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rocess variability) generally refers to stochasticity in population
ynamics (but can also relate to model structure misspecifi-
ation) and is hence parameterized as “random effects”, and
bservation error refers to inaccuracy in observations (de Valpine,
003).

One approach for dealing with both observation and process
rror is to ignore one or the other entirely. Polacheck et al. (1993)
ound that ignoring process error (an observation error estimator)
as superior to ignoring observation error (a process error esti-
ator) when estimating the parameters of a simple population

ynamics model, but they did not evaluate which choice was  best
or hypothesis testing. Ignoring process error biases likelihood ratio
nd Akaike information criterion (AIC; Akaike, 1973) based tests
owards incorrectly accepting covariates (Maunder and Watters,
003). Other tests such as analysis of deviance (Skalski, 1996) or
andomization tests (Edgington, 1987; Deriso et al., 2008) can be
sed, but they are less elegant and impractical in some situations.
n alternative approach is to include both process and observa-

ion error, but assume the ratio of the variances between these
wo sources of variation is known (e.g. Walters and Ludwig, 1981)
r that one of the variances is known (e.g. Maunder and Watters,
003). Incorrectly specifying the variance terms can bias hypothesis
ests (Deriso et al., 2007).

The preferred approach is to use state-space models (e.g.
chnute, 1994; Newman, 1998; de Valpine, 2002; Buckland et al.,
004, 2007; Maunder and Deriso, 2011) that allow the estima-
ion of the both observation and process error variances. It should
e noted that state-space models are often described as random
ffect, hierarchical, or Bayesian models. de Valpine and Hastings
2002) found that state-space models led to lower bias and often
ower variance estimates than least squares estimators that ignore
ither process noise or observation error. Traditionally, state-space
odels have been used to model demographic variability such as

he binomial probability of individuals surviving given an aver-
ge survival rate (Dupont, 1983; Besbeas et al., 2002). However,
emographic variability is typically overwhelmed by environmen-
al variability (Buckland et al., 2007), so environmental variability
s often modeled instead of demographic variability or in addi-
ion to demographic variability (e.g. Rivot et al., 2004; Newman
nd Lindley, 2006). Nonlinear, non-Gaussian state-space mod-
ls generally require computationally intensive high dimensional
ntegrals that have no closed form solution (de Valpine, 2003).
he implementation of state-space models in a Bayesian frame-
ork has been facilitated by the development of Markov chain
onte Carlo (MCMC) methods (Punt and Hilborn, 1997; Newman

t al., 2009; Lunn et al., 2009). MCMC  methods have also been
dapted to implement state-space models in a classical frame-
ork (Lele et al., 2007). Alternatively, the Laplace approximation

Skaug, 2002; Skaug and Fournier, 2006) or importance samp-
ing (Maunder and Deriso, 2003) can be used to implement the
ntegration in a classical framework. Modern nonlinear modeling
oftware packages such as BUGS and AD Model Builder have made
tate-space models practical for many applications (Bolker et al.,
013).

Log-linear models, such as generalized linear models, anal-
sis of variance (ANOVA), and related statistical methods, do
ot incorporate demographic relationships between abundances
hrough time (de Valpine, 2003). In contrast, lifecycle models link
ife-stages and time periods using population dynamics propagat-
ng information and uncertainty (Buckland et al., 2007; Maunder
nd Deriso, 2011). This link allows information related to one
ife-stage to inform processes influencing other life-stages and

s particularly important when data are not available for all life
tages for all time periods. Hypotheses that are difficult to con-
ider with ANOVA and related methods can be simple to express
sing a population dynamics model (de Valpine, 2003). de Valpine
earch 164 (2015) 102–111 103

(2003) found that a population dynamics model had much higher
statistical power than ANOVA, and provided greater biological
insight. Even approximately correct population dynamics models
had higher power than omitting demographic structure, but the
rate at which Type I error occurs may  increase, or the power might
be reduced as the model structure becomes more incorrect (de
Valpine, 2003).

