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Abstract Investigating the effects of environmental, biologi-
cal, and anthropogenic covariates on fish populations can aid
interpretation of abundance and distribution patterns, contrib-
ute to understanding ecosystem functioning, and assist with
management. Studies have documented declines in survey
catch per unit effort (CPUE) of several fishes in the
Sacramento-San Joaquin Delta, a highly altered estuary on
the US west coast. This paper extends previous research by
applying statistical models to 45 years (1967–2012) of trawl
survey data to quantify the effects of covariates measured at
different temporal scales on the CPUE of four species (delta
smelt, Hypomesus transpacificus; longfin smelt, Spirinchus
thaleichthys; age-0 striped bass,Morone saxatilis; and thread-
fin shad, Dorosoma petenense). Model comparisons showed
that along with year, the covariates month, region, and Secchi
depth measured synoptically with sampling were all statisti-
cally important, particularly in explaining patterns in zero ob-
servations. Secchi depth and predicted CPUE were inversely
related for all species indicating that water clarity mediates
CPUE. Model comparisons when the year covariate was
replaced with annualized biotic and abiotic covariates indicat-
ed total suspended solids (TSS) best explained CPUE trends
for all species, which extends the importance of water clarity
on CPUE to an annual timescale. Comparatively, there was no
empirical support for any other annualized covariates, which
included metrics of prey abundance, other water quality pa-
rameters, and water flow. Top-down and bottom-up forcing

remain important issues for understanding delta ecosystem
functioning; however, the results of this study raise new ques-
tions about the effects of changing survey catchability in
explaining patterns in pelagic fish CPUE.
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Introduction

The dynamics of fish populations involve a complex suite of
biological processes operating at different temporal and spatial
scales. Abiotic and biotic variables modulate the intrinsic bi-
ological properties of individual fish species and structure the
diversity and abundances of species within ecosystems. Such
variables can be ecological, environmental, climatic, and an-
thropogenic, and they synthetically influence ecosystem dy-
namics. Ecological variables are often described in the context
of bottom-up (Chavez et al. 2003; Frederiksen et al. 2006) or
top-down (Cury and Shannon 2004; Hunt and McKinnell
2006) control of food webs, while environmental variables
such as temperature, dissolved oxygen, and others have been
shown to influence early life history (Norcross and Austin
1988) and the distribution of fishes within ecosystems
(Breitburg 2002; Craig 2012; Buchheister et al. 2013).
Climate variability can have a multipronged impact, exerting
influence on specific life stages, such as the formation of new
year classes (Houde 2009), or at the level of individual species
(Hare et al. 2010) or whole ecosystems (Winder and Schindler
2004; Drinkwater et al. 2009). Numerous anthropogenic
stressors such as pollution, nutrient enrichment and eutrophi-
cation, introduction of nonnative species, and perhaps most
notably, overexploitation have been documented to influence
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ecosystem structure and fish abundance (Islam and Tanaka
2004; Molnar et al. 2008; Diaz and Rosenberg 2008;Worm
et al. 2009).

Globally, centuries of anthropogenic change have trans-
formed estuarine and coastal waters into systems with reduced
biodiversity and ecological resilience (Jackson et al. 2001;
Lotze et al. 2006). Given the importance of these areas to
marine life, efforts to remediate the cascading effects of an-
thropogenic stressors will undoubtedly require deep consider-
ation of principles inherent to ecosystem-based management
(EBM; Link 2010). However, before strategic and tactical
management policies can be effectively implemented, EBM
rooted or otherwise, the relative roles of natural and anthropo-
genic factors that affect ecosystem structure and associated
species abundances must be well understood.

San Francisco Bay is a tectonically created estuary located
on the US Pacific coast that has experienced considerable
anthropogenic change (Nichols et al. 1986). The bay and its
watershed occupies 1.63×107 ha and drains 40 % of
California’s land area (Jassby and Cloern 2000). Freshwater
is supplied to the estuary primarily from the Sacramento and
San Joaquin rivers, which converge to form a complex mosaic
of tidal freshwater areas known collectively as the
Sacramento-San Joaquin Delta (referred herein as the delta).
Most naturally occurring wetlands in the estuary have been
lost due to morphological changes to the system for agricul-
ture, flood control, navigation, and water reclamation activi-
ties (Atwater et al. 1979). Other notable changes include mod-
ifications to the volume of freshwater entering the delta and
thus the natural delivery of land-based sediment (Arthur et al.
1996), massive sediment loading resulting from large-scale
hydraulic mining activities (Schoellhamer 2011), introduction
and invasion of nonindigenous species (Cohen and Carlton
1998), input of contaminants (Connor et al. 2007), and report-
ed decreases in chlorophyll-a (Alpine and Cloern 1992), zoo-
plankton (Orsi and Mecum 1996), and fish catch per unit
effort (CPUE; Sommer et al. 2007).

A variety of tools can be used to understand how specific
changes to ecosystem components influence fish population
dynamics. These include directed field studies, statistical anal-
yses, and multidimensional mechanistic modeling activities,
with all often being required to develop a robust understand-
ing of ecosystem dynamics. In the delta, there has been a
considerable focus on empirical analyses designed to examine
how temporal trends in CPUE statistically relate to various
abiotic and biotic variables. Researchers have described fresh-
water flowwithin the delta as a key structuring variable of fish
CPUE (Turner and Chadwick 1972; Stevens and Miller 1983;
Sommer et al. 2007) along with the salinity variable X2, which
is defined as the horizontal distance up the axis of the estuary
where the tidally averaged near-bottom salinity is 2 psu
(Jassby et al. 1995; Kimmerer 2002; Kimmerer et al. 2009;
MacNally et al. 2010). However, the evidence supporting

these inferences was based on relationships between annual
CPUE indices and metrics of water flow and/or X2, which can
be limiting since collapsing many raw field observations of
CPUE into annual indices leads to a sizable loss of potentially
valuable information. Feyrer et al. (2007, 2011) applied statis-
tical models to raw survey data collected from the delta to
quantify fish occurrences in relation to water quality variables;
however, they did not examine CPUE or consider variables at
broader temporal scales.

