Appendix 5A Section B: CALSIM II and DSM2 Modeling Simulations and Assumptions

Appendix 5A Section B: CALSIM II and DSM2 Modeling Simulations and Assumptions

Outline

B.1.	Introduction						
B.2.	Assumptions for Existing Conditions and No Action Alternative Model Simulations						
	B.2.1. Existing Conditions						
	B.2.2. No Action Alternative Late Long-Term						
	B.2.3. No Action Alternative Early Long-Term						
B.3.	Assumptions for Alternatives Model Simulations						
	B.3.1. Alternative 1A, 1B, 1C						
	B.3.2. Alternative 2A, 2B, 2C						
	B.3.3. Alternative 3						
	B.3.4. Alternative 4 Decision Tree Scenarios H1, H2, H3 and H4						
	B.3.5. Alternative 5						
	B.3.6. Alternative 6A, 6B, 6C						
	B.3.7. Alternative 7						
	B.3.8. Alternative 8						
	B.3.9. Alternative 9						
	B.3.10. Alternative 2D						
	B.3.11. Alternative 4A						
	B.3.12. Alternative 5A						
B.4.	Time Frames of Evaluation						
B.5.	Existing Conditions and No Action Alternatives Assumptions Tables						
B.6.	Long-Term Water Operations Assumptions for BDCP Alternatives						
B.7.	American River Demands						

B.8. SWP Variable Demands

- B.9. Delivery Specifications
- B.10. USFWS RPA Implementation
- B.11. NMFS RPA Implementation
- B.12. References

1 B.1. Introduction

- 2 As described in Section A of this appendix, modeling was prepared for evaluation of the
- 3 Alternatives considered in the Bay Delta Conservation Plan/California WaterFix
- 4 Environmental Impact Report/Environmental Impact Statement (BDCP/CWF EIR/EIS).
- 5 This section describes the assumptions for the CALSIM II and DSM2 modeling of the
- 6 Existing Conditions, No Action Alternative and other Alternatives.
- 7 The following model simulations were prepared as the basis of evaluating the impacts of the8 other alternatives:
- 9 1. Existing Conditions
- 10 2. No Action Alternative at Late Long-Term (LLT)
- 11 3. No Action Alternative at Early Long-Term (ELT)
- 12 The following model simulations of alternatives were prepared:
- 13 1. Alternative 1A, 1B, 1C Dual Conveyance with Intakes 1 through 5
- 14 2. Alternative 2A, 2B, 2C Dual Conveyance with Intakes 1, 2, 3, 6 and 7
- 15 3. Alternative 3 Dual Conveyance with Intakes 1 and 2
- 16 4. Alternative 4 Dual Conveyance with Intakes 2, 3 and 5
- 17 5. Alternative 5 Dual Conveyance with Intake 1
- 18 6. Alternative 6A, 6B, 6C Isolated Conveyance with Intakes 1 through 5
- Alternative 7 Enhanced Aquatic Conservation Alternative (Dual Conveyance with Intakes 2, 3 and 5)
- 8. Alternative 8 SWRCB Criteria for Flow and Cold Water Pool Storage (Dual Conveyance with Intakes 2, 3 and 5)
- 23 9. Alternative 9 Separate Corridors
- 24 10. Alternative 2D Dual Conveyance with Intakes 1, 2, 3, 4 and 5
- 25 11. Alternative 4A Dual Conveyance with Intakes 2, 3, and 5
- 26 12. Alternative 5A Dual Conveyance with Intake 1
- 27 Existing Conditions and No Action Alternative modeling assumptions were developed
- 28 through a coordinated process with the Federal and State Lead Agencies to reflect the best
- 29 CALSIM II and DSM2 model representation of the Reasonable and Prudent Actions (RPAs)

- 1 in the 2008 Fish and Wildlife Service (FWS) and 2009 National Marine Fisheries Service
- 2 (NMFS) Biological Opinions (BO).
- 3 Alternative 1A, 1B and 1C modeling assumptions were developed under the guidance of the
- 4 BDCP Steering Committee in February 2010. Assumptions for Alternatives 2A, 2B, 2C, 3, 4,
- 5 5, 6A, 6B, 6C, 7 and 9 were developed by the BDCP EIR/EIS Lead Agencies based on the
- 6 assumptions for the Alternative 1. Alternative 8 assumptions were developed by the State
- 7 Water Resources Control Board (SWRCB) in collaboration with DWR.
- 8 The BDCP/CWF Recirculated Draft EIR/Supplemental Draft EIS (RDEIR/SDEIS) included
- 9 three new alternatives, Alternatives 4A, 2D, and 5A, to ensure a reasonable range of
- 10 alternatives was considered that adopt the alternative implementation strategy to achieve
- 11 federal and state endangered species act compliance using a shorter project implementation
- 12 period through the "Section 7" process under the federal ESA, and the "Section 2081(b)"
- 13 process under CESA, to provide additional options.

B.2. Assumptions for Existing Conditions and No Action Alternative Model Simulations

- 16 This section presents the assumptions used in developing the CALSIM II and DSM2 model
- 17 simulations of the Existing Conditions and No Action Alternative for use in the BDCP/CWF
- 18 EIR/EIS Alternatives evaluation.
- 19 These assumptions were selected by the Department of Water Resources (DWR)
- 20 management team for the BDCP EIR/EIS in coordination with the Bureau of Reclamation
- 21 (Reclamation), Fish and Wildlife Service (USFWS) and National Oceanic and Atmospheric
- 22 Administration National Marine Fisheries Service (NMFS).
- 23 The assumptions were selected to satisfy CEQA and NEPA requirements. The basis for
- 24 these assumptions is described in the appendix, "EIR-EIS Appendix 3D Defining Existing
- 25 Conditions, No Action Alt., No Project Alt., and Cumulative Impact Conditions".
- Assumptions that applied to the CALSIM II and DSM2 modeling are included in the
- 27 following section.
- 28 The Existing Conditions and No Action Alternative assumptions include implementation of
- 29 water operations components of the Reasonable and Prudent Alternatives (RPA) specified
- 30 in the 2008 Fish and Wildlife Service (FWS) and 2009 National Marine Fisheries Service
- 31 (NMFS) Biological Opinions (BO). The specific assumptions and implementation in the
- 32 CALSIM II and DSM2 models were developed by a multiagency team comprised of fisheries
- 33 and modeling experts from the DWR, Department of Fish and Game (DFG), Reclamation,
- 34 USFWS, and NMFS.
- 35 The detailed assumptions used in developing CALSIM II and DSM2 simulations of Existing
- 36 Conditions and No Action Alternative are included in Section B.5, in Tables B-8 and B-9,
- 37 respectively. Additional information is provided in the table footnotes of each table. Table
- 38 entries and footnotes make reference to supporting appendix sections and other documents.

1 B.2.1. Existing Conditions

- 2 The Existing Conditions model simulation was developed assuming Year 2009 level of
- 3 development and regulatory conditions. The Existing Conditions assumptions include
- 4 existing facilities and ongoing programs that existed as of February 13, 2009 (publication
- 5 date of the Notice of Preparation and Notice of Intent) that could affect or could be affected
- 6 by implementation of the Alternatives. One exception to this was that, NMFS Salmon BO
- 7 released in June 2009, was included in the development of the Existing Conditions
- 8 simulation. The rational for this decision is included in the appendix, "EIR-EIS Appendix
- 9 3D Defining Existing Conditions, No Action Alternative, No Project Alternative, and
- 10 Cumulative Impact Conditions".
- 11 CALSIM II Assumptions for Existing Conditions
- 12 Hydrology
- 13 Inflows/Supplies
- 14 CALSIM II model includes the historical hydrology with modifications for the operations
- 15 upstream of the rim reservoirs, for the Existing Conditions run. Reservoir inflows, stream
- 16 gains, diversion requirements, irrigation efficiencies, return flows and groundwater
- 17 operation are all components of the hydrology for CALSIM II.

18 Level of Development

- 19 CALSIM II uses a hydrology which is the result of an analysis of agricultural and urban
- 20 land use and population estimates. The assumptions used for Sacramento Valley land use
- 21 result from aggregation of historical survey and projected data developed for the California
- 22 Water Plan Update (Bulletin 160-98). The San Joaquin Valley hydrology reflects land use
- 23 assumptions developed by Reclamation to support the CALSIM II San Joaquin River Model
- 24 development. Generally, land use projections are based on Year 2005 estimates (hydrology
- 25 serial number 2005A01A). Where appropriate, Year 2009 projections of demands associated
- 26 with water rights and SWP and CVP water service contracts have been included.
- 27 Specifically 2009 projections are used to describe the American River region demands for
- 28 water rights and CVP contract supplies and California Aqueduct and the Delta Mendota
- 29 Canal SWP/CVP contractor demands.

30 Demands, Water Rights, CVP/SWP Contracts

- 31 CALSIM II demand inputs are preprocessed monthly time series for a specified level of
- 32 development (e.g. 2009) and according to hydrologic conditions. Demands are classified as
- 33 CVP project, SWP project, local project or non-project. CVP and SWP demands are
- 34 separated into different classes based on the contract type. A description of various
- 35 demands and classifications included in CALSIM II is provided in the 2008 OCAP Biological
- 36 Assessment Appendix D (USBR, 2008a).
- 37 Table B-1 below includes the summary of the CVP and SWP project demands in thousand
- acre-feet (TAF) included under Existing Conditions. More detail regarding the American
- 39 River demands assumed under the Existing Conditions simulation are provided in Section
- 40 B.7. For SWP contractors, demands vary by year from 3.0 to 4.1 million acre-feet (MAF)
- 41 depending on district level hydrologic and operational conditions assumed. The SWP
- 42 variable demands for Kern County Water Agency (KCWA) and other agricultural
- 43 contractors and Metropolitan Water District of Southern California (MWDSC) are described
- 44 in more detail in Section B.8.

- 1 The full detailed listing of SWP and CVP contract amounts and other water rights
- 2 assumptions for the Existing Conditions simulation are included in the delivery
- 3 specification tables in Section B.9.
- 4 Table B-1: Summary of SWP and CVP Demands (TAF/Year) under Existing Conditions

Project	North-of-the-Delta	South-of-the-Delta
Contractor Type	(TAF)	(TAF)
CVP Contractors		
Settlement/Exchange	2194	840
Water Service Contracts		
Agriculture	378	1937
M&I	304	164
Refuges	157	305
SWP Contractors		
Feather River Service Area	796	0
Table A	108	4056
Agriculture	0	1048
M&I	108	3008

5

- 6 Facilities
- 7 CALSIM II includes representation of all the existing CVP and SWP storage and conveyance
- 8 facilities. Assumptions regarding selected key facilities are included in the callout tables in
- 9 the Section B.5.
- 10 CALSIM II also represents the flood control weirs such as the Fremont Weir located along
- 11 the Sacramento River at the upstream end of the Yolo Bypass. Rating curves for the existing

12 weir are used to model the spills over the Fremont Weir. The modeling approach used in

- 13 CALSIM II model to estimate the Fremont Weir spills using the daily patterned Sacramento
- 14 River flow at Verona, is provided in Section A.3.3.
- 15 A brief description of the key export facilities that are located in the Delta and included
- 16 under the Existing Conditions run is provided below.
- 17 The Delta serves as a natural system of channels to transport river flows and reservoir
- 18 storage to the CVP and SWP facilities in the south Delta, which export water to the projects'
- 19 contractors through two pumping plants: SWP's Harvey O. Banks Pumping Plant and
- 20 CVP's C.W. Jones Pumping Plant. Banks and Jones Pumping Plants supply water to
- 21 agricultural and urban users throughout parts of the San Joaquin Valley, South Lahonton,
- 22 Southern California, Central Coast, and South San Francisco Bay Area regions.
- 23 The Contra Costa Canal and the North Bay Aqueduct supply water to users in the
- 24 northeastern San Francisco Bay and Napa Valley areas.
- 25 SWP Banks Pumping Plant Capacity

- 1 SWP Banks pumping plant has an installed capacity of about 10,668 cfs (two units of 375 cfs,
- 2 five units of 1,130 cfs, and four units of 1,067 cfs). The SWP water rights for diversions
- 3 specify a maximum of 10,350 cfs, but the U.S. Army Corps' of Engineers (ACOE) permit for
- 4 Clifton Court Forebay intake allows a maximum diversion of 6680 cfs. With additional
- 5 diversions depending on Vernalis flows the total diversion can go up to 8,500 cfs during
- 6 December 15th March 15th. In the CalSim II, these diversion restrictions were assumed as
- 7 pumping limits for Banks Pumping Plant. Additional capacity of 500 cfs (pumping limit up
- 8 to 7,180 cfs) is allowed to reduce impact of NMFS BO Action 4.2.1 on SWP.

9 CVP C.W. Bill Jones Pumping Plant (Tracy PP) Capacity

- 10 The Jones Pumping Plant consists of six pumps including one rated at 800 cfs, two at 850 cfs,
- and three at 950 cfs. Maximum pumping capacity is about 4,600 cfs, however in the Existing
- 12 Conditions pumping is limited to 4,200 cfs plus diversions upstream of the DMC
- 13 constriction.

14 CCWD Intakes

- 15 The Contra Costa Canal originates at Rock Slough, about four miles southeast of Oakley,
- 16 and terminates after 47.7 miles at Martinez Reservoir. Historically, diversions at the
- 17 unscreened Rock Slough facility (Contra Costa Canal Pumping Plant No. 1) have ranged
- 18 from about 50 to 250 cfs. The canal and associated facilities are part of the CVP, but are
- 19 operated and maintained by the Contra Costa Water District (CCWD). CCWD also operates
- 20 a diversion on Old River. CCWD can divert water to the Los Vaqueros Reservoir to store
- 21 good quality water when available and supply to its customers.

22 Regulatory Standards

- 23 Major regulatory standards that govern the operations of the CVP and SWP facilities are
- 24 briefly described below. Specific assumptions related to key regulatory standards are also
- 25 outlined below.

26 D-1641 Operations

- 27 The SWRCB Water Quality Control Plan (WQCP) and other applicable water rights
- decisions, as well as other agreements are important factors in determining the operations of both the Central Valley Project (CVP) and the State Water Project (SWP).
- 30 The December 1994 Accord committed the CVP and SWP to a set of Delta habitat protective
- 31 objectives that were incorporated into the 1995 WQCP and later, were implemented by D-
- 32 1641. Significant elements in the D-1641 standards include X2 standards, export/inflow
- 33 (E/I) ratios, Delta water quality standards, real-time Delta Cross Channel operation, and
- 34 San Joaquin flow standards.

35 Coordinated Operations Agreement (COA)

- 36 The CVP and SWP use a common water supply in the Central Valley of California. The
- 37 DWR and Reclamation have built water conservation and water delivery facilities in the
- 38 Central Valley in order to deliver water supplies to project contractors. The water rights of
- 39 the projects are conditioned by the SWRCB to protect the beneficial uses of water within
- 40 each respective project and jointly for the protection of beneficial uses in the Sacramento
- 41 Valley and the Sacramento-San Joaquin Delta Estuary. The agencies coordinate and operate
- 42 the CVP and SWP to meet the joint water right requirements in the Delta.

- 1 The Coordinated Operations Agreement (COA), signed in 1986, defines the project facilities
- 2 and their water supplies, sets forth procedures for coordination of operations, identifies
- 3 formulas for sharing joint responsibilities for meeting Delta standards, as the standards
- 4 existed in SWRCB Decision 1485 (D-1485), and other legal uses of water, identifies how
- 5 unstored flow will be shared, sets up a framework for exchange of water and services
- 6 between the Projects, and provides for periodic review of the agreement.

7 CVPIA (b)(2) Assumptions

- 8 The previous 2008 Operations Criteria and Plan (OCAP) Biological Assessment (BA)
- 9 modeling included a dynamic representation of Central Valley Project Improvement Act
- 10 (CVPIA) 3406(b)(2) water allocation, management and related actions (B2). The selection of
- 11 discretionary actions for use of B2 water in each year was based on a May 2003 Department
- 12 of the Interior policy decision. The use of B2 water is assumed to continue in conjunction
- 13 with the USFWS and NMFS BO RPA actions. The CALSIM II implementation used for
- 14 modeling for the BDCP EIR/EIS does not explicitly account for the use of (b)(2) water, but
- 15 rather assumes pre-determined USFWS BO upstream fish objectives for Clear Creek and
- 16 Sacramento River below Keswick Dam in addition to USFWS and NMFS BO RPA actions
- 17 for the American River, Stanislaus River, and Delta export restrictions.

18 Continued CALFED Agreements

- 19 The Environmental Water Account (EWA) was established in 2000 by the CALFED Record
- 20 of Decision (ROD). The EWA was initially identified as a 4-year cooperative effort intended
- 21 to operate from 2001 through 2004 but was extended through 2007 by agreement between
- 22 the EWA agencies. It is uncertain, however, whether the EWA will be in place in the future
- 23 and what actions and assets it may include. Because of this uncertainty, the EWA has not
- 24 been included in the current CALSIM II implementation.
- 25 One element of the EWA available assets is the Lower Yuba River Accord (LYRA)
- 26 Component 1 water. In the absence of the EWA and implementation in CALSIM II, the
- 27 LYRA Component 1 water is assumed to be transferred to South of Delta (SOD) State Water
- 28 Project (SWP) contractors to help mitigate the impact of the NMFS BO on SWP exports
- 29 during April and May. An additional 500 cfs of capacity is permitted at Banks Pumping
- 30 Plant from July through September to export this transferred water.

31 USFWS Delta Smelt BO Actions

- 32 The USFWS Delta Smelt BO was released on December 15, 2008, in response to
- 33 Reclamation's request for formal consultation with the USFWS on the coordinated
- 34 operations of the Central Valley Project (CVP) and State Water Project (SWP) in California.
- 35 To develop CALSIM II modeling assumptions for the RPA documented in this BO, the
- 36 Department led a series of meetings that involved members of fisheries and project
- agencies. This group has prepared the assumptions and CALSIM II implementations to
- 38 represent the RPA in Existing Conditions CALSIM II simulation. The following actions of
- 39 the USFWS BO RPA have been included in the Existing Conditions CALSIM II simulations:
- 40 Action 1: Adult Delta smelt migration and entrainment (RPA Component 1, Action 1 –
 41 First Flush)
- Action 2: Adult Delta smelt migration and entrainment (RPA Component 1, Action 2)
- Action 3: Entrainment protection of larval and juvenile Delta smelt (RPA Component 2)

- Action 5: Temporary spring head of Old River barrier and the Temporary Barrier Project
 (RPA Component 2)
- 3 A detailed description of the assumptions that have been used to model each action is
- 4 included in the technical memorandum "Representation of U.S. Fish and Wildlife Service
- 5 Biological Opinion Reasonable and Prudent Alternative Actions for CALSIM II Planning
- 6 Studies", prepared by an interagency working group under the direction of the lead
- 7 agencies. This technical memorandum is included in the Section B.10.
- 8 Action 4 Estuarine habitat during Fall (RPA Component 3) is not included in the Existing
- 9 Conditions simulation based on the assumptions outlined for the CEQA baseline by the lead
- 10 agencies.

11 NMFS BO Salmon Actions

- 12 The NMFS Salmon BO on long-term actions of the CVP and SWP was released on June 4,
- 13 2009. To develop CALSIM II modeling assumptions for the RPA documented in this BO, the
- 14 Department led a series of meetings that involved members of fisheries and project
- 15 agencies. This group has prepared the assumptions and CALSIM II implementations to
- 16 represent the RPA in Existing Conditions CALSIM II simulations for future planning
- 17 studies. The following NMFS BO RPA have been included in the Existing Conditions
- 18 CALSIM II simulations:
- 19 Action I.1.1: Clear Creek spring attraction flows
- Action I.4: Wilkins Slough operations
- Action II.1: Lower American River flow management
- Action III.1.4: Stanislaus River flows below Goodwin Dam
- Action IV.1.2: Delta Cross Channel gate operations
- Action IV.2.1: San Joaquin River flow requirements at Vernalis and Delta export
 restrictions
- Action IV.2.3: Old and Middle River flow management
- 27 For Action I.2.1, which calls for a percentage of years that meet certain specified end-of-
- 28 September and end-of-April storage and temperature criteria resulting from the operation of
- 29 Lake Shasta, no specific CALSIM II modeling code is implemented to simulate the
- 30 performance measures identified.
- A detailed description of the assumptions that have been used to model each action is
- 32 included in the technical memorandum "Representation of National Marine Fisheries
- 33 Service Biological Opinion Reasonable and Prudent Alternative Actions for CALSIM II
- 34 Planning Studies", prepared by an interagency working group under the direction of the
- 35 lead agencies. This technical memorandum is included in the Section B.11.
- 36 Water Transfers
- 37 Lower Yuba River Accord (LYRA)
- 38 Acquisitions of Component 1 water under the Lower Yuba River Accord, and use of 500 cfs
- 39 dedicated capacity at Banks PP during July September, are assumed to be used to reduce
- 40 as much of the impact of the Apr May Delta export actions on SWP contractors as possible.

- 1 Phase 8 transfers
- 2 Phase 8 transfers are not included in the Existing Conditions simulation.
- 3 Short-term or Temporary Water Transfers
- 4 Short term or temporary transfers such as Sacramento Valley acquisitions conveyed through
- 5 Banks PP are not included in the Existing Conditions simulation.

6 Specific Regulatory Assumptions

- 7 Minimum flow near Rio Vista
- 8 The minimum flow required on the Sacramento River at Rio Vista under the WQCP,
- 9 SWRCB D-1641 is included. During September through December months, the flow
- 10 requirement ranges from 3,000 cfs to 4,500 cfs, depending on the month and D-1641 40-30-30
- 11 index water year type.
- 12

13 Delta Outflow Index (Flow and Salinity)

- 14 SWRCB D-1641:
- 15 All flow based Delta outflow requirements per SWRCB D-1641 are included in the Existing
- 16 Conditions simulation. Similarly, for the February through June period X2 standard is
- 17 included in the Existing Conditions simulation.
- 18 USFWS B0 (December, 2008) Action 4:
- 19 This action is not included in the Existing Conditions simulation.

20 Combined Old and Middle River Flows

- 21 USFWS BO restricts south Delta pumping to preserve certain OMR flows in three of its
- 22 Actions: Action 1 to protect pre-spawning adult Delta smelt from entrainment during the
- 23 first flush, Action 2 to protect pre-spawning adults from entrainment and from adverse
- 24 hydrodynamic conditions, and Action 3 to protect larval Delta smelt from entrainment.
- 25 CALSIM II simulates these actions to a limited extent.
- 26 Brief description of USFWS BO Actions 1-3 implementations in CALSIM is as follows:
- 27 Action 1 is onset based on a turbidity trigger that takes place during or after December.
- 28 This action requires limit on exports so that the average daily OMR flow is no more negative
- than -2,000 cfs for a total duration of 14 days, with a 5-day running average no more
- 30 negative than 2,500 cfs (within 25 percent of the monthly criteria). Action 1 ends after 14
- 31 days of duration or when Action 3 is triggered based on a temperature criterion. Action 2
- 32 starts immediately after Action 1 and requires range of net daily OMR flows to be no more
- 33 negative than -1,250 to -5,000 cfs (with a 5-day running average within 25 percent of the
- 34 monthly criteria). The Action continues until Action 3 is triggered. Action 3 also requires
- net daily OMR flow to be no more negative than -1,250 to -5,000 cfs based on a 14 day
- 36 running average (with a simultaneous 5-day running average within 25 percent). Although
- the range is similar to Action 2, the Action implementation is different. Action 3 continues
- 38 until June 30 or when water temperature reaches a certain threshold. A more detailed
- 39 description of the implementation of these actions is provided in Section B.10.
- 40 NMFS BO Action 4.2.3 requires OMR flow management to protect emigrating juvenile
- 41 winter-run, yearling spring-run, and Central Valley steelhead within the lower Sacramento

- 1 and San Joaquin rivers from entrainment into south Delta channels and at the export
- 2 facilities in the south Delta. This action requires reducing exports from January 1 through
- 3 June 15 to limit negative OMR flows to -2,500 to -5,000 cfs. CALSIM II assumes OMR flows
- 4 required in NMFS BO are covered by OMR flow requirements developed for actions 1
- 5 through 3 of the USFWS BO as described in Section B.11.

6 South Delta Export-San Joaquin River Inflow Ratio

- 7 NMFS BO Action 4.2.1 requires exports to be capped at a certain fraction of San Joaquin
- 8 River flow at Vernalis during April and May while maintaining a health and safety
- 9 pumping of 1,500 cfs.
- 10 Exports at the South Delta Intakes
- 11 Exports at Jones and Banks Pumping Plant are restricted to their permitted capacities per
- 12 SWRCB D-1641 requirements. In addition, the south Delta exports are subjected Vernalis
- 13 flow based export limits during April and May as required Action 4.2.1. Additional 500 cfs
- 14 pumping is allowed to reduce impact of NMFS BO Action 4.2.1 on SWP during July through
- 15 September period.
- 16 Under D-1641 the combined export of the CVP Tracy Pumping Plant and SWP Banks
- 17 Pumping Plant is limited to a percentage of Delta inflow. The percentages range from 35%
- 18 to 45% during February depending on the January eight river index and 35% during March
- 19 through June months. For rest of the months 65% of the Delta inflow is allowed to be
- 20 exported.

21 Delta Water Quality

- 22 Existing Conditions simulation includes SWRCB D-1641 salinity requirements. However,
- 23 not all salinity requirements are included as CALSIM II is not capable of predicting salinities
- 24 in the Delta. Instead, empirically based equations and models are used to relate interior
- 25 salinity conditions with the flow conditions. DWR's Artificial Neural Network (ANN)
- 26 trained for salinity is used to predict and interpret salinity conditions at Emmaton, Jersey
- 27 Point, Rock Slough and Collinsville stations. Emmaton and Jersey Point standards are for
- 28 protecting water quality conditions for agricultural use in the western Delta and they are in
- effect from April 1st to August 15th. The EC requirement at Emmaton varies from 0.45
- 30 mmhos/cm to 2.78 mmhos/cm, depending on the water year type. The EC requirement at
- Jersey Point varies from 0.45 mmhos/cm to 2.20 mmhos/cm, depending on the water year type. Rock Slough standard is for protecting water quality conditions for M&I use for water
- 32 type. Rock Slough standard is for protecting water quality conditions for M&I use for water 33 through the Contra Costa Canal. It is a year round standard that requires a certain number
- of days in a year with chloride concentration less than 150 mg/L. The number of days
- 35 requirement is dependent upon the water year type. Collinsville standard is applied during
- 36 October through May months to protect the water quality conditions for the migrating fish
- 37 species, and it varies between 12.5 mmhos/cm in May and 19.0 mmhos/cm in October.

38 Operations Criteria

39 Delta Cross Channel Gate Operations

- 40 SWRCB D-1641 DCC standards provide for closure of the DCC gates for fisheries protection
- 41 at certain times of the year. From November through January, the DCC may be closed for
- 42 up to 45 days for fishery protection purposes. From February 1 through May 20, the gates
- 43 are closed for fishery protection purposes. The gates may also be closed for 14 days for
- fishery protection purposes during the May 21 through June 15 time period. Reclamation

1 determines the timing and duration of the closures after discussion with USFWS, DFG, and

- 2 NMFS.
- 3 NMFS BO Action 4.1.2 requires gates to be operated as described in the BO based on
- 4 presence of salmonids and water quality from October 1 through December 14; and gates to
- 5 be closed from December 15 to January 31, except short-term operations to maintain water
- 6 quality. CALSIM II includes NMFS BO DCC gate operations in addition to the D-1641 gate
- 7 operations. When the daily flows in the Sacramento River at Wilkins Slough exceeds 7,500
- 8 cfs (flow assumed to flush salmon into the Delta), DCC is closed for a certain number of
- 9 days in a month as described in Section B-11. During October 1 December 14 period, if the
- 10 flow trigger condition is such that additional days of DCC gates closed is called for,
- 11 however water quality conditions are a concern and the DCC gates remain open, then Delta
- 12 exports are limited to 2,000 cfs for each day in question.
- 13

14 Allocation Decisions

- 15 CALSIM II includes allocation logic for determining deliveries to north-of-Delta and south-
- 16 of-Delta CVP and SWP contractors. The delivery logic uses runoff forecast information,
- 17 which incorporates uncertainty in the hydrology and standardized rule curves (i.e. Water
- 18 Supply Index versus Demand Index Curve). The rule curves relate forecasted water supplies
- 19 to deliverable "demand," and then use deliverable "demand" to assign subsequent delivery
- 20 levels to estimate the water available for delivery and carryover storage. Updates of delivery
- 21 levels occur monthly from January 1 through May 1 for the SWP and March 1 through May
- 1 for the CVP as runoff forecasts become more certain. The south-of-Delta SWP delivery is
 determined based on water supply parameters and operational constraints. The CVP system
- wide delivery and south-of-Delta delivery are determined similarly upon water supply
- 25 parameters and operational constraints with specific consideration for export constraints.

26 San Luis Operations

- 27 CALSIM II sets targets for San Luis storage each month that are dependent on the current
- 28 South-of-Delta allocation and upstream reservoir storage. When upstream reservoir storage
- 29 is high, allocations and San Luis fill targets are increased. During a prolonged drought when
- 30 upstream storage is low, allocations and fill targets are correspondingly low. For the
- 31 Existing Conditions simulation, the San Luis rule curve is managed to minimize situations
- 32 in which shortages may occur due to lack of storage or exports. CALSIM II assumptions do
- 33 not take into account operational protocols designed to minimize San Luis Reservoir low
- 34 point conditions.

35 DSM2 Assumptions for Existing Conditions

36 River Flows

- 37 For the Existing Conditions DSM2 simulation, the river flows at the DSM2 boundaries are
- 38 based on the monthly flow time series from CALSIM II.

39 Tidal Boundary

- 40 For the Existing Conditions DSM2 simulation, the tidal boundary condition at Martinez is
- 41 provided by an adjusted astronomical tide normalized for sea level rise (Ateljevich and Yu, 42 2007).

43 Water Quality

1 Martinez EC

- 2 For the Existing Conditions DSM2 simulation, the Martinez EC boundary condition is
- 3 estimated using the G-model based on the net Delta outflow simulated in CALSIM II and
- 4 the pure astronomical tide (Ateljevich, 2001).
- 5 Vernalis EC
- 6 For the Existing Conditions DSM2 simulation, Vernalis EC boundary condition is based on
- 7 the monthly San Joaquin EC time series estimated in CALSIM II.
- 8 Morphological Changes
- 9 No additional morphological changes were assumed as part of the Existing Conditions
- 10 simulation. DSM2 model and grid developed as part of the 2009 recalibration effort (CH2M
- 11 HILL, 2009) was used as part of the Existing Conditions modeling.
- 12
- 13
- 14 Facilities
- 15 Delta Cross Channel
- 16 Delta Cross Channel gate operations are modeled in DSM2. The number of days in a month
- 17 the DCC gates are open is based on the monthly time series from CALSIM II.

18 South Delta Temporary Barriers

- 19 South Delta Temporary Barriers are included in the Existing Conditions simulation. The
- 20 three agricultural temporary barriers located on Old River, Middle River and Grant Line
- 21 Canal are included in the model. The fish barrier located at the Head of Old River is also
- 22 included in the model.

23 Clifton Court Forebay Gates

- 24 Clifton Court Forebay Gates are operated based on the Priority 3 operation, where the gate
- 25 operations are synchronized with the incoming tide to minimize the impacts to low water
- 26 levels in nearby channels. Priority 3 operation is described in the 2008 OCAP Biological
- 27 Assessment (BA) Appendix F section 5.2 (USBR, 2008b).

28 Operations Criteria

29 South Delta Temporary Barriers

- 30 South Delta Temporary Barriers are operated based on San Joaquin flow conditions. Head of
- 31 Old River Barrier is assumed to be only installed from September 16th to November 30th and
- 32 is not installed in the spring months, based on the USFWS Delta Smelt BO Action 5. The
- 33 agricultural barriers on Old and Middle Rivers are assumed to be installed starting from
- 34 May 16th and the one on Grant Line Canal from June 1st. All three agricultural barriers are
- 35 allowed to operate until November 30th. The tidal gates on Old and Middle River
- 36 agricultural barriers are assumed to be tied open from May 16th to May 31st.

37 Montezuma Salinity Control Gate

- 38 The radial gates in the Montezuma Slough Salinity Control Gate Structure are assumed to be
- 39 tidally operating from October through February each year, to minimize propagation of
- 40 high salinity conditions into the interior Delta.

1 B.2.2. No Action Alternative at Late Long-Term

- 2 No Action Alternative at Late Long-Term (aka No Action Alternative or No Action
- 3 Alternative at LLT) was developed assuming projected Year 2060 conditions. Year 2060 was
- 4 selected to support the full 50 year planning horizon assumed for the Alternatives
- 5 evaluation. The No Action Alternative at LLT assumptions include existing facilities and
- 6 ongoing programs that existed as of February 13, 2009 (publication date of the Notice of
- 7 Preparation and Notice of Intent) that could affect or could be affected by implementation of
- 8 the Alternatives, same as the Existing Conditions simulation. The No Action Alternative at
- 9 LLT assumptions also includes facilities and programs that received approvals and permits
- 10 by 2009 because those programs were consistent with existing management direction as of
- 11 the Notice of Preparation. The No Action Alternative at LLT assumptions and the models
- 12 do not include any restoration actions or additional conveyance over the Existing
- 13 Conditions.
- 14 No Action Alternative at LLT includes projected climate change and sea level rise
- 15 assumptions corresponding to the Year 2060. Change in climate result in the changes in the
- 16 reservoir and tributary inflows included in CALSIM II. The sea level rise changes result in
- 17 modified flow-salinity relationships in the Delta. The climate change and sea level rise
- assumptions at LLT are described in detail in Section B.4. CALSIM II simulation for the No
- 19 Action Alternative at LLT does not consider any adaptation measures for future climate
- 20 change, which may result in managing the SWP and CVP system in a different manner than
- 21 today to reduce climate impacts. For example, future changes in reservoir flood control
- reservation to better accommodate a seasonally changing hydrograph may be considered
- under future programs, but are not considered under the BDCP/CWF. A more detailed
 discussion on the climate change modeling is included in the Section A and Sections D.2 and
- 21 dise 25 D.3.

26 CALSIM II Assumptions for No Action Alternative at Late Long-Term

27 Hydrology

- 28 Inflows/Supplies
- 29 Similar to the Existing Conditions simulation, however with projected 2020 modifications
- 30 and with modifications related to the changed climate at Late Long-Term for the operations
- 31 upstream of the rim reservoirs.

32 Level of Development

- 33 Similar to the Existing Conditions, the assumptions used for Sacramento Valley land use
- 34 result from aggregation of historical survey and projected data developed for the California
- 35 Water Plan Update (Bulletin 160-98). Generally, land use projections are based on Year 2020
- 36 estimates (hydrology serial number 2020D09E), however the San Joaquin Valley hydrology
- 37 reflects draft 2030 land use assumptions developed by Reclamation. Where appropriate
- 38 Year 2020 projections of demands associated with water rights and SWP and CVP water
- 39 service contracts have been included. Specifically projections of full build out are used to
- 40 describe the American River region demands for water rights and CVP contract supplies
- 41 and California Aqueduct and the Delta Mendota Canal SWP/CVP contractor demands are
- 42 set to full contract amounts.

43 Demands, Water Rights, CVP/SWP Contracts

- 1 Table B-2 below includes the summary of the CVP and SWP project demands in thousand
- 2 acre-feet (TAF) included under No Action Alternative Late Long-Term. The CVP M&I
- 3 demands, North-of-the-Delta, increased under No Action Alternative late Long-Term. The
- 4 increase is mainly on the American River. More detail regarding the American River
- 5 demands assumed under the No Action Alternative are provided in Section B.7. For SWP
- 6 contractors, full Table A demands are assumed every year. There are small changes in the
- total non-project demands, as well. The demand assumptions are not modified for changes
- 8 in climate conditions.
- 9 The full detailed listing of SWP and CVP contract amounts and other water rights
- 10 assumptions for the No Action Alternative are included in the delivery specification tables
- 11 in Section B.9.
- 12 Table B-2: Summary of SWP and CVP Demands (TAF/Year) under No Action Alternative

Project	North-of-the-Delta	South-of-the-Delta
Contractor Type	(TAF)	(TAF)
CVP Contractors		
Settlement/Exchange	2194	840
Water Service Contracts		
Agriculture	378	1937
M&I	557	164
Refuges	189	281
SWP Contractors		
Feather River Service Area	796	0
Table A	114	4056
Agriculture	0	1032
M&I	114	3024
Urban demands noted above are for fu	Ill build out conditions	

13

14 Facilities

- 15 Facilities assumptions under No Action Alternative are consistent with the Existing
- 16 Conditions simulation unless noted explicitly, below.
- 17 Freeport Regional Water Project, located along the Sacramento River near Freeport, is
- assumed to be operational under the No Action Alternative. Similarly, 30 mgd capacity,
- 19 City of Stockton Delta Water Supply Project is assumed to be operational under the No
- 20 Action Alternative.
- 21 SWP Banks Pumping Plant Capacity
- 22 Consistent with Existing Conditions simulation
- 23 CVP Jones Pumping Plant Capacity

- 1 Consistent with Existing Conditions simulation, except, in the No Action Alternative, DMC-
- 2 California Aqueduct Intertie that allows 400 cfs additional DMC capacity is assumed to be
- 3 in place; therefore pumping capacity is 4,600 cfs in all months.
- 4

5 CCWD Intakes

- 6 In addition to the Rock Slough and Old River diversions for CCWD that are included in the
- 7 Existing Conditions, Alternative Intake Project (AIP) is included in the No Action
- 8 Alternative. The Alternative Intake Project is a new drinking water intake at Victoria Canal,
- 9 about 2.5 miles east of Contra Costa Water District's (CCWD) existing intake on the Old
- 10 River.

11 Regulatory Standards

- 12 The regulatory standards that govern the operations of the CVP and SWP facilities under
- 13 the No Action Alternative Late Long-Term are consistent with the Existing Conditions
- simulation. Briefly, the assumptions noted in the Existing Conditions simulation for D-1641
- 15 Operations, COA, CVPIA (b)(2), USFWS Delta Smelt BO Actions, NMFS BO Salmon Actions
- 16 and Water Transfers are continued in the No Action Alternative simulation. Even though,
- 17 the assumptions for the key regulatory standards remain consistent between the No Action
- 18 Alternative and the Existing Conditions simulations, and the standards are included in both
- 19 cases, the resulting flows may be different. Additional assumptions related to the regulatory
- 20 standards that are unique to the No Action Alternative are listed below.

21 USFWS Delta Smelt BO Actions

- 22 In addition to the RPA actions included in the Existing Conditions simulation, the following
- 23 action is included in the No Action Alternative.
- Action 4: Estuarine habitat during Fall (RPA Component 3)
- 25 A detailed description of the assumptions that have been used to model each action is
- 26 included in the technical memorandum "Representation of U.S. Fish and Wildlife Service
- 27 Biological Opinion Reasonable and Prudent Alternative Actions for CALSIM II Planning
- 28 Studies", prepared by an interagency working group under the direction of the lead
- agencies. This technical memorandum is included in the Section B.10.
- 30 Specific Regulatory Assumptions

31 Minimum flow near Rio Vista

- 32 The Rio Vista minimum flow assumptions are consistent with the Existing Conditions
- 33 Simulation. However, the resulting flows can be different as a result of the differences in the
- 34 other assumptions.

35 Delta Outflow Index (Flow and Salinity)

- 36 *SWRCB D-1641:*
- 37 All flow based Delta outflow requirements per SWRCB D-1641 are included in the No
- 38 Action Alternative simulation. Similarly, for the February through June period X2 standard
- 39 is included in the No Action Alternative simulation.

- 1 USFWS BO (December, 2008) Action 4:
- 2 USFWS BO Action 4 requires additional Delta outflow to manage X2 in the fall months
- 3 following the wet and above normal years to maintain average X2 for September and
- 4 October no greater (more eastward) than 74 kilometers in the fall following wet years and 81
- 5 kilometers in the fall following above normal years. In November, the inflow to CVP/SWP
- 6 reservoirs in the Sacramento Basin should be added to reservoir releases to provide an
- 7 added increment of Delta inflow and to augment Delta outflow up to the fall X2 target. This
- 8 action is included in the No Action Alternative.
- 9 The sea level rise change assumed at the Late Long-Term, results in a modified flow –
- 10 salinity relationship in the Delta. A new ANN, which is capable of emulating DSM2 results
- 11 at Late Long-Term is used to simulate the flow-salinity relationship in CALSIM II
- 12 simulation for the No Action Alternative Late Long-Term, as described in the Section A.3.3.

13 Combined Old and Middle River Flows

- 14 The OMR flow requirements are consistent with the Existing Conditions Simulation.
- 15 However, the resulting flows can be different as a result of the differences in the other
- 16 assumptions.

17 South Delta Export-San Joaquin River Inflow Ratio

- 18 This assumption is consistent with the Existing Conditions Simulation. However, the
- 19 resulting flows can be different as a result of the differences in the other assumptions.

20 Exports at the South Delta Intakes

- 21 This assumption is consistent with the Existing Conditions Simulation. However, the
- 22 resulting flows can be different as a result of the differences in the other assumptions.

23 Delta Water Quality

- 24 This assumption is consistent with the Existing Conditions Simulation. However, the
- 25 resulting flows can be different as a result of the differences in the other assumptions.
- 26 The sea level rise change assumed at the Late Long-Term, results in a modified flow –
- 27 salinity relationship in the Delta. A new ANN, which is capable of emulating DSM2 results
- at Late Long-Term is used to simulate the flow-salinity relationship in CALSIM II
- 29 simulation for the No Action Alternative Late Long-Term, as described in the Section A.3.3.

30 Operations Criteria

31 Delta Cross Channel Gate Operations

- 32 This assumption is consistent with the Existing Conditions Simulation. However, the
- 33 resulting flows can be different as a result of the differences in the other assumptions.
- 34 Allocation Decisions
- 35 The rules and assumptions used for allocation decisions under No Action Alternative
- 36 simulation are consistent with Existing Conditions simulation.