Hypothesis testing is an essential part of statistical analysis and
is particularly important when evaluating factors that are impact-
ing survival. When we refer to hypothesis testing, we  are more
generally referring to the evaluation of the data based support for
alternative configurations of a model, where each configuration
could represent an alternative hypothesis. This approach is often
termed model selection to differentiate it from traditional hypoth-
esis testing that involves the rejection of a null hypothesis (Johnson
and Omland, 2004). Hypothesis testing can easily become com-
plex when analysing population dynamics because of the many
factors operating on different stages under the presence of density
dependence. Deriso et al. (2008) present a framework for evaluating
alternative factors influencing survival, and Maunder and Deriso
(2011) extended the framework to include density dependence in
survival. The first step is to identify the factors to be considered,
including the life stages that are impacted by each factor and where
density dependence occurs. Next, a model should be developed to
include these factors. Then hypothesis tests should be conducted
to determine which factors are important. Finally, impact analysis
(Wang et al., 2009; Maunder and Deriso, 2011) should be con-
ducted to determine the impact of the factors on quantities useful
for management.

Density dependence is an important factor in the dynamics of
many populations (Brook and Bradshaw, 2006) and can occur in
multiple life stages (e.g. Ciannelli et al., 2004). It is important to
consider density dependence when carrying out model selection
because it can modify the impact of factors (Rose et al., 2001;
Maunder and Deriso, 2011). Environmental conditions can also
have a large impact on population dynamics. Environmental factors
can directly affect survival through processes such as temperature
tolerance or can interact with density dependence through affect-
ing density limiting processes such as habitat or prey availability.
Environmental factors and density dependence have been identi-
fied as impacting population dynamics in numerous studies either
independently or in combination (e.g. Sæther, 1997; Brook and
Bradshaw, 2006; Ciannelli et al., 2004; Deriso et al., 2008; Maunder
and Deriso, 2011). Density dependence can easily be integrated into
state-space models (e.g. de Valpine and Hastings, 2002; Maunder
and Deriso, 2011).

Data from longfin smelt (Spirinchus thaleichthys) in the San
Francisco Bay-Delta are used to illustrate the development and
advantages of using state-space population dynamics models over
simple log-linear regressions for modeling survival. The models
are implemented in AD Model Builder using the Laplace approx-
imation for random effects (Skaug and Fournier, 2006) under a
classical (frequentist) framework. Longfin smelt is of conservation
concern because it is exposed to a variety of anthropogenic fac-
tors (e.g. habitat modification, sewage outflow, farm runoff, and
water diversions) and survey data have shown a decline in abun-
dance. Longfin smelt was listed as threatened under the California
Endangered Species Act in 2009. The U.S. Fish and Wildlife Service
also evaluated the status of the Bay-Delta longfin smelt population
and concluded in 2012 that although the species warranted pro-
tection under the federal Endangered Species Act, staff limitations
precluded listing the species as of that time. Several other species

in the San Francisco Estuary have also experienced declines (e.g.,
Bennett, 2005; Sommer et al., 2007; Mac  Nally et al., 2010; Thomson
et al., 2010; Maunder and Deriso, 2011), but the declines have yet
to be fully explained.
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. Theory

State-space models appropriately accommodate both observa-
ion and process error. de Valpine (2002, 2003) provides a useful
escription of state-space models in the context of population
ynamics models. Here we illustrate state-space models using a
imple population dynamics model where the abundance in the
ext time period is simply those that survive from the previous
ime period:

[Xt+1|Xt] = �sXt (1)

where Xt is the number of individuals at time t, which are the
tates; and �s is the mean survival rate. The observations of the
opulation are estimates of absolute abundance and the sampling
ariation in these estimates is assumed to be normally distributed:

t∼N(Xt, �2) (2)

where Yt is the estimate of absolute abundance at time t and �2

s the sampling variance.
State-space population dynamics models have three main com-

onents: (1) states (X), (2) parameters (�), and (3) observations (Y).
he states represent the population such as the abundance in a
ife stage at a given time. The parameters describe the average (or
ometimes the exact) relationship (transition) between the states
e.g. the average survival rate), but also include the initial state
e.g. X1) and the variance parameters (e.g. �). The observations are

easurements of the states, or some function of the states. The
tates and parameters are unknown and they, or a function of them,
re the quantities of interest. The observations, which are known,
re used to provide information about the states and parameters.
bservations are generally not a census of the population, but a

ample of the population and therefore contain sampling error (e.g.
f a line transect or trawl survey is used to estimate the abundance
f a population). This sampling error is the observation error and
s generally represented by the likelihood function. In other words,
he observation is known, but there is uncertainty in how the obser-
ation relates to the true abundance. There may  also be additional
bservation error over and above the sampling variability, but for
llustrative purposes we ignore this.

