Short Update on Two Issues Discussed at Last Meeting

Two Issues

1. Are the turbidity predictions for water year 2002 too low in the south Delta?
2. What approach does the UnTRIM model use to estimate inflows into CCFB and how might that approach affect the ratio of Delta Smelt entrained between the CVP and SWP?

S ecchi Depth vs Meas ured Turbidity

(based on FMWT data 2009-11 and SKT data 2011-12 after trimming)

Fig 5 from 2002 Turbidity Validation Report by Bever \& MacWilliams (July, 2016)

Fig 6 from 2002 Turbidity Validation Report by Bever \& MacWilliams (July, 2016)

Relationship between turbidity and SSC at different locations throughout the Delta based on USGS measurements between 2010 and 2015

Fig 2 from 2002 Turbidity Validation Report by Bever \& MacWilliams (July, 2016)

Two Issues

1. Are the turbidity predictions for water year 2002 too low in the south Delta?
2. What approach does the UnTRIM model use to estimate inflows into CCFB and how might that approach affect the ratio of Delta Smelt entrained between the CVP and SWP?

Two-Hourly Salvage Data and Flows during Water Year 2002

Flow, in cfs

Flow Pumped (Pflow) in cfs at the SWP (green, solid); CVP (magenta, dashed)

Tidal (15-min) tidal flows in Old R at Bacon Island, in cfs

Ereliminary Results for the

 \rightarrow CAMT Entrainment Study III, Estimating Adult Delta Smelt Proportional Losses by P. Smith
Collaborators

John Donovan, USGS
Bernie McNamara, USGS

Ed Gross, RMA
Josh Korman, Ecometric

Presentation to CAMT Delta Smelt Scoping Team, Monday Dec:4,2017 State Water Contractors Office, 1121 L Street, Suite 1050

1. Estimating daily adult entrainment for 2002-2016
2. Estimating monthly adult populations from the SKTS data for 2002-2016
3. Estimating (a curve for) natural mortality, a reference population (Dec 15), and the adult proportional entrainment loss for each water year from 2002-2016
4. Estimating adult proportional entrainment losses for the pre-SKTS years (1981-2001)

- This involves using hydrodynamic and particletracking modeling to derive the "expansion factors" ($\theta_{\text {SWP }}, \theta_{\text {CVP }}$) for estimating daily entrainment from the daily salvage data.
- We are using an alternative modeling approach from the full production runs. This alternative approach uses abundance data taken directly form the January SKT Survey data as the initial condition for the model and only simulates entrainment for one month.
- So far we have only done water year 2002 using this approach.

Period of Salvage Used to Estimate Theta Values

Date of SKT Survey $1 \longrightarrow$ I

Days from Dec 31, 2001 at 0:00 hrs

Observed Delta Smelt Abundance by Region Jan 7, 2002 SKT Survey

Total Abundance (Population)

Observed Delta Smelt Density by Subregion Jan 7, 2002 SKT Survey

Density shown in units of mean number of Delta Smelt per $10,000 \mathrm{~m}^{3}$ of water

Observed Delta Smelt Abundance by Subregion Jan 7, 2002 SKT Survey Total Abundance (Population) Estimate $=848,745$

Note: SKT stations 801 and 804 were sampled on Jan 9. All other stations within boundaries were sampled on Jan 7.

Observed Delta Smelt Abundance
by Subregion Jan 7, 2002 SKT Survey

Observed Delta Smelt Abundance by Subregion Jan 7, 2002 SKT Survey

- This was relatively straightforward once Delta volumes were computed. Populations were estimated monthly during Jan-May by expanding the CPUE of Delta Smelt measured by the SKTS. A spatially stratified approach was used in which the mean CPUE per trawl for 15 or 16 strata (regions) of Delta Smelt habitat were expanded by the volume of each strata over the surface 4 meters and summed to get an index of total abundance (population) for each monthly survey.
- We have so far done no statistical processing to account for sampling error and to quantify the uncertainty in population estimates from that error.