37 San Luis Operations

- 38 The rules and assumptions used for San Luis operations under No Action Alternative
- 39 simulation are consistent with Existing Conditions simulation.

- 1 DSM2 Assumptions for No Action Alternative at Late Long-Term
- 2 DSM2 modeling assumptions for the No Action Alternative at LLT simulation are consistent
- 3 with the Existing Conditions simulation. For the DSM2 assumptions that depend upon the
- 4 CALSIM II outputs, the DSM2 inputs are obtained from the appropriate CALSIM II
- 5 simulation.
- 6
- 7
- 8 River Flows
- 9 For the No Action Alternative at LLT DSM2 simulation, the river flows at the DSM2
- 10 boundaries are based on the monthly flow time series from CALSIM II.
- 11 Tidal Boundary
- 12 For No Action Alternative at Late Long-Term, the tidal boundary condition at Martinez is
- 13 based on an adjusted astronomical tide normalized for sea level rise (Ateljevich and Yu,
- 14 2007) and is modified to account for the sea level rise using the correlations derived based
- 15 on three-dimensional UnTRIM modeling of the Bay-Delta with sea level rise at Late Long-
- 16 Term.
- 17 Water Quality
- 18 Martinez EC
- 19 For No Action Alternative at Late Long-Term, the Martinez EC boundary condition in a
- 20 DSM2 planning simulation estimated using the G-model based on the net Delta outflow
- simulated in CALSIM II and the pure astronomical tide (Ateljevich, 2001), is modified to
- 22 account for the salinity changes related to the sea level rise using the correlations derived
- 23 based on the three-dimensional UnTRIM modeling of the Bay-Delta with sea level rise at
- 24 Late Long-Term.
- 25 Vernalis EC
- 26 For the No Action Alternative at LLT DSM2 simulation, Vernalis EC boundary condition is
- 27 based on the monthly San Joaquin EC time series estimated in CALSIM II.
- 28 Morphological Changes
- 29 Consistent with the Existing Conditions Simulation
- 30 Facilities
- 31 Delta Cross Channel
- 32 The number of days in a month the DCC gates are open is based on the monthly time series
- 33 from CALSIM II.
- 34 South Delta Temporary Barriers
- 35 Consistent with the Existing Conditions Simulation
- 36 Clifton Court Forebay Gates
- 37 Consistent with the Existing Conditions Simulation
- 38 Operations Criteria
- 39 South Delta Temporary Barriers

- 1 Consistent with the Existing Conditions Simulation
- 2 Montezuma Salinity Control Gate
- 3 Consistent with the Existing Conditions Simulation

4 B.2.3. No Action Alternative at Early Long-Term

- 5 No Action Alternative at Early Long-Term was developed assuming projected Year 2030
- 6 conditions. No Action Alternative at ELT was used as the basis of comparison for evaluating
- 7 the three new Alternatives added in the RDEIR/SDEIS. No Action Alternative at ELT
- 8 assumptions about existing facilities and ongoing programs are consistent with No Action
- 9 Alternative at LLT.
- 10 No Action Alternative at ELT includes projected climate change and sea level rise
- assumptions corresponding to the Year 2030. Change in climate result in the changes in the
- 12 reservoir and tributary inflows included in CALSIM II. The sea level rise changes result in
- 13 modified flow-salinity relationships in the Delta. The climate change and sea level rise
- 14 assumptions at ELT, which were assumed to be applicable to the Year 2030, are described in
- 15 detail in Section B.4. CALSIM II simulation for the No Action Alternative at ELT, does not
- 16 consider any adaptation measures for future climate change, which may result in managing
- 17 the SWP and CVP system in a different manner than today to reduce climate impacts. For
- 18 example, future changes in reservoir flood control reservation to better accommodate a
- 19 seasonally changing hydrograph may be considered under future programs, but are not
- 20 considered under the BDCP/CWF. A more detailed discussion on the climate change
- 21 modeling is included in the Section A and Sections D.2 and D.3 of this Appendix.

22 CALSIM II Assumptions for No Action Alternative Early at Long-Term

- 23 No Action Alternative at ELT CALSIM II model assumptions are fully consistent with the
- 24 No Action Alternative at LLT CALSIM II model assumptions described in the Section B.2.2
- 25 except for inflow/supplies assumptions reflecting the ELT climate change effects, and an
- 26 explicit representation of the potential Fremont Weir modifications.
- 27 Fremont Weir modifications and operations consistent with Alternative 1 Conservation
- 28 Measure 2 are included in the No Action Alternative at ELT unlike the No Action
- 29 Alternative at LLT as a placeholder representation of the NMFS BO (Jun, 2009) Action I.6.1:
- 30 Restoration of Floodplain Rearing Habitat. These assumptions are only for use in the
- 31 BDCP/CWF modeling as a placeholder, while the proposed changes associated with this
- 32 RPA are still in development under a separate multi-agency process.
- 33 Only modeling assumptions that are different from No Action Alternative at LLT are
- 34 described below.
- 35 Operations Criteria
- 36 Fremont Weir Operations
- 37 As noted above Fremont Weir modifications and operations assumed in the No Action
- 38 Alternative at ELT are consistent with Alternative 1 Conservation Measure 2. To provide
- 39 seasonal floodplain inundation in the Yolo Bypass, the 17.5 feet and the 11.5 feet elevation
- 40 gates are opened between December 1^{st} and March 31^{st} . This may extend to May 15^{th} ,
- 41 depending on the hydrologic conditions and the measures to minimize land use and 42 occlosical conflicts in the hypers. As a simplification for modeling, the rates are assured
- 42 ecological conflicts in the bypass. As a simplification for modeling, the gates are assumed

- 1 opened until April 30th in all years. The gates are operated to limit maximum spill to 6,000
- 2 cfs until the Sacramento River stage reaches the existing Fremont Weir crest elevation. When
- 3 the river stage is at or above the existing Fremont Weir crest elevation, the notch gates are
- 4 assumed to be closed. While desired inundation period is on the order of 30 to 45 days,
- 5 gates are not managed to limit to this range, instead the duration of the event is governed by
- 6 the Sacramento River flow conditions. To provide greater opportunity for the fish in the
- 7 bypass to migrate upstream into the Sacramento River, the 11.5 feet elevation gate is
- 8 assumed to be open for an extended period between September 15th and June 30th. As a
- 9 simplification for modeling, the period of operation for this gate is assumed to be September
- ¹⁰ 1st to June 30th. The spills through the 11.5 ft elevation gate are limited to 100 cfs. The
- 11 assumed operable notch in the Fremont Weir allows spills above 15,530 cfs Sacramento
- 12 River flow at Verona of up to 6,000 cfs during Dec 1 Apr 30.
- 13 DSM2 Assumptions for No Action Alternative at Early Long-Term
- 14 DSM2 modeling assumptions for the No Action Alternative at ELT simulation are fully
- 15 consistent with the No Action Alternative at LLT described in the Section B.2.2 except for
- 16 the tidal and salinity boundary conditions at Martinez location. Only modeling assumptions
- 17 that are different from No Action Alternative at LLT are described below.

18 Tidal Boundary

- 19 For No Action Alternative at ELT, estimation of the tidal boundary condition at Martinez is
- 20 consistent with the No Action Alternative at LLT except for the correlations used to account
- 21 for the water level changes related to the sea level rise reflect the effects at ELT.

22 Water Quality

- 23 Martinez EC
- 24 For No Action Alternative at ELT, estimation of the Martinez EC boundary condition is
- 25 consistent with the No Action Alternative at LLT except for the correlations used to account
- 26 for the salinity changes related to the sea level rise reflect the effects at ELT.

B.3. Assumptions for Alternatives Model Simulations

- 28 This section describes the CALSIM II and DSM2 modeling assumptions for the Alternatives
- 29 1A, 1B, 1C, 2A, 2B, 2C, 3, 4, 5, 6A, 6B, 6C, 7, 8,9, 2D, 4A, and 5A. The assumptions that are
- 30 different from the No Action Alternative are described below. Even though some
- 31 Alternative assumptions remain consistent with the No Action Alternative, they are
- 32 described for completeness.
- 33 The Alternative 1A, 1B and 1C assumptions reflect the long-term BDCP water operations
- 34 and analytical range agreed to by the BDCP Steering Committee on January 29, 2010 and
- 35 handed out at February 11, 2010 BDCP Steering Committee Meeting. Assumptions for
- 36 Alternatives 2A, 2B, 2C, 3, 4, 5, 6A, 6B, 6C, 7, 8, 9, 2D, 4A and 5A are provided by the lead
- 37 agencies.
- 38 The long-term water operations assumptions for all the Alternatives are tabulated in the
- 39 Section B.6. The assumptions for the Alternatives as provided by the lead agencies are listed
- 40 in Tables B-10 to B-17. Table B-18 summarizes the key CALSIM II and DSM2 modeling
- 41 assumptions for the Alternatives along with the Existing Conditions and No Action
- 42 Alternative.

1 B.3.1. Alternative 1A, 1B, and 1C – Dual Conveyance with Intakes 1, 2, 3, 4, and 5

- 2 Alternative 1A, 1B, and 1C assumptions are summarized in the Section B.6, in Table B-10.
- 3 Alternative 1 is a dual conveyance alternative and includes the five proposed intakes in the
- 4 north Delta with a total of 15,000 cfs capacity (3,000 cfs at each intake). The tidal marsh
- 5 restoration acreages and footprints assumed in the Alternative 1 are described in Section
- 6 B.4. Alternative 1 includes the operational criteria specified under Scenario A in the Chapter
- 7 3 of BDCP EIR/EIS.
- 8 Alternative 1A, 1B and 1C all share the same long term operations assumptions, described
- 9 below. However, 1A, 1B and 1C, each have a different conveyance configuration. 1A
- 10 assumes a pipeline/tunnel conveyance option. 1B assumes an option that includes open
- 11 channel and siphons and located east of the Sacramento River. 1C assumes an option that
- 12 includes, open channel and tunnel located west of the Sacramento River. A detailed
- 13 description of the different conveyance configurations is included in the Chapter 3 of BDCP
- 14 EIR/EIS. For modeling, the differences in conveyance configuration are assumed to not
- 15 change the long-term operations.
- 16 CALSIM II and DSM2 modeling is the same for the Alternative 1A, 1B and 1C. The changes
- 17 in the type of conveyance and the alignment are assumed to cause no changes in the overall
- 18 modeling results.
- 19 Alternative 1 CALSIM II and DSM2 assumptions that are different from the No Action
- 20 Alternative are described below.
- 21 CALSIM II Assumptions for Alternative 1:
- 22 Facilities
- 23 Fremont Weir
- 24 Fremont Weir is a flood control structure located along the Sacramento River at the head of
- the Yolo Bypass. To enhance the potential benefits of the Yolo Bypass for various fish
- 26 species, the Fremont Weir is assumed to be notched in the Alternative 1 to provide
- 27 increased seasonal floodplain inundation. It is assumed that an opening in the existing weir
- and operable gates are constructed at elevation 17.5 feet along with a smaller opening and
- 29 operable gates at elevation 11.5 feet. Derivation of the rating curve for the elevation 17.5 feet
- 30 opening used in the CALSIM II model is described in Section D.4 of this appendix. The
- 31 modeling approach used in CALSIM II model to estimate the Fremont Weir spills using the
- 32 daily patterned Sacramento River flow at Verona, is provided in Section A.3.3
- 33 Isolated Conveyance Facility and the North Delta Diversion Intakes
- 34 An Isolated Conveyance Facility is included in the Alternative 1 which diverts water from
- 35 the Sacramento River in the north Delta near Hood and conveys to the existing export
- 36 facilities in the south Delta. The maximum conveyance capacity is assumed to be 15,000 cfs.
- 37 Five separate intakes (intakes 1, 2, 3, 4 and 5) each capable of diverting 3,000 cfs are
- 38 proposed along the Sacramento River near Hood, all located upstream of the Sutter Slough.
- 39 Banks Pumping Plant Capacity
- 40 Physical capacity of the Banks Pumping Plant is 10,300 cfs. Under Alternative 1, it was
- 41 assumed that the diversions may occur up to the full physical capacity of the Banks
- 42 Pumping Plant from the south Delta, subject to other regulatory and operational constraints.

- 1 Jones Pumping Plant Capacity
- 2 The diversion capacity of the Jones Pumping Plant is up to 4,600 cfs. Under Alternative 1,
- 3 this assumption remained consistent with the No Action Alternative.

4 Regulatory Standards

5 North Delta Diversion Bypass Flows

- 6 Bypass flows in the Sacramento River are specified downstream of the north Delta diversion
- 7 intakes, which govern the flow required to remain in the river before any diversion can
- 8 occur. Bypass rules are designed with the intent to avoid increased upstream tidal transport
- 9 from downstream channels, to support salmonid and pelagic species transport to regions of
- 10 suitable habitat, to preserve shape of the natural hydrograph which may act as cue to
- 11 important biological functions, to lower potential for increased tidal reversals that may
- 12 occur because of the reduced net flow in the River and to provide flows to minimize
- 13 predation effects downstream. The rules include constant low level pumping each intake
- 14 during December to June period, initial pulse protection in November to January period and
- 15 post-pulse operations that transition through three levels of protection (Level I to Level II
- 16 and subsequently to Level III).
- 17 Between December and June, constant low level pumping allows diversions of up to 6% of

18 the river flow for flows greater than 5,000 cfs upstream of the north Delta diversion. The low

19 level pumping is less than 300 cfs at any one intake, with a combined limit of 1,500 cfs for

20 the five intakes in Alternative 1. The low level pumping is constrained such that the river

- 21 flow never falls below 5,000 cfs.
- 22 During an initial pulse protection period low level pumping is maintained until the pulse
- 23 period is ended. For modeling purposes, the initiation of the pulse is defined by the
- following criteria: (1) Wilkins Slough flow changing by more than 45% over¹ a five day
- 25 period and (2) Wilkins Slough flow greater than 12,000 cfs. Low level pumping continues
- 26 until (1) Wilkins Slough returns to pre-pulse flows (flow on first day of 5-day increase), (2)
- 27 Wilkins Slough flows decrease for five consecutive days, or (3) Bypass flows are greater than
- 28 20,000 cfs for 10 consecutive days. If the initial pulse begins before December 1st, a second
- 29 pulse period will be assumed and afforded the same protective operation.
- 30 After the pulse period has ended, the bypass flows noted in the Table B-3 are maintained.
- 31 After the initial pulse(s), Level I post-pulse bypass rule is applied until 15 days of bypass
- flows above 20,000 cfs. Then Level II post-pulse bypass rule is applied until 30 days of
- 33 bypass flows above 20,000 cfs. Then Level III post-pulse bypass rule is applied. The bypass
- 34 rules were applied on the mean daily river flows in the CALSIM II model.
- 35 A detailed description of the modeling of the north Delta diversion operations for
- 36 Alternative 1 in the CALSIM II model is provided in the Section A.3.3 of this appendix,
- along with the approach used to estimate the potential north Delta diversion based on the
- 38 daily patterned Sacramento River flow at Freeport.
- 39 Minimum flow near Rio Vista
- 40 For September through December months the minimum flow required on the Sacramento
- 41 River at Rio Vista under the Water Quality Control Plan, SWRCB D-1641 is maintained. In

¹ The modeling assumptions state "45% increase over a 5-day period" as one of the pulse triggers. However, the intent of the rule is that a 45% increase occurring over any period of time shorter than 5 days can trigger the pulse.

- 1 addition, for January through August a minimum flow of 3,000 cfs is maintained in all
- 2 years, under Alternative 1.
- 3 Delta Outflow Index (Flow and Salinity)
- 4 SWRCB D-1641:
- 5 All flow based Delta outflow requirements included in SWRCB D-1641 are consistent with
- 6 the No Action Alternative. Similarly, for the February through June period X2 standard is
- 7 included and is consistent with the No Action Alternative.
- 8 USFWS BO (December, 2008) Action 4:
- 9 USFWS BO Action 4 requires additional Delta outflow to manage X2 in the fall months
- 10 following the wet and above normal years under the No Action Alternative. This action is
- 11 not included in the Alternative 1.

12 Combined Old and Middle River Flows

- 13 The combined Old and Middle River (OMR) flow criteria are based on concepts addressed
- 14 in the 2008 USFWS and 2009 NMFS BOs related to adaptive restrictions for temperature,
- 15 turbidity, salinity, and presence of Delta smelt. The OMR flow criteria in the Alternative 1
- 16 are consistent with the No Action Alternative.

17 South Delta Export-San Joaquin River Inflow Ratio

- 18 NMFS BO (June 2009) Action 4.2.1 requires the south Delta exports are governed by this
- 19 ratio in the months of April and May under the No Action Alternative. This action is not
- 20 included in the Alternative 1.
- 21

22 Exports at the South Delta Intakes

- 23 The south Delta exports in Alternative 1 are operated per SWRCB D-1641. The combined
- export of the CVP Tracy Pumping Plant and SWP Banks Pumping Plant is limited to a
- 25 percentage of the total Delta inflow, based on the export-inflow ratio specified under D1641.
- 26 In the Alternative 1, however, this requirement is applied to the south Delta exports only.
- 27 The north Delta diversion is not included in the Delta inflow or the Delta exports
- 28 computation used to determine this requirement.

29 Delta Water Quality

- 30 Alternative 1 includes SWRCB D-1641 salinity requirements consistent with the No Action
- 31 Alternative. However, the salinity compliance location on the Sacramento River at Emmaton
- 32 is assumed to be moved upstream to Threemile Slough under the Alternative 1.

33 Operations Criteria

- 34 Fremont Weir Operations
- 35 To provide seasonal floodplain inundation in the Yolo Bypass, the 17.5 feet and the 11.5 feet
- 36 elevation gates are opened between December 1st and March 31st. This may extend to May
- 37 15th, depending on the hydrologic conditions and the measures to minimize land use and
- ecological conflicts in the bypass. As a simplification for modeling, the gates are assumed
- 39 opened until April 30th in all years. The gates are operated to limit maximum spill to 6,000
- 40 cfs until the Sacramento River stage reaches the existing Fremont Weir crest elevation. When
- 41 the river stage is at or above the existing Fremont Weir crest elevation, the notch gates are

- 1 assumed to be closed. While desired inundation period is on the order of 30 to 45 days,
- 2 gates are not managed to limit to this range, instead the duration of the event is governed by
- 3 the Sacramento River flow conditions. To provide greater opportunity for the fish in the
- 4 bypass to migrate upstream into the Sacramento River, the 11.5 feet elevation gate is
- 5 assumed to be open for an extended period between September 15th and June 30th. As a
- 6 simplification for modeling, the period of operation for this gate is assumed to be September
- 7 1st to June 30th. The spills through the 11.5 ft elevation gate are limited to 100 cfs. The
- 8 Alternative 1 assumptions from the BDCP Steering Committee include a requirement of
- 9 25,000 cfs at Freeport, before opening the Fremont Weir notch. However, this criterion is not
- 10 included in the model explicitly, as the Freeport flows are typically high during the
- 11 December through April months, and to maintain synchrony between the spills and the
- 12 natural changes in hydrology.
- 13 Delta Cross Channel Gate Operations
- 14 The modeling of the Delta Cross Channel Gate operations under the Alternative 1 is
- 15 consistent with the No Action Alternative.
- 16 *Operations for Delta Water Quality and Residence Time*
- 17 Alternative 1 assumptions state that the south Delta pumping is preferred up to 3,000 cfs
- 18 before diverting from the north Delta during July through September period, to provide
- 19 limited flushing flows required for improving the circulation and general water quality in
- 20 the south Delta channels. This assumption is not included explicitly in the model.
- 21 Allocation Decisions
- 22 The rules and assumptions used for determining the allocations in the Alternative 1
- 23 CALSIM II simulation are similar to the No Action Alternative simulation. Alternative 1
- 24 CALSIM II includes allocation logic based on the standardized rule curves (i.e. Water
- 25 Supply Index versus Demand Index Curve). However, new rule curves are developed for
- 26 the Alternative 1 simulation.
- 27 San Luis Operations
- 28 Under Alternative 1, CALSIM II San Luis rule curve is modified in expectation that new
- 29 conveyance can capture winter and spring excess flows and fill earlier in the year.
- 30 **DSM2 Assumptions for Alternative 1**:

31 Tidal Boundary

- 32 For the No Action Alternative, the tidal boundary condition at Martinez is provided by an
- 33 adjusted astronomical tide normalized for sea level rise (Ateljevich and Yu, 2007). For
- 34 Alternative 1, the adjusted astronomical tide specified in the No Action Alternative is
- 35 modified to account for the habitat restoration and sea level rise using the correlations
- 36 derived based on two-dimensional RMA modeling of the Delta with restoration and sea
- 37 level rise, as described in Section A.5.3.
- 38 Water Quality
- 39 Martinez EC
- 40 For the No Action Alternative, the Martinez EC boundary condition in a DSM2 planning
- 41 simulation is estimated using the G-model based on the net Delta outflow simulated in
- 42 CALSIM II and the pure astronomical tide (Ateljevich, 2001). For Alternative 1, EC time
- 43 series resulting from the G-model is modified to account for the salinity changes related to

- 1 the habitat restoration and sea level rise using the correlations derived based on the two-
- 2 dimensional RMA modeling of the Delta with restoration and sea level rise, as described in
- 3 Section A.5.3.
- 4 Morphological Changes
- 5 DSM2 grid and other inputs such as the channel roughness coefficients and the dispersion
- 6 coefficients are modified to reflect the changes related to the tidal marsh restoration and the
- 7 sea level rise assumptions associated with the Alternative 1. The description of the changes
- 8 to the DSM2 grid is provided under Section A.
- 9 Facilities
- 10 South Delta Temporary Barriers
- 11 South Delta Temporary Barriers are not included in the Alternative 1.
- 12 Isolated Facility and North Delta Diversion Intakes
- 13 The locations of the north Delta diversion intakes for Alternative 1 are shown in the Figure
- 14 B-1. Intakes 1, 2, 3, 4 and 5 are modeled in DSM2 for Alternative 1, with 3,000 cfs diversion
- 15 capacity at each intake. Diversions at the five proposed intakes are simulated in DSM2. A
- 16 detailed description of the modeling of the north Delta diversion intakes in DSM2 for
- 17 Alternative 1 is included in Section A.5.3.
- 18 **Operations Criteria**
- 19 South Delta Temporary Barriers
- 20 South Delta Temporary Barriers are not included in the Alternative 1.
- 21
- 22 Montezuma Salinity Control Gate
- The radial gates in the Montezuma Slough Salinity Control Gate Structure are assumed to be open year-round in the Alternative 1.
- 25 North Delta Diversion Intakes
- 26 The diversion operation at the north Delta intakes are dynamically simulated in DSM2 such
- 27 that the amount specified by CALSIM II each day is diverted while subjecting each intake to
- the sweeping velocity and the ramping criteria. A maximum of 3,000 cfs is withdrawn at
- 29 each intake while meeting a velocity requirement of 0.4 fps downstream of each intake. The
- 30 intakes are operated as long as the daily diversion volume specified by CALSIM II is not
- 31 diverted. Once the specified volume is diverted for the day, the pumps are shut off until
- 32 next day. The volume corresponding to first 500 cfs of the daily north Delta diversion
- 33 specified by CALSIM II is diverted equally at all the five intakes. The remaining volume for
- the day will be diverted such that operation of the upstream intake is prioritized over the
- downstream one. Intake diversions are ramped over an hour to allow smooth transitionswhen they are turned on and off.
- 37 A detailed description of the modeling of the north Delta diversion operations for
- 38 Alternative 1 is included in Section A.5.3.
- 39

1 2

2 Figure B-1: North Delta Diversion Intake Locations Assumed for BDCP EIR/S Alternatives

- 3 1, 2, 3, 4, 5, 6 and 7 for Modeling in DSM2 (NOTE: Intake locations are slightly modified in
- 4 Chapter 3: Description of Alternatives) (Figure B-1 was prepared using ESRI's ArcGIS Explorer Desktop Free Software)

Table B-3: Post-Pulse Bypass Flow Rules for the North Delta Diversion

Level I

Level II

Level III

	Dec - Api	•		Dec - Ap	r	Dec - Apr			
If Sacramento River flow is over	But no over	The bypass is	If Sacramento River flow is over	But no over	The bypass is	If Sacramento River flow is over	But no over	The bypass is	
0 cfs	15,000 cfs	100% of the amount over 0 cfs	0 cfs	11,000 cfs	100% of the amount over 0 cfs	0 cfs	9,000 cfs	100% of the amount over 0 cfs	
15,000 cfs	17,000 cfs	15,000 cfs plus 80% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 60% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 50% of the amount over 9,000 cfs	
17,000 cfs	20,000 cfs	16,600 cfs plus 60% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,400 cfs plus 50% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	12,000 cfs plus 20% of the amount over 15,000 cfs	
20,000 cfs	no limit	18,400 cfs plus 30% of the amount over 20,000 cfs	20,000 cfs	no limit	15,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,000 cfs plus 0% of the amount over 20,000 cfs	

Мау				Мау				Мау			
If Sacramento River flow is over	But no over	The bypass is		If Sacramento River flow is over	But no over	The bypass is		If Sacramento River flow is over	But no over	The bypass is	
0 cfs	15,000 cfs	100% of the amount over 0 cfs		0 cfs	11,000 cfs	100% of the amount over 0 cfs		0 cfs	9,000 cfs	100% of the amount over 0 cfs	
15,000 cfs	17,000 cfs	15,000 cfs plus 70% of the amount over 15,000 cfs		11,000 cfs	15,000 cfs	11,000 cfs plus 50% of the amount over 11,000 cfs		9,000 cfs	15,000 cfs	9,000 cfs plus 40% of the amount over 9,000 cfs	
17,000 cfs	20,000 cfs	16,400 cfs plus 50% of the amount over 17,000 cfs		15,000 cfs	20,000 cfs	13,000 cfs plus 35% of the amount over 15,000 cfs		15,000 cfs	20,000 cfs	11,400 cfs plus 20% of the amount over 15,000 cfs	
20,000 cfs	no limit	17,900 cfs plus 20% of the amount over 20,000 cfs		20,000 cfs	no limit	14,750 cfs plus 20% of the amount over 20,000 cfs		20,000 cfs	no limit	12,400 cfs plus 0% of the amount over 20,000 cfs	

2016

Jun				Jun			Jun			
If Sacramento River flow is over	But no over	The bypass is		If Sacramento River flow is over	But no over	The bypass is	If Sacramento River flow is over	But no over	The bypass is	
0 cfs	15,000 cfs	100% of the amount over 0 cfs		0 cfs	11,000 cfs	100% of the amount over 0 cfs	0 cfs	9,000 cfs	100% of the amount over 0 cfs	
15,000 cfs	17,000 cfs	15,000 cfs plus 60% of the amount over 15,000 cfs		11,000 cfs	15,000 cfs	11,000 cfs plus 40% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 30% of the amount over 9,000 cfs	
17,000 cfs	20,000 cfs	16,200 cfs plus 40% of the amount over 17,000 cfs		15,000 cfs	20,000 cfs	12,600 cfs plus 20% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	10,800 cfs plus 20% of the amount over 15,000 cfs	
20,000 cfs	no limit	17,400 cfs plus 20% of the amount over 20,000 cfs		20,000 cfs	no limit	13,600 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	11,800 cfs plus 0% of the amount over 20,000 cfs	
Jul - Sep:	5,000 cfs			Jul - Sep:	5,000 cfs		Jul - Sep:	5,000 cfs		

7,000 cfs

Table B-3: Post-Pulse Bypass Flow Rules for the North Delta Diversion

Level I

Level II

Level III

7,000 cfs

7,000 cfs

Oct - Nov:

1

Oct - Nov:

Oct - Nov:

1 B.3.2. Alternative 2A, 2B, and 2C – Dual Conveyance with Intakes 1, 2, 3, 6 and 7

- 2 Alternative 2A, 2B, and 2C assumptions are provided by the lead agencies and are summarized
- 3 in the Section B.6, in Table B-12. Alternative 2 is similar to Alternative 1 in many aspects.
- 4 However, there are a few key differences in the assumptions. Alternative 2 is a dual conveyance
- 5 alternative with five proposed intakes in the north Delta with 15,000 cfs total pumping capacity
- 6 (3,000 cfs at each intake). Alternative 2 includes the operational criteria specified under Scenario
- 7 B in the Chapter 3 of BDCP EIR/EIS. The tidal marsh restoration acreages and footprints
- 8 assumed in Alternative 2 are consistent with Alternatives 1.
- 9 Alternative 2A, 2B and 2C all share the same long term operations assumptions, described
- 10 below. However, 2A, 2B and 2C, each have a different conveyance configuration. 2A assumes a
- 11 pipeline/tunnel conveyance option. 2B assumes an option that includes open channel and
- 12 siphons and located east of the Sacramento River. 2C assumes an option that includes, open
- 13 channel and tunnel located west of the Sacramento River. A detailed description of the different
- 14 conveyance configurations is included in the Chapter 3 of BDCP EIR/EIS. For modeling, the
- 15 differences in conveyance configuration are assumed to not change the long-term operations.
- 16 CALSIM II and DSM2 modeling is the same for the Alternative 2A, 2B and 2C. The changes in
- 17 the type of conveyance and the alignment are assumed to cause no changes in the overall
- 18 modeling results.
- 19 Alternative 2 CALSIM II and DSM2 assumptions that are different from the No Action
- 20 Alternative are described below.
- 21 CALSIM II Assumptions for Alternative 2:
- 22 Facilities
- 23 Fremont Weir
- 24 Consistent with Alternative 1
- 25 Isolated Conveyance Facility and the North Delta Diversion Intakes
- 26 An Isolated Conveyance Facility is included in the Alternative 2 which diverts water from the
- 27 Sacramento River in the north Delta near Hood and conveys to the existing export facilities in
- the south Delta. The maximum conveyance capacity is assumed to be 15,000 cfs. Five separate
- 29 intakes (intakes 1, 2, 3, 6 and 7) each capable of diverting 3,000 cfs are assumed along the
- 30 Sacramento River near Hood. Intakes 1, 2 and 3 are located upstream of the Sutter Slough and
- 31 intakes 6 and 7 are located downstream of the Steamboat Slough as shown in the Figure B-1. In
- 32 CALSIM II, north Delta diversion is modeled as a single diversion located along the Sacramento
- 33 River at Hood. Spatial differences in the two downstream intake locations shown in Chapter 3:
- 34 Description of Alternatives would not change CALSIM II results.
- 35 Banks Pumping Plant Capacity
- 36 Consistent with Alternative 1
- 37 Jones Pumping Plant Capacity
- 38 Consistent with Alternative 1
- 39
- 40

- 1 Regulatory Standards
- 2 North Delta Diversion Bypass Flows
- 3 North Delta bypass flows are consistent with Alternative 1.
- 4 Minimum flow near Rio Vista
- 5 Consistent with Alternative 1
- 6 Delta Outflow Index (Flow and Salinity)
- 7 SWRCB D-1641:
- 8 All flow based Delta outflow requirements included in SWRCB D-1641 are consistent with the
- 9 No Action Alternative. Similarly, for the February through June period X2 standard is included 10 consistent with the No Action Alternative.
- 11 USFWS BO (December, 2008) Action 4:
- 12 USFWS BO Action 4 requires additional Delta outflow to manage X2 in the fall months
- 13 following the wet and above normal years. This action is included in the Alternative 2. The
- 14 assumptions for this action under the Alternative 2 are consistent with the No Action
- 15 Alternative.
- 16 Combined Old and Middle River Flows
- 17 Alternative 2 requires the OMR flows to be more positive of the No Action Alternative OMR
- 18 criteria and the criteria specified below in Table B-4. In April, May and June months the
- 19 required OMR values are dependent upon the San Joaquin River inflow as noted in the Table B-
- 20 5. In October and November, the required OMR is dependent on the SWRCB D1641 pulse flow
- 21 on the San Joaquin River. Prior to the D1641 pulse flow, there are no OMR restrictions. During
- 22 the pulse flows, the south Delta exports are not allowed. During the two week post-pulse
- 23 period, OMR is restricted to -5,000 cfs. For modeling purposes, the pulse is assumed to occur
- 24 during the last two weeks of October (16th 31st). The first two weeks of October (1st 15th) are
- assumed to be pre-pulse period. The first two weeks in November $(1^{st} 15^{th})$ are assumed to be
- 26 post-pulse period. -5,000 cfs was used as the background OMR requirement for the two weeks
- 27 pre-pulse period, to compute monthly OMR requirement for October. In December, a
- 28 background OMR requirement of -8,000 cfs is assumed to compute the monthly OMR
- requirement, except when the north Delta initial pulse, measured at Wilkins Slough, is
 triggered, OMR flow requirement of -5,000 cfs is assumed. The -5,000 cfs OMR requirement is
- continued until when Delta smelt triggers (2008 USFWS RPA Action 1) occur. For the remaining
- days in December, after the Delta Smelt Action 1 is triggered, OMR requirement of -2,000 cfs is
- 33 assumed.
- 34 Table B-6 shows the Head of Old River Barrier (HORB) open percentages for each month. The
- 35 percent values noted in the Table B-6, indicate the appropriate opening for the new operable
- 36 gates, to allow the specified fraction of "the flow that would have entered the Old River if the
- 37 barrier were fully open".
- 38 In computing the OMR flow in the CALSIM II model, the percent opening noted in Table B-6 is
- assumed as the percent of time in a month the HORB is open. For October, since HORB is
- 40 required to be open 50% for 2 weeks (pre-pulse) and closed for 2 weeks (pulse), the net percent
- 41 open for the whole month was assumed to be 25%. Similarly, for November, since HORB is
- 42 required to be open 50% for 2 weeks (post-pulse) and 100% open for 2 weeks, the net percent

- 1 open for the whole month was assumed to be 75%. Similarly, the net percent open for the whole
- 2 month of June was assumed to be 75% based on the values noted in the Table B-6. Further, it
- 3 was assumed that the salmon fry start immigrating on January 1st, for simplification, and
- 4 therefore, the net percent open for the whole month of January is assumed to be 50%.
- 5 South Delta Export-San Joaquin River Inflow Ratio
- 6 Consistent with Alternative 1
- 7 Exports at the South Delta Intakes
- 8 Consistent with Alternative 1
- 9 Delta Water Quality
- 10 Consistent with Alternative 1
- 11 Operations Criteria
- 12 Fremont Weir Operations
- 13 Consistent with Alternative 1
- 14 Delta Cross Channel Gate Operations
- 15 Consistent with Alternative 1
- 16 Operations for Delta Water Quality and Residence Time
- 17 Consistent with Alternative 1
- 18 Allocation Decisions
- 19 Rules and assumptions are consistent with Alternative 1, however, new water supply index
- 20 versus demand index curves are developed for Alternative 2.
- 21 San Luis Operations
- 22 Rules and assumptions are consistent with Alternative 1.
- 23 **DSM2** Assumptions for Alternative 2:
- 24 Tidal Boundary
- 25 Consistent with Alternative 1
- 26 Water Quality
- 27 Martinez EC
- 28 Consistent with Alternative 1
- 29 Morphological Changes
- 30 Consistent with Alternative 1
- 31 Facilities
- 32 South Delta Temporary Barriers
- 33 The temporary agricultural barriers are included under Alternative 2 consistent with the No
- 34 Action Alternative. A permanent HOR gate was assumed under Alternative 2.
- 35 Isolated Facility and North Delta Diversion Intakes
- 36 The locations of the north Delta diversion intakes for Alternative 2 are shown in the Figure B-1.
- 37 Intakes 1, 2, 3, 6 and 7 are modeled in DSM2 for Alternative 2, with 3,000 cfs diversion capacity
- at each intake. The modeling of the north Delta diversion intakes in DSM2 for Alternative 2 is
- 39 consistent with Alternative 1. Modification of intake locations as shown in "Chapter 3:

- 1 Description of Alternatives" would result in changes in DSM2 results for Sacramento River
- 2 flows between a location downstream of Intake 3 and Rio Vista. No substantial changes would
- 3 occur in DSM2 results downstream of Rio Vista.

4 Operations Criteria

5 South Delta Temporary Barriers

- 6 The operations of the agricultural barriers are consistent with the No Action Alternative. The
- 7 HOR gate operations are modified under Alternative 2 such that appropriate gate opening is
- 8 simulated to allow the fraction of "the flow that would have entered the Old River if the barrier
- 9 were fully open", as noted in Table B-6. For October, the HORB is closed for the last two weeks,
- 10 during the pulse flows.
- 11 Montezuma Salinity Control Gate
- 12 Consistent with Alternative 1
- 13 North Delta Diversion Intakes
- 14 The assumptions for Alternative 2 are consistent with Alternative 1 except that the two of the
- 15 five intakes are located downstream of Steamboat Slough. The volume corresponding to first
- 16 500 cfs of the daily north Delta diversion specified by CALSIM II is diverted equally at all the
- 17 five intakes.

18

	Combined Old and Middle River Flows to be No Less than Values Below ^a (cfs)							
Month	Wet Water Year	Above Normal Water Year	Below Normal Water Year	Dry Water Year	Critical Dry Water Year			
January	0	-3,500	-4,000	-5,000	-5,000			
February	0	-3,500	-4,000	-4,000	-4,000			
March	0	0	-3,500	-3,500	-3,000			
April	see Table B-5	see Table B-5	see Table B-5	see Table B-5	see Table B-5			
May	see Table B-5	see Table B-5	see Table B-5	see Table B-5	see Table B-5			
June	see Table B-5	see Table B-5	see Table B-5	see Table B-5	see Table B-5			
July	N/A	N/A	N/A	N/A	N/A			
August	N/A	N/A	N/A	N/A	N/A			
September	N/A	N/A	N/A	N/A	N/A			
October ^b	Based on State Water Board D-1641 pulse trigger.	Based on State Water Board D-1641 pulse trigger.	Based on State Water Board D-1641 pulse trigger.	Based on State Water Board D-1641 pulse trigger.	Based on State Water Board D-1641 pulse trigger.			
November ^b	Based on State Water Board D-1641 pulse trigger.	Based on State Water Board D-1641 pulse trigger.	Based on State Water Board D-1641 pulse trigger.	Based on State Water Board D-1641 pulse trigger.	Based on State Water Board D-1641 pulse trigger.			
December ^c	-5,000	-5,000	-5,000	-5,000	-5,000			

Table B-4. Old and Middle River Flow Criteria

^a Values are monthly average for use in modeling. Values are reflective of the "most likely" water operation under the 2008 USFWS Biological Opinion. It is assumed under this Alternative that the OMR values would be compared to the OMR values included in the No Action Alternative to select the more positive OMR value for operations.

^b OMR is triggered based upon State Water Board D-1641 pulse trigger.

Before State Water Board D-1641 pulse trigger: Head of Old River Barrier open and no OMR restrictions.

During State Water Board D-1641 pulse trigger: Head of Old River Barrier closed and no south Delta exports.

Following State Water Board D-1641 pulse trigger: Head of Old River Barrier open 50% for two weeks, and OMR operated up to -5,000 cfs through November.

^c OMR restrictions of -5,000 cfs for Sacramento River winter-run Chinook salmon when North Delta initial pulse is triggered, or OMR restrictions of - 2,000 cfs when delta smelt triggers occur.

April a	nd May	June			
If San Joaquin River flow at Vernalis is (cfs):Minimum Average OMR flows (interpolated linearly between values) (cfs)		If San Joaquin flow at Vernalis is the following (cfs):	Average OMR flows would be at least the following (cfs):		
≤ 5,000	-2,000	≤ 3,500	-3,500		
6,000	+1000	2501 to 10,000			
10,000	+2000	3,501 10 10,000	0		
15,000	+3000	10,001 to 15,000	+1000		
≥30,000	+6000	>15,000	+2000		

Table B-5. San Joaquin Inflow Relationship to Old and Middle River Flow Criteria

Month	Head of Old River Barrier Open Percentage					
Oct	50%					
Nov ^a	100%					
Dec	100%					
Jan ^b	50%					
Feb	50%					
Mar	50%					
April	50%					
Мау	50%					
Jun 1-15	50%					
Jun 16-30	100%					
Jul	100%					
Aug	100%					
Sep	100%					
^a Head of Old River Barrier opera	tion is triggered baseed upon State Water Board D-1641 pulse trigger.					
Before State Water Board D-1641 pulse trigger: Head of Old River Barrier open and no OMR restrictions.						
During State Water Board D-1641 pulse trigger: Head of Old River Barrier closed and no south Delta exports.						
Following State Water Bo	Following State Water Board D-1641 pulse trigger: Head of Old River Barrier open 50% for two weeks, and OMR operated up to -					
5,000 cfs through Novem	ıber.					
^b The Head of Old River Barrier becomes operational at 50% when salmon fry are immigrating (based on real time monitoring).						

