions with other scientists, stakeholders, and 
the public (e.g., at the annual IEP workshop, meetings of the IEP Stakeholder Group and 
IEP Project Work Teams), and data analysis and synthesis as well as writing, integration, 
and revisions of report sections by MAST members with written communication via 
email and the MAST wiki. MAST report authors were expected to follow the MAST 
report guidelines described here. They were also expected to consider all internal 
review comments by other MAST members and members of the IEP Management and 
Coordinators teams as well as external technical review comments received during a 40-
day public review period. Details about the public review process are given in II. 

2. Report Authorship. The “author of record” for the 2013 MAST report is the entire 
IEP MAST, and the responsibility for authorship lies with the entire MAST as well. 
Individual authorship of report sections is not credited; the report is a product of the 
IEP MAST and not of any individual author or an individual IEP member agency. All 
current MAST members are MAST report authors and are listed alphabetically in the 
initial pages of the report (see III. below). Former MAST members will not be listed 
as authors, but will be noted as contributors. Each report section had a lead author who 
had primary responsibility for writing and revising the section. One designated MAST 
member (Larry Brown, USGS) functioned as report lead editor who compiled and 
integrated all sections and sent full draft report versions to the MAST for review by 
all MAST members. All MAST members sent their edits and comments back to Larry 
Brown and the section authors for revisions. The report went through multiple draft 
versions before its finalization.

3. Report Organization. The 2014 MAST report is an IEP technical report and follows 
the same basic organization as other IEP technical reports, including a title page, list of 
all authors, acknowledgements, table of contents, executive summary, an introductory 
section with background information and report objectives, and concise sections 
detailing the analysis and synthesis approach, models and hypotheses, findings, and 
conclusions as well as illustrative tables, figures, and full references for all citations. In 
response to reviewer recommendations received during the public technical review (see 
II.), the report was restructured and expanded from originally six to nine Chapters.

4. Supporting Evidence. The 2014 MAST report follows the conventions of IEP and other 
technical reports regarding supporting evidence, which includes the following. The 
rationale for any findings, conclusions, and recommendations should be fully explained 
in the report. Whenever possible, conceptual models and hypotheses should be evaluated 
through analysis of the available data. Additional supporting information should be 
obtained from the peer-reviewed literature or from publicly accessible reports. Related 
or competing hypotheses and models that have been previously published in the peer-
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reviewed literature should be acknowledged and discussed in the report and conclusions 
should be based on even-handed, dispassionate consideration of all available evidence. 
Sources for all supporting data and information should be clearly identified and cited. 
Citation of personally communicated unpublished results (e.g. emails, memos) is 
permissible, but should be used sparingly. 

Delta Smelt MAST Report Review and Revisions

1. What was the purpose of the review? The purpose of the public technical review of 
the draft Delta Smelt MAST report was to ensure its scientific credibility, relevance 
to managers and decision makers, and a transparent and legitimate process that 
welcomed and considered input and recommendations from other scientists, managers, 
stakeholders, and the public.

2. What was expected of draft Delta Smelt MAST report reviewers? MAST report 
reviewers were asked to provide written comments on any and all technical aspects of 
the draft report, but to pay particular attention to review criteria outlined in the MAST 
report review guidelines.1

3. Who reviewed the draft Delta Smelt MAST report? The draft Delta Smelt MAST 
report released for public review on July 23, 2014, was reviewed by invited IEP staff 
and colleagues as well as by invited external peer reviewers and other scientists who 
submitted comments during the 40-day public review period, as follows.

a. IEP Coordinators (1 Reviewer, IEP management review)

b. Former MAST Members (2 Reviewers, IEP colleague scientific peer review)

c. Invited Subject Area Expert (1 Reviewer, IEP colleague review of contaminants 
sections)

d. Independent Scientific Peer Reviewers (3 Reviewers, external independent 
scientific peer review facilitated by the Delta Science Program)

e. Other Scientists, Stakeholders and the Public (7 Reviewers, external public 
review)

In addition, the IEP Coordinators were asked to review the revised, near-final 
version of the Delta Smelt MAST report and the executive summary and 
to approve the final version. The IEP Directors were briefed and invited to 
comment on the direction and progress of the Delta Smelt MAST report on a 
quarterly basis.