San Joaquin River near Antioch

Sacramento River
and
Steamboat Slough

Concord

20 Miles
1

SKT Summary Population Table for 15 CAMT Regions (before sampling began in the Sacramento Deep Water Ship Channel)

ID	Yr	Mon	mid_date	napa	carq	wsuisb	msuisb	smarsh	chipps	sac_sherm	sac_rio	cache_dwsc	sac_steam	sji_ ant	cdelta	mok	sjr_stk	sdelta	TotalPop	Comment
1	2002	Jan	8-Jan	0	32,958	12,515	75,239	287,083	44,706	18,401	0	55,395	0	139,685	134,004	3,440	0	45,319	848,745	
2	2002	Feb	5-Feb	0	13,878	15,086	9,564	548,501	0	56,710	4,353	7,021	1,413	166,681	192,128	0	0	0	1,015,335	
3	2002	Mar	5-Mar	4,146	0	5,884	0	172,266	0	160,495	168,578	97,305	1,760	8,791	52,089	5,262	0	0	676,576	
4	2002	Apr																		No Survey
5	2002	May																		No Survey
6	2003	Jan																		No Survey
7	2003	Feb	19-Feb	0	0	0	124,049	70,221	59,788	16,648	10,210	439,023	0	14,897	81,045	0	0	4,170	820,051	
8	2003	Mar	18-Mar	0	0	65,168	62,405	36,648	59,428	74,164	146,899	508,170	19,850	7,329	9,472	8,765	0	0	998,298	
9	2003	Apr	15-Apr	0	0	7,931	0	0	0	53,402	0	31,126	4,378	3,608	80,582	0	0	0	181,027	
10	2003	May	14-May	0	0	10,526	40,430	0	0	6,900	0	75,004	0	5,891	0	1,183	0	0	139,934	
11	2004	Jan	13-Jan	4,337	0	0	13,686	348,110	27,155	3,452	0	9,905	0	188,142	333,151	1,256	0	12,458	941,652	
12	2004	Feb	11-Feb	0	0	0	19,204	259,480	4,367	190,878	41,656	6,524	0	58,741	156,959		0	0	737,809	
13	2004	Mar	10-Mar	0	0	18,317	68,202	162,810	25,980	109,459	0	0	0	9,903	203,161	5,076	2,723	0	605,631	
14	2004	Apr	$6-\mathrm{Apr}$	0	0	0	10,468	0	4,372	128,327	4,148	16,221	1,387	21,840	107,342	0	0	12,057	306,162	
15	2004	May	5-May	0	0	0	0	0	0	3,190	5,474	13,039	0	15,859	12,425	0	0	0	49,987	
16	2005	Jan	26-Jan	0	0	17,206	139,695	169,271	36,352	177,482	6,827	102,203	0	0	47,201	2,199	0	7,975	706,411	