Table B-6. Head of Old River Operable Barrier Operations Criteria if San Joaquin River Flows at Vernalis are Equal To or Less Than 10,000 cfs

1 B.3.3. Alternative 3 – Dual Conveyance with Intakes 1 and 2

- 2 Alternative 3 assumptions are provided by the lead agencies and are summarized in the
- 3 Section B.6, in Table B-10. The assumptions for Alternative 3 are consistent with Alternative
- 4 1 in all aspects except for the number of intakes and total diversion capacity in the north
- 5 Delta. Alternative 3 is a dual conveyance alternative and includes first two of the five
- 6 proposed intakes in the north Delta with total 6,000 cfs capacity (3,000 cfs at each intake).
- 7 Alternative 3 includes the operational criteria specified under Scenario A in the Chapter 3 of
- 8 BDCP EIR/EIS. The tidal marsh restoration acreages and footprints assumed in Alternative
- 9 3 are also consistent with the Alternative 1.
- 10 Alternative 3 CALSIM II and DSM2 assumptions that are different from the No Action
- 11 Alternative are described below.
- 12 CALSIM II Assumptions for Alternative 3:
- 13 Facilities
- 14 Fremont Weir
- 15 Consistent with Alternative 1
- 16 Isolated Conveyance Facility and the North Delta Diversion Intakes
- 17 An Isolated Conveyance Facility is included in the Alternative 3 which diverts water from
- 18 the Sacramento River in the north Delta near Hood and conveys to the existing export
- 19 facilities in the south Delta. The maximum conveyance capacity is assumed to be 6,000 cfs.
- 20 Two separate intakes (intakes 1 and 2) each capable of diverting 3,000 cfs are proposed
- 21 along the Sacramento River near Hood, all located upstream of the Sutter Slough. In
- 22 CALSIM II, north Delta diversion is modeled as a single diversion located along the
- 23 Sacramento River at Hood.
- 24 Banks Pumping Plant Capacity
- 25 Consistent with Alternative 1
- 26 Jones Pumping Plant Capacity
- 27 Consistent with Alternative 1
- 28 Regulatory Standards
- 29 North Delta Diversion Bypass Flows
- 30 North Delta bypass flows are consistent with Alternative 1, except, under Alternative 3, the
- 31 bypass flows govern 2 intakes instead of 5. The constant low level pumping is limited to 600
- 32 cfs in the Alternative 3.
- 33 Minimum flow near Rio Vista
- 34 Consistent with Alternative 1
- 35 Delta Outflow Index (Flow and Salinity)
- 36 Consistent with Alternative 1
- 37 Combined Old and Middle River Flows
- 38 Consistent with Alternative 1
- 39 South Delta Export-San Joaquin River Inflow Ratio
- 40 Consistent with Alternative 1
- 1 Exports at the South Delta Intakes
- 2 Consistent with Alternative 1
- 3 Delta Water Quality
- 4 Consistent with Alternative 1
- 5 **Operations Criteria**
- 6 Fremont Weir Operations
- 7 Consistent with Alternative 1
- 8 Delta Cross Channel Gate Operations
- 9 Consistent with Alternative 1
- 10 Operations for Delta Water Quality and Residence Time
- 11 Consistent with Alternative 1
- 12 Allocation Decisions
- 13 Rules and assumptions are consistent with Alternative 1. Alternative 1 water supply index
- 14 versus demand index curves are used for Alternative 3, considering the similarities between
- 15 the two Alternatives.
- 16 San Luis Operations
- 17 Rules and assumptions are consistent with Alternative 1.
- 18 **DSM2** Assumptions for Alternative 3:
- 19 Tidal Boundary
- 20 Consistent with Alternative 1
- 21 Water Quality
- 22 Martinez EC
- 23 Consistent with Alternative 1
- 24 Morphological Changes
- 25 Consistent with Alternative 1
- 26 Facilities
- 27 South Delta Temporary Barriers
- 28 Consistent with Alternative 1
- 29 Isolated Facility and North Delta Diversion Intakes
- 30 The locations of the north Delta diversion intakes for Alternative 3 are shown in the Figure
- 31 B-1. Intakes 1 and 2 are modeled in DSM2 for Alternative 3, with 3,000 cfs diversion capacity
- 32 at each intake. The modeling of the north Delta diversion intakes in DSM2 for Alternative 3
- 33 is consistent with Alternative 1.
- 34 Operations Criteria
- 35 South Delta Temporary Barriers
- 36 Consistent with Alternative 1
- 37 *Montezuma Salinity Control Gate*
- 38 Consistent with Alternative 1

1 2 3 4 5	<i>North Delta Diversion Intakes</i> The diversion operation of the north Delta intakes in Alternative 3 is consistent with Alternative 1, except that it includes two intakes instead of five. The volume corresponding to first 200 cfs of the daily north Delta diversion specified by CALSIM II is diverted equally at both the intakes.					
6 7	B.3.4. Alternative 4 Decision Tree Scenarios H1, H2, H3 and H4 – Dual Conveyance with Intakes 2, 3, and 5					
8 9 10 11 12 13 14	Alternative 4 assumptions are provided by the lead agencies and are summarized in the Section B.6, in Table B-13. Alternative 4 water conveyance operations would follow the similar operational criteria as Alternative 2A with the exception of evaluating a range of possible operations for the spring and fall Delta outflow requirements that are considered to be equally likely. This range of operations is encompassed by four separate scenarios as described in detail in Section 3.6.4.2 in Chapter 3, <i>Description of Alternatives</i> . These four scenarios vary depending on assumptions for Delta outflow requirements in spring and fall					
15 16	• Alternative 4 Operational Scenario H1 (Alternative 4 H1) does not include enhanced spring outflow requirements or Fall X2 requirements,					
17 18	 Alternative 4 Operational Scenario H2 (Alternative 4 H2) includes enhanced spring outflow requirements but not Fall X2 requirements, 					
19 20 21	• Alternative 4 Operational Scenario H3 (Alternative 4 H3) does not include enhanced spring outflow requirements but includes Fall X2 requirements (similar to Alternative 2A), and					
22 23	• Alternative 4 Operational Scenario H4 (Alternative 4 H4) includes both enhanced spring outflow requirements and Fall X2 requirements.					
24 25 26 27 28	Alternative 4 is a dual conveyance alternative with three proposed intakes in the north Deltwith 9,000 cfs total pumping capacity (3,000 cfs at each intake). Alternative 4 includes the operational criteria specified under Scenario H in the Chapter 3 of BDCP EIR/EIS. The tida marsh restoration acreages and footprints assumed in Alternative 4 are consistent with Alternatives 1.					
29 30 31	Alternative 4 CALSIM II and DSM2 assumptions that are different from the No Action Alternative are described below. Unless stated explicitly, the operational assumptions for the four Alternative 4 scenarios are consistent.					
32	CALSIM II Assumptions for Alternative 4:					
34 35	Facilities Fremont Weir Consistent with Alternative 1					
36 37 38 39 40	<i>Isolated Conveyance Facility and the North Delta Diversion Intakes</i> An Isolated Conveyance Facility is included in the Alternative 4 which diverts water from the Sacramento River in the north Delta near Hood and conveys to the existing export facilities in the south Delta. The maximum conveyance capacity is assumed to be 9,000 cfs. Three separate intakes (intakes 2, 3 and 5) each capable of diverting 3,000 cfs are assumed					

- along the Sacramento River near Hood, all located upstream of Sutter Slough. In CALSIM II,
- 2 north Delta diversion is modeled as a single diversion located along the Sacramento River at
- 3 Hood.
- 4 Banks Pumping Plant Capacity
- 5 Consistent with Alternative 1
- 6 Jones Pumping Plant Capacity
- 7 Consistent with Alternative 1
- 8 Regulatory Standards
- 9 North Delta Diversion Bypass Flows
- 10 Consistent with Alternative 1
- 11 Minimum flow near Rio Vista
- 12 Consistent with Alternative 1
- 13 Delta Outflow Index (Flow and Salinity)
- 14 SWRCB D-1641:
- 15 Alternative 4 includes all flow based Delta outflow requirements per SWRCB D-1641 and
- 16 are consistent with the No Action Alternative. Similarly, for the February through June
- 17 period X2 standard is included consistent with the No Action Alternative.
- 18 USFWS B0 (December, 2008) Action 4:
- 19 USFWS BO Action 4 requires additional Delta outflow to manage X2 in the fall months
- 20 (September through November) following the wet and above normal years. This action is
- 21 included in the Alternative 4 scenarios H3 and H4. The assumptions for this action under
- 22 the Alternative 4 scenarios H3 and H4 scenarios are consistent with the No Action
- 23 Alternative.
- 24 Enhanced Spring Outflow Requirement:
- 25 Alternative 4 scenarios H2 and H4 include an additional outflow requirement as an average
- 26 over the March through May months. This enhanced spring outflow requirement is based
- 27 on the probability of exceedance of Mar-May Delta outflow proposed by the lead agencies.
- 28 The operational implementation to achieve this spring outflow objective includes assigning
- 29 the proposed outflows at various exceedance levels to the Mar-May Eight River Index (8RI)
- 30 values corresponding to the same exceedance levels. This allows operation of the CVP-SWP
- 31 to attain the proposed outflows at the proposed frequency.
- 32 Each year in March, the enhanced spring Delta outflow target for the Mar-May period is
- 33 determined based on the 90% forecast value of the Mar-May 8RI and its exceedance
- 34 probability, from the table below, linearly interpolating for values in-between.

Percent Exceedance of Proposed Outflow assumed as the Percent Exceedance of Forecasted Mar- May 8RI:	10%	20%	30%	40%	50%	60%	70%	80%	90%
Proposed Mar-May Delta Outflow Target (cfs):	44,500	44,500	35,000	32,000	23,000	17,200	13,300	11,400	9,200

35

- 1 For modeling purposes, an estimate of forecasted Mar-May 8RI is computed using a
- 2 correlation between the Jan-Feb 8RI and Mar-May 8RI as a surrogate to the 90% forecast of
- 3 the Mar-May 8RI at ELT and LLT. The projected 8RI under the climate change is used to
- 4 develop this correlation at both ELT and LLT. The correlation is used to predict the Mar-
- 5 May 8RI using the projected Jan-Feb 8RI. Using this forecasted Mar-May 8RI, the required
- 6 average outflow over Mar-May period is estimated.
- 7 This average Mar-May outflow target is further parsed to targets for individual months as 8 follows:
- 9 For March, the average Mar-May outflow target is used. •
- 10 To ensure the April outflow target is in line with the forecasted hydrology, the 11 additional outflow needed to meet the Mar-May average target taking into account 12 the resulted Delta outflow in March, is estimated and multiplied by
- 13 the ratio of 90% forecast of April Feather River unimpaired flow to the 0 14 forecasted Apr-May unimpaired flow, in the wet years (years with the 8RI 15 values that have less than 50% exceedance probability), or
- 16 the ratio of forecast of April 8RI to the forecasted Apr-May 8RI, in the dry 0 17 years (years with the 8RI values that have greater than 50% exceedance 18 probability)
- 19 • For May, the outflow target is the additional outflow needed to meet the Mar-May 20 average target, taking into account the resulted Delta outflow in March and April.
- 21 This outflow requirement is first achieved by curtailing Delta exports at Banks and Jones

22 Pumping Plants by an amount needed to meet the outflow target, such that the minimum 23 exports are at least 1,500 cfs. In drier years, the outflow target is only achieved through the

- 24 export curtailments.
- 25 In wetter years, if the outflow target is not achieved by export curtailments, then the
- 26 additional flow needed to meet the outflow target is released in April and May months from
- 27 the Oroville reservoir as long as its projected end-of-May storage is at or above 2 MAF.
- 28 Oroville end-of-May storage is forecasted at the beginning of April and May using the 90% 29
- forecast of the Feather River unimpaired flow as inflow to the reservoir and estimated
- 30 releases to meet the Feather River demands and minimum in-stream flow needs. Additional
- 31 releases from Oroville for meeting the enhanced spring outflow requirement are allowed in 32 April and May only when end-of-May Oroville storage is projected to be at or above 2 MAF
- 33 at the beginning of April and May, respectively.
- 34 Stored water releases to meet the enhanced spring outflow requirement occurs only from
- 35 Oroville, minimizing storage impacts to other reservoirs like Shasta and Folsom. Thus, the
- 36 additional spring outflow is not considered as an "in-basin use" for CVP-SWP Coordinated
- 37 Operations for modeling purposes. The releases from Oroville reservoir are capped to
- 38 power house capacity of 17,000 cfs.
- 39 Combined Old and Middle River Flows
- 40 The OMR requirements under Alternative 4 are consistent with Alternative 2A, 2B, 2C.

- 1 South Delta Export-San Joaquin River Inflow Ratio
- 2 Consistent with Alternative 1
- 3 Exports at the South Delta Intakes
- 4 The south Delta exports in Alternative 4 are operated per SWRCB D-1641. The combined
- 5 export of the CVP Tracy Pumping Plant and SWP Banks Pumping Plant is limited to a
- 6 percentage of the total Delta inflow, based on the export-inflow ratio specified under D1641.
- 7 In the Alternative 4 scenarios H1 and H3, however, this requirement is applied to the south
- 8 Delta exports only, and the north Delta diversion is not included in the Delta inflow or the
- 9 Delta exports computation used to determine this requirement. Conversely, in the
- 10 Alternative 4 scenarios H2 and H4, this requirement is applied to the total Delta exports by
- 11 including the north Delta diversion in the Delta inflow and the Delta exports computation
- 12 used to determine this requirement.
- 13 Delta Water Quality
- 14 Consistent with Alternative 1
- 15 Operations Criteria
- 16 Fremont Weir Operations
- 17 Consistent with Alternative 1
- 18 Delta Cross Channel Gate Operations
- 19 Consistent with Alternative 1
- 20 Operations for Delta Water Quality and Residence Time
- 21 Consistent with Alternative 1
- 22 Allocation Decisions
- 23 Rules and assumptions are consistent with Alternative 1, except for SWP allocation
- 24 decisions under Alternative 4 scenarios H2 and H4, which are consistent with No Action
- 25 Alternative. However, new water supply index versus demand index curves are developed
- 26 for Alternative 4 scenarios H1, H2, H3 and H4.
- 27 San Luis Operations
- 28 Rules and assumptions are similar to Alternative 1, except managed to protect upstream
- 29 storage under Alternative 4 scenarios H2 and H4.
- 30 DSM2 Assumptions for Alternative 4:
- 31 Tidal Boundary
- 32 Consistent with Alternative 1
- 33 Water Quality
- 34 *Martinez EC*
- 35 Consistent with Alternative 1
- 36 Morphological Changes
- 37 Consistent with Alternative 1
- 38 Facilities
- 39 South Delta Temporary Barriers

- 1 The temporary agricultural barriers are included under Alternative 4 consistent with the No
- 2 Action Alternative. A permanent HOR gate was assumed under Alternative 4.
- 3 Isolated Facility and North Delta Diversion Intakes
- 4 The locations of the north Delta diversion intakes for Alternative 4 are shown in the Figure
- 5 B-1. Intakes 2, 3 and 5 are modeled in DSM2 for Alternative 4, with 3,000 cfs diversion
- capacity at each intake. The modeling of the north Delta diversion intakes in DSM2 for 6
- 7 Alternative 4 is consistent with Alternative 1.
- 8 **Operations Criteria**

9 South Delta Temporary Barriers

- 10 The operations of the agricultural barriers are consistent with the No Action Alternative.
- 11 The HOR gate operations are modified under Alternative 4 such that appropriate gate
- 12 opening is simulated to allow the fraction of "the flow that would have entered the Old
- 13 River if the barrier were fully open", as noted in Table B-6. For October, the HORB is closed
- for the last two weeks, during the pulse flows. 14

15 Montezuma Salinity Control Gate

16 Consistent with Alternative 1

17 North Delta Diversion Intakes

- 18 The assumptions for Alternative 4 are consistent with Alternatives 1 except that the only
- 19 three intakes are assumed. The volume corresponding to first 300 cfs of the daily north Delta 20 diversion specified by CALSIM II is diverted equally at all the three intakes.
- B.3.5. Alternative 5 Dual Conveyance with Intake 1
- 21 22 Alternative 5 assumptions are provided by the lead agencies and are summarized in the 23 Section B.6, in Table B-14. The assumptions for Alternative 5 are similar to the Alternative 1
- 24 in all aspects except for the number of intakes, total diversion capacity in the north Delta,
- 25 and the additional constraints in the south Delta. Alternative 5 is a dual conveyance
- 26 alternative and includes the intake 1 shown in the Figure B-1, with 3,000 cfs diversion
- 27 capacity. Alternative 5 includes the operational criteria specified under Scenario C in the
- 28 Chapter 3 of BDCP EIR/EIS. The tidal marsh restoration acreages and footprints assumed in
- 29 modeling of Alternative 5 are also consistent with the Alternative 1. Note that the tidal
- 30 marsh restoration acreage specified in the Alternative 5 assumptions by the lead agencies is
- 31 25,000 acres. However, the modeling assumed the hypothetical 65,000 acres footprint used
- 32 in the Alternative 1. For the analyses of water operations and water quality, the results are
- 33 based upon 65,000 ac restoration assumptions and the impacts would be more conservative
- 34 than use of 25,000 ac. For effects on fisheries and terrestrial biological resources, 25,000 ac of
- 35 restoration was assumed as described Chapters 11 and 12.
- 36 Alternative 5 CALSIM II and DSM2 assumptions that are different from the No Action 37 Alternative are described below.
- 38
- 39 CALSIM II Assumptions for Alternative 5:
- Facilities 40
- 41 Fremont Weir

- 1 Consistent with Alternative 1
- 2 Isolated Conveyance Facility and the North Delta Diversion Intakes
- 3 An Isolated Conveyance Facility is included in the Alternative 5 which diverts water from
- 4 the Sacramento River in the north Delta near Hood and conveys to the existing export
- 5 facilities in the south Delta. The maximum conveyance capacity is assumed to be 3,000 cfs.
- 6 One intake (intakes 1) capable of diverting 3,000 cfs is proposed along the Sacramento River
- 7 near Hood. In CALSIM II, north Delta diversion is modeled as a single diversion located
- 8 along the Sacramento River at Hood.

9 Banks Pumping Plant Capacity

- 10 Physical capacity of the Banks Pumping Plant is 10,300 cfs. However, the diversions from
- 11 the south Delta channels are restricted to the permitted capacity, consistent with the No
- 12 Action Alternative. This assumption is different from Alternative 1, as the 3,000 cfs
- 13 diversion capacity available in the north Delta may not provide enough flexibility to meet
- 14 the south of Delta export needs and, it may exacerbate the violations of the permit capacity.

15 Jones Pumping Plant Capacity

16 Consistent with Alternative 1

17 Regulatory Standards

- 18 North Delta Diversion Bypass Flows
- 19 North Delta bypass flows are consistent with Alternative 1, except, under Alternative 5, the
- 20 bypass flows govern 1 intake instead of 5. The constant low level pumping is limited to 300
- cfs in the Alternative 5.
- 22 Minimum flow near Rio Vista
- 23 Consistent with Alternative 1
- 24 Delta Outflow Index (Flow and Salinity)
- 25 SWRCB D-1641:
- 26 All flow based Delta outflow requirements included in SWRCB D-1641 are consistent with
- 27 the No Action Alternative. Similarly, for the February through June period X2 standard is
- 28 included consistent with the No Action Alternative.
- 29 USFWS B0 (December, 2008) Action 4:
- 30 USFWS BO Action 4 requires additional Delta outflow to manage X2 in the fall months
- following the wet and above normal years. This action is included in the Alternative 5. The
- 32 assumptions for this action under the Alternative 5 are consistent with the No Action
- 33 Alternative.
- 34 Combined Old and Middle River Flows
- 35 Consistent with Alternative 1
- 36
- 37 South Delta Export-San Joaquin River Inflow Ratio
- 38 NMFS BO (June 2009) Action 4.2.1 requires the south Delta exports are governed by this
- 39 ratio in the months of April and May under the No Action Alternative. Under Alternative 5
- 40 this criteria is implemented.

- 1 Exports at the South Delta Intakes
- 2 Consistent with Alternative 1
- 3 Delta Water Quality
- 4 Consistent with Alternative 1
- 5 Operations Criteria
- 6 Fremont Weir Operations
- 7 Consistent with Alternative 1
- 8 Delta Cross Channel Gate Operations
- 9 Consistent with Alternative 1
- 10 Operations for Delta Water Quality and Residence Time
- 11 Consistent with Alternative 1
- 12 Allocation Decisions
- 13 Rules and assumptions are similar to the No Action Alternative. However, new water
- 14 supply index versus demand index curves are developed for Alternative 5. The San Luis
- 15 rule curve is managed to minimize situations in which shortages may occur due to lack of
- 16 storage or exports.
- 17 San Luis Operations
- 18 Rules and assumptions are similar to the No Action Alternative.
- 19 DSM2 Assumptions for Alternative 5:
- 20 Tidal Boundary
- 21 Consistent with Alternative 1
- 22 Water Quality
- 23 Martinez EC
- 24 Consistent with Alternative 1
- 25 Morphological Changes
- 26 Consistent with Alternative 1
- 27 Facilities
- 28 South Delta Temporary Barriers
- 29 The temporary agricultural barriers and the HORB are included under Alternative 5
- 30 consistent with the No Action Alternative.
- 31 Isolated Facility and North Delta Diversion Intakes
- 32 The location of the north Delta diversion intake for Alternative 5 is shown in the Figure B-1.
- 33 Intake 1 is modeled in DSM2 for Alternative 5, with 3,000 cfs diversion capacity. The
- 34 modeling of the north Delta diversion intake in DSM2 for Alternative 5 is consistent with
- 35 Alternative 1.
- 36 **Operations Criteria**
- 37 South Delta Temporary Barriers
- 38 The operations of the agricultural barriers and the HORB are consistent with the No Action
- 39 Alternative.

- 1 Montezuma Salinity Control Gate
- 2 Consistent with Alternative 1
- 3 North Delta Diversion Intakes
- 4 The diversion operation of the north Delta intakes in Alternative 5 is consistent with
- 5 Alternative 1, except that it includes one intake instead of five.

B.3.6. Alternative 6A, 6B and 6C – Isolated Conveyance with Intakes 1, 2, 3, 4 and 5

- 8 Alternative 6A, 6B and 6C assumptions are provided by the lead agencies and are
- 9 summarized in the Section B.6, in Table B-11. Alternative 6 is an isolated conveyance
- 10 alternative and includes the five intakes included in Alternative 1 for a total of 15,000 cfs
- 11 total pumping capacity (3,000 cfs at each intake). Alternative 6 is consistent with
- 12 Alternatives 1 in all aspects except for the lack of the exports in the south Delta and the
- 13 inclusion of USFWS BO (December, 2008) Action 4. Alternative 6 includes the operational
- 14 criteria specified under Scenario D in the Chapter 3 of BDCP EIR/EIS. The tidal marsh
- 15 restoration acreages and footprints assumed in Alternative 6 are also consistent with
- 16 Alternatives 1.
- 17 Alternative 6A, 6B and 6C all share the same long term operations assumptions, described
- 18 below. However, 6A, 6B and 6C, each have a different conveyance configuration. 6A
- assumes a pipeline/tunnel conveyance option. 6B assumes an option that includes open
- 20 channel and siphons and located east of the Sacramento River. 6C assumes an option that
- 21 includes, open channel and tunnel located west of the Sacramento River. A detailed
- description of the different conveyance configurations is included in the Chapter 3 of BDCP
- 23 EIR/EIS. For modeling, the differences in conveyance configuration are assumed to not
- 24 change the long-term operations.
- 25 CALSIM II and DSM2 modeling is the same for the Alternative 6A, 6B and 6C. The changes
- 26 in the type of conveyance and the alignment are assumed to cause no changes in the overall
- 27 modeling results.
- 28 Alternative 6 CALSIM II and DSM2 assumptions that are different from the No Action
- 29 Alternative are only described below.
- 30 CALSIM II Assumptions for Alternative 6:
- 31 Facilities
- 32 Fremont Weir
- 33 Consistent with Alternative 1
- 34 Isolated Conveyance Facility and the North Delta Diversion Intakes
- 35 An Isolated Conveyance Facility is included in the Alternative 6 which diverts water from
- 36 the Sacramento River in the north Delta near Hood and conveys to the existing export
- 37 facilities in the south Delta. The maximum conveyance capacity is assumed to be 15,000 cfs.
- 38 Five separate intakes (intakes 1, 2, 3, 4 and 5) each capable of diverting 3,000 cfs are assumed
- along the Sacramento River near Hood, all located upstream of Sutter Slough. In CALSIM II,
- 40 north Delta diversion is modeled as a single diversion located along the Sacramento River at
- 41 Hood.

- 1 Banks Pumping Plant Capacity
- 2 Physical capacity of the Banks Pumping Plant is 10,300 cfs, consistent with Alternative 1.
- 3 However, it is assumed that no diversions can occur from the south Delta channels,
- 4 considering this is an isolated conveyance alternative.
- 5 Jones Pumping Plant Capacity
- 6 The capacity of the Jones Pumping Plant is consistent with Alternative 1. However, it is
- 7 assumed that no diversions can occur from the south Delta channels.
- 8 Regulatory Standards
- 9 North Delta Diversion Bypass Flows
- 10 Consistent with Alternative 1
- 11 Minimum flow near Rio Vista
- 12 Consistent with Alternative 1
- 13 Delta Outflow Index (Flow and Salinity)
- 14 *SWRCB D-1641:*
- 15 All flow based Delta outflow requirements included in SWRCB D-1641 are consistent with
- 16 the No Action Alternative. Similarly, for the February through June period X2 standard is
- 17 included consistent with the No Action Alternative.
- 18 USFWS B0 (December, 2008) Action 4:
- 19 USFWS BO Action 4 requires additional Delta outflow to manage X2 in the fall months
- 20 following the wet and above normal years. This action is included in the Alternative 6. The
- assumptions for this action under the Alternative 6 are consistent with the No Action
- 22 Alternative.
- 23 Combined Old and Middle River Flows
- 24 Consistent with Alternative 1
- 25 South Delta Export-San Joaquin River Inflow Ratio
- 26 Consistent with Alternative 1
- 27 Exports at the South Delta Intakes
- 28 The south Delta exports are restricted to zero in Alternative 6. Therefore, the health and
- 29 safety minimum pumping criteria is not included.
- 30 Delta Water Quality
- 31 Consistent with Alternative 1
- 32 Operations Criteria
- 33 Fremont Weir Operations
- 34 Consistent with Alternative 1
- 35 Delta Cross Channel Gate Operations
- 36 Consistent with Alternative 1
- 37 Operations for Delta Water Quality and Residence Time
- 38 The south Delta exports are restricted to zero in Alternative 6.

- 1 Allocation Decisions
- 2 Allocation rules and assumptions are significantly different in Alternative 6. Even though,
- 3 new water supply index versus demand index curves are developed for Alternative 3, since
- 4 the supply available for south-of-Delta exports is limited to the Sacramento River inflow, the
- 5 allocation decisions are based on a standardized rule curve defined between Sacramento
- 6 River four river index and the export index. Due to uncertainty in forecasting river
- 7 conditions and the effect of the north Delta diversion bypass rules, and since the north Delta
- 8 diversion is the only intake available for exports, the deliveries may fall short of allocated
- 9 quantities.
- 10 San Luis Operations
- 11 Similar to Alternative 1, CALSIM II San Luis rule curve is modified under Alternative 6, in
- 12 expectation that new conveyance can capture winter and spring excess flows and fill earlier
- 13 in the year.
- 14 **DSM2** Assumptions for Alternative 6:

15 Tidal Boundary

- 16 Consistent with Alternative 1
- 17 Water Quality
- 18 Martinez EC
- 19 Consistent with Alternative 1
- 20 Morphological Changes
- 21 Consistent with Alternative 1
- 22 Facilities
- 23 South Delta Temporary Barriers
- 24 Consistent with Alternative 1
- 25 Isolated Facility and North Delta Diversion Intakes
- 26 The locations of the north Delta diversion intakes for Alternative 6 are shown in the Figure
- 27 B-1. Intakes 1 through 5 are modeled in DSM2 for Alternative 6, with 3,000 cfs diversion
- 28 capacity at each intake. The modeling of the north Delta diversion intakes in DSM2 for
- 29 Alternative 6 is consistent with Alternative 1.
- 30 Operations Criteria
- 31 South Delta Temporary Barriers
- 32 Consistent with Alternative 1
- 33 Montezuma Salinity Control Gate
- 34 Consistent with Alternative 1
- 35 North Delta Diversion Intakes
- 36 The operation of the north Delta intakes in Alternative 6 is consistent with Alternative 1.

B.3.7. Alternative 7 – Enhanced Aquatic Conservation – Dual Conveyance with 1

Intakes 2, 3 and 5 2

- 3 Alternative 7 assumptions are provided by the lead agencies and are summarized in the
- 4 Section B.6, in Table B-15. Alternative 7 is similar to Alternative 1 in several aspects.
- 5 However, there are a few key differences in the assumptions. Alternative 7 is a dual
- 6 conveyance alternative and includes three proposed intakes in the north Delta with 9,000 cfs
- 7 total pumping capacity (3,000 cfs at each intake). Alternative 7 includes the operational
- 8 criteria specified under Scenario E in the Chapter 3 of BDCP EIR/EIS. The tidal marsh
- 9 restoration acreages and footprints assumed in Alternative 7 are consistent with Alternative 1.
- 10
- 11 Alternative 7 CALSIM II and DSM2 assumptions that are different from the No Action
- 12 Alternative are described below.
- 13 CALSIM II Assumptions for Alternative 7:
- 14 Facilities
- 15 Fremont Weir
- 16 Under Alternative 7, it is assumed that a notch opening in the existing Fremont Weir and
- 17 operable gates are constructed at elevation 17.5 feet, consistent with Alternative 1. The
- 18 smaller opening at 11.5 feet elevation that is assumed in the Alternatives 1 is not part of the
- 19 Alternative 7.
- 20 Isolated Conveyance Facility and the North Delta Diversion Intakes
- An Isolated Conveyance Facility is included in the Alternative 7 which diverts water from 21
- 22 the Sacramento River in the north Delta near Hood and conveys to the existing export
- 23 facilities in the south Delta. The maximum conveyance capacity is assumed to be 9,000 cfs.
- 24 Three separate intakes (intakes 2, 3 and 5) each capable of diverting 3,000 cfs are proposed
- 25 along the Sacramento River near Hood, all located upstream of the Sutter Slough. In
- 26 CALSIM II, north Delta diversion is modeled as a single diversion located along the
- 27 Sacramento River at Hood.
- 28 Banks Pumping Plant Capacity
- 29 Consistent with Alternative 1
- 30 Jones Pumping Plant Capacity
- 31 Consistent with Alternative 1
- 32 Regulatory Standards
- 33 North Delta Diversion Bypass Flows
- 34 The assumptions for Alternative 7 are consistent with Alternatives 1 except that between
- 35 December and June, constant low level pumping allows diversions of up to 5% of the river
- 36 flow for flows greater than 5,000 cfs at the north Delta diversion. In addition, under
- 37 Alternative 7, the bypass rules govern three intakes instead of the five intakes in Alternative
- 38 1. The low level pumping continues to be less than 300 cfs at any one intake, with a
- 39 combined limit of 900 cfs for the three intakes in the Alternative 7.
- 40 Further, in the Alternative 7, after the initial pulse(s), Level I post-pulse bypass rule is
- 41 applied until 20 days of bypass flows above 20,000 cfs. Then Level II post-pulse bypass rule

- 1 is applied until 45 days of bypass flows above 20,000 cfs. Then Level III post-pulse bypass
- 2 rule is applied. The bypass rules were applied on the mean daily river flows in the CALSIM
- 3 II model.
- 4 A detailed description of the modeling of the north Delta diversion operations for
- 5 Alternative 1, which forms the basis of the north Delta diversion operations in Alternative 7
- 6 CALSIM II Modeling, is provided in the Section A.3.3 of this appendix.
- 7 Minimum flow near Rio Vista
- 8 For September through December months the minimum flow required on the Sacramento
- 9 River at Rio Vista under the Water Quality Control Plan, SWRCB D-1641 is maintained. For
- 10 January through August a minimum flow of 5,000 cfs is maintained in all years.
- 11 Delta Outflow Index (Flow and Salinity)
- 12 SWRCB D-1641:
- 13 All flow based Delta outflow requirements included in SWRCB D-1641 are consistent with
- 14 the No Action Alternative. Similarly, for the February through June period X2 standard is
- 15 included consistent with the No Action Alternative.
- 16 USFWS B0 (December, 2008) Action 4:
- 17 USFWS BO Action 4 requires additional Delta outflow to manage X2 in the fall months
- 18 following the wet and above normal years. This action is included in the Alternative 7. The
- 19 assumptions for this action under the Alternative 7 are consistent with the No Action
- 20 Alternative.
- 21 Combined Flow in Old and Middle River (OMR)
- 22 Alternative 7 assumes that the south Delta exports cannot cause OMR to fall below +1,000
- 23 cfs during December through March period. Similarly, the south Delta exports cannot cause
- 24 OMR to fall below +3,000 cfs in June. Further, the south Delta exports are not allowed
- 25 during April, May, October and November months. No OMR restrictions in July, August
- 26 and September months.

27 South Delta Export-San Joaquin River Inflow Ratio

- 28 NMFS BO (June 2009) Action 4.2.1 requires the south Delta exports are governed by this
- 29 ratio in the months of April and May under the No Action Alternative. Under Alternative 7
- 30 this criteria is modified, requiring the south Delta exports be capped at 50% of San Joaquin
- 31 River flow at Vernalis during December through March and in June months.
- 32 Exports at the South Delta Intakes
- 33 The south Delta exports in Alternative 7 are operated per SWRCB D-1641. The combined
- export of the CVP Tracy Pumping Plant and SWP Banks Pumping Plant is limited to a
- 35 percentage of the total Delta inflow, based on the export-inflow ratio specified under D1641.
- 36 In the Alternative 7, however, this requirement is limited to the south Delta exports only.
- 37 The north Delta diversion is not included in the Delta inflow or the Delta exports
- 38 computation.
- 39 Finally, the south Delta exports are not allowed during April, May, October and November
- 40 months per the requirements set for the OMR under Alternative 7.
- 41

- 1 Delta Water Quality
- 2 Consistent with Alternative 1
- 3 Operations Criteria
- 4 Fremont Weir Operations
- 5 Under Alternative 7, to provide seasonal floodplain inundation in the Yolo Bypass, the 17.5
- 6 feet elevation gates are opened between December 1st and April 15th. This may extend to
- 7 May 15th, depending on the hydrologic conditions. The gates are operated to limit maximum
- 8 spill to 8,000 cfs until the Sacramento River stage reaches the existing Fremont Weir
- 9 elevation. When the river stage is at or above the existing Fremont Weir crest elevation, the
- 10 notch gates are assumed to be closed. While desired inundation period is on the order of 30
- 11 to 45 days, gates are not managed to limit to this range, instead the duration of the event is
- 12 governed by the Sacramento River flow conditions. The opening at 11.5 feet elevation is not
- 13 included in Alternative 7.
- 14 Delta Cross Channel Gate Operations
- 15 Consistent with Alternative 1
- 16 Operations for Delta Water Quality and Residence Time
- 17 Consistent with Alternative 1
- 18 Allocation Decisions
- 19 Rules and assumptions are consistent with Alternative 1. However, the water supply index
- 20 versus demand index curves developed for Alternative 6 are used for Alternative 7, as the
- 21 reliability of the export conditions are similar in these two Alternatives.
- 22 San Luis Operations
- 23 Rules and assumptions are consistent with Alternative 1.
- 24 DSM2 Assumptions for Alternative 7:
- 25 Tidal Boundary
- 26 Consistent with Alternative 1
- 27 Water Quality
- 28 Martinez EC
- 29 Consistent with Alternative 1
- 30 Morphological Changes
- 31 Consistent with Alternative 1
- 32 Facilities
- 33 South Delta Temporary Barriers
- 34 Consistent with Alternative 1
- 35 Isolated Facility and North Delta Diversion Intakes
- 36 The locations of the north Delta diversion intakes for Alternative 7 are shown in the Figure
- B-1. Intakes 2, 3 and 5 modeled in DSM2, with 3,000 cfs maximum diversion capacity at each
- intake. The modeling of the north Delta diversion intakes in DSM2 for Alternative 7 is
- 39 consistent with Alternative 1.

- 1 Operations Criteria
- 2 South Delta Temporary Barriers
- 3 Consistent with Alternative 1
- 4 Montezuma Salinity Control Gate
- 5 Consistent with Alternative 1
- 6 North Delta Diversion Intakes
- 7 The diversion operation of the north Delta intakes in Alternative 7 is consistent with
- 8 Alternative 1, except that it includes three intakes. The volume corresponding to first 300 cfs
- 9 of the daily north Delta diversion specified by CALSIM II is diverted equally at all the five
- 10 intakes.

11 B.3.8. Alternative 8

- 12 Alternative 8 assumptions are developed by the SWRCB in collaboration with DWR. The
- 13 assumptions are summarized in the Section B.6, in Table B-16. Alternative 8 is developed
- 14 based on the Alternative 7. Similar to Alternative 7, Alternative 8 is a dual conveyance
- 15 alternative and includes three proposed intakes in the north Delta with 9,000 cfs total
- 16 pumping capacity (3,000 cfs at each intake). Alternative 8 includes the operational criteria
- 17 specified under Scenario F in the Chapter 3 of BDCP EIR/EIS. The tidal marsh restoration
- 18 acreages and footprints assumed in Alternative 8 are consistent with Alternative 1.
- 19 Alternative 8 CALSIM II and DSM2 assumptions that are different from the No Action
- 20 Alternative are described below.
- 21 CALSIM II Assumptions for Alternative 8:
- 22 Facilities
- 23 Fremont Weir
- 24 Under Alternative 8, it is assumed that a notch opening in the existing Fremont Weir and
- 25 operable gates are constructed at elevation 17.5 feet, consistent with Alternative 1. The
- smaller opening at 11.5 feet elevation that is assumed in the Alternatives 1 is not part of theAlternative 8.
- 28 Isolated Conveyance Facility and the North Delta Diversion Intakes
- 29 An Isolated Conveyance Facility is included in the Alternative 8 which diverts water from
- 30 the Sacramento River in the north Delta near Hood and conveys to the existing export
- facilities in the south Delta. The maximum conveyance capacity is assumed to be 9,000 cfs.
- 32 Three separate intakes (intakes 2, 3 and 5) each capable of diverting 3,000 cfs are proposed
- along the Sacramento River near Hood, all located upstream of the Sutter Slough. In
- 34 CALSIM II, north Delta diversion is modeled as a single diversion located along the
- 35 Sacramento River at Hood.
- 36 Banks Pumping Plant Capacity
- 37 Consistent with Alternative 1
- 38 Jones Pumping Plant Capacity
- 39 Consistent with Alternative 1
- 40

1 Regulatory Standards

- 2 North Delta Diversion Bypass Flows
- 3 The assumptions for Alternative 8 are consistent with Alternatives 1 except that between
- 4 December and June, constant low level pumping allows diversions of up to 5% of the river
- 5 flow for flows greater than 5,000 cfs at the north Delta diversion. In addition, under
- 6 Alternative 8, the bypass rules govern three intakes instead of the five intakes in Alternative
- 7 1. The low level pumping continues to be less than 300 cfs at any one intake, with a
- 8 combined limit of 900 cfs for the three intakes in the Alternative 8.
- 9 Further, in the Alternative 8, after the initial pulse(s), Level I post-pulse bypass rule is
- 10 applied until 20 days of bypass flows above 20,000 cfs. Then Level II post-pulse bypass rule
- 11 is applied until 45 days of bypass flows above 20,000 cfs. Then Level III post-pulse bypass
- 12 rule is applied. The bypass rules were applied on the mean daily river flows in the CALSIM
- 13 II model.
- 14 A detailed description of the modeling of the north Delta diversion operations for
- 15 Alternative 1, which forms the basis of the north Delta diversion operations in Alternative 8
- 16 CALSIM II Modeling, is provided in the Section A.3.3 of this appendix.

17 Minimum flow near Rio Vista

- 18 For September through December months the minimum flow required on the Sacramento
- 19 River at Rio Vista under the Water Quality Control Plan, SWRCB D-1641 is maintained. For
- 20 January through August a minimum flow of 5,000 cfs is maintained in all years.
- 21 Minimum Flow near Freeport
- 22 For January through June months a minimum flow of 55% of the Unimpaired Flow in the
- 23 Sacramento River at Freeport (with an upper limit of 40,000 cfs) is maintained. To balance
- 24 SWP and CVP contributions to the Freeport requirement, a minimum requirement is
- 25 applied simultaneously at the mouth of the Feather River that is a proportional amount of
- 26 the 55% Unimpaired Flow at Freeport.
- 27 Delta Outflow Index (Flow and Salinity)
- 28 SWRCB D-1641:
- 29 All flow based Delta outflow requirements included in SWRCB D-1641 are consistent with
- 30 the No Action Alternative. Similarly, for the February through June period X2 standard is
- 31 included consistent with the No Action Alternative.
- 32 USFWS B0 (December, 2008) Action 4:
- 33 USFWS BO Action 4 requires additional Delta outflow to manage X2 in the fall months
- 34 following the wet and above normal years. This action is included in the Alternative 8. The
- assumptions for this action under the Alternative 8 are consistent with the No Action
- 36 Alternative.
- 37 For January through June months Delta Outflow equal to greater of 55% of the Unimpaired
- 38 Flow in the Sacramento River at Freeport (with an upper limit of 40,000 cfs) or the SWRCB
- 39 D-1641 Delta Outflow requirements as stated above, is maintained.
- 40
- 41

1 Cold Water Pool Storage

- 2 Trinity, Shasta, Oroville and Folsom storages were modified to enable more cold water pool
- 3 storage by increasing Storage Level 3 to 75% of the maximum storage. Within Storage Level
- 4 3, exports are gradually reduced until Storage Level 2 is reached in the reservoir. Project
- 5 Storage below 75% of maximum storage is limited to releases for environmental uses
- 6 and/or superior water rights.

7 Combined Flow in Old and Middle River (OMR)

- 8 Alternative 8 assumes that the south Delta exports cannot cause OMR to fall below +1,000
- 9 cfs during December through March period. Similarly, the south Delta exports cannot cause

10 OMR to fall below +3,000 cfs in June. Further, the south Delta exports are not allowed

11 during April, May, October and November months. No OMR restrictions in July, August

12 and September months.

13 South Delta Export-San Joaquin River Inflow Ratio

- 14 NMFS BO (June 2009) Action 4.2.1 requires the south Delta exports are governed by this
- 15 ratio in the months of April and May under the No Action Alternative. Under Alternative 8
- 16 this criteria is modified, requiring the south Delta exports be capped at 50% of San Joaquin
- 17 River flow at Vernalis during December through March and in June months.