4. How were external draft Delta Smelt MAST report reviewers identified, invited, 
and informed? Independent Scientific Peer Reviewers for the draft Delta Smelt MAST 
report were identified by the Delta Stewardship Council’s Delta Science Program (DSP) 
and Delta Lead Scientist. In accordance with the DSP “Procedures for Independent 
Scientific Peer Review,”2 the Delta Lead Scientist determined and invited the 
independent scientific peer reviewers using the following selection criteria: standing in 
the scientific community, expertise relevant to the documents being reviewed, and free 
of conflict of interest.

1 http://www.water.ca.gov/iep/docs/mast_report_process_july2013.pdf
2 http://deltacouncil.ca.gov/docs/2012-11-06/delta-science-program-procedures-conducting-independent-scientific-

peer-review

http://www.water.ca.gov/iep/docs/mast_report_process_july2013.pdf
http://deltacouncil.ca.gov/docs/2012-11-06/delta-science-program-procedures-conducting-independent-scientific-peer-review
http://deltacouncil.ca.gov/docs/2012-11-06/delta-science-program-procedures-conducting-independent-scientific-peer-review
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All other review was invited by email and in a notice posted on the IEP 
website.3 A draft of the 2013 MAST report, associated figures, and MAST 
report review guidelines were posted on July 23, 2013, for public technical 
review. The draft report release for review did not include an executive 
summary and conclusions. The public review period closed on August 31, 
2013. 

5. How many review comments were received and where can they be accessed? The 
MAST received 14 sets of review comments on the July 2013 draft MAST report. They 
included many general comments as well as 355 comments that referred to specific 
lines in the report, see table A1. All comments by external reviewers (public review 
comments and the review comments by the three independent scientific peer reviewers) 
were posted on the IEP website.4

6. How were the review comments addressed? All review comments received during 
the 40-day review period were compiled in an Excel spreadsheet and summarized 
numerically (Table A1). Review comments and procedures for addressing them were 
discussed by the MAST at its regular monthly meetings and during a one-day offsite 
meeting in November 2013. The process for addressing review comments included the 
following: 

a. The lead author for each report section had the primary responsibility for 
addressing review comments pertaining to that section and for revising the 
section. 

b. Secondary revision leads were also assigned and assisted the primary revision 
lead. 

c. For each review comment in the Excel spreadsheet, it was noted whether 
the comment: (1) Did not suggest a revision and no revision was made; (2) 
Suggested a revision and a revision was made; or (3) Suggested a revision, but 
no revision was made, for example because it was outside of the report scope, 
explained elsewhere, or the lead author did not agree with the recommended 
revision.

d. Revised sections and the annotated excel spreadsheet were sent by email to the 
entire MAST. MAST members were alerted to all major revisions. 

e. Major revisions were discussed with all MAST members during MAST 
meetings and via email.

f. Decisions about major revisions were made by the whole MAST; no comment 
implied consent.

g. Decisions about more minor revisions were made by the section revision leads 
and the report lead editor, often in consultation with some or all other MAST 
members.

h. The report lead editor (Larry Brown, USGS) compiled, further revised, and 
integrated all revised report sections and sent full draft report versions to the 
MAST for review by all MAST members. The final draft versions of the report 
and executive summary were also sent to the IEP coordinators for their review 
and approval.

3 http://www.water.ca.gov/iep/pod/mast.cfm
4 http://www.water.ca.gov/iep/pod/mast.cfm

http://www.water.ca.gov/iep/pod/mast.cfm
http://www.water.ca.gov/iep/pod/mast.cfm
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7. What major changes were made to the draft report in response to review 
comments? The draft Delta Smelt MAST report underwent several major changes in 
response to review comments. Changes include the following: 

a. The report purpose and goals were reconsidered, clarified, and somewhat 
expanded. Specifically, the four-year comparison of factors that may have 
contributed to the Delta Smelt abundance increase in 2011 was deemphasized in 
favor of a broader assessment and conceptual model of factors affecting Delta 
Smelt throughout its primarily annual life cycle and demonstrations of how the 
conceptual model can be used in science and management.

b. The report structure was substantially changed to better fit the revised report 
purpose and goals and to improve the organization of the large amount of 
information included in the report. Four new Chapters were added to describe 
the updated conceptual model (Chapter 5), provide a more thorough overview 
of Delta Smelt life history and population dynamics (Chapter 6), summarize and 
discuss findings and conclusions (Chapter 8), and provide recommendations 
and examples of future work and management applications (Chapter 9). An 
executive summary was also added, along with this appendix.