SKT Summary Population Table for 16 CAMT Regions

 (after sampling began in the Sacramento Deep Water Ship Channel)| ID | Yr | Mon | mid_date | napa | carq | wsuisb | msuisb | smarsh | chipps | sac_sherm | sac_rio | cache | sac_steam | sji_ ant | cdelta | mok | sir_stk | sdelta | sdwsc | TotPop | Comment |
| :---: |
| 1 | 2005 | Feb | 23-Feb | 13,345 | 0 | 0 | 16,281 | 207,789 | 9,568 | 39,751 | 0 | 76,930 | 0 | 3,014 | 0 | 0 | 0 | 0 | 117,301 | 483,979 | |
| 2 | 2005 | Mar | 23-Mar | 0 | 0 | 0 | 7,478 | 6,789 | 12,719 | 21,336 | 0 | 20,087 | 899 | 0 | 0 | 0 | 0 | 0 | 14,233 | 83,541 | |
| 3 | 2005 | Apr | 19-Apr | 0 | 0 | 5,678 | 0 | 1,890 | 4,315 | 11,383 | 9,057 | 8,303 | 0 | 0 | 0 | 0 | 0 | 0 | 24,939 | 65,565 | |
| 4 | 2005 | May | | | | | | | | | | | | | | | | | | | No Survey |
| 5 | 2006 | Jan | 18-Jan | 25,342 | 10,099 | 13,407 | 0 | 38,851 | 8,435 | 0 | 0 | 5,619 | 0 | 9,341 | 5,073 | 0 | 0 | 0 | 9,423 | 125,590 | |
| 6 | 2006 | Feb | 15-Feb | 48,186 | 10,893 | 9,167 | 85,016 | 47,368 | 12,684 | 0 | 4,144 | 26,970 | 0 | 4,614 | 0 | 1,808 | 0 | 14,154 | 22,804 | 287,808 | |
| 7 | 2006 | Mar | 15-Mar | 53,208 | 0 | 5,408 | 18,972 | 8,960 | 18,340 | 6,319 | 0 | 34,838 | 0 | 0 | 12,504 | 995 | 0 | 0 | 77,198 | 236,742 | |
| 8 | 2006 | Apr | 11-Apr | 6,460 | 0 | 0 | 0 | 1,862 | 3,909 | 6,584 | 0 | 0 | 0 | 4,324 | 4,747 | 913 | 0 | 5,361 | 166,879 | 201,039 | |
| 9 | 2006 | May | 9-May | 0 | 0 | 0 | 12,804 | 0 | 10,683 | 0 | 0 | 1,936 | 0 | 3,480 | 0 | 1,351 | 0 | 0 | 0 | 30,254 | |
| 10 | 2007 | Jan | 9-Jan | 0 | 0 | 0 | 0 | 96,040 | 62,541 | 78,904 | 8,299 | 38,336 | 0 | 14,419 | 27,161 | 0 | 0 | 0 | 19,728 | 345,428 | |
| 11 | 2007 | Feb | 7-Feb | | 0 | 0 | 0 | 27,148 | 61,870 | 124,389 | 0 | 2,444 | 0 | 0 | 0 | 0 | 0 | 0 | 185,642 | 401,493 | |
| 12 | 2007 | Mar | 7-Mar | 0 | 0 | 0 | 14,029 | 75,197 | 35,610 | 21,267 | 0 | 15,683 | 0 | 0 | 0 | 0 | 0 | 0 | 77,565 | 239,351 | |
| 13 | 2007 | Apr | 3-Apr | 0 | 0 | 0 | 0 | 8,905 | 11,827 | 34,246 | 3,576 | 5,720 | 0 | 0 | 0 | 0 | 0 | 0 | 403,530 | 467,804 | |
| 14 | 2007 | May | 2-May | 0 | 0 | 0 | 0 | 6,072 | 0 | 8,339 | 3,937 | 0 | 0 | 0 | | 0 | | | 133,625 | 151,973 | |
| 15 | 2008 | Jan | 9-Jan | 0 | 15,079 | 0 | 77,116 | 7,146 | 41,047 | 325,854 | 4,015 | 23,351 | 0 | 0 | 6,539 | 0 | 0 | 0 | 131,879 | 632,026 | |
| 16 | 2008 | Feb | 6-Feb | | 0 | 0 | 0 | 0 | 12,007 | 6,173 | 0 | 33,169 | 0 | 0 | 5,436 | 1,381 | 0 | 0 | 133,208 | 191,374 | |
| 17 | 2008 | Mar | 12-Mar | 0 | 0 | 0 | 0 | 8,212 | 5,063 | 4,344 | 4,743 | 12,443 | 0 | 0 | 11,741 | 0 | 0 | 0 | 187,169 | 233,715 | |
| 18 | 2008 | Apr | 9-Apr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 29,423 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 59,285 | 88,708 | |