In traditional maximum likelihood estimation, the parameters
f the model are estimated by finding the parameter values that,
onditional on these values, give the highest probability (like-
ihood) that the observations came from the model. Since the
tates (X) are a direct function of the parameters (�), for known
bservations and given parameter values, the probability function
escribed in Eq. (2) can be evaluated and maximized. To better

llustrate state-space models, let

 (�, Y ) = f (X, Y ) (3)

be the joint distribution of the data and parameters, since the
arameters determine the states, and

�(Y ), (4)

be the likelihood function evaluated at the parameter values
. Traditional maximum likelihood assumes that there is a single
rue value for each parameter. State-space population dynamics

odels implicitly assume that the values of the parameters repre-
enting some population processes may  change over time. This is
he process error. Before describing state-space models, consider
he survival in each time period as a separate model parameter st:
[Xt+1|Xt] = stXt (5)

In this case, the likelihood function can be denoted f� ,s(Y), and
raditional maximum likelihood assumes that there is a single true
alue for survival probability in each time period and for the other
earch 164 (2015) 102–111

model parameters (note that the average survival parameter is
replaced with a set of survival parameters, one for each time period)
and the survival parameters are estimated along with the other
model parameters by maximizing the likelihood function. How-
ever, there is now one survival parameter for each observation
and each survival will be estimated to exactly match the obser-
vation. No other parameters can be estimated (e.g. the observation
error variance), and the process error cannot be separated from the
observation error.

Intuitively, the estimation procedure could be improved by
adding information based on the form of the process error prob-
ability distribution (e.g. if the temporal variability in survival is
known to be low, a survival parameter in one time period that
is very different from the survival in the other time periods is
unlikely) and can be conceptualized as placing an informative
prior, in the Bayesian sense, on the process error (except that the
mean and variance of the prior are unknown) (e.g. st = �sexp(εt),
where εt∼N(0, v2), which parallels the random effects approach
in generalized linear mixed models (GLMMs), or in alternative
notation ln(Xt+1)∼N(ln(�sXt), v2)). In this case, f�,s( Y ) = f( Y | s,
�)f( s|�) = f(Y |ε, �)f(ε|�), where f(ε|�) is the process error proba-
bility distribution, and the resulting likelihood is often referred
to as a penalized likelihood. The penalized likelihood combines
the sampling probability distribution of the observations with the
probability distribution of the states (recall that the parameters
determine the state and similarly the process error probability
distribution also defines the state probability distribution). These
methods estimate the process errors (or states) along with the other
model parameters while maximizing the joint probability distribu-
tion of the process error and the observations. However, the MLE  of
the process error variance is not statistically consistent (Seber and
Wild, 1989) and the likelihood function is degenerative towards
zero variance (Maunder and Deriso, 2003). There is often a nega-
tively biased local maximum that has been used for inference, but
the global maximum is at zero process error variance (Maunder and
Deriso, 2003).

The process error variance will decrease as covariates are added
and therefore the process variance should be reduced, which can
only be practically achieved if the process variance is estimated.
In contrast to penalized maximum likelihood, state-space models
treat the process error (or states) as random variables rather than
as parameters and when the process error is integrated out they
produce a marginal likelihood or “true likelihood” function that is
used for inference (e.g. Eq. (4) becomes

∫
f�(Y , ε)dε or equivalently∫

f�(Y , X)dX). Intuitively, this can be thought of as summing up the
likelihood of the observations for each possible state weighted by
the probability of that state (conditioned on the parameter values).
Each possible survival will lead to different population abundance
(state). Hence, the derivation of “state-space”, which refers to the
whole range of possible trajectories through time of the population
states (de Valpine, 2002). Integrating out the process error takes
advantage of properties of random variables (e.g. the marginal dis-
tribution), which has the advantage that it provides a consistent
non-degenerative MLE  for the process error variance.