This study builds on previous empirical analyses by exam-
ining how measures of CPUE in the delta statistically relate to
a broad suite of abiotic and biotic variables across multiple
temporal scales and exclusively from the perspective of raw
field observations. The analyses presented here follow a two-
step procedure that reflects the specific objectives of this
study, (1) investigate the role of covariates measured synopti-
cally at the time of fish sampling to elucidate their effects on
CPUE and (2) modify the analytical framework used for the
first objective to examine the relative role of various abiotic
and biotic covariates hypothesized to influence CPUE at an
annual timescale. For the second objective, the covariates con-
sidered were annualized metrics of zooplankton density, chl-a
concentration, water quality, and water flow. These analyses
contribute to the understanding of ecosystem dynamics within
the delta and thus aid the formulation of EBM strategies by
providing foundational information of fish population re-
sponses to natural and anthropogenically modified system
attributes.

Methods

Focal Fish Species

Reported declines of fish CPUE in the delta have revolved
primarily around four species: delta smelt, Hypomesus
transpacificus, longfin smelt, Spirinchus thaleichthys, age-0
striped bass, Morone saxatilis, and threadfin shad, Dorosoma
petenense. Accordingly, these species are the focus this study.
The delta smelt is a relatively small (60–70 mm standard
length (SL)), endemic, annual, spring spawning,
planktivorous fish that is distributed primarily in the delta
and surrounding areas (Moyle et al. 1992). Delta smelt were
listed as threatened under the US Endangered Species Act
(ESA) in 1993 and endangered under the California
Endangered Species Act (CESA) in 2010. The endemic
longfin smelt is also a relatively small (90–100 mm SL), anad-
romous, semelparous, spring spawning fish with an approxi-
mate 2-year life cycle that is broadly distributed throughout
the estuary (Rosenfield and Baxter 2007). Longfin smelt were
listed as threatened under the CESA in 2010. Striped bass is a
larger (>1 m SL), relatively long-lived, anadromous, late-
spring spawning species deliberately introduced to the San
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Francisco Estuary from the US east coast in 1879 (Stevens
et al. 1985). Although subadult and adult fish reside primarily
in estuarine and coastal waters, age-0 fish can be found in
lower salinity areas where they feed on zooplankton and mac-
roinvertebrates. Threadfin shad was discovered in the delta
during the early 1960s (Feyrer et al. 2009) and is a relative
small (<100 mm SL), summer spawning planktivorous fish
that primarily inhabits freshwater areas of the estuary.

Field Sampling

The California Department of Fish and Wildlife (CDFW) has
been conducting the Fall Midwater Trawl (FMWT) survey in
the delta nearly continuously since 1967 (Stevens and Miller
1983; see http://www.dfg.ca.gov/delta/projects.asp?
ProjectID=FMWT for additional details). The survey was
initiated to measure the relative abundance of age-0 striped
bass; however, survey data have been used to infer patterns
in relative abundance of a variety of species inhabiting the
delta (Kimmerer 2002; Sommer et al. 2007). Monthly cruises
are conducted from September through December, and the
number of tows eachmonth has increased from approximately
75–80 during the early years of the program to >100 in more
recent years. The survey follows a stratified fixed station de-
sign such that sampling occurs at approximately the same
location within predefined regional strata (17 areas excluding
areas 2, 6, and 9 per the CDFW’s protocol). Sampling inten-
sity is related to water volume in each regional stratum such
that samples are taken every 10,000 acre ft for areas 1–11 and
every 20,000 acre ft for areas 12–17; Fig. 1). At each sampling
location, a 12-min oblique tow is made from near bottom to
the surface using a 3.7 m×3.7 m square midwater trawl with
variable mesh in the body and a 1.3-cm stretch mesh cod end.
Vessel speed over ground during tows can be variable since
sampling procedures are designed tomaintain a constant cable
angle throughout the tow. Each catch is sorted and enumerated
by species and station-specific measurements of surface water
temperature, electrical conductivity (specific conductance),
and Secchi depth are recorded. CPUE is defined as number
of fish collected per trawl tow.

Sampling Covariates

Generalized linear models (GLMs; McCullagh and Nelder
1989) were used to evaluate the effects of sampling covariates
on CPUE of the four focal fish species. GLMs are defined by
the underlying statistical distribution for the response variable
and how a set of linearly related explanatory variables corre-
spond to the expected value of the response variable. The
relationship between explanatory variables and the expected
value of the response variable is defined by a link function,
which must be differentiable and monotonic.

Since CPUE was defined as fish count per trawl, the
Poisson and negative binomial distributions were considered.
Plots of the proportion of FMWT tows where at least one
target animal was captured across the time series for each
species showed low values for many years, which gave rise
to the possibility that these data were zero-inflated (Fig. 2). In
general, zero-inflated count data imply that the response var-
iable contains a higher proportion of zero observations than
expected based on a Poisson or negative binomial count pro-
cess. Ignoring zero inflation can lead to overdispersion and
biased parameter and standard error estimates (Zuur et al.
2009).

Zero-inflated distributions are a mixture of two distribu-
tions, one that can only generate zero counts and another that
includes zeros and positive counts. In effect, the data are di-
vided into two groups, where the first group contains only
zeros (termed false zeros) and the second group contains the
count data which may include zeros (true zeros) along with
positive values (Zuur et al. 2009, 2012). To identify the ap-
propriate model structure (zero-inflated versus standard
GLM) and distribution of the count data (negative binomial
versus Poisson), a variety of preliminary models were fitted to
the FMWT data. Diagnostic plots, evaluation of
overdispersion, and model comparisons using likelihood ratio
tests and Akaike’s information criterion (AIC; Akaike 1973;
Burnham and Anderson 2002) all strongly supported applica-
tion of a zero-inflated negative binomial distribution, which
can be expressed as (Brodziak and Walsh 2013):
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where yi is the i
th CPUE observation, πi is the probability of a

false zero, and μi and k are the mean and overdispersion pa-
rameters of the negative binomial distribution, respectively.
The top equation represents the probability of obtaining a zero
CPUE value, which is a binomial process that can occur either
as a false zero or a true zero adjusted by the probability of not
obtaining a false zero. The bottom equation is the familiar
negative binomial mass function adjusted by the probability
of not obtaining a false zero. GLMs were specified to mode πi
and μi as linear combinations of covariates with logit and log
link functions, respectively.