18 Exports at the South Delta Intakes

- 19 The south Delta exports in Alternative 8 are operated per SWRCB D-1641. The combined
- 20 export of the CVP Tracy Pumping Plant and SWP Banks Pumping Plant is limited to a
- 21 percentage of the total Delta inflow, based on the export-inflow ratio specified under D1641.
- 22 In the Alternative 8, however, this requirement is limited to the south Delta exports only.
- 23 The north Delta diversion is not included in the Delta inflow or the Delta exports
- 24 computation.
- Finally, the south Delta exports are not allowed during April, May, October and November months per the requirements set for the OMR under Alternative 8.
- 27 Delta Water Quality
- 28 Consistent with Alternative 1
- 29 Operations Criteria

30 Fremont Weir Operations

- 31 Under Alternative 8, to provide seasonal floodplain inundation in the Yolo Bypass, the 17.5
- 32 feet elevation gates are opened between December 1st and April 15th. This may extend to
- 33 May 15th, depending on the hydrologic conditions. As a simplification, in the model the
- 34 gates are opened until April 30th in all the years. The gates are operated to limit maximum
- 35 spill to 8,000 cfs until the Sacramento River stage reaches the existing Fremont Weir
- 36 elevation. When the river stage is at or above the existing Fremont Weir crest elevation, the
- notch gates are assumed to be closed. While desired inundation period is on the order of 30
- to 45 days, gates are not managed to limit to this range, instead the duration of the event is
- 39 governed by the Sacramento River flow conditions. The opening at 11.5 feet elevation is not
- 40 included in Alternative 8.
- 41
- 42

- 1 Delta Cross Channel Gate Operations
- 2 Consistent with Alternative 1
- 3 Operations for Delta Water Quality and Residence Time
- 4 Consistent with Alternative 1
- 5 Allocation Decisions
- 6 Rules and assumptions are consistent with Alternative 1. However, the water supply index
- 7 versus demand index curves developed for Alternative 6 are used for Alternative 8, as the
- 8 reliability of the export conditions are similar in these two Alternatives.
- 9 San Luis Operations
- 10 Rules and assumptions are consistent with Alternative 1.
- 11 DSM2 Assumptions for Alternative 8:
- 12 Tidal Boundary
- 13 Consistent with Alternative 1
- 14 Water Quality
- 15 Martinez EC
- 16 Consistent with Alternative 1
- 17 Morphological Changes
- 18 Consistent with Alternative 1
- 19 Facilities
- 20 South Delta Temporary Barriers
- 21 Consistent with Alternative 1
- 22 Isolated Facility and North Delta Diversion Intakes
- 23 The locations of the north Delta diversion intakes for Alternative 8 are shown in the Figure
- 24 B-1. Intakes 2, 3 and 5 modeled in DSM2, with 3,000 cfs maximum diversion capacity at each
- 25 intake. The modeling of the north Delta diversion intakes in DSM2 for Alternative 8 is
- 26 consistent with Alternative 1.
- 27 Operations Criteria
- 28 South Delta Temporary Barriers
- 29 Consistent with Alternative 1
- 30 Montezuma Salinity Control Gate
- 31 Consistent with Alternative 1
- 32 North Delta Diversion Intakes
- 33 The diversion operation of the north Delta intakes in Alternative 8 is consistent with
- 34 Alternative 1, except that it includes three intakes. The volume corresponding to first 300 cfs
- of the daily north Delta diversion specified by CALSIM II is diverted equally at all the fiveintakes.
- B.3.9. Alternative 9 Separate Corridors
- Alternative 9 assumptions are provided by the lead agencies and are summarized in the
 Section B.6, in Table B-17. Alternative 9 is the through-Delta conveyance alternative

- 1 included in the BDCP EIR/EIS. In this Alternative, water continues to flow by gravity from
- 2 the Sacramento River into two existing channels, Delta Cross Channel and Georgiana
- 3 Slough. This scenario does not include north Delta Diversion Bypass Flow Criteria and
- 4 Operations for Delta Water Quality and Residence Time. Alternative 9 includes the
- 5 operational criteria specified under Scenario G in the Chapter 3 of BDCP EIR/EIS.

6 Alternative 9 introduces a number of operable gates designed to separate Middle River from

- 7 Old River. The existing Clifton Forebay intake is removed and instead, the Forebay is
- 8 assumed to be connected directly to Victoria Canal via a siphon structure. In order to
- 9 accommodate the higher flows in Middle River, major dredging is proposed in portions of
- 10 Middle River and Victoria Canal. In addition two fish screens with a capacity 7,500 cfs are
- 11 proposed for Delta Cross Channel and Georgiana Slough in order to reduce the movement
- 12 of fish from Sacramento River into Central Delta. Additional criteria are provided for
- 13 operations of operable barriers on the Mokelumne River system. For more specific
- 14 information on this alternative, see the DSM2 assumptions listed below.
- 15 Alternative 9 CALSIM II and DSM2 assumptions that are different from the No Action
- 16 Alternative are described below.
- 17 CALSIM II Assumptions for Alternative 9:
- 18 Facilities
- 19 Fremont Weir
- 20 Consistent with Alternative 1
- 21 Separate Corridor
- 22 A Separate Corridor is included in Alternative 9 which conveys water from the Sacramento
- 23 River in central Delta through Middle River to the existing export facilities in the south
- 24 Delta when the San Joaquin River flow at Vernalis is less than 10,000 cfs.
- 25 Georgiana Slough Gate
- 26 A gate structure with a fish screen is included in Alternative 9 on Georgiana Slough near
- 27 Sacramento River. This gate structure limits flow in Georgiana Slough to a maximum of
- 28 7,500 cfs.
- 29 Banks Pumping Plant Capacity
- 30 Physical capacity of the Banks Pumping Plant is 10,300 cfs. However, the diversions from
- 31 the south Delta channels are restricted to the permitted capacity, consistent with the No
- 32 Action Alternative. When San Joaquin River flow at Vernalis is less than 10,000 cfs, the
- diversions into the Banks Pumping Plant occur from the Victoria Canal, in the Alternative 9.
- 34 When San Joaquin River flow at Vernalis is greater than 10,000 cfs, the diversions into the
- 35 Banks Pumping Plant occur from the West Canal consistent with the No Action Alternative.
- 36 Jones Pumping Plant Capacity
- 37 Pumping capacity assumptions for Jones Pumping Plant are consistent with the No Action
- 38 Alternative. When San Joaquin River flow at Vernalis is less than 10,000 cfs, the diversions
- 39 into the Jones Pumping Plant occur from the Victoria Canal via Clifton Court Forebay, in the
- 40 Alternative 9. When San Joaquin River flow at Vernalis is greater than 10,000 cfs, the
- 41 diversions into the Jones Pumping Plant occur from the Old River channel consistent with
- 42 the No Action Alternative.

- 1 Regulatory Standards
- 2 Minimum flow near Rio Vista
- 3 Consistent with Alternative 1
- 4 Delta Outflow Index (Flow and Salinity)
- 5 SWRCB D-1641:
- 6 All flow based Delta outflow requirements included in SWRCB D-1641 are consistent with
- 7 the No Action Alternative. Similarly, for the February through June period X2 standard is
- 8 included consistent with the No Action Alternative.
- 9 USFWS B0 (December, 2008) Action 4:
- 10 USFWS BO Action 4 requires additional Delta outflow to manage X2 in the fall months
- 11 following the wet and above normal years. This action is included in the Alternative 9. The
- 12 assumptions for this action under the Alternative 9 are consistent with the No Action
- 13 Alternative.
- 14 Combined Flow in Old and Middle River (OMR)
- 15 OMR requirements are consistent with No Action Alternative when San Joaquin River flow
- 16 at Vernalis is greater than 10,000 cfs, under Alternative 9. It assumes that the south Delta
- 17 exports cannot cause OMR to fall below the levels specified in USFWS BO (Dec 2008)
- 18 Actions 1 through 3 and NMFS BO (Jun 2009) Action IV.2.3 when San Joaquin River flow at
- 19 Vernalis is greater than 10,000 cfs.
- 20 Additionally, Alternative 9 assumes the south Delta exports cannot cause Middle River flow
- 21 to fall below the levels specified in USFWS BO (Dec 2008) Actions 1 through 3 and NMFS
- 22 BO (Jun 2009) Action IV.2.3 when San Joaquin River flow at Vernalis is less than 10,000 cfs.
- 23
- 24 South Delta Export-San Joaquin River Inflow Ratio
- 25 NMFS BO (June 2009) Action 4.2.1 requires the south Delta exports are governed by this
- 26 ratio in the months of April and May under the No Action Alternative. Under Alternative 9
- this criteria is included when San Joaquin River flow at Vernalis is greater than 10,000 cfs.
- 28 Exports at the South Delta Intakes
- 29 The south Delta exports in Alternative 9 are operated per SWRCB D-1641 when San Joaquin
- 30 River flow is less than 10,000 cfs, as in the No Action Alternative.
- 31 Allocation Decisions
- 32 Rules and assumptions are similar to the No Action Alternative. However, new water
- 33 supply index versus demand index curves are developed for Alternative 9.
- 34 San Luis Operations
- 35 Rules and assumptions are similar to the No Action Alternative.
- 36 Delta Water Quality
- 37 Alternative 9 includes SWRCB D-1641 salinity requirements consistent with the Alternative
- 38 1 for all compliance locations except for Rock Slough. The Rock Slough salinity location is
- 39 not specifically targeted for compliance. Instead, compliance with the Clifton Court Forebay
- 40 salinity standard of 250 mg/L is simulated, in all years.

- 1 Operations Criteria
- 2 Fremont Weir Operations
- 3 Consistent with Alternative 1
- 4 Delta Cross Channel Gate Operations
- 5 Under Alternative 9, DCC gates are closed when Sacramento River flows at Delta Cross
- 6 Channel are less than 11,000 cfs or greater than 25,000 cfs. When Sacramento River flows at
- 7 Delta Cross Channel are between 11,000 cfs and 25,000 cfs, Delta Cross Channel gates are
- 8 operated to divert approximately 25% of Sacramento River flow at Delta Cross Channel.
- 9 DSM2 Assumptions for Alternative 9:
- 10 Tidal Boundary
- 11 Consistent with Alternative 1
- 12 Water Quality
- 13 Martinez EC
- 14 Consistent with Alternative 1
- 15 Morphological Changes
- 16 Consistent with Alternative 1 with some exceptions as noted below.
- 17 Middle River and Victoria Canal are dredged based on the DHCCP (Delta Habitat
- 18 Conservation and Conveyance Program) design drawings for Alternative 9. To separate Old
- 19 River, Clifton Court Forebay is directly connected to Victoria Canal, while the existing
- 20 intake to the Forebay is removed. The Meadows Slough, in the Central Delta, is assumed to
- 21 be connected to Sacramento River. Channel cross-sections on Snodgrass, Stone Lakes, Lost
- 22 Slough, Mokelumne River and Meadows Slough around McCormick Williamson Tract are
- 23 also modified to reflect the proposed channel dredging (based on LIDAR data provided by
- 24 DHCCP).
- 25 Facilities
- 26 South Delta Temporary Barriers
- 27 South Delta Temporary Barriers are not included under Alternative 9.
- 28 Additional Delta Facilities
- 29 Alternative 9 has additional facilities which are quite different from other Alternatives. The
- 30 objective of Alternative 9 is to separate Old River from Middle River by blocking channel
- 31 connections using operable gates. Old River is assumed to be completely disconnected from
- 32 Victoria Canal and Clifton Court Forebay. Five gates are installed and assumed to be closed
- 33 when San Joaquin River (SJR) flow at Vernalis is less than 10,000 cfs in order to separate Old
- 34 River from Middle River. The gates are located on Woodward Canal, Santa Fe Cut,
- 35 Connection Slough, Mouth of Old River at San Joaquin River near Franks Tract and
- 36 Fisherman Cut. Two additional gates, one on Middle River gate near the current site of the
- 37 temporary barrier and the other on San Joaquin River gate just downstream from the head
- of Old River, are installed in south Delta. For each one, a low head pump with 250 cfs
- 39 capacity is installed (only when SJR flow is below 10,000 cfs) to improve water quality in
- 40 south Delta.

- 1 The Meadows Slough is assumed to be connected to Sacramento River. A gate is installed on
- 2 the Meadows Slough to block flow from August through November or when Sacramento
- 3 River flow is greater than 25,000 cfs. Two additional gates are installed in the channels
- 4 adjacent to McCormick Williamson Tract. Both gates are open from August through
- 5 November. One is on Mokelumne River to reroute flow to Sacramento River when
- 6 Sacramento River flow is below 25,000 cfs (only during December through July). Second
- 7 gate is on Snodgrass Slough and is closed when Sacramento River flow is below 25,000 cfs
- 8 (only during December through July) to keep the fish on the path towards Sacramento
- 9 River.
- 10 Two fish screens with a capacity of 7500 cfs are proposed, one on Delta Cross-Channel, and
- 11 the other on Georgina Slough, near Sacramento River. It is however, assumed that the fish
- 12 screens do not affect the hydrodynamics and water quality in the Delta, and as such, they
- 13 are only included in the DSM2 modeling. An operable gate is proposed on Georgiana
- 14 Slough just downstream of the fish screens to limit the flow to 7,500 cfs in order not to
- 15 exceed the capacity of fish screens (only for Sacramento River flow above 45,000 cfs).

Furthermore, an operable gate is installed in Three Mile Slough, and operated consistentwith the objectives of the Franks Tract Program.

- 18 Isolated Facility and North Delta Diversion Intakes
- 19 Not included
- 20 Operations Criteria
- 21 South Delta Temporary Barriers
- 22 South Delta Temporary Barriers are not included under Alternative 9.
- 23 South Delta Exports
- Alternative 9 assumes modified south Delta exports. Both SWP and CVP are assumed to be
- 25 pumping from Clifton Court Forebay when SJR flow is below 10,000 cfs. When SJR flow is
- above 10,000 cfs, it is assumed that CVP exports are assigned to the existing intakes.
- 27 Montezuma Salinity Control Gate
- 28 Consistent with Alternative 1
- 29 North Delta Diversion Intakes
- 30 Not included

B.3.10. Alternative 2D – Dual Conveyance with Intakes 1, 2, 3, 4 and 5

- 32 Alternative 2D assumptions are provided by the lead agencies and are summarized in the
- 33 Section B.6, in Table B-12a. Alternative 2D is identical to Alternative 2A in many aspects.
- 34 However, as described in the Chapter 3, Alternative 2D does not include CM2 through
- 35 CM21 that were part of Alternative 2A. Alternative 2D includes the operational criteria
- 36 specified under Scenario B (Alternative 2D) in the Chapter 3. Tidal marsh restoration efforts
- 37 under Alternative 2D are minimal, requiring up to 300 acres of tidal wetland restoration
- 38 under the Environmental Commitments. Such restoration efforts were not explicitly
- 39 modeled under Alternative 2D.
- 40 Alternative 2D CALSIM II and DSM2 assumptions that are different from the No Action
- 41 Alternative are described below.

- 1 CALSIM II Assumptions for Alternative 2D:
- 2 Facilities
- 3 Fremont Weir
- 4 Consistent with No Action Alternative at ELT
- 5 Isolated Conveyance Facility and the North Delta Diversion Intakes
- 6 An Isolated Conveyance Facility is included in the Alternative 2D which diverts water from
- 7 the Sacramento River in the north Delta near Hood and conveys to the existing export
- 8 facilities in the south Delta. The maximum conveyance capacity is assumed to be 15,000 cfs.
- 9 Five separate intakes (intakes 1, 2, 3, 4 and 5) each capable of diverting 3,000 cfs are assumed
- along the Sacramento River near Hood. Under this Alternative, all the five intakes are
- 11 located upstream of the Sutter Slough unlike the Alternative 2A in which the two
- 12 downstream-most intakes (intakes 6 and 7) are located downstream of the Steamboat
- 13 Slough as shown in the Figure B-1. In CALSIM II, north Delta diversion is modeled as a
- 14 single diversion located along the Sacramento River at Hood. Spatial differences in the two
- 15 downstream intake locations shown in Chapter 3: Description of Alternatives would not
- 16 change CALSIM II results.
- 17 Banks Pumping Plant Capacity
- 18 Consistent with Alternative 1
- 19 Jones Pumping Plant Capacity
- 20 Consistent with Alternative 1
- 21 Regulatory Standards
- 22 North Delta Diversion Bypass Flows
- 23 North Delta bypass flows are consistent with Alternative 1.
- 24 Minimum flow near Rio Vista
- 25 Consistent with Alternative 1
- 26 Delta Outflow Index (Flow and Salinity)
- 27 SWRCB D-1641:
- 28 All flow based Delta outflow requirements included in SWRCB D-1641 are consistent with
- the No Action Alternative at ELT. Similarly, for the February through June period X2
- 30 standard is included consistent with the No Action Alternative at ELT.
- 31 USFWS B0 (December, 2008) Action 4:
- 32 USFWS BO Action 4 requires additional Delta outflow to manage X2 in the fall months
- following the wet and above normal years. This action is included in the Alternative 2D. The
- 34 assumptions for this action under the Alternative 2D are consistent with the No Action
- 35 Alternative at ELT.
- 36 Combined Old and Middle River Flows
- 37 The OMR requirements under Alternative 2D are consistent with Alternative 2A.
- 38 South Delta Export-San Joaquin River Inflow Ratio
- 39 Consistent with Alternative 1

- 1 Exports at the South Delta Intakes
- 2 Consistent with Alternative 1
- 3 Delta Water Quality
- 4 Consistent with No Action Alternative at ELT
- 5 **Operations Criteria**
- 6 Fremont Weir Operations
- 7 Consistent with No Action Alternative at ELT
- 8 Delta Cross Channel Gate Operations
- 9 Consistent with Alternative 1
- 10 Operations for Delta Water Quality and Residence Time
- 11 Consistent with Alternative 1
- 12 Allocation Decisions
- 13 Rules and assumptions are consistent with Alternative 1, however, new water supply index
- 14 versus demand index curves are developed for Alternative 2D.
- 15 San Luis Operations
- 16 Rules and assumptions are consistent with Alternative 1.
- 17 DSM2 Assumptions for Alternative 2D:
- 18 Tidal Boundary
- 19 Consistent with No Action Alternative at ELT
- 20 Water Quality
- 21 Martinez EC
- 22 Consistent with No Action Alternative at ELT
- 23 Morphological Changes
- 24 Consistent with No Action Alternative at ELT
- 25 Facilities
- 26 South Delta Temporary Barriers
- 27 Consistent with the Alternative 2A.
- 28 Isolated Facility and North Delta Diversion Intakes
- 29 The locations of the north Delta diversion intakes for Alternative 2D are shown in the Figure
- 30 B-1. Intakes 1, 2, 3, 4 and 5 are modeled in DSM2 for Alternative 2D, with 3,000 cfs diversion
- 31 capacity at each intake. The modeling of the north Delta diversion intake operations in
- 32 DSM2 for Alternative 2D is consistent with Alternative 1.
- 33 Operations Criteria
- 34 South Delta Temporary Barriers
- 35 The operations of the agricultural barriers are consistent with the No Action Alternative.
- 36 The HOR gate operations are consistent with Alternative 2A.
- 37 Montezuma Salinity Control Gate
- 38 Consistent with No Action Alternative at ELT

1 North Delta Diversion Intakes

- 2 The assumptions for Alternative 2D are consistent with Alternative 1 except that the two
- 3 downstream-most intakes of the five intakes are located downstream of Steamboat Slough.
- 4 The volume corresponding to first 500 cfs of the daily north Delta diversion specified by
- 5 CALSIM II is diverted equally at all the five intakes.

B.3.11. Alternative 4A– Dual Conveyance with Intakes 2, 3, and 5 6

- 7 Alternative 4A assumptions are provided by the lead agencies and are summarized in the
- 8 Section B.6, in Table B-13a. Alternative 4A water conveyance operations modeling
- 9 assumptions are consistent with the operations under Scenario H3+, an operation scenario
- 10 which includes a criterion for spring outflow bounded by the criteria associated with
- 11 Scenarios H3 and Scenario H4, as described in Section 3.6.4.2 in Chapter 3, Description of 12 Alternatives.
- 13 Alternative 4A is a dual conveyance alternative with three proposed intakes in the north
- 14 Delta with 9,000 cfs total pumping capacity (3,000 cfs at each intake). Alternative 4A
- 15 includes the operational criteria specified under Scenario H in the Chapter 3 of BDCP
- 16 EIR/EIS. Tidal marsh restoration efforts under Alternative 4A are minimal, requiring up to
- 17 295 acres of tidal wetland restoration under the Environmental Commitments. Such
- 18 restoration efforts were not explicitly modeled under Alternative 4A.
- 19 Alternative 4A CALSIM II and DSM2 assumptions that are different from the No Action
- 20 Alternative at Early Long-Term are described below.
- 21 CALSIM II Assumptions for Alternative 4A:
- 22 Facilities
- 23 Fremont Weir
- 24 Consistent with No Action Alternative at ELT
- 25 Isolated Conveyance Facility and the North Delta Diversion Intakes
- 26 An Isolated Conveyance Facility is included in the Alternative 4A which diverts water from
- 27 the Sacramento River in the north Delta near Hood and conveys to the existing export
- 28 facilities in the south Delta. The maximum conveyance capacity is assumed to be 9,000 cfs.
- 29 Three separate intakes (intakes 2, 3 and 5) each capable of diverting 3,000 cfs are assumed
- 30 along the Sacramento River near Hood, all located upstream of Sutter Slough. In CALSIM II,
- 31 north Delta diversion is modeled as a single diversion located along the Sacramento River at
- 32 Hood.
- 33 Banks Pumping Plant Capacity
- 34 Consistent with No Action Alternative at ELT
- 35 Jones Pumping Plant Capacity
- 36 Consistent with Alternative 1
- 37 **Regulatory Standards**

38 North Delta Diversion Bypass Flows

- North Delta diversion bypass flow criteria are consistent with Alternative 1. In addition, a 39
- 40 constraint on the potential diversion at the north Delta diversion intakes was added in

- 1 CALSIM II to account for the fish screen sweeping velocity criteria of 0.4 fps. The constraint
- 2 was derived based on resulting diversions from the DSM2 modeling.
- 3 Minimum flow near Rio Vista
- 4 Consistent with Alternative 1
- 5 Delta Outflow Index (Flow and Salinity)
- 6 *SWRCB D-1641:*
- 7 Alternative 4 includes all flow based Delta outflow requirements per SWRCB D-1641 and
- 8 are consistent with the No Action Alternative. Similarly, for the February through June
- 9 period X2 standard is included consistent with the No Action Alternative at ELT.
- 10 USFWS B0 (December, 2008) Action 4:
- 11 USFWS BO Action 4A requires additional Delta outflow to manage X2 in the fall months
- 12 (September through November) following the wet and above normal years. This action is
- 13 included in the Alternative 4A. The assumptions for this action under the Alternative 4A
- 14 scenario H3+ are consistent with the No Action Alternative at ELT.
- 15 Additional Spring Outflow Requirement:
- 16 As noted in Chapter 3, Alternative 4A includes an additional spring Delta outflow
- 17 requirement, which falls between the spring outflow requirements described in operational
- 18 scenarios H3 and H4. For modeling purposes, it was assumed that the spring outflow
- 19 requirement under Alternative 4A will be to maintain the March May average Delta
- 20 outflow resulting under the No Action Alternative at ELT. This requirement was modeled
- 21 by constraining the total Delta exports by the San Joaquin River i:e ratio requirement under
- 22 2009 NMFS BiOp Action IV.2.1, during April and May.
- 23 Combined Old and Middle River Flows
- 24 The OMR requirements under Alternative 4A are consistent with Alternative 4.
- 25 South Delta Export-San Joaquin River Inflow Ratio
- 26 Consistent with Alternative 1
- 27 Exports at the South Delta Intakes
- 28 The south Delta exports in Alternative 4A are operated per SWRCB D-1641. The combined
- 29 export of the CVP Tracy Pumping Plant and SWP Banks Pumping Plant is limited to a
- 30 percentage of the total Delta inflow, based on the export-inflow ratio specified under D1641.
- In the Alternative 4A, however, this requirement is applied to the south Delta exports only,
- 32 and the north Delta diversion is not included in the Delta inflow or the Delta exports
- 33 computation used to determine this requirement.
- 34 Delta Water Quality
- 35 Consistent with No Action Alternative at ELT
- 36 Operations Criteria
- 37 Fremont Weir Operations
- 38 Consistent with No Action Alternative at ELT
- 39 Delta Cross Channel Gate Operations
- 40 Consistent with Alternative 1

- 1 Operations for Delta Water Quality and Residence Time
- 2 Pumping at the south Delta intakes are preferred during the July through September
- 3 months up to a total pumping of 3,000 cfs to manage water quality conditions in the south
- 4 Delta channels. No specific intake preference is assumed beyond 3,000 cfs.
- 5 Allocation Decisions
- 6 Rules and assumptions are consistent with Alternative 1, except for SWP allocation
- 7 decisions under Alternative 4A, which are consistent with No Action Alternative at Early
- 8 Long-Term. However, new water supply index versus demand index curves are developed
- 9 for Alternative 4A.
- 10 San Luis Operations
- 11 Rules and assumptions are similar to Alternative 1, except managed to protect upstream
- 12 storage and minimize south-of-Delta delivery shortages.
- 13 **DSM2** Assumptions for Alternative 4A:
- 14 Tidal Boundary
- 15 Consistent with No Action Alternative at ELT
- 16 Water Quality
- 17 Martinez EC
- 18 Consistent with No Action Alternative at ELT
- 19 Morphological Changes
- 20 Consistent with No Action Alternative at ELT
- 21 Facilities
- 22 South Delta Temporary Barriers
- 23 The temporary agricultural barriers are included under Alternative 4A consistent with the
- 24 No Action Alternative at ELT. A permanent HOR gate was assumed under Alternative 4A.
- 25 Isolated Facility and North Delta Diversion Intakes
- 26 The locations of the north Delta diversion intakes for Alternative 4 are shown in the Figure
- 27 B-1. Intakes 2, 3 and 5 are modeled in DSM2 for Alternative 4A, with 3,000 cfs diversion
- 28 capacity at each intake. The modeling of the north Delta diversion intakes in DSM2 for
- 29 Alternative 4A is consistent with Alternative 1.
- 30 Operations Criteria

31 South Delta Temporary Barriers

- 32 The operations of the agricultural barriers are consistent with the No Action Alternative at
- 33 ELT. The HOR gate operations are modified under Alternative 4A such that appropriate
- 34 gate opening is simulated to allow the fraction of "the flow that would have entered the Old
- 35 River if the barrier were fully open", as noted in Table B-6. For October, the HORB is closed
- 36 for the last two weeks, during the pulse flows.
- 37 Montezuma Salinity Control Gate
- 38 Consistent with No Action Alternative at ELT
- 39
- 40

1 North Delta Diversion Intakes

- 2 The assumptions for Alternative 4A are consistent with Alternatives 1 except that the only
- 3 three intakes are assumed. The volume corresponding to first 300 cfs of the daily north Delta
- 4 diversion specified by CALSIM II is diverted equally at all the three intakes.

5 B.3.12. Alternative 5A – Dual Conveyance with Intake 1

- 6 Alternative 5A assumptions are provided by the lead agencies and are summarized in the
- 7 Section B.6, in Table B-14a. Alternative 5A is a dual conveyance alternative and includes the
- 8 intake 1 shown in the Figure B-1, with 3,000 cfs diversion capacity. The assumptions for
- 9 Alternative 5A are identical to the Alternative 5 in most aspects. However, as described in
- 10 the Chapter 3, Alternative 5A does not include CM2 through CM21 that were part of
- 11 Alternative 5. Alternative 5A includes the operational criteria specified under Scenario C
- 12 (Alternative 5A) in the Chapter 3. Tidal marsh restoration efforts under Alternative 5A are
- 13 minimal, requiring up to 292 acres of tidal wetland restoration under the Environmental
- 14 Commitments. Such restoration efforts were not explicitly modeled under Alternative 5A.
- 15 Alternative 5A CALSIM II and DSM2 assumptions that are different from the No Action
- 16 Alternative at Early Long-Term are described below.
- 17 CALSIM II Assumptions for Alternative 5A:
- 18 Facilities
- 19 Fremont Weir
- 20 Consistent with No Action Alternative at ELT
- 21 Isolated Conveyance Facility and the North Delta Diversion Intakes
- 22 An Isolated Conveyance Facility is included in the Alternative 5A which diverts water from
- 23 the Sacramento River in the north Delta near Hood and conveys to the existing export
- facilities in the south Delta. The maximum conveyance capacity is assumed to be 3,000 cfs.
- 25 One intake (intakes 1) capable of diverting 3,000 cfs is proposed along the Sacramento River
- 26 near Hood. In CALSIM II, north Delta diversion is modeled as a single diversion located
- 27 along the Sacramento River at Hood.

28 Banks Pumping Plant Capacity

- 29 Physical capacity of the Banks Pumping Plant is 10,300 cfs. However, the diversions from
- 30 the south Delta channels are restricted to the permitted capacity, consistent with the No
- 31 Action Alternative at Early Long-Term. This assumption is different from Alternative 1, as
- 32 the 3,000 cfs diversion capacity available in the north Delta may not provide enough
- 33 flexibility to meet the south of Delta export needs and, it may exacerbate the violations of
- 34 the permit capacity.
- 35 Jones Pumping Plant Capacity
- 36 Consistent with Alternative 1
- 37 Regulatory Standards
- 38 North Delta Diversion Bypass Flows
- 39 North Delta bypass flows are consistent with Alternative 1, except, under Alternative 5A,
- 40 the bypass flows govern 1 intake instead of 5. The constant low level pumping is limited to
- 41 300 cfs in the Alternative 5A.

- 1 Minimum flow near Rio Vista
- 2 Consistent with Alternative 1
- 3 Delta Outflow Index (Flow and Salinity)
- 4 SWRCB D-1641:
- 5 All flow based Delta outflow requirements included in SWRCB D-1641 are consistent with
- 6 the No Action Alternative at Early Long-Term. Similarly, for the February through June
- 7 period X2 standard is included consistent with the No Action Alternative at Early Long-
- 8 Term.
- 9 USFWS BO (December, 2008) Action 4:
- 10 USFWS BO Action 4 requires additional Delta outflow to manage X2 in the fall months
- 11 following the wet and above normal years. This action is included in the Alternative 5A. The
- 12 assumptions for this action under the Alternative 5A are consistent with the No Action
- 13 Alternative at Early Long-Term.
- 14 Combined Old and Middle River Flows
- 15 Consistent with No Action Alternative at ELT
- 16 South Delta Export-San Joaquin River Inflow Ratio
- 17 NMFS BO (June 2009) Action 4.2.1 requires the south Delta exports are governed by this
- 18 ratio in the months of April and May under the No Action Alternative at Early Long-Term.
- 19 Under Alternative 5A this criteria is implemented.
- 20 Exports at the South Delta Intakes
- 21 Consistent with Alternative 1
- 22 Delta Water Quality
- 23 Consistent with No Action Alternative at ELT
- 24 Operations Criteria
- 25 Fremont Weir Operations
- 26 Consistent with No Action Alternative at ELT
- 27 Delta Cross Channel Gate Operations
- 28 Consistent with Alternative 1
- 29 Operations for Delta Water Quality and Residence Time
- 30 Consistent with Alternative 1
- 31 Allocation Decisions
- 32 Rules and assumptions are similar to the No Action Alternative. However, new water
- 33 supply index versus demand index curves are developed for Alternative 5A.
- 34 San Luis Operations
- 35 Rules and assumptions are similar to the No Action Alternative at Early Long-Term. The
- 36 San Luis rule curve is managed to minimize situations in which shortages may occur due to
- 37 lack of storage or exports.
- 38

- 1 DSM2 Assumptions for Alternative 5A:
- 2 Tidal Boundary
- 3 Consistent with No Action Alternative at ELT
- 4 Water Quality
- 5 Martinez EC
- 6 Consistent with No Action Alternative at ELT
- 7 Morphological Changes
- 8 Consistent with No Action Alternative at ELT
- 9 Facilities
- 10 South Delta Temporary Barriers
- 11 The temporary agricultural barriers and the HORB are included under Alternative 5A
- 12 consistent with the No Action Alternative at Early Long-Term.
- 13 Isolated Facility and North Delta Diversion Intakes
- 14 The location of the north Delta diversion intake for Alternative 5A is shown in the Figure B-
- 15 1. Intake 1 is modeled in DSM2 for Alternative 5A, with 3,000 cfs diversion capacity. The
- 16 modeling of the north Delta diversion intake in DSM2 for Alternative 5A is consistent with
- 17 Alternative 1.
- 18 Operations Criteria
- 19 South Delta Temporary Barriers
- 20 The operations of the agricultural barriers and the HORB are consistent with the No Action
- 21 Alternative at Early Long-Term.
- 22 Montezuma Salinity Control Gate
- 23 Consistent with No Action Alternative at ELT
- 24 North Delta Diversion Intakes
- 25 The diversion operation of the north Delta intakes in Alternative 5A is consistent with
- 26 Alternative 1, except that it includes one intake instead of five.

B.4. Time Frames of Evaluation

- 28 The No Action Alternative and the DEIRS Alternatives were simulated at two points in
- 29 time, Early Long Term (ELT) and Late Long Term (LLT). ELT represents a point in time 15
- 30 years into the future (~2025), and LLT representing the end of the 50-year planning horizon
- 31 (~2060), the assumed end of the permit period for the alternatives. The Alternatives added
- 32 in the RDEIR/SDEIS (Alternatives 2D, 4A and 5A) and associated No Action Alternative
- 33 were modeled at ELT representing climate and sea level conditions at about year 2030².
- 34 Changes in climate conditions were assumed at ELT and LLT. The approach used in
- 35 selecting the climate change scenario is included in Section A.7 and Section D.2. Using this
- 36 approach the climate scenario was derived based on sampling of the ensemble of GCM
- 37 projections rather than one single realization or a handful of individual realizations. The Q5
- 38 scenario represents the central tendency of the climate projections. The resulting

² Assumed the ELT climate and sea level projections developed for approximately year 2025 are applicable for modeling at year 2030 conditions.

- 1 temperature and precipitation changes for the selected climate scenarios are summarized in
- 2 Section D.3.1. The CALSIM II hydrology input datasets were modified based on the
- 3 resulting hydrologic changes based on the VIC modeling (Section D.3.2) for the assumed
- 4 temperature and precipitation changes at the ELT and LLT phases for the selected climate
- 5 change scenario.
- In addition, a 15 cm sea level rise is assumed at the ELT phase and a 45 cm sea level rise atthe LLT phase as described in Section A.7.
- 8 The climate change and sea level rise assumptions were used for ELT and LLT simulations
- 9 of the No Action Alternative and all the other alternatives.
- 10 In addition, for all the DEIRS alternatives, except for the No Action Alternative, the ELT
- 11 point in time includes 25,000 acres of tidal marsh restoration areas. These areas are located
- 12 in the Cache Slough Complex, the Western Delta, Suisun Marsh, and along the Mokelumne
- 13 and Consumnes Rivers. Similarly, for the DEIRS alternatives, the LLT point in time includes
- 14 65,000 acres of tidal marsh restoration areas (additional 40,000 acres compared to ELT)
- 15 located also in these same areas and also in the south Delta and east Delta regions. The
- 16 proposed tidal marsh restoration acreages are relatively minimal in the three Alternatives
- 17 added in the RDEIR/SDEIS, and therefore, the restoration areas were not explicitly modeled
- 18 consistent with the No Action Alternative at ELT.
- 19 Preparation of the CALSIM II and DSM2 models for incorporating restoration changes, sea
- 20 level rise, and temperature and precipitation changes associated with climate change is
- 21 described in the methodology section (Section A.3.3 and Section A.5.3). Additional
- 22 information on this topic is included in Section D.
- 23 The GCM downscaled climate projections are used to create modified temperature and
- 24 precipitation inputs for the Variable Infiltration Capacity (VIC) hydrology model. The VIC
- 25 model simulates hydrologic processes on the 1/8th degree scale to produce watershed runoff
- 26 (and other hydrologic variables) for the major rivers and streams in the Central Valley. The
- 27 changes in reservoir inflows and downstream accretions/depletions are translated into
- 28 modified input time series for the CALSIM II model. The VIC modeling is described in
- 29 Section A.8 and the results are presented in Section D.3.2.
- 30 In an effort to simulate 15cm and 45cm sea level rise effects in the Delta accurately, DSM2
- 31 was corroborated using the modeling results from the three-dimensional UnTRIM Bay-
- 32 Delta hydrodynamics and water quality model (McWilliams and Gross, 2010). UnTRIM
- 33 modeling described in Section D.7. To simulate the effects of tidal marsh restoration areas
- 34 and sea level rise effects accurately in the Delta, DSM2 was corroborated using the results
- 35 from RMA models with integrated tidal marsh restoration areas and sea level rise changes
- 36 (RMA, 2010). RMA Modeling is described in Section D.6. The description of the DSM2
- 37 corroboration is included in the Section D.8.
- 38 Sea level rise and restored tidal marsh restoration areas effects on the flow-salinity response
- is incorporated into the modified ANNs. The ANNs were retrained using the corroborated
- 40 DSM2 models to emulate the flow-salinity relationship under various combinations of the
- 41 sea level rise and tidal marsh restoration assumed at ELT and LLT phases.

Simulation of the climate, tidal marsh restoration and sea level rise effects in CALSIM II
 modeling of the Alternatives is accomplished by:

- Incorporating the modified CALSIM II inputs including, inflows, water year types,
 runoff forecasts, Delta water temperature, for the climate change scenario selected
 for the Alternative.
- Incorporating the modified ANNs to reflect the flow-salinity response under sea
 level change and tidal marsh restoration scenarios, for the tidal marsh restoration
 acreage and sea level rise assumptions selected for the Alternative.

9 Simulation of the tidal marsh restoration areas and sea level rise effects in DSM2 modeling10 of the Alternatives is accomplished by:

- Incorporating consistent grid changes identified in corroboration simulation into the
 DSM2 model for the Alternative, for the tidal marsh restoration acreage and sea level
 rise assumptions selected for the Alternative.
- Modifying the downstream stage and EC boundary conditions at Martinez in the
 DSM2 model for the Alternative, using the appropriate regression equation for the
 tidal marsh restoration acreage and sea level rise assumptions selected for the
 Alternative. The adjusted astronomical tide specified at Martinez in the No Action
 Alternative is modified using the correlations shown in Table B-7. The Martinez EC
 boundary condition resulting from the G-model is modified using the correlations
 specified in the Table B-7.
- 21

Table B-7: Correlations to Transform Baseline Martinez Stage and EC for use in Alternatives

23 DSM2 Simulations at ELT and LLT Phases

Scenario	Martinez Stage (ft	NGVD 29)	Martinez EC (µS/cm)		
	Correlation	Lag (min)	Correlation	Lag (min)	
ELT (15cm SLR)	Y = 1.0033*X + .47	-1	Y = 0.9954* X + 556.3	0	
ELT (25,000ac &15cm SLR)	Y = 0.968 * X + 0.5	-5	Y = 0.999 * X + 357.78	9	
LLT (45cm SLR)	$Y = 1.0113^*X + 1.4$	-2	Y = 0.98* X + 1778.9	-2	
LLT (65,000ac & 45cm SLR)	Y = 0.958 * X + 1.49	-9	Y = 1.002 * X + 1046.3	11	

Notes: X = Baseline Martinez stage or EC and Y = Alternative Martinez stage or EC

1 B.5. Existing Conditions and No Action Alternative Callout Tables

2 CALSIM II Assumptions

3 This subsection provides a summary of the CALSIM II assumptions for the Existing Conditions and No Action Alternative baselines.

4 These assumptions were selected by the Department of Water Resources (DWR) management team for the BDCP EIR/EIS in

5 coordination with the Reclamation, USFWS and NMFS. The assumptions for each scenario are listed in Table B-8. The information

6 included in here is consistent with what was provided to and agreed to by the lead agencies in the "Confirmation of Final

Assumptions for Existing and Future No Action Alternative Conditions CALSIM II and DSM2 Models", on March 10, 2010. It also

8 includes any modifications requested by the lead agency staff to improve readability and include additional clarification to the stated

9 assumptions.