Pawitan (2003) appropriately summarizes state-space mod-
els/random effects as a convenient way  to deal with many
parameters. In a Bayesian framework (Punt and Hilborn, 1997),
parameters are also treated as random variables and integrated
out (e.g. Eq. (4) becomes

∫∫
f( Y , �, ε)dεdϕ or equivalently∫∫

f(Y , �, X)dXdϕ, where ϕ are the parameters that are not of
interest) and the probability distribution is used for inference

rather than the likelihood function. One advantage of the state-
space modeling approach over penalized maximum likelihood is
that the marginal likelihood is consistent with AIC theory, which
can be used for hypothesis testing and model selection.
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. Methods

.1. Models

.1.1. Log-linear regression
A common approach to model survival from one life-stage to the

ext as a function of explanatory variables is a log-linear regression
Christensen, 1997) of the numbers in the second stage as a ratio
f those in the first stage (e.g. Miller et al., 2012). A typical analysis
odels the reproductive output from adults (At) to the surviving

uveniles in the next year (Jt+1) as:

n(Jt+1/At)∼N(  ̨ + ˇIt, �2) (6)

or equivalently in a different notation (the former notation is
ommonly used to describe state-space models and the latter nota-
ion commonly used to describe random effect models and can be

 more useful description (de Valpine, 2003)).

n(Jt+1/At) =  ̨ + ˇIt + εt (7)

where εt ∼ N(0, �2), N represents a normal distribution,  ̨ and
 are parameters of the linear model, It is a matrix of covariates

forcing functions), and �2 is the variance of the error. The obser-
ations are often only an index of relative abundance related to the
bsolute abundance by a constant q, often called catchability in the
sheries literature, such that

n(qJ Jt+1/qAAt) =  ̨ + ˇIt + εt (8)

so unless qJ = qA,  ̨ no longer relates to survival (it also includes
eproductive output in our example), but a combination of survival
nd differences in catchability. However, this does not influence
ypothesis tests related to the covariates as long as the q’s are
onstant through time or their temporal variation is random and
ndependent of the covariates.

The parameters can be estimated by maximizing the likelihood
ased on the assumed error distribution (Eq. (8)). The likelihood
unction is typically used to represent observation error. However,

 in Eq. (8) includes both process and observation error and ε
escribes the unexplained variation (process error) in the modeled
elationship if J and A are known without error. If J and A are known
ith error (multiplicative and log-normal):

n
((

Jt+1 exp(εJ,t+1)
)

/
(

At exp(εA,t)
))

=  ̨ + ˇIt + εt (9)

where εA,t∼N(0, �2
A,t), εJ,t+1∼N

(
0, �2

J,t+1

)
,

such that

n(Jt+1/At) =  ̨ + ˇIt + εt − εJ,t+1 + εA,t (10)

illustrating that Eqs. (6) and (7) combine process error and
bservation error from both measures of abundance into a single
rror term εt∼N(0, �2

J,t + �2
A,t+1 + �2

ε ).
Often an estimate of the sampling precision of each obser-

ation is available (hence the time subscript on the variance
erms), which eliminates the need to estimate the observation
rror variance, but this is generally not the case for the pro-
ess error. Ignoring observation error may  bias the results if the
bservation error variance differs substantially among observa-
ions.

.1.2. Alternative formulation
The log-linear regression is deterministically equivalent and,
epending on assumptions, stochastically equivalent to an expo-
ential growth model. The log-linear model assumes that the
nexplained variation in the log of the abundance ratios is nor-
ally distributed while the exponential growth model assumes
earch 164 (2015) 102–111 105

that the unexplained variation in the abundance in the second stage
is log-normally distributed

Jt+1 = ˛
′
Atexp(ˇIt + εt) (11)

where ˛
′ = exp(˛)

3.1.3. State-space model
State-space models can be used to include both observation and

process error. Non-linear state-space models are flexible in repre-
senting process and observation error. Eq. (6) assumes log-normal
multiplicative error for both the observation and process error with
constant variance. The log-normal assumption as implemented in
Eq. (6) will provide an unbiased estimate of ˛, but the quantity of
interest ˛

′ = exp(˛) will be biased such that the expected value of
E [˛

′
] = exp(  ̨ + 0.5�2) (Maunder and Deriso, 2011). Eq. (11) could

be modified to account for the bias

Jt+1 = ˛
′
Atexp(ˇIt + εt − 0.5�2) (12)

Similarly, the likelihood and random effects can be modified to
deal with the log-normal bias correction. This may  be particularly
important when the observations have different variances, result-
ing in different bias correction factors for each time period. The
distribution for the process and observation error need not be nor-
mal. For example, the process error may  be log-normal, while the
observation error might be normal.

