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An updated conceptual model of Delta 
Smelt biology: our evolving understanding 
of an estuarine fish
By Management, Analysis, and Synthesis Team

Executive Summary

The main purpose of this report is to provide an up-to-date assessment and conceptual model of 
factors affecting Delta Smelt (Hypomesus transpacificus) throughout its primarily annual life 
cycle and to demonstrate how this conceptual model can be used for scientific and management 
purposes. The Delta Smelt is a small estuarine fish that only occurs in the San Francisco 
Estuary. Once abundant, it is now rare and has been protected under the federal and California 
Endangered Species Acts since 1993. The Delta Smelt listing was related to a step decline in the 
early 1980s; however, population abundance decreased even further with the onset of the “pelagic 
organism decline” (POD) around 2002. A substantial, albeit short-lived, increase in abundance of 
all life stages in 2011 showed that the Delta Smelt population can still rebound when conditions 
are favorable for spawning, growth, and survival. In this report, we update previous conceptual 
models for Delta Smelt to reflect new data and information since the release of the last synthesis 
report about the POD by the Interagency Ecological Program for the San Francisco Estuary (IEP) 
in 2010. Specific objectives include:

1. Provide decision makers with a practical tool for evaluating difficult trade-offs 
associated with management and policy decisions.

2. Provide scientists with a framework from which they can formulate and evaluate 
hypotheses using qualitative or quantitative models.

3. Provide the general public with a new way of learning about Delta Smelt and their 
habitat. 

Our updated conceptual model describes the habitat conditions and ecosystem drivers affecting 
each Delta Smelt life stage, across seasons and how the seasonal effects contribute to the 
annual success of the species. The conceptual model consists of two nested and linked levels of 
increasing specificity. The general life cycle conceptual model for four Delta Smelt life stages 
(adults, eggs and larvae, juveniles, and subadults) includes stationary ecosystem components and 
dynamic environmental drivers, habitat attributes, and Delta Smelt responses. The more detailed 
life stage transition conceptual models for each of the four Delta Smelt life stages describe 
relationships between environmental drivers, key habitat attributes, and the responses of Delta 
Smelt to habitat attributes as they transition from one life stage to the next.

Our analyses and conceptual model show that good larval recruitment is essential for setting 
the stage for a strong year class; however, increased growth and survival through subsequent 
life stages are also needed to achieve and sustain higher population abundance. We used our 
conceptual model to generate 16 hypotheses about the factors that may have contributed to 
the 2011 increase in Delta Smelt relative abundance. We then evaluated these hypotheses by 
comparing habitat conditions and Delta Smelt responses in the wet year 2011 to those in the 
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management processes must conduct such efforts in an ad hoc manner, often driven by unrealistic 
schedules that are unlikely to be fulfilled. Such adaptive management processes in the estuary 
include the ongoing adaptive management of fall outflow for Delta Smelt, the new “Collaborative 
Science and Adaptive Management Program,” the California Delta Stewardship Council’s Delta 
Plan, and the multi-agency Bay Delta Conservation Plan. On a more basic level, such synthesis 
efforts identify data gaps that serve to focus research and management efforts on scientifically 
relevant topics rather than the “crisis of the day.” 

The 2011 increase in the Delta Smelt abundance index demonstrated that the species still has the 
ability to rebound to higher abundance levels. Delta Smelt has often been called an indicator – 
or canary in the coalmine – for overall ecosystem conditions in the estuary. The 2011 increase 
suggests that the system has not yet irreversibly shifted into an altered state that will no longer 
support native species. Given the profound habitat alterations in the San Francisco Estuary, 
continued study of the environmental drivers and habitat attributes and the subsequent responses 
of the Delta Smelt population seem critical to the wise management of the species. Some possible 
topics for future synthesis groups include:

1. Reviews and updates to existing conceptual and mathematical models. 

2. Further development of mathematical models of Delta Smelt population abundance 
drawn specifically from the conceptual models described in this report; applications 
and extensions of recently published models to help make management decisions and 
guide new modeling efforts; additional modeling efforts and future research projects to 
improve resolution and understanding of the particular factors identified as critical to 
reproduction, recruitment, survival, and growth.

3. Review and refinement of new models such as the emerging comprehensive state-
space population model (K. Newman, U.S. Fish and Wildlife Service, personal 
communication); development of additional models or modules of models specifically 
aimed at estimating effects of inadequately monitored or difficult to measure and 
evaluate habitat attributes such as predation risk and toxicity; development of new 
“nested” and/or “linked” mathematical modeling approaches that can accommodate 
multiple drivers and their interactive effects across temporal and spatial scales. 

4. Interdisciplinary collaboration among scientists, managers, and stakeholders to develop 
and model management scenarios and strategies based on principles of integrative 
ecosystem and landscape-based management rather than relatively crude distinctions 
among categorical “water year types.”

Continued growth of California’s human population, climate change, new species invasions, and 
other changes will increase management challenges. Science and management have to go hand in 
hand to constantly identify, implement, evaluate, and refine the best management options for this 
ever-changing system. We hope that the conceptual model and information in this report will be 
useful for achieving these goals.
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Chapter 1: Introduction

The San Francisco Estuary

Estuarine ecosystems are among the most complex ecosystems on earth (Wilson 1998). They are 
constantly changing ecosystems that respond to dynamic “drivers” of change (Healey et al. 2008, 
Baxter et al. 2010). Natural drivers include the geological and geographic setting, climatic and 
oceanic variability, dynamic hydrological and nutrient regimes, weather and disturbance regimes, 
biogeochemical processes, species assemblages, and many other biotic and abiotic features. 
Estuaries also respond to a broad range of human activities. Some of these “human drivers” 
have negative impacts on ecosystems. These negative human drivers are often called “stressors.” 
Human stressors on estuarine ecosystems include water and land use, pollutant discharges, 
species introductions, and fishing (Townend 2004, Lotze et al. 2006, Cloern and Jassby 2012). 
The interplay of natural and human drivers and their effects on the San Francisco Estuary and in 
particular on the Delta Smelt (Hypomesus transpacificus), an endemic fish species, is the subject 
of this report.

The San Francisco Estuary (SFE; Fig. 1) is comprised of an upstream region consisting of 
channels and islands associated with the confluence of the Sacramento and San Joaquin Rivers 
known as the “Delta” and a series of downstream bays and marshes that are separated from 
the Pacific Ocean by the “Golden Gate,” the sea passage between the San Francisco and Marin 
peninsulas. Because of California’s Mediterranean climate, the SFE experiences large interannual 
and seasonal flow variations, which are modulated by tides and human management of the 
rivers within the Delta watershed (Moyle et al. 2010). These hydrological variations lead to a 
dynamic estuarine salinity gradient. In the winter and spring fresh water often extends into San 
Pablo Bay, while in the summer and fall brackish water can intrude into the western Delta. These 
seasonal differences are exacerbated by pronounced interannual differences in precipitation in 
the watershed. Extremely dry years with little precipitation and very wet years with widespread 
flooding do not occur in predictable patterns (Dettinger 2011).

The SFE has undergone dramatic morphological, hydrological, chemical, and biological 
alterations since the onset of the California Gold Rush in the middle of the 19th century (Nichols 
et al. 1986, Arthur et al. 1996, Baxter et al. 2010, Brooks et al. 2012, NRC 2012, Whipple et al. 
2012, Cloern and Jassby 2012). These alterations include five human activities that have changed 
ecological functions and habitats in many riverine and estuarine systems with increasingly dense 
human populations: diking, draining, dredging, diverting, and discharging. Specifically, diking 
and draining have reduced the vast wetlands that once covered and surrounded the SFE to small 
remnants. There has been an 80-fold decrease in the ratio of wetland to open water area in the 
Delta, from a historical ratio of 14:1 to a current ratio of 1:6 (Whipple et al. 2012, Herbold et 
al. 2014). Diking and dredging have led to a substantial reconfiguration of the bays, sloughs, 
and channels, while large-scale water diversions, and discharge of contaminants have altered 
water quantity and quality. Small water diversions occur throughout the freshwater portion of the 
estuary, but the largest water diversions are at the pumping facilities of the federal Central Valley 
Project (CVP) and the State Water Project (SWP) that export water from the southwestern Delta 
to agricultural and urban areas to the south (Fig. 2). In addition, a wide variety of non-native 
plants and animals have been introduced and have become established in the SFE (Cohen and 
Carlton 1998, Light et al. 2005, Winder et al. 2011).
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Figure 2. Map of the upper San Francisco estuary. The upper estuary includes the Suisun Bay region 
and the Sacramento-San Joaquin Delta, which are west and east of Chipps Island respectively. 
The area from approximately Chipps Island to the west end of Sherman Island is referred to as the 
“confluence.”
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Figure 3. Delta Smelt abundance index for life stages of Delta Smelt including 
the larvae-juveniles (20 mm Survey), juveniles (Summer Townet Survey), 
subadults (Fall Midwater Trawl), and adults (Spring Kodiak Trawl). The initiation 
of each individual survey is indicated by the initial bar with subsequent missing 
bars indicating when an index could not be calculated. See Chapter 3 for details 
of sampling programs, including geographic coverage, and Appendix B for 
details of calculationg abundance indices.
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Changes in Delta Smelt distribution and abundance

Long-term monitoring surveys conducted by the IEP have documented substantial changes in the 
distribution and abundance of Delta Smelt in its small native geographic range which extends 
from the upstream boundaries of tidal influence in the northern, eastern and southern Delta region 
of the estuary to Suisun and San Pablo Bays in the north-western region of the estuary. The 
geographic range of Delta Smelt also includes some of the larger tidal sloughs and tributaries 
adjacent to Suisun and San Pablo Bays, including some Suisun Marsh sloughs and the lower 
Napa River (Bennett 2005, Hobbs et al. 2007, Sommer et al. 2011, Merz et al. 2011, Sommer 
and Mejia 2013, Murphy and Hamilton 2013). Delta Smelt are generally considered a pelagic 
species. While they are commonly found in shallow shoal areas such as Honker and Grizzly Bays 
in the Suisun Bay region of the estuary and larger marsh sloughs such as Suisun and Montezuma 
Sloughs in Suisun Marsh and the lower reaches of Cache and Lindsey Sloughs in the northern 
Delta, they are less commonly encountered in near-shore areas and only rarely in smaller marsh 
sloughs (Bennett 2005, Merz et al. 2011, Sommer and Mejia 2013).

The Delta Smelt has been characterized as a “semi-anadromous” fish species that spawns in fresh 
water and rears in fresh to brackish water (Fig. 5; Dege and Brown 2004, Bennett 2005, Sommer 
et al. 2011, Merz et al. 2011). While Delta Smelt have been documented throughout their 
geographic range during most months of the year (Sommer et al. 2011, Merz et al. 2011, Murphy 
and Hamilton 2013), their distribution varies seasonally in response to dynamic abiotic and biotic 
habitat attributes such as salinity, temperature, turbidity, and presumably food supplies (Bennett 
et al. 2005, Sommer et al. 2013, Brown et al. 2014). In years with high freshwater discharge 
in winter and spring, spawning and rearing of larval and early post-larval fish can temporarily 
extend seaward into San Pablo Bay, while in years with less discharge it usually occurs in the 
Delta, Suisun Bay and Suisun Marsh. Juveniles and adults are distributed across a broader 
salinity range (0 to about 18) than larval and post-larval fishes which tend to be most abundant 
in the low salinity zone (salinity 1-6). Dege and Brown (2004) and Sommer et al. (2011) found 
that the center of the Delta Smelt distribution is associated with salinities of about 2 during most 
months and moves with the estuarine salinity gradient as the salinity gradient responds to flow.

Historically, Delta Smelt were commonly observed throughout the fresh and low salinity portions 
of their geographic range (Erkkila et al. 1950, Radke 1966). Over the last two decades, their 
geographic distribution has become more constricted during the summer and fall. At present, 
Delta Smelt are less commonly found in the southern and eastern Delta during the winter and 
spring and are largely absent from this region in the summer and fall (Nobriga et al. 2008, 
Sommer et al. 2011). While Delta Smelt continue to be found in the northern Delta year-
round and individual catches in this region are sometimes large, particularly during winter and 
spring, the majority of the population is usually observed in the region near to and west of the 
Sacramento-San Joaquin River confluence, especially in the summer and fall (Sweetnam 1999, 
Feyrer et al. 2007, Nobriga et al. 2008, Merz et al. 2011, Sommer et al. 2011, Sommer and Mejia 
2013). 

In addition to documenting changes in distribution, long-term IEP surveys also reveal that the 
annual abundance indices of Delta Smelt have greatly declined since the first long-term pelagic 
fish monitoring survey began in summer 1959 (Fig. 3). Both a gradual, long-term decline and 
step changes, most recently around 2002, have been described using a variety of qualitative and 
statistical approaches for subadult Delta Smelt caught in the fall (e.g., Bennett and Moyle 1996, 
Bennett 2005, Manly and Chotkowski 2006, Thomson et al. 2010). These declines have not been 
smooth or entirely unidirectional and also include a great deal of interannual variability (Fig. 3). 





1 3

A n  Updated Conceptual  Model  of  D elta  Smelt  Biology 

I E P  M A S T  2 0 1 4

likely require the human population of California to reduce its dependence on some of the natural 
resources provided by the SFE. This will become even more challenging in the future because 
of climate change and the continued growth of California’s human population. California’s 
population has increased by approximately 38 million people compared to the population when 
California became a state in 1850 and has increased by about 22.5 million compared to 1959 
when Delta Smelt monitoring started 55 years ago (U.S. Census Bureau data). More than three 
quarters of today’s 38 million Californians live south of the SFE, and the majority of these 
Californians and millions of acres of farmland rely on fresh water diverted from the Delta 
for all or part of their water supply. The conflicts and trade-offs between species protection 
measures and actions to provide water and other natural resources to California’s growing 
human population have resulted in repeated attempts to reconcile these seemingly irreconcilable 
objectives through regulatory requirements, new institutional arrangements, and management 
plans.

Among the regulatory requirements are the State water right decisions issued by the California 
State Water Resources Control Board, which grant SWP and CVP water rights permits, but also 
include requirements to protect fish. State regulations also include increasingly more stringent 
waste discharge permits. For example, the new permit recently issued to the Sacramento Regional 
County Wastewater Treatment Plant includes new requirements for major treatment upgrades to 
better protect downstream water uses and the health of the estuary. Federal regulations include 
water quality requirements under the Clean Water Act and Biological Opinions (BiOps) issued 
under the federal Endangered Species Act. Two BiOps assess the effects of the coordinated 
operations of the SWP and CVP on Delta Smelt, Green Sturgeon, and salmonid fish populations, 
and their designated critical habitat. These BiOps include “reasonable and prudent alternatives” 
to lessen negative impacts of SWP and CVP operations and avoid jeopardy to the species, while 
at the same time trying to avoid major reductions in water exports from the Delta. 

Recent institutional reconciliation attempts include the multiagency, State and federal CALFED 
Bay-Delta Program and Authority (CALFED) and the California Delta Stewardship Council 
(DSC), a new State agency. From 1994 to 2010, CALFED attempted to reconcile water allocation 
and ecosystem restoration efforts in the estuary in a way that would allow them to “get better 
together” (Doremus 2009). After the demise of CALFED, the State of California created the DSC 
to address what the legislature termed the “co-equal goals” of providing a more reliable water 
supply for California and protecting, restoring, and enhancing the Delta ecosystem (CA Water 
Code §85054, http://deltacouncil.ca.gov/). 

Among the many management plans aimed at reconciling species protection and human 
water and land use objectives are plans by the DSC, SWRCB, and new groupings of multiple 
agencies and stakeholders. The DSC recently completed and is now starting to implement its 
comprehensive “Delta Plan” (http://deltacouncil.ca.gov/delta-plan-0) to achieve the co-equal 
goals, while the SWRCB is on track to complete a major update to its “Bay-Delta Plan” which 
may result in changes to water right permits (http://www.waterboards.ca.gov/waterrights/water_
issues/programs/bay_delta/). Three California State agencies recently completed a new California 
Water Action Plan that includes actions to help achieve the co-equal goals (http://resources.
ca.gov/california_water_action_plan/). A multi-agency planning effort that includes State 
and federal agencies as well as local Public Water Agencies (water contractors) is working to 
complete the “Bay-Delta Conservation Plan” (BDCP, http://baydeltaconservationplan.com). The 
BDCP is a proposed Habitat Conservation Plan under the federal Endangered Species Act and a 
Natural Community Conservation Plan under the California Natural Community Conservation 
Planning Act. It proposes to implement habitat restoration measures, stressor reduction activities, 
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al. 2014) and has been implemented by the IEP starting in 2011. The FLaSH studies provided an 
opportunity to intensely study the increase in the Delta Smelt abundance index observed in 2011. 
At this initial stage of the adaptive management program and the FLaSH studies, the 2011 data 
were compared to data gathered in the previous wet year, 2006, during which fall outflow was 
lower. The intitial data analysis effort also considered antecedent conditions in 2010 and 2005, 
resulting in a simple comparative approach focusing on four years (Brown et al. 2014).

Report Purpose and Organization

It is clear that the recovery of Delta Smelt and other listed and unlisted native species will be 
a key requirement of any plan to manage the resources of the SFE. Understanding the factors 
driving Delta Smelt population dynamics is a major goal of resource management agencies. 
The main purpose of this report is to provide an up to date assessment of factors affecting Delta 
Smelt throughout its primarily annual life cycle. Specific goals are to provide decision makers 
with scientific information for evaluating difficult trade-offs associated with management and 
policy decisions, provide scientists with a resource for formulating and testing hypotheses and 
mathematical models, and provide the general public with a new way for learning about Delta 
Smelt and their habitat.

We address these goals through a synthesis of scientific information about Delta Smelt with an 
emphasis on new information since the release of the last POD synthesis report in 2010 (Baxter 
et al. 2010). As in previous reports, conceptual models play a key role in this report. Conceptual 
models are useful tools for organizing and synthesizing information, designing research and 
modeling studies, and for evaluating potential outcomes of management actions. Here, we revisit 
previously developed conceptual models for Delta Smelt, and synthesize new information about 
factors affecting Delta Smelt and Delta Smelt responses to those factors. This comprehensive 
body of information is then used to construct and populate a Delta Smelt conceptual model, 
within a new framework. 

Numerous conceptual models have been developed to describe the relationships and linkages 
among environmental drivers of ecosystem change, ecosystem and habitat attributes, and Delta 
Smelt responses. In Chapter 2 of this report, we provide a brief introduction to conceptual models 
and review some of the conceptual models developed for the SFE and for Delta Smelt. In Chapter 
3, we introduce a new conceptual model framework for Delta Smelt and describe our approach 
to updating the previously developed Delta Smelt conceptual models. We also describe the data 
sources and analytical approaches used in this report. In Chapter 4, we review and synthesize 
recent information about drivers and habitat attributes affecting Delta Smelt and Delta Smelt 
responses to habitat attributes. In Chapter 5, we present an updated conceptual model for Delta 
Smelt that include key drivers, habitat attributes, interactions between them, and Delta Smelt 
responses discussed in Chapter 4. In Chapter 6, we review and synthesize recent information 
about Delta Smelt population dynamics, life history, and population trends. In Chapter 7, we use 
the updated conceptual model to formulate hypotheses about Delta Smelt responses and changing 
habitat conditions and test them using a simple comparative approach similar to the FLaSH 
approach (Brown et al. 2014), but for all life stages of Delta Smelt. The purpose of Chapter 7 is to 
put the new conceptual model along with the comparative approach to an immediate test that is of 
high relevance to the management of Delta Smelt. Chapter 8 presents key results and conclusions 
from the preceding Chapters. In Chapter 9, we discuss next steps for future conceptual, 
qualitative, and quantitative modeling as well as the science and management implications of the 
information contained in this report. 
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Conceptual models have clear limitations. For example, even the most complex conceptual 
models are highly simplified descriptions of a small part of an ecosystem – they can never 
tell the “whole” story. Just like our every-day mental models, they are also never final. To 
remain relevant, ecological conceptual models must evolve and change with the evolution of 
our knowledge about ecosystems. Furthermore, conceptual models identify key ecosystem 
components and relationships, but they do not quantify them and unless they are coupled with 
mathematical models, conceptual models cannot be used to make quantitative predictions.

Conceptual models can be used to make qualitative predictions about changes in ecosystem 
components and their relationships. These qualitative predictions can serve as testable hypotheses 
that help design scientific analyses and studies. The creation or revision of the conceptual 
models themselves usually forces the formulation of hypotheses and their testing with available 
data and information, as will be demonstrated in the later Chapters of this report. Qualitative 
predictions and testable hypotheses are also at the heart of active adaptive management. They 
are needed to design experimental adaptive management actions and the studies and monitoring 
needed to assess the outcomes from such actions. The fall outflow adaptive management plan 
(Reclamation 2011, 2012) provides an example of how a conceptual model was used to make 
qualitative predictions and design a comprehensive set of studies, the FLaSH studies. Finally, the 
formulation of conceptual models is usually the essential first step for constructing quantitative 
models. Mathematical models are sets of mathematical expressions that quantify the components 
and relationships in the conceptual models and can be used to make quantitative predictions 
about the state of ecosystem components and linkages under specific circumstances (Jackson 
et al. 2000). The (few) quantitative predictions in the fall outflow adaptive management plan 
(Reclamation 2011, 2012) are based on such mathematical models.

