PROCEEDINGS
1985 CRANE WORKSHOP
WORKSHOP CO-CHAIRMEN
DR. JAMES C. LEWIS
U.S. Fish and Wildlife
Service

JOHN G. VANDERW ALKER
Platte River Whooping Crane Habitat Maintenance Trust
EDITOR
DR. JAMES C. LEWIS
COPY AND LAYOUT EDITORS
JERRY W. ZIEWITZ DR. JAMES C. LEWIS

PUBL ICATION SPONSORED BY
PLATTE RIVER WHOOPING CRANE HABITAT MAINTENANCE TRUST AND U.S. FISH AND WILDL IFE SERVICE. 1987

AVAILABLE FROM PLATTE RIVER WHOOPING CRANE MAINTENANCE TRUST

2550 N. DIERS AVE. SUITE H GRAND ISLAND, NE 68803
$\$ 6.00$ POSTPAID

PREFACE

This Proceedings includes 45 of the 53 papers presented at the 1985 Crane Workshop held 26-28 March in Grand Island, Nebraska. Published here along with the 45 papers mentioned previously are 6 papers submitted for the Proceedings but not presented at the Workshop. The 1985 Workshop was the 4 th in a series of such workshops held in the United States; the previous meetings were in Baraboo, Wisconsin, in 1975; Rockport, Texas, in 1978; and Grand Teton National Park, Wyoming, in 1981. The serles of workshops and proceedings have been designed to improve communication and interaction among individuals researching or managing cranes in North America, to stimulate further research, to help identify research and management needs, and to provide ease of access to a large amount of crane literature. The 1975 Proceedings is out of print. The 1978 Proceedings (259 pages, 36 articles) is avallable from National Audubon Soclety, 4150 Darley Street, Suite 5, Boulder, C0 80303 for $\$ 6.00$. The 1981 Proceedings (296 pages, 38 articles) is avallable from National Audubon Soclety, Attn. Alexander Sprunt IV, 115 Indian Mound Trall, Tavernier, Florida. 33070 for $\$ 25.00$ a copy.

Another recent crane publication, Crane Research Around The World (48 articles, 260 pages, 55 photos) Is avallable from International Crane Foundation, Route 1, Box 230C, Shady Lane Rd., Baraboo, WI 53913 for $\$ 17$ in the United States or $\$ 20$ if the malling is to other nations.

The editors of the 1985 Proceedings thank the U.S. Fish and Wildilfe Service and Platte River Whooping Crane Habitat Maintenance Trust for funding this publication. We especially thank Donna Narber and Teresa Block for typing.

On Thursday, December 4, 1986, Aransas National Wildilfe Refuge manager Frank Johnson died in his sleep of a heart attack. The popular and well-known 54-year-old Johnson held the position of refuge manager at Aransas since 1973. Frank had been with the U. S. Fish and Wildilfe Service since his graduation from Mississippl State University in 1954. He served as refuge manager at Wapanocca and Cape Romaln refuges, then completed Departmental training and served in the Atlanta Regional Office for 6 years as a planner and acting assistant supervisor.

In his 13 years as manager at Aransas, Frank did much to further the recovery of whooping cranes. His amlable manner helped make thousands of whooping crane enthuslasts feel at home when they visited Aransas. Frank assisted in hosting the 1978 Crane Workshop and is co-author of a paper in this Proceedings.

Dr. James C. Lewis

Dr. Ronald T. Sauey (1948-1987) was a co-founder and a director of the International Crane Foundation. Active in research and conservation since 1972, Ron passed away January 7, 1987, after suffering a cerebral hemorrhage on Christmas Day. He will always be remembered for his comprehensive studies of the Siberlan Cranes in India, which are eloquently described in his 1985 Ph.D. dissertation, The Range. Status. and Winter Ecology of the Siberian Crane. Grus leucogeranus. He received his doctorate degree from Cornell University, in Ithaca, New York. Ron was loved and repsected by many. His untimely death leaves a vold that affects his many friends worldwide and the advance of the study and preservation of cranes.