3.1.4. Density dependence
Population regulation is controlled by both density-

independent and density-dependent factors. The log-linear
regression typically includes covariates representing density-
independent factors (e.g. the environment). Density dependence
can be included in the log-linear regression by adding additional
terms related to abundance into the regression. The Ricker model
(Ricker, 1954)

Jt+1 = ˛
′
Atexp(−bAt + ˇIt + εt) (13)

is often used because it can be linearized by taking the natural
logarithm and implemented using multiple linear regression.

ln(Jt+1) =  ̨ + ln(At) − bAt + ˇIt + εt (14)

where  ̨ = ln(˛
′
). However, the Beverton–Holt model (Beverton

and Holt, 1957) may  be applicable for some populations, but is non-
linear:

Jt+1 = ˛
′
At

1 + bAt
exp(ˇIt + εt) (15)

The models are derived based on solving the differential equa-
tion for abundance where mortality is a linear function of the cohort
abundance and initial abundance for the Beverton–Holt and Ricker
models, respectively. The Beverton–Holt model has asymptotic
properties, which represent processes such intra-cohort competi-
tion, while the Ricker model produces lower abundance from high
initial abundance, which represents processes such as cannibalism
when used in a stock-recruitment context.

3.1.5. State-space population dynamics (life cycle) model
The log-linear regression only models survival from one stage to

the next. A sequence of separate log-linear regressions can be used

to model the survival between each stage. However this does not
link information among stages, which can be useful particularly if
there is substantial error in the estimates of abundance or if there
are missing abundance estimates. In the case where adults are a
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Fig. 1. Conceptual diagram illustrating the differences between (a) the exponential
model representation of the log-linear regression and (b) the full state-space pop-
ulation dynamics model. The shaded (red) solid arrows represent forcing functions
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The models were fit to indices of juvenile and adult longfin smelt
abundance created using Bay study otter and mid-water trawl
surveys2. The covariates that explained the most variation from

1 Rosenfield, J.A. 2010. Life History Conceptual Model and Sub-Models for
Longfin Smelt, San Francisco Estuary Population. Unpublished Report. Available at:
http://www.dfg.ca.gov/erp/cm list.asp. Hanson, C. H. 2014. Covariates for Consid-
eration in Developing a Lifecycle Model for the San Francisco Bay-Delta Population
of  Longfin Smelt. Hanson Environmental, Inc. Unpublished contract report. 93pp.
nd  the dashed arrows represent predictions of the observations used in the likeli-
ood functions. (For interpretation of the references to color in this figure legend,
he  reader is referred to the web  version of this article.)

ear older than juveniles and the juveniles are measured the year
fter spawning:

t+1 = ˛
′
JAt

1 + bJAt
exp(ˇJ It + εJ,t) (16)

t+1 = ˛
′
AJt

1 + bAJt
exp(ˇAIt + εA,t) (17)

where the process errors εA∼N(0, �2
∈,A) and εJ∼N(0, �2

∈,J) are

reated as random effects and the observation errors N(ln(J), �2
J )

nd N(ln(A), �2
A) are implemented using likelihoods.

The initial condition for the population dynamics model, which
re the abundances in the first time period for juveniles, J1, and
dults, A1, have to be estimated as parameters in addition to
he parameters of the two Beverton–Holt models, the covariate
oefficients, and the standard deviations of the random effects.
ig. 1 illustrates the difference between the exponential model
epresentation of the log-linear regression and the state-space pop-
lation dynamics model.