Ecological conceptual models generally link ecological “drivers” with ecological effects or 
“outcomes.” Drivers are physical, chemical, or biological factors of human or natural origin (for 
example, nutrients from natural soils and applied fertilizers). Outcomes can be physical, chemical 
or biological responses to the drivers (for example, phytoplankton growth and biomass), but 
can also be social and economic impacts on human components of the ecosystem (for example, 
harmful algal blooms that affect recreational use or costs of water treatment for drinking water 
supply). Drivers and outcomes are the components of the system under consideration. They are 
linked by mechanistic cause-effect relationships. Conceptual models can also be nested within 
each other, for example, to accommodate different temporal or spatial scales, or conceptual 
models can be coupled so that the outcome of one conceptual model becomes a driver in the next 
one. Drivers are often categorized in various ways, including their causal proximity to specific 
outcomes, whether they are natural or anthropogenic, and whether they can be altered by human 
management strategies and actions. Graphically, drivers are often arranged in hierarchical tiers 
that reflect these categories.

For example, Gentile et al (2001) describe a basic three-tiered approach that links environmental 
outcomes (tier 1) to proximal anthropogenic drivers termed “stressors” (tier 2) and the natural and 
anthropogenic drivers that act on these stressors (tier 3). Davis et al. (2010) show how different 
ecological regimes in Australian lakes (outcomes, tier 1) arise from the interplay of stressors (tier 
2) and hydrological changes (tier 3) acting on the original ecological regime (tier 4). Carr et al. 
(2007) review a widely used five-tiered “Driver–Pressure–State–Impact–Response” (DPSIR) 
framework that focuses on identifying human-caused environmental problems and solutions. 
In this framework, the ultimate drivers (D) are social processes that result in specific human 
activities that manifest as proximal “pressures” (P) that change the “state” (S), or condition, 
of the environment. This can have “impacts” (I) on human well-being that are recognized as 
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Manly and Chotkowski 2006, Feyrer et al. 2007, Nobriga et al. 2008, Feyrer et al. 2010, Thomson 
et al. 2010, Mac Nally et al. 2010, Miller et al. 2012). There is also a rapidly developing body 
of life cycle models for Delta Smelt and other SFE fish species that use statistical and numerical 
simulation approaches (e.g. Blumberg et al., 2010, Maunder and Deriso 2011, Massoudieh et al. 
2011, Rose et al. 2011, Rose et al. 2013a,b).

Chapter 3: Approach
This report is the result of a team effort by the IEP Management, Analysis, and Synthesis Team 
(MAST, often referred to as “we” in this report). Appendix A briefly describes the MAST and the 
report development process and schedule which included a public and independent expert peer 
review step that led to major revisions to the draft report.

General Approach

Our general approach in this report was to develop a new conceptual model framework for 
Delta Smelt and to use this framework to synthesize new scientific information and update 
and integrate existing conceptual models including the “basic” and “species-specific” POD 
conceptual models, the DRERIP “transition matrix” models, the tabular FLaSH conceptual model 
and the hierarchical conceptual model in Miller et al. (2012) described in Chapter 2. 

The development of the new conceptual model framework was guided by the conceptual model 
literature (see Chapter 2) and by recommendations from the independent “FLaSH Panel” of 
national experts convened by the Delta Science Program. The FLaSH Panel recommended to:

“develop a schematic version of the [FLaSH] conceptual model that matches 
the revised, written version of the conceptual model in the draft 2012 FLaSH 
study report. The conceptual model in written and schematic form should 
continue to emphasize processes and their interactions over simple correlations, 
should ensure Delta Smelt vital rates remain central to thinking, and should be 
designed for routine use by scientists as an organizational tool and for testing 
hypotheses associated with the AMP [adaptive management plan]; it should 
be as complex as necessary to achieve these purposes. The conceptual model 
should also be able to encompass processes and interactions that extend before 
and after Fall Outflow Action periods, including areas both upstream and 
downstream of the LSZ” (FLaSH Panel 2012, page ii).

The conceptual modeling approach in this report is intended to provide a basis, not a substitute 
for the development or use of mathematical models. While mathematical models are outside of 
the scope of this report, we briefly discuss the promise and challenges of mathematical models 
for Delta Smelt, summarize some of the highlights of existing mathematical modeling efforts 
for Delta Smelt, and offer a brief description of two additional proposed mathematical modeling 
efforts — one qualitative and the other quantitative — we think are natural outgrowths of the 
information in this report (see Chapter 8). Development of a variety of flexible working tools to 
facilitate discussion of elements of the conceptual model is one intended outcome of the MAST 
effort. Even simple quantitative and qualitative models based on our revised conceptual model 
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2. More detailed life stage transition conceptual models for each of the four Delta Smelt 
life stages that describe relationships between environmental drivers, key habitat 
attributes, and the population-level probability of successfully transitioning from one 
life stage to the next. This probability is dependent on the effects of environmental 
drivers and habitat attributes on the growth, survival, reproduction, and movements of 
Delta Smelt but data are currently inadequate to provide causal links for most of these 
processes individually. 

General Life Cycle Conceptual Model

The updated general life cycle conceptual model for Delta Smelt (Fig. 8) follows the FLaSH 
Panels (2012) recommendation to “ensure Delta Smelt vital rates remain central to thinking” 
and is structurally similar to the basic POD conceptual model (Fig. 6). The general life cycle 
conceptual model is divided vertically and horizontally into four sections representing four 
Delta Smelt life stages from eggs and larvae to adults occurring in four “life stage seasons” 
indicated in the center of the diagram (Fig. 8; tier 5 box, green shading). This is similar to the 
four seasonal compartments of the species-specific conceptual model diagram in Baxter et al. 
(2010). Importantly, these life stage seasons are not exactly the same as calendar-based seasons. 
Instead, they have somewhat variable duration and overlapping months. This is because life 
stage transitions from eggs to adults are gradual and different life stages of Delta Smelt often 
overlap for a period of one to three months. Delta Smelt responses (Fig. 8; tier 4 box with dark 
blue shading) to important habitat attributes throughout their usually annual life cycle are placed 
within a box representing habitat attributes important to their growth and survival, which conveys 
the idea that biotic and abiotic habitat elements drive Delta Smelt responses (Peterson 2003; 
Fig. 8; tier 3 box with light blue shading). For each life stage season, there are a set of natural 
and anthropogenic environmental drivers associated with the estuarine environment (Fig. 8; tier 
2 box with purple shading) that generate the habitat attributes important to Delta Smelt growth 
and survival. Surrounding the environmental drivers box is a fourth, outer box that represents the 
stationary (geographically and temporally fixed) landscape attributes of the estuarine ecosystem 
associated with its physical geometry and the orientation and connections of its component 
waterbodies (Fig. 8; tier 1 box with grey shading). In contrast to this outer box, the components 
and processes described in the inner boxes of this conceptual model are dynamic in space and 
time. Note that the fixed landscape attributes are considered fixed in the context of Delta Smelt 
population biology in any particular year rather than across longer time scales. The different 
spatial and temporal scales for each tier of the conceptual model are shown in Figure 9.

The tiered components of the general life cycle conceptual model for Delta Smelt can vary over 
a wide range of spatial and temporal scales (Fig. 9). Landscape attributes of the San Francisco 
Estuary (tier 1) encompass local to estuarine-wide features and change slowly over decades or 
longer periods. Environmental drivers (tier 2) that affect Delta Smelt habitat attributes vary and 
manifest over the broadest range of spatial and temporal scales, from local variations over tidal 
or daily cycles to long-term changes at the watershed or even larger geographic scales. Similar 
to environmental drivers, habitat attributes of Delta Smelt (tier 3) can be highly dynamic at small 
spatial and temporal scales or change gradually over many years, but they don’t extend beyond 
the geographic range of the species, which in the case of Delta Smelt is the SFE. Delta Smelt 
responses (tier 4) vary in response to changing habitat attributes within subregions of the estuary. 
In this small fish species with its maximum age of two years and extremely small geographic 
range, population-level responses can range from rapid (e.g., in response to toxic spills) to more 
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as the baseline for management agencies to use when considering recovery of Delta Smelt. The 
time period simply reflects the consistently low level of Delta Smelt abundance in recent years 
and a useful baseline for identifying years with improved Delta Smelt abundance indices, which 
would indicate improved environmental conditions for Delta Smelt. Similarly, we also consider 
the 1982-2001 period between the two major step declines in Delta Smelt abundance identified 
by Thomson et al. (2010) separately in some graphs and analyses. Finally, some graphs and 
analyses refer to calendar years while others refer to water years. In California, a water year 
starts on October 1 and ends on September 30 of the next calendar year. California water year 
classifications are based on calculations of annual unimpaired runoff, which represents the natural 
water production of a river basin, unaltered by upstream diversions, storage, and export of water 
to or import of water from other basins.

In Chapter 7, we explore a series of hypothesized driver-outcome linkages using a comparative 
approach. The purpose is to demonstrate the utility of our conceptual model framework for 
generating hypotheses about the factors that may have contributed to the 2011 increase in Delta 
Smelt abundance. Specifically, we compare Delta Smelt responses to habitat conditions in four 
recent years with moderate to wet hydrology: the two most recent wet years (2006 and 2011) and 
the two drier years immediately before them (2005 and 2010). This comparative approach and 
data sources (described in Chapter 4) are deliberately similar to the comparative approach used in 
the FLaSH investigation (Brown et al. 2014). This approach allows us to place the results of the 
FLaSH investigation in a year-round, life cycle context and to more comprehensively evaluate 
factors that may have been responsible for the strong Delta Smelt abundance and survival 
response in 2011, including any possible relevant antecedent conditions from 2010. We attempt 
to draw comparisons with a similar set of data collected during 2005 and 2006. Our working 
assumption is that different Delta Smelt abundances in 2006 and 2011 should be attributable 
to differing environmental conditions, in some cases attributable to management actions, and 
subsequent ecological processes affecting the Delta Smelt population.

In Chapter 9 we briefly describe three examples of additional mathematical modeling approaches 
that can be used to further explore some of the linkages and interactions in our conceptual models 
and complement previously published and other ongoing mathematical modeling efforts for 
Delta Smelt. Importantly, results from the three modeling examples in Chapter 9 are included 
for illustrative purposes only; peer-reviewed publications of these analyses need to be completed 
before they can be used to draw firm conclusions.

Chapter 4: Environmental Drivers 
and Habitat Attributes
The general approach of this Chapter is to focus on how environmental drivers and interactions 
among them create habitat attributes of importance to Delta Smelt. Specifically, we review and 
synthesize existing information about drivers and habitat attributes and Delta Smelt responses to 
habitat attributes with a focus on new information since Baxter et al. (2010). We use the drivers 
and habitat attributes depicted in the basic POD conceptual model (Fig. 6) as the basis for this 
synthesis. We consider habitat attributes important when there are published studies suggesting 
ecological responses by Delta Smelt. Each section focuses on a habitat attribute that can be the 
outcome of one or more environmental drivers. Physical habitat attributes are presented first, 
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a monitoring station located in Old River (station D28A) and in the San Joaquin River near the 
Port of Stockton (station P8) of more than 24 °C and 25 °C, respectively (Fig. 16).

In tidal systems, water temperature at a particular location is determined by the interaction 
between atmospheric forcing (e.g., air temperature and wind), tidal dispersion and riverine flows 
across the estuarine landscape (Monismith et al. 2009). In particular, estuarine water temperature 
is driven by heat exchange at the air–water interface and mediated by tidal and riverine flow 
dynamics and estuarine geomorphology (Enright et al. 2013). Wagner et al. (2011) found that 
regional weather patterns including air temperature and insolation (sunlight), are the primary 
drivers of water temperature variations in the SFE. Water flow and interaction with the stationary 
topography of the system also affects water temperature in the SFE, especially over shorter time 
scales and at smaller spatial scales. For example, Enright et al. (2013) showed that interaction 

Figure 15. Map of active and historic IEP Environmental Monitoring Program (EMP) sampling stations.
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Monitoring Program since 1975 (Fig. 11). From 1975 to 2012, annual fluctuations in average 
monthly water temperature were greatest at stations in the south Delta (14-16 °C), smaller at 
stations in the northern and western Delta (12-13 °C), and lowest at stations in Suisun and San 
Pablo Bays (9-12 °C). Jassby (2008) reported that maximum daily air temperature could explain 
almost half the variability in maximum daily water temperature at the continuous monitoring 
station at Antioch during the summer months. The relationship between air and water temperature 
was also strong in all other months except January.

Wagner et al. (2011) and Wagner (2012) developed simple regression models for predicting 
water temperature at fixed temperature monitoring stations in the SFE using only air temperature 
and insolation on the day of interest and the water temperature from the previous day. Water 
temperature from the previous day accounts for both previous air temperature and the sources of 
water to the site, including advective flow from rivers or dispersive flow from more downstream 
reaches of the SFE. Each model had a different set of coefficients because of the differing 
influences of incoming river water or tidal exchange with San Francisco Bay. For stations with 
greater than 1 year of calibration data, model R2 for daily average temperature exceeded 0.93, 
indicating that water temperature was highly predictable within the limits of the calibration data 
sets. High winter and spring flows were responsible for the largest divergences of the model 
outputs from measured temperatures. 

The simple statistical models for water temperature developed by Wagner et al. (2011) and 
Wagner (2012) should be used with caution because they only predict temperature at the site 
of the recording instrument and do not explicitly account for mechanistic heat exchange. The 
analyses therefore do not incorporate the possible effect of site-specific features such as shading 
by riparian vegetation (Greenberg et al. 2012). Similarly, there are lateral and vertical variations 
in temperature on daily time scales (Wagner 2012) that could be important to organisms. For 
example, such variation might include substantial heterogeneity and formation of thermal refugia, 
which may be important to Delta Smelt. 

In contrast to statistical modeling, which produces site-specific results, water temperature across 
regions is commonly modeled with computation-intensive deterministic simulation models. 
Such models use energy budgets to predict water temperature. Simple stochastic models are also 
possible. Like most statistical models, these stochastic models generally rely on the relationship 
between air and water temperature (Caissie 2006, Null et al. 2013). We are not aware that these 
types of models have been developed for the San Francisco Estuary.

Upper temperature limits for juvenile Delta Smelt survival are based on laboratory studies and 
corroborated by field data. Interpretation of the laboratory results is somewhat complicated as 
temperature tolerances can be affected by various factors including acclimation temperature, 
salinity, turbidity, and feeding status. Based on the critical thermal maximum, CTmax, juvenile 
Delta Smelt acclimated to 17 °C could not tolerate temperatures higher than 25.4 °C (Swanson et 
al. 2000). However, for juvenile Delta Smelt acclimated to 11.9, 15.7 and 19.7 °C, consistently 
higher CTmax were estimated (27.1, 28.2 and 28.9 °C, respectively; Komoroske et al. 2014), 
which corresponded closely to the maximum water temperatures recorded in the TNS and 
FMWT surveys. Swanson et al. (2000) used wild-caught fish, while Komoroske et al. (2014) 
used hatchery-reared fish, which may have contributed to the differences in results. Based on 
the TNS (Nobriga et al. 2008) and the 20 mm Survey (Sommer and Mejia 2013), most juvenile 
Delta Smelt were predicted to occur in field samples when water temperature was below 25 °C. 
In a multivariate autoregressive modeling analysis with 16 independent variables, MacNally et 
al. (2010) found that high summer (June – September) water temperature had a negative effect 
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in the wild as well (L. Damon, CDFW, written communication 2012). Lindberg (U.C. Davis, 
personal communication 2013) observed that most females in culture spawned twice, some 
spawned three times and a very small number spawned four times. Each spawning was separated 
by a 4-5 week refractory period during February through June when water temperatures remained 
within the spawning window. Though laboratory conditions may not necessarily be representative 
of conditions in the wild, ripe females ready to release their second complete batch of eggs 
and developing a third batch have been detected in the wild during March and April (i.e., mid-
season) suggesting that three spawns are possible (L. Damon, CDFW, written communication 
2012). Thus, a longer spawning window would allow more females to repeat spawn adding 
both additional cohorts hatching under different conditions, and multiplying the fecundity of 
each repeat spawner (i.e., increasing the total fecundity of the individual), and thus, the total 
fecundity of the population. Moreover, in culture, individual females continued to grow through 
the spawning season and become more fecund with each batch of eggs (J. Lindberg, U.C. Davis, 
personal communication 2013). In the wild, the size of mature females generally increases month 
to month through the spawning season (Fig. 17), suggesting a potential increase in fecundity with 
each batch, but this has yet to be confirmed for wild fish. However, in culture, fish hatched later 
in the spawning season (mid-May to mid-June) grew up to be smaller-sized adults that started 
spawning later and had progeny with lower survival than the progeny of fish hatched earlier 
in the season (Lindberg et al. 2013). These observations are consistent with the reproductive 
patterns suggested for the wild Delta Smelt population (Bennett 2011). Overall, the effect of 
a prolonged spawning season on Delta Smelt population size and dynamics would seem to be 
positive; however, there is some uncertainty.

In the culture experiments reported by Bennett (2005), temperature strongly influenced hatching 
success of eggs. Specifically, Bennett (2005) reported that optimal hatching success and larval 
survival were estimated to occur at 15–17 °C based on studies conducted at 10, 15, and 20 °C. 
The data indicated that as incubation and early rearing temperatures increased, size at hatching 
and size at first feeding linearly decreased, possibly because basal metabolism of the developing 
embryo used more energy leaving less for growth. Fish that hatch relatively late in the season 
may experience high temperatures at a small size, which may reduce larval survival by several 
possible mechanisms. First, small size would limit the size of food items that the larvae could 
ingest because of smaller mouth size (see Nobriga 2002). Temperature may also affect food type 
and availability as discussed below. Second, small larvae are likely vulnerable to a larger range 
of predators for a longer period compared to larger larvae (e.g., “stage duration hypothesis;” 
Anderson 1988). Third, these fish could be potentially more vulnerable to transport toward the 
CVP and SWP export facilities, when Old and Middle River (OMR) flow restrictions are lifted. 
Restrictions are lifted when the 3-day mean water temperatures in Clifton Court Forebay (CCF) 
reach 25 °C or by the end of June. 

As explained above, higher water temperatures increase energetic requirements and thus the food 
requirements of fish. To meet the increased need for food, it is possible that Delta Smelt spend 
more time foraging during the day. Since greater foraging time during the day increases visibility 
to predators, and those predators would also increase their foraging rates at higher temperatures, 
the encounter rate of predator and prey would likely increase at higher water temperatures. The 
net effect could be an increase in Delta Smelt predation risk (e.g., Walters and Juanes 1993). High 
temperatures can also decrease antipredator behavior, as described for Sacramento River Chinook 
Salmon (Oncorhynchus tshawytscha) (Marine and Cech 2004). In other words, the fish may make 
a behavioral choice to feed, grow, and become less vulnerable to predators as rapidly as possible, 
even though the short-term predation risk might increase. Water temperatures in the upper SFE 
are usually highest from June to September and decline rapidly between October and December 
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temperature between regions or time periods may have important effects on the Delta Smelt 
population (Rose et al. 2013b).

Salinity and the Size and Location of the Low Salinity 
Zone

A dynamic salinity gradient from fresh water to salt water is one of the most characteristic 
features of an estuary (Kimmerer 2004). It originates from the mixing of fresh inland water with 
salty ocean water through tidal dispersion and gravitational circulation (Monismith et al. 2002). 
Many estuarine-dependent organisms occur in distinct salinity ranges (e.g., Kimmerer 2002a) and 
the extent and location of water with suitable salinities is thus an important habitat attribute for 
estuarine organisms. Over the time period of available monitoring data, there is no clear long-
term trend in salinity levels and distributions in the estuary. Significant increases and decreases 
linked to changing flow patterns have been detected for various stations and months (e.g., Jassby 
et al. 1995, Enright and Culberson 2009, Shellenbarger and Schoellhamer 2011, Cloern and 
Jassby 2012).

The brackish (oligohaline) “low salinity zone” (LSZ) is an important region for retention of 
organisms and particles and for nutrient cycling. In the SFE, the LSZ provides important habitat 
for numerous organisms including Delta Smelt (Turner and Chadwick 1972, Kimmerer 2004, 
Bennett 2005). In this report we define the LSZ as salinity 1-6; however, other salinity ranges 
have been used by others, such 0.5-6 (Kimmerer et al. 2013) or 0.5-5 (Jassby 2008).

In the SFE, the position of the LSZ is commonly expressed in terms of X2, which is the distance 
from the Golden Gate in km along the axis of the estuary to the salinity 2 isohaline measured near 
the bottom of the water column (Jassby et al. 1995). X2 represents the approximate center of the 
LSZ (Kimmerer et al. 2013).

X2 is an index of the physical response of the estuary to freshwater outflow from the Delta; it 
decreases with increasing outflow because increasing freshwater outflow prevents seawater from 
moving landward. The X2 index was developed two decades ago as an easily-measured, policy-
relevant “habitat indicator.” Its ecological significance for multiple species and processes was 
established through statistical analyses of biological responses to seasonally or annually averaged 
X2 values (Jassby et al. 1995) and has since been reaffirmed in additional studies (e.g., Kimmerer 
et al. 2002a,b, 2009, 2013, Thomson et al. 2010, Mac Nally et al. 2010). There is, however, still 
much uncertainty regarding the causal mechanisms for the observed biological responses of biota 
to X2. As with all statistically derived functional relationships, biological responses to X2 do 
not necessarily reflect direct causal relationships and it is generally recognized that some of the 
causal mechanisms may not be directly linked to the size and location of the LSZ. 