TABLE B-8 CALSIM II Inputs			
Proposed Assumptions			
	Existing Conditions Assumption	No Action Alternative Assumption	
Planning horizon ^a	Year 2009/Year 2015	Year 2020/Year 2025/Year 2060	
Demarcation date ^a	February 2009 (but with operational components of 2008 USFWS and 2009 NMFS BO included)	Same	
Period of simulation	82 years (1922-2003)	Same	
HYDROLOGY			
Inflows/Supplies	Historical with modifications for operations upstream of rim reservoirs	Historical with modifications for operations upstream of rim reservoirs and with or without changed climate at Early Long Term (Year 2025) or Late Long Term (Year 2060)	
Level of development	Projected 2005 level ^b	Projected 2030 level ^c	
DEMANDS, WATER RIGHTS, CVP	/SWP CONTRACTS		
Sacramento River Region (excludi	ng American River)		
CVP ^d	Land-use based, limited by contract amounts	Land-use based, full build-out of contract amounts	
SWP (FRSA) ^e	Land-use based, limited by contract amounts	Same	
Non-project	Land use based, limited by water rights and SWRCB Decisions for Existing Facilities	Same	
Antioch Water Works	Pre-1914 water right	Same	
Federal refuges ^f	Recent historical Level 2 water needs	Firm Level 2 water needs	
Sacramento River Region - Ameri	can River ^g		
Water rights	Year 2005	Year 2025, full water rights	
CVP	Year 2005	Year 2025, full contracts, including Freeport Regional Water Project	

TABLE B-8				
Proposed Assumptions				
	Existing Conditions Assumption	No Action Alternative Assumption		
San Joaquin River Region ^h				
Friant Unit	Limited by contract amounts, based on current allocation policy	Same		
Lower Basin	Land-use based, based on district level operations and constraints	Same		
Stanislaus River ⁱ Land-use based, Revised Operations Plan ^t and NMFS BO (Jun 2009) Actions III.1.2 and III.1.3 ^v		Same		
San Francisco Bay, Central Coast, Tu	ulare Lake and South Coast Regions (CVP/SWP project fa	acilities)		
CVP ^d	Demand based on contract amounts	Same		
CCWD ^j	195 TAF/yr CVP contract supply and water rights	Same		
SWP ^{e,k}	Variable demand, of 3.0-4.1 MAF/Yr, up to Table A amounts including all Table A transfers through 2008	Demand based on Table A amounts		
Article 56	Based on 2001-08 contractor requests	Same		
Article 21	MWD demand up to 200 TAF/month from December to March subject to conveyance capacity, KCWA demand up to 180 TAF/month and other contractor demands up to 34 TAF/month in all months, subject to conveyance capacity	Same		
North Bay Aqueduct (NBA)	71 TAF/yr demand under SWP contracts, up to 43.7 cfs of excess flow under Fairfield, Vacaville and Benecia Settlement Agreement	77 TAF/yr demand under SWP contracts, up to 43.7 cfs of excess flow under Fairfield, Vacaville and Benecia Settlement Agreement		
Federal refuges ^f	Recent historical Level 2 water needs	Firm Level 2 water needs		

TABLE B-8 CALSIM II Inputs Proposed Assumptions

	Existing Conditions Assumption	No Action Alternative Assumption		
FACILITIES				
System-wide	Existing facilities	Same		
Sacramento River Region				
Shasta Lake	Existing, 4,552 TAF capacity	Same		
Red Bluff Diversion Dam	Diversion dam operated gates out, except Jun 15 th – Aug 31 st based on NMFS BO (Jun 2009) Action I.3.2 ^v ; assume interim/ temporary facilities in place	Diversion dam operated with gates out all year, NMFS BO (Jun 2009) Action I.3.1 ^v ; assume permanent facilities in place		
Colusa Basin	Existing conveyance and storage facilities	Same		
Upper American River ^{g,I}	PCWA American River Pump Station	Same		
Lower Sacramento River	None	Freeport Regional Water Project ⁿ		
San Joaquin River Region				
Millerton Lake (Friant Dam)	Existing, 520 TAF capacity	Same		
Lower San Joaquin River	None	City of Stockton Delta Water Supply Project, 30 mgd capacity		
Delta Region				
SWP Banks Pumping Plant (South Delta)	Physical capacity is 10,300 cfs but 6,680 cfs permitted capacity in all months up to 8,500 cfs during Dec 15^{th} – Mar 15^{th} depending on Vernalis flow conditions ^o ; additional capacity of 500 cfs (up to 7,180 cfs) allowed for Jul – Sep for reducing impact of NMFS BO (Jun 2009) Action IV.2.1 Phase II ^v on SWP ^w	Same		
CVP C.W. Bill Jones Pumping Plant (Tracy PP)	Permit capacity is 4,600 cfs but exports limited to 4,200 cfs plus diversions upstream of DMC constriction	Permit capacity is 4,600 cfs in all months (allowed for by the Delta-Mendota Canal–California Aqueduct Intertie)		
Upper Delta-Mendota Canal Capacity	Existing	Existing plus 400 cfs Delta-Mendota Canal– California Aqueduct Intertie		
CALSIM II Inputs				
---	---	--		
Proposed Assumptions				
	Existing Conditions Assumption	No Action Alternative Assumption		
CCWD Intakes	Los Vaqueros existing storage capacity, 100 TAF, existing pump locations	Los Vaqueros existing storage capacity, 100 TAF, existing pump locations, Alternative Intake Project (AIP) included ^p		
San Francisco Bay Region				
South Bay Aqueduct (SBA)	Existing capacity	SBA rehabilitation, 430 cfs capacity from junction with California Aqueduct to Alameda County FC&WSD Zone 7 diversion point		
South Coast Region				
California Aqueduct East Branch	Existing capacity	Same		
REGULATORY STANDARDS				
North Coast Region				
Trinity River				
Minimum flow below Lewiston Dam	Trinity EIS Preferred Alternative (369-815 TAF/yr)	Same		
Trinity Reservoir end-of-September minimum storage	Trinity EIS Preferred Alternative (600 TAF as able)	Same		
Sacramento River Region				
Clear Creek				
Minimum flow below Whiskeytown Dam	Downstream water rights, 1963 USBR Proposal to USFWS and NPS, predetermined CVPIA 3406(b)(2) flows ^q , and NMFS BO (Jun 2009) Action $1.1.1^{v}$	Same		
Upper Sacramento River				
Shasta Lake end-of-September minimum storage	NMFS 2004 Winter-run Biological Opinion, (1900 TAF in non-critically dry years), and NMFS BO (Jun 2009) Action I.2.1 $^{\rm v}$	Same		
Minimum flow below Keswick Dam	SWRCB WR 90-5, predetermined CVPIA 3406(b)(2) flows $^{\rm q}$, and NMFS BO (Jun 2009) Action 1.2.2 $^{\rm v}$	Same		

TABLE B-8

TABLE B-8 CALSIM II Inputs		
Proposed Assumptions	Existing Conditions Assumption	No Action Alternative Assumption
	p	
Feather River		
Minimum flow below Thermalito Diversion Dam	2006 Settlement Agreement (700 / 800 cfs)	Same
Minimum flow below Thermalito Afterbay outlet	1983 DWR, DFG Agreement (750-1,700 cfs)	Same
Sacramento River Region (continued)		
Yuba River		
Minimum flow below Daguerre Point Dam	D-1644 Operations (Lower Yuba River Accord) ^r	Same
American River		
Minimum flow below Nimbus Dam	American River Flow Management ^s as required by NMFS BO (Jun 2009) Action II.1 ^v	Same
Minimum Flow at H Street Bridge	SWRCB D-893	Same
Lower Sacramento River		
Minimum flow near Rio Vista	SWRCB D-1641	Same
San Joaquin River Region		
Mokelumne River		
Minimum flow below Camanche Dam	FERC 2916-029, 1996 (Joint Settlement Agreement) (100-325 cfs)	Same
Minimum flow below Woodbridge Diversion Dam	FERC 2916-029, 1996 (Joint Settlement Agreement) (25-300 cfs)	Same
Stanislaus River		
Minimum flow below Goodwin Dam	1987 USBR, DFG agreement, and flows required for NMFS BO (Jun 2009) Action III.1.2 and III.1.3 $^{\rm v}$	Same
Minimum dissolved oxygen	SWRCB D-1422	Same

Existing Conditions Assumption

No Action Alternative Assumption

San Joaquin River Region (continued)

Merced River		
Minimum flow below Crocker-Huffman Diversion Dam	Davis-Grunsky (180-220 cfs, Nov-Mar), and Cowell Agreement	Same
Minimum flow at Shaffer Bridge	FERC 2179 (25-100 cfs)	Same
Tuolumne River		
Minimum flow at Lagrange Bridge	FERC 2299-024, 1995 (Settlement Agreement) (94- 301 TAF/yr)	Same
San Joaquin River		
San Joaquin River below Friant Dam/ Mendota Pool	Water Year 2010 Interim Flows Project ^u	Same
Maximum salinity near Vernalis	SWRCB D-1641	Same
Minimum flow near Vernalis	SWRCB D-1641, and NMFS BO (Jun 2009) Action IV.2.1 $^{\rm v}$	Same
Sacramento River – San Joaquin Delta Reg	gion	
Delta Outflow Index (Flow and Salinity)	SWRCB D-1641	SWRCB D-1641 and FWS BO (Dec 2008) Action 4
Delta Cross Channel gate operation	SRWCB D-1641 with additional days closed from Oct 1^{st} – Jan 31^{st} based on NMFS BO (Jun 2009) Action IV.1.2 ^v (closed during flushing flows from Oct 1^{st} – Dec 14^{th} unless adverse water quality conditions)	Same
South Delta exports (Jones PP and Banks PP)	SWRCB D-1641, Vernalis flow-based export limits Apr 1^{st} – May 31^{st} as required by NMFS BO (Jun, 2009) Action IV.2.1 ^v (additional 500 cfs allowed for Jul – Sep for reducing impact on SWP) ^w	Same

TABLE B-8	
CALSIM II Inputs	

Proposed Assumptions				
	Existing Conditions Assumption	No Action Alternative Assumption		
Combined Flow in Old and Middle River (OMR)	FWS BO (Dec 2008) Actions 1 through 3 and NMFS BO (Jun 2009) Action IV.2.3 ^v	Same		
OPERATIONS CRITERIA: RIVER-SPECIFI	С			
Sacramento River Region				
Upper Sacramento River				
Flow objective for navigation (Wilkins Slough)	NMFS BO (Jun 2009) Action I.4 v ; 3,500 – 5,000 cfs based on CVP water supply condition	Same		
American River				
Folsom Dam flood control	Variable 400/670 flood control diagram (without outlet modifications)	Same		
Feather River				
Flow at Mouth of Feather River (above Verona)	Maintain DFG/DWR flow target of 2,800 cfs for Apr – Sep dependent on Oroville inflow and FRSA allocation	Same		
San Joaquin River Region				
Stanislaus River				
Flow below Goodwin Dam ⁱ	Revised Operations Plant and NMFS BO (Jun 2009) Action III.1.2 and III.1.3 $^{\rm v}$	Same		
San Joaquin River				
Salinity at Vernalis	Grasslands Bypass Project (partial implementation)	Grasslands Bypass Project (full implementation)		
OPERATIONS CRITERIA: SYSTEMWIDE				
CVP water allocation				

	Existing Conditions Assumption	No Action Alternative Assumption		
Settlement / Exchange	100% (75% in Shasta critical years)	Same		
Refuges	100% (75% in Shasta critical years)	Same		
Agriculture Service	100%-0% based on supply, South-of-Delta allocations are additionally limited due to D-1641, FWS BO (Dec 2008) and NMFS BO (Jun 2009) export restrictions ^v	Same		
Municipal & Industrial Service	100%-50% based on supply, South-of-Delta allocations are additionally limited due to D-1641, FWS BO (Dec 2008) and NMFS BO (Jun 2009) export restrictions ^v	Same		
SWP water allocation				
North of Delta (FRSA)	Contract specific	Same		
South of Delta (including North Bay Aqueduct) Based on supply; equal prioritization betw and M&I based on Monterey Agreement; are additionally limited due to D-1641 and (Dec 2008) and NMFS BO (Jun 2009) exp restrictions ^v		Same		
CVP-SWP coordinated operations				
Sharing of responsibility for in-basin-use	1986 Coordinated Operations Agreement (FRWP EBMUD and 2/3 of the North Bay Aqueduct diversions considered as Delta Export; 1/3 of the North Bay Aqueduct diversion as in-basin-use)	Same		
Sharing of surplus flows	1986 Coordinated Operations Agreement	Same		
Sharing of total allowable export capacity for project-specific priority pumping	Equal sharing of export capacity under SWRCB D- 1641, FWS BO (Dec 2008) and NMFS BO (Jun 2009) export restrictions ^v	Same		
Water transfers	Acquisitions by SWP contractors are wheeled at priority in Banks Pumping Plant over non-SWP users; LYRA included for SWP contractors ^w	Same		

CALSIM II Inputs Proposed Assumptions		
	Existing Conditions Assumption	No Action Alternative Assumption
Sharing of total allowable export capacity for lesser priority and wheeling-related pumping	Cross Valley Canal wheeling (max of 128 TAF/yr), CALFED ROD defined Joint Point of Diversion (JPOD)	Same
San Luis Reservoir	San Luis Reservoir is allowed to operate to a minimum storage of 100 TAF	Same
CVPIA 3406(b)(2) ^{v,q}		
Policy Decision	Per May 2003 Dept. of Interior Decision:	Same
Allocation	800 TAF, 700 TAF in 40-30-30 dry years, and 600 TAF in 40-30-30 critical years as a function of Ag allocation	Same
Actions	Pre-determined upstream fish flow objectives below Whiskeytown and Keswick Dams, non-discretionary NMFS BO (Jun 2009) actions for the American and Stanislaus Rivers, and NMFS BO (Jun 2009) and FWS BO (Dec 2008) actions leading to export restrictions ^{v}	Same
CVPIA 3406(b)(2) ^{v,q} (continued)		
Accounting	Releases for non-discretionary FWS BO (Dec 2008) and NMFS BO (Jun 2009) ^v actions may or may not always be deemed (b)(2) actions; in general, it is anticipated, that accounting of these actions using (b)(2) metrics, the sum would exceed the (b)(2) allocation in many years; therefore no additional actions are considered and no accounting logic is included in the model ^q	Same
WATER MANAGEMENT ACTIONS		
Water Transfer Supplies (long term program	ms)	
Lower Yuba River Accord ^w	Yuba River acquisitions for reducing impact of NMFS BO export restrictions ^v on SWP	Same

TABLE B-8

TABLE B-8 CALSIM II Inputs Proposed Assumptions		
	Existing Conditions Assumption	No Action Alternative Assumption
Phase 8	None	
Water Transfers (short term or temporary p	programs)	
Sacramento Valley acquisitions conveyed through Banks PP ^x	Post-analysis of available capacity	Post-analysis of available capacity

1

Notes:

- ^a These assumptions have been developed under the direction of the Department of Water Resources (Department) and Bureau of Reclamation (Reclamation) management team for the Bay Delta Conservation Plan (BDCP) HCP and EIR/EIS. Only operational components of 2008 USFWS and 2009 NMFS BOs as of demarcation date of Existing Conditions and the No action Alternative assumptions are included. Restoration of at least 8,000 acres of intertidal and associated subtidal habitat in the Delta and Suisun Marsh required by the 2008 USFWS BO and restoration of at least 17,000 to 20,000 acres of floodplain rearing habitat for juvenile winter-run and spring-run Chinook salmon and Central Valley steelhead in the Yolo Bypass and/or suitable areas of the lower Sacramento River required by the NMFS 2009 BO are not included in the No Action Alternative assumptions because environmental documents of projects regarding these actions were not completed as of the publication date of the Notice of Preparation/Notice of Intent (February 13, 2009).
- ^b The Sacramento Valley hydrology used in the Existing Conditions CALSIM II model reflects nominal 2005 land-use assumptions. The nominal 2005 land-use was determined by interpolation between the 1995 and projected 2020 land-use assumptions associated with Bulletin 160-98. The San Joaquin Valley hydrology reflects 2005 land-use assumptions developed by Reclamation. Existing-level projected land-use assumptions are being coordinated with the California Water Plan Update for future models.
- ^c The Sacramento Valley hydrology used in the No Action Alternative CALSIM II model reflects 2020 land-use assumptions associated with Bulletin 160-98. The San Joaquin Valley hydrology reflects draft 2030 land-use assumptions developed by Reclamation. Development of Future-level projected land-use assumptions are being coordinated with the California Water Plan Update for future models.
- ^d CVP contract amounts have been updated according to existing and amended contracts as appropriate. Assumptions regarding CVP agricultural and M&I service contracts and Settlement Contract amounts are documented in the Delivery Specifications attachments.
- SWP contract amounts have been updated as appropriate based on recent Table A transfers/agreements. Assumptions regarding SWP agricultural and M&I contract amounts are documented in the Delivery Specifications attachments.
- ^f Water needs for federal refuges have been reviewed and updated as appropriate. Assumptions regarding firm Level 2 refuge water needs are documented in the Delivery Specifications attachments. Refuge Level 4 (and incremental Level 4) water is not analyzed.
- ^g Assumptions regarding American River water rights and CVP contracts are documented in the Delivery Specifications attachments. The Sacramento Area Water Forum agreement, its dry year diversion reductions, Middle Fork Project operations and "mitigation" water is not included.
- ^h The new CALSIM II representation of the San Joaquin River has been included in this model package (CALSIM II San Joaquin River Model, Reclamation, 2005). Updates to the San Joaquin River have been included since the preliminary model release in August 2005. The model reflects the difficulties of on-going groundwater overdraft problems. The 2030 level of development representation of the San Joaquin River Basin does not make any attempt to offer solutions to groundwater overdraft problems. In addition a dynamic groundwater simulation is not yet developed for the San Joaquin River Valley. Groundwater extraction/ recharge and stream-groundwater interaction are static assumptions and may not accurately reflect a response to simulated actions. These limitations should be considered in the analysis of results.
- ⁱ The CALSIM II model representation for the Stanislaus River does not necessarily represent Reclamation's current or future operational policies. A suitable plan for supporting flows has not been developed for NMFS BO (Jun 2009) Action 3.1.3.
- ^j The actual amount diverted is operated in conjunction with supplies from the Los Vaqueros project. The existing Los Vaqueros storage capacity is 100 TAF. Associated water rights for Delta excess flows are included.

- ^k Under Existing Conditions it is assumed that SWP Contractors demand for Table A allocations vary from 3.0 to 4.1 MAF/year. Under the No Action Alternative, it is assumed that SWP Contractors can take delivery of all Table A allocations and Article 21 supplies. Article 56 provisions are assumed and allow for SWP Contractors to manage storage and delivery conditions such that full Table A allocations can be delivered. Article 21 deliveries are limited in wet years under the assumption that demand is decreased in these conditions. Article 21 deliveries for the NBA are dependent on excess conditions only, all other Article 21 deliveries also require that San Luis Reservoir be at capacity and that Banks PP and the California Aqueduct have available capacity to divert from the Delta for direct delivery.
- ¹ PCWA American River pumping facility upstream of Folsom Lake is included in both the Existing and No Action Alternative No Action Alternative . The diversion is assumed to be 35.5 TAF/Yr.
- ^m footnote removed
- ⁿ footnote removed
- Current ACOE permit for Banks PP allows for an average diversion rate of 6,680 cfs in all months. Diversion rate can increase up to 1/3 of the rate of San Joaquin River flow at Vernalis during Dec 15th Mar 15th up to a maximum diversion of 8,500 cfs, if Vernalis flow exceeds 1,000 cfs.
- ^p The CCWD Alternate Intake Project (AIP), an intake at Victoria Canal, which operates as an alternate Delta diversion for Los Vaqueros Reservoir. This assumption is consistent with the future no-project condition defined by the Los Vaqueros Enlargement study team.
- ^q CVPIA (b)(2) fish actions are not dynamically determined in the CALSIM II model, nor is (b)(2) accounting done in the model. Since the FWS BO and NMFS BO were issued, the Department of the Interior (Interior) has exercised its discretion to use (b)(2) in the delta by accounting some or all of the export reductions required under those biological opinions as (b)(2) actions. It is therefore assumed for modeling purposes that (b)(2) availability for other delta actions will be limited to covering the CVP's VAMP export reductions. Similarly, since the FWS BO and NMFS BO were issued, Interior has exercised its discretion to use (b)(2) upstream by accounting some or all of the release augmentations (relative to the hypothetical (b)(2) base case) below Whiskeytown, Nimbus and Goodwin as (b)(2) actions. It is therefore assumed for modeling purposes that (b)(2) availability for other upstream actions will be limited to covering Sacramento releases, in the fall and winter. For modeling purposes, pre-determined timeseries of minimum instream flow requirements are specified. The timeseries are based on the Aug 2008 BA Study 7.0 and Study 8.0 simulations which did include dynamically determined (b)(2) actions.
- ^r D-1644 and the Lower Yuba River Accord is assumed to be implemented for Existing and No Action Alternative No Action Alternative . The Yuba River is not dynamically modeled in CALSIM II. Yuba River hydrology and availability of water acquisitions under the Lower Yuba River Accord are based on modeling performed and provided by the Lower Yuba River Accord EIS/EIR study team.
- ^s Under Existing Conditions, the flow components of the proposed American River Flow Management are as required by the NMFS BO (June 4th 2009).
- ^t The model operates the Stanislaus River using a 1997 Interim Plan of Operation-like structure, i.e., allocating water for SEWD & CSJWCD, Vernalis water quality dilution and Vernalis D1641 flow requirements based on the New Melones Index. OID & SSJID allocations are based on their 1988 agreement and Ripon DO requirements are represented by a static set of minimum instream flow requirements during Jun thru Sep. Instream flow requirements for fish below Goodwin are based on NMFS BO Action III.1.2. NMFS BO Action IV.2.1's flow component is not assumed to be in effect.
- ^u SJR Restoration Water Year 2010 Interim Flows Project are assumed, but are *not input into the models; operation not regularly defined at this time*
- ^v In cooperation with Reclamation, National Marine Fisheries Service, Fish and Wildlife Service, and Ca Department of Fish and Game, the Ca Department of Water Resources has developed assumptions for implementation of the FWS BO (Dec 15th 2008) and NMFS BO (June 4th 2009) in CALSIM II.

* Acquisitions of Component 1 water under the Lower Yuba River Accord, and use of 500 cfs dedicated capacity at Banks PP during Jul – Sep, are assumed to be used to reduce as much of the impact of the Apr – May Delta export actions on SWP contractors as possible.

[×] Only acquisitions of Lower Yuba River Accord Component 1 water are included.

1 **DSM2 Assumptions**

2 This subsection provides a summary of the DSM2 assumptions for the Existing Conditions and No Action Alternative. These

3 assumptions were selected by the Department of Water Resources (DWR) management team for the BDCP EIR/EIS in coordination

4 with the Reclamation, USFWS and NMFS. The assumptions for each scenario are listed in Table B-9. The information included in

- 5 here is consistent with what was provided to and agreed to by the lead agencies in the "Confirmation of Final Assumptions for
- 6 Existing and Future No Action Alternative Conditions CALSIM II and DSM2 Models", on March 10, 2010. It also includes any
- 7 modifications requested by the lead agency staff to improve readability and include additional clarification to the stated
- 8 assumptions.

TABLE B-9 DSM2 Inputs Proposed Assumptions

	Existing Conditions Assumption	No Action Alternative Assumption		
Period of simulation	16 years (1976-1991) ^{a,b}	Same		
REGIONAL SUPPLIES				
Boundary flows	Monthly timeseries from CALSIM II output (alternatives provide different flows and exports) ^c	Same		
REGIONAL DEMANDS AND CONTRACTS				
Ag flows (DICU)	2005 Level, DWR Bulletin 160-98 ^d	2020 Level, DWR Bulletin 160-98 ^d		
TIDAL BOUNDARY				
Martinez stage	15-minute adjusted astronomical tide ^a	Same		
WATER QUALITY				
Vernalis EC	Monthly time series from CALSIM II outpute	Monthly time series from CALSIM II outpute		
Agricultural Return EC	Municipal Water Quality Investigation Program analysis	Same		
Martinez EC	Monthly net Delta Outflow from CALSIM output & G-model ^f	Monthly net Delta Outflow from CALSIM output & G-model ^f		

TABLE B-9 DSM2 Inputs Proposed Assumptions

	Existing Conditions Assumption No Action Alternative Assumption			
MORPHOLOGICAL CHANGES				
Mokelumne River	None	None		
San Joaquin River	None	None		
Middle River	None	None		
Dutch Slough Restoration Project	None	None		
FACILITIES				
Contra Costa Water District Delta Intakes	Rock Slough Pumping Plant, Old River at Highway 4 Intake	Rock Slough Pumping Plant, Old River at Highway 4 Intake and Alternate Improvement Project Intake on Victoria Canal		
South Delta barriers	Temporary Barriers Program	Same		
Two Gate Program	None	None		
Franks Tract Program	None	None		
SPECIFIC PROJECTS				
Water Supply Intake Projects				
Freeport Regional Water Project	None	Monthly output from CALSIM II		
Stockton Delta Water Supply Project	None	Monthly output from CALSIM II		
Antioch Water Works	Monthly output from CALSIM II	Monthly output from CALSIM II		
Sanitary and Agricultural Discharge Proje	ects			
Veale Tract Drainage Relocation	The Veale Tract Water Quality Improvement Project, funded by CALFED, relocates the agricultural drainage outlet was relocated from Rock Slough channel to the southern end of Veale Tract, on Indian Slough ^k	Same		

TABLE B-9 DSM2 Inputs Proposed Assumptions		
	Existing Conditions Assumption	No Action Alternative Assumption
OPERATIONS CRITERIA		
Delta Cross Channel	Monthly time series of number of days open from CALSIM II output	Monthly time series of number of days open from CALSIM II output
Clifton Court Forebay	Priority 3, gate operations synchronized with incoming tide to minimize impacts to low water levels in nearby channels	Same
South Delta barriers	Temporary Barriers Project operated based on San Joaquin River flow time series from CALSIM II output; HORB is assumed only installed ^I Sep 16 – Nov 30; Agricultural barriers on Old and Middle Rivers are assumed to be installed starting from May 16 th and on Grant Line Canal from June 1 st ; All three barriers are allowed to be operated until November 30 th ; May 16 th to May 31 st ; the tidal gates are assumed to be tied open for the barriers on Old and Middle Rivers ^m .	Same

TABLE B-9 DSM2 Inputs Proposed Assumptions

Notes:

- ^a A new adjusted astronomical tide for use in DSM2 planning studies has been developed by DWR's Bay Delta Office Modeling Support Branch Delta Modeling Section in cooperation with the Common Assumptions workgroup. This tide is based on a more extensive observed dataset and covers the entire 82-year period of record.
- ^b The 16-year period of record is the simulation period for which DSM2 has been commonly used for impacts analysis in many previous projects, and includes varied water year types.
- ^c Although monthly CALSIM output was used as the DSM2-HYDRO input, the Sacramento and San Joaquin rivers were interpolated to daily values in order to smooth the transition from high to low and low to high flows. DSM2 then uses the daily flow values along with a 15-minute adjusted astronomical tide to simulate effect of the spring and neap tides.
- ^d The Delta Island Consumptive Use (DICU) model is used to calculate diversions and return flows for all Delta islands based on the level of development assumed. The nominal 2005 Delta region hydrology land-use was determined by interpolation between the 1995 and projected 2020 land-use assumptions associated with Bulletin 160-98.
- ^e CALSIM II calculates monthly EC for the San Joaquin River, which was then converted to daily EC using the monthly EC and flow for the San Joaquin River. Fixed concentrations of 150, 175, and 125 μmhos/cm were assumed for the Sacramento River, Yolo Bypass, and eastside streams, respectively.
- ^f Net Delta outflow based on the CALSIM II flows was used with an updated G-model to calculate Martinez EC. Under changed climate conditions Martinez EC is modified to account for the sea level rise at early (15 cm) and late (45 cm) long-term phases (Year 2060).
- ^g footnote removed.
- ^h footnote removed.
- ⁱ footnote removed.
- ^j footnote removed.
- ^k Information was obtained based on the information from the draft final "Delta Region Drinking Water Quality Management Plan" dated June 2005 prepared under the CALFED Water Quality Program and a presentation by David Briggs at SWRCB public workshop for periodic review. The presentation "Compliance location at Contra Costa Canal at Pumping Plant #1 – Addressing Local Degradation" notes that the Veale Tract drainage relocation project will be operational in June 2005. The DICU drainage currently simulated at node 204 is moved to node 202 in DSM2.
- ¹ Based on the FWS Delta Smelt BO Action 5, Head of Old River Barrier (HORB) is assumed to be not installed in April or May; therefore HORB is only installed in the Fall as shown.
- ^m Based on the FWS Delta Smelt BO Action 5 and the project description provided in the page 119.

B.6. Long-Term Water Operations Assumptions for BDCP Alternatives

2 The long-term water operations assumptions for all the Alternatives are tabulated in this Section. Tables B-10 to B-17 show the

3 assumptions provided by the lead agencies for the Alternatives. These assumptions were selected by the Lead Agencies for the

4 BDCP EIR/EIS including DWR, Reclamation, USFWS and NMFS.

- 5
- 6 Table B-10 Alternatives 1A, 1B, 1C, and 3
- 7 Table B-11 Alternatives 6A, 6B, and 6C
- 8 Table B-12 Alternatives 2A, 2B, 2C
- 9 Table B-13 Alternative 4 Decision Tree Scenarios H1, H2, H3 and H4
- 10 Table B-14 Alternative 5
- 11 Table B-15 Alternative 7
- 12 Table B-16 Alternative 8
- 13 Table B-17 Alternative 9

Based upon "January 2010 BDCP Steering Committee Presentation" for Dual Conveyance (revised February 2010)

North Delta Diversion Bypass Flows

1. North Delta Diversion Bypass Flows

Objectives include flows of the functional equivalent thereof to (1) maintain fish screen sweeping velocities, (2) reduce upstream transport from downstream channels, (3) support salmonid and pelagic fish transport to regions of suitable habitat, (4) reduce predation effects downstream, and (5) maintain or improve rearing habitat in the north Delta.

Constant Low-Level Pumping (Dec-Jun):

Diversions up to 6% of river flow for flows greater than 5,000 cfs. No more than 300 cfs at any one intake.

Initial Pulse Protection:

Low level pumping maintained through the initial pulse period. For the purpose of monitoring, the initiation of the pulse is defined by the following criteria: (1) Wilkins Slough flow changing by more than 45% over a five day period and (2) flow greater than 12,000 cfs. Low-level pumping continues until (1) Wilkins Slough returns to prepulse flows (flow on first day of 5-day increase), (2) flows decrease for 5 consecutive days, or (3) flows are greater than 20,000 cfs for 10 consecutive days. After pulse period has ended, operations will return to the bypass flow table (SubTable A). These parameters are for modeling purposes. Actual operations will be based on real-time monitoring of fish movement.

If the first flush begins before Dec 1, May bypass criteria must be initiated following first flush and the second pulse period will have the same protective operation.

Post-Pulse Operations:

After initial flush(es), go to Level I post-pulse bypass rule (see SubTable A) until 15 total days of bypass flows above 20,000 cfs. Then go to the Level II post-pulse bypass rule until 30 total days of bypass flows above 20,000 cfs. Then go to the Level III post-pulse bypass rule.

Sub-Table A. Post-Pulse Operations for North Delta Diversion Bypass Flows

Level I Post-Pulse Operations		Level II Post-Pulse Operations		Level III Post Pulse Operations				
 Based on the objectives stated above, it is recommended to implement the following operating criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough. 		 Based on the object recommended to in criteria: Bypass flows suff transport at two poin upstream of Sutter downstream of Georgiana Slough. 	tives stated above nplement the follow icient to prevent u ints of control: (1) Slough and (2) Sa orgiana Slough. Th stream transport to ent upstream tran	e, it is wing operating ostream tidal Sacramento River acramento River nese points are oward the proposed sport into	Based on the obj recommended to operating criteria: • Bypass flows su transport at two p River upstream o Sacramento Rive Slough. These po upstream transpo and to prevent up Slough.	ectives stated abov implement the follo officient to prevent u oints of control: (1) f Sutter Slough and r downstream of Go ints are used to pro- ints are used to pro- port toward the propo- istream transport in	e, it is owing upstream tidal Sacramento I (2) eorgiana event osed intakes to Georgiana	
Dec - Apr			Dec - Apr			Dec - Apr		
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is

-	-					-		
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 80% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 60% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 50% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,600 cfs plus 60% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,400 cfs plus 50% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	12,000 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	18,400 cfs plus 30% of the amount over 20,000 cfs	20,000 cfs	no limit	15,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,000 cfs plus 0% of the amount over 20,000 cfs
	Мау	•		Мау	·		Мау	
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)

Based upon "January 2010 BDCP Steering Committee Presentation" for Dual Conveyance (revised February 2010)

Table B-10. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternatives 1A, 1B, 1C, and 3 Based upon "January 2010 BDCP Steering Committee Presentation" for Dual Conveyance (revised February 2010)

15,000 cfs	17,000 cfs	15,000 cfs plus 70% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 50% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 40% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,400 cfs plus 50% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,000 cfs plus 35% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	11,400 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	17,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	14,750 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	12,400 cfs plus 0% of the amount over 20,000 cfs
	Jun			Jun			Jun	
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 60% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 40% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 30% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,200 cfs plus 40% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	12,600 cfs plus 20% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	10,800 cfs plus 20% of the amount over 15,000 cfs

Based upon "January 2010 BDCP Steering Committee Presentation" for Dual Conveyance (revised February 2010)

20,000 cfs	no limit	17,400 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,600 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	11,800 cfs plus 0% of the amount over 20,000 cfs
Jul-Sep: 5,000 cfs			Jul-Sep: 5,000 cfs			Jul-Sep: 5,000 cfs	5	
Oct-Nov: 7,000 cfs			Oct-Nov: 7,000 cfs			Oct-Nov: 7,000 cf	's	
			South De	elta Channel Flow	'S			
2. South Delta Cha	annel Flows							
				<i></i>				
Minimize take at so	outh Delta pumps	by reducing incidence a	and magnitude of reve	erse flows during c	ritical periods for pela	gic species.		
• EW/S amolt and N	MES PO's model	of adaptive restrictions	(tomporature turbidit	v colinity amolt n				
• FWS Smell and N		on adaptive restrictions		y, sainity, shielt p		o for modeling pur		
	es a rough repres			y operation under	FWS and INIVIES BO	s for modeling purp	Joses.	
		Combined	Old and Middle Rive	er flows no less t	han values below* (cfs)		
Month		W	AN		BN	D		С
Jan		-4000	-4000		-4000	-500	0	-5000
Feb		-5000	-4000		-4000	-400	0	-4000
Mar		-5000	-4000		-4000	-350	0	-3000
Apr		-5000	-4000		-4000	-350	0	-2000
Мау		-5000	-4000		-4000	-350	0	-2000
Jun		-5000	-5000		-5000	-500	0	-2000
Jul		N/A	N/A		N/A	N/A		N/A
Aug		N/A	N/A		N/A	N/A	1	N/A
Sep		N/A	N/A		N/A	N/A		N/A
Oct		N/A	N/A		N/A	N/A		N/A
Nov		N/A	N/A		N/A	N/A		N/A
Dec		-6800	-6800		-6300	-630	0	-6100

* Values are monthly average for use in modeling. December 20-31 targets are -5000 cfs (W, AN), -3500 cfs (BN, D), and -3000 cfs (C), and are averaged with an assumed background of -8000 cfs for December 1-19. Values are reflective of the "most likely" operation under the FWS Delta Smelt Biological Opinion. Values for modeling may be updated based on review by fishery agencies.

Based upon "January 2010 BDCP Steering Committee Presentation" for Dual Conveyance (revised February 2010)

Fremont Weir/Yolo Bypass
3. Fremont Weir/Yolo Bypass
Considerations include (1) increasing spawning and rearing habitat for splittail and rearing habitat for salmonids for >30 days, (2) providing alternate migration corridor to the mainstem Sacramento River, and (3) increasing effectiveness of habitat and food transport in Cache Slough.
Sacramento Weir - No change in operations; improve upstream fish passage facilities
Lisbon Weir - No change in operations; improve upstream fish passage facilities
Fremont Weir – Improve fish passage at existing weir elevation; construct opening and operable gates at elevation 17.5 feet with fish passage facilities; construct opening and operable gates at a smaller opening with fish passage enhancement at elevation 11.5 feet
Fremont Weir Gate Operations -
December 1-March 30 (extend to May 15, depending on hydrologic conditions and measures to minimize land use and ecological conflicts) open the 17.5 foot and 11.5 foot elevation gates when Sacramento River flow at Freeport is greater than 25,000 cfs (provides local and regional flood control benefit and coincides with pulse flows and juvenile salmonid migration cues, provides seasonal floodplain inundation for food production, juvenile rearing, and spawning) to provide Yolo Bypass inundation of 3,000 to 6,000 cfs depending on river stage. Operating the gates to allow Yolo Bypass inundation when Sacramento River flow is greater than 25,000 cfs will reduce impacts to water supply associated with Hood bypass flow constraints. Potential impacts to water supply would be avoided or minimized through an operations plan.
Close the 17.5 foot elevation gates when Sacramento River flow at Freeport recedes to less than 20,000 cfs but keep 11.5 foot elevation gates open to provide greater opportunity for fish within the bypass to migrate upstream into the Sacramento River; close 11.5 foot elevation gates when Sacramento River flow at Freeport recedes to less than 15,000 cfs
Delta Cross Channel Gate Operations
4. Delta Cross Channel Gate Operations
Considerations include (1) reduce transport of outmigrating Sacramento River fish into central Delta, (2) maintain flows downstream on Sacramento River, (3) and providing sufficient Sacramento River flow into interior Delta when water quality for M&I and AG may be of concern.
Oct-Nov: DCC gate closed if fish are present (assume 15 days per month; may be open longer depending on presence of fish)
Dec-Jun: DCC gate closed
Jul-Sep: DCC gate open
Rio Vista Minimum Instream Flows
5. Rio Vista Minimum Instream Flows
Maintain minimum flows for outmigrating salmonids and smelt.
Sep-Dec: Per D-1641
Jan-Aug: Minimum of 3,000 cfs

Based upon "January 2010 BDCP Steering Committee Presentation" for Dual Conveyance (revised February 2010)

Delta Inflow & Outflow
6. Delta Inflow & Outflow
Considerations include (1) Provide sufficient outflow to maintain desirable salinity regime downstream of Collinsville during the spring, (2) explore range of approaches toward providing additional variability to Delta inflow and outflow.
Delta Outflow:
Jul-Jan: Per D-1641
Feb-Jun: Per D-1641
- Proportional Reservoir Release concept will continue to be evaluated to the extent that it provides similar response to outflow, inflow, and upstream storage conditions
Operations for Delta Water Quality and Residence Time
7. Operations for Delta Water Quality and Residence Time
Considerations include (1) maintain a minimum level of pumping from the south Delta during summer to provide limited flushing for general water quality conditions (reduce residence times), (2) for M&I and AG salinity improvements, and (3) to allow operational flexibility during other periods to operate either north or south diversions based on real-time assessments of benefits to fish and water quality.
Assumptions:
Jul-Sep: Prefer south delta pumping up to 3,000 cfs before diverting from north
Oct-Jun: Prefer north delta pumping (real-time operational flexibility)
In-Delta Agricultural and Municipal & Industrial Water Quality Requirements
8. In-Delta Agricultural and Municipal & Industrial Water Quality Requirements
Existing M&I and AG salinity requirements
Assumptions:
Existing D-1641 North and Western Delta AG and MI standards
EXCEPT move compliance point from Emmaton to Three Mile Slough juncture.
Maintain all water quality requirements contained in the NDWA/ DWR Contract and other DWR contractual obligations.

1

Based upon "January 2010 BDCP Steering Committee Presentation" for Isolated Conveyance

North Delta Diversion Bypass Flows

1. North Delta Diversion Bypass Flows

Objectives include flows or the functional equivalent thereof to (1) maintain fish screen sweeping velocities, (2) reduce upstream transport from downstream channels, (3) support salmonid and pelagic fish transport to regions of suitable habitat, (4) reduce predation effects downstream, and (5) maintain or improve rearing habitat in the north Delta.

Constant Low-Level Pumping (Dec-Jun):

Diversions up to 6% of river flow for flows greater than 5,000 cfs. No more than 300 cfs at any one intake.

Initial Pulse Protection:

Low level pumping maintained through the initial pulse period. For the purpose of monitoring, the initiation of the pulse is defined by the following criteria: (1) Wilkins Slough flow changing by more than 45% over a five day period and (2) flow greater than 12,000 cfs. Low-level pumping continues until (1) Wilkins Slough returns to prepulse flows (flow on first day of 5-day increase), (2) flows decrease for 5 consecutive days, or (3) flows are greater than 20,000 cfs for 10 consecutive days. After pulse period has ended, operations will return to the bypass flow table (SubTable A). These parameters are for modeling purposes. Actual operations will be based on real-time monitoring of fish movement.

If the first flush begins before Dec 1, May bypass criteria must be initiated following first flush and the second pulse period will have the same protective operation.

Post-Pulse Operations:

After initial flush(es), go to Level I post-pulse bypass rule (see SubTable A) until 15 total days of bypass flows above 20,000 cfs. Then go to the Level II post-pulse bypass rule until 30 total days of bypass flows above 20,000 cfs. Then go to the Level III post-pulse bypass rule.