c. The content of the report was expanded to accomplish the somewhat expanded 
report purpose and goals, reflect previously missing information pointed out by 
reviewers as well as new information from the latest scientific publications, and 
provide conclusions and recommendations for future work and management 
applications. 

d. Several reviewers commented that the simple four-year comparative approach 
that was used to evaluate factors that may have contributed to the Delta Smelt 
abundance increase in 2011 was too limited and that more years of data and 
more in-depth analyses and modeling were needed for this evaluation. The 
MAST agreed, but decided that these types of analyses would require additional 

Table A1. Numerical summary of review comments for the July 2013 draft MAST 
report.
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time and resources and were outside the scope of this report which emphasized 
synthesis of existing information over new data analyses. Instead, the MAST 
decided to discuss some of the benefits and limitations of analysis and synthesis 
approaches used in the report in Chapter 8 and existing and ongoing analyses 
and modeling efforts along with additional, analysis, synthesis, modeling, and 
other science needs and potential management applications in Chapter 9. Three 
examples of additional mathematical modeling approaches are also included 
in Chapter 9. These approaches were explored by individual co-authors of this 
report. Preliminary results of these analyses are given for illustrative purposes 
only; peer-reviewed publications of these analyses need to be completed before 
they can be used to draw firm conclusions.

Delta Smelt MAST Report Milestones 

Note: The time line for the development, review, revision and completion of the Delta Smelt 
MAST report had to be adjusted repeatedly because of numerous new work assignments for 
individual MAST members, the large number and depth of review comments, the federal 
government shut-down, personnel changes, etc. 

2012

March 13-16 Initial MAST off-site meeting (Marconi Center, CA) to discuss MAST products 
and direction and start MAST work on the 2012 IEP proposal solicitation5, the “FLaSH” report6, 
and the Delta Smelt MAST report (hereafter MAST report)

Sep 13-14  MAST off-site meeting (Yolo Wildlife Area, CA) 

Dec 4-5  MAST off-site meeting (Clarksburg, CA) 

2013

March 29  First draft MAST report completed

April 24  MAST presentation (talk) at annual IEP Workshop (Larry Brown, USGS) 

May 20  Second draft MAST report completed

June 6   Third draft MAST report completed

July 23 – Aug 31  Fourth draft MAST report completed and posted on the IEP website for a 40- 
  day review period 

August 14  Draft MAST report discussion with IEP Stakeholder Group 

Sep 11  Special IEP Stakeholder Group meeting about the draft MAST report

Oct 30  MAST report poster presentation at 2013 State of the Estuary Conference

Nov 14  MAST off-site meeting (UC Davis, CA) 

Dec 8  Fifth draft MAST report completed

5 http://www.water.ca.gov/iep/archive/2012/solicitations.cfm
6 http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-

review-0

http://www.water.ca.gov/iep/archive/2012/solicitations.cfm
http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-review-0
http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-review-0
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2014

Feb 3  Sixth draft MAST report completed

Feb 11   MAST presentation (talk) at DSP-SWRCB “Delta Outflows” workshop (Larry  
  Brown, USGS)

Feb 20   MAST presentation (talk) at a meeting of the IEP Resident Fishes Project Work  
  Team (Larry Brown, USGS)

Feb 26   MAST presentation (talk) at annual IEP Workshop (Larry Brown, USGS) 

April 16  Seventh draft MAST report completed

April 17  First draft MAST report executive summary completed 

April 24  Second draft MAST report executive summary completed and sent to IEP  
  Coordinators for review

May 15  Eight draft MAST report completed and sent to IEP Coordinators for a one- 
  week “red flag” review. This draft includes the executive summary and a  
  description of how the MAST report was written and revised with a list of  
  major report revisions in response to review comments (Appendix A) 

June 2  Ninth draft MAST report completed and sent to IEP Coordinators for review  
  and IEP Directors briefings

June 11  IEP Coordinators briefed on MAST report including a review of the major  
  changes.

June 17  Agencies and stakeholders of the CAMT Delta Smelt Scoping Team briefed  
  about the MAST report including major findings and changes since 2013.

July 2  IEP Stakeholder Group meeting to discuss MAST report revisions and   
  completion

July 3  Coordinators approve the final draft MAST report for publication as an   
  IEP Technical Report; when ready the draft final report will be posted on the  
  MAST webpage7 until the IEP Technical Report publication is completed and  
  report is posted on the IEP Technical Reports webpage8 

July 14  MAST model presented to IEP Wetlands Conceptual Model Team.