| 19 | 2008 | May | 7-May | 0 | 0 | 0 | 0 | 0 | 0 | 9,838 | 9,602 | 2,278 | 0 | 0 | 0 | 0 | 0 | 0 | 27,911 | 49,629 | |
| 20 | 2009 | Jan | 14-Jan | 0 | 0 | 0 | 0 | 95,903 | 74,714 | 471,861 | 72,022 | 0 | 0 | 0 | 12,489 | 0 | 0 | 0 | 967,895 | 1,694,884 | |
| 21 | 2009 | Feb | 10-Feb | 0 | 0 | 0 | 0 | 72,134 | 0 | 89,115 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39,798 | 201,047 | |
| 22 | 2009 | Mar | 17-Mar | 0 | 0 | 0 | 0 | 6,133 | 7,685 | 4,459 | 0 | 2,926 | 0 | 0 | 36,485 | 1,451 | 0 | 0 | 170,665 | 229,804 | |
| 23 | 2009 | Apr | 14-Apr | 0 | 0 | 0 | 0 | 0 | 0 | 22,091 | 0 | 5,635 | 0 | 0 | 16,942 | 0 | 0 | 0 | 118,594 | 163,262 | |
| 24 | 2009 | May | 12-May | 0 | 0 | 0 | 0 | 4,537 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33,652 | 38,189 | |
| 25 | 2010 | Jan | 12-Jan | 0 | 0 | 0 | 7,941 | 128,479 | 17,093 | 70,710 | 0 | 11,543 | 0 | 0 | 0 | 0 | 0 | 0 | 21,169 | 256,935 | |
| 26 | 2010 | Feb | 9-Feb | 0 | 0 | 7,349 | 0 | 76,415 | 5,633 | 13,829 | 0 | 26,946 | 0 | 0 | 23,939 | 0 | 0 | 0 | 9,355 | 163,466 | |
| 27 | 2010 | Mar | 9-Mar | 0 | 0 | 0 | 0 | 3,501 | 21,089 | 50,080 | 7,872 | 54,458 | 0 | 0 | 0 | 0 | 0 | 0 | 374,152 | 511,152 | |
| 28 | 2010 | Apr | 6-Apr | 0 | 0 | 0 | 0 | 0 | 3,741 | 32,095 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 291,857 | 327,693 | |
| 29 | 2010 | May | 4-May | 0 | 0 | 0 | 0 | 0 | 0 | 7,401 | 0 | 4,234 | 0 | 0 | 0 | 0 | 0 | 0 | 4,582 | 16,217 | |
| 30 | 2011 | Jan | 11-Jan | 0 | 0 | 0 | 6,505 | 30,075 | 3,228 | 28,530 | 47,080 | 8,414 | 0 | 0 | 9,901 | 0 | 2,588 | 8,693 | 817,874 | 962,888 | |
| 31 | 2011 | Feb | 9-Feb | 0 | 0 | 0 | 6,087 | 101,589 | 15,794 | 3,406 | 0 | 9,829 | 0 | 0 | 4,810 | 0 | 2,458 | 0 | 292,824 | 436,797 | |
| 32 | 2011 | Mar | 8 -Mar | 0 | 0 | 0 | 6,118 | 41,418 | 6,789 | 17,906 | 3,745 | 8,014 | 1,216 | 0 | 0 | 0 | 0 | 0 | 55,664 | 140,870 | |
| 33 | 2011 | Apr | 5-Apr | 0 | 0 | 0 | 21,483 | 7,384 | 3,650 | 0 | 0 | 2,172 | 0 | 0 | 12,587 | 0 | 0 | 0 | 140,089 | 187,365 | |
| 34 | 2011 | May | 3-May | 0 | 0 | 0 | 23,035 | 0 | 0 | 5,895 | 0 | 8,143 | 0 | 0 | 0 | 1,871 | 0 | 0 | 47,170 | 86,114 | |
| 35 | 2012 | Jan | 18-Jan | 0 | 0 | 0 | 157,992 | 152,867 | 379,920 | 85,036 | 6,340 | 27,620 | 0 | 75,147 | 0 | 0 | 0 | 0 | 733,897 | 1,618,819 | |
| 36 | 2012 | Feb | 14-Feb | 6,677 | 0 | 10,772 | 18,164 | 99,282 | 399,405 | 94,477 | 0 | 3,894 | 0 | 3,315 | 75,643 | 0 | 0 | 0 | 235,711 | 947,340 | |
| 37 | 2012 | Mar | 6-Mar | | | | | | 0 | 23,422 | 72,871 | 838,819 | 0 | 28,467 | 0 | 0 | 0 | 0 | 135,272 | 1,098,851 | |
| 38 | 2012 | Apr | 3-Apr | 0 | 11,766 | 30,173 | 156,219 | 101,565 | 20,976 | 55,339 | 9,048 | 62,812 | 0 | 12,145 | 62,064 | 1,774 | 0 | 0 | 44,145 | 568,026 | |