Sub-Table A. Post-Pulse Operations for North Delta Diversion Bypass Flows

Leve	I Post-Pulse Opera	ations	Level	II Post-Pulse Ope	erations	Level III Post Pulse Operations		
Based on the object to implement the for • Bypass flows suff transport at two poi upstream of Sutter downstream of Ge to prevent upstrear and to prevent upst	tives stated above, i llowing operating crit icient to prevent upst nts of control: (1) Sa Slough and (2) Sacr orgiana Slough. The n transport toward th ream transport into (t is recommended teria: cream tidal cramento River amento River se points are used e proposed intakes Georgiana Slough.	 Based on the object recommended to in criteria: Bypass flows suff transport at two poin upstream of Sutter downstream of Georgiana Slough. 	tives stated above nplement the follor icient to prevent u ints of control: (1) Slough and (2) Sa orgiana Slough. Th stream transport to ent upstream tran	e, it is wing operating pstream tidal Sacramento River acramento River nese points are oward the proposed sport into	Based on the obj recommended to operating criteria: • Bypass flows su transport at two p River upstream o Sacramento Rive Slough. These po upstream transpo and to prevent up Slough.	ectives stated abov implement the follo officient to prevent u oints of control: (1) f Sutter Slough and r downstream of Go onts are used to pro- ort toward the propo- ostream transport in	e, it is owing upstream tidal Sacramento I (2) eorgiana event osed intakes to Georgiana
Dec - Apr			Dec - Apr			Dec - Apr		
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	Dec - Apr Dec - If Sacramento River flow is over But not over The bypass is If Sacramento River flow is over But not River flow is over				

Table B-11. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternatives 6A, 6B, and 6C	
Based upon "January 2010 BDCP Steering Committee Presentation" for Isolated Conveyance	

0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 80% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 60% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 50% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,600 cfs plus 60% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,400 cfs plus 50% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	12,000 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	18,400 cfs plus 30% of the amount over 20,000 cfs	20,000 cfs	no limit	15,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,000 cfs plus 0% of the amount over 20,000 cfs
	Мау			Мау	-		Мау	
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)

Based upon "January 2010 BDCP Steering Committee Presentation" for Isolated Conveyance

15,000 cfs	17,000 cfs	15,000 cfs plus 70% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 50% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 40% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,400 cfs plus 50% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,000 cfs plus 35% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	11,400 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	17,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	14,750 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	12,400 cfs plus 0% of the amount over 20,000 cfs
	Jun			Jun			Jun	
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 60% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 40% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 30% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,200 cfs plus 40% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	12,600 cfs plus 20% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	10,800 cfs plus 20% of the amount over 15,000 cfs

Based upon "January 2010 BDCP Steering Committee Presentation" for Isolated Conveyance

20,000 cfs	no limit	17,400 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,600 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	11,800 cfs plus 0% of the amount over 20,000 cfs		
Jul-Sep: 5,000 cfs			Jul-Sep: 5,000 cfs			Jul-Sep: 5,000 cfs	3			
Oct-Nov: 7,000 cfs			Oct-Nov: 7,000 cfs			Oct-Nov: 7,000 cf	S			
	South Delta Channel Flows - not included due to no operations of South Delta Intakes									
			Fremont	Weir/Yolo Bypass	5					
2. Fremont Weir/Y	olo Bypass									
Considerations incl mainstem Sacrame	Considerations include (1) increasing spawning and rearing habitat for splittail and rearing habitat for salmonids for >30 days, (2) providing alternate migration corridor to the mainstem Sacramento River, and (3) increasing effectiveness of habitat and food transport in Cache Slough.									
Sacramento Weir -	No change in ope	rations; improve upstre	eam fish passage facili	ties						
Lisbon Weir - No ch	ange in operation	s; improve upstream fi	sh passage facilities							
Fremont Weir – Imp and operable gates	prove fish passage at a smaller open	at existing weir elevation weir elevation at existing with fish passage e	tion; construct opening enhancement at elevat	and operable gate	es at elevation 17.5 f	eet with fish passag	je facilities; const	ruct opening		
Fremont Weir Gate	e Operations -									
December 1-March 30 (extend to May 15, depending on hydrologic conditions and measures to minimize land use and ecological conflicts) open the 17.5 foot and 11.5 foot elevation gates when Sacramento River flow at Freeport is greater than 25,000 cfs (provides local and regional flood control benefit and coincides with pulse flows and juvenile salmonid migration cues, provides seasonal floodplain inundation for food production, juvenile rearing, and spawning) to provide Yolo Bypass inundation of 3,000 to 6,000 cfs depending on river stage. Operating the gates to allow Yolo Bypass inundation when Sacramento River flow is greater than 25,000 cfs will reduce impacts to water supply associated with Hood bypass flow constraints. Potential impacts to water supply would be avoided or minimized through an operations plan.										
Close the 17.5 foot opportunity for fish less than 15,000 cfs	Close the 17.5 foot elevation gates when Sacramento River flow at Freeport recedes to less than 20,000 cfs but keep 11.5 foot elevation gates open to provide greater opportunity for fish within the bypass to migrate upstream into the Sacramento River; close 11.5 foot elevation gates when Sacramento River flow at Freeport recedes to less than 15,000 cfs									

Based upon "January 2010 BDCP Steering Committee Presentation" for Isolated Conveyance

Delta Cross Channel Gate Operations					
3. Delta Cross Channel Gate Operations					
Considerations include (1) reduce transport of outmigrating Sacramento River fish into central Delta, (2) maintain flows downstream on Sacramento River, (3) and providing sufficient Sacramento River flow into interior Delta when water quality for M&I and AG may be of concern.					
Oct-Nov: DCC gate closed if fish are present (assume 15 days per month; may be open longer depending on presence of fish)					
Dec-Jun: DCC gate closed					
Jul-Sep: DCC gate open					
Rio Vista Minimum Instream Flows					
4. Rio Vista Minimum Instream Flows					
Maintain minimum flows for outmigrating salmonids and smelt.					
Sep-Dec: Per D-1641					
Jan-Aug: Minimum of 3,000 cfs					
Delta Inflow & Outflow					
5. Delta Inflow & Outflow					
Considerations include (1) Provide sufficient outflow to maintain desirable salinity regime downstream of Collinsville during the spring, (2) explore range of approaches toward providing additional variability to Delta inflow and outflow.					
Delta Outflow:					
Jul-Aug & Dec- Jan: Per D-1641					
Sep-Nov: Fall X2 per FWS Smelt BO					
Operations for Delta Water Quality and Residence Time - not included due to no operations of South Delta Intakes					
In-Delta Agricultural and Municipal & Industrial Water Quality Requirements					
6. In-Delta Agricultural and Municipal & Industrial Water Quality Requirements					
Existing M&I and AG salinity requirements					
Assumptions:					
Existing D-1641 North and Western Delta AG and MI standards					
EXCEPT move compliance point from Emmaton to Three Mile Slough juncture.					
Maintain all water quality requirements contained in the NDWA/ DWR Contract and other DWR contractual obligations.					

1

Table B-12. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternatives 2A, 2B, 2C for Dual Conveyance (DWR, DFG, Reclamation, USFWS, and NMFS 2011)

North Delta Diversion Bypass Flows

1. North Delta Diversion Bypass Flows

Objectives include flows or the functional equivalent thereof to (1) provide North Delta bypass criteria with adaptive limits, (2) provide for Fall X2, (3) support salmonid and pelagic fish transport to regions of suitable habitat, (4) reduce predation effects downstream, and (5) maintain or improve rearing habitat in the north Delta.

Constant Low-Level Pumping (Dec-Jun)

Diversions up to 6% of river flow for flows greater than 5,000 cfs. No more than 300 cfs at any one intake.

Initial Pulse Protection

Low level pumping maintained through the initial pulse period. For the purpose of modeling, the initiation of the pulse is defined by the following criteria: (1) Wilkins Slough flow changing by more than 45% over a five day period and (2) flow greater than 12,000 cfs. Low-level pumping continues until (1) Wilkins Slough returns to pre-pulse flows (flow on first day of 5-day increase), (2) flows decrease for 5 consecutive days, or (3) flows are greater than 20,000 cfs for 10 consecutive days. After pulse period has ended, operations will return to the bypass flow table (Sub-Table A). These parameters are for modeling purposes. Actual operations will be based on real-time monitoring of fish movement.

If the first flush begins before Dec 1, May bypass criteria must be initiated following first flush and the second pulse period will have the same protective operation.

Post-Pulse Operations

After initial flush(es), go to Level I post-pulse bypass rule (see Sub-Table A) until 15 total days of bypass flows above 20,000 cfs. Then go to the Level II post-pulse bypass rule until 30 total days of bypass flows above 20,000 cfs. Then go to the Level III post-pulse bypass rule.

Sub-Table A. Post-Pulse Operations for North Delta Diversion Bypass Flows

Leve	I Post-Pulse Opera	itions	Level	II Post-Pulse Ope	erations	Level III Post Pulse Operations		
 Based on the objectives stated above, it is recommended to implement the following operating criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough. 			 Based of the objectives stated above, it is recommended to implement the following operating criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough. 			 Based of the objectives stated above, it is recommended to implement the following operating criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough. 		
	Dec - Apr		Dec - Apr			Dec - Apr		
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over The bypass is			If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs 5,000 cfs 100% of the amount over 0 cfs			0 cfs	5,000 cfs	100% of the amount over 0 cfs

Table B-12. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternatives 2A, 2B, 2C for Dual Conveyance(DWR, DFG, Reclamation, USFWS, and NMFS 2011)

5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 80% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 60% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 50% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,600 cfs plus 60% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,400 cfs plus 50% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	12,000 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	18,400 cfs plus 30% of the amount over 20,000 cfs	20,000 cfs	no limit	15,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,000 cfs plus 0% of the amount over 20,000 cfs
	Мау			Мау		Мау		
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)

Table B-12. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternatives 2A, 2B, 2C for Dual Conveyance(DWR, DFG, Reclamation, USFWS, and NMFS 2011)

15,000 cfs	17,000 cfs	15,000 cfs plus 70% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 50% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 40% of the amount over 9,000 cfs		
17,000 cfs	20,000 cfs	16,400 cfs plus 50% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,000 cfs plus 35% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	11,400 cfs plus 20% of the amount over 15,000 cfs		
20,000 cfs	no limit	17,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	14,750 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	12,400 cfs plus 0% of the amount over 20,000 cfs		
	Jun	•		Jun			Jun			
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is		
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs		
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)		
15,000 cfs	17,000 cfs	15,000 cfs plus 60% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 40% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 30% of the amount over 9,000 cfs		
17,000 cfs	20,000 cfs	16,200 cfs plus 40% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	12,600 cfs plus 20% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	10,800 cfs plus 20% of the amount over 15,000 cfs		

Table B-12. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternatives 2A, 2B, 2C for Dual Conveyance

(DWR, DFG, Reclamation, USFWS, and NMFS 2011)

20,000 cfs Jul-Sep: 5,000 cfs Oct-Nov: 7 000 cfs	no limit	17,400 cfs 20% of the amount ove 20,000 cfs	plus 20,000 cfs er Jul-Sep: 5,00 Oct-Nov: 7.00 Oct-Nov: 7.00	s no limit	13,600 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs Jul-Sep: 5,000 cf: Oct-Nov: 7 000 cf	no limit s	11,800 cfs plus 0% of the amount over 20,000 cfs		
South Delta Channel Flows										
2. South Delta Cha	annel Flows									
Minimize take at so	outh Delta pum	nps by reducing incl	dence and magnitude c	t reverse flows during	critical periods for pela	gic species.				
All OMR criteria required by the various fish protection triggers (density, calendar, and flow based triggers) described in FWS and NMFS OCAP BOs were incorporated into the modeling of the baseline and the January, 2010 proposed project, as well as these newly proposed operational criteria. Whenever those triggers would result in OMRs higher than those shown below, the higher OMR requirements would be met.										
Combined Old and Middle River flows no less than values below ¹ (cfs)										
Month		W	AN	BN	D		С			
Jan		0	-3500	-4000	-5000		-5000			
Feb		0	-3500	-4000	-4000		-4000			
Mar		0	0	-3500	-3500	-3000				
Apr		varies ²	varies ²	varies ²	varies ²		varies ²			
Мау		varies ²	varies ²	varies ²	varies ²		varies ²			
Jun		varies ²	varies ²	varies ²	varies ²		varies ²			
Jul		N/A	N/A	N/A	N/A		N/A			
Aug		N/A	N/A	N/A	N/A		N/A			
Sep		N/A	N/A	N/A	N/A		N/A			
Oct		varies ³	varies ³	varies ³	varies ³		varies ³			
Nov		varies ³	varies ³	varies ³	varies ³		varies ³			
Dec		-50004	-5000 ⁴	-5000 ⁴	-5000 ⁴		-5000 ⁴			

Table B-12. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternatives 2A, 2B, 2C for Dual Conveyance (DWR, DFG, Reclamation, USFWS, and NMFS 2011)

1. These numbers represent the resulting average values based on the implementation of RPA-based triggers for the "most likely" scenario. OMR values assume the proposed OMR or the Reasonable and Prudent Alternative (RPA) (as modeled in the No Action Alternative), whichever provides higher OMR. Resulting operations are expected to be more positive than depicted in this table.

2. Based on San Joaquin inflow relationship to OMR provided below in Sub-Table B.

 Before the D-1641pulse = HORB open, no OMR restrictions During the D-1641pulse = no south Delta exports (two weeks); HORB closed After the D-1641 pulse = -5,000 cfs OMR (through November); HORB open 50% for 2 weeks

4. OMR restriction of -5,000 cfs for Sacramento River winter-run Chinook salmon when North Delta initial pulse flows are triggered or OMR restriction of -2,000 cfs for delta smelt when triggered.

MONTH	HORB ¹	MONTH	HORB ¹
Oct	50%	Мау	50%
Nov	100% ²	Jun 1-15	50%
Dec	100%	Jun 16-30	100%
Jan	50% ³	Jul	100%
Feb	50%	Aug	100%
Mar	50%	Sep	100%
April	50%		

Head of Old River Operable Barrier (HORB) Operations/Modeling assumptions (% OPEN)

I. Percent of time the HORB is open. Agricultural barriers are in and operated consistent with current practices. HORB would be open 100% whenever flows are greater than 10,000 cfs at Vernalis.

P. For modeling assumption only. Action proposed:

Before the D-1641 pulse = no OMR restrictions (HORB open)

During the D-1641 pulse = no south Delta exports for two weeks (HORB closed) After the D-1641 pulse = -5,000 cfs OMR through November (HORB open 50% for 2 weeks)

Exact timing of the action will be based on hydrologic conditions

. The HORB becomes operational at 50% when salmon fry are immigrating (based on real time monitoring). This generally occurs when flood flow releases are being made.

Table B-12. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternatives 2A, 2B, 2C for Dual Conveyance (DWR, DFG, Reclamation, USFWS, and NMFS 2011)

Sub-Table B. San Joaquin Inflow Relationship to OMR April and May June Average OMR flows would be at least If San Joaquin flow at Vernalis is the If San Joaquin flow at Vernalis is the Average OMR flows would be at least the the following (interpolated linearly following following following between values) -2.000 cfs ≤ 5,000 cfs ≤ 3,500 cfs -3,500 cfs 6,000 cfs +1,000 cfs 3,501 to 10,000 cfs 0 cfs 10.000 cfs +2.000 cfs +3,000 cfs +1,000 cfs 15,000 cfs 10,001 to 15,000 cfs ≥30,000 cfs +6.000 cfs >15.000 cfs +2.000 cfs

Fremont Weir/Yolo Bypass

3. Fremont Weir/Yolo Bypass

Considerations include (1) increasing spawning and rearing habitat for splittail and rearing habitat for salmonids for >30 days, (2) providing alternate migration corridor to the mainstem Sacramento River, and (3) increasing effectiveness of habitat and food transport in Cache Slough.

Weir Improvements

Sacramento Weir - No change in operations; improve upstream fish passage facilities

Lisbon Weir - No change in operations; improve upstream fish passage facilities

Fremont Weir – Improve fish passage at existing weir elevation; construct opening and operable gates at elevation 17.5 feet with fish passage facilities; construct opening and operable gates at a smaller opening with fish passage enhancement at elevation 11.5 feet

Fremont Weir Gate Operations

To provide seasonal floodplain inundation in the Yolo Bypass, the 17.5 foot and the 11.5 foot elevation gates are assumed to be opened between December 1st and March 31st. This may extend to May 15th, depending on the hydrologic conditions and the measures to minimize land use and ecological conflicts in the bypass. As a simplification for modeling, the gates are assumed opened until April 30th in all years. The gates are operated to limit maximum spill to 6,000 cfs until the Sacramento River stage reaches the existing Fremont Weir elevation. While desired inundation period is on the order of 30 to 45 days, gates are not managed to limit to this range, instead the duration of the event is governed by the Sacramento River flow conditions. To provide greater opportunity for the fish in the bypass to migrate upstream into the Sacramento River, the 11.5 foot elevation gate is assumed to be open for an extended period between September 15th and June 30th. As a simplification for modeling, the period of operation for this gate is assumed to be September 1st to June 30th. The spills through the 11.5 ft elevation gate are limited to 100 cfs to support fish passage.

Table B-12. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternatives 2A, 2B, 2C for Dual Conveyance(DWR, DFG, Reclamation, USFWS, and NMFS 2011)

Delta Cross Channel Gate Operations
4. Delta Cross Channel Gate Operations
Considerations include (1) reduce transport of outmigrating Sacramento River fish into central Delta, (2) maintain flows downstream on Sacramento River, (3) and providing sufficient Sacramento River flow into interior Delta when water quality for M&I and AG may be of concern.
Assumptions
Per SRWCB D-1641 with additional days closed from Oct 1 – Jan 31 based on NMFS BO (Jun 2009) Action IV.1.2v (closed during flushing flows from Oct 1 – Dec 14 unless adverse water quality conditions).
Rio Vista Minimum Instream Flows
5. Rio Vista Minimum Instream Flows
Maintain minimum flows for outmigrating salmonids and smelt.
Assumptions
Sep-Dec: Per D-1641
Jan-Aug: Minimum of 3,000 cfs
Delta Inflow & Outflow
6. Delta Inflow & Outflow
Considerations include (1) Provide sufficient outflow to maintain desirable salinity regime downstream of Collinsville during the spring and fall, and (2) explore range of approaches toward providing additional variability to Delta inflow and outflow.
Delta Outflow
Feb-Jun: Per D-1641
Sep-Nov: Implement Fall X2 experiment
Operations for Delta Water Quality and Residence Time
7. Operations for Delta Water Quality and Residence Time
Considerations include (1) maintain a minimum level of pumping from the south Delta during summer to provide limited flushing for general water quality conditions (reduce residence times), (2) for M&I and AG salinity improvements, and (3) to allow operational flexibility during other periods to operate either north or south diversions based on real-time assessments of benefits to fish and water quality.
Assumptions
Jul-Sep: Prefer south delta pumping up to 3,000 cfs before diverting from north
Oct-Jun: Prefer north delta pumping (real-time operational flexibility)

Table B-12. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternatives 2A, 2B, 2C for Dual Conveyance(DWR, DFG, Reclamation, USFWS, and NMFS 2011)

In-Delta Agricultural and Municipal & Industrial Water Quality Requirements
8. In-Delta Agricultural and Municipal & Industrial Water Quality Requirements
Existing M&I and AG salinity requirements
Assumptions
Existing D-1641 North and Western Delta AG and MI standards
EXCEPT move compliance point from Emmaton to Three Mile Slough juncture.
Maintain all water quality requirements contained in the NDWA/ DWR Contract and other DWR contractual obligations.

Table B-12a. Long-Term CWF Water Operations Proposal for BDCP/CWF EIR/EIS Alternative 2D for Dual Conveyance

(DWR and Reclamation 2015)

North Delta Diversion Bypass Flows

1. North Delta Diversion Bypass Flows

Objectives include flows or the functional equivalent thereof to (1) provide North Delta bypass criteria with adaptive limits, (2) provide for Fall X2, (3) support salmonid and pelagic fish transport to regions of suitable habitat, (4) reduce predation effects downstream, and (5) maintain or improve rearing habitat in the north Delta.

Constant Low-Level Pumping (Dec-Jun)

Diversions up to 6% of river flow for flows greater than 5,000 cfs. No more than 300 cfs at any one intake.

Initial Pulse Protection

Low level pumping maintained through the initial pulse period. For the purpose of modeling, the initiation of the pulse is defined by the following criteria: (1) Wilkins Slough flow changing by more than 45% over a five day period and (2) flow greater than 12,000 cfs. Low-level pumping continues until (1) Wilkins Slough returns to pre-pulse flows (flow on first day of 5-day increase), (2) flows decrease for 5 consecutive days, or (3) flows are greater than 20,000 cfs for 10 consecutive days. After pulse period has ended, operations will return to the bypass flow table (Sub-Table A). These parameters are for modeling purposes. Actual operations will be based on real-time monitoring of fish movement.

If the first flush begins before Dec 1, May bypass criteria must be initiated following first flush and the second pulse period will have the same protective operation.

Post-Pulse Operations

After initial flush(es), go to Level I post-pulse bypass rule (see Sub-Table A) until 15 total days of bypass flows above 20,000 cfs. Then go to the Level II post-pulse bypass rule until 30 total days of bypass flows above 20,000 cfs. Then go to the Level III post-pulse bypass rule.

Sub-Table A. Post-Pulse Operations for North Delta Diversion Bypass Flows

Leve	I Post-Pulse Opera	itions	Level II Post-Pulse Operations			Level III Post Pulse Operations			
 Based on the objectives stated above, it is recommended to implement the following operating criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough. 			 Based on the objectives stated above, it is recommended to implement the following operating criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough 			 Based on the objectives stated above, it is recommended to implement the following operating criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough. 			
Dec - Apr			Dec - Apr			Dec - Apr			
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	

Table B-12a. Long-Term CWF Water Operations Proposal for BDCP/CWF EIR/EIS Alternative 2D for Dual Conveyance (DWR and Reclamation 2015)

5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)	
15,000 cfs	17,000 cfs	15,000 cfs plus 80% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 60% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 50% of the amount over 9,000 cfs	
17,000 cfs	20,000 cfs	16,600 cfs plus 60% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,400 cfs plus 50% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	12,000 cfs plus 20% of the amount over 15,000 cfs	
20,000 cfs	no limit	18,400 cfs plus 30% of the amount over 20,000 cfs	20,000 cfs	no limit	15,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,000 cfs plus 0% of the amount over 20,000 cfs	
	Мау			Мау					
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)	
15,000 cfs	17,000 cfs	15,000 cfs plus 70% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 50% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 40% of the amount over 9,000 cfs	
--	--------------	---	--	--------------	---	--	--------------	---	--
17,000 cfs	20,000 cfs	16,400 cfs plus 50% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,000 cfs plus 35% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	11,400 cfs plus 20% of the amount over 15,000 cfs	
20,000 cfs	no limit	17,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	14,750 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	12,400 cfs plus 0% of the amount over 20,000 cfs	
	Jun			Jun			Jun		
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)	
15,000 cfs	17,000 cfs	15,000 cfs plus 60% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 40% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 30% of the amount over 9,000 cfs	
17,000 cfs	20,000 cfs	16,200 cfs plus 40% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	12,600 cfs plus 20% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	10,800 cfs plus 20% of the amount over 15,000 cfs	

20,000 cfs	no limit	17,400 cfs plus 20% of the amount over 20,000 cfs	s 20,000 cfs	no limit	13,600 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	11,800 cfs plus 0% of the amount over 20,000 cfs
Jul-Sep: 5,000 cfs			Jul-Sep: 5,000) cfs		Jul-Sep: 5,000 cf	S	
Oct-Nov: 7,000 cfs			Oct-Nov: 7,00	0 cfs		Oct-Nov: 7,000 c	fs	
			Sou	th Delta Channel Flo	ows			
2. South Delta Cha	annel Flows							
Minimize take at so	uth Delta numns hv	reducing inciden	ce and magnitude of	f reverse flows during	critical periods for pela	aic species		
OMR Flows	ain Dona pampo by	reacting melaent	ee and magnitude of	reverse news during	entiour periode for pera	gio opeoies.		
All OMR criteria required by the various fish protection triggers (density, calendar, and flow based triggers) described in FWS and NMFS OCAP BOs were incorporated into the modeling of the baseline and the January, 2010 proposed project, as well as these newly proposed operational criteria. Whenever those triggers would result in OMRs higher than those shown below, the higher OMR requirements would be met.								
Combined Old and	Middle River flows r	no less than value	es below ¹ (cfs)					
Month		w	AN	BN	D		С	
Jan		0	-3500	-4000	-5000		-5000	
Feb		0	-3500	-4000	-4000		-4000	
Mar		0	0	-3500	-3500		-3000	
Apr	Vä	aries ²	varies ²	varies ²	varies ²		varies ²	
Мау	Vá	aries ²	varies ²	varies ²	varies ²		varies ²	
Jun	Vá	aries ²	varies ²	varies ²	varies ²		varies ²	
Jul		N/A	N/A	N/A	N/A		N/A	
Aug		N/A	N/A	N/A	N/A		N/A	
Sep		N/A	N/A	N/A	N/A		N/A	
Oct	Vä	aries ³	varies ³	varies ³	varies ³		varies ³	
Nov	Va	aries ³	varies ³	varies ³	varies ³		varies ³	
Dec	-5	5000 ⁴	-5000 ⁴	-5000 ⁴	-5000 ⁴		-5000 ⁴	

1. These numbers represent the resulting average values based on the implementation of RPA-based triggers for the "most likely" scenario. OMR values assume the proposed OMR or the Reasonable and Prudent Alternative (RPA) (as modeled in the No Action Alternative), whichever provides higher OMR. Resulting operations are expected to be more positive than depicted in this table.

2. Based on San Joaquin inflow relationship to OMR provided below in Sub-Table B.

 Before the D-1641pulse = HORB open, no OMR restrictions During the D-1641pulse = no south Delta exports (two weeks); HORB closed After the D-1641 pulse = -5,000 cfs OMR (through November); HORB open 50% for 2 weeks

4. OMR restriction of -5,000 cfs for Sacramento River winter-run Chinook salmon when North Delta initial pulse flows are triggered or OMR restriction of -2,000 cfs for delta smelt when triggered.

	•		· ·
MONTH	HORB ¹	MONTH	HORB ¹
Oct	50%	Мау	50%
Nov	100% ²	Jun 1-15	50%
Dec	100%	Jun 16-30	100%
Jan	50% ³	Jul	100%
Feb	50%	Aug	100%
Mar	50%	Sep	100%
April	50%		

Head of Old River Operable Barrier (HORB) Operations/Modeling assumptions (% OPEN)

 Percent of time the HORB is open. Agricultural barriers are in and operated consistent with current practices. HORB would be open 100% whenever flows are greater than 10,000 cfs at Vernalis.

5. For modeling assumption only. Action proposed:

Before the D-1641 pulse = no OMR restrictions (HORB open)

During the D-1641 pulse = no south Delta exports for two weeks (HORB closed) After the D-1641 pulse = -5,000 cfs OMR through November (HORB open 50% for 2 weeks)

Exact timing of the action will be based on hydrologic conditions

The HORB becomes operational at 50% when salmon fry are immigrating (based on real time monitoring). This generally occurs when flood flow releases are being made.

Sub-Table B. San Joaquin Inflow Relationship to OMR							
April a	nd May	June					
If San Joaquin flow at Vernalis is the following	Average OMR flows would be at least the following (interpolated linearly between values)	If San Joaquin flow at Vernalis is the following	Average OMR flows would be at least the following				
≤ 5,000 cfs	-2,000 cfs	≤ 3,500 cfs	-3,500 cfs				
6,000 cfs	+1,000 cfs	3 501 to 10 000 cfs	0 cfc				
10,000 cfs	+2,000 cfs	3,001 10 10,000 013	0.013				
15,000 cfs	+3,000 cfs	10,001 to 15,000 cfs	+1,000 cfs				
≥30,000 cfs	+6,000 cfs	>15,000 cfs	+2,000 cfs				

Fremont Weir/Yolo Bypass

3. Fremont Weir/Yolo Bypass

Following Fremont Weir assumptions are consistent with the No Action Alternative at ELT assumptions. Any additional actions related to Fremont Weir /Yolo Bypass changes are not assumed under this Alternative.

Weir Improvements

Sacramento Weir - No change in operations; improve upstream fish passage facilities

Lisbon Weir - No change in operations; improve upstream fish passage facilities

Fremont Weir – Improve fish passage at existing weir elevation; construct opening and operable gates at elevation 17.5 feet with fish passage facilities; construct opening and operable gates at a smaller opening with fish passage enhancement at elevation 11.5 feet

Fremont Weir Gate Operations

To provide seasonal floodplain inundation in the Yolo Bypass, the 17.5 foot and the 11.5 foot elevation gates are assumed to be opened between December 1st and March 31st. This may extend to May 15th, depending on the hydrologic conditions and the measures to minimize land use and ecological conflicts in the bypass. As a simplification for modeling, the gates are assumed opened until April 30th in all years. The gates are operated to limit maximum spill to 6,000 cfs until the Sacramento River stage reaches the existing Fremont Weir elevation. While desired inundation period is on the order of 30 to 45 days, gates are not managed to limit to this range, instead the duration of the event is governed by the Sacramento River flow conditions. To provide greater opportunity for the fish in the bypass to migrate upstream into the Sacramento River, the 11.5 foot elevation gate is assumed to be open for an extended period between September 15th and June 30th. As a simplification for modeling, the period of operation for this gate is assumed to be September 1st to June 30th. The spills through the 11.5 ft elevation gate are limited to 100 cfs to support fish passage.

Delta Cross Channel Gate Operations					
4. Delta Cross Channel Gate Operations					
Considerations include (1) reduce transport of outmigrating Sacramento River fish into central Delta, (2) maintain flows downstream on Sacramento River, (3) and providing sufficient Sacramento River flow into interior Delta when water quality for M&I and AG may be of concern.					
Assumptions					
Per SRWCB D-1641 with additional days closed from Oct 1 – Jan 31 based on NMFS BO (Jun 2009) Action IV.1.2v (closed during flushing flows from Oct 1 – Dec 14 unless adverse water quality conditions).					
Rio Vista Minimum Instream Flows					
5. Rio Vista Minimum Instream Flows					
Maintain minimum flows for outmigrating salmonids and smelt.					
Assumptions					
Sep-Dec: Per D-1641					
Jan-Aug: Minimum of 3,000 cfs					
Delta Inflow & Outflow					
6. Delta Inflow & Outflow					
Considerations include (1) Provide sufficient outflow to maintain desirable salinity regime downstream of Collinsville during the spring and fall, and (2) explore range of approaches toward providing additional variability to Delta inflow and outflow.					
Delta Outflow					
Feb-Jun: Per D-1641					
Sep-Nov: Implement Fall X2 experiment					
Operations for Delta Water Quality and Residence Time					
7. Operations for Delta Water Quality and Residence Time					
Considerations include (1) maintain a minimum level of pumping from the south Delta during summer to provide limited flushing for general water quality conditions (reduce residence times), (2) for M&I and AG salinity improvements, and (3) to allow operational flexibility during other periods to operate either north or south diversions based on real-time assessments of benefits to fish and water quality.					
Assumptions					
Jul-Sep: Prefer south delta pumping up to 3,000 cfs before diverting from north					
Oct-Jun: Prefer north delta pumping (real-time operational flexibility)					

In-Delta Agricultural and Municipal & Industrial Water Quality Requirements
8. In-Delta Agricultural and Municipal & Industrial Water Quality Requirements
Existing M&I and AG salinity requirements
Assumptions
Existing D-1641 North and Western Delta AG and MI standards
Maintain all water quality requirements contained in the NDWA/ DWR Contract and other DWR contractual obligations.

Briefly, the Alternative 4 Decision Tree Scenarios are described as below:

- Alternative 4 Operational Scenario H1 (Alternative 4 H1) does not include enhanced spring outflow requirements or Fall X2 requirements
- Alternative 4 Operational Scenario H2 (Alternative 4 H2) includes enhanced spring outflow requirements but not Fall X2 requirements
- Alternative 4 Operational Scenario H3 (Alternative 4 H3) does not include enhanced spring outflow requirements but includes Fall X2 requirements (consistent with Alternatives 2A,2B,2C)
- Alternative 4 Operational Scenario H4 (Alternative 4 H4) includes both enhanced spring outflow requirements and Fall X2 requirements

The operational assumptions noted below are the same for all the Alternative 4 Decision Tree Scenarios unless noted explicitly.

North Delta Diversion Bypass Flows

1. North Delta Diversion Bypass Flows

Objectives include flows or the functional equivalent thereof to (1) provide North Delta bypass criteria with adaptive limits, (2) provide for Fall X2, (3) support salmonid and pelagic fish transport to regions of suitable habitat, (4) reduce predation effects downstream, and (5) maintain or improve rearing habitat in the north Delta.

Constant Low-Level Pumping (Dec-Jun)

Diversions up to 6% of river flow for flows greater than 5,000 cfs. No more than 300 cfs at any one intake.

Initial Pulse Protection

Low level pumping maintained through the initial pulse period. For the purpose of modeling, the initiation of the pulse is defined by the following criteria: (1) Wilkins Slough flow changing by more than 45% over a five day period and (2) flow greater than 12,000 cfs. Low-level pumping continues until (1) Wilkins Slough returns to pre-pulse flows (flow on first day of 5-day increase), (2) flows decrease for 5 consecutive days, or (3) flows are greater than 20,000 cfs for 10 consecutive days. After pulse period has ended, operations will return to the bypass flow table (Sub-Table A). These parameters are for modeling purposes. Actual operations will be based on real-time monitoring of fish movement.

If the first flush begins before Dec 1, May bypass criteria must be initiated following first flush and the second pulse period will have the same protective operation.

Post-Pulse Operations

After initial flush(es), go to Level I post-pulse bypass rule (see Sub-Table A) until 15 total days of bypass flows above 20,000 cfs. Then go to the Level II post-pulse bypass rule until 30 total days of bypass flows above 20,000 cfs. Then go to the Level III post-pulse bypass rule.

Sub-Table A. Post-Pulse Operations for North Delta Diversion Bypass Flows

Level I Post-Pulse Operations	Level II Post-Pulse Operations	Level III Post Pulse Operations
Based on the objectives stated above, it is recommended to implement the following operating criteria:	Based on the objectives stated above, it is recommended to implement the following operating	Based on the objectives stated above, it is recommended to implement the following operating
• Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough.	 Criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough. 	 Criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough.

Dec - Apr			Dec - Apr			Dec - Apr		
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 80% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 60% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 50% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,600 cfs plus 60% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,400 cfs plus 50% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	12,000 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	18,400 cfs plus 30% of the amount over 20,000 cfs	20,000 cfs	no limit	15,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,000 cfs plus 0% of the amount over 20,000 cfs
	Мау			Мау		Мау		
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs

5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 70% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 50% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 40% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,400 cfs plus 50% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,000 cfs plus 35% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	11,400 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	17,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	14,750 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	12,400 cfs plus 0% of the amount over 20,000
								CTS
	Jun			Jun			Jun	CTS
If Sacramento River flow is over	Jun But not over	The bypass is	If Sacramento River flow is over	Jun But not over	The bypass is	If Sacramento River flow is over	Jun But not over	The bypass
If Sacramento River flow is over 0 cfs	Jun But not over 5,000 cfs	The bypass is 100% of the amount over 0 cfs	If Sacramento River flow is over 0 cfs	Jun But not over 5,000 cfs	The bypass is 100% of the amount over 0 cfs	If Sacramento River flow is over 0 cfs	Jun But not over 5,000 cfs	The bypass is 100% of the amount over 0 cfs
If Sacramento River flow is over 0 cfs 5,000 cfs	Jun But not over 5,000 cfs 15,000 cfs	The bypass is 100% of the amount over 0 cfs Flows remaining after constant low level pumping (main table)	If Sacramento River flow is over 0 cfs 5,000 cfs	Jun But not over 5,000 cfs 11,000 cfs	The bypass is100% of the amount over 0 cfsFlows remaining after constant low level pumping (main table)	If Sacramento River flow is over 0 cfs 5,000 cfs	Jun But not over 5,000 cfs 9,000 cfs	Cfs The bypass is 100% of the amount over 0 cfs Flows remaining after constant low level pumping (main table)

17,000 cfs	20,000 cfs	s 16,200 cfs 40% of the amount ove 17,000 cfs	plus 15,000 cf:	s 20,000 cfs	12,600 cfs plus 20% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	10,800 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	17,400 cfs 20% of the amount ove 20,000 cfs	plus 20,000 cf: er	s no limit	13,600 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	11,800 cfs plus 0% of the amount over 20,000 cfs
Jul-Sep: 5,000 cfs			Jul-Sep: 5,00	0 cfs		Jul-Sep: 5,000 cf	s	
Oct-Nov: 7,000 cfs			Oct-Nov: 7,00	00 cfs		Oct-Nov: 7,000 c	fs	
			So	uth Delta Channel Fl	ows			
2. South Delta Cha	annel Flows							
Minimize take at so	outh Delta pumr	ps by reducina inci	dence and magnitude (of reverse flows during	critical periods for pela	aic species.		
OMR Flows	un zona punp		aonoo ana magimaao (<u>, , , , , , , , , , , , , , , , , , , </u>				
All OMR criteria required by the various fish protection triggers (density, calendar, and flow based triggers) described in FWS and NMFS OCAP BOs were incorporated into the modeling of the baseline and the January, 2010 proposed project, as well as these newly proposed operational criteria. Whenever those triggers would result in OMRs higher than those shown below, the higher OMR requirements would be met.								
higher than those s	baseline and the hown below, the	the January, 2010 p ne higher OMR req	proposed project, as we uirements would be me	ell as these newly prop et.	osed operational criteri	a. Whenever those	e triggers would re	sult in OMRs
higher than those s Combined Old and	baseline and the hown below, the Middle River flo	the January, 2010 p ne higher OMR required and less than v	proposed project, as we uirements would be me alues below ¹ (cfs)	ell as these newly prop et.	osed operational criteri	a. Whenever those	e triggers would re	sult in OMRs
higher than those s Combined Old and Month	baseline and the hown below, the Middle River fle	the January, 2010 p ne higher OMR required lows no less than v W	proposed project, as we uirements would be me alues below ¹ (cfs) AN	ell as these newly propert.	Dosed operational criteri	a. Whenever those	e triggers would re	sult in OMRs
higher than those s Combined Old and Month Jan	baseline and t hown below, th Middle River fle	the January, 2010 p he higher OMR req lows no less than v W 0	proposed project, as we uirements would be me alues below ¹ (cfs) AN -3500	BN -4000	D D -5000	a. Whenever those	e triggers would re	sult in OMRs
Combined Old and Month Jan Feb	baseline and t hown below, th Middle River flu	the January, 2010 p ne higher OMR req lows no less than v W 0 0	proposed project, as we uirements would be me alues below ¹ (cfs) AN -3500 -3500	BI as these newly propert. BN -4000 -4000	D D -5000 -4000	a. Whenever those	c -5000 -4000	sult in OMRs
higher than those s Combined Old and Month Jan Feb Mar	baseline and t hown below, th Middle River fl	the January, 2010 p ne higher OMR req lows no less than v W 0 0 0 0	proposed project, as we uirements would be me alues below ¹ (cfs) AN -3500 -3500 0	BN -4000 -4000 -3500	D -5000 -3500	a. Whenever those	c -5000 -4000 -3000	sult in OMRs
ine modeling of the higher than those s Combined Old and Month Jan Feb Mar Apr	baseline and t hown below, th Middle River fle	the January, 2010 p ne higher OMR req lows no less than v W 0 0 0 0 varies ²	oroposed project, as we uirements would be me alues below ¹ (cfs) AN -3500 -3500 0 varies ²	BN -4000 -3500 varies ²	D -5000 -4000 -3500 varies ²	a. Whenever those	c -5000 -4000 -3000 varies ²	sult in OMRs
ine modeling of the higher than those s Combined Old and Month Jan Feb Mar Apr May	baseline and t hown below, th Middle River flu	the January, 2010 p ne higher OMR req lows no less than v 0 0 0 0 varies ² varies ²	proposed project, as we uirements would be me alues below ¹ (cfs) AN -3500 -3500 0 varies ² varies ²	BN -4000 -4000 -3500 varies ² varies ²	D -5000 -4000 -3500 varies ² varies ²	a. Whenever those	c -5000 -4000 -3000 varies ² varies ²	sult in OMRs
ine modeling of the higher than those s Combined Old and Month Jan Feb Mar Apr May Jun	baseline and t hown below, th Middle River fle	the January, 2010 p ne higher OMR req lows no less than v W 0 0 0 0 varies ² varies ² varies ²	oroposed project, as we uirements would be me alues below ¹ (cfs) AN -3500 -3500 0 varies ² varies ² varies ²	BN -4000 -4000 -3500 varies ² varies ² varies ²	D -5000 -4000 -3500 varies ² varies ² varies ²	a. Whenever those	c -5000 -4000 -3000 varies ² varies ² varies ²	sult in OMRs
ine modeling of the higher than those s Combined Old and Month Jan Feb Mar Apr May Jun Jun	baseline and t hown below, th Middle River fle	the January, 2010 p ne higher OMR req lows no less than v 0 0 0 0 varies ² varies ² varies ² N/A	oroposed project, as we uirements would be me alues below ¹ (cfs) AN -3500 -3500 0 varies ² varies ² varies ² N/A	BN -4000 -4000 -3500 varies ² varies ² varies ² N/A	D -5000 -4000 -3500 varies ² varies ² varies ² N/A	a. Whenever those	c -5000 -4000 -3000 varies ² varies ² varies ² N/A	sult in OMRs
ine modeling of the higher than those s Combined Old and Month Jan Feb Mar Apr May Jun Jul Jul Aug	baseline and t hown below, th Middle River flu	the January, 2010 p ne higher OMR req lows no less than v W 0 0 0 varies ² varies ² varies ² Varies ² N/A N/A	oroposed project, as we uirements would be me alues below ¹ (cfs) AN -3500 -3500 0 varies ² varies ² varies ² N/A N/A	BN -4000 -4000 -3500 varies ² varies ² varies ² N/A N/A	D -5000 -4000 -3500 varies ² varies ² varies ² N/A N/A	a. Whenever those	c -5000 -4000 -3000 varies ² varies ² varies ² N/A N/A	sult in OMRs
ine modeling of the higher than those s Combined Old and Month Jan Feb Mar Apr May Jun Jul Aug Sep	baseline and t hown below, th Middle River fle	the January, 2010 p ne higher OMR req lows no less than v W 0 0 0 varies ² varies ² varies ² N/A N/A N/A	oroposed project, as we uirements would be me alues below ¹ (cfs) AN -3500 -3500 0 varies ² varies ² varies ² N/A N/A N/A	BN -4000 -4000 -3500 varies ² varies ² varies ² N/A N/A N/A	D -5000 -4000 -3500 varies ² varies ² varies ² N/A N/A N/A	a. Whenever those	c -5000 -4000 -3000 varies ² varies ² varies ² N/A N/A N/A	sult in OMRs
ine modeling of the higher than those s Combined Old and Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct	baseline and t hown below, th Middle River flu	the January, 2010 p ne higher OMR req lows no less than v 0 0 0 varies ² varies ² varies ² Varies ² N/A N/A N/A N/A varies ³	proposed project, as we uirements would be me alues below ¹ (cfs) AN -3500 -3500 0 varies ² varies ² varies ² N/A N/A N/A N/A varies ³	BN -4000 -4000 -3500 varies ² varies ² varies ² N/A N/A N/A N/A Varies ³	D -5000 -4000 -3500 varies ² varies ² varies ² N/A N/A N/A N/A Varies ³	a. Whenever those	c -5000 -4000 -3000 varies ² varies ² varies ² N/A N/A N/A N/A N/A varies ³	sult in OMRs
ine modeling of the higher than those s Combined Old and Month Jan Feb Mar Apr May Jun Jul Jul Aug Sep Oct Nov	baseline and t hown below, th Middle River fle	the January, 2010 p ne higher OMR req lows no less than v W 0 0 0 varies ² varies ² varies ² N/A N/A N/A N/A varies ³ varies ³	proposed project, as we uirements would be me alues below ¹ (cfs) AN -3500 -3500 0 varies ² varies ² varies ² N/A N/A N/A N/A varies ³ varies ³	BN -4000 -4000 -3500 varies ² varies ² varies ² N/A N/A N/A N/A varies ³ varies ³	D -5000 -4000 -3500 varies ² varies ² varies ² N/A N/A N/A N/A Varies ³ varies ³	a. Whenever those	c -5000 -4000 -3000 varies ² varies ² varies ² N/A N/A N/A N/A varies ³ varies ³	sult in OMRs

1. These numbers represent the resulting average values based on the implementation of RPA-based triggers for the "most likely" scenario. OMR values assume the proposed OMR or the Reasonable and Prudent Alternative (RPA) (as modeled in the No Action Alternative), whichever provides higher OMR. Resulting operations are expected to be more positive than depicted in this table.