July 29    IEP Directors meeting with presentation and discussion of final MAST report

July 30  MAST model presented to IEP Wetlands Project Work Team.

August 6 MAST briefing to Drought Operations Plan Team

Appendix B: Calculation of 
Annual Abundance Indices
This Appendix describes the data and methods used by 4 long-term fish monitoring surveys for 
calculating annual abundance indices for Delta Smelt (Hypomesus transpacificus). Descriptions 
are arranged sequentially beginning with the Spring Kodiak Trawl, which calculates an index 
of abundance for adult Delta Smelt, followed by the 20 mm Survey, which calculates an index 

7 http://www.water.ca.gov/iep/pod/mast.cfm
8 http://www.water.ca.gov/iep/products/technicalrpts.cfm

http://www.water.ca.gov/iep/pod/mast.cfm
http://www.water.ca.gov/iep/products/technicalrpts.cfm
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for late-stage larvae and small juveniles; the Summer Townet Survey calculates an index for 
juveniles and the Fall Midwater Trawl Survey calculates an index for sub-adults. As mentioned 
in the main document, abundance indices are not population estimates, but they are believed to 
increase monotonically with increases in true population size.

Spring Kodiak Trawl

The Department of Fish and Wildlife (DFW) initiated the Spring Kodiak Trawl Survey (SKT) 
in 2002. The SKT replaced the Spring Midwater Trawl and provided a more effective means to 
monitor the distribution and reproductive status of adult Delta Smelt. Survey results provide near 
real-time information on the proximity of adult Delta Smelt to south Delta export facilities and 
can provide an indication of likely spawning areas. 

The SKT includes 5 monthly Delta-wide surveys, January through May (Figure 84). Only the 
first 4 surveys contribute to the annual abundance index. No index exists for 2002, when only 3 
surveys were conducted. The index is calculated after all data have been verified for accuracy.

Field crews tow the net at the surface between 2 boats once for 10-min at each station per survey; 
5-min surface tows are used at stations with historically high catch to limit excessive Delta Smelt 
take; a second 5-min surface tow is completed if Delta Smelt catch in the first tow did not exceed 
50. A flow meter deployed at the start of the tow and retrieved at the end provides information 
on distance towed through the water. To calculate fish density, survey personnel assume that the 
SKT net fishes with the mouth fully opened, an area of 13.95 m2 (7.62 m wide by 1.83 m deep). 
Volume filtered is the product of distance towed and mouth area. Volume filtered varies and by 
convention researchers expand catch per volume filtered (number per m3) for juvenile and adult 
fish to catch per 10,000 m3.

Annual abundance index calculations use adult Delta Smelt data from 39 of the 40 stations (Fig. 
84). For each of the first 4 monthly surveys, adult catch per 10,000 m3 values from each station 
are grouped into 3 distinct regions based on geographic location: 1) the confluence and Suisun 
region (sites 340, 405, 411, 418, 501, 504, 508, 513, 519, 520, 602, 606, 609, 610, 801); 2) the 
Sacramento River and Cache Slough region (sites 704, 706, 707, 711, 712, 713, 715, 716, 719, 
724); and 3) the San Joaquin River and Delta region (804, 809, 812, 815, 902, 906, 910, 912, 
914, 915, 919, 920, 921, 922, 923). A monthly mean is calculated for each region and the sum of 
the regional means is the monthly or survey index. The sum of the 4 survey indices is the annual 
index. 

20 mm Survey

DFW initiated the 20 mm Survey in 1995 to monitor the distribution and relative abundance 
of larval and juvenile Delta Smelt throughout their historical spring range in the upper San 
Francisco Estuary (Fig. 85), and provide near real-time information on the relative densities 
and proximities of these young fish to south Delta export pumps. The 20 mm Survey includes 
sampling on alternate weeks from mid-March through early July, typically resulting in 9 surveys 
per year. During each survey, field crews complete 3 oblique tows at each of the 47 stations (Fig. 
85). The 20 mm Survey added stations over time, but not all contribute to annual abundance 
index calculation. The survey added 5 Napa River stations in 1996 for a total of 41 core stations, 
which are included in the annual abundance index calculations (Fig. 85, circles). In 2008, 6 non-
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core stations were added, which are not included in the annual abundance index calculations, 
including Barker Slough (site 720), Lindsey Slough (site 718), Miner Slough (sites 724 and 726), 
and the Sacramento Deep Water Shipping Channel (n = 2; sites 719 and 723) (Fig. 85, triangles).