Most of the scientific and management attention has focused on the LSZ and X2 from late winter 
to early summer (hereafter “spring X2”) depending on the species of interest, but in recent years 
the LSZ and X2 during the fall months (“fall X2”) has also received considerable scientific and 
policy attention. Annual abundance indices of several estuarine fish and invertebrate species have 
a negative relationship with spring X2, meaning that abundance indices increase when X2 and the 
LSZ are more westward and Delta outflow is higher in the late winter and spring months (Jassby 
et al. 1995, Kimmerer 2002a, Kimmerer et al. 2009). Delta Smelt summer abundance indices 
have a significant relationship with prior fall X2 and fall abundance (USFWS 2008, Mount et al. 
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been increasingly regulated to protect “beneficial uses,” including habitat and fish protections 
(see Chapter 1).

CVP and SWP water exports from the Delta began in the early 1950s with the completion of 
the CVP C.W. Bill Jones Pumping Plant (formerly known as the Tracy Pumping Plant) in 1951 
and then increased with the completion of SWP’s Harvey O. Banks Pumping Plant in 1968. 
Long-term variability in the trend of Delta outflow has been reduced seasonally for the period 
1921-2006, in part due to water project operations (Enright and Culberson 2009), but also due 
to overriding climate changes. Analyzing data from 1956–2010, Cloern and Jassby (2012) found 
significant increases in water exports from the Delta in all  months of the year except May, but in 
the first half of the year, these increases in exports did not significantly affect Delta outflow. We 

Figure 20. Modeled volume, area, and depth of the low salinity zone (salinity 0.5 
to 6 at various values of X2 for 9 steady state values of outlow using bottom 
salinity (green diamonds) and depth-averaged salinity (black diamonds and for 
daily values based on variable values from April 1994 through March 1997 (blue 
circles) (modified from Kimmerer et al. 2013). The top axis gives the Delta outflow 
corresponding to the 9 steady state scenarios.
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Ongoing studies coordinated by the IEP as part of the POD and FLaSH studies focus on the 
processes that link physics, chemistry, and biology in the LSZ and its habitat value for Delta 
Smelt and other native and non-native species. Similar to Monismith et al. (2002), preliminary 
results indicate that the strength of physical mixing (lateral dispersion) in the LSZ changes with 
the volume of freshwater outflow, underscoring the importance of variable hydrodynamics on not 
just the location of the LSZ, but how ecological services (nutrient mixing, organism dispersal) are 
influenced by variable estuarine outflow (Monismith, U.C. Berkeley, personal communication).

Turbidity

In this report, turbidity is considered an environmental driver that interacts with other 
environmental drivers, resulting in habitat attributes that directly affect Delta Smelt responses, 
rather than a stand-alone habitat attribute. Clearly, studies have shown that distribution of Delta 
Smelt is correlated with turbidity (e.g., Feyrer et al. 2007, Nobriga et al. 2008, Grimaldo et al. 
2009, Sommer and Mejia 2013). In the conceptual model we chose to incorporate turbidity as a 
modifier of several important linkages between environmental drivers and habitat attributes that 
are important to Delta Smelt, primarily food visibility for small larvae and predation risk for all 
life stages. If we had incorporated turbidity as a habitat attribute and, for example, predation risk 

Life Stage Season Survey Period Regression n P R2
Adjusted 

R2

Juvenile Summer TNS 1959-
2013

Linear 52 0.614 0.005

Juvenile Summer TNS 1959-
1981

Linear 20 0.033 0.230 0.187

Juvenile Summer TNS 1959-
1981

Quadratic 20 0.052 0.295 0.212

Juvenile Summer TNS 1982-
2002

Linear 21 0.023 0.243 0.203

Juvenile Summer TNS 2002-
2013

Linear 11 0.689 0.019  

Subadult Fall FMWT 1968-
2013

Linear 43 0.290 0.027 0.003

Subadult Fall FMWT 1968-
1981

Linear 11 0.699 0.017

Subadult Fall FMWT 1968-
1981

Quadratic 11 0.295 0.263 0.079

Subadult Fall FMWT 1982-
2002

Linear 21 0.394 0.038

Subadult Fall FMWT 2002-
2013

Linear 11 0.107 0.263 0.181

Table 1. Summary of relationships between log-transformed annual abundance indices for four Delta 
Smelt life stages (response variable) and spring X2 (February-June, see text): Survey: see description 
of monitoring surveys in Chapter 3; Regression: least squares linear or quadratic regression: n, 
number of observations (years); P, statistical significance level for the model; R2, coefficient of 
determination; adjusted R2, R2 adjusted for the number of predictor terms in the regression model. 
Bold font indicates statistically significant relationships.
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wind and wave action (McGann et al. 2013). In the SFE, phytoplankton concentration varies 
spatially, seasonally, and on an inter-annual scale (Cloern et al. 1985, Jassby 2008, Cloern and 
Jassby 2012), and is controlled by multiple factors, including benthic grazing, climate, river 
inflows (Jassby et al. 2002), and nutrient dynamics (Glibert et al. 2011, Parker et al. 2012, 
Dugdale et al. 2013), which in turn are likely to affect the organic component of turbidity. 
Phytoplankton dynamics are discussed in detail in the ‘Food and Feeding’ section (below), but it 
is important to note here that plankton concentration comprises part of the SFE turbidity and is 
significant as it relates to productivity at higher trophic levels.

Among the geographic regions of the upper SFE, the Suisun region is one of the most turbid, 
when the system is not being influenced by storm flows. This results from strong turbulent 
hydrodynamics in the Suisun region caused by strongly interacting tidal and riverine flows, 
bathymetric complexity, and high wind speeds, which create waves that resuspend erodible 
benthic sediment in the large and open shallow bays of the Suisun region. The North Delta, 
especially the large open expanse of Liberty Island (flooded since 1998) and the adjacent Cache 
Slough region are also relatively turbid. Recent evidence suggests that Liberty Island acts as a 
sediment sink in the winter and a sediment source for the surrounding Cache Slough complex in 
the summer (Morgan-King and Schoellhamer 2013).

Turbidity is usually lower in the channels of the confluence of the Sacramento and San Joaquin 
Rivers compared to the Suisun region and North Delta region. Turbidity dynamics in the deep 
channels of the river confluence are driven more by riverine and tidal processes while high wind 
and associated sediment resuspension has little if any effect (Ruhl and Schoellhamer 2004). 
Turbidity is generally lowest in the south Delta (Nobriga et al. 2008). This may in part be due to 
sediment trapping by large, dense beds of Egeria densa, an invasive species of submerged aquatic 
vegetation (Hestir 2010). In winter/spring during the comparison years the highest Secchi disc 
depths (lowest turbidity) were found in the freshwater regions of the estuary (< 1 salinity), except 
for the Cache Slough region in the north Delta which was as turbid as the saltier regions of the 
estuary (Fig. 24).

There is strong evidence for an initial increase followed by a more recent long-term decline in 
sediment transport into the upper estuary, likely due to anthropogenic activities during the last 
century and a half (Schoellhamer et al. 2013, Wright and Schoellhamer 2004). Schoellhamer 
et al. (2013) presented a conceptual model of the effects of human activities on the sediment 
supplies in the SFE with four successive regimes: 

1. The natural state. 

2. Increasing sediment supplies due to mining, deforestation, agricultural expansion, etc. 

3. Decreasing sediment supply due to sediment flushing during high flow events and 
sediment trapping behind dams and dikes.

4. A new altered state of low sediment supplies. The pulse of increased sediment inputs 
during and after the California gold rush and the more recent decline in these inputs is 
apparent in isotopic data from sediment cores taken in the estuary (Drexler et al. 2014).

The recent declines in sediment supplies have led to a long-term increase in water clarity in 
the upper Estuary (Jassby et al. 2002, Feyrer et al. 2007, Jassby 2008). Jassby et al. (2002) 
documented a 50% decrease in total suspended-solids concentration (TSS, a laboratory 
measurement of total suspended solids), approximated by suspended sediment concentration 
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Before the step decline in SSC and the onset of the pelagic organism decline in the late 1990s and 
early 2000s (i.e. the “pre-POD” period), water transparency (roughly the opposite of turbidity) 
measured with a Secchi disc at all IEP EMP stations was usually highest in November and lowest 
in June (Fig. 25). From 2003-2012 (i.e. the “POD” period), average water transparency was not 
only higher (by an average of 16 cm Secchi depth) than in the previous period, but the annual 
dynamics also shifted forward by a month, to greatest transparency (i.e. lowest turbidity) in 
October and lowest transparency in May. The greatest differences in average water transparency 
between the pre-POD and POD periods occurred in September and October (28 and 30 cm 
difference between monthly averages, respectively) and the smallest differences in January-
May (10 cm). While the EMP has collected turbidity data (nephelometric turbidity (NTU) 
measurements) since 1975, long-term fish monitoring surveys have traditionally collected Secchi 
disc data and only in recent years have incorporated turbidity. Therefore, Secchi disc data are 
presented in the majority of this report when relating Delta Smelt abundance to water clarity 
conditions. 

Multiple field and modeling studies have established the association between elevated turbidity 
and the occurrence and abundance of Delta Smelt. The abundance of larval/postlarval Delta 
Smelt larvae was well explained by salinity and Secchi depth, a proxy for turbidity (Kimmerer et 
al. 2009). Sommer and Mejia (2013) and Nobriga et al. (2008) found that late-larval and juvenile 
Delta Smelt are strongly associated with turbid water, a pattern that continues through fall (Feyrer 
et al. 2007). Long term declines in turbidity may also be a key reason that juvenile Delta Smelt 
now rarely occur in the south Delta during summer (Nobriga et al. 2008). Thomson et al. (2010) 
found that turbidity (water clarity) was the only significant predictor variable that was shared 
by three of the four POD species; all other significant predictor variables were unique to each 
species. Grimaldo et al. (2009) found that the occurrence of adult Delta Smelt at the fish salvage 
facilities was linked, in part, with high turbidity associated with winter “first flush” events. 
Turbidity may also serve as a behavioral cue for small-scale (lateral and vertical movements 
in the water column) and larger-scale (migratory) Delta Smelt movements (Bennett and Burau 
2014).

Delta Smelt are visual feeders, and feed primarily between dawn and dusk (Hobbs et al. 2006, 
Slater and Baxter 2014). As for all visual feeders, visual range and prey density determine 
feeding success of Delta Smelt. Visual range depends on size, contrast and mobility of the 
prey, retinal sensitivity and eye size of the visual feeder, and on the optical habitat attributes 
such as light scattering, absorption, and intensity (Aksnes and Giske 1993). Optical habitat 
attributes are affected by turbidity from suspended organic particles, such as algae and detritus, 
and inorganic particles, such as sand and silt. Somewhat counterintuitively, some level of 
turbidity appears important to the feeding success of larval Delta Smelt. Baskerville-Bridges 
et al. (2004a) conducted laboratory experiments in which alga densities (0, 0.5 x 106 cell/mL, 
and 2 x 106 cell/mL or 1, 3, and 11 NTU) and light levels (range tested: 0.01 μmoles/s x m2, 0.3 
μmoles/s x m2, 1.9 μmoles/s x m2) were manipulated and first-feeding success of larval Delta 
Smelt was quantified. They found that maximum feeding response occurred at the highest alga 
concentrations and light levels tested. In a subsequent experiment, when algae were removed 
entirely, the feeding response was very low. The addition of algae or some other form of 
suspended particle is standard practice for successfully rearing Delta Smelt larvae in culture 
facilities (Mager et al. 2004, Baskerville-Bridges et al. 2005, Werner et al. 2010b, Lindberg et 
al. 2013). Presumably the suspended particles provide a background of stationary particles that 
helps the larvae detect moving prey. Sufficient turbidity also appears to be important to reduce 
overall environmental stress and increase survival of larval Delta Smelt (Lindberg et al. 2013). 
Thus, it seems likely that turbidity is important to the feeding success and survival of larval Delta 
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closer to the bottom (L. Sullivan, San Francisco State University, unpublished data). Thus, while 
laboratory studies have demonstrated that larvae have improved feeding success at higher (but 
not too high, see above) turbidities, in natural settings, turbidity and predation risk may interact 
(e.g., Miner and Stein 1996) to affect Delta Smelt habitat choice and feeding success. 

Turbidity may also be a migration cue for Delta Smelt. A recent field study investigated 
behavioral responses of Delta Smelt to winter “first flush” events in the Sacramento and San 
Joaquin Rivers near their confluence (W. Bennett, U.C. Davis, unpublished data). A first flush 
is defined as an increase in flow and turbidity associated with the onset of winter rain. This 
study found lateral turbidity gradients that changed with the tides and before and after first flush 
events and coincided with lateral Delta Smelt movements toward the channel during flood tides 
and toward the shoreline during ebb tides. The researchers concluded that this behavior likely 
facilitates maintaining channel position or moving upriver and cross-channel gradients in water 
turbidity may act as a behavioral cue. Feyrer et al. (2013) also found small-scale lateral and 
vertical gradients in turbidity in the lower Sacramento River just prior to a winter-time first flush 
event. In their study, turbidity and salinity were highest in the lower half of the water column and 
during flood tides and lowest during ebb tides in the center of the channel in the upper half of 
the water column. This coincided with observations of Delta Smelt which were more frequently 
caught throughout the water column during flood tides than during ebb tides when they were 
observed only in the lower half of the water column and sides of the channel. Feyrer et al. (2013) 
concluded that Delta Smelt may actively move in the water column by keying in on turbidity and 
salinity gradients or because of the physics underlying them.

Entrainment and Transport

The egg, larval, and juvenile stages of estuarine fishes and invertebrates along with small and 
weakly swimming adult stages are subject to involuntary transport (advection) by riverine and 
tidal flows. Entrainment is a specific case of involuntary transport. It refers to situations when 
altered flows misdirect and transport fish and other organisms in directions in which they would 
not normally travel or where they will encounter unfavorable conditions and increased risk of 
mortality. In this report, we use the term entraiment to specifically refer to the incidental removal 
of fishes and other organisms in water diverted from the estuary, primarily by CVP and SWP 
export pumping (Arthur et al. 1996, Grimaldo et al. 2009, Castillo et al. 2012). 

Ultimately, watershed hydrology determines how much water can flow into and through the 
Delta; however, water flows into, within, and out of the Delta are manipulated in many ways. 
Water is: routed through and around artificial channels, gates, and barriers; stored in and released 
from reservoirs; discharged from agricultural and urban drains; and diverted with large and small 
pumps. Perhaps the greatest flow alterations in the Delta have taken place in Old and Middle 
Rivers (collectively referred to as “OMR”) in the central Delta (Fig. 2). Historically, these river 
channels were part of the tidal distributary channel network of the San Joaquin River (Whipple 
et al. 2012). Today, they are a central component of the CVP and SWP water conveyance system 
through the Delta. Water from the Sacramento River in the north now flows through the northern 
Delta (down Georgiana Slough, through Three-Mile Slough and around Sherman Island) and 
eastern Delta (via the artificial “Delta cross-channel” and down the forks of the Mokelumne 
River) to OMR in the central Delta, then to the SWP and CVP. The SWP and CVP pumps are 
capable of pumping water at rates sufficient to cause the loss of ebb tide flows and to cause 
negative net flows (the advective component of flow after removal of the diffusive tidal flow 
component) through OMR toward the pumps (see Grimaldo et al. 2009), thus greatly altering 
regional hydrodynamics and water quality (Monsen et al. 2007). Under these conditions, fish 
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provisions to protect Delta Smelt (USFWS 2008) are aimed at keeping this ratio at no more than 
the average during the period of 2006-2008. 

Delta Smelt were salvaged nearly year-round in the beginning of this time series. Delta Smelt 
salvage since 2005 has occurred mostly from January through June, with substantial decline 
of May-June juvenile salvage since the mid 2000s (Fig. 28) and virtual disappearance of older 
juveniles from July-August salvage since the year 2000 (Fig. 29) and subadults since the early 
1990s (Fig. 30). These patterns coincide with the near disappearance of Delta Smelt from the 
central and southern Delta in the summer (Nobriga et al 2008) and in the south Delta in the fall 
(Feyrer et al. 2007). Historically, adult and larval-juvenile (> 20 mm FL) Delta Smelt salvaged 
were not separately recorded and reported, but based on length measurements of a subset of 
salvaged fish, adults were predominantly salvaged between December and March or April 

A

B

Figure 26. A: Total reported October-March salvage for adult Delta Smelt and the 
corresponding mean salvage density based on the total monthly salvage and 
water volume exported by CVP and SWP. B: Both salvage and salvage density 
standardized by the Fall Midwater Trawl (FMWT) index for the previous year.
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turbidity account for much of the intra-annual variability in the salvage for juvenile and adult 
Delta Smelt.

It is important to remember, however, that salvage is only a very rough indicator of Delta Smelt 
entrainment. Based on mark-recapture experiments using cultured Delta Smelt, salvage was a 
very small fraction of total entrainment losses because of major pre-screen losses and low fish 
facility efficiency (Castillo et al. 2012). Experimental studies with cultured Chinook Salmon, 
Steelhead (Oncorhynchus mykiss), and Striped Bass have consistently shown that a large fraction 
(63% to 100%) of the entrained fish are not salvaged due to pre-screen losses and capture 
inefficiencies at the SWP fish facility (Brown et al. 1996, Gingras 1997, Clark et al. 2009). In 
addition, a mark–recapture test using field collected juvenile Chinook Salmon in CCF resulted in 
only 0.32% of the fish being salvaged (see Castillo et al. 2012). Pre-screen losses are generally 

A

B

Figure 28. A: Total reported May-June salvage for juvenile Delta Smelt and the 
corresponding mean salvage density based on the total monthly salvage and 
water volume exported by CVP and SWP. B: Both salvage and salvage density 
standardized by the Fall Midwater Trawl (FMWT) index for the previous year.
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day simulations with the three-dimensional (3D) hydrodynamic model UnTRIM, MacWilliams 
and Gross (2013) found that the time particles spend in CCF varies greatly with wind and SWP 
operating conditions. They estimated transit times for passive particles (e.g., larval Delta Smelt) 
from the radial gates to the SFPF of 4.3 days under moderate export conditions (average daily 
SWP export rate of 2,351 cfs) and 9.1 days under low export conditions (689 cfs). The CVP 
does not have a regulating reservoir in the Delta and CVP pre-screen losses in the river channels 
leading to the TFCF are likely different from SWP pre-screen losses, but there are no studies 
quantifying these differences.

 In general, Delta Smelt salvage increases with increasing net OMR flow reversal (i.e., more 
negative net OMR flows) and when turbidity exceeds 10-12 NTU (USFWS 2008, Grimaldo et 
al. 2009). Based on field and salvage data, Kimmerer (2008) calculated that from near 0% to 
25% of larval-juvenile and 0% to 50 % of the adult Delta Smelt population can be entrained at 

Figure 30. A: Total reported July-August salvage for sub-adult Delta Smelt and 
the corresponding mean salvage density based on the total monthly salvage and 
water volume exported by CVP and SWP. B: Both salvage and salvage density 
standardized by the Fall Midwater Trawl (FMWT) index for the same year.

A

B
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Big Break upstream to the city of Stockton and tidal channels south of these locations, can be 
affected by several interacting processes. Flows from the San Joaquin, Calaveras, Mokelumne 
and Cosumnes rivers act to cause net downstream flow, whereas export levels at the south 
Delta pumps act to reverse net flows in the lower San Joaquin River. High export rates can 
create negative flows past Jersey Point on the lower San Joaquin River (“Qwest,” see Dayflow 
documentation: http://www.water.ca.gov/dayflow/output/Output.cfm) and negative OMR flows 
(Fig. 31). Since the onset of the POD in 2002, positive average monthly OMR flows have only 
occurred in 9 months (6%) during the wettest years and average monthly Qwest flows were 
negative in just under half (49%) of all months (Fig. 31). Tidal conditions can also act in favor of 
downstream transport or entrainment depending upon whether the Delta is filling or draining in 
response to the fortnightly spring-neap cycle (Arthur et al. 1996). The combination of high export 
and low inflow can create very asymmetrical tides in OMR that covary with net negative flow 
resulting in stronger floods compared to ebbs, which may also contribute to fish entrainment.

Predation Risk

Small planktivorous fishes, including osmerids, serve as prey for larger fishes, birds and 
mammals. As prey, they have the critically important trophic function of transferring energy 
to higher trophic levels. Consequently, they are often subjected to intense predation pressure 
(Gleason and Bengsten 1996, Jung and Houde 2004, Hallfredsson and Pedersen 2009). Prey fish 
populations compensate for high mortality through high reproductive rates, including strategies 
such as repeat spawning by individuals and rapid maturation (Winemiller and Rose 1992, Rose et 
al. 2001). Predation can be a dominant source of mortality for fish larvae, along with starvation 
and dispersion to inhospitable habitats (Hjort 1914, Hunter 1980, Anderson 1988, Leggett and 
Deblois 1994). 

Since predation is a natural part of functional aquatic ecosystems, predators are likely not 
responsible for long-term declines in populations of prey fishes, such as Delta Smelt, without 
some additional sources of stress that disrupt the predator-prey relationship (Nobriga et al. 2013). 
Predation may become an issue when established predator-prey relationships are disrupted by 
habitat change or species invasions (Kitchell et al. 1994). As described in Chapter 1, the SFE has 
been extensively modified (Nichols et al. 1986, Cohen and Carlton 1998, Whipple et al. 2012, 
Cloern and Jassby 2012) so disrupted relationships between predators and prey are certainly 
plausible. For example, prey may be more susceptible to predation if they are weakened by 
disease, contaminants, poor water quality, or starvation. Similarly, the creation of more “ambush 
habitat” (e.g. structures, weed beds), declines in turbidity levels, or the introduction of a novel 
piscivore also may dramatically shift the existing predator-prey relationships (Ferrari et al. 2014). 
All of these changes have in fact taken place in the estuary, especially in the central and south 
Delta (Feyrer and Healey 2003, Nobriga et al. 2005, Brown and Michniuk 2007).