George Archibald

TABLE OF CONTENTS

PAGEil
PREFACE
SESSION 1: POPULATION FACTORS Leader, Dr. Graham Cooch, Canadian Wildilfe Service
Time-Series Analysis and Forecasting of the Aransas/Wood BuffaloCrane Population.M. Boyce
Recent Improvements to Sandhill Crane Surveys in Nebraska'sCentral Platte Valley
D. Benning and D. Johnson 10
The Wisconsin Sandhlli Crane Count: A Public Participation Project. J. Harris and J. Knoop 17
The Greater Sandhlll Crane in Yellowstone National Park:
A Preliminary Survey R. Drewien, W. Brown, and J. Varley27
SESSION 2: HUNTING. Leader, Eugene Knoder, National Audubon Soclety
Hunting in the Management of Mid-Continent Sandhlll Cranes. H. Miller 39
An Experimental Greater Sandhill Crane and Canada Goose Hunt in Wyoming. . D. Lockman, L. Serdulk, and R. Drewlen 47
58
Minimizing Conflicts Between Migratory Game Bird Hunters and Whooping Cranes in Texas. B. Thompson and R. George
Expanded Sandhill Crane Hunting in the Dakotas and OkI ahoma Threatens Endangered Whooping Cranes. P. Konrad 69
SESSION 3. BEHAVIOR. Leader, Dr. Tom Tacha, Southern lllinois University
An Experimental Release of Captive-Reared Greater Sandhill Cranes..............E. Bizeau, T. Schumacher, R. Drewien, and W. BrownWinter and Spring Distribution of Greater Sandhill CranesFrom Southcentral Idaho............................... R. Drewlen, W. Mullins, and E. Bizeau89
For aging and Maintenance Behaviors of Sandhlll Cranes................................. T. Tacha 93
Comparative Ecology and Behavior of Eastern Sarus Cranes and Brolgas in Australla G. Archibald and S. Swengel 107
\nprec Pair Formation and Mate Fidelity in Sandhlll Cranes S. Nesbitt and A. Wenner 117
SESSION 4. DISEASE AND MORTAL ITY
........................... Leader, James Carpenter DVM, U.S. Fish and Wildilfe Service
An Outbreak of Eastern Equine Encephalitis Virus In CaptiveWhooping Cranes...Carpenter, F. Deln, and G. ClarkMortality of Cranes and Waterfowl from Powerline Collisionsin the San Luis Valley, Colorado..................... W. Brown, R. Drewlen, and E. Bizeau128
Sandhill Crane Mortallty at Cedar Lake, Texas -- An Overview R. Windingstad, R. George, and R. Krey 137
Impacts of the Tincup Loop Transmission Line on Cranes
In Caribou County, Idaho....... R. Howard, B. Keller, F. Rose, J. Connely, and J. Hupp 142
An Avian Cholera Epizootic Among Sandhill Cranes in Color ado 145
Pasteurella multocida Infection in a Whooping Crane Assoclated with an Avian Cholera Outbreak. S. Snyder, M. Richard, R. Drewlen, and J. Lewis 149
Greater Sandhill Cranes and Common Ravens on Malheur NWR, Oregon: Their History and Relationship. C. Littlefield and S. Thompson 156
SESSION 5. WINTER HABITAT AND ACTIVITIES
.. Leader, Dave Blankinship, National Audubon Society
Activity Patterns of Whooping Cranes Wintering onAransas National WIIdI lfe RefugeM. Bishop, H. Hunt, and R. Slack167
Drinking Sites and Requirements of Wintering Sandhlll Cranes D. Haley 172
Distribution of Winter Territories of Whooping Cranes on the Texas Coast T. Stehn and E. Johnson 180
Wintering of Greater Sandhill Cranes in Florida. A. Wenner and S. Nesbitt 196
Food Habits of Sandhill Cranes in Relation to Agriculture
In Central and Southwestern New Mexico D. Walker and S. Schemnitz 201
Status of Sandhlll and Whooping Crane Studies in Florida T. Logan and S. Nesbitt 213
Winter Foods of the Whooping Crane Based on Stomach Content Analyses.. H. Hunt and R. Slack 217
Whooping Crane Mortality During the Winter of 1982-83 H. Hunt, T. Stehn, and R. Slack 219
A Walk-in Trap for Sandhill Cranes T. Logan and G. Chandler 221
A Technique for Aging Sandhlll Cranes Using Wing Molt -- Preliminary Finding S. Nesbit+ 224
SESSION 6. REPRODUCT ION
.......................... Leader, Jake Valentine, U.S. Fish and Wildilfe Service (Ret.)
Survival, Age Composition, Sex Ratio, and Age at First Breeding of Whooping Cranes In Wood Buffalo National Park, Canada................................ E. Kuyt and P. Goossen 230
Reproductive Physiology of Sandhlll Cranes During Winter and Spring. T. Tacha, P. Vohs, G. Iverson, and J. Bantle 245
Nesting Ecology and Productivity of Greater Sandhlll Cranes at Sycon Marsh, Oregon. M. Stern, G. Pampush, and R. Del Carlo 249
Productivity of Florida Sandhill Cranes on Three Sites in Central Florida. M. Bishop and M. Collopy 257
SESS ION 7. ASPECTS OF MIGRATION
......Leader, John VanDerwalker, Platte River Whooping Crane Habitat Malntenance Trust
Management of Lesser Sandhill Cranes Staging in Alaska.......................... P. Mickelson 264
Computerized Management and Display of
Whooping Crane Observation Data D. Asherin and R. Drewlen 276
Roost Site Use Versus Preferences by Two
Migrating Whooping Cranes. J. Ward and S. Anderson 283
Sandhlll Migration in the Mid-South-its Possible Significance to Mississippl Sandhill Cranes D. Dewhurst and P. Zwank 289
Habitat Use by Migrating Whooping Cranes in the Aransas-Wood
Buffalo Corridor. M. Howe 303
SESSION 8. HABITAT AND MANAGEMENT
................................... Leader, Dr. Gary Krapu, U.S. Fish and WIIdlife Service
Comments on Whooping Crane Recovery Activities. C. FJetl and 312
Application of a SandhIII Crane Model to Management of Habitat Along the Platte River P. Currier and J. Ziewitz 315
LIIIIan Annette Rowe Sanctuary-Managing Migratory
Crane Habltat on the Platte River, Nebraska K. Strom 326
Status of Whooping Crane Migration Habitat Within
the Great Plalns of North America G. Lingle 331
Habitat Changes Within the Mississippl Sandhill Crane Range
in Jackson County, Mississippl (1942-1984)................ E. Smith and J. Valentine, Jr. 341
Spring Habitat use by Pen-reared Mississippi Sandhill Cranes
Released on a National Refuge. P. Zwank 355
A Resource Inventory of Sandhlll Crane
Staging Areas In Nebraska................... G. Krapu, B. Gehring, D. Facey, and M. Meyer364
SESSION 9. CAPT IVE PROPAGATION
Leader, Dr. Scott Derrickson, National Zoological Park
Five Year Report (1979-1984) of the Crane Center atOka Nature Preserve, USSR... V. Panchenko and V. FIInt371
Captive Propagation of Whooping Cranes, 1982-1984 S. Derrickson 377
The Hatching Process in Cranes with Recommendations For Assisting Abnormal Chicks.................... L. Hartman, S. Duncan, and G. Archibald 387
Timing Inseminations to Maximize Fertility in Cranes................................. S. Russman 398
Importance of Pen Size in Ralsing Crane Chicks. C. Hesch 406
SESS ION 10. WORKSHOP RESOLUTIONS. J. Harris and G. Archibald 412

