of the Lower American River Two-Dimensional Modeling and Analysis of Spawning **Bed Mobilization**

Presented to:

Fish Working Group Technical Subcommittee Lower American River Task Force

Presented by:

August 27, 2001

Background

- Folsom Dam outlet modification project
- Coordination Act Report
- Previous 2-d modeling efforts on the Lower American River (LAR) by SAFCA (lower 12 miles)
- Previous modeling investigations of the upper 10 miles by the USACE

Scope of Project

- Data collection and field review
- Construct and calibrate 2-d model
- 2-d model runs
 - -30,000 cfs
 - -50,000 cfs
 - -80,000 cfs
 - -115,000 cfs
- Analyze potential for mobilization of bed material at spawning locations

Presentation Overview

- Data collection and field review
- Hydraulic modeling discussion
 - benefits of 2-d modeling
 - construction and calibration of model
 - project flow conditions
- Analysis of spawning bed mobilization
 - basic concepts
 - shear stress
 - visualization of results
- Introduction to Habitat Modeling

Data Collection and Field Review

- Boat trip of the upper 10 miles
 - pebble counts on bar surfaces
 - determine trouble spots for modeling
- Spawning data from CDFG
 - pebble count data (1994 and 1997)
 - Redd surveys
 - spawning sites
- Available flow data
 - 1997 HWM from MBK
 - 1997 flood hydrographs from USACE

Hydraulic Modeling 2-d vs. 1-d Modeling

- One-dimensional modeling
 - cross section by cross section definition of topography
 - "average" hydraulic values
 - all flow is normal to cross section
- Two-dimensional modeling
 - continuous, spatial definition of topography
 - hydraulic values at any point in space
 - model surface flow patterns

One -Dimensional Modeling

Two -Dimensional Modeling

Hydraulic Modeling Two-Dimensional Modeling

Hydraulic Modeling Construction and Calibration

- Topo from 1997 mapping (USACE)
- Roughness characteristics
 - material types (1997 aerial photographs)
 - Manning-n values for overbank areas
 - channel Manning-n
- Bridge and infrastructure data from photogrammetry and as-built plans
- Model limits
 - RM 10-22
 - overlap lower model developed for SAFCA

used one manings - n for the whole river

Hydraulic Modeling Construction and Calibration

- Calibrated to 1997 flood event
- High water marks collected by MBK
- Minor adjustments made to the model during calibration
- Calibration results

Hydraulic Modeling Construction and Calibration

RM	Location	Surveyed HWM Elevation (ft, NGVD)	Calibration Water Surface Elevation (ft, NGVD)	Difference (ft)
10.884	Downstream of Mayhew Drain	49.7	49.8	+0.1
13.465	Goethe Park	53.7	53.1	-0.6
20.123	Sunrise Blvd. (downstream)	88.0*	86.7	*
20.203	Sunrise Blvd. (upstream)	87.9	87.8	-0.1
22.657	Upstream end of model	98.0	97.8**	-0.2

Calibration Results

Hydraulic Modeling Project Flow Conditions

- Flow conditions
 - -30,000 cfs
 - -50,000 cfs
 - -80,000 cfs
 - -115,000 cfs
- Boundary conditions
 - dependence on Sacramento River conditions
 - obtained from 1997 flood hydrographs (flows for LAR, Sacramento, NEMDC; stage at I St.)
 - lower model run first

Hydraulic Modeling Model Output / Results

- Hydraulic values at every node
 - bed elevation
 - depth of flow
 - velocity
 - water surface elevation
- Other values / properties can be computed
- Various ways to visualize results

Spawning Bed Mobilization Basic Concepts

Movement of bed particles

· Incipient motion when condition become ight to move a particle

Spawning Bed Mobilization Shear Stress

- Primary indicator of potential for motion of bed materials
- Force acting on an area
- Shear stress a function of
 - velocity
 - depth
 - roughness characteristics (Manning-n)
- Existing vs. critical shear stress
- Incipient grain size

Spawning Bed Mobilization Visualization of Results

- "Presentation" reach
- Generic independent of current bed material size
- Contour plots (velocity, shear stress, incipient grain size)
- Cross section and profile plots

Spawning Bed Mobilization "Presentation Reach"

Conclusions

- Value of 2-d model of upper LAR
- Use of results
- Bed generally immobile for flows < 50,000 cfs
- Change in conditions at Goethe Park
- Other uses for model
 - modeling other flows
 - impacts on water surface and flood conveyance due to actions taken within floodplain
 - bank erosion potential
 - delineating habitat (spatial relationships b/w hydraulic properties)

Discussion / Questions

Introduction to Habitat Modeling Using Results from Two-Dimensional Hydraulic Modeling

Presented to:

Lower American River Task Force Fish Working Group Technical Subcommittee

Presented by:

August 27, 2001

Conclusions

- 2-d model assembled for entire lower river
- Additional "fish flows" can be modeled
- Uses for habitat modeling
 - mapping habitat
 - instream flow requirements
 - mapping predator habitat
 - creation of favorable habitat (i.e. overbank areas)
 - quantify spatial relationship of habitat areas (disjointedness, distance to cover, etc.)
 - determine impacts of channel or floodplain activity on fish habitat
 - others...

Discussion / Questions