The covariates measured synoptically with sampling that
were considered included year, month, area (all categorical),
and the continuous covariate Secchi depth, which was
rescaled by subtracting the mean and dividing by its standard
deviation. Inclusion of levels of categorical covariates with
very few positive CPUE values caused model convergence
and estimation problems, so levels with <5 % of the total
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survey catch of each species were deemed uninformative and
excluded from the analysis. The covariates surface water tem-
perature and surface salinity were also considered; however,
variance inflation factors indicated that month/temperature
and area/salinity were collinear. Month and area were chosen
over temperature and salinity because an appreciable number
of catch records did not have associated measures of temper-
ature and/or salinity, and it was desirable to base analyses on
the most available information. Also, the variables month and
area arguably have the potential to be more useful in a man-
agement context. Interaction terms were excluded because the
high proportion of zeros in the data lead tomany year/area and
month/area combinations for which there were no positive
CPUE observations. Model parameterizations for each species
ranged from inclusion of only a year covariate for the count
and probability of false zero models to the saturated model
with all four covariates specified for both components, includ-
ing the possible combinations of unbalanced covariate speci-
fications. AIC was used for model selection, and predictions

were generated from the most supported model using estimat-
ed marginal means (Searle et al. 1980). Coefficients of varia-
tion for yearly predicted CPUE values were estimated from
standard deviations of 1000 nonparametric bootstrapped sam-
ples (Efron and Tibshirani 1993). Models were fitted to data
from 1967 to 2012 with the exception of 1974, September
1976, December 1976, and 1979 when no sampling occurred.

Annual Covariates

The covariate year is included in models when the goal is to
develop a time series of estimated CPUE indices. However, the
year covariate is simply a proxy for the ecosystem conditions
over an annual timescale and thus has no direct relation to the
vital rates of fish populations. Therefore, to more directly in-
vestigate factors potentially underlying interannual patterns in
CPUE for each fish species, the aforementioned zero-inflated
GLM structure was modified in two ways: (1) the year covar-
iate was replaced by several hypothesized biotic and abiotic

Fig. 1 Aerial stratification (polygons) and sampling locations (circles)
for the Fall Midwater Trawl survey within the Sacramento San Joaquin
Delta, 1967 2012. Areas 2, 6, and 9 are not shown because they have not
been consistently sampled and thus are not used by the California

Department of Fish and Wildlife for estimation of catch per unit effort
indices. No sampling occurred in 1974, September 1976, December
1976, and 1979. Figure adapted from Newman (2008)
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annualized continuous covariates, which operationally implied
that the yearly value of each annualized covariate was assigned
to each observedCPUE corresponding to the same year and (2)
a single parameterization that included the annualized covari-
ate along with month and area was fitted to isolate the effect of
each annualized covariate on CPUE. Broad categories of the
annualized covariates were zooplankton density (several taxa),
chl-a concentration as a proxy for phytoplankton biomass, wa-
ter quality metrics, and water flow (a total of 26). The years
analyzed were 1976–2010, which was due to availability of
chl-a data (began in 1976) and water flow measures (obtained
through 2010). AIC was used to compare among competing
annualized covariates for each fish species.

In terms of biotic covariates, the California Department of
Water Resources (DWR) in collaboration with the CDFW

have been compiling data on zooplankton density in the delta
since 1968 (see http://www.water.ca.gov/bdma/meta/
zooplankton.cfm for additional details, including specific
sampling locations). The zooplankton monitoring program
was initiated to investigate the population trends of pelagic
organisms consumed by young fishes, particularly age-0
striped bass. Although the initial focus was to evaluate sea-
sonal patterns in mysid abundance, the program expanded
shortly after its inception to assess population levels of other
key zooplankton taxa. Sampling occurs monthly at approxi-
mately 20 fixed stations. The zooplankton sampling gear con-
sists of a Clarke-Bumpus net mounted directly above a mysid
net, and the unit is deployed in an oblique fashion from near
bottom to the surface. Each net is equipped with a flow meter,
and all samples are preserved for sorting in the laboratory. For
each station, zooplankton taxa are expressed as the total num-
ber per cubic meter of water sampled. Starting in 1976, chl-a
concentration was recorded synoptically with zooplankton
sampling.

The zooplankton taxa examined were adult calanoid cope-
pods, adult cyclopoids, a combination of the two, and mysids.
Annual estimated mean densities of zooplankton and chl-a
were based on lognormal GLMs fitted to data from the core
sampling locations and first replicate sample. The categorical
covariates considered were year, survey (which is approxi-
mately equivalent to month), and area along with the contin-
uous variable Secchi depth, which was again rescaled. Levels
of categorical variables with <5 % of the total zooplankton
density of each group again caused estimation problems and
excluded from the analysis. Collinearity was assessed using
variance inflation factors, and bias-corrected predicted (Lo
et al. 1992) time series were generated from the most support-
ed model using estimated marginal means.