MORTAL ITY OF CRANES AND WATERFOWL FROM POWERL INE COLLIS IONS IN THE SAN LUIS VALLEY, COLORADO
WENDY M. BROWN, Idaho Cooperative Wildilfe Research Unit, College of Forestry, Wildilfe and Range Sclences, University of Idaho, Moscow, ID 83843.

RODERICK C. DREWIEN, Idaho Cooperative WIIdIIfe Research Unit, College of Forestry, Wildilfe and Range Sclences, University of Idaho, Moscow, 1D 83843.

ELWOOD G. BIZEAU, Idaho Cooperative WIIdlife Research Unit, College of Forestry, WIIdIIfe and Range Sclences, University of Idaho, Moscow, ID 83843.

Abstract: Crane and waterfowl mortality from collisions with powerlines in the San Luis Valley, Colorado, was investigated during two spring and two fall periods of 1983-84. Powerline segments were searched for dead birds and cranes were observed as they flew over the Ilnes. Factors contributing to the Incldence of powerline strikes were analyzed. Sandhill cranes (Grus canadensis tabida), and particularly whooping cranes (G. americana), were more vulnerable to wire strikes than waterfowl. Juvenlle cranes struck powerlines more frequently than adults ($p=0.001$). The incidence of collisions was influenced by the proximity of powerllines to roosting and feeding sites and by adverse weather conditions (fog, precipitation, and wind) which affected visibillty and filght control ($p=0.001$). Evaluation of experimental modification of a 115 kv transmission IIne indicated that static wire removal substantially reduced strikes; however, in a limited study, static wire enlargement was not shown to reduce strikes. We recommend locating new powerlines at least 2.0 km from traditlonal roost and feeding sites, and investigating techniques of color marking static wires to increase visibility and minimize collisions at perennial problem locations.

1985 CRANE WORKSHOP PROCEEDINGS

The San Luis Valley in south-central Colorado is the major spring and fall migration stop for the Rocky Mountaln populations of greater sandhlll cranes and cross-fostered whooping cranes (Drewlen and Blzeau 1974, 1978, Kauffeld 1981). These populations currently number 17,000-20,000 sandhlll cranes and 30-35 whooping cranes. Cranes use the valley for 3-4 months annually, primarily from October through mid-November and mid-February through mid-April. The valley also provides important habltat for 8,000-10,000 Canada geese (Branta canadensis) and over 25,000 other waterfowl (M. Suthers, pers. comm.).

Barley, wheat, and potato farming are the primary land uses in the valley, and additional lands are converted annually to agriculture. Recently, several large power transmission IInes and numerous distribution lines have been constructed to service the expansion of overhead sprinkler Irrigation. Many power lines cross traditional crane and waterfowl concentration areas.