Virtually all fishes of appropriate size will feed on fish larvae when available and predation is 
theoretically maximal when larvae lengths are 10% of the length of the predator (Paradis et al. 
1996). Presently, Mississippi Silverside (Menidia audens) is thought to be the most substantial 
predator of Delta Smelt larvae (Bennett and Moyle 1996, Bennett 2005, Baerwald et al. 2012). 
Juvenile and adult Delta Smelt have also been reported from the stomach contents of Striped 
Bass (Stevens 1963, Stevens 1966, Thomas 1967), White Catfish (Ictalurus catus) and Black 
Crappie (Pomoxis nigromaculatus) (Turner 1966a,b). Stevens (1963) reported “freshwater smelt” 
to be a very common component of Striped Bass stomach contents (nearly 100% frequency of 
occurrence in fifteen stomachs with food) on the Sacramento River near Paintersville Bridge 
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et al. 2012). These metrics are composites of the relative abundance of Mississippi Silverside, 
Largemouth Bass and other centrarchids; species that are potential predators of concern because 
of their increasing abundance (Fig. 27; Bennett and Moyle 1996, Brown and Michniuk 2007, 
Thomson et al. 2010), and because of inverse correlations between Largemouth Bass abundance 
and Delta Smelt abundance (Nobriga and Feyrer 2007, Thomson et al. 2010, Maunder and 
Deriso 2011). These correlations could represent predation on Delta Smelt by Largemouth Bass, 
or alternatively, the very different responses of the two species to changing habitat within the 
Delta (Moyle and Bennett 2008). Current data suggest that Largemouth Bass populations have 
expanded as the SAV Egeria densa has expanded and have come to dominate parts of the Delta 
(Brown and Michniuk 2007). E. densa and Largemouth Bass are particularly prevalent in the 
central and southern Delta (Brown and Michniuk 2007) and Largemouth Bass may contribute to 
the pre-screen losses of Delta Smelt entrained into the SWP and CVP export pumps (see above). 
Largemouth Bass will readily eat Delta Smelt when the opportunity exists (Ferrari et al. 2014). 
However, there is little evidence that Largemouth Bass are major consumers of Delta Smelt 
due to low spatial co-occurrence (Nobriga et al. 2005, Baxter et al. 2010; L. Conrad, California 
Department of Water Resources, unpublished data). Thus, the inverse correlations between these 
species may not be mechanistic. Rather, they may reflect adaptation to, and selection for, different 
environmental conditions.

As noted above, predation on fish larvae can also be an important source of mortality. Juvenile 
and small adult fishes of many species will consume fish larvae when they are available. Major 
predators of the eggs and larvae of nearshore coastal and pelagic estuarine forage fishes can 
include invertebrates (DeBlois and Leggett 1993) and numerous small fishes not typically 
thought of as “piscivorous” (Johnson and Dropkin 1992), including adults of their own species 
(Takasuka et al. 2003). Bennett and Moyle (1996) and Bennett (2005) noted this and specifically 
identified Mississippi Silversides (hereafter, Silversides) as potential predators on Delta Smelt 
larvae. These authors also documented increases in the Silverside population from the mid-
1970s through 2002. Consumption of Delta Smelt larvae by Silversides in the Delta was recently 
verified using DNA techniques (Baerwald et al. 2012). Larval predation is discussed in more 
detail in the next Chapter.

Contaminants

Fish are particularly sensitive to alterations in the chemical composition of the natural aquatic 
environment, as these changes can have significant impacts on their behavioral and physiological 
systems (Radhaiah et al. 1987). Chemical alterations can be the result of natural processes, for 
example the changes in local water quality associated with tidal water movements or natural 
biogeochemical processes, or they can be caused by pollution from watershed- or land-based 
sources of nutrients, such as nitrogen compounds, and contaminants, such as pesticides, metals, 
and contaminants of emerging concerns (CECs). The movement of contaminants through aquatic 
ecosystems is complex and dynamic, and many contaminants are difficult to detect and expensive 
to monitor (Scholz et al. 2012).

Portions of the SFE are listed as “impaired” on California’s 303(d) list of Impaired Water Bodies 
due to metals, pesticides, legacy pollutants, and nutrients that exceed established water quality 
objectives (SWRCB 2010). In particular, the entire SFE has been listed as impaired due to 
pollution with metals, such as mercury and selenium, and pesticides such as chlorpyrifos, DDT 
(Dichlorodiphenyltrichloroethane), and diazinon. The entire Delta, but not the bays of the SFE, 
is also listed for observed toxicity to aquatic organisms. In addition, the Stockton Ship Channel 
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resistance was highly coupled to the presence of a genetic mutation. The LC50s (concentration 
that is lethal to 50% of the exposed population) of previously-exposed wild populations were up 
to two orders of magnitude greater than LC50s of laboratory cultures. Moreover, the presence of 
a genetic mutation was detected in 100% of H. azteca that survived exposure to high pyrethroid 
concentrations. The development of such resistance can result in costs to genetic and biological 
diversity, including reduced fitness, and may lead to impacts to the food web (Weston et al. 
2013). The presence of such resistance and genetic mutations in Delta Smelt as a result of 
pyrethroids or other pesticide exposure has not been investigated

It is also important to note that environmental factors such as temperature and salinity affect 
pesticide toxicity in fish (Coats et al. 1989, Lavado et al. 2009). For that reason, seasonal 
variation in environmental factors may result in greater risk to certain life stages. The results 
above are for dissolved pesticides; pesticides may also be bound to sediments, representing 
another possible mechanism of exposure. Pesticides, such as pyrethroids and organochlorines, 
that strongly bind to sediment may be particularly important to the adult and larval life stage of 
Delta Smelt as these life stages occur during the winter and spring, when rain events (including 
the “first flush”) transport sediment and associated contaminants into the Delta; however, as 
the mechanisms that influence the desorption rates of pesticides are complex (e.g., temperature, 
contact time, pesticide) (e.g., Xu et al. 2008, Cornelissen et al. 1998), exposure rates for Delta 
Smelt lifestages are likely multifaceted and difficult to predict. 

Ammonia and Ammonium

Agricultural operations, wastewater treatment plant effluent, and other sources contribute to the 
accumulation of nutrients in the Delta. Nutrients, such as ammonium (a cation) and ammonia 
(its toxic, unionized form) are of particular concern in the Delta, as they can have significant 
negative effects on Delta Smelt and their habitat. Ammonium is increasingly converted into 
ammonia as pH rises. Delta Smelt spawning and larval nursery areas in the northern Delta are at 
particular risk to exposure to ammonia/um, mainly due to discharge by the Sacramento Regional 
Wastewater Treatment Plant (SRWTP) into the lower Sacramento River (Connon et al. 2011a). 
However, effects of nutrients such as ammonia/um are likely at all Delta Smelt life stages, as 
nutrients are discharged throughout the Delta year-round. 

Recent work demonstrated that Delta Smelt exposed to ammonia exhibited membrane 
destabilization, which may lead to increased membrane permeability as well as increased 
susceptibility to synergistic effects of multi-contaminant exposures (Connon et al. 2011a, 
Hasenbein et al. 2013b); however, the concentrations of ammonia used in these studies were 
higher than the concentrations typically experienced by Delta Smelt in the wild. In other fish 
species, sublethal concentrations of ammonia/um have also led to histological effects such as gill 
lamellae fusions and deformities (Benli et al. 2008). Other work has also shown that neurological 
and muscular impacts of ammonia/um resulted in slowed escape response and subsequent 
mortality (McKenzie et al. 2008). 

Metals and Other Elements of Concern

Historic mining sites, industrial and domestic wastewater discharges, and agricultural runoff are 
largely responsible for the presence of metals and other elements of concern in the Delta. Metals 
of particular importance in the Delta include copper and mercury; selenium is a trace element 
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expression of mRNA levels for estrogen-responsive genes, reduced mean gonadal somatic indices 
(GSI), testicular necrosis, and biased sex ratios (Brander et al. 2013). Studies have also shown 
that mixtures can affect predator-prey interactions (Relyea and Edwards 2010) and cause liver 
abnormalities (Sacramento Splittail, Pogonichthys macrolepidotus; Greenfield et al. 2008). Other 
work on Striped Bass has demonstrated that contaminant mixtures can be maternally-transferred 
to fish eggs, resulting in larvae with impaired growth and abnormal brain and liver development 
(Ostrach et al. 2008).

Due to the unpredictability of their effects on organisms, the synergistic effects of contaminant 
mixtures have received a great deal of attention both within pharmacology and environmental 
sciences (Arnold et al. 1996, Ashby et al. 1997, Berenbaum 1989, Greco et al. 1995, Liang and 
Lichtenstein 1974). Currently, one of the greatest challenges in chemical mixture research is 
how to deal with the infinite number of combinations of chemicals and other stressors, as well as 
their interactive effects, on organisms (Baas et al. 2010). Additional challenges also exist trying 
to relate lab-based findings to wild populations for studies examining the effects of individual 
contaminants and contaminant mixtures on organisms using exposure concentrations that are 
environmentally representative. Therefore, while the potential for exposure to contaminant 
mixtures in all Delta Smelt life stages is highly probable, any specific effects of such interactions 
on Delta Smelt remain unknown.

Food and Feeding

The presence of food is, obviously, a critical habitat attribute for any organism; however, the 
factors determining the quantity and quality of available food can be quite complex. In this 
section, we begin with a brief review of information about trophic processes in the upper SFE. 
We then discuss the available data on prey consumed by Delta Smelt. Finally, we provide a 
review of information on factors possibly affecting abundance and quality of food organisms.

Estuaries are commonly characterized as highly productive nursery areas for a suite of organisms. 
Productivity of estuarine ecosystems is often fueled by detritus-based food webs. In the SFE, 
much of the community metabolism in pelagic waters does result from microbial consumption 
of organic detritus. However, evidence suggests that metazoan production in pelagic waters 
is primarily driven by phytoplankton production (Sobczak et al. 2002, 2005, Mueller-Solger 
et al. 2002, 2006, Kimmerer et al. 2005). Protists (flagellates and ciliates) consume both 
microbial and phytoplankton prey (Murrell and Hollibaugh 1998, York et al. 2010) and are an 
additional important food source for many copepod species in the estuary (Rollwagen-Bollens 
and Penry 2003, Bouley and Kimmerer 2006, Gifford et al. 2007, McManus et al. 2008). 
However, the conversion of dissolved and particulate organic matter to microbial biomass and 
then to zooplankton is a relatively slow and inefficient process. Shifts in phytoplankton and 
microbial food resources for zooplankton might favor different zooplankton species. Moreover, 
phytoplankton production and biomass in the SFE is low compared to many other estuaries (e.g., 
Jassby et al. 2002, Kimmerer et al. 2005, Wilkerson et al. 2006, Cloern and Jassby 2012). The 
recognition that phytoplankton production might impose limits on pelagic fishes, such as Delta 
Smelt, through food availability has led to intense interest in factors affecting phytoplankton 
production and species composition and in management actions aimed at enhancing high-quality 
phytoplankton production. In addition, there is a major need to understand other trophic pathways 
given the observation that larger Delta Smelt periodically can take advantage of epibenthic prey 
(see below).
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A major reason for the long-term phytoplankton reduction in the upper SFE after 1985 is benthic 
grazing by the invasive overbite clam (Potamocorbula amurensis also known as Corbula 
amurensis) (Alpine and Cloern 1992), which became abundant by the late 1980s (Kimmerer 
2002). The overbite clam was first reported from San Francisco Estuary in 1986 and it was 
well established by 1987 (Carlton et al. 1990). Prior to the overbite clam invasion, the invasive 
Asiatic freshwater clam (Corbicula fluminea) (introduced in the 1940s) colonized Suisun 
Bay during high flow periods and the estuarine clam Mya arenaria (also known as Macoma 
balthica, an earlier introduction) colonized Suisun Bay during prolonged (> 14 month) low 
flow periods (Nichols et al. 1990). Thus, there were periods of relatively low clam grazing rates 
while one species was dying back and the other was colonizing, resulting in neither reaching 
high abundances. The P. amurensis invasion changed this formerly dynamic clam assemblage 
because P. amurensis, which is tolerant of a wide range of salinity, can maintain large, permanent 
populations in the brackish water regions of the estuary. P. amurensis biomass and grazing 
usually increase from spring to fall which contributes to the reduction in phytoplankton biomass 
from May to October relative to historical levels. In addition, the grazing influence of P. 
amurensis extends into the freshwater Delta beyond the clam’s typical brackish salinity range, 
presumably due to tidal dispersion of phytoplankton-depleted water between regions of brackish 
water and fresh water (Kimmerer and Orsi 1996, Jassby et al. 2002).

Phytoplankton production in the SFE has been considered primarily light-limited because nutrient 
concentrations commonly exceed concentrations limiting primary production. According to some 
recent work, shifts in nutrient concentrations and ratios may, however, also contribute to the 
phytoplankton reduction and changes in algal species composition in the SFE. Nutrients may also 
play a larger role in regulating phytoplankton dynamics in the estuary as the estuary clears and 
light availability increases (see turbidity section above).

While phosphorus (total phosphorous and soluble reactive phosphorous) concentrations declined 
in the Delta and Suisun Bay region over the last few decades, nitrogen (total nitrogen and 
ammonium) concentrations increased. These changes have been attributed to the operation of 
the Sacramento Regional Wastewater Treatment Plant (SRWTP), a large secondary treatment 
facility that was completed in 1984 (VanNieuwenhuyse 2007, Jassby 2008). As stated previously, 
ammonia has two forms, un-ionized ammonia (NH3) which is toxic to aquatic organisms and 
the ammonium ion (NH4+) which is considerably less toxic to animals and an important nutrient 
for plants and algae (Thurston et al. 1981). Ammonia exists in equilibrium between the two 
forms dependent primarily on the pH of the water, but also temperature, with increases in pH 
and temperature favoring the un-ionized form (Thurston et al. 1981). Dugdale et al. (2007) and 
Wilkerson et al. (2006) found that high ammonium concentrations prevented the formation of 
diatom blooms but stimulated flagellate blooms in the lower estuary. They propose that this 
occurs because diatoms preferentially utilize ammonium in their physiological processes even 
though it is used less efficiently and at high concentrations ammonium can prevent uptake of 
nitrate (Dugdale et al. 2007). Thus, diatom populations must consume available ammonium 
before nitrate, which supports higher growth rates, can be utilized or concentrations of 
ammonium need to be diluted. A recent independent review panel (Reed et al. 2014) found 
that there is good evidence for preferential uptake of ammonium and sequential uptake of first 
ammonium and then nitrate, but that a large amount of uncertainty remains regarding the growth 
rates on ammonium relative to nitrate and the role of ammonium in suppressing spring blooms. 

Glibert (2012) analyzed long-term data (from 1975 or 1979 to 2006 depending on the variable 
considered) from the Delta and Suisun Bay and related changing forms and ratios of nutrients, 
particularly changes in ammonium, to declines in diatoms and increases in flagellates and 
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with E. affinis and P. forbesi being major prey items downstream in the LSZ with a transition 
to S. doerrii and cyclopoid copepods as major prey items upstream into the Cache Slough-
Sacramento River Deepwater Ship Channel (CS-SRDWSC) (Fig. 39).

Juvenile Delta Smelt (June-September) rely extensively on calanoid copepods such as E. 
affinis and P. forbesi, especially in freshwater (salinity < 1) and CS-SRDWSC but there is great 
variability among regions (figs. 40-43). Larger fish are also able to take advantage of mysids, 

Figure 33. Density (number/m3) of adult Eurytemora affinis (E. affinis) by month 
for three salinity ranges. Each month 16 stations were sampled across all salinity 
ranges. Horizontal lines represent single samples within a salinity range and 
boxes without whiskers indicate 2 samples within a salinity range. Data from 
the IEP Zooplankton Study index stations. See Chapter 3: Data Analyses for 
explanation of boxplots.
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Subadult Delta Smelt (September through December) prey items are very similar to those of 
juvenile Delta Smelt but with increased variability in diet composition (Moyle et al. 1992, Lott 
1998, Steven Slater, California Department of Fish and Wildlife, unpublished data) (Figs. 40-43) 
coinciding with the seasonal decline in pelagic zooplankton, such as P. forbesi (Fig. 34) and 
mysids (Fig. 38). Food habits of adult Delta Smelt during the winter and spring (January-May) 
have been less well documented (Moyle et al. 1992). In 2012, diet of adults in the LSZ and         

Figure 35. Density (number/m3) of adult Acartiella sinensis (A. sinensis) by month. 
Each month 16 stations were sampled across all salinity ranges. Horizontal lines 
represent single samples within a salinity range and boxes without whiskers 
indicate 2 samples within a salinity range. Data from the IEP Zooplankton Study 
index stations. See Chapter 3: Data Analyses for explanation of boxplots.

Figure 36. Density (number/m3) of adult Sinocalanus doerrii (S. doerri) by month. 
Each month 16 stations were sampled across all salinity ranges. Horizontal lines 
represent single samples within a salinity range and boxes without whiskers 
indicate 2 samples within a salinity range. Data from the IEP Zooplankton Study 
index stations. See Chapter 3: Data Analyses for explanation of boxplots.
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some Longfin Smelt, and Prickly Sculpin (Cottus asper) in the Sacramento River and CS-
SRDWSC region; no Delta Smelt larvae were found in the stomachs of adults (Steven Slater, 
California Department of Fish and Wildlife, unpublished data).

The large proportion of benthic amphipods, cumaceans, and some cladocerans (Camptocercus 
spp.) in the diet is a notable change from Delta Smelt diet in the 1970s. Delta Smelt diets 
historically did include amphipods, notably Corophium spp. (Moyle et al. 1992), yet it was a 
small fraction of a mostly pelagic based diet. The considerable use of benthic invertebrates for 
food in recent years is believed to be in large part due to food limitation associated with the 
long-term decline and changes in composition of the pelagic food web (Slater and Baxter 2014). 
The quality of benthic invertebrates as food is not currently understood, but amphipods are lower 
in energy (calories per gram) than copepods (Cummins and Wuychek 1971, Davis 1993) and 
mysids (Davis 1993).

As noted previously, the changes in phytoplankton production and phytoplankton species 
abundances observed and the invasion of P. amurensis may have had important consequences 
for consumer species preyed upon by Delta Smelt. For example, there has been a decrease in 
mean zooplankton size (Winder and Jassby 2011) and a long-term decline in calanoid copepods, 
including a major step-decline in the abundance of the copepod E. affinis. These changes are 
possibly due to predation by the overbite clam (Kimmerer et al. 1994) or indirect effects of clam 
grazing on copepod food supply. Predation by P. amurensis may also have been important for 
other zooplankton species (Kimmerer 2008). Northern Anchovy Engraulis mordax abandoned 
the low salinity zone coincident with the P. amurensis invasion, presumably because the clam 
reduced planktonic food abundance to the point that occupation of the low-salinity waters was 
no longer energetically efficient for this marine fish (Kimmerer 2006). Similarly, Longfin Smelt 
Spirinchus thaleichthys shifted its distribution toward higher salinity in the early 1990s, also 
presumably because of reduced pelagic food in the upper estuary (Fish et al. 2009). There was 
also a decline in mysid shrimp (Winder and Jassby 2011), including a major step-decline in 
1987–1988, likely due to competition with the overbite clam for phytoplankton (Orsi and Mecum 
1996). Mysid shrimp had been an extremely important food item for larger fishes like Longfin 
Smelt and juvenile Striped Bass (Orsi and Mecum 1996), and may be consumed by larger Delta 
Smelt (Moyle et al. 1992). The decline in mysids was associated with substantial changes in the 
diet composition of these and other fishes, including Delta Smelt (Feyrer et al. 2003, Bryant and 
Arnold 2007). The population responses of Longfin Smelt and juvenile Striped Bass to winter–
spring outflows changed after the P. amurensis invasion. Longfin Smelt relative abundance was 
lower per unit outflow after the overbite clam became established (Kimmerer 2002b). Age-
0 Striped Bass relative abundance stopped responding to outflow altogether (Sommer et al. 
2007). One hypothesis to explain these changes in fish population dynamics is that lower prey 
abundance reduced the system carrying capacity (Kimmerer et al. 2000, Sommer et al. 2007).

In addition to a long-term decline in calanoid copepods and mysids in the upper Estuary, there 
have been numerous copepod species introductions (Winder and Jassby 2011). P. forbesi, a 
calanoid copepod that was first observed in the estuary in the late 1980s, has replaced E. affinis 
as the most common Delta Smelt prey during the summer. It may have a competitive advantage 
over E. affinis due to its more selective feeding ability. Selective feeding may allow P. forbesi to 
utilize the remaining high-quality algae in the system while avoiding increasingly more prevalent 
low-quality and potentially toxic food items such as M. aeruginosa (Mueller-Solger et al. 2006, 
Ger et al. 2010a). After an initial rapid increase in abundance, P. forbesi declined somewhat in 
abundance from the early 1990s in the Suisun Bay and Suisun Marsh regions but maintained its 
abundance, with some variability, in the central and southern Delta (Winder and Jassby 2011). 
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abundance peaks in spring (Hennessy 2010, 2011) coincident with hatching of Delta Smelt. E. 
affinis abundance has been negatively related to X2 since the overbite clam invasion (Kimmerer 
2002b). When X2 is “high” outflow is low and E. affinis densities are low. These lines of 
evidence suggest that the first feeding conditions may improve in springs with higher outflow.