.2. Hypothesis testing and model selection

Various methods can be used for hypothesis testing and evaluat-
ng the data-based evidence of support for alternative hypotheses,
r, perhaps more accurately, evaluating the measure of evidence
rom data about alternative models (Hilborn and Mangel, 1997;
obbs and Hilborn, 2006). The influence of a covariate can be elim-

nated from the model by fixing its value at zero. This produces a
ested model, and model selection can be conducted using like-

ihood ratio tests. The likelihood ratio test is not appropriate for
on-nested models. For example, when comparing between two
odels that include different covariates or two different density

ependence assumptions. In this case, information theory-based
ethods such as the Akaike information criterion (AIC; Akaike,

973) are appropriate. They are also appropriate for nested models.
e use the AIC adjusted for small sample size (AIC ) (Burnham and
c

nderson, 2002)

ICc = −2ln L + 2K + 2K(K + 1)
n − K − 1

(18)
earch 164 (2015) 102–111

where L is the likelihood function evaluated at its maximum,
K is the number of estimated parameters, and n is the number of
observations. The difference between a given model and the model
with the lowest AICC value, �,  is used for comparing models. For
model comparison, Burnham and Anderson (1998) recommend:
“For any model with � ≤ 2 there is no credible evidence that the
model should be ruled out . . . For a model with 2 ≤ � ≤ 4 there is
weak evidence that the model is not the K–L [Kullback–Leibler] best
model. If a model has 4 ≤ � ≤ 7 there is definite evidence that the
model is not the K–L best model, and if 7 ≤ � ≤ 10, there is strong
evidence that the model is not the K–L best model. Finally, if � > 10,
there is very strong evidence that the model is not the K–L best
model.”

3.3. Application

Data from longfin smelt in the San Francisco Bay-Delta from
1980 to 2009 are used to show the development and advantages
of using state-space population dynamics models over simple log-
linear regressions for modeling survival. We  implement a range
of models to determine the difference between the modeling
approaches (Table 1). A conceptual model of the San Francisco
Bay longfin smelt population (e.g., Rosenfield and Baxter, 2007;
Baxter et al., 2008) 1 was used as a basis for identifying potential
environmental covariates considered in the models. The covariates
reflected various geographic regions of the estuary and seasonal
periods based on the life history and seasonality of each lifestage of
longfin smelt. A total of 36 potential covariates were identified in
the initial selection process (Supplemental Table 1). The covariates
included various flow variables (e.g., spring X2 location (a mea-
sure of the spatial extent of salinity: position of the 2% isohaline),
winter-spring Delta outflow, winter-spring Napa River flow, spring
outflow thresholds of 34,500 cfs and 44,500 cfs, spring Sacramento
River inflow in addition to various variations of Sacramento and
San Joaquin River runoff), zooplankton (prey) densities (e.g., mysid,
Eurytemora, and Pseudodiaptomus densities over various seasonal
time periods), predators and competitors (e.g., juvenile Chinook
salmon densities in the spring, predators in various regions, and
the Asian overbite clam Potamocorbula), and a variety of abiotic
environmental variables (e.g., Secchi depth as an index of turbidity,
water temperature, ammonium loading to various regions of the
estuary, and the ratio of ammonium loading to Delta inflow). Based
on the conceptual model, the expected sign (positive or negative)
in the relationship between each covariate and an expected longfin
smelt population response was also assigned to each covariate.
All of the environmental covariates were then entered into two
formulations of the longfin smelt lifecycle model (a model in which
spawners are the adult lifestage (November–March) ages 1 and
2 and an alternative model in which pre-adults (October–March)
ages 0 and 1 and adults (November–March) ages 1 and 2 were
equally weighted in the model as spawners) and a series of
statistical analyses were performed to identify the best model.
http://new.baydeltalive.com/projects/7012
2 Maunder, M.N. and Deriso, R.B. 2013. Empirical estimates of abundance indices

and  standard deviation for longfin smelt from the bay study otter and mid-water
trawl surveys. Unpublished QRA contract report. 13pp. http://new.baydeltalive.
com/projects/7012
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Table  1
Description of modeling scenarios. The symbol under the “Analysis type” column is based on the entries in the other columns with symbols: juvenile = “J”, adult = “A”, juvenile
divided  by adult = “J/A”, both juvenile and adult = “J+A” None = “-”, likelihood = “L”, random effects = “re”, Beverton–Holt = “BH”, Ricker = “R”.