It is well established that powerllne collisions are a source of avian mortality (Walkinshaw 1956, Cornwell and Hochbaum 1971, Drewlen 1973, Krapu 1974, Stout and Cornwell 1976, Anderson 1978, Tacha et al. 1978, Malcom 1982, Brown et al. 1984). The potential effect of collision mortality on populations of rare and endangered specles has been noted by Lee (1978), Thompson (1978), and Faanes (1983, Assessment of powerline siting in relation to bird strikes in the Northern Great Plalns, Unpubl. Rept., Northern Pralrie Wildi. Res. Cent., Jamestown, North Dakota. 90 pp). Since 1956, six powerline collisions resulting in injury or death of whooping cranes have been documented in the Wood Buffalo-Aransas population (J. Lewis 1985, Whooping crane mortality/Injurles. Unpubl. Table. U. S. Fish and Wildilfe Service, Albuquerque, N. Mo). A minimum of elght cross-fostered whooping cranes in the Rocky Mountaln population have struck powerlines since 1977. Seven of these were killed or incapacitated accounting for 39% of all known losses of fledged birds to date (unpubl. data, id. Coop. Wildl. Res. Unit). Six of these I ine strikes occurred In the San Luis Valley.

This study was initlated to assess crane and waterfoll mortallty from powerline collisions in the San Luis Valley, to evaluate factors which contrlbute to collisions, and to provide insight on how to reduce that mortality.

We thank G. Halvorson, U. S. Fish and Wildilfe Service, Albuquerque, for obtalning funds and assisting with project initiation for fall 1983 studies. D. Walker substantially contributed to data collection and summary during fall 1983, and D. Kingery generally donated her time
walking powerllnes throughout the study. We especlally appreclate the assistance, facllitles, and equipment made avallable by M. Nall and staff of Alamosa-Monte Vista National Wildilfe Refuge. We are grateful to San Luis Valley Rural Electric Cooperative, Inc., Public Service Company of Colorado, and Colorado Ute Electric Association, Inc. for their cooperation in modifyling a transmission line and providing technical information. K. Reese assisted with statistical analysis, and helpful reviews of the manuscript were provided by S. Derrickson, and C. Rice. E. Myers typed the manuscript.

METHODS

Mortallty Surveys

Powerilne collision (strike) mortality data were collected during two spring (February-April) and two fall (October-November) periods 1983-84. Selected segments of electric transmission (69 and 155 kV) and distribution ($7.2-24 \mathrm{kV}$) lines were thoroughly searched one or more times each season (Fig. 1). Weekly searches of 14 transects along 10 different powerlines were conducted during fall 1983. Supplemental information on strike mortality was provided by Alamosa-Monte Vista National Wildllfe Refuge personnel.

The area searched under all Ilnes included an adjoining strip approximateiy 30 m on each side of support poles. One or two observers walked a zig-zag pattern, or when terrain offered good visibility, an all terraln cycle or truck was used.

All dead birds, or parts thereof, found within the search area were considered strikes, including feather spots Indicating a bird had hit the ground and left the area. For subsequent identification, all avian carcasses were marked with red enamel paint and numbered strips of orange flagging tape. Species, age, sex, type of injurles, carcass condition, and date of death were recorded when possible. Strike locations were plotted on maps and the surrounding habitat, approximate distance from roost and feeding sites, and recent weather conditions were noted.

Flg. 1. Locations of major powerllne transects for bird mortality surveys (two spring and two fall perlods 1983-84) and bird flight observation areas (fali 1983) in the San Luis Valley, Colorado.

Experimental Modification of a 115 kv Transmission Line
A 3.2 km segment of 115 kv transmission line (Fig. 1) was experimentally modified and monitored through a cooperative effort by Colorado Ute Electric Association, Inc. (CUEA), the U. S. Fish and Wildilfe Service (FWS), and Edison Electric Institute (EEI). We began intensive surveys of this line in March 1983, after a whooping crane with impact injuries was found nearby.

In an effort to reduce crane strikes, the static wire was experimentally removed in August 1983. The static wire is the nonconductling, topmost wire on a powerline used to minimize power outages from IIghtening strikes. It is normally smaller than the conductor, and appears to be the wire most often struck by birds in flight (Thompson 1978, Faanes 1983 loc. cit.).

In October, CUEA and FWS initiated thrice-weekly searches of the experimental segment for dead birds, and thelr effort contlnued throughout fall 1983 and spring i984 (H. G. Lalre. 1984, San Luls Valley - Waverly 115 kv transmission IIne - 1983, Unpubl. Rept. Colorado Ute Electric Association, Montrose). Thelr mortallty data for these two periods are inciuded in this paper.

In September 1984, cooperators with EEI experimentally replaced two spans (ca. 560 m) of static wire with standard $0.95-\mathrm{cm}$ dlameter wire, and two spans with $2.54-\mathrm{cm}$ diameter self-damping wire to determine if the larger wire would be more visible to flying birds and thereby reduce collision frequency. The remaining nine spans were left without static wire. Using remote cameras, EEI contractors filmed crane flights over six experimental spans (T. Nelson, pers. comme). We continued searches of the entire segment for dead birds.