The 20 mm net includes a flow meter located within the mouth of the net to measure distance 
traveled by the net during the tow. This value is then multiplied by the fixed mouth area of the net 
(1.51 m2) to provide total volume filtered. The tows are then standardized to catch of Delta Smelt 
per 10,000 m3.

As already noted, the annual abundance index calculation uses only catch per 10,000 m3 values 
from the 41 index stations. For each survey, the mean fork length of Delta Smelt is calculated 
from measurements of the fish captured during each survey. The two surveys just before the 
average fork length reached 20 mm and the 2 surveys just after the average fork length reached 
20 mm are included in the annual abundance index calculation. For these 4 surveys the geometric 

Figure 84. Map of Spring Kodiak Trawl Survey stations showing all currently sampled stations. 
Data from all stations except 719 are used in abundance index calculation.
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mean of the catch of Delta Smelt per 10,000 m3 is calculated across the 41 core stations. The 
geometric mean for each survey is calculated as the arithmetic mean of log10(x+1)-transformed 
values of Delta Smelt catch per 10,000 m3 across the 41 core stations. The resulting value is then 
back-transformed (including subtraction of 1) for the calculation of the annual abundance index. 
The annual abundance index is calculated as the sum of the geometric means of the 4 selected 
surveys.

Summer Townet Survey

The Summer Townet Survey (TNS) was started by DFW in 1959 to produce an annual index 
of summer abundance for age-0 Striped Bass (Morone saxatilis). In the mid-1990s, DFW staff 
developed an abundance index calculation for Delta Smelt. Annual abundance indices for Delta 
Smelt have been calculated for the period 1959 through the present, except for 1966-1968. The 

Figure 85. Map of 20 mm survey stations showing all currently sampled stations. Data from all core stations 
are used in abundance index calculation.
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TNS Survey samples 32 historic stations, 31 of which contribute to index calculation (labeled as 
“core stations,” Fig. 86). Currently sampled TNS stations range from eastern San Pablo Bay to 
Rio Vista on the Sacramento River and to Stockton on the San Joaquin River (Fig. 86). In 2011, 
TNS added 8 supplemental stations in the Cache Slough and the Sacramento River Deepwater 
Ship Channel region to increase spatial coverage and better describe Delta Smelt range and 
habitat (Fig. 86). Historically, TNS sampling began when age-0 Striped Bass achieved a mean 
fork length of 20 mm based on larval sampling, typically in mid-June to early July, and ended 
when age-0 Striped Bass surpassed a mean size of 38.1 mm fork length. Since 2003, TNS has 
consistently included 6 surveys annually, running on alternate weeks from early June through 
mid- to late August.

Field crews perform at least two 10-min oblique tows at most stations. A third tow is conducted 
when any fish were caught during either of the first 2 tows. At least 1 tow is completed at each of 
the new Cache Slough and Sacramento River Deepwater Ship Channel stations. To reduce Delta 
Smelt take, field crews only perform a second tow at these stations if Delta Smelt catch from the 
first tow is less than 10. Delta Smelt catch per tow data are used for index calculation.

The annual abundance index for Delta Smelt is the arithmetic mean of the abundance indices 
from the first 2 surveys conducted each year. Delta Smelt abundance indices for each biweekly 
survey are calculated by summing catch across all tows for each index station, multiplying the 
summed catch by a station weighting factor representing the water volume of that station (Table 
B1); then the volume-weighted catches are summed across all 31 index stations and the sum 
divided by 1000.

The annual abundance index for age-0 Striped Bass is calculated using similar methods, except 
the first two surveys are not used. Instead, abundance indices from the 2 surveys that bound the 
date when the fish reach a mean fork length of 38.1 mm are used; this frequently occurs after 
several surveys have been completed in a field season. 