Changes in the quality and quantity of available prey may have contributed to the observed 
reduction in the mean size of Delta Smelt in fall since the early 1990s (Sweetnam 1999, Bennett 
2005); however, mean size subsequently increased. The importance of food resources as a driver 
is supported by Kimmerer (2008), who showed that Delta Smelt survival from summer to fall 
is correlated with biomass of copepods in the low salinity zone, the central 50% of the summer 
Delta Smelt distribution. Other variations of this correlation were shown by Maunder and 
Deriso (2011) and Miller et al. (2012). Miller et al. (2012) have tested for an explicit influence 
of prey density during the fall. Miller et al. (2012) found a stronger correlation between Delta 
Smelt abundance during the fall and prey density during the fall than for prey density during the 
summer.

Harmful algal blooms

Periodic blooms of the toxic blue-green alga Microcystis aeruginosa during late summer, most 
commonly August and September are an emerging concern for Delta Smelt (Lehman et al. 2005, 
Lehman et al. 2013). Although this harmful algal bloom (HAB) typically occurs in the San 
Joaquin River away from the core summer distribution of Delta Smelt, some overlap is apparent 
during blooms and as cells and toxins are dispersed downstream after blooms (Baxter et al. 
2010). Density rankings of Microcystis at TNS stations were highest in the south Delta, east Delta 
and lower San Joaquin River  regions; yet Microcystis distribution may be expanding north over 
time (Morris 2013). Moreover, studies by Lehman et al. (2010) suggest that Delta Smelt likely 
are exposed to microcystins, which may degrade their habitat and perhaps affect the distribution 
of Delta Smelt (Baxter et al. 2010). For example, these HABs are known to be toxic to another 
native fish of the region, Sacramento Splittail (Acuña et al. 2012a) and the alien Threadfin Shad 
(Acuña et al. 2012b). Histopathology evidence from Lehman et al. (2010) suggested the health of 
two common fish in the estuary, Striped Bass, and Mississippi Silversides, was worse at locations 
where microcystin concentrations were elevated.

Indirect effects are also likely as Microcystis blooms are toxic to copepods that serve as the 
primary food resources of Delta Smelt (Ger et al. 2009, 2010a,b). Ger et al. (2009) determined 
toxicity of one form of microcystin (LR) to two species of calanoid copepods, E. affinis and P. 
forbesi, which are important as food to Delta Smelt. They found that, although the copepods 
tested were relatively sensitive to microcystin-LR compared to other types of zooplankton, 
ambient concentrations in the Delta were unlikely to be acutely toxic. However, chronic effects 
were not determined and Lehman et al. (2010) found that Microcystis may indeed contribute to 
changes in phytoplankton, zooplankton and fish populations in the Delta.

Factors that are thought to cause more intensive Microcystis blooms include warmer 
temperatures, lower flows, high nitrogen levels, and relatively clear water (Lehman et al. 2005, 
Baxter et al. 2010, Lehman et al. 2013, Morris 2013). These conditions occur during dry years in 
the SFE. Both Microcystis abundance and microcystin concentrations have been greater in recent 
years with dry year conditions (Lehman et al. 2013). These factors can also interact. For example, 
low flows can provide less dilution of ammonium from wastewater treatment plants (Jassby 
and Van Nieuwenhuyse 2005, Dugdale et al. 2012, Dugdale et al. 2013) and Microcystis can 
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hypotheses are stated and addressed in more detail in Chapter 7. All hypotheses focus on the life 
stage that is transitioning to (i.e. occurs prior to) the next life stage, for example, adults but not 
eggs and larvae, larvae and post-larvae but not juveniles, and so on. That said, it is important 
to remember that all life stages overlap and all transitions except for the transitions from adults 
to eggs and from eggs to freshly hatched larvae are gradual, not abrupt, and delineations of life 
stages are somewhat arbitrary (see Chapter 3).

The life stage conceptual model for the transition of adult Delta Smelt to eggs and larvae (Fig. 
46) includes 5 habitat attributes. Because of the lack of information about specific contaminant 
effects on Delta Smelt noted above, there are no specific hypotheses regarding the effects of 
contaminants and possible direct or indirect toxicity on Delta Smelt, but based on the information 
discussed in Chapter 4, the model does recognize that effects on Delta Smelt or its food supply 
may be occurring. Food availability and visibility are hypothesized to be important with respect 
to providing nutrition that allows Delta Smelt to grow into healthy, large adults that can produce a 
large numbers of high quality eggs as well as multiple clutches of eggs over the spawning season. 
The availability of food is considered dependent on both food production and the availability of 
such food to the fish. There are two hypotheses related to predation risk. The first is that turbidity, 
created by the interaction of high winter and spring flows with the erodible sediment supply 
in the watershed and within the Delta, influences the vulnerability of Delta Smelt to predators 
that co-occur with them. The second is that Delta Smelt behaviors that bring Delta Smelt close 
to channel edges may increase their vulnerability to Largemouth Bass, which generally occupy 
nearshore and vegetated habitats such as SAV beds. Entrainment risk in this life stage transition 
conceptual model is focused on adults. Entrainment of adults would reduce the reproductive 

Figure 49. Conceptual model of drivers affecting the transition from Delta Smelt 
subadults to adults. Hypotheses addressed in Chapter 7 are indicated by the 
“H-number” combinations.
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hypothesized to have an effect through bioenergetics because water temperature becomes 
less stressful than in the summer. In this conceptual model the size and location of the LSZ is 
considered both a landscape attribute and a habitat attribute. In the earlier conceptual models, the 
LSZ was mainly viewed as a landscape attribute that interacted with other landscape attributes 
and environmental drivers to create habitat attributes. In this conceptual model the size and 
position of the LSZ is hypothesized to have certain characteristics that directly determine 
habitat quantity and quality for Delta Smelt. The transition probability hypothesis is that at the 
currently small population sizes, survival from subadult to adult is density independent, meaning 
independent of the number of individuals present (see Chapter 6 for details).

Chapter 6: Delta Smelt 
Population Biology
This Chapter consists of two main parts. In the first part, we introduce general concepts in 
population biology that are utilized in the following sections of this Chapter and to generally 
describe Delta Smelt population dynamics. Explaining these concepts and population trends now 
is intended to reduce repetitive text in the remaining sections and to reduce possible confusion 
for readers unfamiliar with the concepts. The concepts are discussed specifically in the context of 
Delta Smelt. 

In the second part of this Chapter, we review information about the life history and population 
trends of each Delta Smelt life stage represented in our conceptual models, starting with adults. 
While we describe trends over the entire available time series for each life stage, we pay 
particular attention to differences in Delta Smelt abundance and life stage transitions between 
the two most recent wet years, 2006 and 2011. Our working assumption is that these differences 
should be attributable to differing habitat conditions and, in some cases, management actions. 
Differences in habitat conditions between these two years will be further explored in Chapter 7.

Population Biology

Recruitment is the addition of new individuals to a population through reproduction or 
immigration. In fisheries science, the term recruitment was first used by Ricker (1954) to describe 
the addition of fish of a new generation to a fish population, in other words, the number of young 
surviving to a particular age or life stage. We use the term recruitment to refer to production of 
larvae, juveniles, subadults, or adults by adults of the previous generation. Relationships between 
numbers of spawning fish or other measures of potential spawning stock (e.g., numbers of 
subadult or mature prespawning fish) and the numbers of fish of a given age or life stage in the 
subsequent generation are known as stock-recruitment relationships.

Stock-recruitment relationships have been described for many species and are a central part of 
the management of commercially and recreationally fished species (Myers et al. 1995, Touzeau 
and Gouze 1998). Different forms of stock-recruitment relationships are possible, including 
density-independent, density-dependent, and density-vague types. The density-independent type 
occurs when the current size of the population has little or no effect on the number of recruits 
(except possibly when stock size is extremely low). This type of population growth is rare in fish 
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affected by both density-dependent and density-independent factors at different times. This 
interaction is the basis for the idea of compensatory density dependence. In this formulation, 
a population is governed by density independent factors when population size is small. As the 
population increases and approaches the carrying capacity, density-dependent factors become 
important and the population growth rate declines. Fluctuations in carrying capacity, as noted 
above, are an added complication. Again, it is essential to understand the ecology of the species 
and survival between life stages to understand the relative importance of density dependent and 
density independent factors.

Unfortunately, Delta Smelt were never of sufficient interest as a commercial or recreational 
species to warrant development of stock-recruitment models until they were listed. Data now 
used to develop stock-recruitment models for Delta Smelt started becoming available after the 
initiation of fisheries studies and monitoring surveys in the late 1950s (TNS initiated 1959; 
FMWT initiated 1967) in association with the planning and operation of the CVP and SWP. 
These IEP fish monitoring surveys were designed to produce relative abundance indices or 
catch-per-unit-effort (CPUE, e.g., number per trawl) that could be used to monitor trends in 
abundance over time. More recently, annual abundance indices based on these surveys have 
also been incorporated into stock-recruit relationships (e.g., Moyle et al. 1992, Sweetnam and 
Stevens 1993, Miller 2000, Bennett 2005, Maunder and Deriso 2011). Neither of these early 
IEP fish monitoring surveys (TNS, FMWT) were specifically designed to monitor Delta Smelt, 
but instead targeted primarily the commercially and recreationally more important Striped 
Bass. As researchers began using TNS and FMWT indices for Delta Smelt analyses, they began 
investigating how the indices performed and means to improve them (see Wadsworth and 
Sommer 1996, Miller 2000, Newman 2008). This work is ongoing and also includes similar 
investigations for the newer SKT (initiated in 2002) and 20 mm survey (initiated in 1995) 
monitoring surveys.

The two stock-recruitment relations based on the longest data records include the relationsip 
of the FMWT abundance index with the FMWT adundance index in the previous year and the 
relationship of the TNS abundance index with the FMWT adundance index in the previous year 
(Fig. 50). Because of the large changes that have occurred in the Delta ecosystem, including the 
invasion by P. amurensis and the POD, these plots can be difficult to interpret because carrying 
capacity is assumed to have changed (Bennett 2005, Kimmerer et al. 2000, Sommer et al. 
2007). It does appear that there is much more variability associated with the FMWT relationship 
compared to the TNS relationship. This might indicate variable survival between the juvenile and 
subadult life stage.

In any form of a stock-recruitment model, there is a point at which low adult stock will result in 
low juvenile abundance and subsequent low recruitment to future adult stocks. This can occur 
even under favorable environmental conditions while the stock “rebuilds” itself. From a stock-
recruitment perspective, the recent low abundance of Delta Smelt is of particular concern. Since 
about 2002, the current population is smaller than at any time previously in the record, with the 
exception of the 2011 year class. This strong year class suggests that Delta Smelt have yet to 
reach low levels where the stock will need years to rebuild, at least to pre-POD levels (Fig. 3).

In addition to their use in exploring stock-recruitment relationships, ratios of annual Delta Smelt 
abundance indices can also be used to obtain rough estimates of relative annual recruitment and 
survival rates (figs. 51 and 52). As for the stock-recruitment relationships these recruitment and 
survival indices should be interpreted with caution given the large changes that have taken place 
in the Delta and the absence of estimates of variability for the indices. The main utility of these 
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of recruits produced is the product of recruitment rate and the size of the adult population. For 
this report, we assume that the estimates have sufficiently low and comparable uncertainty 
to provide worthwhile interpretations, as long as caution is exercised. It is also important to 
remember that abundance, survival, and recruitment index values are only meaningful in a 
relative, not in an absolute sense. 

The annual stage to stage survival indices from larvae to juveniles, subadults, and adults are 
shown in Figure 51. The relative recruitment rates from adults and subadults in one year to 
larvae, juveniles, and subadults the next year are shown in Figure 52. We recognize that a life 
cycle model with environmental covariates is needed to fully assess the combined effects of 
stock-recruitment and stage-to-stage survival indices on Delta Smelt population dynamics. 
Nevertheless, examination of the recruitment and survival index data sets reveal several 
interesting patterns for the POD period (2003-2013).

Figure 51. Stage to stage survival indices based on data from Summer Townet 
Survey (TNS), Fall Midwater Trawl (FMWT), and Spring Kodiak Trawl (SKT).
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First, interannual variability in these stock and survival indices declines from larval recruitment 
(coefficient of variation (CV): 92%), to subsequent larvae to juvenile survival (CV: 67%), 
juvenile to subadult survival (CV: 43%), to subadult to adult survival (CV: 38%). This result 
is consistent with expected highly dynamic patterns of recruitment and survival for an annual 
opportunistic species such as Delta Smelt. The pattern of reduced variability in survival for larger 
fish suggests that older fish may no longer be vulnerable to some forms of mortality affecting 
earlier life stages either because a factor is no longer important when larger fish are present (e.g., 
effect of summer high water temperatures on juveniles) or that larger fish escape some forms of 
mortality (e.g., larger fish are no longer eaten by the large variety of predators able to consume 
larvae). 

Second, the patterns of adult and larval abundance (Fig. 3) and adult to larvae recruitment (Fig. 
52a) suggest: (1) even a small adult Delta Smelt stock can produce a large number of larvae 
under the right habitat conditions; but (2) larval recruitment is not a good predictor of juvenile 
survival and subsequent adult stock size. In other words, good larval recruitment sets the stage 
for population recovery, but good survival through subsequent life stage transitions is needed to 
realize its potential.

Third, there are clear contrasts in Delta Smelt responses between the two wet years 2006 and 
2011 (the years of particular interest in this report) (Figs. 51 and 52). Since the initiation of the 
SKT survey for adult Delta Smelt in 2002 (indices calculated beginning in 2003), the recruitment 
of larvae from adults was greatest in the two wet years 2006 and 2011 (Fig. 52a) compared to 
the other, drier years in the time series, but in 2006 very strong adult to larvae recruitment was 
followed by very poor larvae to juvenile survival in the summer (Fig. 51a) and only average 
survival in the fall (Fig. 51b) and winter (Fig. 51c). This led to low abundance of the subsequent 
life stages of the 2006 cohort. Survival from larvae to juveniles and subadults was much better in 
2011 and, along with good recruitment, led to the highest juvenile and adult abundance indices 
since the onset of the POD (Fig. 3). In other words, good recruitment set the stage for population 
recovery in both recent wet years, but a substantial abundance increase was realized only in 2011. 
Unfortunately the 2011 abundance increase was short-lived; it was immediately followed by 
poor recruitment and survival in 2012 and abundance indices for the 2012 and 2013 cohorts were 
once again at the low levels typical for the POD period (Fig. 3). Several consecutive years of 
good recruitment and survival are likely needed for a more sustained increase of the Delta Smelt 
population abundance to pre-POD abundance levels. Population declines such as the decline 
experienced by Delta Smelt do not only reduce the number of individuals, but can also reduce 
the genetic diversity present in the population. While the 2011-2012 data suggest that recovery 
of Delta Smelt abundance can still be fairly rapid via high larval recruitment followed by good 
survival (Figs. 51 and 52) recovery of genetic diversity is a much slower process which is an 
important conservation concern (Fisch et al. 2011). 

Small Delta Smelt population size affects the effective population size (Ne), a measure of the 
genetic properties of a population and the abundance at which significant genetic diversity is lost 
due to inbreeding (Falconer and Mackay 1996, Schwartz et al. 2007, Antao et al. 2010). In many 
species Ne may be orders of magnitude smaller than the census population size (N) and low Ne/N 
ratios indicate the population may be in danger of losing genetic variability, potentially resulting 
in reduced adaptability, population persistence, and productivity (Hauser et al. 2002). For Delta 
Smelt, Fisch et al. (2011) detected a genetic bottleneck in each of four sampling years (2003, 
2005, 2007 and 2009) and observed a significant decline in effective population size between 
sampling years 2003 and 2007 (Fisch et at. 2011). The genetic signal of the decline in Ne is 
corroborated by the observed abundance index declines and support the hypothesis that decreases 
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Compensatory density dependence predicts that a fish’s population growth or survival rates 
can increase when abundance is low and decrease if abundance increases beyond a carrying 
capacity (Rose et al. 2001). If compensatory density dependence occurred in 2011, Delta Smelt 
survival would be expected to increase as long as the carrying capacity of the environment was 
not exceeded. Therefore, the sudden increase in subadult abundance in 2011 is consistent with 
the higher survival predicted by compensatory density dependence at low population abundance 
coupled with widespread availability of good habitat conditions throughout the year. Among the 
remaining comparison years, both 2005 and 2006 show evidence of compensatory recruitment 
to larvae (Fig. 52a). Adult abundance was moderately high in 2005, but low in 2006 and 2010 
(Fig. 3). As predicted by compensatory density dependence processes, the recruitment index 
to larvae was higher in 2006 than in 2005. However, low adult abundance in 2010 did not give 
way to a similarly high recruitment index (Fig. 52a). In addition, the relatively high recruitment 
index in 2006 did not result in a higher larval abundance index compared to 2005 (Fig. 3). These 
inconsistences, combined with a small number of comparison years, prevent any firm conclusion 
regarding compensatory recruitment or survival. 

Similarly, if compensatory density-dependent survival was important we might expect larva 
to juvenile survival to be lower when larva production per adult was higher assuming similar 
adult populations. This was not the case for 2006, 2010, and 2011, which had relatively similar 
values for the SKT abundance index (figs. 3). In 2006, larval survival was low with high larval 
production per adult, and 2010 and 2011 had very similar larval survivals with similar adult 
abundances. Finally, in 2011, the highest population of juveniles led to the highest population of 
subadults and adults (2012 SKT), which argues against compensatory density-dependent survival. 
These comparisons argue against strict compensatory density dependence operating within the 
POD years. It seems more likely that population dynamics are driven by density independent 
relationships with factors such as summer water temperatures and resource availability 
(fluctuations in carrying capacity); however, the evidence is not conclusive. In particular, we do 
not understand how carrying capacity fluctuates over seasons and years or how other factors, such 
as predation, affect carrying capacity (Walters and Juanes 1993; Walters and Korman 1999).

Adults

Life History

The Delta Smelt is generally considered a diadromous seasonal reproductive migrant, and in the 
winter, many adult Delta Smelt move upstream into fresh water for spawning (Moyle et al. 1992, 
Bennett 2005, Sommer et al. 2011). These movements may be a specific change in behavior 
in response to one or more environmental cues, for example, to the rapid and often dramatic 
environmental changes during winter first flush periods (Sommer et al. 2011, Bennett and 
Burau 2014). Focused, fixed-station sampling in the winters of 2009-10 and 2010-11 revealed 
higher catch of Delta Smelt at higher turbidity levels, as well as an asymmetry in probability 
of catch with respect to tidal phase; catch was highest in the channels during flood tide, but 
highest near the shoreline during ebb tides (Bennett and Burau 2014). This change in horizontal 
channel position with respect to tidal direction has recently been confirmed by a second study 
in the fall of 2012 that used the “SmeltCam,” an underwater video camera attached to the cod-
end of the FMWT net to detect Delta Smelt (Feyrer et al. 2013). This study demonstrated that 
during flood tides, Delta Smelt were relatively abundant throughout the water column, but less 
abundant during ebb tides, and found only in the lower portion of the water column and closer 
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Delta Smelt can spawn up to four times per year depending on water temperature (J. Lindberg, 
U.C. Davis, unpublished data). Recent evidence indicates that Delta Smelt can spawn multiple 
times in the wild if water temperatures stay cool in the later winter and early spring (Wang 2007, 
L. Damon, CDFW, written comm. 2013). The ability of Delta Smelt to spawn multiple times in 
the wild could substantially increase per capita fecundity over previous estimates for individuals 
of a specific size. It could also be a contributing factor to the large interannual variability in adult 
to larvae recruitment (Fig. 52a). 

Population Trends

Adult Delta Smelt are monitored by the Spring Kodiak Trawl (SKT) survey which was initiated 
by CDFW (then CDFG) in 2002 and runs from January to May each year (Honey et al 2004). 
An indexing method was recently developed by CDFW for the SKT survey, allowing for year to 
year comparisons as well as comparisons with the abundance indices for other life stages (Fig. 
3). The SKT index time series used in this report comprises 11 annual indices, from 2003 to 
2013; no index is available for 2002. Each index represents the abundance of adult fish hatched 
in the previous calendar year that survive to spawn at the beginning of the next calendar year. 
The highest SKT index on record occurred in 2012 (147), as a result of the high 2011 abundance 
of younger fish, and the lowest in 2006 (18). Of the four comparison years, 2005 had the highest 
SKT index (51), followed by 2010 (27) and 2011 (20) and then 2006 (18). While the SKT 
index was thus lower in the two wet years than in the two drier years, the SKT index increased 
substantially in each of the years following the two wet years; however it increased only 2-fold 
from 2006 to 2007 while it increased 7-fold from 2011 to 2012 (Fig. 3). It is also possible that the 
SKT is less effective during very high flow events. Delta outflow at times exceeded 200,000 cfs 
in winter 2011 and 300,000 cfs in winter 2006. These high flow events might have contributed 
to the low SKT indices in these two wet years, if Delta Smelt remained near shore to avoid 
displacement or moved into San Pablo Bay with the LSZ. In both cases they would be outside of 
SKT sampling range. Further evaluations are needed, however, to investigate and quantify this 
hypothesized effect.