Bird Flight Observations

Bird flight observations were made at four locations from 8 October-12 November 1983 (Fig. 1). Area 1 comprised a segment of the experimental 115 kv transmission line without static wire. It was situated immediately adjacent to and between heavily-used roost and feeding sites. Area 2 transected cropland feeding areas north of the Rlo Grande River and represented a segment of the experimental transmission IIne with static wire intact. Areas 3 and 4 represented typical segments of 69 kv transmission and 7.2 kv distribution 1 ines, respectively. Both separated a nearby roost on Monte Vista Refuge from feeding sites 3 km or more away.

Observations were made from vehlcles, primarliy at sunrise and sunset when large numbers of birds were moving to and from roosts. We attempted to gain supplemental observations when large groups of birds were flushed (wild flush) and during adverse weather.

During all observations the species, flock size, reaction distance, altitude above line, flight direction, and weather conditions were recorded for each flight. A flight was defined as a flock of birds, moving together without any break in the unit.

Data Anaiysis

Daily weather data were complled from National Weather Service records in Alamosa. Wind speed, fog, and precipitation were considered potentially important to strikes due to their adverse effects on flight maneuverability and visibility. For the purposes of our analysis, weather for each day of the study perlod was classifled as fair or foul. A foul weather day was one having fog, rain, snow, or wind exceeding an average of $32 \mathrm{~km} / \mathrm{hr}$ for a 3 hour perlod.

The relatlonship between weather and bird strikes was determined using a Chi-square contingency table (Zar 1974). The proportion of fresh bird strikes found on foul weather days was compared to the proportion of foul weather days in the survey perlod. Chi-square analysis was also used to compare the proportion of Juvenile sandhill crane strikes found with the proportion of juveniles in the population.

RESULTS

Mortality Surveys
During spring and fall 1983-84, 115 dead blrds were found. Sandhlll cranes were the most frequent mortalities (67.8%), followed by ducks (17.4%), Canada geese (7.0%), and whooping cranes (2.6\%). Five other species (5.2\%) were recorded (Table 1).

Table 1. Powerline strike mortallty in the San Luis Valley, Colorado during spring and fall crane use periods 1983-84.

[^0]In proportion to thelr abundance, whooplng cranes were the most frequent casualties. The number of whooping cranes sighted in the San Luis Valley during 1983-84 ranged from 13-29. In addition to the three powerline kills documented during this period, two whooping cranes struck powerlines and survived. One was apparently unhurt; another sustalned a fractured wing near Grand Junction, Colorado, was subsequently captured, its wing amputated, and transferred to Patuxent Wildilfe Research Center In Maryland In May 1984. All but one of these five birds were Juveniles.

Juvenile sandhill cranes collided with power Ilnes far more frequently than adults (Chi-square $=72.98,1 \mathrm{~d} . f ., p<0.001$). Age was determined for 43 crane strikes; 21 (48.8\%) were juvenlles. The mean percent juveniles in the San Luis Valley during 1983-84 was 9.9\%.

Seventy birds (60.9%) were found under transmission IInes and 45 (39.1%) under distribution Ilnes. Relatively short sections of a fow transmission lines accounted for most strikes; distribution Ilne strikes were generally Isolated incidents scattered throughout the valley.

Powerllne distance from roost and feeding areas appeared critical to the incidence of strikes. Bird strikes were not found where the dlstance exceeded 1.6 km , whereas, 101 (87.8%) occurred where a llne bor dered or blsected a major use area and blrds were taking off and landing in the immediate vicinity.

Experimental 115 kv Transmission L.ine
Fifty-four birds (36 cranes) were found under the 13 spans of experimental transmission line in four seasons. The highest number (25) was found in spring 1983. After removal of the static wire, strikes decilned substantlally during fall 1983 and spring 1984. When four spans of statlc wire were replaced in fall 1984, bird strikes increased to 18 (Flg. 2). Most strikes (12) occurred where elther standard or experimental wire was present. The number of strikes/span of standard and experlmental static wire were two and four, respectively. Only six strikes were found under the nine spans without a static wire (0.7 strikes/span).

Proceedl ings 1985 Crane Workshop

Effect of Weather

Dates and existing weather conditions were identifled for 29 crane strikes. Twenty strikes (69.0\%) occurred on days with high winds, fog, or precipitation. By contrast, only 73 of 196 (37.2%) total survey days had foul weather. A highly significant proportion of collisions occurred during foul weather (Chi-square $=12.48$, 1 d. $f_{0}, p<0.001$).

There was also a strong relationship between the proportion of foul weather days in each seasonal survey perlod and the number of strikes found per kilometer of powerline monitored (Fig. 3). Strikes kilometer of I ine ranged from 3.0-4.8 during spring 1983 and spring and fall 1984 surveys; foul weather occurred on $38-50 \%$ of the days during these perlods. In contrast, we found only 0.6 strikes/kilometer of Ilne during the exceptionally mild weather (15% foul weather days) of fall 1983 surveys.