In terms of abiotic covariates, the DWR has been monitor-
ing water quality parameters at discrete sampling locations in
the delta since 1970 (see http://www.water.ca.gov/bdma/meta/
discrete.cfm for additional details, including sampling
locations). The program was established to provide
information for compliance with flow-related water quality
standards for the delta set forth in the series of regulatory water
right decisions and to provide abiotic data that could aid the
interpretation of results from concurrent biological monitoring
programs. Samples are taken at approximately 1 m depth and
roughly within a 1-h window of the expected occurrence of
high tide from 19 fixed stations. Sampling frequency is bi-
monthly during the rainy season (October/November to
February/March) and monthly during the dry season (March/
April to September/October).

Annual water quality metrics considered were mean sum-
mer (Jul–Sep) and winter (Jan–Mar) water temperature, total
suspended solids (TSS) or filterable solids, volatile suspended
solids (VSS) as a measure of the organic component of TSS,
and turbidity. The annual mean water temperatures were

Fig. 2 Yearly proportions of positive tows (at least one target animal
captured) based on the Fall Midwater Trawl survey, 1967 2012, for a
delta smelt, b longfin smelt, c age 0 striped bass, and d threadfin shad. No
sampling occurred in 1974, September 1976, December 1976, and 1979.
Horizontal line is the time series mean
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estimated from a multiple linear regression model while an-
nual mean TSS, VSS, and turbidity estimates were obtained
from bias-corrected lognormal GLMs. The covariates consid-
ered were categorically defined year, month, and area.
Variance inflation factors were again used to assess collinear-
ity, and predicted mean values for each year were based on
estimated marginal means from the most supported model.

The water flow covariates considered were classified into
two groups, Bhistorical^, which refers to measured flows tak-
en from monitoring equipment located at various points in the
delta, and Bunimpaired^, which is an estimated reference
quantity intended to represent broader watershed-level hydrol-
ogy in the absence of man-made facilities that affect flow. For
each group, monthly inflow and outflow time series were
assembled. Historical inflow included combined measure-
ments from the Sacramento River, Yolo Bypass, and Eastern
Delta (San Joaquin River and adjacent areas; Fig. 1), while
historical outflow is a net quantity of inflow and an estimate of
delta precipitation less total delta exports and diversions. All
historical flow time series were based on DAYFLOW, which
is a computer program designed to estimate daily average
delta outflow (see http://www.water.ca.gov/dayflow/ for
more details). Unimpaired inflow is an estimate of water
entering the delta from the expansive watershed while
unimpaired outflow is a net value adjusted for natural losses
(e.g., evaporation and vegetation uptake). Flow data were
provided courtesy of W. Bourez (MBK Engineers,
Sacramento, CA).

For each flow covariate, a single value was calculated by
averaging monthly flow values in four different ways: (i) from
Jan–Jun within the year of sampling, (ii) fromMar–Maywith-
in the year of sampling, (iii) from Jan–Jun of the preceding
sampling year, and (iv) from Mar–May of the preceding sam-
pling year. This approach gave rise to 16 annual flow covar-
iates. Lagged flow covariates were considered to investigate
possible delayed effects of flow on CPUE. For the most sup-
ported annualized covariate, 95 % prediction intervals of
CPUE and probabilities of false zeros were based on 1000
nonparametric bootstrapped model fits (Efron and Tibshirani
1993). All statistical analyses were performed with the soft-
ware package R (version 2.15.1, R Development Core Team
2012), and zero-inflated GLMs were fitted by accessing the
Bpscl^ library.

Results

Field Sampling

Complete tow, month, area, and Secchi depth information was
available for 15,273 stations sampled during monthly fall
cruises from 1967 to 2012 (excluding 1974, Sep 1976,
Dec 1976, and 1979 when no sampling occurred).

Application of the 5 % cutoff rule for levels of categorical
covariates indicated that all levels of month contained ade-
quate nonzero CPUEs for inclusion in analyses. However,
spatial data summaries showed that CPUEs were quite low
in some areas, and the 5 % rule led to the inclusion of only
areas 12–16 for delta smelt, 11–14 for longfin smelt, 12–16
for YOY striped bass, and 15–17 for threadfin shad (Fig. 1).
Total numbers of tows analyzed for each species were 8802
for delta smelt (max. CPUE of 156 animals in December
1982), 6582 for longfin smelt (max. CPUE of 3358 animals
in September 1969), 8733 for age-0 striped bass (max. CPUE
of 1100 animals in September 1967), and 5019 for threadfin
shad (max. CPUE of 4012 animals in December 2001).
Although high CPUE values did occasionally occur, the data
for each species were strongly skewed toward zero and very
low CPUE values. The average percent of nonzero catches
across all years analyzed was 28.1 % for delta smelt, 50.2 %
for longfin smelt, 52.1 % for age-0 striped bass, and 47.1 %
for threadfin shad (Fig. 2).

Sampling Covariates

Based on AIC statistics, the full zero-inflated negative bino-
mial GLM (model M4) received the most empirical support
for each species (Table 1). For delta smelt, model M5 received
modest empirical support (ΔAIC=5.9), and for the other three
species, no other parameterizations were comparatively sup-
ported. The superior performance of model M4 suggested that
all covariates were statistically important for each species and
that CPUE and the probabilities of false zeros varied consid-
erably by year, month, area within the delta, and across the
domain of observed Secchi depths.

The model predicted yearly CPUE indices showed differ-
ing patterns for each species (Fig. 3). For delta smelt, higher
predicted CPUE generally occurred in the early 1970s, 1980,
and also for various years during the 1990s. The highest value
occurred in 1991, and low CPUE was predicted for much of
the 1980s and 2000s. Longfin smelt predicted CPUE was
variable and high during the late 1960s, early 1970s, and for
a few years during the early 1980s. Since 2000, predicted
CPUE was consistently low with 2007 marking the lowest
index value on record. Age-0 striped bass predicted CPUE
consistently declined through time. The first year in the survey
(1967) marked the highest age-0 striped bass predicted CPUE
value on record while 2002 marked the lowest value.
Threadfin shad predicted CPUE declined in the late 1960s,
rebounded to higher but variable levels from the mid-1980s
to early 2000s, and declined to the lowest value on record in
2012. Average species-specific CPUE across the time series
was as follows: 1.24 fish/tow for delta smelt, 13.4 fish/tow for
longfin smelt, 5.34 fish/tow for age-0 striped bass, and 22.9
fish/tow for threadfin shad. The precision of the estimated
indices for all species was fairly low as bootstraped estimated
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yearly CVs predominately ranged between 0.15 and 0.45 with
occasional values greater than 0.5.