2. Based on San Joaquin inflow relationship to OMR provided below in Sub-Table B.

3. Before the D-1641pulse = HORB open, no OMR restrictions During the D-1641pulse = no south Delta exports (two weeks); HORB closed After the D-1641 pulse = -5,000 cfs OMR (through November); HORB open 50% for 2 weeks

4. OMR restriction of -5.000 cfs for Sacramento River winter-run Chinook salmon when North Delta initial pulse flows are triggered or OMR restriction of -2.000 cfs for delta smelt when triggered.

Head of Old River Operable Barrier (HORB) Operations/Modeling assumptions (% OPEN)							
MONTH	HORB ¹	MONTH	HORB ¹				
Oct	50%	Мау	50%				
Nov	100% ²	Jun 1-15	50%				
Dec	100%	Jun 16-30	100%				
Jan	50% ³	Jul	100%				
Feb	50%	Aug	100%				
Mar	50%	Sep	100%				
April	50%	· · · ·					

Percent of time the HORB is open. Agricultural barriers are in and operated consistent with current practices. HORB would be open 100% whenever flows are greater than 10,000 cfs at Vernalis.

For modeling assumption only. Action proposed:

Before the D-1641 pulse = no OMR restrictions (HORB open)

During the D-1641 pulse = no south Delta exports for two weeks (HORB closed) After the D-1641 pulse = -5,000 cfs OMR through November (HORB open 50% for 2 weeks)

Exact timing of the action will be based on hydrologic conditions

The HORB becomes operational at 50% when salmon fry are immigrating (based on real time monitoring). This generally occurs when flood flow releases are being made.

Sub-Table B. San Joaquin Inflow Relationship to OMR

April a	nd May	June					
If San Joaquin flow at Vernalis is the following	Average OMR flows would be at least the following (interpolated linearly between values)	If San Joaquin flow at Vernalis is the following	Average OMR flows would be at least the following				
≤ 5,000 cfs	-2,000 cfs	≤ 3,500 cfs	-3,500 cfs				
6,000 cfs	+1,000 cfs	3 501 to 10 000 cfs	0 cfs				
10,000 cfs	+2,000 cfs	0,001 10 10,000 013	0.013				
15,000 cfs	+3,000 cfs	10,001 to 15,000 cfs	+1,000 cfs				
≥30,000 cfs	+6,000 cfs	>15,000 cfs	+2,000 cfs				

Fremont Weir/Yolo Bypass

3. Fremont Weir/Yolo Bypass

Considerations include (1) increasing spawning and rearing habitat for splittail and rearing habitat for salmonids for >30 days, (2) providing alternate migration corridor to the mainstem Sacramento River, and (3) increasing effectiveness of habitat and food transport in Cache Slough.

Weir Improvements

Sacramento Weir - No change in operations; improve upstream fish passage facilities

Lisbon Weir - No change in operations; improve upstream fish passage facilities

Fremont Weir – Improve fish passage at existing weir elevation; construct opening and operable gates at elevation 17.5 feet with fish passage facilities; construct opening and operable gates at a smaller opening with fish passage enhancement at elevation 11.5 feet

Fremont Weir Gate Operations

To provide seasonal floodplain inundation in the Yolo Bypass, the 17.5 foot and the 11.5 foot elevation gates are assumed to be opened between December 1st and March 31st. This may extend to May 15th, depending on the hydrologic conditions and the measures to minimize land use and ecological conflicts in the bypass. As a simplification for modeling, the gates are assumed opened until April 30th in all years. The gates are operated to limit maximum spill to 6,000 cfs until the Sacramento River stage reaches the existing Fremont Weir elevation. While desired inundation period is on the order of 30 to 45 days, gates are not managed to limit to this range, instead the duration of the event is governed by the Sacramento River flow conditions. To provide greater opportunity for the fish in the bypass to migrate upstream into the Sacramento River, the 11.5 foot elevation gate is assumed to be open for an extended period between September 15th and June 30th. As a simplification for modeling, the period of operation for this gate is assumed to be September 1st to June 30th. The spills through the 11.5 ft elevation gate are limited to 100 cfs to support fish passage.

Delta Cross Channel Gate Operations

4. Delta Cross Channel Gate Operations

Considerations include (1) reduce transport of outmigrating Sacramento River fish into central Delta, (2) maintain flows downstream on Sacramento River, (3) and providing sufficient Sacramento River flow into interior Delta when water quality for M&I and AG may be of concern.

Assumptions

Per SRWCB D-1641 with additional days closed from Oct 1 – Jan 31 based on NMFS BO (Jun 2009) Action IV.1.2v (closed during flushing flows from Oct 1 – Dec 14 unless adverse water quality conditions).

Rio Vista Minimum Instream Flows

5. Rio Vista Minimum Instream Flows

Maintain minimum flows for outmigrating salmonids and smelt.

Assumptions

Sep-Dec: Per D-1641

Jan-Aug: Minimum of 3,000 cfs

Delta Inflow & Outflow

6. Delta Inflow & Outflow

Considerations include (1) Provide sufficient outflow to maintain desirable salinity regime downstream of Collinsville during the spring and fall, and (2) explore range of approaches toward providing additional variability to Delta inflow and outflow.

Delta Outflow

SWRCB D-1641 requirements, or outflow per requirements noted below, whichever is greater

Months	Scenario H1	Scenario H2	Scenario H3	Scenario H4
Spring (Mar-May):	Per D-1641	Per D-1641 and additional flow for the enhanced spring outflow requirement ¹	Per D-1641	Per D-1641 and additional flow for the enhanced spring outflow requirement ¹
Fall (Sep-Nov):	Per D-1641	Per D-1641	Implement Fall X2 experiment	Implement Fall X2 experiment

Notes:

¹ Enhanced Spring Delta Outflow required during the Mar-May period. This additional Mar-May Delta Outflow requirement is determined based on a 90% forecast of Mar-May Eight River Index (8RI). Each year in March, Spring Delta Outflow target for the Mar-May period is determined based on the forecasted Mar-May 8RI value and its exceedance probability from the Table below, linearly interpolating for values in-between. This additional spring outflow is not considered as an "in-basin use" for CVP-SWP

Coordinated Operations ³ . This outflow requirement is met through first by curtailing Delta exports at Banks and Jones Pumping Plants by an amount needed to meet the outflow target, such that the minimum exports are at least 1,500 cfs. In wetter years (< 50% exceedance), if the outflow target is not achieved by export curtailments, then the									
additional flow needed to meet	the outflow targ	et is released fr	om the Oroville r	eservoir as long	as its projected	end-of-May stor	age is at or abov	ve 2 MAF.	,
Percent Exceedance of Forecasted Mar-May 8RI:	10%	20%	30%	40%	50%	60%	70%	80%	90%
Proposed Mar-May Delta Outflow Target (cfs):	44,500	44,500	35,000	32,000	23,000	17,200	13,300	11,400	9,200
Operations for Delta Water Quality and Residence Time									
7. Operations for Delta Water	r Quality and Re	esidence Time							
Considerations include (1) maintain a minimum level of pumping from the south Delta during summer to provide limited flushing for general water quality conditions (reduce residence times), (2) for M&I and AG salinity improvements, and (3) to allow operational flexibility during other periods to operate either north or south diversions based on real-time assessments of benefits to fish and water quality.									
Assumptions									
Jul-Sep: Prefer south delta pur	mping up to 3,00	0 cfs before dive	erting from north						
Oct-Jun: Prefer north delta pur	mping (real-time	operational flexi	bility)						
	I	n-Delta Agricu	tural and Muni	cipal & Industri	al Water Quality	y Requirements	5		
8. In-Delta Agricultural and M	lunicipal & Indu	ustrial Water Q	ality Requirem	ients					
Existing M&I and AG salinity re	equirements								
Assumptions									
Existing D-1641 North and We	stern Delta AG a	and MI standard	6						
EXCEPT move compliance po	int from Emmato	on to Three Mile	Slough juncture						
Maintain all water quality requi	rements contain	ed in the NDWA	/ DWR Contract	and other DWR	contractual oblig	gations.			

³ This statement refers to the assumption used in the CalSim II modeling to avoid CVP upstream storage releases for the enhanced spring outflow requirement. This modeling assumption does not preclude DWR and Reclamation to share the water supply cost of this action in accordance with COA as long as the approach used for sharing does not result in any new significant effects. Further, this modeling assumption does not preclude DWR and Reclamation to share the vater supply COMP and Reclamation to acquire water from willing sellers to support this action.

North Delta Diversion Bypass Flows

1. North Delta Diversion Bypass Flows

Objectives include flows or the functional equivalent thereof to (1) provide North Delta bypass criteria with adaptive limits, (2) provide for Fall X2, (3) support salmonid and pelagic fish transport to regions of suitable habitat, (4) reduce predation effects downstream, and (5) maintain or improve rearing habitat in the north Delta.

Constant Low-Level Pumping (Dec-Jun)

Diversions up to 6% of river flow for flows greater than 5,000 cfs. No more than 300 cfs at any one intake.

Initial Pulse Protection

Low level pumping maintained through the initial pulse period. For the purpose of modeling, the initiation of the pulse is defined by the following criteria: (1) Wilkins Slough flow changing by more than 45% over a five day period and (2) flow greater than 12,000 cfs. Low-level pumping continues until (1) Wilkins Slough returns to pre-pulse flows (flow on first day of 5-day increase), (2) flows decrease for 5 consecutive days, or (3) flows are greater than 20,000 cfs for 10 consecutive days. After pulse period has ended, operations will return to the bypass flow table (Sub-Table A). These parameters are for modeling purposes. Actual operations will be based on real-time monitoring of fish movement.

If the first flush begins before Dec 1, May bypass criteria must be initiated following first flush and the second pulse period will have the same protective operation.

Post-Pulse Operations

After initial flush(es), go to Level I post-pulse bypass rule (see Sub-Table A) until 15 total days of bypass flows above 20,000 cfs. Then go to the Level II post-pulse bypass rule until 30 total days of bypass flows above 20,000 cfs. Then go to the Level III post-pulse bypass rule.

Sub-Table A. Post-Pulse Operations for North Delta Diversion Bypass Flows

Leve	I Post-Pulse Opera	ations	Level	II Post-Pulse Ope	erations	Level II	Level III Post Pulse Operations		
 Based on the objectives stated above, it is recommended to implement the following operating criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough. 			 Based on the objectives stated above, it is recommended to implement the following operating criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed 			 Based on the objectives stated above, it is recommended to implement the following operating criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport the prevent the second strenge of the second strenge of			
			intakes and to prevent upstream transport into Georgiana Slough.			transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough.			
	Dec - Apr			Dec - Apr			Dec - Apr		
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	

5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 80% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 60% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 50% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,600 cfs plus 60% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,400 cfs plus 50% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	12,000 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	18,400 cfs plus 30% of the amount over 20,000 cfs	20,000 cfs	no limit	15,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,000 cfs plus 0% of the amount over 20,000
								CTS
	Мау			Мау			Мау	CIS
If Sacramento River flow is over	May But not over	The bypass is	If Sacramento River flow is over	May But not over	The bypass is	If Sacramento River flow is over	May But not over	The bypass
If Sacramento River flow is over 0 cfs	May But not over 5,000 cfs	The bypass is 100% of the amount over 0 cfs	If Sacramento River flow is over 0 cfs	May But not over 5,000 cfs	The bypass is 100% of the amount over 0 cfs	If Sacramento River flow is over 0 cfs	May But not over 5,000 cfs	The bypass is 100% of the amount over 0 cfs
If Sacramento River flow is over 0 cfs 5,000 cfs	May But not over 5,000 cfs 15,000 cfs	The bypass is 100% of the amount over 0 cfs Flows remaining after constant low level pumping (main table)	If Sacramento River flow is over 0 cfs 5,000 cfs	May But not over 5,000 cfs 11,000 cfs	The bypass is 100% of the amount over 0 cfs Flows remaining after constant low level pumping (main table)	If Sacramento River flow is over 0 cfs 5,000 cfs	May But not over 5,000 cfs 9,000 cfs	The bypass is 100% of the amount over 0 cfs Flows remaining after constant low level pumping (main table)

17,000 cfs	20,000 cfs	16,400 cfs plus 50% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,000 cfs plus 35% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	11,400 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	17,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	14,750 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	12,400 cfs plus 0% of the amount over 20,000 cfs
	Jun		Jun				Jun	
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 60% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 40% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 30% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,200 cfs plus 40% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	12,600 cfs plus 20% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	10,800 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	17,400 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,600 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	11,800 cfs plus 0% of the amount over 20,000 cfs
Jul-Sep: 5,000 cfs Oct-Nov: 7,000 cfs			Jul-Sep: 5,000 cfs Oct-Nov: 7,000 cfs			Jul-Sep: 5,000 cfs Oct-Nov: 7,000 cfs	S	

South Delta Channel Flows

0	Cauth	Dalta	Channel	Flaura
Ζ.	South	Deita	Channel	FIOWS

Minimize take at south Delta pumps by reducing incidence and magnitude of reverse flows during critical periods for pelagic species.

OMR Flows

All OMR criteria required by the various fish protection triggers (density, calendar, and flow based triggers) described in FWS and NMFS OCAP BOs were incorporated into the modeling of the baseline and the January, 2010 proposed project, as well as these newly proposed operational criteria. Whenever those triggers would result in OMRs higher than those shown below, the higher OMR requirements would be met.

Combined Old and Middle River flows no less than values below¹ (cfs)

Month	w	AN	BN	D	С
Jan	0	-3500	-4000	-5000	-5000
Feb	0	-3500	-4000	-4000	-4000
Mar	0	0	-3500	-3500	-3000
Apr	varies ²				
Мау	varies ²				
Jun	varies ²				
Jul	N/A	N/A	N/A	N/A	N/A
Aug	N/A	N/A	N/A	N/A	N/A
Sep	N/A	N/A	N/A	N/A	N/A
Oct	varies ³				
Νον	varies ³				
Dec	-5000 ⁴				

1. These numbers represent the resulting average values based on the implementation of RPA-based triggers for the "most likely" scenario. OMR values assume the proposed OMR or the Reasonable and Prudent Alternative (RPA) (as modeled in the No Action Alternative), whichever provides higher OMR. Resulting operations are expected to be more positive than depicted in this table.

2. Based on San Joaquin inflow relationship to OMR provided below in Sub-Table B.

 Before the D-1641pulse = HORB open, no OMR restrictions During the D-1641pulse = no south Delta exports (two weeks); HORB closed

After the D-1641 pulse = -5,000 cfs OMR (through November); HORB open 50% for 2 weeks

4. OMR restriction of -5,000 cfs for Sacramento River winter-run Chinook salmon when North Delta initial pulse flows are triggered or OMR restriction of -2,000 cfs for delta smelt when triggered.

Head of Old River Operable Barrier (HORB) Operations/Modeling assumptions (% OPEN)									
MONTH	HORB ¹	MONTH	HORB ¹						
Oct	50%	Мау	50%						
Nov	100% ²	Jun 1-15	50%						
Dec	100%	Jun 16-30	100%						
Jan	50% ³	Jul	100%						
Feb	50%	Aug	100%						
Mar	50%	Sep	100%						
April	50%	· · ·							
greater than 10,000 cfs at Vern 2. For modeling assumption only. Action Before the D-1641 pulse = no OMR re During the D-1641 pulse = no south D After the D-1641 pulse = -5,000 cfs OI Exact timing of the action will be base 3. The HORB becomes operational at 50 made.	alis. proposed: estrictions (HORB open) elta exports for two weeks (HORB c VR through November (HORB open d on hydrologic conditions 0% when salmon fry are immigrating	losed) 50% for 2 weeks) g (based on real time monitoring). This gen	erally occurs when flood flow releases are being						
Sub-Table B. San Joaquin Inflow Relat	ionship to OMR								
April a	and May		June						
If San Joaquin flow at Vernalis is the following	Average OMR flows would be at I the following (interpolated linearly between values)	least / If San Joaquin flow at Vernalis is following	the Average OMR flows would be at least the following						
≤ 5,000 cfs	-2,000 cfs	≤ 3,500 cfs	-3,500 cfs						
6,000 cfs	+1,000 cfs	3 501 to 10 000 cfs	0 cfs						
10,000 cfs	+2,000 cfs								
15,000 cfs	+3,000 cfs	10,001 to 15,000 cfs	+1,000 cfs						
≥30,000 cfs	+6,000 cfs	>15,000 cfs	+2,000 cfs						

Fremont Weir/Yolo Bypass
3. Fremont Weir/Yolo Bypass
Following Fremont Weir assumptions are consistent with the No Action Alternative at ELT assumptions. Any additional actions related to Fremont Weir /Yolo Bypass changes are not assumed under this Alternative.
Weir Improvements
Sacramento Weir - No change in operations; improve upstream fish passage facilities
Lisbon Weir - No change in operations; improve upstream fish passage facilities
Fremont Weir – Improve fish passage at existing weir elevation; construct opening and operable gates at elevation 17.5 feet with fish passage facilities; construct opening and operable gates at a smaller opening with fish passage enhancement at elevation 11.5 feet
Fremont Weir Gate Operations
To provide seasonal floodplain inundation in the Yolo Bypass, the 17.5 foot and the 11.5 foot elevation gates are assumed to be opened between December 1 st and March 31 st . This may extend to May 15 th , depending on the hydrologic conditions and the measures to minimize land use and ecological conflicts in the bypass. As a simplification for modeling, the gates are assumed opened until April 30 th in all years. The gates are operated to limit maximum spill to 6,000 cfs until the Sacramento River stage reaches the existing Fremont Weir elevation. While desired inundation period is on the order of 30 to 45 days, gates are not managed to limit to this range, instead the duration of the event is governed by the Sacramento River flow conditions. To provide greater opportunity for the fish in the bypass to migrate upstream into the Sacramento River, the 11.5 foot elevation gate is assumed to be open for an extended period between September 15 th and June 30 th . As a simplification for modeling, the period of operation for this gate is assumed to be September 1 st to June 30 th . The spills through the 11.5 ft elevation gate are limited to 100 cfs to support fish passage.
Delta Cross Channel Gate Operations
4. Delta Cross Channel Gate Operations
Considerations include (1) reduce transport of outmigrating Sacramento River fish into central Delta, (2) maintain flows downstream on Sacramento River, (3) and providing sufficient Sacramento River flow into interior Delta when water quality for M&I and AG may be of concern.
Assumptions
Per SRWCB D-1641 with additional days closed from Oct 1 – Jan 31 based on NMFS BO (Jun 2009) Action IV.1.2v (closed during flushing flows from Oct 1 – Dec 14 unless

adverse water quality conditions).

Rio Vista Minimum Instream Flows

5. Rio Vista Minimum Instream Flows

Maintain minimum flows for outmigrating salmonids and smelt.

Assumptions

Sep-Dec: Per D-1641

Jan-Aug: Minimum of 3,000 cfs

Delta Inflow & Outflow

6. Delta Inflow & Outflow

Considerations include (1) Provide sufficient outflow to maintain desirable salinity regime downstream of Collinsville during the spring and fall, and (2) explore range of approaches toward providing additional variability to Delta inflow and outflow.

Delta Outflow

SWRCB D-1641 requirements, or outflow per requirements noted below, whichever is greater

Feb-Jun and Dec-Jan: Per D-1641

Sep-Nov: Implement Fall X2 per FWS BO

This Alternative includes additional Delta outflow requirement to maintain the March – May average Delta outflow resulting under the No Action Alternative at ELT. This requirement was modeled by constraining the total Delta exports by the San Joaquin River i:e ratio requirement under 2009 NMFS BiOp Action IV.2.1, during April and May.

Operations for Delta Water Quality and Residence Time

7. Operations for Delta Water Quality and Residence Time

Considerations include (1) maintain a minimum level of pumping from the south Delta during summer to provide limited flushing for general water quality conditions (reduce residence times), (2) for M&I and AG salinity improvements, and (3) to allow operational flexibility during other periods to operate either north or south diversions based on real-time assessments of benefits to fish and water quality.

Assumptions

Pumping at the south Delta intakes are preferred during the July through September months up to a total pumping of 3,000 cfs to manage water quality conditions in the south Delta channels. No specific intake preference is assumed beyond 3,000 cfs.

In-Delta Agricultural and Municipal & Industrial Water Quality Requirements

8. In-Delta Agricultural and Municipal & Industrial Water Quality Requirements

Existing M&I and AG salinity requirements

Assumptions

Existing D-1641 North and Western Delta AG and MI standards

Maintain all water quality requirements contained in the NDWA/ DWR Contract and other DWR contractual obligations.

North Delta Diversion Bypass Flows

1. North Delta Diversion Bypass Flows

Objectives include flows of the functional equivalent thereof to (1) maintain fish screen sweeping velocities, (2) reduce upstream transport from downstream channels, (3) support salmonid and pelagic fish transport to regions of suitable habitat, (4) reduce predation effects downstream, and (5) maintain or improve rearing habitat in the north Delta.

Constant Low-Level Pumping (Dec-Jun):

Diversions up to 6% of river flow for flows greater than 5,000 cfs. No more than 300 cfs at any one intake.

Initial Pulse Protection:

Low level pumping maintained through the initial pulse period. For the purpose of monitoring, the initiation of the pulse is defined by the following criteria: (1) Wilkins Slough flow changing by more than 45% over a five day period and (2) flow greater than 12,000 cfs. Low-level pumping continues until (1) Wilkins Slough returns to prepulse flows (flow on first day of 5-day increase), (2) flows decrease for 5 consecutive days, or (3) flows are greater than 20,000 cfs for 10 consecutive days. After pulse period has ended, operations will return to the bypass flow table (SubTable A). These parameters are for modeling purposes. Actual operations will be based on real-time monitoring of fish movement.

If the first flush begins before Dec 1, May bypass criteria must be initiated following first flush and the second pulse period will have the same protective operation.

Post-Pulse Operations:

After initial flush(es), go to Level I post-pulse bypass rule (see SubTable A) until 15 total days of bypass flows above 20,000 cfs. Then go to the Level II post-pulse bypass rule until 30 total days of bypass flows above 20,000 cfs. Then go to the Level III post-pulse bypass rule.

Sub-Table A. Post-Pulse Operations for North Delta Diversion Bypass Flows

Leve	I I Post-Pulse Opera	ations	Level	ll Post-Pulse Op	erations	Level III	Level III Post Pulse Operations		
Based on the object to implement the for • Bypass flows suff transport at two por upstream of Sutter downstream of Get to prevent upstrear and to prevent upst	tives stated above, i illowing operating cri icient to prevent ups ints of control: (1) Sa Slough and (2) Sacr orgiana Slough. The n transport toward th tream transport into	t is recommended teria: tream tidal acramento River amento River se points are used he proposed intakes Georgiana Slough.	 Based on the object recommended to in criteria: Bypass flows suff transport at two poin upstream of Sutter downstream of Sutter downstream of Georgiana Slough. 	tives stated abov nplement the follo icient to prevent u ints of control: (1) Slough and (2) S orgiana Slough. T stream transport t ent upstream tran	re, it is owing operating upstream tidal Sacramento River facramento River These points are toward the proposed hsport into	Based on the obj recommended to operating criteria: • Bypass flows su transport at two p River upstream o Sacramento Rive Slough. These po upstream transpo and to prevent up Slough.	ectives stated abov implement the follo inficient to prevent u points of control: (1) f Sutter Slough and or downstream of G points are used to pro- port toward the propo- postream transport in	e, it is owing upstream tidal Sacramento d (2) eorgiana event osed intakes ito Georgiana	
	Dec - Apr			Dec - Apr			Dec - Apr		
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	

5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 80% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 60% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 50% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,600 cfs plus 60% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,400 cfs plus 50% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	12,000 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	18,400 cfs plus 30% of the amount over 20,000 cfs	20,000 cfs	no limit	15,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,000 cfs plus 0% of the amount over 20,000
								cfs
	Мау			Мау			Мау	cfs
If Sacramento River flow is over	May But not over	The bypass is	If Sacramento River flow is over	May But not over	The bypass is	If Sacramento River flow is over	May But not over	The bypass is
If Sacramento River flow is over 0 cfs	May But not over 5,000 cfs	The bypass is 100% of the amount over 0 cfs	If Sacramento River flow is over 0 cfs	May But not over 5,000 cfs	The bypass is 100% of the amount over 0 cfs	If Sacramento River flow is over 0 cfs	May But not over 5,000 cfs	The bypass is 100% of the amount over 0 cfs
If Sacramento River flow is over 0 cfs 5,000 cfs	May But not over 5,000 cfs 15,000 cfs	The bypass is 100% of the amount over 0 cfs Flows remaining after constant low level pumping (main table)	If Sacramento River flow is over 0 cfs 5,000 cfs	May But not over 5,000 cfs 11,000 cfs	The bypass is 100% of the amount over 0 cfs Flows remaining after constant low level pumping (main table)	If Sacramento River flow is over 0 cfs 5,000 cfs	May But not over 5,000 cfs 9,000 cfs	Cfs The bypass is 100% of the amount over 0 cfs Flows remaining after constant low level pumping (main table)

17,000 cfs	20,000 cfs	16,400 cfs plus 50% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,000 cfs plus 35% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	11,400 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	17,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	14,750 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	12,400 cfs plus 0% of the amount over 20,000 cfs
	Jun			Jun			Jun	
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 60% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 40% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 30% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,200 cfs plus 40% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	12,600 cfs plus 20% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	10,800 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	17,400 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,600 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	11,800 cfs plus 0% of the amount over 20,000 cfs
Jul-Sep: 5,000 cfs Oct-Nov: 7,000 cfs			Jul-Sep: 5,000 cfs Oct-Nov: 7,000 cfs			Jul-Sep: 5,000 cfs Oct-Nov: 7,000 cf	S	

South Delta Channel Flows									
2. South Delta Channel Flow	2. South Delta Channel Flows								
Minimize take at south Delta	pumps by reducing incidence a	nd magnitude of reverse flows (durina critical periods for pelagi	c species.					
OMR Flows				· · · · · · · · ·					
• FWS smelt and NMFS BO's	model of adaptive restrictions ((temperature, turbidity, salinity,	smelt presence)						
Table below provides a rough	representation of the current e	stimate of "most likely" operatio	on under FWS and NMFS BO's	for modeling purposes.					
	Combined	Old and Middle Diversflaves a	a laaa ihan walwaa halawit (af	-)					
	Combined	Old and Middle River flows h	o less than values below" (cre	5)					
Month	W	AN	BN	D	C				
Jan	-4000	-4000	-4000	-5000	-5000				
Feb	-5000	-4000	-4000	-4000	-4000				
Mar	-5000	-4000	-4000	-3500	-3000				
Apr	-5000	-4000	-4000	-3500	-2000				
Мау	-5000	-4000	-4000	-3500	-2000				
Jun	-5000	-5000	-5000	-5000	-2000				
Jul	N/A	N/A	N/A	N/A	N/A				
Aug	N/A	N/A	N/A	N/A	N/A				
Sep	N/A	N/A	N/A	N/A	N/A				
Oct	N/A	N/A	N/A	N/A	N/A				
Nov	N/A	N/A	N/A	N/A	N/A				
Dec	-6800	-6800	-6300	-6300	-6100				

* Values are monthly average for use in modeling. December 20-31 targets are -5000 cfs (W, AN), -3500 cfs (BN, D), and -3000 cfs (C), and are averaged with an assumed background of -8000 cfs for December 1-19. Values are reflective of the "most likely" operation under the FWS Delta Smelt Biological Opinion. Values for modeling may be updated based on review by fishery agencies.

South Delta Export - San Joaquin Inflow Ratio:

- Vernalis flow-based export limits Apr 1st - May 31st as required by NMFS BO (Jun, 2009) as assumed in No Action Alternative

Fremont Weir/Yolo Bypass
3. Fremont Weir/Yolo Bypass
Considerations include (1) increasing spawning and rearing habitat for splittail and rearing habitat for salmonids for >30 days, (2) providing alternate migration corridor to the mainstem Sacramento River, and (3) increasing effectiveness of habitat and food transport in Cache Slough.
Sacramento Weir - No change in operations; improve upstream fish passage facilities
Lisbon Weir - No change in operations; improve upstream fish passage facilities
Fremont Weir – Improve fish passage at existing weir elevation; construct opening and operable gates at elevation 17.5 feet with fish passage facilities; construct opening and operable gates at a smaller opening with fish passage enhancement at elevation 11.5 feet
Fremont Weir Gate Operations -
December 1-March 30 (extend to May 15, depending on hydrologic conditions and measures to minimize land use and ecological conflicts) open the 17.5 foot and 11.5 foot elevation gates when Sacramento River flow at Freeport is greater than 25,000 cfs (provides local and regional flood control benefit and coincides with pulse flows and juvenile salmonid migration cues, provides seasonal floodplain inundation for food production, juvenile rearing, and spawning) to provide Yolo Bypass inundation of 3,000 to 6,000 cfs depending on river stage. Operating the gates to allow Yolo Bypass inundation when Sacramento River flow is greater than 25,000 cfs will reduce impacts to water supply associated with Hood bypass flow constraints. Potential impacts to water supply would be avoided or minimized through an operations plan.
Close the 17.5 foot elevation gates when Sacramento River flow at Freeport recedes to less than 20,000 cfs but keep 11.5 foot elevation gates open to provide greater opportunity for fish within the bypass to migrate upstream into the Sacramento River; close 11.5 foot elevation gates when Sacramento River flow at Freeport recedes to less than 15,000 cfs
Delta Cross Channel Gate Operations
4. Delta Cross Channel Gate Operations
Considerations include (1) reduce transport of outmigrating Sacramento River fish into central Delta, (2) maintain flows downstream on Sacramento River, (3) and providing sufficient Sacramento River flow into interior Delta when water quality for M&I and AG may be of concern.
Oct-Nov: DCC gate closed if fish are present (assume 15 days per month; may be open longer depending on presence of fish)
Dec-Jun: DCC gate closed
Jul-Sep: DCC gate open
Pio Vista Minimum Instroam Flows
5. Dio Vista Minimum Instroam Elows
Maintain minimum flows for outmigrating salmonids and smelt.
Sep-Dec: Per D-1641
Jan-Aug: Minimum of 3,000 cfs

Delta Inflow & Outflow

6. Delta Inflow & Outflow

Considerations include (1) Provide sufficient outflow to maintain desirable salinity regime downstream of Collinsville during the spring, (2) explore range of approaches toward providing additional variability to Delta inflow and outflow.

Delta Outflow:

Feb-Jun and Dec-Jan: Per D-1641

Sep-Nov: Implement Fall X2 per FWS BO

Operations for Delta Water Quality and Residence Time

7. Operations for Delta Water Quality and Residence Time

Considerations include (1) maintain a minimum level of pumping from the south Delta during summer to provide limited flushing for general water quality conditions (reduce residence times), (2) for M&I and AG salinity improvements, and (3) to allow operational flexibility during other periods to operate either north or south diversions based on real-time assessments of benefits to fish and water quality.

Assumptions:

Jul-Sep: Prefer south delta pumping up to 3,000 cfs before diverting from north

Oct-Jun: Prefer north delta pumping (real-time operational flexibility)

In-Delta Agricultural and Municipal & Industrial Water Quality Requirements

8. In-Delta Agricultural and Municipal & Industrial Water Quality Requirements

Existing M&I and AG salinity requirements

Assumptions:

Existing D-1641 North and Western Delta AG and MI standards

EXCEPT move compliance point from Emmaton to Three Mile Slough juncture.

Maintain all water quality requirements contained in the NDWA/ DWR Contract and other DWR contractual obligations.

1

North Delta Diversion Bypass Flows

1. North Delta Diversion Bypass Flows

Objectives include flows of the functional equivalent thereof to (1) maintain fish screen sweeping velocities, (2) reduce upstream transport from downstream channels, (3) support salmonid and pelagic fish transport to regions of suitable habitat, (4) reduce predation effects downstream, and (5) maintain or improve rearing habitat in the north Delta.

Constant Low-Level Pumping (Dec-Jun):

Diversions up to 6% of river flow for flows greater than 5,000 cfs. No more than 300 cfs at any one intake.

Initial Pulse Protection:

Low level pumping maintained through the initial pulse period. For the purpose of monitoring, the initiation of the pulse is defined by the following criteria: (1) Wilkins Slough flow changing by more than 45% over a five day period and (2) flow greater than 12,000 cfs. Low-level pumping continues until (1) Wilkins Slough returns to prepulse flows (flow on first day of 5-day increase), (2) flows decrease for 5 consecutive days, or (3) flows are greater than 20,000 cfs for 10 consecutive days. After pulse period has ended, operations will return to the bypass flow table (SubTable A). These parameters are for modeling purposes. Actual operations will be based on real-time monitoring of fish movement.

If the first flush begins before Dec 1, May bypass criteria must be initiated following first flush and the second pulse period will have the same protective operation.

Post-Pulse Operations:

After initial flush(es), go to Level I post-pulse bypass rule (see SubTable A) until 15 total days of bypass flows above 20,000 cfs. Then go to the Level II post-pulse bypass rule until 30 total days of bypass flows above 20,000 cfs. Then go to the Level III post-pulse bypass rule.

Sub-Table A. Post-Pulse Operations for North Delta Diversion Bypass Flows

Leve	I I Post-Pulse Opera	ations	Level	ll Post-Pulse Op	erations	Level III	tions	
 Based on the objectives stated above, it is recommended to implement the following operating criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough. 			 Based on the objectives stated above, it is recommended to implement the following operating criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough. 			 Based on the objectives stated above, it is recommended to implement the following operating criteria: Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) Sacramento River downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough. 		
	Dec - Apr			Dec - Apr			Dec - Apr	
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs

5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 80% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 60% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 50% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,600 cfs plus 60% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,400 cfs plus 50% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	12,000 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	18,400 cfs plus 30% of the amount over 20,000 cfs	20,000 cfs	no limit	15,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,000 cfs plus 0% of the amount over 20,000
								cfs
	Мау			Мау			Мау	cfs
If Sacramento River flow is over	May But not over	The bypass is	If Sacramento River flow is over	May But not over	The bypass is	If Sacramento River flow is over	May But not over	cfs The bypass is
If Sacramento River flow is over 0 cfs	May But not over 5,000 cfs	The bypass is 100% of the amount over 0 cfs	If Sacramento River flow is over 0 cfs	May But not over 5,000 cfs	The bypass is 100% of the amount over 0 cfs	If Sacramento River flow is over 0 cfs	May But not over 5,000 cfs	cfs The bypass is 100% of the amount over 0 cfs
If Sacramento River flow is over 0 cfs 5,000 cfs	May But not over 5,000 cfs 15,000 cfs	The bypass is 100% of the amount over 0 cfs Flows remaining after constant low level pumping (main table)	If Sacramento River flow is over 0 cfs 5,000 cfs	May But not over 5,000 cfs 11,000 cfs	The bypass is 100% of the amount over 0 cfs Flows remaining after constant low level pumping (main table)	If Sacramento River flow is over 0 cfs 5,000 cfs	May But not over 5,000 cfs 9,000 cfs	cfs The bypass is 100% of the amount over 0 cfs Flows remaining after constant low level pumping (main table)

17,000 cfs	20,000 cfs	16,400 cfs plus 50% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,000 cfs plus 35% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	11,400 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	17,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	14,750 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	12,400 cfs plus 0% of the amount over 20,000 cfs
	Jun			Jun			Jun	
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 60% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 40% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 30% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,200 cfs plus 40% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	12,600 cfs plus 20% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	10,800 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	17,400 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,600 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	11,800 cfs plus 0% of the amount over 20,000 cfs
Jul-Sep: 5,000 cfs Oct-Nov: 7,000 cfs			Jul-Sep: 5,000 cfs Oct-Nov: 7,000 cfs			Jul-Sep: 5,000 cfs Oct-Nov: 7,000 cfs	S	

South Delta Channel Flows									
2. South Delta Channel Flows									
Minimize take at south Delta pumps by reducing incidence and magnitude of reverse flows during critical periods for pelagic species									
OMR Flows									
• FWS smelt and NMFS BO's	model of adaptive restrictions	(temperature, turbidity, salinity,	smelt presence)						
Table below provides a rough	representation of the current e	estimate of "most likely" operation	on under FWS and NMFS BO's	for modeling purposes.					
	Combined	Old and Middle Biver flows n	o loss than values below* (cfr	2)					
Month	Combined Old and Middle River nows no less than values below (cts)								
lon	4000	4000	4000	5000	5000				
Jali	-4000	-4000	-4000	-5000	-3000				
Feb	-5000	-4000	-4000	-4000	-4000				
Mar	-5000	-4000	-4000	-3500	-3000				
Apr	-5000	-4000	-4000	-3500	-2000				
Мау	-5000	-4000	-4000	-3500	-2000				
Jun	-5000	-5000	-5000	-5000	-2000				
Jul	N/A	N/A	N/A	N/A	N/A				
Aug	N/A	N/A	N/A	N/A	N/A				
Sep	N/A	N/A	N/A	N/A	N/A				
Oct	N/A	N/A	N/A	N/A	N/A				
Nov	N/A	N/A	N/A	N/A	N/A				
Dec	-6800	-6800	-6300	-6300	-6100				

* Values are monthly average for use in modeling. December 20-31 targets are -5000 cfs (W, AN), -3500 cfs (BN, D), and -3000 cfs (C), and are averaged with an assumed background of -8000 cfs for December 1-19. Values are reflective of the "most likely" operation under the FWS Delta Smelt Biological Opinion. Values for modeling may be updated based on review by fishery agencies.

South Delta Export - San Joaquin Inflow Ratio:

- Vernalis flow-based export limits Apr 1st - May 31st as required by NMFS BO (Jun, 2009) as assumed in No Action Alternative

Fremont Weir/Yolo Bypass

3. Fremont Weir/Yolo Bypass

Following Fremont Weir assumptions are consistent with the No Action Alternative at ELT assumptions. Any additional actions related to Fremont Weir /Yolo Bypass changes are not assumed under this Alternative.

Sacramento Weir - No change in operations; improve upstream fish passage facilities

Lisbon Weir - No change in operations; improve upstream fish passage facilities

Fremont Weir – Improve fish passage at existing weir elevation; construct opening and operable gates at elevation 17.5 feet with fish passage facilities; construct opening and operable gates at a smaller opening with fish passage enhancement at elevation 11.5 feet

Fremont Weir Gate Operations -

December 1-March 30 (extend to May 15, depending on hydrologic conditions and measures to minimize land use and ecological conflicts) open the 17.5 foot and 11.5 foot elevation gates when Sacramento River flow at Freeport is greater than 25,000 cfs (provides local and regional flood control benefit and coincides with pulse flows and juvenile salmonid migration cues, provides seasonal floodplain inundation for food production, juvenile rearing, and spawning) to provide Yolo Bypass inundation of 3,000 to 6,000 cfs depending on river stage. Operating the gates to allow Yolo Bypass inundation when Sacramento River flow is greater than 25,000 cfs will reduce impacts to water supply associated with Hood bypass flow constraints. Potential impacts to water supply would be avoided or minimized through an operations plan.

Close the 17.5 foot elevation gates when Sacramento River flow at Freeport recedes to less than 20,000 cfs but keep 11.5 foot elevation gates open to provide greater opportunity for fish within the bypass to migrate upstream into the Sacramento River; close 11.5 foot elevation gates when Sacramento River flow at Freeport recedes to less than 15,000 cfs

Delta Cross Channel Gate Operations

4. Delta Cross Channel Gate Operations

Considerations include (1) reduce transport of outmigrating Sacramento River fish into central Delta, (2) maintain flows downstream on Sacramento River, (3) and providing sufficient Sacramento River flow into interior Delta when water quality for M&I and AG may be of concern.

Oct-Nov: DCC gate closed if fish are present (assume 15 days per month; may be open longer depending on presence of fish)

Dec-Jun: DCC gate closed

Jul-Sep: DCC gate open

Rio Vista Minimum Instream Flows

5. Rio Vista Minimum Instream Flows

Maintain minimum flows for outmigrating salmonids and smelt.

Sep-Dec: Per D-1641

Jan-Aug: Minimum of 3,000 cfs

Delta Inflow & Outflow

6. Delta Inflow & Outflow

Considerations include (1) Provide sufficient outflow to maintain desirable salinity regime downstream of Collinsville during the spring, (2) explore range of approaches toward providing additional variability to Delta inflow and outflow.

Delta Outflow:

Feb-Jun and Dec-Jan: Per D-1641

Sep-Nov: Implement Fall X2 per FWS BO

Operations for Delta Water Quality and Residence Time

7. Operations for Delta Water Quality and Residence Time

Considerations include (1) maintain a minimum level of pumping from the south Delta during summer to provide limited flushing for general water quality conditions (reduce residence times), (2) for M&I and AG salinity improvements, and (3) to allow operational flexibility during other periods to operate either north or south diversions based on real-time assessments of benefits to fish and water quality.

Assumptions:

Jul-Sep: Prefer south delta pumping up to 3,000 cfs before diverting from north

Oct-Jun: Prefer north delta pumping (real-time operational flexibility)

In-Delta Agricultural and Municipal & Industrial Water Quality Requirements

8. In-Delta Agricultural and Municipal & Industrial Water Quality Requirements

Existing M&I and AG salinity requirements

Assumptions:

Existing D-1641 North and Western Delta AG and MI standards

Maintain all water quality requirements contained in the NDWA/ DWR Contract and other DWR contractual obligations.

Table B-15. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternative 7 for Dual Conveyance

North Delta Diversion Bypass Flows

1. North Delta Diversion Bypass Flows

Objectives include flows to (1) maintain fish screen sweeping velocities, (2) minimize upstream transport from downstream channels, (3) support salmonid and pelagic fish transport to regions of suitable habitat, (4) minimize predation effects downstream, and (5) maintain or improve rearing habitat in the north Delta.