Bird Filght Observations

We observed 1,694 crane fllghts over powerlines. Flocks of 1-4 and 5-20 birds occurred with about equal frequency, comprising 92.5% of all observations. Larger flocks usually occurred when birds were disturbed. Flocks of $21-50$ made up 6.9% flocks >50 comprised only 0.6%.

Most cranes (71\%) reacted to powerlines by flaring and adjusting their altitude at some distance away, usually at 25-100 m . Altitude above the top wirewas $>6 \mathrm{~m}$ for 61.9% of all flights. Only two cranes were observed flying under the conductor wire; none between the conductor and static wire. No collisions were observed.

Reaction distance and altitude appeared directly related to distance from filght origin and destination. For example, despite removal of the static wire, Area 1 had the highest proportion of birds reacting at $<25 \mathrm{~m}(44.9 \%)$ and the highest proportion crossing at $1-3 \mathrm{~m}$ above the IIne (Table 2). Area 1 is situated between immediately adjacent roost and feeding sites, and birds fly $<0.8 \mathrm{~km}$ before crossing this transmission line. Altitude is normally low for short filght distances and cranes require considerable adjustment to clear the top wire (about 18 m high).

Reaction distance and altitude were greater at Area 2, despite presence of the static wire which increased height of the powerllne to $22 \mathrm{~m}_{0}$ Roost and feeding sites at this segment of Ilne are separated by $>2 \mathrm{~km}$. Area 4, a small distribution line separating roost and feeding sites by $>3.5 \mathrm{~km}$ had the fewest birds (11.1\%) reacting at <25 m; most showed no reaction. Additionally, 77.9% of filights cleared the top wire by $>6 \mathrm{~m}_{\text {。 }}$

It was apparent that cranes' maneuverability and control are impaired by high winds; several near-colllsons were observed. Cameramen for EEI al so noted the detrimental effect of wind (EEI Crane Study, Unpubl. Rept.). Meaningful observations during fog and precipitation were difflcult to obtaln, because these conditions limited visibility for observers as well as birds.
Wild flushes were observed on two different occasions at Area 1. Both incidents resulted when a large group of cranes was disturbed by a farmer entering his adjacent fleld. Fifty-two filights involving a total of over 700 individuals were recorded; $37 \mathrm{flights}(71.2 \%)$ reacted at $<25 \mathrm{~m}$; $4(7.7 \%)$ of these reacted at $<5 \mathrm{~m}_{\mathrm{p}}$ and 30 fl ights (55.7%) cleared the top wire by only 1-6 m. A thirdwild flush, during which four cranes struck the powerline, was filmed by EEI cameramen at Area 1.

DISCUSSION

Mortallity Surveys and FIIght Observations
Our surveys provide an index rather than a true measure of powerline mortality in the valley. Because of the large number of powerlines, it was impossible to monitor every potential problem site. Further, unrecorded crippling loss probably adds significantly to strike mortality. Anderson (1978) and Faanes (1983 loc. cit.) estimated their searches accounted for only 58% and 26% of mortallty, respectively.

Our results Indicate that cranes are more vulnerable to wire strikes than waterfow, and whooping cranes more vulnerable than sandhills. This is undoubtedly related to the large size and low maneuverability of cranes, particularly whooping cranes. Thompson (1978) noted that large birds in flocks are especially susceptible to collisons. However, some blas towards large species is probably inherent in mortality searches, because smaller birds are more readily removed by scavengers or simply overlooked.

Fig 2. Number of bird strikes found beneath 13 spans of a 115 kv transmission line with experimental static wire modification during spring and fall crane concentration periods in the San Luis Valley, Colorado 1983-84.

Fig. 3. Number of bird strikes found per kllometer of powerline and percent foul weather days during spring and fall crane concentration periods in the San Luis Valley, Colorado 1983-84.

Proceedings 1985 Crane Workshop

Table 2. Reaction distance and altitude above IIne exhlbited by cranes at four powerline study sites.

	115 kv without static wire	463	0.9	44.9	41.7	12.5	0.2	0.0	6.5	39.3	54.0
2	115 kv with										
	static wire	311	0.3	28.3	43.4	28.0	0.0	0.0	4.5	37.6	57.9
3	69 kv	353	0.0	27.2	46.2	26.6	0.0	0.0	2.6	42.2	55.2
4	7.2 kv										
	distribution	515	0.1	11.1	41.0	47.8	0.2	0.0	3.1	18.8	77.9

Our results indicate that juvenile cranes strike powerlines more frequently than adults ($p<0.001$). Young birds lack flight experlence and are no doubt less aglle; they also lack familiarity with the area and its obstacles. Most researchers agree that these factors Influence strike mortality (Thompson 1978). The proportion of juveniles in the cross-fostered whoopling crane flock ranged from 35.7-59.4\% during 1983-84 surveys, a factor which probably contributed to the high mortality of this species.