Name Analysis type Dependent
variable

Adult observation error Juvenile observation
error

Process error Density
dependence

Equation

Log-linear J/A- -L- Juvenile
divided by
Adult

None None Likelihood None 7

Exponential J- -L- Juvenile None None Likelihood None 11
Log-linear with observation

error
J/ArereL- Juvenile

divided by
Adult

Random effect Random effect Likelihood None 7

Exponential with juvenile
observation error only

J-L- - Juvenile None Likelihood None None 11

Exponential with juvenile
observation error and
process error

J-Lre- Juvenile None Likelihood Random effect None 11

Exponential with observation
an process error

JreLre- Juvenile Random effect Likelihood Random effect None 11

Ricker JreLreR Juvenile Random effect Likelihood Random effect Ricker 13
Beverton–Holt JreLreBH Juvenile Random effect Likelihood Random effect Beverton–Holt 15
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J+ALLreBH Juvenile and
Adult

Likelihood 

ach category of covariate3 (e.g. flow, prey, predators, environ-
ental conditions) were then used in the application below that

llustrates the benefits of state-space models.
AICC was used to conduct forward stepwise covariate selection.

he covariates were normalized (mean subtracted and divided by
he standard deviation) to improve model performance. Several
ovariates were chosen as candidates for the model selection proce-
ure (Table 2 and Supplemental 2). These covariates were chosen
ased on initial analysis of the wider range of factors in supple-
ental Table 1. Many of the factors in the larger set were highly

orrelated and so were eliminated. We  kept two  flow variables
hat were highly correlated to illustrate some of the difficulties in
ypothesis testing. The model is fit to relative abundance indices

or each stage (Supplemental Table 3), as appropriate. The mod-
ls were implemented using AD Model builder and the Laplace
pproximation was used for random effects. The observation error
n Eq. (10) was  implemented by treating the true population abun-
ance as a random effect and using the sampling distribution as
he likelihood for abundance. The true abundance was then used in
he calculation of the regression model and the likelihoods for the
bservations were combined with the likelihood for the regression
quation. The lognormal bias correction is not used since  ̨ is not of
nterest and the temporal variation in the observation error is low.

. Results

In general, all scenarios support the two flow-related covariates
Sacramento and Napa river runoff) when a single covariate is
ested (Fig. 2) followed closely by the prey species Eurytemora.
owever, after including a flow covariate, support for Eurytemora

s lost and it is not selected in any of the final models. In all models,
mmonia is the second covariate selected and temperature is
he third covariate selected (Table 3). Adding density depend-
nce (models JreLreR and JreLreBH) results in more support for
acramento River runoff over Napa River runoff, and over the

ther covariates in general, when comparing single covariate
odels. Using observation error only for juveniles and no process

rror (model J-L- -; Table 1) creates greater differences in the

3 Maunder, M.N. and Deriso, R.B. 2013. Evaluation of factors impacting longfin
melt – summary analysis. Unpublished QRA contract report. 9 pp. http://new.
aydeltalive.com/projects/7012
Likelihood Random effect
for both A and J

Beverton–Holt 16 and 17

likelihood between covariates and gives increased relative support
to temperature and ammonia.

The likelihood values from the log-linear model (model J/A- -L-)
and the exponential model (model J- -L-) are identical as expected
(Table 3). The results from the log-linear model with observation
error (model J/ArereL-), which implies both observation and pro-
cess error, and the exponential model with both observation and
process error (model JreLre-) are identical despite the likelihood
and random effects representing different error components.

Adding observation error (e.g. compare model J- -L- with model
JreLre-) makes little difference in relative likelihoods (Table 3), but
changes the variables selected (Table 3). Sacramento River runoff is
selected in the first stage of the stepwise regression in place of Napa
River runoff when allowance is made for observation error. This is
in part because Napa River runoff and Sacramento River runoff are
highly correlated. The stepwise procedure also selects Napa River
runoff as a fourth covariate. However, if Sacramento River runoff is
dropped from the final model (that is the model chosen by the step-
wise procedure that includes both flow variables) the AICc drops by
2.58 units. The AICC for the model which only includes Napa River
runoff as the flow variable is 5.39 units lower than the model which
only includes Sacramento River run off as the flow variable (Fig. 3)
providing “definite” evidence of Napa River runoff over Sacramento
River runoff in models that do not include density-dependence;
evidence favors Napa River runoff over Sacramento River runoff in
all the various model configurations, but not as definitive as the
ones above (Table 3).

Ignoring process error and including observation error only
for the juvenile abundance (model J-L- -) leads to much greater
changes in the likelihood causing all covariates to be selected
except for those that are rejected because the coefficient has the
wrong sign.