| 39 | 2012 | May | 2-May | 0 | 10,455 | 12,782 | 64,843 | 3,624 | 36,754 | 39,383 | 13,560 | 138,755 | 0 | 15,274 | | 0 | | | 119,401 | 454,831 | |
| 40 | 2013 | Jan | 8-Jan | 0 | 0 | 0 | 19,548 | 40,101 | 11,604 | 3,210 | 9,444 | 18,390 | 0 | 0 | 71,213 | 1,274 | 0 | 0 | 134,576 | 309,360 | |
| 41 | 2013 | Feb | 5-Feb | 0 | 0 | 0 | 0 | 93,961 | 5,679 | 0 | 0 | 0 | 0 | 0 | 3,868 | 0 | 0 | 0 | 236,520 | 340,028 | |
| 42 | 2013 | Mar | 5-Mar | 0 | 0 | 0 | 0 | 20,406 | 21,244 | 88,280 | 0 | 0 | 0 | 0 | 48,007 | 0 | 0 | 0 | 104,989 | 282,926 | |
| 43 | 2013 | Apr | 3-Apr | 0 | 0 | 0 | 0 | 3,899 | 0 | 28,859 | 0 | 6,381 | 0 | 2,851 | 24,197 | 0 | 0 | 0 | 16,072 | 82,259 | |
| 44 | 2013 | May | 2-May | 0 | 0 | 0 | 0 | 6,676 | | 4,688 | 2,660 | 1,982 | 0 | | | | | | 18,381 | 34,387 | |
| 45 | 2014 | Jan | 14-Jan | 0 | 0 | 0 | 0 | 187,321 | 20,893 | 94,660 | 6,877 | 17,182 | 0 | 37,423 | 0 | 0 | 0 | 0 | 4,500 | 368,856 | |
| 46 | 2014 | Feb | 11-Feb | 0 | 0 | 0 | 0 | 45,253 | 0 | 10,780 | 3,466 | 11,863 | 7,616 | 22,353 | 0 | 1,419 | 0 | 0 | 9,175 | 111,925 | |
| 47 | 2014 | Mar | 11-Mar | 0 | 0 | 0 | 0 | 42,277 | 0 | 14,603 | 10,049 | 25,727 | 0 | 0 | 7,316 | 0 | 0 | 0 | 171,284 | 271,256 | |
| 48 | 2014 | Apr | 8-Apr | 0 | 0 | 0 | 6,323 | 3,045 | 0 | 3,010 | 2,941 | 2,288 | 0 | 14,275 | 0 | 0 | 0 | 0 | 80,780 | 112,662 | |
| 49 | 2014 | May | 6-May | 0 | 0 | 0 | 0 | 1,536 | 0 | 3.653 | 0 | 0 | 0 | 0 | 9,217 | 0 | 0 | 0 | 81,594 | 96,000 | |
| 50 | 2015 | Jan | 13-Jan | 0 | 0 | 0 | 0 | 13,015 | 5,344 | 25,317 | 0 | 0 | 0 | 3,822 | 28,139 | 0 | 0 | 0 | 35,205 | 110,842 | |
| 51 | 2015 | Feb | 10-Feb | 0 | 0 | 0 | 0 | 41,298 | 0 | 133,221 | 6,838 | 6,719 | 0 | 4,880 | 59,362 | 0 | 0 | 6,356 | 7,894 | 266,568 | |
| 52 | 2015 | Mar | 10-Mar | 0 | 0 | 0 | 0 | 1,516 | 0 | 0 | 10,244 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6,869 | 18,629 | |
| 53 | 2015 | Apr | 7-Apr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3,212 | 3,212 | |
| 54 | 2015 | May | 5-May | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3,665 | 0 | 0 | 0 | 0 | 0 | 0 | 29,122 | 32,787 | |
| 55 | 2016 | Jan | 12-Jan | 0 | 0 | 0 | 0 | 2,236 | 0 | 6,431 | 11,910 | 2,372 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22,949 | |
| 56 | 2016 | Feb | 9-Feb | 0 | 0 | 0 | 0 | 2,721 | 0 | 0 | 0 | 3,582 | 0 | 3,358 | 5,355 | 0 | 0 | 0 | 4,875 | 19,891 | |
| 57 | 2016 | Mar | 8-Mar | 0 | 0 | 0 | 0 | 1,550 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16,762 | 18,312 | |
| 58 | 2016 | Apr | 5-Apr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57,735 | 57,735 | |
| 59 | 2016 | May | 3-May | | 0 | 0 | 0 | 6,344 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 115,184 | 121,528 | |