Peak predicted monthly CPUE occurred in October for
delta smelt, December for longfin smelt, September for age-
0 striped bass, and November for threadfin shad (Fig. 4). Delta
smelt predicted CPUE indices for November and December
did not differ considerably from its peak month nor did the
threadfin shad predicted December CPUE when compared to
its peak. Spatially, highest predicted CPUE occurred in area
15 for delta smelt, area 12 for longfin smelt, area 15 for age-0
striped bass, and area 17 for threadfin shad. Age-0 striped bass
predicted CPUE for areas 12 and 14 were comparably similar
in magnitude to its peak.

The response in predicted CPUE across the range of ob-
served standardized Secchi depths was strong and consistent
across each species, as higher predicted CPUE values
corresponded to low observed Secchi depths. This result
emerged because the estimated Secchi depth coefficients asso-
ciated with the count component of modelM4 were consistent-
ly negative across species. Related were the consistently pos-
itive estimated coefficients for the false zero model component
of each species. Therefore, predicted CPUE declined with in-
creased water clarity (higher Secchi depth) and the probabili-
ties of false zeros increased with water clarity. In terms of
actual water clarity conditions in the delta, the minimum ob-
served Secchi depths for delta smelt, longfin smelt, age-0
striped bass, and threadfin shad were 0, 0, 0, and 0.12 m,
respectively, while the maximum were 2, 1.6, 2, and 2.09 m.
Relative to themaximum predicted CPUE for each species, the
observed Secchi depth at which estimated CPUE decreased by
25, 50, and 75 %, respectively, was approximately 0.07, 0.17,
and 0.35 m for delta smelt, 0.10, 0.25, and 0.50 m for longfin
smelt, 0.11, 0.23, and 0.53 m for age-0 striped bass, and 0.4,

Table 1 Model selection statistics associated with the zero inflated
generalized linear models used to analyze catch per unit effort data from
the Fall Midwater Trawl survey for delta smelt, longfin smelt, age 0
striped bass, and threadfin shad, 1967 2012. Covariate abbreviations: Y

year, M month, A area, S Secchi depth; and nc indicates model failed to
converge successfully. No sampling occurred in 1974, September 1976,
December 1976, and 1979

Model Count covariates False zero covariates No. par. Delta smelt Longfin smelt Age 0 striped bass Threadfin shad

AIC ΔAIC AIC ΔAIC AIC ΔAIC AIC ΔAIC

M1 Y Y 89 nc nc 30,253.0 944.1 36,708.6 1299.4 24,364.7 1334.3

M2 Y+M Y+M 95 20,844.2 1348.6 29,751.4 442.5 36,630.4 1221.2 24,319.7 1289.4

M3 Y+M+A Y+M+A 103 19,872.9 377 3 29,602.4 293.6 36,038.7 629.5 23,336.2 305.8

M4 Y+M+A+S Y+M+A+S 105 19,495.6 0.0 29,308.9 0.0 35,409.2 0.0 23,030.3 0.0

M5 Y+M+A+S Y+M+A 104 19,501 5 5.9 29,323.0 14.1 35,423.5 14.3 23,246.9 216.7

M6 Y+M+A+S Y+M 100 19,795.0 299.4 29,356.0 47.1 35,537.2 128.0 nc nc

M7 Y+M+A+S Y 97 19,801.9 306 3 29,690.6 381.7 nc nc 23,332.8 302.3

M8 Y+M+A Y+M+A+S 104 19,635.3 139.7 29,497.7 188.8 35,677.2 268.0 23,045.0 14.6

M9 Y+M Y+M+A+S 100 19,795.2 299.6 29,588.6 279.7 35,988.1 578.9 23,956.3 926.0

M10 Y Y+M+A+S 97 19,834.8 339 2 29,601.4 292.5 36,137.9 728.7 23,993.2 962.8

Fig. 3 Predicted yearly catch per unit effort (mean count per tow) and
associated coefficients of variation (CV) based on zero inflated
generalized linear models applied to Fall Midwater Trawl survey data,
1967 2012, for a delta smelt, b longfin smelt, c age 0 striped bass, and d
threadfin shad. No sampling occurred in 1974, September 1976,
December 1976, and 1979. Note break in left y axis for longfin smelt
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0.74, and 1.12 m for threadfin shad. Collectively, these results
suggest that an increase from virtually no water clarity to
roughly 0.5 to 1 m of water clarity corresponded to a 75 %
or greater reduction in predicted CPUE for all species.

Annual Covariates

Predicted trends of the annualized biotic and abiotic variables
showed differing patterns through time. Adult copepod densi-
ty (calanoid, cyclopoid combined) has been variable but gen-
erally decreasing in the delta, with this trend being largely
driven by taxa within the calanoid group (Fig. 5a–e). In con-
trast, the predicted trend in cyclopoid copepod density has
been increasing since the mid-1990s; however, the compara-
bly low density of cyclopoid copepods marginalized the im-
pact of this group on the combined copepod trend. Estimated
mysid density has been fairly stable since 1990 but much
reduced from peak and moderate levels in the mid-1980s
and late 1970s, respectively. The predicted trend of chl-a
was relatively high and variable in the early part of the time

series but considerably lower and more stable since 1987,
which is when the lower trophic level food web of the delta
changed in response to impacts by the introduced clam
Cobubula amurensis (Kimmerer 2002).