Although the magnitude of mortality from powerlines is unlikely to affect thriving populations of sandhlil cranes and waterfowl in the valley, the impact on endangered specles may be biologically significant (Lee 1978, Thompson 1978, Faanes 1983 loc. cit.). In the clrcumstance of crossmfostered whooping cranes, high juvenile mortallty from powerline collisions impedes the bulldup of a mature bird population necessary for intraspecies interaction and pair-bond formation.

Strikes occurred at both transmission and distribution Ilnes, but were concentrated where transmission IInes bordered heavy use areas. In equivalent locations, transmission Ilnes are probably more hazardous than distribution Ilnes because of thelr greater helght.

Proximity of powerlines to roost and feeding sites appears most critical. No strikes were found $>1.6 \mathrm{~km}$ from a roost or feeding slte; most strikes occurred where at least one of these two habitats was adjacent to the line. Bird filght observations demonstrated that reaction distance and altitude are most reduced where a powerline separates two closely adjacent use-areas. The frequency of collisions increases because bird concentrations are high in such areas and frequent low-level flights are made across the Ilne. Faanes (1983 loc. clt.) also found that interspersion of habitats at powerlines was important to the magnitude of mortality.

Inclement weather was a primary factor Influencing the frequency of crane strikes at problem locations. The overall relationship between foul weather and strikes was highly significant ($p<0.001$) However, our sample size was Insufflcient to partition the Individual effects of high winds, fog, or precipitation for statistical analysis.

The apparent increased vul nerabillty of cranes to wire collisions during inclement weather or poor visibility has been previously noted by Walkinshaw (1956), Wheeler (1966), Nesbitt and Gilbert (1976), and Tacha et al. (1978). Measures to Increase visibility of problem Ilnes are especially needed in the San Luis Valley, because adverse weather is common during crane-use periods. Increased strike mortality during Inclement weather has been reported for other specles by Scott et al. (1972) and Lee (1978), however, researchers were unable to establlsh a definitive relationshlp between fog and increased mortallty of gulls and waterfowl in an Oregon powerline study (James, B. W., and B. A. Haak. 1979. Factors affecting avlan flight behavior and collision mortallty at transmission lines. Unpubl. Rept., Bonneville Power Admin., Portland).

Observations also indicated that strikes are likely to occur when birds are flushed near powerlines. Feeding sites in the valley are primarlly agricultural flelds with easy access by county roads, af fording ample opportunlty for human disturbance. Experimental Transmission Line

Because of its location between adjacent, heavily used roost and feeding sites, the experimental line (Fig. 1) presents the greatest hazard of any powerline studied. However, results indicate that static wire removal significantly reduced mortality. Strikes decllned markedly after the static wire was removed from the experimental segment (13 spans) in fall 1983, and increased only slightly during the adverse weather of spring 1984. When four spans of static wire were replaced in fall 1984, the number of strikes in the experimental segment increased substantially. Furthermore, 67% of strikes In the experimental segment occurred under spans where static wire (standard and enlarged) was present, whereas, these spans constitued only 31% of the total experimental area. Similarly, a study in Oregon reported 35% and 69% reduction in avlan mortality after static wire removal at two sites (Beaurlaurier, D. L. 1981. Mitigation of bird collisionswith transmission lines. Unpubl. Rept., Bonneville Power Admin., Portland). Faanes (1983 loc. cit.) estimated static wire removal could reduce strikes by 80% at one site in North Dakota.

Although larger samples are needed for statistical evaluation, prellminary results obtained in fall 1984 suggest that the enlarged static wire was much less effective than static wire removal in preventing collisions. Because of the small sample size, It is impossible to analyze the difference in the number of strikes found beneath standard and enlarged static wire (4 and 8 birds, respectively), however, the results certalnly suggest that the enlarged static wire represented no improvement.

These preliminary findlings do not support the hypothesis posed by Thompson (1978) and Faanes (1983 loc. cit.) that increasing the slze of static wire should reduce mortality. It may be that larger size alone does not sufficiently increase visibility under variable light conditions. The dark, non-specular wire used in this study shows up well agalnst overcast skles, but is less visible on sunny days because it falls to reflect light (Thompson 1978).

Color-marking the static wire may have more potential. Beaulaurier (1981 loc. cit.) summarized the results of 17 studies and found that marking powerlines with colored devices such as orange avlation marker balls, black and white ribbons, and luminous tape reduced avian mortality by an average of 45%. Similarly, installation of various yellow marking devices reduced powerline mortallty of red-crowned cranes (G. japonensis) by about 43\% in Japan (from 60% of total deaths to 34\%, Yamaguchi, M. 1984, Letter to Chief, Endangered Species, Region 2. U. S. Flsh and Wildlife Service).