Jan 2004 SKT Population Estimates

SKT Unadjusted Delta Smelt Populations by Month

Note: The percentages shown are the percentage of the total monthly population calculated to be within the Sacramento Deep Water Ship Channel

Monthly values of CPUE at SKT Station 719

Frequency of Delta Smelt CPUE at SKT Station 719
 Catch Per Unit Effort (CPUE) in Bins of 10

Monthly values of CPUE at SKT Station 719

Frequency of Delta Smelt CPUE at SKT Station 719

Catch Per Unit Effort (CPUE) in Bins of 10

Fourteen pairs of 5-minute consecutive tows from the SKTS at Station 719 in the Sacramento Deep Water Ship Channel

Sample Date		Survey No.	Station Code	Sample Start Time	Sample End Time		$\begin{aligned} & \text { EC } \\ & \text { Top } \end{aligned}$	Water Temp	Turb	Sample Volume	CPUE
	Catch					Secchi					
18-Mar-09	29	3	719	9:35	9:40	50	50	13.3		3,572	81.2
18-Mar-09	21	3	719	9:49	9:53	50	50	13.3		3,522	59.6
12-May-09	3	5	719	10:13	10:23	43	573	18.8		2,925	10.3
12-May-09	6	5	719	10:26	10:31	43	573	18.8		3,426	17.5
13-Jan-10	3	1	719	10:17	10:23	40	511	9.5		2,908	10.3
13-Jan-10	2	1	719	10:31	10:37	40	511	9.5		2,797	7.2
10-Feb-10	1	2	719	9:26	9:31	35	505	10.7		2,616	3.8
10-Feb-10	1	2	719	9:41	9:46	35	505	10.7		2,567	3.9
5-May-10	1	5	719	9:08	9:13	33	505	18	20	5,407	1.8
5-May-10	1	5	719	9:20	9:25	33	505	18		5,178	1.9
6-Apr-11	2	4	719	10:15	10:20	46	670	14.9	18	4,836	4.1
6-Apr-11	45	4	719	10:25	10:30	46	670	14.9	18	4,037	111.5
4-May-11	8	5	719	9:56	10:01	38	537	17	25	3,979	20.1
4-May-11	7	5	719	10:08	10:13	38	537	17	25	3,720	18.8
15-Feb-12	4	2	719	11:06	11:11	36	386	10.6	31	4,136	9.7
15-Feb-12	64	2	719	11:20	11:25	36	386	10.6	31	3,463	184.8
8-Mar-12	30	3	719	11:41	11:46	25	554	11.9	40	3,667	81.8
8-Mar-12	11	3	719	11:54	11:59	25	554	11.9	40	3,689	29.8
2-May-12	21	5	719	10:30	10:35	32	646	18.8	25	3,033	69.2
2-May-12	8	5	719	10:15	10:20	32	646	18.8	25	2,731	29.3
9-Jan-13	17	1	719	11:07	11:12	22	469	8.1	74	3,465	49.1
9-Jan-13	29	1	719	11:23	11:28	22	469	8.1	74	4,678	62.0
6-Feb-13	31	2	719	9:46	9:51	30	529	9.5	42	3,738	82.9
6-Feb-13	46	2	719	9:31	9:36	30	529	9.5	42	4,098	112.2
6-Mar-13	20	3	719	9:14	9:19	70	428	12.2	17	2,929	68.3
6-Mar-13	7	3	719	9:26	9:31	70	428	12.2	17	3,815	18.3
11-Mar-15	1	3	719	10:56	11:01	49	451	15.3	16	3,597	2.8
11-Mar-15	1	3	719	11:09	11:14					3,463	2.9

- This was accomplished by fitting a daily population model with exponential natural mortality to the five monthly population estimates for each year of the Spring Kodiak Trawl Survey.
- The model accounts for daily entrainment losses estimated from the salvage data and estimates the proportional entrainment loss (PEL).
- The fitting was done using the Java Apache Commons mathematical library.

The delta smelt population will be modeled by assuming that the population declines over time as a function of natural mortality and entrainment.

$$
\Delta P=P_{0}\left(1-e^{-k \Delta t}\right)+E
$$

Equation to Calculate Proportional Entrainment Loss

$$
P_{l}=1-\prod_{d=1}^{D}\left(1-\frac{E_{d}}{P_{d}}\right)
$$

where
$P_{l}=$ Proportional loss for the water year
$d=$ day
$D=$ total number of days
$E_{d}=$ Number of delta smelt entrained on day d
$P_{d}=$ Population on day d
$\Pi()=$ Mathematical operator for the product of a sequence. (Note: The product operator is analogous to the use of capital letter Sigma, $\Sigma(\quad$), used as the summation symbol)

Relationship between the number of adult delta smelt alive and time for a population that has a constant proportion dying per unit of time

Average Natural Mortality Coefficient (k) by Month (2002-2007+sdwsc)

Average Natural Mortality Coefficient (k) by Month (2002-2007+sdwsc)