Trends in predicted mean summer and winter water tem-
peratures were generally stable over time, with estimated
mean winter temperatures being slightly more variable than
mean summer temperatures (Fig. 5f–j). Predicted trends of
TSS, VSS, and turbidity in the delta were similar in that they
showed considerable declines since the mid-1970s. Patterns in
the various water flow variables showed distinct periods of
Bwet^ and Bdry^ delta hydrology over time. Peak flow events
occurred in 1983, the mid-1990s, and more recently in 2006,
while low flows were observed in mid-1970s, early 1990s and
late 2000s (Fig. 6). As expected, comparisons of type-specific
(historical, unimpaired) patterns of inflows and outflows were
generally the same qualitatively, with the latter simply
reflecting reductions in water volume due to utilization. For
the historical inflows and outflows, the two chosen averaging
periods yielded virtually the same yearly volumes; however,

Fig. 4 Predicted catch per unit
effort (mean count per tow) by
sampling month, area, and across
the range of observed
standardized Secchi depths,
respectively, based on zero
inflated generalized linear models
applied to Fall Midwater Trawl
survey data, 1967 2012, for (a c)
delta smelt, (d f) longfin smelt,
(g i) age 0 striped bass, and (j l)
threadfin shad. No sampling
occurred in 1974, September
1976, December 1976, and 1979
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there were notable differences in yearly volumes of unim-
paired inflow and outflow depending on the monthly averag-
ing period. The precision of all estimated biotic and abiotic
covariates was very good as evidenced by consistently low
CVs.

Based on AIC statistics, the annualized variable TSS re-
ceived the most empirical support for all species (Table 2).

Comparatively, there was no empirical support for any other
annualized prey, water quality, or flow covariates. Predicted
CPUE and probabilities of false zeros across the range of TSS
were similar for three of the four species, with the exception
being the predicted CPUE for threadfin shad (Fig. 7). Over the
range of TSS, predicted delta smelt, longfin smelt, and age-0
striped bass CPUE increased, while the CPUE trend for

Fig. 5 Annualized mean trends and associated coefficients of variation
(CV) based on various linear and generalized linear models fitted to
zooplankton and discrete water quality data, 1976 2010, for a
zooplankton combined (adult calanoid copepod and adult cyclopoid), b

adult calanoid, c adult cyclopoid, d mysid, e chl a, f summer water
temperature (Jul Sep), g winter water temperature (Jan Mar), h total
suspended solid, i volatile suspended solid, and j turbidity
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threadfin shad showed an inverse relationship. For all species,
the predicted trends in probabilities of false zeros were fairly
pronounced and decreasing with TSS. In terms of precision,
the bootstrapped prediction intervals for both model compo-
nents were generally narrow for all species.

Discussion

Sampling Covariates

Use of statistical models to quantify the importance of spatio-
temporal and environmental covariates on survey CPUE can
aid in understanding the dynamics of fish populations. For all
species, the covariates year, month, region, and Secchi depth
were important in explaining patterns in the observed CPUE
data, particularly the zeros. However, relability of the results
presented herein directly depends on satisfying the underlying
modeling assumptions. For each species, plots of residuals for
the count and false zero model components across the

observed domains of the covariates showed no distinct pat-
terns, and overdispersion was adequately handled by the zero-
inflated model structure. Therefore, from a model diagnostics
perspective, the means of the negative binomial and binomial
distributions appear to be well estimated. In terms of preci-
sion, bootstrapped CVs of the predicted yearly CPUEs were
fairly lowfor all species and likely due to the relatively high
sampling intensity of the FMWT survey and the high propor-
tion of consistently low observed CPUE values. However, the
CV estimates do depend on the assumption that gear
catchability (defined as q in the equation CPUEy=qNy) has
remained constant over time and space, so it is possible that
they are optimistic. Since the inception of the FMWT survey,
the number of monthly sampling locations has grown consid-
erably (~25 %), yet accompanying studies of potential gains/
losses in bias and precision of predicted CPUE are absent
from the literature. In general, model-based approaches can
be useful in the design of fishery-independent surveys (Peel
et al. 2013), and the methods in this study could support op-
timization studies to evaluate design elements, appropriate

Fig. 6 Annualized trends in flow
averaged monthly from January
June and March May for a
historical inflow, b historical
outflow, c unimpaired inflow, and
d unimpaired outflow. Flow
variables lagged by 1 year are not
shown
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sample sizes, and allocation of resources for future FMWT
surveys. The estimated monthly, regional, and Secchi depth
effects generated relatively unique predicted CPUE patterns
for each species, which can, in turn, be used as important
foundational information for future hypothesis-driven field
studies and mechanistic modeling activities.

The annual frequency of zero CPUE observations over the
course of the entire FMWT survey was appreciably high for
all species (Fig. 2). As a means of coarsely evaluating the
temporal pattern of zero inflation in the FMWT data, model
M4 and its nonzero-inflated counterpart (intercept only param-
eterization for the false zero component) were sequentially
fitted to subsets of the FMWT data set truncated by decade
for each species. That is, the two models were applied to only
1960s data, then to 1960s–1970s data, then to 1960s–1980s
data, and so on through the full time series. With the exception
of the 1960s data for longfin smelt, AIC statistics strongly
supported the zero-inflated parameterization for all species
and time periods. Therefore, it appears that the FMWTsurvey

data have almost always contained more zero CPUE observa-
tions than would otherwise be expected given a negative bi-
nomial count process, which raises the question, why?

Failing to successfully encounter target populations can
arise because they are rare, samples are taken in suboptimal
habitats (true zeros), or because samples are taken in optimal
habitats but reduced survey catchability across time, space,
and/or ecosystem conditions prevent successful collections
(false zeros). For delta smelt, rarity may be a plausible expla-
nation, especially given that the highest predicted yearly
CPUE was only 4.04 fish per tow and the 45-year average
was just 1.24 fish per tow. However, species rarity does not
seem likely for the other three fishes given that predicted year-
ly longfin smelt CPUE values early in the time series were
very high (>70 fish per tow), estimated adult striped bass
abundance exceeded 1 million fish in the early 1970s
(Stevens et al. 1985) thus requiring considerable age-0 pro-
duction, and threadfin shad have been viewed as highly
abundant since appearing in the delta (Feyrer et al. 2009).