The Ricker (model JreLreR) and Beverton–Holt (model JreL-
reBH) forms of density dependence lead to different results,
with the Beverton–Holt model including Napa River runoff as a
fourth covariate resulting in a better AICC, but it is only 1.65 units
lower than the Ricker model providing “no credible” evidence
to differentiate between the two forms of density dependence.
The AICC for the Beverton–Holt model is 4.19 units less than the
exponential model with observation error providing “definite”

evidence for density dependence. If the Sacramento outflow is
discarded from the Beverton–Holt model, the AICC is only 0.25
units less than the final model, and is only 1.21 units lower than
if Napa River runoff is not included and Sacramento runoff is
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ombination with other factors or in the presence of density
ependence. However, conducting analyses of all possible com-
inations can be computationally demanding. To reduce the
omputational time, Maunder and Deriso (2011) applied a strategy
hat evaluates two covariates at a time and uses AICc summed
ver all possible one and two covariate combinations to select a
ovariate that has general support. In contrast, Anderson et al.
2000) warn against testing all possible combinations unless

odel averaging is used. Practical advice is to ensure that covari-
tes included in the model have a priori support and that the
ramework of Maunder and Deriso (2011) is followed to identify
he life stage and the relationship to density dependence before
onducting an all combinations analysis. Results should be used
o rank models and provide an idea of the data based evidence
or alternative hypotheses rather than strict acceptance–rejection
ypothesis testing (Maunder and Deriso, 2011).

.4. Integrated analysis

We  illustrated how multiple life stages of a species, each with
heir own data sets, can be integrated into a population dynamics

odel. This is an elementary form of the contemporary inte-
rated analysis (also known as data assimilation), which attempts
o include all relevant data into a single analysis (e.g. Maunder,
003; Buckland et al., 2007; Schaub and Abadi, 2010; Maunder
nd Punt, 2013). Integrated analysis facilitates the propagation of
nformation and uncertainty, particularly when states are linked
rom one time period to the next in a population dynamics model.
or example, one life stage in the analysis of Maunder and Deriso
2011) did not have an abundance index until partway through the

odeling time frame and the processes related to this stage were
nformed by the indices of abundance for other stages. However, the
ears that the index was available for were enough to help deter-
ine which stages the covariates influenced. Similarly, Tenan et al.

2012) showed how integrating different types of data allowed for
he estimation of population processes not directly measured in the
eld. We  found that adding data and a covariate for survival from

uveniles to adults did not influence the support for the covariates
f survival from adults to juveniles. This is somewhat reassuring
ince the application had good data for all time periods and there-
ore it would not be desirable for the results of one stage to influence
hose of another. If process error was not modeled, the added data

ay  have inadvertently influenced the covariate selection. If the
ata were poor or missing for some time periods, then it would
e reasonable and desirable for data for one stage to influence the
ther stages.

.5. Model structure

The models we used to illustrate state-space models were
imple compared to those used in many real applications. Alter-
ative functions could be used to model the transition among
tages. For example, Maunder and Deriso (2011) used the three-
arameter Deriso–Schnute stock-recruitment model (Deriso,
980; Schnute, 1985) and also allowed the flexibility to implement
ovariates before or after density dependence. The covariates
ere included as simple log linear terms and there may  be more

ppropriate relationships between survival and covariates. For
xample there may  be a dome shaped relationship between
urvival and temperature, with lower survival at lower and higher
emperature or temperature may  interact with prey availability.
.6. Longfin smelt application

We  found that multiple factors and density dependence influ-
nced the survival of longfin smelt. The AICc was over four units
earch 164 (2015) 102–111

higher for the Beverton–Holt model compared to the exponential
model suggesting there is “definite” evidence for density depend-
ence. The level of evidence is less if the models with Napa River
flow are used. We  also found that flow, ammonia, and temperature
were consistently supported by the data for longfin smelt. Thomson
et al. (2010) found that X2, which is related to flow, and water clarity
explained longfin abundance. Mac  Nally et al. (2010) also found that
X2 explained longfin abundance, but in addition found a correlation
with prey species. Among candidate flow variables, we did not find
X2, OMR  flow, or the two  outflow threshold variables in supple-
mental Table 1 to be important covariates in our initial screening
after the inclusion of flow variables that had higher support in the
data.
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