RECOMMENDATIONS

Construction of new transmission lines within 2 km of traditional roost or feeding sites should be avolded. Under no circumstances should new transmission or distribution lines divide adjacent, heavily-used roost and feeding sites. New distribution lines needed In critical crane-use areas might be buried underground; this is technically feasible and in some situations less expensive than overhead construction (Thompson 1978).

Line modification or other measures to reduce mortallty are needed where powerlines are already present in critical areas. Habitat modification to discourage crane use of hazardous areas seems unlikely on private lands. However, education of the local public regarding the danger of frightening birds near powerlines might reduce strikes caused by wild flushes. Static wire removal has been demonstrated to reduce mortallty in this and other studies and should be employed when possible. However, because statlc wire removal increases the probability of Ilghtening-caused power outages, other means of static wire modification should be explored. Comparative studies of the enlarged static wire with technically and economically feasible color marking devices are needed so that effective modification can be made at specific, critical areas where strikes perennlally occur.

LITERATURE CITED

Anderson, W. L. 1978. Waterfowl collisions with power IInes at a coal-flred power plant. Wildl. Soc. Bull. 6:77-83.

Brown, W. M., R. C. Drewlen, and D. L. Walker. 1984. Crane filght behavior and mortality assoclated with power IInes in the San Luis Valley, Colorado. For., Wildl., and Range Exper. Sta., Univ. Idaho, Moscow. 16 pp.
Cornwell, G., and H. A. Hochbaum. 1971. Colllsions with wires--a source of anatid mortality.
Proceedings 1985 Crane Workshop

Wilson Bull. 83:305-306.
Drewien, R. C. 1973. Ecology of Rocky Mountaln greater sandhlll cranes. Ph.D. dissertation, Univ. Idaho, Moscow. 152 pp.
___ and E. G. Bizeau. 1974. Status and distribution of greater sandhill cranes in the Rocky Mountains. J. Wildl. Manage. 38:720-742.
. and _1978. Cross-fostering whoopling cranes to sandhill crane foster parents. Pages 201-222 in S. A. Temple, ed. Endangered birds: management techniques for preserving threatened species. Univ. Wisconsin, Madison.

Kauffeld, J. S. 1981. Management of migratory crane habitat on Alamosa and Monte Vista National Wildilfe Refuges. Pages 117-121 in J. C. Lewis, ed. Proceedings 1981 crane workshop. Natl. Audubon Soc., Tavernier, Florida.
Krapu, G. L. 1974. Avian mortality from collislons with overhead wires in North Dakota. Pralile Nat. 6:1-6.

Lee, J. M. 1978. Effects of transmission lines on bird flights: studies of Bonneville Power Administration Lines. Pages 93-116 in M. L. Avery, ed. Impacts of transmission IInes on birds in filght. U. S. Flsh and Wildl. Serv., Washington, D. C.

Malcom, J. M. 1982. Bird collisions with a power transmission line and thelr relation to botulism at a Montana wetland. WIIdl. Soc. Bull. 10:297-304.

Nesbitt, S. A., and D. T. Gllbert. 1976. Power Iline and fence hazards to birds. Fla. Nat. 29:23.

Scott, R. E., L. J. Roberts, and C. J. Cadbury. 1972. Bird deaths from powerllnes at Dungeness. British Birds 65:273-286.
Stout, J., and Cornwell, G. W. 1976. Nonhunting mortallty of fledged North American waterfowl. J. WIIdl. Manage. 40:681-693.
Tacha, T. C., D. C. Martin, and C. G. Endicott. 1978. Mortality of sandhill cranes associated with utility highlines in Texas. Pages 175-176 in J. C. Lewis, ed. Proceedings 1978 crane workshop. Natl. Audubon Soc., New York.

Thompson, L. S. 1978. Mitigation through engineering and habitat modification. Pages 51-92 In M. L. Avery, ed. Impacts of transmission IInes on birds in flight. U. S. Fish and Wildl. Serv., Washington. D. C.
Walkinshaw, L. H. 1956. Sandhill cranes killed by flying into a powerline. Wilson Bull. 68:325-326.
Wheeler, R. H. 1966. Sandhlll cranes casualties in the blizzard of March 2, 1966. Nebr. Bird Rev. 34:69-70.

Zar, J. H. 1974. Biostatistical analysis. Prentice-Hall, Inc. Englewood Cliffs, New Jersey 620 pp.

[^0]: ${ }^{\text {a }}$ Eleven mallards (Anas platyrynchos), 2 blue-winged teal (Anas discors), 1 green-winged teal
 (Anas crecca), 1 ruddy duck (exyura Lamaicensls), and 5 unidentifled.
 Two American coots (Fulcla americana), 1 great blue heron (Ardea herodias), 1 lesser yellowlegs (Iringa flavipes), 1 northern harrler (Circus cyaneus), and 1 hor ned lark (Eremophlla alpestrls).