Table 2 Model selection statistics associated with the zero inflated generalized linear models used to evaluate the biotic and abiotic annualized
covariates for delta smelt, longfin smelt, age 0 striped bass, and threadfin shad, 1976 2010

Model Annual covariate Delta smelt Longfin smelt Age 0 striped bass Threadfin shad

AIC ΔAIC AIC ΔAIC AIC ΔAIC AIC ΔAIC

A1 Adult calanoid copepods 15,122.3 304.1 24,968.2 1642.2 27,545.5 691.4 19,325.6 263.8

A2 Adult cyclopoid copepods 15,080.4 262.2 24,419.8 1093.8 27,420.7 566.6 19,247.5 185.7

A3 Adult calanoid, adult cyclopoid combined 15,105.3 287.1 24,896.4 1570.3 27,433.2 579.1 19,310.9 249.1

A4 Mysids 15,164.8 346.6 24,145.5 819.4 27,125.5 271.4 19,322.2 260.4

A5 Chl a 15,070.8 252.5 23,758.9 432.9 26,932.9 78.7 19,326.7 264.9

A6 Summer temperature 15,113.2 295.0 24,633.0 1306.9 27,536.3 682.2 19,311.5 249.7

A7 Winter temperature 15,095.2 277.0 24,282.6 956.5 27,472.6 618.5 19,325.3 263.5

A8 Total suspended solids 14,818.2 0.0 23,326.1 0.0 26,854.1 0.0 19,061.8 0.0

A9 Volatile suspended solids 15,074.5 256.3 24,612.9 1286.8 27,106.2 252.1 19,213.2 151.3

A10 Turbidity 14,853.1 34.8 23,449.7 123.6 27,493.2 639.0 19,196.7 134.9

A11 Historical outflow Jan Jun 14,974.3 156.0 23,509.0 183.0 27,390.9 536.8 19,288.4 226.6

A12 Historical outflow Mar May 15,067.4 249.1 23,766.1 440.0 27,396.4 542.3 19,318.2 256.4

A13 Historical outflow Jan Jun, 1 year lag 15,164.2 346.0 24,872.2 1546.1 27,521.8 667.7 19,316.3 254.5

A14 Historical outflow Mar May, 1 year lag 15,158.5 340.3 24,925.1 1599.0 27,536.0 681.8 19,330.4 268.6

A15 Historical inflow Jan Jun 14,975.6 157.3 23,497.8 171.8 27,394.6 540.5 19,290.8 229.0

A16 Historical inflow Mar May 15,065.6 247.4 23,707.9 381.9 27,387.8 533.6 19,317.2 255.3

A17 Historical inflow Jan Jun, 1 year lag 15,162.8 344.6 24,879.9 1553.8 27,524.4 670.2 19,315.9 254.1

A18 Historical inflow Mar May, 1 year lag 15,158.4 340.1 24,929.6 1603.5 27,531.7 677.6 19,329.0 267.2

A19 Unimpaired outflow Jan Jun 14,989.8 171.6 23,615.2 289.1 27,436.2 582.1 19,315.2 253.3

A20 Unimpaired outflow Mar May 15,025.4 207.2 23,968.6 642.5 27,451.5 597.4 19,331.6 269.8

A21 Unimpaired outflow Jan Jun, 1 year lag 15,167.2 349.0 24,899.4 1573.3 27,549.8 695.7 19,317.4 255.5

A22 Unimpaired outflow Mar May, 1 year lag 15,152.6 334.4 24,944.6 1618.5 27,557.8 703.7 19,329.1 267.3

A23 Unimpaired inflow Jan Jun 14,989.9 171.7 23,613.4 287.3 27,436.7 582.6 19,315.4 253.5

A24 Unimpaired inflow Mar May 15,025.5 207.2 23,969.1 643.0 27,452.3 598.1 19,331.6 269.8

A25 Unimpaired inflow Jan Jun, 1 year lag 15,167.1 348.9 24,899.4 1573.3 27,550.0 695.9 19,317.4 255.6

A26 Unimpaired inflow Mar May, 1 year lag 15,152.7 334.5 24,944.3 1618.2 27,558.3 704.2 19,329.0 267.2
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The FMWT survey does follow a fixed station sampling
design, which raises the possibility that samples are con-
sistently taken at locations that do not support high local-
ized fish abundance. Additionally, if habitat utilization of
fishes in the delta has systematically changed over time in
response to morphological alterations of the estuary and/or
sustained regimes of ecosystem conditions, differences in
CPUE and distribution become confounded. The relatively
high spatiotemporal sampling intensity of the FMWT sur-
vey may somewhat mitigate these concerns, but the four
focal species are schooling pelagic fishes, and thus, vari-
able distributions through time and space should be
expected.

The consistency of the model prediction to Secchi depth for
all species warrants deeper consideration, especially in the

context of false zeros. Feyrer et al. (2007) analyzed raw
FMWT survey data to evaluate fish occurrences (presence/
absence of delta smelt, age-0 striped bass, and threadfin shad)
in relation to various environmental variables and documented
an inverse response with Secchi depth. Feyrer et al. (2011)
updated that analysis and extended it to derive habitat index
values for delta smelt (but see comments providedManly et al.
(2015)). The results of this study generalize the importance of
Secchi depth to include CPUE. Feyrer et al. (2007) noted that
higher presence/absence of delta smelt at lower Secchi depths
could be due to required turbidity for feeding and/or turbidity
mediated top-down predation impacts. A third potential ex-
planation is that catchability of the FMWT survey sampling
gear changes with Secchi depth. In general, Secchi depth is a
coarse measurement of water clarity, and it is not possible to