The annual adult Delta Smelt abundance indices track the annual abundance indices of sub-
adults calculated from the previous years’ FMWT survey closely (Fig. 53; see also Kimmerer 
2008). The relationship is particularly strong at higher fall abundance indices (FMWT index > 
50), with more variability at lower abundance indices. Before the POD decline in 2002, all Delta 
Smelt FMWT indices were greater than 50 (Fig. 3). Thus, the FMWT might provide a useful 
surrogate for estimating long-term abundance trends in the adult Delta Smelt population prior to 
the initiation of the SKT survey in 2002, but great caution is warranted with the approach because 
this hindcasting would rest on only four data points with high leverage (2003-2005, 2012) and 
assume stable subadult to adult survival relationships and habitat conditions, neither of which is 
likely true. Moreover, the Kodiak trawl more efficiently captures Delta Smelt than the FMWT 
net. The SKT survey was set up to target Delta Smelt, while the FMWT survey was designed to 
monitor young Striped Bass, which tend to be larger than Delta Smelt during fall; however, there 
is no reason to expect the difference in capture efficiency to affect the relationship, unless such 
differences were a function of population size (i.e., efficiency was different above and below 
FMWT = 50). The utility of the FMWT as a descriptor of long-term adult population trends in the 
absence of long-term data from the SKT will benefit from ongoing IEP efforts to quantitatively 
estimate the efficiency of the FMWT and to compare efficiencies of different trawling gear and 
protocols. While survival from subadults in the fall (FMWT) to adults in the winter and spring 
(SKT) (Fig. 53) has been more stable than adult to larvae recruitment and survival between other 
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Population Trends

Population trends for subadult Delta Smelt are presently indexed by the FMWT. Like the TNS, 
the FMWT was not designed specifically to measure Delta Smelt relative abundance and catches 
are low (Honey et al. 2004, Newman 2008). The data are nonetheless a useful basic measure of 
population trends, except perhaps at very low abundance (i.e., FMWT index values less than 
about 50; Fig. 53). However, the general agreement between the FMWT and subsequent Spring 
Kodiak Trawl (SKT) sampling (Fig. 53), suggests that FMWT results are a reasonable indicator 

Figure 56. Relationship of annual index of Delta Smelt abundance from 
the 20 mm survey (20 mm) with the annual indices from the summer 
townet survey (TNS) and fall midwater trawl survey (FMWT). Year labels 
correspond to the comparison years of interest. The linear regressions with 
all index values log-transformed to address non-normal distributions in 
the raw data are: Log 20 mm index = 0.57 + 0.87(Log TNS index), n = 19, p < 
0.05, R2 = 0.44 and Log 20 mm index = 1.30 + 0.81(Log FMWT index), n = 19, 
p < 0.05, R2 = 0.27.
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Chapter 7: Using the Conceptual 
Model–Why did Delta Smelt 
abundance increase in 2011?
In this Chapter, we further explore Delta Smelt responses and habitat attributes as depicted in the 
driver and life stage transition conceptual model diagrams presented in Chapter 5. The purpose 
is to demonstrate the utility of our conceptual model framework for generating hypotheses about 
the factors that may have contributed to the 2011 increase in Delta Smelt abundance. For each 
life stage transition, we explore a series of hypothesized linkages among ecosystem drivers, 
habitat attributes, and Delta Smelt responses. We evaluate these hypotheses by comparing habitat 
conditions and Delta Smelt responses in the wet year 2011 to those in the prior wet year 2006 and 
in the drier years 2005 and 2010. 

In this Chapter we briefly describe the comparative approach and the hydrological conditions 
during the four years that are the focus of our comparisons. We then state and explore each 
hypothesis for the adult, larval, juvenile, and subadult life stages of Delta Smelt using data 
sources described in Chapter 3. Key points from these evaluations, as well as previous report 
Chapters, along with benefits and limitations of the comparative approach are summarized and 
discussed in Chapter 8. In several cases, we lacked suitable data or other necessary information 
to evaluate our hypotheses; these data and information gaps are described in Chapter 9. Chapter 
9 also includes a brief review of some of the more complex mathematical analyses used in recent 
peer-reviewed publications, such approaches currently being used by others, and three examples 
of additional mathematical modeling approaches that can be used to further explore some of the 
linkages and interactions in our conceptual model and complement previously published and 
other ongoing mathematical modeling efforts for Delta Smelt.

Comparative Approach

The comparative approach used for evaluating the hypotheses stated in this Chapter is similar to 
the approach taken in the FLaSH investigation (Brown et al. 2014, see also http://deltacouncil.
ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-
review-0). This allowed us to place the results of the FLaSH investigation in a year-round, 
life cycle context as recommended by the FLaSH Panel (FLaSH Panel 2012). Specifically, 
we compared data from the two most recent wet years, 2006 and 2011, and the two years that 
immediately preceded them, 2005 and 2010. To conduct our comparisons, we determined how 
Delta Smelt responses or habitat attributes would be expected to respond in the different years 
and then compared the expected response to the observed response. If the expected and observed 
responses were similar, the hypothesis was considered to be supported. 

Moderate to wet hydrological conditions tend to benefit many estuarine organisms, including 
Delta Smelt (Sommer et al. 2007). But low recruitment or low survival at any point in the 
predominantly annual Delta Smelt life cycle can lead to low abundance even in a wet year. 
Identifying the reason(s) for low abundance in a wet year may give important insights into key 
habitat attributes and environmental drivers that could be managed in a way that would improve 
the likelihood of abundance increases in all wet years. 
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Based on trajectories in adult fork lengths, it appears that adult growth may have been somewhat 
higher in 2005 and 2011 than in 2006 and 2010, although differences were not pronounced (Fig. 
17) and as noted in Chapter 6, annual fork lengths of Delta Smelt collected in the SKT were 
similar in the four study years (Fig. 55). From these data we infer that environmental conditions 
were generally good, supporting both continued growth in length and maturation of eggs, 
except perhaps in 2010. In 2011, only 13 mature females were collected, so growth estimates 
are uncertain. In general, the number of mature females collected each year reflected year-class 
strength as measured by the SKT (Fig. 3), except in 2011 when only 13 ripe or ripening females 
were collected. Adults may use more energy for egg production than for continued somatic 
growth, but we do not have data on clutch sizes to evaluate this for the four study years. 

Data on prey availability for current IEP sampling locations is also limited. Adult Delta Smelt 
diet is varied (Fig. 44) and includes pelagic and demersal invertebrates, as well as larval 
fish. Current mesozooplankton (copepod and cladoceran) and mysid sampling by the EMP 

Figure 64. Secchi depth data collected during the Spring Kodiak Trawl Survey. 
Surveys are conducted monthly January-May. See Chapter 3: Data Analyses for 
explanation of boxplots.
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and field studies (Wang 1986, Baskerville-Bridges et al. 2004b, Bennett 2005) and reviewed 
in earlier sections of this report. Presumably, a longer duration spawning window would result 
in more repeat spawning for individual females and greater total fecundity. The second water 
temperature measure is the number of days in the optimal temperature for egg survival to hatch. 
We referred to Fig. 10a in Bennett (2005) and selected the temperature range of 12-17 °C as 
optimal for egg survival. As explained in previous sections, adult abundance, based on SKT 
sampling, peaked in 2012 as the 2011 year-class of Delta Smelt reached maturity (Fig. 3). In 
contrast, the spawning stock (i.e., 2011 SKT) that produced the 2011 year-class ranked second 
lowest to 2006 (Fig. 3, Adults). Despite this low level, the 2011 spawning stock produced the 
highest adult abundance observed to date in 2012. This suggests that adult stock size has not 
limited subsequent adult recruitment from rebounding to levels comparable to those of immediate 
pre-POD years (see Fig. 3, Subadult). As mentioned in Chapter 6, this suggests that even a 
severely depleted adult stock can still produce a substantial number of larvae and a rebound in the 
Delta Smelt population, albeit with potentially lower genetic variability than before (Fisch et al. 
2011). It also suggests that factors acting on the survival of larval, juvenile and later stages have a 
substantial effect on recruitment of adults, because relatively low larval abundance in 2011, was 
associated with the high 2012 adult abundance (Fig. 3). 

As mentioned in the adult section, mature adult female Delta Smelt appeared to grow throughout 
the spawning seasons of the years compared, except 2010 (Fig. 17). We used water temperatures 
at the Rio Vista Bridge as a surrogate for temperatures experienced by spawning Delta Smelt 
(Fig. 65) and calculated the duration of the spawning window and of optimal temperatures to 
hatch. We calculated each as the number of days between the date of first achieving the lower 
temperature and the date of first achieving the upper temperature. The onset of the spawning 
window occurred earliest in 2010, followed by 2005 and 2011 (Fig. 65; Table 3). The spawning 
window occurred latest in 2006 (Fig. 65; Table 3). The spawning window was broad in both 2005 
and 2010 at 128-129 days, intermediate in 2011 at 113 days (20 °C not achieved until July 4, not 
shown), and was shortest in 2006 at 85 days (Fig. 65; Table 3). Assuming that female Delta Smelt 
undergo a 35-day refractory period, based on a 4-5 week refractory period (J. Lindberg, U.C. 
Davis, personal communication, 2013) between each spawning, even in 2006 three spawning 
events were possible, assuming fish were mature and ready to spawn at the initiation of the 
spawning window. In all other years, four spawning events were possible, so this measure does 
not discriminate among years well. The duration of optimal hatch temperature was also lowest 
in 2006, but other durations ranked differently across years than did spawning window duration 
(Table 3).

The data for the four study years do not provide conclusive support for the hypothesis that 
the duration of the spawning window or duration of optimal hatching temperature affected 
larval production. Relatively high larval abundance in 2005 was consistent with a long 
spawning window and moderate duration of optimal hatch temperatures (129 days and 68 days, 
respectively; not shown). However, 2006 with the shortest spawning window (85 days) and 
shortest optimal hatch duration among the 4 study years also had relatively good larva abundance 
(Fig. 3). In contrast, larval abundance was low in 2010 although the spawning window and 
optimal hatch duration were both relatively long. Other factors likely contributed to poor larval 
abundance in 2010, because ripening and ripe females were not detected after early April 2010 
and female growth through the winter was poor (Fig. 17). Finally, both the spawning window 
and optimal hatch duration were fairly long in 2011 as compared to 2006, so slightly lower larval 
production in 2011 is inconsistent with these durations. This hypothesis was not supported.
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EMP show that the highest spring biomass levels were observed in May of 2010 and 2011 (Fig. 
66). Median biomass levels were lower in April and May of 2005 and 2006 than in April and 
May of 2010 and 2011. This suggests that more food was available for zooplankton growth 
in the spring of 2010 and 2011 than in 2005 and 2006. In all four years, however, chlorophyll 
concentrations were lower than 10 ug/L at almost all stations, suggesting that zooplankton 
may have generally been food limited in these years (see Chapter 4). Nevertheless, greater 
phytoplankton biomass in late spring of 2010 and 2011 may have contributed to overall greater 
food availability and better survival of late larvae and early juveniles in these years.

Juvenile and adult calanoid copepods, particularly E. affinis and P. forbesi, comprise most of 
the larval diet through June (Nobriga 2002, Slater and Baxter 2014). E. affinis is moderately 
abundant only during winter and spring and rare in summer and fall, whereas P. forbesi is 
abundant only in summer and fall (Durand 2010, Hennessy 2010, 2011, Winder and Jassby 2011). 
It is not clear whether the seasonal decline in abundance of E. affinis is related to temperature, 
potential competitive interactions with P. forbesi, differences between the species in vulnerability 
to consumption by P. amurensis (Miller and Stillman 2013), or a combination of such factors. The 
transition between high abundances of the two species, may create a seasonal “food gap” during 
late spring or early summer. This food gap has been hypothesized to be an important period for 
Delta Smelt larval survival (Bennett 2005, Miller et al. 2012).

To assess whether a gap in prey availability existed between periods of high abundance of 
E. affinis and P. forbesi, we evaluated abundance patterns in 20 mm Survey copepod data for 
stations with and without Delta Smelt. The food gap hypothesis was only weakly supported by 
the data. The density of E. affinis (in the presence of Delta Smelt larvae) typically reached 100 m3 
by week 16 (Figs. 67 and 68). Assuming 100 m3 as a baseline density for E. affinis, this baseline 
was generally maintained until about week 22, when they declined at about the same time that P. 
forbesi densities increased to 100 m3 (Figs. 67 and 68). After combining the densities of both E. 
affinis and P. forbesi and tracking them through time, we detected a gap in food during week 22 
(late May – early June) of 2005 (Fig. 67), which is inconsistent with 2005 exhibiting the highest 
larva abundance among our comparison years (Fig. 3). Such density gaps were not observed in 
the other three comparison years (Figs. 67 and 68), which exhibited lower abundance than 2005 
(Fig. 3). Survival of larvae to juveniles was very low in 2005, but was also low in 2006 (Fig. 
51) with no evidence for a food gap in 2006. Survival of larvae to juveniles was relatively high 
in 2010 and 2011 (Fig. 51). This analysis does not support the hypothesis that differences in 
zooplankton availability affected larval abundance and survival in the four study years, but higher 
phytoplankton biomass in April and May of 2010 and 2011 could have contributed to overall 
greater food availability and better survival of late larvae and early juveniles in these years.

Hypothesis 3: Distributional overlap of Mississippi 
Silverside with Delta Smelt and high abundance of 
Mississippi Silverside increases predation risk/rate 
on larval Delta Smelt, whereas, increased turbidity, 
decreases predation risk/rate on larval Delta Smelt.

Silversides are ubiquitous within the Delta (Brown and May 2006) and have long been proposed 
(Bennett 1995) and more recently confirmed as a predator of Delta Smelt larvae (Baerwald et al. 
2012). We do not have estimates of predation losses to Silversides during the four study years and 
thus focus on assessing predation risk by evaluating fish distributions, predator and prey sizes, 
and prey growth, which is related to temperature. 
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catches offshore increase with increased turbidity (i.e., declining Secchi depth; Fig. 69), and 3) 
there is regional overlap in Cache Slough and the Sacramento Deepwater Ship Channel, and 
some in Montezuma Slough (cf. Table 4 and http://www.dfg.ca.gov/delta/data/20mm/CPUE_

Figure 67. Catch per unit effort (CPUE) of adult Eurytemora affinis and 
Pseudodiaptomus forbesi (Zoo; number individuals/m3 sampled) and Delta 
Smelt (DS; number individuals/10,000 m3 sampled) by calendar week from 
mesozooplankton sampling and Delta Smelt catch by the 20 mm and Summer 
Townet surveys, 2005 (top) and 2006 (bottom) 
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may interact. As noted above for temperature and below for food, high temperatures and low prey 
density likely lead to bioenergetics problems and increased foraging activity, which might reduce 
predator avoidance behavior (e.g., Marine and Cech 2004) in Delta Smelt. These effects may be 
compounded by low turbidity, which makes Delta Smelt more visible to predators in their habitat. 
Although higher Striped Bass abundance could theoretically result in greater consumption of prey 
including Delta Smelt (Loboschefsky et al. 2012), changes in habitat variables for both species 
such as food, temperature, and turbidity mean that predation rates on Delta Smelt periodically 
may be independent of predator abundance. Although there has been substantial progress in 
modeling (Lobschefsky et al. 2012, Nobriga et al. 2013) and genetic methods (Baerwald et al. 
2012), there is not yet a standardized way to assess the effects of predation on Delta Smelt. 
Moreover, there are no effective surveys to assess age 1-3 Striped Bass abundance or distribution. 
Therefore, we are unable to directly evaluate this hypothesis. Lacking this information, we can 

Figure 71. Water surface temperature data collected during the Spring Kodiak 
Trawl Survey for three salinity regions and the Cache Slough-Sacramento River 
Deepwater Ship Channel (CS-SRDWSC). Surveys are conducted monthly January-
May. See Chapter 3: Data Analyses for explanation of boxplots.
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Hypothesis 3. Juvenile Delta Smelt growth and 
survival is affected by food availability.

As for Hypothesis 1, we are currently unable to evaluate the growth data because water 
temperature affects development time, and because growth curves are complicated by allometric 
effects. The general conceptual model is that higher food abundance results in faster growth rates 
and larger, healthier fish. In addition, larger, healthier Delta Smelt are presumably less vulnerable 
to predators because of increased size making them difficult for smaller predators to capture and 
consume. In general, the median abundance of some of the key prey for juvenile Delta Smelt 
such as calanoid copepods is highest in summer months (Fig. 75), when juvenile Delta Smelt are 
present; however, the range of observed densities is broad in all months. As noted previously, 
Kimmerer (2008) found that Delta Smelt survival from summer to fall was positively associated 
with calanoid copepod biomass in the low salinity zone. 

Figure 73. Turbidity data collected during the Summer Townet Survey. Surveys 
are conducted biweekly June-August. Note different scales among salinity 
regions. See Chapter 3: Data Analyses for explanation of boxplots.
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As mentioned above (Hypothesis 1), juvenile to subadult survival was highest in 2011 followed 
by 2006 and 2005 and lowest in 2010 (Fig. 51). If food availability was the primary habitat 
attribute driving juvenile survival, our expectation was that summer prey abundance would 
have been higher in 2011 than 2010. Figure 69 suggests that while differences were not very 
pronounced, prey levels were indeed somewhat higher in July and August of 2011 than 2010. 
Calanoid copepod levels varied across the different salinity ranges, but generally followed the 
same pattern (Fig. 76). In addition, calanoid copepod densities in June and August were higher in 
2006 than in 2005 (Fig. 75), which may have contributed to higher juvenile to subadult survival 
in 2006 compared to 2005 (Fig. 51).

Fish bioenergetics are affected by both food and temperature. As mentioned above, both summer 
2010 and 2011 had relatively cool temperatures as compared to 2005 and 2006, which may have 
affected bioenergetics. In addition, recent studies (S. Slater, CDFW, unpublished data) indicate 
that Delta Smelt consumption was not just limited to calanoid copepods, so our assessment does 
not reflect the full dietary range.

In conclusion, our analyses provide some support for the hypothesis that juvenile Delta 
Smelt growth and survival is affected by food availability; greater food availability may have 
contributed to greater juvenile survival in 2011 and 2006 compared to 2010 and 2005. However, 
differences in prey availability among years were not very pronounced and our analyses were 
limited to calanoid copepods; other species may also be important prey items for Delta Smelt.

Figure 75. Trends in calanoid copepods (number/m3 for all taxa combined) 
collected by the IEP Environmental Monitoring Program (EMP) during each the 
four study years (2005, 2006, 2010, and 2011).
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Hypothesis 4. Juvenile Delta Smelt survival and 
growth is reduced by harmful algal blooms (HAB) 
because of direct (habitat quality and toxic effects) 
and indirect (food quality and quantity) effects. 

The appearance of late-summer HAB, especially Microcystis, is thought to be another component 
of the decline in habitat quality for Delta Smelt (Baxter et al. 2010, Lehman et al. 2010). Direct 
effects may include toxicity to Delta Smelt and a reduced area of suitable habitat. There also may 
be indirect effects on food quantity and quality, particularly with respect to their zooplankton 
prey (Ger et al. 2009, 2010a,b, Lehman et al. 2010). 

The growth responses of Delta Smelt during the four target years are still unclear (see below), 
but there is evidence that Delta Smelt juvenile to subadult survival was highest in 2011 and 
lowest in 2010 (Fig. 51). If HABs have a negative effect on survival, we would expect that lower 
Microcystis (or other HAB) abundance would be associated with higher survival in 2011. This 
seems to have been the case for 2010 and 2011. Densities of Microcystis near the water surface 
were qualitatively assessed (visually ranked) at all TNS stations in these years. In agreement with 
our expectation, observed levels were low during the TNS in 2011 as compared to 2010 across a 
range of salinities (Fig. 77).

Unfortunately, we do not have data about other HAB species and more quantitative estimates, 
nor is similar data available for 2005 and 2006. In general, our expectation is that 2006 

Figure 77. Summer Townet Survey mean visual rank of Microcystis spp. (ranks 
1-5 possible; 1 = absent) observed at all stations during biweekly surveys (1-6) in 
various salinity regions (> 6, 1-6, and < 1 ppt) and in the CS-SRDWSC during June 
through August 2010 and 2011. Observations were not made in Cache Slough-
Sacramento River Deepwater Ship Channel (CS-SRDWSC) during 2010. 
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Hypothesis 3. Subadult Delta Smelt abundance, survival 
and growth are reduced by harmful algal blooms (HAB) 
because of direct (habitat quality and toxic effects) 
and indirect (food quality and quantity) effects. 

The appearance of late-summer harmful algal blooms (HAB), especially Microcystis, is thought 
to be another detriment to habitat quality for Delta Smelt (Baxter et al. 2010, Lehman et al. 
2010). Direct effects may include toxicity to Delta Smelt and a reduced distribution if the fish 
try to limit their overlap with the bloom. There also may be indirect effects on food quantity and 
quality, particularly with respect to their zooplankton prey (Ger et al. 2009; 2010a,b, Lehman et 
al. 2010). 