Average Natural Mortality Coefficient (k) by Month (all years+sdwsc)

Logistic Function for Variation of Natural Mortality in Time

$$
k(t)=k_{1}+\frac{k_{2}-k_{1}}{1+e^{-a\left(t-t_{0}\right)}}
$$

where
k_{1} is the minimum value (lower asymptote) of $k(t)$ k_{2} is the maximum value (upper asymptote) of $k(t)$
$t_{0}=$ the t-value of the sigmoid's midpoint
$a=$ steepness parameter $=0.05$

Individual k-curves for each year, with populations for Jan 2009, Jan 2011, and Jan 2012 adjusted down

P0s and PELs for model run using a single set of k-values (fit to years 20022007) and with the populations for Jan 2009, Jan 2011, and Jan 2012 adjusted downward (as the mean CPUE of the following three months.)

Lowest RMS = 133045.4	
Parameters of Closest Fit	
PO_2002 $=1,271,898$	2002 Proportional Entrainment Loss $=0.268$
P0_2003 $=1,835,383$	2003 Proportional Entrainment Loss $=0.393$
P0_2004 $=1,136,154$	2004 Proportional Entrainment Loss $=0.383$
P0_2005 $=648,815$	2005 Proportional Entrainment Loss $=0.156$
P0_2006 $=279,054$	2006 Proportional Entrainment Loss $=0.061$
P0_2007 $=449,575$	2007 Proportional Entrainment Loss $=0.016$
P0_2008 $=423,501$	2008 Proportional Entrainment Loss $=0.041$
P0_2009 $=537,558$	2009 Proportional Entrainment Loss $=0.002$
P0_2010 $=389,073$	2010 Proportional Entrainment Loss $=0.011$
P0_2011 $=378,360$	2011 Proportional Entrainment Loss $=0.007$
P0_2012 $=1,261,658$	2012 Proportional Entrainment Loss $=0.009$
P0_2013 $=376,409$	2013 Proportional Entrainment Loss $=0.030$
P0_2014 $=307,757$	2014 Proportional Entrainment Loss $=0.0$
P0_2015 = 160,626	2015 Proportional Entrainment Loss $=0.016$
P0_2016 = 34,860	2016 Proportional Entrainment Loss $=0.016$

K1 = 0.002, K2 = 0.173, midTransK = 130.0 days, Theta(CVP) $=35$, Theta(SWP)=50

4. Estimating adult proportional entrainment losses for the pre-SKTS years (1981-2001)

- Populations for the water years 1981-2001 must be estimated differently from those of water years 2002-2016 because no data from the SKTS are available. For each of these water years, we will estimate a December $15^{\text {th }}$ population using a regression curve relating the estimates we derived for P0 from the SKTS data to the previous FMWT index. The population model will then be used with an assigned natural mortality curve and theta values to estimate the PEL using the salvage data.

Previous FMWT Index vs PO (power fit)

Various Fitted Equations to Estimate Population Size (PO) from FMWT Index

Note: PO is population size on Dec $15^{\text {th }}$ of water year

Various Fitted Equations to Estimate Population Size (PO) from FMWT Index

Note: PO is population size on Dec $15^{\text {th }}$ of water year

All Years (water years 1981-2016)

Note: P0s of pre-SKT years determined with the PolyRatio(1,1),Linear equation

PEL Estimates for Early Years (1981-2001)

$$
1981 \text { Proportional Entrainment Loss }=0.719
$$

$$
1982 \text { Proportional Entrainment Loss }=0.671
$$

$$
\longleftarrow
$$

$$
1983 \text { Proportional Entrainment Loss }=0.186
$$

$$
1984 \text { Proportional Entrainment Loss }=0.192
$$

$$
1985 \text { Proportional Entrainment Loss }=0.158
$$

$$
1986 \text { Proportional Entrainment Loss }=0.210
$$

$$
\longleftarrow
$$

$$
1987 \text { Proportional Entrainment Loss }=0.086
$$

$$
1988 \text { Proportional Entrainment Loss }=0.506
$$

1989 Proportional Entrainment Loss $=0.132$ 1990 Proportional Entrainment Loss $=0.147$ 1991 Proportional Entrainment Loss $=0.134$ 1992 Proportional Entrainment Loss $=0.037$ 1993 Proportional Entrainment Loss $=0.219$$\longleftarrow$ 1994 Proportional Entrainment Loss $=0.005$ 1995 Proportional Entrainment Loss $=0.151$ 1996 Proportional Entrainment Loss $=0.088$
1997 Proportional Entrainment Loss $=0.139$
1998 Proportional Entrainment Loss $=0.035$
1999 Proportional Entrainment Loss $=0.071$
2000 Proportional Entrainment Loss $=0.211$
2001 Proportional Entrainment Loss $=0.165$