Fig. 7 Observed catch per unit effort (CPUE, mean count per tow, left
panels), predicted CPUE (middle panels), and predicted probabilities of
false zeros (right panels) with 95 % prediction intervals across observed

standardized TSS for (a c) delta smelt, (d f) longfin smelt, (g i) age 0
striped bass, and (j l) threadfin shad
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distinguish among constituent groups causing low measure-
ments. If those constituent groups are largely organic material,
then a positive fish CPUE response to food availability is
possible. Conversely, if those constituent groups are not large-
ly organic, then higher CPUE at lower Secchi depths could be
due to compromised foraging impacts of visually oriented
piscivores such as larger striped bass (Horodysky et al.
2010). However, all of the fishes in this study are pelagic,
planktivorous feeders, and thus, it is reasonable to assume that
vision plays a central role in their sensory ecology. Animals
could be more effective at gear avoidance under higher Secchi
depths than at lower Secchi depths simply because of a larger
field of visibility for gear detection.

Although experimentally testing the variable catchability
hypothesis is challenging, flume trials to assess gear behavior
under various hydrographic conditions, video equipment at-
tached to sampling gear, and coordinated field studies using
multiple survey gears designed to quantify relative
catchabilities could be informative. Additional modeling ef-
forts may also assist in identifying and quantifying covariate
effects on relative catchability. In terms of the bottom-up hy-
pothesis, characterization of water column constituents synop-
tic with fish stomach content analysis could assist in under-
standing trophic interactions and prey selectivity, which could
aid in determining if the inverse relationship of CPUE and
Secchi depth is a response to food availability. Regarding
top-down impacts, results of striped bass and other fish pred-
ator diet composition studies in the delta have shown very
little consumption of delta smelt and longfin smelt, and mod-
est consumption of age-0 striped bass and threadfin shad
(Nobriga and Feyrer 2007; Nobriga and Feyrer 2008).
However, these studies were temporally abbreviated, and each
acknowledged potential biases due to spatial limitation of
predator stomach collections. Therefore, systematic temporal
and spatial diet composition studies of piscivorous fishes
could be helpful in more fully understanding predation im-
pacts of larger fishes.

Annual Covariates

The annualized covariates considered were chosen in an effort
to evaluate the effects of hypothesized covariates on fish
CPUE that were potentially operating at an annual timescale.
The choice to focus on the annual timescale was motivated
from the notion that yearly environmental conditions have the
potential to impact early life history and thus new year class
formation. However, the analytical approach taken here to
evaluate annual covariates can be used for variables aggregat-
ed across other potentially meaningful scales. For example,
biotic or abiotic variables summarized monthly or seasonally
could be used to more directly explore drivers of within-year
CPUE patterns, and variables could be aggregated spatially to

investigated rivers of fish distribution within the delta. Studies
of this type represent fruitful areas of future research.

The strong empirical evidence supporting TSS as the best
annualized covariate for all species is consistent with the im-
portance of Secchi depth documented in the analysis of sam-
pling covariates. Trends in the model predicted CPUEs and
probabilities of false zeros across TSSwere analogous to those
associated with Secchi depth, with the exception of predicted
threadfin shad CPUE which showed a modest decline with
TSS. Inspection of the raw threadfin shad CPUE data in rela-
tion to TSS showed relatively high frequencies of both zero
(>50 % of the tows analyzed) and large CPUE values (>100
fish per tow, 3.9 % of the tows analyzed) at low TSS values
when compared to high TSS values. The collective presence
of these relatively infrequent large observed CPUEs and nu-
merous observed zero CPUE values likely created the declin-
ing predicted CPUE and probability of false zero relationships
with TSS (Fig. 7k). The results for the other three species
strongly confirm the effect that more turbid water yields
higher predicted CPUE and demonstrates that it is also detect-
able at an annual timescale. As a stand-alone result, the con-
cept that water clarity mediates CPUE keeps the bottom-up,
top-down, and variable gear catchability hypotheses in play;
however, the strong support for the annualized TSS covariate
combined with the lack of empirical support for any of the
annualized prey covariates and the aforementioned relative
absence of the focal fish species in predator diets may favor
the variable catchability hypothesis.

Much of the contemporary understanding regarding covar-
iate effects on fish CPUE in the delta has revolved around
flow, particularly outflow and the location of X2. In this study,
X2 was not considered largely because it is highly variable,
often moving significant distances within a single tidal cycle
(pers. com., W. Bourez, MBK Engineers, Sacramento, CA)
and because it is a proxy covariate directly influenced by flow.
Thus, inclusion of the various flow covariates constitutes a
more direct evaluation of delta hydrology. CPUE indices of
pelagic fishes in the delta have been showed to be positively
related to delta outflow (Kimmerer 2002; Sommer et al.
2007), but it is important to note that higher flow regimes lead
to higher TSS concentrations. For the data in this study, the
historical outflow January–June and March–May time series
are each positively correlated with TSS and signficant at the
α=0.07 level (Pearson’s product moment correlations,
ρJJ=0.32 [p=0.058], ρMM=0.31 [p=0.067]). Therefore,
higher delta outflow leads to poorer water clarity, which, in
turn, could increase survey gear catchability and lead to higher
estimated yearly CPUE indices.

If the annualized covariates analysis is restricted to only
include the flow covariates, the results indicated that historical
outflow averaged January–June received the most support for
delta smelt and threadfin shad, and historical inflow averaged
January–June and averaged March–May were best supported
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for longfin smelt and age-0 striped bass, respectively
(Table 2). However, there was competing empirical support
for historical inflow averaged January–June for delta smelt
(ΔAIC=1.3) and for historical outflow averaged January–
June (ΔAIC=3.1) for age-0 striped bass. Collectively, these
results fail to confirm the effect of a single dominant flow
covariate on fish CPUE in the delta, which is arguably not
surprising since the underlying dynamics of the focal fish
species are likely shaped by intersections of a complex suite
of biological, ecological, and environmental processes.
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