The growth responses of Delta Smelt during the four target years are still unclear (see above), but 
there is evidence that summer juvenile to subadult survival was highest in 2011, while juvenile 
survival to adults was highest in 2010 (Fig. 45). Our expectation is therefore that HAB were less 
prevalent in the summer of 2011 compared to 2010, but more prevalent in fall 2011. As already 
described for juveniles, the hypothesis that summer Microcystis bloom would be less intense in 
2011 compared to 2010 was generally supported (Fig. 77). In fall, Microcystis levels were also 
overall lower in 2011 than in 2010, except in September 2011 when a high level of Microcystis 
was observed in the LSZ (Fig. 78). This may be an indication that the higher outflow in 
September-October 2011 displaced Microcystis produced in the Delta seaward into the LSZ. The 
comparatively high 2011 Delta Smelt FMWT index that coincided with this shift in Microcystis 
distribution is not consistent with the hypothesis; however, the occurrence of fairly high levels 
of Microcystis in the LSZ in 2011 may help explain the lower subadult to adult survival in 2011 
compared to 2010. It is also important to remember that the visual survey results presented here 
are only qualitative and do not necessarily reflect the potential for differences in actual toxicity 
among years. Overall, these results are inconclusive, although they may provide limited support 
for the hypothesis that high Microcystis levels may have a negative effect on subadult to adult 
survival; this may help explain the lower subadult survival in 2011 compared to 2010.

Hypothesis 4. Subadult Delta Smelt abundance, 
survival and growth are affected by the size and 
position of the low salinity zone during fall.

We do not address this hypothesis in detail because it is the subject of an adaptive management 
experiment (FLaSH) described earlier (Reclamation 2011, 2012; see also Brown et al. 2014, 
http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-
management-plan-review-0). According to the FLaSH conceptual model, conditions are supposed 
to be favorable for Delta Smelt when fall X2 is approximately 74 km or less, unfavorable when 
X2 is approximately 85 km or greater, and intermediate in between (Reclamation 2011, 2012). 
Surface area for the LSZ at X2s of 74 km and 85 km were predicted to be 4000 and 9000 
hectares, respectively (Reclamation 2011, 2012). The data generally supported the idea that lower 
X2 and greater area of the LSZ would support more subadult Delta Smelt (Table 6). The greatest 
LSZ area and lowest X2 occurred in September and October 2011 and were associated with a 
high FMWT index which was followed by the highest SKT index on record, although survival 
from subadults to adults was actually lower in 2011 than in 2010 and 2006. There was little 
separation between the other years on the basis of X2, LSZ area, or FMWT index (Table 6). The 
position and area of the LSZ is a key factor determining the quantity and quality of low salinity 
rearing habitat available to Delta Smelt and other estuarine species (see Chapter 4 for more detail 
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 X2 (km)  

Surface 
area LSZ 
(hectares)

FMWT 
index

YEAR MEAN SD MEAN SD

2005 83 2 4889 252 26

2006 82 3 4978 320 41

2010 85 2 4635 226 29

2011 75 1 8366 133 343

Table 6. Mean and standard deviation (SD) for X2, surface area of low salinity zone 
(M. McWilliams, Delta Modeling Associates, unpublished data), and values of the 
Fall Midwater Trawl index (FMWT) for abundance of subadult Delta Smelt. 

with survival and growth. The conceptual model incorporates many hypotheses that should be 
tested via new research, modeling, and ongoing analysis and synthesis of new and previously 
collected data. This is how science advances.

Conceptual models are increasingly used as tools to develop questions or hypotheses about 
specific mechanisms through which stressors or other environmental factors drive ecological 
outcomes. Conceptual models can be used as a basis for communication among managers and 
scientists to plan research activities and assess outcomes of management actions (Ogden et 
al. 2005). Because of their broad utility, conceptual models are viewed as a critical element of 
adaptive management programs (Thom 2000). In the SFE, conceptual models have become 
common and even required as the community moves toward adaptive management and 
collaborative science. A primary outcome of conceptual models is the identification of key areas 
of uncertainty due to lack of information, or areas of disagreement due to different interpretations 
of the available data and information. Careful examination of these areas often identifies critical 
data and information gaps, which if filled, would allow a more robust evaluation of the major 
hypotheses derived from conceptual models. In this way, conceptual models can guide the 
research community to the topics critical for understanding Delta Smelt biology and formulating 
effective management actions.

The development of our conceptual model, based on assessment of recent information, identified 
some key points about conceptual models that are worth highlighting, including the following: 

1. Nested and linked conceptual models of increasing specificity provide a useful 
framework for capturing the dynamics of ecosystem drivers and habitat attributes over 
a large range of temporal and spatial scales and for providing a comprehensive picture 
about their effects. 

2. Our knowledge about Delta Smelt and the SFE is constantly growing and conceptual 
models about them have to be regularly updated and revised to properly reflect this 
knowledge.

3. Construction of our conceptual model and the formulation and evaluation of hypotheses 
greatly benefitted from the large amount of high-quality ecological data and information 
available about Delta Smelt and the SFE. The most critical data about Delta Smelt 
dynamics came from four long-term IEP fish monitoring surveys. Other monitoring 
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It also provided an opportunity to further assess the utility of this approach for evaluating the 
outcome of adaptive management actions such as the fall outflow action. 

As with the FLaSH investigations (Brown et al. 2014), we restricted our analyses to simple 
comparisons among four recent years after the 2002 POD decline for several reasons including 
the following: 

1. Using a comparative approach similar to that in the FLaSH investigation allowed us 
to place the results of the FLaSH investigation in a year-round, life cycle context as 
recommended by the FLaSH Panel (FLaSH Panel 2012).

2. This report is intended for a broad audience. Simple comparisons are easily replicated 
and understood by all.

3. More pertinent data is available for recent years than for earlier years. For example, 
adult Delta Smelt monitoring began in 2002 with abundance index values available 
starting in 2003.

4. The POD regime shift (Baxter et al. 2010) changed ecological relationships and the 
strong pre-POD signals would have likely overwhelmed more subtle, yet meaningful, 
signals in the period after the POD. For example, it appears that high larval recruitment 
may now be positively associated with wet hydrology, but that this may not have been 
the case before the onset of the POD. 

5. Clear differences in habitat conditions among years might point to new or refined 
management strategies aimed at improving specific habitat conditions. 

6. More complex modeling approaches take much more time and effort than was available 
to produce this report. A complex life cycle modeling effort is currently underway (see 
Chapter 9).

As noted above, our analytical approach yielded some interesting results, but it also raised 
more questions than it could answer. In many cases this was due to critical data and information 
gaps; these will be described in more detail in Chapter 9. It also illustrates, however, several 
limitations of our simple comparative approach as well as difficulties associated with posing and 
testing hypotheses about ecological phenomena in general. Examples of specific limitations and 
difficulties include the following: 

1. Our hypotheses focused on individual habitat attributes and were tested with a series 
of separate univariate analyses even though we know that Delta Smelt are affected by 
multiple interacting habitat atributes. We did not conduct multivariate tests or examine 
the complex interactions that may have occurred when more than one hypothesis was 
true (or false), nor did we consider or rule out that a hypothesis may be true in some 
years and false in others. 

2. Our simple comparisons of differences in individual habitat attributes among different 
years cannot conclusively establish whether these differences are indeed mechanistically 
linked to the observed differences in Delta Smelt dynamics. In addition, an absence of 
observed differences does not prove that there is really no effect because actual effects 
can be masked or counteracted by interactions with other causal factors that differ 
among years. For example predation in the South Delta may mask actual entrainment 
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and the analyses we conducted to test them highlighted some key points as well as critical data 
gaps and the challenges associated with formulating and testing hypotheses in complex ecological 
contexts. The key points about Delta Smelt and their habitat generally agree with basic biological 
principles and earlier conceptual models, but warrant reinforcement because they are crucial 
to understanding Delta Smelt and to developing and assessing habitat management actions. 
Other results are less conclusive because of data limitations and the shortcomings of our largely 
univariate hypotheses and simple comparative analysis approach. Next steps should include 
addressing critical data gaps, modeling that more fully considers the effects of interacting factors 
on Delta Smelt, and applications of the information in this report in support of management 
actions. Examples of such efforts are provided in Chapter 9. 

Chapter 9: Recommendations 
for Future Work and 
Management Applications
The conceptual model in this report can be viewed as a collection of hypotheses. These 
hypotheses are not limited to the hypotheses posed in Chapter 7 of this report; essentially, each 
component and linkage in the conceptual models can give rise to meaningful questions and 
hypotheses by itself or together with other components and linkages. This is one of the main 
functions of conceptual models. 

Some of the hypotheses that can be derived from our conceptual model have already been 
addressed in the published research reviewed in Chapter 4 of this report. These results provide 
the knowledge base used to construct our conceptual model as well as previous conceptual 
models. They also provide the knowledge base for current Delta Smelt management efforts. The 
results and conclusions in this report add to this knowledge, but they also emphasize the need for 
additional monitoring, focused studies, and/or additional analysis and synthesis of existing data. 
These are the information gaps that can be used to guide future research activities to enhance our 
understanding of how factors interact to control Delta Smelt abundance. 

Filling these information gaps is critically important for improving management strategies for 
Delta Smelt and for constantly adapting them to expected and unexpected future changes. It is 
clear that ecological changes due to continued growth of California’s human population, climate 
change, new species invasions, and other natural and anthropogenic factors will increase the 
challenges associated with Delta Smelt management. Moreover, as discussed in the previous 
Chapter, we will likely never be able to correctly detect or predict all effects of management 
actions and other changes in an ecosystem as complex and constantly changing as the San 
Francisco estuary. Science and management have to go hand in hand to constantly identify, 
implement, evaluate, and refine the best management options for this ever-changing system. 
In this Chapter, we provide examples of next steps in three major areas where additional 
work is needed:  1) filling critical data and information gaps; 2) mathematical modeling; 
and 3) applications to support adaptive management actions. We conclude this report with 
recommendations for future analysis and synthesis efforts.
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Predation Risk

The majority of the hypotheses regarding predation risk could not be fully evaluated due to a lack 
of data regarding co-occurring predator and prey biomass and predation rates of predators on 
Delta Smelt.

1. The distribution and diet of major predators with respect to the distribution of Delta 
Smelt needs further investigation. For some predator species, data may already be 
available that describe distributions over multiple years and one data synthesis effort 
has already begun (Mississippi Silversides, USFWS Beach Seine Survey; analysis 
initiated by B. Schreier, DWR). However, data are lacking for several Striped Bass and 
Largemouth Bass life stages and focused studies are necessary to understand how these 
species’ distributions overlap with the distribution of larval, juvenile, sub-adult, and 
adult Delta Smelt. 

2. The distributional overlaps of Delta Smelt with their predators need to be described over 
varying conditions of turbidity, salinity, temperature, and hydrology. Linking predation 
risk to key environmental drivers and habitat attributes will shed light on how Delta 
Smelt may experience varying degrees of predation across seasons and years.

Food

Food availability is a critical aspect of Delta Smelt habitat throughout the conceptual model. 
However, many of the hypotheses about effects of food availability in the conceptual model could 
not be fully evaluated with available observational data due to incomplete information on prey 
densities and Delta Smelt feeding behavior throughout Delta Smelt habitat.

1. An extension of the IEP EMP into the Cache Slough complex and possibly other areas 
around the margins of the estuary would allow a fuller regional comparison of prey 
densities.

2. Another option is to make concurrent zooplankton sampling a routine part of the 
four major surveys monitoring Delta Smelt (SKT, 20 mm, TNS, FMWT). To varying 
degrees, this has been ongoing since 2005, but lack of trained staff has resulted in 
delayed processing of many samples and concurrent zooplankton samples have never 
been collected during the SKT survey. Adding appropriate zooplankton sampling and 
sample processing capacity to the fish monitoring surveys would allow for broader and 
more timely comparisons of pelagic food availability between monitoring stations with 
and without Delta Smelt present, similar to the analysis conducted in this report for the 
larvae collected during the 20mm survey (Larval Hypothesis #2).

3. Studies of Delta Smelt growth (from otoliths) and feeding habits (from stomach 
contents) concurrent with zooplankton sampling would maximize the utility of the 
concurrent prey sampling by allowing the refinement of functional response models.

4. Studies of Delta Smelt feeding behavior and prey availability with regard to amphipods 
and other prey that are not well sampled by any of the existing monitoring surveys could 
help determine the importance of these types of prey to the Delta Smelt population.
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quantitative predictions. Furthermore, as discussed above, the simple univariate and comparative 
analysis approaches employed throughout this report cannot capture the effects of multiple and 
often interacting drivers on the Delta Smelt population as a whole and on specific processes such 
as growth, mortality, and reproduction. The influences of interspecific interactions and abiotic 
forcing factors on populations and communities in complex ecosystems such as estuaries are also 
difficult to directly measure in any practical way. Only mathematical models can deal with such 
complexities and provide quantitative assessments and predictions.

Fortunately, the number of scientific publications about Delta Smelt that include various types 
of increasingly sophisticated mathematical models is growing rapidly. Recent examples include 
mathematical models based on statistical approaches (e.g., Bennett 2005, Manly and Chotkowski 
2006, Feyrer et al. 2007, Nobriga et al. 2008, Kimmerer 2008, Kimmerer et al. 2009, Feyrer et al. 
2010, Thomson et al. 2010, Mac Nally et al. 2010, Miller et al. 2012, Sommer and Mejia 2013, 
Kimmerer et al. 2013). These efforts generally focused on habitat associations using presence/
absence data from the various monitoring surveys or on changes in Delta Smelt abundance based 
on abundance indices generated by the monitoring surveys and the effects of multiple habitat 
attributes (covariates) on these changes. 

There is also a rapidly developing body of population life cycle models for Delta Smelt and other 
SFE fish species (e.g., Blumberg et al. 2010, Maunder and Deriso 2011, Massoudieh et al. 2011, 
Rose et al. 2011, Rose et al. 2013a, b). These models use either a statistically-based “state–space” 
multistage life cycle modeling approach or a spatially explicit, individual-based simulation 
modeling approach. Both approaches allow for analysis of the importance of drivers that affect 
different life stages of Delta Smelt and vary in space and time. 

Not surprisingly, results of mathematical modeling efforts to date agree strongly that no single 
factor can explain the observed Delta Smelt population dynamics and long-term changes in 
abundance. There is less agreement, however, about which factors are most important (see for 
example Rose et al. 2013b) and about the exact sequence and nature of their interactions that 
led to the 2002-3 Delta Smelt POD decline. It is possible, perhaps even likely, that the natural 
complexity of the estuarine ecosystem coupled with multiple human impacts will prevent 
definitive answers to these types of questions, especially when they are sought through overly 
rigid application of formal hypothetico-deductive reasoning and methods (Quinn and Dunham 
1983). We agree with Rose et al. (2013b) that the inherent complexity of the system and the 
challenges it presents for scientists and managers alike “is perhaps the best reason to develop and 
compare alternative modeling approaches.” Even the most sophisticated modeling oversimplifies 
complex systems and includes many assumptions. This means that instead of a single modeling 
approach, multiple alternative conceptual and mathematical modeling approaches, from the 
simple to the complex, are needed to understand how complex systems work and to predict 
future changes with sufficient confidence to allow for effective management interventions. The 
following sections give a brief overview of some of the alternative mathematical modeling efforts 
currently underway or proposed for the future.

A comprehensive state-space modeling effort that takes advantage of available Delta Smelt 
abundance data from all monitoring surveys and the even larger monitoring data set about habitat 
attributes is currently underway  (Ken Newman, FWS, personal communication) and future 
analyses using the individual-based model developed by Rose et al. (2013a) have been proposed 
(Rose et al. 2013b). As mentioned above, a full description or application of mathematical 
models is outside of the scope of this report, but to illustrate the utility of additional alternative 
approaches and further explore some of the linkages and interactions in our conceptual model, 
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to the geographical distribution of species expected to occupy the LSZ. The high outflow model 
included six community components: phytoplankton, zooplankton, Delta Smelt, predators of 
Delta Smelt, the overbite clam Potamocorbula amurensis, and outflow. The intermediate outflow 
scenario included two additional community components: the Asian clam Corbicula fluminea and 
the cyanobacteria Microcystis aeruginosa). The low outflow scenario included the same variables 
as in the intermediate flow scenario, except that the overbite clam was excluded and the Brazilian 
waterweed, Egeria densa was added. For each of these communities, community components 
could exhibit positive or negative feedbacks and positive or negative interactions with other 
community components. For each of the assumed flow conditions, the four alternative types of 
community interactions were assumed and each met the stability criteria, as defined by Puccia 
and Levins (1991). The predicted response of the Delta Smelt population was: 1) predominantly 
positive under the high outflow community scenario, 2) ambiguous under the intermediate 
outflow community scenario and 3) very ambiguous under the low outflow community scenario. 
According to these preliminary results, both outflow and outflow-induced changes in community 
composition and structure seem to play a critical role in determining the population response of 
Delta Smelt. These model predictions supported the hypothesis that a shift in the LSZ towards 
X2 = 74 km is a necessary condition for the fall outflow action to exert a positive influence on the 
Delta Smelt population. Qualitative models like these can provide useful assessments when the 
general direction of community interactions are understood but the data are insufficient to support 
a quantitative model.

Multivariate Statistical Modeling

In this report we reviewed results from many multivariate statistical modeling efforts such as 
the multivariate autoregressive modeling (MAR) conducted by MacNally et al (2010) to discern 
the main factors responsible for the POD declines and the hierarchical log-linear trend modeling 
by Thomson et al. (2010) that used Bayesian model selection to identify habitat attributes 
(covariates) with the strongest associations with abundances of the four POD fish species 
and determine change points in abundance and trends. The state-space life cycle modeling by 
Maunder and Deriso (2011) is also based on multivariate statistical modeling; an extension of this 
work is currently underway by Newman and others (Ken Newman, USFWS, unpublished data). 

We anticipate that insight from the current conceptual model may be used to facilitate additional 
multivariate statistical models. As an example, we present preliminary results (Mueller-Solger, 
USGS, unpublished data) of univariate and multivariate statistical analyses of X2 relationships 
with annual Delta Smelt abundance indices that follow the approach in Jassby et al. (1995). 
The purpose is to further explore some of the hypotheses related to hydrology and the size 
and position of the LSZ included in our conceptual model and to illustrate the importance of 
considering more than one factor when trying to understand Delta Smelt dynamics. We include 
this brief exploration in this report because it serves as a useful and relevant example, but as 
noted above, we advise readers that  these are  preliminary results from an analysis that has 
not yet undergone peer review and should be viewed with caution. Moreover, individual and 
interactive effects of additional factors were not considered in this analysis, but are likely also 
important (see Chapter 8). As noted in Chapter 7, we recognize that “hydrology” by itself does 
not affect Delta Smelt, nor does the “X2” index which is used in this analysis as an index of 
general hydrological (outflow) conditions in the estuary. As shown in our conceptual model (Fig. 
38), hydrology affects Delta Smelt through the combined effects of its interactions with other 
dynamic drivers and stationary landscape attributes (tier 1) on habitat attributes (tier 3). Many of 
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7). The relationship with spring X2 appears unimodal with maximum 20 mm indices associated 
with spring X2 values between about 55 and 70 km (Fig. 79a). The relationship with prior fall 
X2 appears negative (Fig. 79b), and the relationship with the prior FMWT abundance index 
(Fig. 79c) appears positive. Each of these univariate relationships was improved by the inclusion 
of one of the other predictor variables (Table 7). Relationships with spring and prior fall X2 
were also improved by including the 2002-3 step change. As mentioned above, multivariate 
analyses with more than two predictor variables were not conducted because of the relatively 
small amount of available data (n = 19, Table 7). Based on AIC comparisons (Table 7), including 
the 2002 step change (introduced as a before/after factor, “Step”) somewhat improved the 
relationship of the 20 mm index with spring X2 (Fig. 73a) and with prior Fall X2 (Fig. 79b), but 
not with the prior FMWT index because that index was the basis for the analyses that detected 
the step change and thus already includes the step change in the actual data (Fig. 79c, model not 
included in Table 7). Including the prior FMWT abundance index improved the relationships with 
spring and fall X2 more substantially, but the model combining the effects of spring and fall X2 
fit the 20 mm index data nearly as well as the model combining the effects of spring X2 and prior 
FMWT (Table 7).

It is interesting to note that while prior fall X2 by itself was a stronger predictor of the 20 mm 
index than spring X2, spring X2 was the stronger predictor when the step change or previous fall 
abundance were taken into account. Baxter et al. (2010) hypothesized that the shift toward higher 
prior fall X2 values (Fig. 17) may have contributed to an ecological “regime shift” associated 
with the step decline in Delta Smelt and other species. This means that prior fall X2 and the 
“step” factor and FMWT decline in this analysis may be related, which could explain the very 
similar outcomes for the two models combining spring X2 with either prior fall X2 or the prior 
FMWT index.

Partial residual plots show the relationship between a predictor variable and the response variable 
given that other independent variables are also in the model; in other words, they show the 
effect of one predictor variable given the effect of one or more additional predictor variables. 
Partial residual plots for the relationships of the 20 mm index with the combinations of spring 
X2 and prior fall X2 (Fig. 80 a and b) and spring X2 and prior FMWT abundance index (Fig 80 
c and d) show that the general shape and direction of the relationships of the 20 mm index with 
each of the individual predictor variables (Fig. 79) remains intact in the models with combined 
predictors, but the partial residuals do not closely follow the fitted lines. This indicates that while 
each variable has its own, distinct effect on the 20 mm index that is maintained in the presence 
of the other variables, interactive effects among these variables are quite strong. In summary, 
low values of prior fall X2, high prior FMWT abundance, and intermediate values of spring X2 
have positive associations with the abundance of larval/postlarval Delta Smelt, but the effects of 
individual variables are mediated by the presence of the other variables.