P0s were determined with the PolyRatio(1,1),Linear equation

PEL during POD

2000 Proportional Entrainment Loss $=0.211$ 2001 Proportional Entrainment Loss $=0.165$ 2002 Proportional Entrainment Loss $=0.268$ 2003 Proportional Entrainment Loss $=0.393$
2004 Proportional Entrainment Loss $=0.383$
2005 Proportional Entrainment Loss $=0.156$
2006 Proportional Entrainment Loss $=0.061$

PEL Estimates for Early Years (1981-2001)

1981 Proportional Entrainment Loss $=0.719,0.440$
1982 Proportional Entrainment Loss $=0.671,0.627$
1983 Proportional Entrainment Loss $=0.186$
1984 Proportional Entrainment Loss $=0.192,0.117$
1985 Proportional Entrainment Loss $=0.158,0.069$
1986 Proportional Entrainment Loss $=0.210$
1987 Proportional Entrainment Loss $=0.086,0.050$
1988 Proportional Entrainment Loss $=0.506,0.479$
1989 Proportional Entrainment Loss $=0.132,0.090$
1990 Proportional Entrainment Loss $=0.147,0.042$
1991 Proportional Entrainment Loss $=0.134,0.080$
1992 Proportional Entrainment Loss $=0.037$
1993 Proportional Entrainment Loss $=0.219$
1994 Proportional Entrainment Loss $=0.005$
1995 Proportional Entrainment Loss $=0.151$
1996 Proportional Entrainment Loss $=0.088$
1997 Proportional Entrainment Loss $=0.139,0.092$
1998 Proportional Entrainment Loss $=0.035$
1999 Proportional Entrainment Loss $=0.071,0.049$
2000 Proportional Entrainment Loss $=0.211,0.187$
2001 Proportional Entrainment Loss $=0.165,0.148$
Second number is if salvage after March 31 is neglected

Summary of PELs for Pre-SKT Years

	Calendar Year of FMWT Survey		Results us PolyRatio(1,	g combined Linear Model
Water Year		FMWT Index	P0	PEL
1981	1980	1654	5,999,922	0.719069847
1982	1981	374	1,851,186	0.671448442
1983	1982	333	1,718,297	0.186122349
1984	1983	132	1,066,343	0.192398068
1985	1984	182	1,228,875	0.157707487
1986	1985	110	980,879	0.210133919
1987	1986	212	1,326,111	0.085772276
1988	1987	280	1,546,513	0.506156117
1989	1988	174	1,202,946	0.132223919
1990	1989	366	1,825,256	0.147403616
1991	1990	364	1,818,774	0.133623527
1992	1991	689	2,872,164	0.036645003
1993	1992	156	1,144,604	0.217467475
1994	1993	1078	4,132,991	0.005160228
1995	1994	102	945,228	0.151450042
1996	1995	899	3,552,816	0.088357325
1997	1996	127	1,048,362	0.139372723
1998	1997	303	1,621,061	0.035109473
1999	1998	420	2,000,281	0.070610048
2000	1999	864	3,439,374	0.210900677
2001	2000	756	3,089,324	0.164826773

Summary of PELs for SKT Years

	Calendar Year of				
Water Year	FMWT Survey	FMWT Index	PO	PEL	
2002	2001	603	$1,271,898$	0.267645296	
2003	2002	139	$1,835,383$	0.392969774	
2004	2003	210	$1,136,154$	0.38327923	
2005	2004	74	648,815	0.155955782	
2006	2005	26	279,054	0.061253572	
2007	2006	41	449,575	0.015580888	
2008	2007	28	423,501	0.04068937	
2009	2008	23	537,558	0.002434561	
2010	2009	17	389,073	0.010787269	
2011	2010	29	378,360	0.006972808	
2012	2011	343	$1,261,658$	0.008687318	
2013	2012	42	376,409	0.030349895	
2014	2013	18	307,757	0	
2015	2014	9	160,627	0.016420609	
2016	2015	7	34,860	0.016309839	

End