Fall Midwater Trawl Survey

DFW began the Fall Midwater Trawl Survey (FMWT) in 1967 to provide an annual index of 
relative abundance and information on the distribution of age-0 Striped Bass for the fall period. 
Later, DFW staff developed abundance and distribution information for other upper-estuary 
pelagic fishes, including Delta Smelt. Surveys have been conducted in all years from 1967 to 
present, except 1974 and 1979. The FMWT survey currently samples 122 stations monthly (Fig. 
87), from September through December. Station locations range from San Pablo Bay to Hood 
on the Sacramento River, and from Sherman Lake to Stockton on the San Joaquin River (Fig. 
87). Currently, annual abundance index calculations use catch data from 100 of the 122 stations 
sampled monthly, but the number of stations used for the index has varied through time. Table 
12 contains the complete list of stations used for abundance index calculation for FWMT (n = 
117), including historical stations (underlined) that must be included for proper calculation of 
past indices, but are not included in calculations for recent years. The remaining 22 stations were 
added in 1990, 1991, 2009, and 2010 to improve our understanding of Delta Smelt habitat use 
(Fig. 87). At each sampling station, field crews perform a single, 12-min oblique tow monthly.

Delta Smelt catch per tow data are used for calculation of the annual abundance index. Individual 
survey indices are calculated by first grouping the 100 core stations (Fig. 87) into 14 regions 
based on their location (Table 12). Survey indices are calculated by averaging Delta Smelt catch 
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across index stations within each region, multiplying these regional means by their respective 
weighting factors (i.e. a scalar based on water volume; Table 12), and summing the weighted 
values. Annual abundance indices are calculated as the sum of the 4 survey abundance indices 
(i.e. September through December).

Figure 86. Map of summer townet survey stations showing all currently sampled stations. Data from all core 
stations are used in abundance index calculation.

EXPLANATION

= Core stations

= Non-core stations (sampled in 2009 and from 2011 on)
= Non-core stations (began in 2011)

= Non-core station (sampled in 1959 and from 1978 on)
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Region Station Station weighting factor

MONTEZUMA SLOUGH 606 20

609 15

 610 4

SAN PABLO BAY 323 213

SUISUN BAY 405 13

 411 46

 418 70

 501 49

 504 60

 508 31

 513 43

 519 15

 520 9

 602 44

SACRAMENTO RIVER 704 53

706 27

 707 35

 711 32

SAN JOAQUIN RIVER 801 26

804 52

 809 56

 812 22

EAST DELTA 815 40

906 21

 910 11

 912 8

 919 10

SOUTH DELTA 902 23

914 15

 915 15

 918 11

Table B1. Station weighting factors for stations used in calculations of the 
summer townet survey annual abundance indexes. Regions are geographic 
areas designated by the California Department of Fish and Wildlife. See fig. 86 for 
station locations.
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Figure 87. Map of fall midwater trawl survey stations showing all currently sampled stations. Data from core 
stations are used in abundance index calculation.

Fall midwater trawl sampling sites

= Core stations
= Non-core stations (began in 1990)
= Non-core stations (began in 1991)
= Non-core stations (began in 2009)
= Non-core stations (began in 2010)

2
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Table B2. Area-regions, weighting factor for each area-region, and stations included within each area-
region. Bolded station numbers indicate the current 100 core stations used in calculation of annual 
abundance indexes. Underlined station numbers indicate stations previously included in calculations 
but subsequently dropped.

Area-region Weighting 
factor

Stations 
included

1-San Pablo 
Bay

8.1 336

337

338

339

3-San Pablo 
Bay

11.3 321

322

323

324

325

326

4-San Pablo 
Bay

6.5 327

328

329

5-San Pablo 
Bay

12.2 330

331

332

333

334

335

7-San Pablo 
Bay

10.2 312

313

314

315

316

8-San Pablo 
Bay

18.5 303

304

305

306

307

308

309

310

311

10-Napa River 4.8 340

11-Carquinez 
Strait

16.0 401

403

402

404

405

406

407

408

12-Suisun 
Bay

14.0 409

410

411

412

413

414

415

416

417

418
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13-Suisun and  
Honker bays

18.0 501

502

503

504

505

506

507

18.0 508

509

510

511

512

513

514

515

516

517

518

519

601

14-Grizzly 
Bay and 
Montezuma 
Slough

5.0 602

603

604

605

606

607

608

15-Sacramento 
River

12.0 701

702

703

704

705

706

707

708

709

710

711

16-San Joaquin 
River

14.0 802

804

806

807

808

809

810

811

812

813

814

815

17-South Delta 20.0 901

902

903

904

905

906

907

908

909
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