Because the spline degrees of freedom were strongly restricted in this GLM analysis, the results 
are quite similar to the results of classical linear models (LM) with log-transformed abundance 
data and a quadratic term to represent the unimodal non-linearity in the relationship between 
the 20 mm index and spring X2 (Fig. 81). We include these models here because they are more 
easily reproducible than the GLM models and offer simple equations for making predictions 
about larval abundance that can be used in adaptive management applications. As for the GLM 
analysis (Table 7), the best fits overall were achieved by combining spring X2 with either the step 
change or the prior FMWT abundance index (Table 8). All predictor combinations improved the 
models compared to the univariate relationships (Table 8). Based on a comparison of regression 
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of the information presented in this report. The purpose of simulation modeling is to represent 
a phenomenon or process in a way that allows users to learn more about it by interacting with 
the simulation (Alessi and Trollip 2001). In particular, simulations allow users to easily control 
experimental variables and test hypotheses. Guidance from simulation model “dry runs” can 
make actual laboratory and field experimentation much more efficient and effective. Simulations 
are also valuable in visualizing outcomes, thus further promoting learning and understanding. 

The individual-based Delta Smelt model by Rose et al. (2013a, b) is an example of a complex 
simulation model specifically created for Delta Smelt. Another simulation modeling option is 
to utilize “off-the-shelf” simulation software such as the “STELLA” (Structural Thinking and 
Experiential Learning Laboratory) simulation construction kit (http://www.iseesystems.com/
softwares/Education/StellaSoftware.aspx). STELLA is designed to let users easily create their 
own simulations using system dynamics including positive and negative causal loops, and flows, 
accumulations and conversions of materials.

Culberson (USFWS, unpublished data) created a simple quantitative simulation model in 
STELLA that includes several life stages of Delta Smelt and is based on seasonal environmental 
conditions and stage to stage estimates of survival. While this simulation modeling approach 
appears to be feasible, it remains to be seen how such an approach will approximate actual 
population dynamics encountered in the field and how results compare to those of other 
simulation models such as the individual-based life cycle model by Rose et al. (2013a,b). A 
user-friendly STELLA-based model can be useful in the interim, however, to explore the relative 
contribution of lifecycle stage and environmental covariates to the overall status of Delta Smelt 
abundance from year to year and to test hypotheses derived from the conceptual model. In its 
fullest expression, this MAST-associated lifecycle model will be useful for illustrating how 
multiple suites of plausible co-variates can allow for different Delta Smelt abundance outcomes. 
For example, it may be possible to find high abundance under degraded conditions given low 
entrainment losses across successive winters and springs. Conversely, it is possible to encounter 
low Delta Smelt abundance given otherwise good environmental and outflow conditions with 
significantly warmer temperatures during fall pre-adult maturation periods. Moreover, simulated 
changes in survival can provide a useful frame of reference to evaluate alternative outcomes of 
cohort size or population size attained at different life stages. For example, given the reported 
levels of larva, juvenile and sub-adult Delta Smelt in IEP surveys, what levels of daily survival 
between life stages would be required to attain the relative abundances corresponding to each of 
the four years being compared? Could the small anticipated differences in assumed daily survival 
among those four years be attributed to some combination of habitat attributes? Or, could stage-
to-stage survival (e.g., percent of individuals surviving from one stage to the next) provide a 
more useful frame of reference to address that question? Our proposed STELLA simulation 
model and associated modeling exercises will comfortably allow exploration of these questions 
and related ideas.

This type of modeling will best be used iteratively with emerging data and within synthesis 
reports to identify where important gaps exist in the Delta Smelt lifecycle understanding and 
demonstrate how disparate information sources might be brought together to inform our smelt 
population estimates through time. Importantly, our model can be used in combination with the 
narrative description of “a year in the life” of the Delta Smelt population from the conceptual 
model to more effectively describe environmental and management effects on population status 
in the SFE. We are especially interested in using such a model to avoid single-factor outcome 
discussions where smelt populations are seen as the result of “one versus another” environmental 
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Recommendations for future analysis and synthesis

Efforts to resolve the management issues listed in Table 10 or carry out the modeling and fill the 
critical science gaps discussed earlier in this Chapter will not succeed without an organizational 
commitment to continued systematic and long-term collection, synthesis and evaluation of data 
and information about Delta Smelt, its habitat, and important drivers of habitat and abundance 
changes. The importance of Delta Smelt for ecosystem and water supply management in and far 
beyond the SFE is widely recognized. The impressive rate at which we are learning about Delta 
Smelt and the estuarine ecosystem and the large amount of existing information about them is 
less widely recognized by many managers and even by many scientists. Part of the reason for 
this is that it is difficult to track the large quantity of new (since 2010) information documented 
in this report and even more difficult to integrate it with the previously existing information in a 
meaningful way. But without this integration, identification of priorities for additional scientific 
investigations is ad hoc and piecemeal at best and the value of new information cannot be fully 
realized in management applications such as those listed in Table 10. 

Moreover, comprehensive adaptive management efforts simply cannot succeed without adequate 
conceptual and mathematical models and important science and management opportunities will 
be missed. Such efforts currently include the ongoing fall outflow adaptive management for Delta 
Smelt and new efforts called for by the new “Collaborative Science and Adaptive Management 
Program” (CSAMP), the California Delta Stewardship Council’s Delta Plan, and the multi-
agency Bay Delta Conservation Plan (BDCP). The fact that even the incomplete draft version of 
our report released for public review in June 2013 already played a central role in CSAMP work 
planning, court documents, and elsewhere bears clear testimony to the fact that there is a great 
and urgent policy and management need for analysis, synthesis and conceptual models such as 
those provided in this report. 

In consequence, we strongly recommend that there be a continued management, analysis, and 
synthesis effort, whether carried out by the IEP, the Delta Science Program, or some other 
scientist, group or agency. While it is possible for individual scientists to take on such efforts 
(e.g., Bennett 2005), the amount, diversity, and rapid growth of pertinent data and information 
suggests that team efforts may usually be a more feasible and possibly also a more effective 
option. Collaborative, multidisciplinary analysis and synthesis teams are also at the core of 
the National Center for Ecological Analysis and Synthesis in Santa Barbara, CA (NCEAS, 
http://www nceas.ucsb.edu/), the newer National Socio-Environmental Synthesis Center in 
Annapolis, MD (SESYNC, http://www.sesync.org/) and the Delta Collaborative Analysis and 
Synthesis (DCAS) approach promoted by the Delta Science Program’s Delta Science Plan (DSP 
2013). Important IEP POD and MAST lessons for future synthesis teams are that the role and 
responsibilities of all team members need to be very clear, that lines of communication need to 
always be open and available to all, and that there needs to be strong and fully engaged team 
leadership with a clearly dedicated lead author and/or lead editor for all major team products. 
In addition, to complete analyses and reports on schedule, it is necessary for team members to 
prioritize synthesis efforts for sustained periods of time, without being tasked with additional 
projects that may be urgent for short-term needs. 

Another consideration is the type of publication that results from analysis and synthesis efforts. 
The IEP MAST and POD teams have written comprehensive agency reports, but would have 
preferred writing peer-reviewed books or monographs (e.g., published by the American Fisheries 
Society or by U.C. Press) had the time and resources been available to do so. Such books would 
be considered better scientific products with greater scientific standing and a longer life span 
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this report and would require a fairly substantial effort that could be the main focus of an 
additional effort.

An additional recommendation is that an ultimate goal of these efforts should be the integration 
of conceptual and mathematical models such as those described in the previous section of 
this Chapter and the routine use of both types of models in adaptive management. Neither the 
recently published mathematical models nor existing conceptual models for Delta Smelt have 
been applied to management issues in a consistent manner. This is likely at least partially due 
to unfamiliarity of managers with the models and the need for specialists (model developers) 
to apply the mathematical and in some cases even the conceptual models to management 
issues in the absence of easy to use and understandable model interfaces and specifications. 
We also recommend a comprehensive biological modeling forum and/or more specific 
biological modeling teams and “summits” as recommended by the IEP Science Advisory 
Group (2010, available at http://www.water.ca.gov/iep/docs/IEPModelWorkshopReview.
pdf) and, more recently, the Delta Science Plan (DSP 2013). Such groups would not only 
facilitate communication among modelers, but could also help make the connection from model 
development to model applications of interest to managers and policy makers. They would 
complement and could (and likely should) be integrated with the existing, California Water 
and Environmental Modeling Forum (CWEMF, see http://www.cwemf.org), which tends to 
focus on modeling physical processes. As with the overall analysis and synthesis teams, these 
groups could be implemented by the IEP, The Delta Science Program, CWEMF, or others. The 
chosen organizational umbrella is less important than actual implementation and involvement of 
appropriate local and outside scientific and management expertise. Some possible topics for these 
groups include:

1. Reviews and updates to existing conceptual and mathematical models 

2. Further development of mathematical models of Delta Smelt population abundance 
drawn specifically from the conceptual models described in this report; applications 
and extensions of recently published models to help make management decisions and 
guide new modeling efforts; additional modeling efforts and future research projects to 
improve resolution and understanding of the particular factors identified as critical to 
reproduction, recruitment, survival, and growth.

3. Review and refinement of new models such as the emerging comprehensive state-space 
population model (Newman, personal communication); development of additional 
models or modules of models specifically aimed at estimating effects of inadequately 
monitored or difficult to measure and evaluate habitat attributes such as predation risk 
and toxicity; development of new “nested” and/or “linked” mathematical modeling 
approaches that can accommodate multiple drivers and their interactive effects across 
temporal and spatial scales. 

4. Collaboration among physical and biological modelers, experimental and other 
scientists, managers, and stakeholders to develop and model management scenarios 
and strategies that move beyond the current focus on relatively crude distinctions 
among “water year types” toward a more integrative ecosystem and landscape-based 
management approach.

We end this report with the hope that the conceptual models and information presented will be 
used for achieving better management outcomes for Delta Smelt and the estuarine ecosystem on 
which it depends. These precious natural resources are owned by no one, but are held in public 
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Delta Smelt abundance and evaluate them using a simple comparative approach. The Delta Smelt 
MAST report ends with key conclusions, a discussion of our hypothesis testing approach, and 
recommendations for future work and adaptive management applications, with examples.

1. Report Development. The 2014 MAST report is a synthesis report developed and 
written by the IEP Management, Analysis, and Synthesis Team (MAST). The MAST 
is co-chaired by the IEP Lead Scientist and IEP Program Manager and includes senior 
scientists from IEP member agencies tasked with data analysis, synthesis, and work 
planning. The MAST report is the collective product of a dynamic and collaborative 
interagency team process involving focused team discussions at monthly MAST 
meetings, intensive conceptual model and report development at additional multi-day 
off-site meetings, presentations and discussions with other scientists, stakeholders, and 
the public (e.g., at the annual IEP workshop, meetings of the IEP Stakeholder Group and 
IEP Project Work Teams), and data analysis and synthesis as well as writing, integration, 
and revisions of report sections by MAST members with written communication via 
email and the MAST wiki. MAST report authors were expected to follow the MAST 
report guidelines described here. They were also expected to consider all internal 
review comments by other MAST members and members of the IEP Management and 
Coordinators teams as well as external technical review comments received during a 40-
day public review period. Details about the public review process are given in II. 

2. Report Authorship. The “author of record” for the 2013 MAST report is the entire 
IEP MAST, and the responsibility for authorship lies with the entire MAST as well. 
Individual authorship of report sections is not credited; the report is a product of the 
IEP MAST and not of any individual author or an individual IEP member agency. All 
current MAST members are MAST report authors and are listed alphabetically in the 
initial pages of the report (see III. below). Former MAST members will not be listed 
as authors, but will be noted as contributors. Each report section had a lead author who 
had primary responsibility for writing and revising the section. One designated MAST 
member (Larry Brown, USGS) functioned as report lead editor who compiled and 
integrated all sections and sent full draft report versions to the MAST for review by 
all MAST members. All MAST members sent their edits and comments back to Larry 
Brown and the section authors for revisions. The report went through multiple draft 
versions before its finalization.

3. Report Organization. The 2014 MAST report is an IEP technical report and follows 
the same basic organization as other IEP technical reports, including a title page, list of 
all authors, acknowledgements, table of contents, executive summary, an introductory 
section with background information and report objectives, and concise sections 
detailing the analysis and synthesis approach, models and hypotheses, findings, and 
conclusions as well as illustrative tables, figures, and full references for all citations. In 
response to reviewer recommendations received during the public technical review (see 
II.), the report was restructured and expanded from originally six to nine Chapters.

4. Supporting Evidence. The 2014 MAST report follows the conventions of IEP and other 
technical reports regarding supporting evidence, which includes the following. The 
rationale for any findings, conclusions, and recommendations should be fully explained 
in the report. Whenever possible, conceptual models and hypotheses should be evaluated 
through analysis of the available data. Additional supporting information should be 
obtained from the peer-reviewed literature or from publicly accessible reports. Related 
or competing hypotheses and models that have been previously published in the peer-
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All other review was invited by email and in a notice posted on the IEP 
website.3 A draft of the 2013 MAST report, associated figures, and MAST 
report review guidelines were posted on July 23, 2013, for public technical 
review. The draft report release for review did not include an executive 
summary and conclusions. The public review period closed on August 31, 
2013. 

5. How many review comments were received and where can they be accessed? The 
MAST received 14 sets of review comments on the July 2013 draft MAST report. They 
included many general comments as well as 355 comments that referred to specific 
lines in the report, see table A1. All comments by external reviewers (public review 
comments and the review comments by the three independent scientific peer reviewers) 
were posted on the IEP website.4

6. How were the review comments addressed? All review comments received during 
the 40-day review period were compiled in an Excel spreadsheet and summarized 
numerically (Table A1). Review comments and procedures for addressing them were 
discussed by the MAST at its regular monthly meetings and during a one-day offsite 
meeting in November 2013. The process for addressing review comments included the 
following: 

a. The lead author for each report section had the primary responsibility for 
addressing review comments pertaining to that section and for revising the 
section. 

b. Secondary revision leads were also assigned and assisted the primary revision 
lead. 

c. For each review comment in the Excel spreadsheet, it was noted whether 
the comment: (1) Did not suggest a revision and no revision was made; (2) 
Suggested a revision and a revision was made; or (3) Suggested a revision, but 
no revision was made, for example because it was outside of the report scope, 
explained elsewhere, or the lead author did not agree with the recommended 
revision.

d. Revised sections and the annotated excel spreadsheet were sent by email to the 
entire MAST. MAST members were alerted to all major revisions. 

e. Major revisions were discussed with all MAST members during MAST 
meetings and via email.

f. Decisions about major revisions were made by the whole MAST; no comment 
implied consent.

g. Decisions about more minor revisions were made by the section revision leads 
and the report lead editor, often in consultation with some or all other MAST 
members.

h. The report lead editor (Larry Brown, USGS) compiled, further revised, and 
integrated all revised report sections and sent full draft report versions to the 
MAST for review by all MAST members. The final draft versions of the report 
and executive summary were also sent to the IEP coordinators for their review 
and approval.

3 http://www.water.ca.gov/iep/pod/mast.cfm
4 http://www.water.ca.gov/iep/pod/mast.cfm
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time and resources and were outside the scope of this report which emphasized 
synthesis of existing information over new data analyses. Instead, the MAST 
decided to discuss some of the benefits and limitations of analysis and synthesis 
approaches used in the report in Chapter 8 and existing and ongoing analyses 
and modeling efforts along with additional, analysis, synthesis, modeling, and 
other science needs and potential management applications in Chapter 9. Three 
examples of additional mathematical modeling approaches are also included 
in Chapter 9. These approaches were explored by individual co-authors of this 
report. Preliminary results of these analyses are given for illustrative purposes 
only; peer-reviewed publications of these analyses need to be completed before 
they can be used to draw firm conclusions.

Delta Smelt MAST Report Milestones 

Note: The time line for the development, review, revision and completion of the Delta Smelt 
MAST report had to be adjusted repeatedly because of numerous new work assignments for 
individual MAST members, the large number and depth of review comments, the federal 
government shut-down, personnel changes, etc. 

2012

March 13-16 Initial MAST off-site meeting (Marconi Center, CA) to discuss MAST products 
and direction and start MAST work on the 2012 IEP proposal solicitation5, the “FLaSH” report6, 
and the Delta Smelt MAST report (hereafter MAST report)

Sep 13-14  MAST off-site meeting (Yolo Wildlife Area, CA) 

Dec 4-5  MAST off-site meeting (Clarksburg, CA) 

2013

March 29  First draft MAST report completed

April 24  MAST presentation (talk) at annual IEP Workshop (Larry Brown, USGS) 

May 20  Second draft MAST report completed

June 6   Third draft MAST report completed

July 23 – Aug 31  Fourth draft MAST report completed and posted on the IEP website for a 40- 
  day review period 

August 14  Draft MAST report discussion with IEP Stakeholder Group 

Sep 11  Special IEP Stakeholder Group meeting about the draft MAST report

Oct 30  MAST report poster presentation at 2013 State of the Estuary Conference

Nov 14  MAST off-site meeting (UC Davis, CA) 

Dec 8  Fifth draft MAST report completed

5 http://www.water.ca.gov/iep/archive/2012/solicitations.cfm
6 http://deltacouncil.ca.gov/science-program/fall-low-salinity-habitat-flash-studies-and-adaptive-management-plan-

review-0
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for late-stage larvae and small juveniles; the Summer Townet Survey calculates an index for 
juveniles and the Fall Midwater Trawl Survey calculates an index for sub-adults. As mentioned 
in the main document, abundance indices are not population estimates, but they are believed to 
increase monotonically with increases in true population size.

Spring Kodiak Trawl

The Department of Fish and Wildlife (DFW) initiated the Spring Kodiak Trawl Survey (SKT) 
in 2002. The SKT replaced the Spring Midwater Trawl and provided a more effective means to 
monitor the distribution and reproductive status of adult Delta Smelt. Survey results provide near 
real-time information on the proximity of adult Delta Smelt to south Delta export facilities and 
can provide an indication of likely spawning areas. 

The SKT includes 5 monthly Delta-wide surveys, January through May (Figure 84). Only the 
first 4 surveys contribute to the annual abundance index. No index exists for 2002, when only 3 
surveys were conducted. The index is calculated after all data have been verified for accuracy.

Field crews tow the net at the surface between 2 boats once for 10-min at each station per survey; 
5-min surface tows are used at stations with historically high catch to limit excessive Delta Smelt 
take; a second 5-min surface tow is completed if Delta Smelt catch in the first tow did not exceed 
50. A flow meter deployed at the start of the tow and retrieved at the end provides information 
on distance towed through the water. To calculate fish density, survey personnel assume that the 
SKT net fishes with the mouth fully opened, an area of 13.95 m2 (7.62 m wide by 1.83 m deep). 
Volume filtered is the product of distance towed and mouth area. Volume filtered varies and by 
convention researchers expand catch per volume filtered (number per m3) for juvenile and adult 
fish to catch per 10,000 m3.

Annual abundance index calculations use adult Delta Smelt data from 39 of the 40 stations (Fig. 
84). For each of the first 4 monthly surveys, adult catch per 10,000 m3 values from each station 
are grouped into 3 distinct regions based on geographic location: 1) the confluence and Suisun 
region (sites 340, 405, 411, 418, 501, 504, 508, 513, 519, 520, 602, 606, 609, 610, 801); 2) the 
Sacramento River and Cache Slough region (sites 704, 706, 707, 711, 712, 713, 715, 716, 719, 
724); and 3) the San Joaquin River and Delta region (804, 809, 812, 815, 902, 906, 910, 912, 
914, 915, 919, 920, 921, 922, 923). A monthly mean is calculated for each region and the sum of 
the regional means is the monthly or survey index. The sum of the 4 survey indices is the annual 
index. 

20 mm Survey

DFW initiated the 20 mm Survey in 1995 to monitor the distribution and relative abundance 
of larval and juvenile Delta Smelt throughout their historical spring range in the upper San 
Francisco Estuary (Fig. 85), and provide near real-time information on the relative densities 
and proximities of these young fish to south Delta export pumps. The 20 mm Survey includes 
sampling on alternate weeks from mid-March through early July, typically resulting in 9 surveys 
per year. During each survey, field crews complete 3 oblique tows at each of the 47 stations (Fig. 
85). The 20 mm Survey added stations over time, but not all contribute to annual abundance 
index calculation. The survey added 5 Napa River stations in 1996 for a total of 41 core stations, 
which are included in the annual abundance index calculations (Fig. 85, circles). In 2008, 6 non-
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mean of the catch of Delta Smelt per 10,000 m3 is calculated across the 41 core stations. The 
geometric mean for each survey is calculated as the arithmetic mean of log10(x+1)-transformed 
values of Delta Smelt catch per 10,000 m3 across the 41 core stations. The resulting value is then 
back-transformed (including subtraction of 1) for the calculation of the annual abundance index. 
The annual abundance index is calculated as the sum of the geometric means of the 4 selected 
surveys.

Summer Townet Survey

The Summer Townet Survey (TNS) was started by DFW in 1959 to produce an annual index 
of summer abundance for age-0 Striped Bass (Morone saxatilis). In the mid-1990s, DFW staff 
developed an abundance index calculation for Delta Smelt. Annual abundance indices for Delta 
Smelt have been calculated for the period 1959 through the present, except for 1966-1968. The 

Figure 85. Map of 20 mm survey stations showing all currently sampled stations. Data from all core stations 
are used in abundance index calculation.
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