Constant Low-Level Pumping (Dec-Jun):

Diversions up to 5% of river flow for flows greater than 5,000 cfs. No more than 300 cfs at any one intake.

Initial Pulse Protection:

Low level pumping maintained through the initial pulse period. For the purpose of monitoring, the initiation of the pulse is defined by the following criteria: (1) Wilkins Slough flow changing by more than 45% over a five day period and (2) flow greater than 12,000 cfs. Low-level pumping continues until (1) Wilkins Slough returns to prepulse flows (flow on first day of 5-day increase), (2) flows decrease for 5 consecutive days, or (3) flows are greater than 20,000 cfs for 10 consecutive days. After pulse period has ended, operations will return to the bypass flow table (SubTable A for Level 1). These parameters are for modeling purposes. Actual operations will be based on real-time monitoring of fish movement.

If the first flush begins before Dec 1, May bypass criteria must be initiated following first flush and the second pulse period will have the same protective operation.

Post-Pulse Operations:

After initial flush(es), go to Level I post-pulse bypass rule (see SubTable A for Level1) until 20 total days of bypass flows above 20,000 cfs. Then go to the Level II post-pulse bypass rule (Subtable A for Level II) until 45 (total days of bypass flows above 20,000 cfs. Then go to the Level III post-pulse bypass rule (Subtable A for Level III).

Sub-Table A. Post-Pulse Operations for North Delta Diversion Bypass Flows

Level I Post-Pulse Operations	Level II Post-Pulse Operations	Level III Post Pulse Operations

Based on the objectives stated above, it is recommended to implement the following operating criteria:

• Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough.

**Percentages will vary linearly over a 10-day period when transitioning between months.

Dec - Apr			Dec - Apr			Dec - Apr		
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)

15,000 cfs	17,000 cfs	15,000 cfs plus 80% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 60% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 50% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,600 cfs plus 60% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,400 cfs plus 50% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	12,000 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	18,400 cfs plus 30% of the amount over 20,000 cfs	20,000 cfs	no limit	15,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,000 cfs plus 0% of the amount over 20,000 cfs
	Мау		Мау				Мау	
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 70% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 50% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 40% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,400 cfs plus 50% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,000 cfs plus 35% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	11,400 cfs plus 20% of the amount over 15,000 cfs

Table B-15. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternative 7 for Dual Conveyance

20,000 cfs	no limit	17,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	14,750 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	12,400 cfs plus 0% of the amount over 20,000 cfs
	Jun			Jun			Jun	
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)
15,000 cfs	17,000 cfs	15,000 cfs plus 60% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 40% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 30% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,200 cfs plus 40% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	12,600 cfs plus 20% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	10,800 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	17,400 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,600 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	11,800 cfs plus 0% of the amount over 20,000 cfs
Jul-Sep: 5,000 cfs			Jul-Sep: 5,000 cfs			Jul-Sep: 5,000 cfs	3	
Oct-Nov: 7,000 crs							S	
2. South Dolto Chi			South De	Ita Channel Flow	S			
2. South Deita Cha	annel Flows							

Table B-15. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternative 7 for Dual Conveyance

Minimize mortality, including take at south Delta pumps, by reducing incidence and magnitude of reverse flows during critical periods for pelagic and anadromous species.
Table B-15. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternative 7 for Dual Conveyance
OMR Flows
South Delta exports cannot cause OMR to fall below +1,000 cfs during Dec-Mar.
South Delta exports cannot cause OMR to fall below +3,000 cfs during Jun.
South Delta pumping is not allowed during April, May, Oct, and Nov
South Delta Export - San Joaquin Inflow Ratio:
- 50% Dec - Mar & Jun
Fremont Weir/Yolo Bypass
3. Fremont Weir/Yolo Bypass
Considerations include (1) increasing spawning and rearing habitat for splittail and rearing habitat for salmonids for >30 days, (2) providing alternate migration corridor to the mainstem Sacramento River, and (3) increasing effectiveness of habitat and food transport in Cache Slough.
• Spills into Yolo Bypass enabled at water surface elevation 17.5 ft NAVD88 (~15,000 cfs Sac R at Fremont flow) by notch and new gates, as compared to current weir
elevation of 33.5 ft (~56,000 cfs Fremont flow).
Flows: 3,000-8,000 cfs* depending on hydrology
Duration: 30-45 days
 Period: Gates operable December - April 15 (occasionally April 16 – May 15 depending on hydrologic conditions).
* Flows less than 3,000 cfs may require physical modifications to the Yolo Bypass and toe drain to achieve levels of desired floodplain habitat.
Delta Cross Channel Gate Operations
4. Delta Cross Channel Gate Operations
Considerations include (1) reduce transport of outmigrating Sacramento River fish into central Delta, (2) maintain flows downstream on Sacramento River, (3) and providing sufficient Sacramento River flow into interior Delta when water quality for M&I and AG may be of concern.
Oct-Nov: DCC gate closed if fish are present (assume 15 days per month; may be open longer depending on presence of fish)
Dec-Jun: DCC gate closed
Jul-Sep: DCC gate open
Rio Vista Minimum Instream Flows
5. Rio Vista Minimum Instream Flows
Maintain minimum flows for outmigrating salmonids and smelt.
Sep-Dec: Per D-1641
Jan-Aug: Minimum of 5,000 cfs

Delta Inflow & Outflow

6. Delta Inflow & Outflow

Considerations include (1) Provide sufficient outflow to maintain desirable salinity regime downstream of Collinsville during the spring, (2) explore range of approaches toward providing additional variability to Delta inflow and outflow.

Delta Outflow:

Feb-Aug &Dec - Jan: Per D-1641

Sep-Nov: Fall X2 per FWS Smelt BO

Operations for Delta Water Quality and Residence Time

7. Operations for Delta Water Quality and Residence Time

Considerations include (1) maintain a minimum level of pumping from the south Delta during summer to provide limited flushing for general water quality conditions (reduce residence times), (2) for M&I and AG salinity improvements, and (3) to allow operational flexibility during other periods to operate either north or south diversions based on real-time assessments of benefits to fish and water quality.

Assumptions:

Jul-Sep: Prefer south delta pumping up to 3,000 cfs before diverting from north

Oct-Jun: Prefer north delta pumping (real-time operational flexibility)

In-Delta Agricultural and Municipal & Industrial Water Quality Requirements

8. In-Delta Agricultural and Municipal & Industrial Water Quality Requirements

Existing M&I and AG salinity requirements

Assumptions:

Existing D-1641 North and Western Delta AG and MI standards

EXCEPT move compliance point from Emmaton to Three Mile Slough juncture.

Maintain all water quality requirements contained in the NDWA/ DWR Contract and other DWR contractual obligations.

North Delta Diversion Bypass Flows

1. North Delta Diversion Bypass Flows

Objectives include flows to (1) maintain fish screen sweeping velocities, (2) minimize upstream transport from downstream channels, (3) support salmonid and pelagic fish transport to regions of suitable habitat, (4) minimize predation effects downstream, and (5) maintain or improve rearing habitat in the north Delta.

Constant Low-Level Pumping (Dec-Jun):

Diversions up to 5% of river flow for flows greater than 5,000 cfs. No more than 300 cfs at any one intake.

Initial Pulse Protection:

Low level pumping maintained through the initial pulse period. For the purpose of monitoring, the initiation of the pulse is defined by the following criteria: (1) Wilkins Slough flow changing by more than 45% over a five day period and (2) flow greater than 12,000 cfs. Low-level pumping continues until (1) Wilkins Slough returns to prepulse flows (flow on first day of 5-day increase), (2) flows decrease for 5 consecutive days, or (3) flows are greater than 20,000 cfs for 10 consecutive days. After pulse period has ended, operations will return to the bypass flow table (SubTable A for Level 1). These parameters are for modeling purposes. Actual operations will be based on real-time monitoring of fish movement.

If the first flush begins before Dec 1, May bypass criteria must be initiated following first flush and the second pulse period will have the same protective operation.

Post-Pulse Operations:

After initial flush(es), go to Level I post-pulse bypass rule (see SubTable A for Level1) until 20 total days of bypass flows above 20,000 cfs. Then go to the Level II post-pulse bypass rule (Subtable A for Level II) until 45 (total days of bypass flows above 20,000 cfs. Then go to the Level III post-pulse bypass rule (Subtable A for Level II).

Sub-Table A. Post-Pulse Operations for North Delta Diversion Bypass Flows

Level I Post-Pulse Operations	Level II Post-Pulse Operations	Level III Post Pulse Operations

Based on the objectives stated above, it is recommended to implement the following operating criteria:

• Bypass flows sufficient to prevent upstream tidal transport at two points of control: (1) Sacramento River upstream of Sutter Slough and (2) downstream of Georgiana Slough. These points are used to prevent upstream transport toward the proposed intakes and to prevent upstream transport into Georgiana Slough.

**Percentages will vary linearly over a 10-day period when transitioning between months.

	Dec - Apr			Dec - Apr		Dec - Apr				
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is		
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs		
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)		

15,000 cfs	17,000 cfs	15,000 cfs plus 80% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 60% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 50% of the amount over 9,000 cfs		
17,000 cfs	20,000 cfs	16,600 cfs plus 60% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,400 cfs plus 50% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	12,000 cfs plus 20% of the amount over 15,000 cfs		
20,000 cfs	no limit	18,400 cfs plus 30% of the amount over 20,000 cfs	20,000 cfs	no limit	15,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,000 cfs plus 0% of the amount over 20,000 cfs		
	Мау			May May						
If Sacramento River flow is over	But not over The bypass is		nento ow is But not over The bypass is If Sacramento River flow is over				The bypass is	If Sacramento River flow is over	But not over	The bypass is
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs		
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)		
15,000 cfs	17,000 cfs	15,000 cfs plus 70% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 50% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 40% of the amount over 9,000 cfs		
17,000 cfs	20,000 cfs	16,400 cfs plus 50% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,000 cfs plus 35% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	11,400 cfs plus 20% of the amount over 15,000 cfs		

20,000 cfs	no limit	17,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	14,750 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	12,400 cfs plus 0% of the amount over 20,000 cfs		
	Jun			Jun			Jun			
If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is	If Sacramento River flow is over	But not over	The bypass is		
0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs	0 cfs	5,000 cfs	100% of the amount over 0 cfs		
5,000 cfs	15,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	11,000 cfs	Flows remaining after constant low level pumping (main table)	5,000 cfs	9,000 cfs	Flows remaining after constant low level pumping (main table)		
15,000 cfs	17,000 cfs	15,000 cfs plus 60% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 40% of the amount over 11,000 cfs	9,000 cfs	15,000 cfs	9,000 cfs plus 30% of the amount over 9,000 cfs		
17,000 cfs	20,000 cfs	16,200 cfs plus 40% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	12,600 cfs plus 20% of the amount over 15,000 cfs	15,000 cfs	20,000 cfs	10,800 cfs plus 20% of the amount over 15,000 cfs		
20,000 cfs	no limit	17,400 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,600 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	11,800 cfs plus 0% of the amount over 20,000 cfs		
Jul-Sep: 5,000 cfs			Jul-Sep: 5,000 cfs			Jul-Sep: 5,000 cfs				
Oct-Nov: 7,000 cfs			Oct-Nov: 7,000 cfs	Oct-Nov: 7,000 cfs Oct-Nov: 7,000 cfs						
			Courth Do							
2 South Delta Cha	annel Flows		South De	ita Channel Flow	5					

Bay Delta Conservation Plan/California WaterFix Final EIR/EIS

Table B-16. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternative 8 for Dual Conveyance
Minimize mortality, including take at south Delta pumps, by reducing incidence and magnitude of reverse flows during critical periods for pelagic and anadromous species.
OMR Flows
South Delta exports cannot cause OMR to fall below +1,000 cfs during Dec-Mar.
 South Delta exports cannot cause OMR to fall below +3,000 cfs during Jun.
South Delta pumping is not allowed during April, May, Oct, and Nov
South Delta Export - San Joaquin Inflow Ratio:
- 50% Dec - Mar & Jun
Fremont Weir/Yolo Bypass
3. Fremont Weir/Yolo Bypass
Considerations include (1) increasing spawning and rearing habitat for splittail and rearing habitat for salmonids for >30 days, (2) providing alternate migration corridor to the mainstem Sacramento River, and (3) increasing effectiveness of habitat and food transport in Cache Slough.
• Spills into Yolo Bypass enabled at water surface elevation 17.5 ft NAVD88 (~15,000 cfs Sac R at Fremont flow) by notch and new gates, as compared to current weir
elevation of 33.5 ft (~56,000 cfs Fremont flow).
Flows: 3,000-8,000 cfs* depending on hydrology
Duration: 30-45 days
Period: Gates operable December - April 15 (occasionally April 16 – May 15 depending on hydrologic conditions).
* Flows less than 3,000 cfs may require physical modifications to the Yolo Bypass and toe drain to achieve levels of desired floodplain habitat.
Delta Cross Channel Gate Operations
4. Delta Cross Channel Gate Operations
Considerations include (1) reduce transport of outmigrating Sacramento River fish into central Delta, (2) maintain flows downstream on Sacramento River, (3) and providing sufficient Sacramento River flow into interior Delta when water quality for M&I and AG may be of concern.
Oct-Nov: DCC gate closed if fish are present (assume 15 days per month; may be open longer depending on presence of fish)
Dec-Jun: DCC gate closed
Jul-Sep: DCC gate open
Rio Vista Minimum Instream Flows
5. Rio Vista Minimum Instream Flows
Maintain minimum flows for outmigrating salmonids and smelt
Mantain minimum nowo for outinigrating samonus and smort.

Sep-Dec: Per D-1641
Jan-Aug: Minimum of 5,000 cfs
Delta Inflow & Outflow
6. Delta Inflow & Outflow
Considerations include (1) Provide sufficient outflow to maintain desirable salinity regime downstream of Collinsville during the spring, (2) explore range of approaches toward providing additional variability to Delta inflow and outflow.
Delta Outflow:
Feb-Aug &Dec - Jan: Per D-1641
Sep-Nov: Fall X2 per FWS Smelt BO
SWRCB Flow Criteria of 55% of Unimpaired Flow at Freeport (capped at 40,000 cfs) Jan-Jun
Freeport Minimum Instream Flows
7. Freeport Minimum Instream Flows
SWRCB Minimum Requirement of 55% of Unimpaired Flow at Freeport Jan-Jun
Minimum flow requirement capped at 40,000 cfs
To balance SWP and CVP contributions to the Freeport requirement, a minimum requirement is applied simultaneously at the mouth of the Feather River that is a proportional amount of the 55% Unimpaired Flow at Freeport.
Cold Water Pool Storage
8. Cold Water Pool Storage
Trinity, Shasta, Oroville and Folsom storage were modified to enable more cold water pool storage: by increasing Storage Level 3 to 75% of the maximum storage, within Storage Level 3, exports are gradually reduced until Storage Level 2 is reached in the reservoir. Project Storage below 75% of maximum storage would be limited to releases for environmental uses and/or superior water rights.
Operations for Delta Water Quality and Residence Time
9. Operations for Delta Water Quality and Residence Time
Considerations include (1) maintain a minimum level of pumping from the south Delta during summer to provide limited flushing for general water quality conditions (reduce residence times), (2) for M&I and AG salinity improvements, and (3) to allow operational flexibility during other periods to operate either north or south diversions based on real-time assessments of benefits to fish and water quality.

Assumptions:

Jul-Sep: Prefer south delta pumping up to 3,000 cfs before diverting from north

Oct-Jun: Prefer north delta pumping (real-time operational flexibility)

In-Delta Agricultural and Municipal & Industrial Water Quality Requirements

10. In-Delta Agricultural and Municipal & Industrial Water Quality Requirements

Existing M&I and AG salinity requirements

Assumptions:

Existing D-1641 North and Western Delta AG and MI standards

EXCEPT move compliance point from Emmaton to Three Mile Slough juncture.

Maintain all water quality requirements contained in the NDWA/ DWR Contract and other DWR contractual obligations.

Table B-17. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternative 9 Separated Corridors

Delta Cross Channel Criteria												
1. Delta Cross Channel Criteria												
Objectives to provide separated corridors for South Delta fish passage and water conveyance from Sacramento River to South Delta intakes												
Delta Cross Channel Criteria:												
Sacramento River Flows less than 11,000 cfs or over 25,000 cfs: Gates Closed												
Sacramento River Flows 11,000 cfs to 25,000 cfs: Divert up to 25 percent of Sacramento River flow												
South Delta Channel Flows												
2. South Delta Channel Flows												
Minimize take at east the Date number by reducing incidence and magnitude of reverse flows during article pariade for polaria apoints												
			auning childar periods for peragi	c species.								
Apply only to Middle River Flo	ows except during flood events	when South Delta gates are op	en									
OMR Flows												
• FWS smelt and NMFS BO's model of adaptive restrictions (temperature, turbidity, salinity, smelt presence) [when San Joaquin River flow at Vernalis is greater than 10,000 cfs]. When San Joaquin River flow at Vernalis is less than 10,000 cfs, these OMR restrictions are assumed to control the Middle River flow.												
Table below provides a rough representation of the current estimate of "most likely" operation under FWS and NMFS BO's for modeling purposes.												
Combined Old and Middle River flows no less than values below* (cfs)												
Month	W	AN	BN	D	С							
Jan	-4000	-4000	-4000	-5000	-5000							
Feb	-5000	-4000	-4000	-4000	-4000							
Mar	-5000	-4000	-4000	-3500	-3000							
Apr	-5000	-4000	-4000	-3500	-2000							
Мау	-5000	-4000	-4000	-3500	-2000							
Jun	-5000	-5000	-5000	-5000	-2000							
Jul	N/A	N/A	N/A	N/A	N/A							
Aug	N/A	N/A	N/A	N/A	N/A							
Sep	N/A	N/A	N/A	N/A	N/A							
Oct	N/A	N/A	N/A	N/A	N/A							
Nov	N/A	N/A	N/A	N/A	N/A							
Dec	-6800	-6800	-6300	-6300	-6100							

* Values are monthly average for use in modeling. December 20-31 targets are -5000 cfs (W, AN), -3500 cfs (BN, D), and -3000 cfs (C), and are averaged with an assumed background of -8000 cfs for December 1-19. Values are reflective of the "most likely" operation under the FWS Delta Smelt Biological Opinion. Values for modeling may be updated based on review by fishery agencies.

Table B-17. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternative 9 Separated Corridors
South Delta Export - San Joaquin Inflow Ratio:
- Vernalis flow-based export limits Apr 1st – May 31st as required by NMFS BO (Jun, 2009) as assumed in No Action Alternative (when San Joaquin River flow at Vernalis is greater than 10,000 cfs)
Fremont Weir/Yolo Bypass
3. Fremont Weir/Yolo Bypass
Considerations include (1) increasing spawning and rearing habitat for splittail and rearing habitat for salmonids for >30 days, (2) providing alternate migration corridor to the mainstem Sacramento River, and (3) increasing effectiveness of habitat and food transport in Cache Slough.
Sacramento Weir - No change in operations; improve upstream fish passage facilities
Lisbon Weir - No change in operations; improve upstream fish passage facilities
Fremont Weir – Improve fish passage at existing weir elevation; construct opening and operable gates at elevation 17.5 feet with fish passage facilities; construct opening and operable gates at a smaller opening with fish passage enhancement at elevation 11.5 feet
Fremont Weir Gate Operations -
December 1-March 30 (extend to May 15, depending on hydrologic conditions and measures to minimize land use and ecological conflicts) open the 17.5 foot and 11.5 foot elevation gates when Sacramento River flow at Freeport is greater than 25,000 cfs (provides local and regional flood control benefit and coincides with pulse flows and juvenile salmonid migration cues, provides seasonal floodplain inundation for food production, juvenile rearing, and spawning) to provide Yolo Bypass inundation of 3,000 to 6,000 cfs depending on river stage. Operating the gates to allow Yolo Bypass inundation when Sacramento River flow is greater than 25,000 cfs will reduce impacts to water supply associated with Hood bypass flow constraints. Potential impacts to water supply would be avoided or minimized through an operations plan.
Close the 17.5 foot elevation gates when Sacramento River flow at Freeport recedes to less than 20,000 cfs but keep 11.5 foot elevation gates open to provide greater opportunity for fish within the bypass to migrate upstream into the Sacramento River; close 11.5 foot elevation gates when Sacramento River flow at Freeport recedes to less than 15,000 cfs
Delta Cross Channel and Georgiana Slough Gate Operations
4. Delta Cross Channel Gate Operations
Considerations include (1) reduce transport of outmigrating Sacramento River fish into central Delta, (2) maintain flows downstream on Sacramento River, (3) and providing sufficient Sacramento River flow into interior Delta when water quality for M&I and AG may be of concern.
Delta Cross Channel:
Sacramento River Flows less than 11,000 cfs or over 25,000 cfs: Closed
Sacramento River Flows 11,000 cfs to 25,000 cfs: Divert up to 25 percent of Sacramento River flow
Georgiana Slough: Operated to limit flow to less than 7,500 cfs all year to prevent impingement of fish on screens. This will usually allow Georgiana Slough to be open until

Sacramento River flow exceeds 45,000 cfs.

Table B-17. Long-Term BDCP Water Operations Proposal for BDCP EIR/EIS Alternative 9 Separated Corridors

Rio Vista Minimum Instream Flows									
5. Rio Vista Minimum Instream Flows									
Maintain minimum flows for outmigrating salmonids and smelt.									
Sep-Dec: Per D-1641									
Jan-Aug: Minimum of 3,000 cfs									
Delta Inflow & Outflow									
6. Delta Inflow & Outflow									
Considerations include (1) Provide sufficient outflow to maintain desirable salinity regime downstream of Collinsville during the spring, (2) explore range of approaches toward providing additional variability to Delta inflow and outflow.									
Delta Outflow:									
Jul-Aug & Dec-Jan: Per D1641									
Sep-Nov: Implement Fall X2 per FWS Smelt BO									
Mokelumne River Barriers									
7. Mokelumne River Barriers									
Jan-July: Gates Closed (possibly with fish ladder)									
Aug-Dec: Gates Open.									
In-Delta Agricultural and Municipal & Industrial Water Quality Requirements									
8. In-Delta Agricultural and Municipal & Industrial Water Quality Requirements									
Existing M&I and AG salinity requirements									
Assumptions:									
Existing D-1641 North and Western Delta AG and MI standards									
EXCEPT move compliance point from Emmaton to Three Mile Slough juncture.									
Maintain all water quality requirements contained in the NDWA/ DWR Contract and other DWR contractual obligations.									

Table B-18: CALSIM II and DSM2 Modeling Assumptions for BDCP EIR/EIS Existing Conditions, No Action Alternative and DEIRS Alternatives CALSIM II

Assumptions:

Assumptions.		-				-									
PARAMETER CATEGORY / STUDY	EXISTING CONDITIONS	NO ACTION ALTERNATIVE	Alternative 1A, 1B, 1C	Alternative 2A, 2B, 2C	Alternative 3	H1 /Low Out	All tflow U2 (includes Enhanced	ernative 4	HA (High Outflow	Alternative 5	Alternative 6A, 6B, 6C	Alternative 7	Alternative 8	Alternative 9	COMMENTS
						Scenario	b) Spring Outflow; exclude	s Spring Outflow; includes	Scenario)						
							Fall X2)	Fall X2)							
GENERAL															
Planning horizon ^a	Year 2009/Year 2015	Year 2020/Year 2025/Year 2060	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative	Common Assumptions (CA) assumed 2004 and 2030;				
Domession data ³	Eebruggy 2009 (but with June 2009	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative	2008 OCAP BA assumed 2005 and 2030				
Demarcation date	NMFS BO included)	Same as Existing Conditions	Same as no Action Alternative	Same as NO ACION Alternative	Same as NO ACtion Alternative		Same as N	Action Alternative		Same as NO Action Alternative	Same as NO ACION Alternative	Same as NO Action Alternative	Same as NO Action Alternative	Same as NO ACtion Alternative	2005
Period of simulation	82 years (1922-2003)	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	o Action Alternative		Same as No Action Alternative					
Inflows/Supplies	Historical with modifications for operations	Historical with modifications for operations	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative					
	upstream of rim reservoirs	upstream of rim reservoirs and with or without changed climate at Early Long													
		Term (Year 2025) or Late Long Term													
		(Year 2060)													
Level of development	Projected 2005 level ^b	Projected 2030 level ^c	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative					
DEMANDS, WATER RIGHTS,															
Sacramento River Region (excluding															
American River)	Land-use based limited by contract	Land-use based full build-out of contract	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative	Consistent with 2008 OCAP BA: 2008 OCAP BA				
CVP	amounts	amounts	Same as no Action Alternative	Same as NO ACION Alternative	Same as NO Action Alternative		Gaine as N	Action Alternative		Same as NO Action Alternative	Same as no Actor Alternative	Same as No Action Alternative	Same as NO ACION Alternative	Same as NO Action Alternative	included updates to CA assumptions
SWP (FRSA) ^e	Land-use based, limited by contract amounts	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	o Action Alternative		Same as No Action Alternative	Consistent with 2008 OCAP BA; 2008 OCAP BA included updates to CA assumptions				
Non-project	Land-use based, limited by water rights	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative					
	and SWRCB decisions for existing facilities														
Antioch	Pre-1914 water right	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative	Not included in 2008 BA of CA assumptions				
Federal refuges ¹	Recent historical Level 2 water needs	Firm Level 2 water needs	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	o Action Alternative		Same as No Action Alternative					
Sacramento River Region - American															
River ⁹ Water rights	Year 2005	Year 2025, full water rights	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative	Consistent with 2008 OCAP BA: CA assumed				
		·····													Sacramento Area Water Forum
CVP	Year 2005	Year 2025, full contracts, including Freeport Regional Water Project	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	o Action Alternative		Same as No Action Alternative	Consistent with 2008 OCAP BA; CA assumed Sacramento Area Water Forum; CA did not include				
															Sacramento River Water Reliability Project
San Joaquin River Region ^h															
Friant Unit	Limited by contract amounts, based on	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative					
Lower Basin	Land-use based, based on district level	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative	Stockton Delta Water Supply project included from				
	operations and constraints	Company Fulction Constitutions	Company No. A sting Alternative	Company and Manual And	Company and Alexandrian Alexandrian		Como os N	Antina Altanativa		Constant No. Antion Alternative	Corres on No. Antion. Alternative	Correction Alternative	Company on No. Antion. Alternative	Company and Alexandrian Alexandrian	2008 OCAP BA model
Stanislaus River	Plan ^t and NFMS BO (Jun 2009) Actions	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	o Action Alternative		Same as No Action Alternative	CA assumed Interim Operations Plan				
	III.1.2 and III.1.3 ^v														
San Francisco Bay, Central Coast,															
(CVP/SWP project facilities)															
CVP ^d	Demand based on contracts amounts	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative					
	105 TAE/ur CV/D contract supply and	Romo on Evinting Conditions	Some on No Action Alternative	Some on No Action Alternative	Some on No Action Alternative		Some on N	Action Altomotivo		Romo on No. Antion Altornativo	Samo as No Astian Alternativa	Same as No Astion Alternative	Some as No Action Alternative	Some on No Action Alternative	
CCWD	water rights	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	o Action Alternative		Same as No Action Alternative					
SWP ^{e,k}	Variable demand, of 3.0-4.1 MAF/Yr, up to Table A amounts including all Table A	Demand based on full Table A amounts	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative	2008 OCAP BA assumed 3.1 – 4.2 MAF/Yr variable demand for Existing: CA assumed Table A transfers				
	transfers through 2008														only up through 2004.
Article 56	Based on 2001-08 contractor requests	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	o Action Alternative		Same as No Action Alternative	Consistent with 2008 OCAP BA; CA assumed pattern based on 2002-06 contractor requests				
Article 21	MWD demand up to 200 TAF/month from	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative	2008 OCAP BA limited MWD Article 21 to 100				
	December to March subject to conveyance capacity, KCWA demand up														TAF/mon; CA assumed 50 TAF/YR for KCWA in Existing 2 555 cfs may demand rate for KCWA in
	to 180 TAF/month and other contractor														Future and unlimited for MWD in Future
	demands up to 34 TAF/month in all months subject to conveyance canacity														
North Bay Aqueduct (NBA)	71 TAF/yr demand under SWP contracts, up to 43.7 cfs of excess flow under	, 77 TAF/yr demand under SWP contracts, up to 43.7 cfs of excess flow under	, Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	o Action Alternative		Same as No Action Alternative	Consistent with 2008 OCAP BA; CA assumed 48 TAF/Yr demand under SWP contracts and no				
	Fairfield, Vacaville and Benecia	Fairfield, Vacaville and Benecia													Settlement Agreement
Enderel refugee ¹	Settlement Agreement Recent historical Level 2 water needs	Settlement Agreement Firm Level 2 water needs	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative					
redelai reluges							Gund do H								
FACILITIES System-wide															
System-wide	Existing facilities	Same as Existing Conditions	Existing facilities and Isolated Facility	Existing facilities and Isolated Facility	Existing facilities and Isolated Facility		Existing facilitie	es and Isolated Facility		Existing facilities and Isolated Facility	Isolated Facility	Existing facilities and Isolated Facility	Existing facilities and Isolated Facility	Existing Facilities and Separate Corridor	
Isolated Facility	None	Same as Existing Conditions	North Delta Diversion: maximum capacity	North Delta Diversion: maximum capacity	North Delta Diversion: maximum capacity	North	Delta Diversion: maximum car	acity of 9,000 cfs, diversion poir	nt near Hood	North Delta Diversion: maximum capacity	V North Delta Diversion: maximum capacity	North Delta Diversion: maximum capacity	North Delta Diversion: maximum capacity	Same as No Action Alternative	
			of 15,000 cfs, diversion point near Hood	of 15,000 cfs, diversion point near Hood	of 6,000 cfs, diversion point near Hood			,,		of 3,000 cfs, diversion point near Hood	of 15,000 cfs, diversion point near Hood	of 9,000 cfs, diversion point near Hood	of 9,000 cfs, diversion point near Hood		
Sacramento River Region															
Shasta Lake	Existing, 4,552 TAF capacity	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as N	Action Alternative		Same as No Action Alternative					
Red Bluff Diversion Dam	Diversion dam operated gates out, except	Diversion dam operated with gates out all year NMES BO (Jup 2009) Action 1.2 4 ¹⁶	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	1	Same as N	o Action Alternative		Same as No Action Alternative	2008 OCAP BA used May 15 th - Sep 31 st for Existing; modified to reflect NMES BO (Jun 2009); CA assumed				
	(Jun 2009) Action I.3.2 ^v ; assume interim/	assume permanent facilities in place				1									May 15 th - Sep 15 th for Future
	temporary facilities in place					1									
Colusa Basin	Existing conveyance and storage facilities	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	1	Same as N	Action Alternative		Same as No Action Alternative					
Linner American Dime	PCWA American River Pump Station	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same on M	Action Alternative		Same as No Action Alternative	2008 OCAP BA document assumes normanast sums				
opper American Kiver*	Store American triver Fullip Station	Como da Exiating CUTURUNS	Sams as no Action Alternative	Samo as no Action Alternative	Cana da no Action Alternative		Same as N			Como do INO Action Alternative	Same as no Action Alternative	Como do tro Action Alternative	Samo do No Action Alternative	Samo as no Action Alternative	station in both conditions
Lower Sacramento River	None	Freeport Regional Water Project ⁿ	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	1	Same as N	Action Alternative		Same as No Action Alternative	2008 OCAP BA did not include SRWRP or FRWP in existing: CA did not include Sacramento River Water				
															Reliability Project

DADAMETED CATECODY / STUDY	EXISTING CONDITIONS	NO ACTION AL TERNATIVE	Altornativo 1A 1P 1C	Altornative 2A 2P 2C	Altornativo 2	1	Alto	ornativo 4		Altomative F	Altornativo 4A 4P 4C	Altornativo 7	Altomative 8	Alternative 9	COMMENTS
TARAMETER CATEGORT / STUDI	Existing conditions	NO ACTION ALTERNATIVE	Alternative IA, ID, IC	Ancinative 2A, 2B, 20	Alternative 5	H1 /Low Outflow	H2 (includes Enhanced	H3 (excludes Enhanced	H4 (High Outflow	Anomalive 5	Anemalive on, ob, oc	Anternative 7	Ancinative o	Anternative 7	COMMENTS
						Scenario)	Spring Outflow: excludes	s Spring Outflow: includes	Scenario)						
							Fall X2)	Fall X2)							
Francisco Maio (Mala humana	Fuisitie e unit	Come on Evision Conditions									0	0 IFI III III III			
Freemont weir / Yolo bypass	Existing wer	Same as Existing Conditions	 Seasonal Floodplain Inundation Beried of inundation 	Seasonal Floodplain Inundation	Seasonal Floodplain Inundation		Seasonal Floo	odplain inundation		Seasonal Floodplain Inundation Age of the seasonal Floodplain Inundation	Berind of inundation	Seasonal Floodplain Inundation	Seasonal Floodplain Inundation Age of inundation	Seasonal Floodplain inundation	
			 Period of Indidation December 1 – March 31 (modeled as 	December 1 - March 31 (modeled as	December 1 - March 31 (modeled as		o December 1 – March 31	1 (modeled as Dec 1 to Apr 3)	0)	December 1 - March 31 (modeled as	December 1 - March 31 (modeled as	December 1 - April 15	 Period of Indidation December 1 – April 15 	December 1 - March 31 (modeled as	
			Dec 1 to Apr 30).	Dec 1 to Apr 30).	Dec 1 to Apr 30).	o Operati	ional dates at both 17.5 ft ar	nd 11.5 ft will be OPEN durin	a this period.	Dec 1 to Apr 30).	Dec 1 to Apr 30).	o Operational gates at 17.5 ft only and it	o Operational gates at 17.5 ft only and it	Dec 1 to Apr 30)	
			o Operational gates at both 17.5 ft and	o Operational gates at both 17.5 ft and	o Operational gates at both 17.5 ft and		Triggers	s for inundation	.g P	o Operational gates at both 17.5 ft and	o Operational gates at both 17.5 ft and	will be OPEN during this period.	will be OPEN during this period.	o Operational gates at both 17.5 ft and	
			11.5 ft will be OPEN during this period.	11.5 ft will be OPEN during this period.	11.5 ft will be OPEN during this period.	o Spi	lls over the Fremont Weir w	vill be triggered based on the r	river flow.	11.5 ft will be OPEN during this period.	11.5 ft will be OPEN during this period.	<u>Triggers for inundation</u>	<u>Triggers for inundation</u>	11.5 ft will be OPEN during this period.	
			 Triggers for inundation 	 Triggers for inundation 	 Triggers for inundation 		• [Duration		 Triggers for inundation 	 Triggers for inundation 	o Spills over the Fremont Weir will be	o Spills over the Fremont Weir will be	 Triggers for inundation 	
			o Spills over the Fremont Weir will be	o Spills over the Fremont Weir will be	o Spills over the Fremont Weir will be	o Duration of e	vent will be governed by the	e hydrologic conditions in the	Sacramento River,	o Spills over the Fremont Weir will be	o Spills over the Fremont Weir will be	triggered based on the river flow.	triggered based on the river flow.	o Spills over the Fremont Weir will be	
			triggered based on the river flow.	triggered based on the river flow.	triggered based on the river flow.	restoring th	e natural synchrony of inun	ndation timing and frequency	with river flows.	triggered based on the river flow.	triggered based on the river flow.	Duration	Duration	triggered based on the river flow.	
			 Duration Duration of event will be governed by the 	 <u>Duration</u> <u>Duration</u> of event will be governed by the 	 Duration of event will be governed by the 	o write desired	be implemented	r or 30-45 days, no managem	nent of the gates will	 Duration Duration of event will be governed by the 	 Duration of event will be governed by the 	o Duration of event will be governed by the bydrologic conditions in the Sacramento.	bydrologic conditions in the Sacramento	 Duration of event will be governed by the 	
			hydrologic conditions in the Sacramento	hydrologic conditions in the Sacramento	hydrologic conditions in the Sacramento		• Ta	arget flows		hydrologic conditions in the Sacramento	hydrologic conditions in the Sacramento	River, restoring the natural synchrony of	River, restoring the natural synchrony of	hydrologic conditions in the Sacramento	
			River, restoring the natural synchrony of	River, restoring the natural synchrony of	River, restoring the natural synchrony of	o Gates will be o	operated to limit maximum s	spill to 6,000 cfs until river sta	ige reaches existing	River, restoring the natural synchrony of	River, restoring the natural synchrony of	inundation timing and frequency with river	inundation timing and frequency with river	River, restoring the natural synchrony of	
			inundation timing and frequency with river	inundation timing and frequency with river	inundation timing and frequency with river		we	eir height		inundation timing and frequency with river	inundation timing and frequency with river	flows.	flows.	inundation timing and frequency with river	
			flows.	flows.	flows.		Fish	Passage		flows.	flows.	o While "desired" inundation is on the	o While "desired" inundation is on the	flows.	
			o While "desired" inundation is on the	o While "desired" inundation is on the	o While "desired" inundation is on the		<u>Perior</u>	id of concern		o While "desired" inundation is on the	o While "desired" inundation is on the	order of 30-45 days, no management of	order of 30-45 days, no management of	o While "desired" inundation is on the	
			order of 30-45 days, no management of the getes will be implemented to limit to	order of 30-45 days, no management of the actes will be implemented to limit to	order of 30-45 days, no management of the actes will be implemented to limit to	o September 15	- June 30 based on NOAA	A, DFG, and USFWS anadror	mous fish surveys in	order of 30-45 days, no management of	order of 30-45 days, no management of the actes will be implemented to limit to	the gates will be implemented to limit to	the gates will be implemented to limit to	order of 30-45 days, no management of	
			this range.	the gates will be implemented to limit to this range.	the gates will be implemented to limit to this range.	0	Low elevation gates (11.5 f	ft) will be OPEN during this p	eriod	this range.	the gates will be implemented to limit to this range.	Target flows	Target flows	the gates will be implemented to limit to this range.	
			Target flows	Target flows	Target flows	0	• Tai	arget flows	61100.	Target flows	Target flows	o Gates will be operated to limit maximum	o Gates will be operated to limit maximum	Target flows	
	1	1	o Gates will be operated to limit maximum	o Gates will be operated to limit maximum	o Gates will be operated to limit maximum	o Lim	it flows to 100 cfs as require	red for fish passage and flow of	continuity	o Gates will be operated to limit maximum	o Gates will be operated to limit maximum	spill to 8,000 cfs until river stage reaches	spill to 8,000 cfs until river stage reaches	o Gates will be operated to limit maximum	1
			spill to 6,000 cfs until river stage reaches	spill to 6,000 cfs until river stage reaches	spill to 6,000 cfs until river stage reaches					spill to 6,000 cfs until river stage reaches	spill to 6,000 cfs until river stage reaches	existing weir height	existing weir height	spill to 6,000 cfs until river stage reaches	
			existing weir height	existing weir height	existing weir height					existing weir height	existing weir height			existing weir height	
			Fish Deserve	Fish Passage	Fish Passage					Fish Passage	Fish Passage			Fish Passage	
			Period of concern	 Penod or concern September 15 – June 30 based on 	 Period of concern September 15 – June 30 based on 					 Period of concern September 15 – June 30 based on 	 Period or concern September 15 – June 30 based on 			 Period of concern Sentember 15 - June 30 based on 	
			o September 15 – June 30 based on	NOAA, DFG, and USFWS anadromous	NOAA, DFG, and USFWS anadromous					NOAA, DFG, and USFWS anadromous	NOAA, DFG, and USFWS anadromous			NOAA, DFG, and USFWS anadromous	
			NOAA, DFG, and USFWS anadromous	fish surveys in Yolo Bypass (modeled as	fish surveys in Yolo Bypass (modeled as					fish surveys in Yolo Bypass (modeled as	fish surveys in Yolo Bypass (modeled as			fish surveys in Yolo Bypass (modeled as	
			fish surveys in Yolo Bypass	Sep 1 to Jun 30).	Sep 1 to Jun 30).					Sep 1 to Jun 30).	Sep 1 to Jun 30).			Sep 1 to Jun 30).	
			o Low elevation gates (11.5 ft) will be	o Low elevation gates (11.5 ft) will be	o Low elevation gates (11.5 ft) will be					o Low elevation gates (11.5 ft) will be	o Low elevation gates (11.5 ft) will be			o Low elevation gates (11.5 ft) will be	
			OPEN during this period.	OPEN during this period.	OPEN during this period.					OPEN during this period.	OPEN during this period.			OPEN during this period.	
			 Limit flows to 100 cfs as required for fish 	 I angle nows o Limit flows to 100 cfs as required for fish 	o Limit flows to 100 cfs as required for fish					 I might hows to 100 cfs as required for fish 	 I init flows to 100 cfs as required for fish 			 Limit flows to 100 cfs as required for fish 	
			passage and flow continuity	passage and flow continuity	passage and flow continuity					passage and flow continuity	passage and flow continuity			passage and flow continuity	
San Joaquin River Region															
Millerton Lake (Friant Dam)	Existing, 520 TAF capacity	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Lower San Joaquin River	None	City of Stockton Delta Water Supply	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Consistent with 2008 OCAP BA; CA did not include
		Project, 30 mgd capacity													City of Stockton Delta Water Supply Project
Delta Region	Dhusiaal association 40,000 afa hud 0,000	Come as Evision Can divise	40.000 -6-	40.000 -6-	40.000 -6-		10	200 -6-		Come as No Asting Alternative	40,000 -6-	40.000 -6-	40.000 -6-	Come of No Antion Alternative	Destudies import of VAND on SWD formatic languages
Delta)	cfs permitted capacity is 10,300 cfs but 6,680	Same as Existing Conditions	10,300 CIS	10,300 CIS	10,300 CIS		10,	1,300 CIS		Same as No Action Alternative	10,300 CIS	10,300 CIS	10,300 cis	Same as no action Alternative	Reducing impact of VAMP on SVVP formeny known as limited-EWA
Dena)	8 500 cfs during Dec 15 th – Mar 15 th														IIIIIded-EWA
	depending on Vernalia flow conditions ⁰ :														
	additional caracity of 500 cfs (up to 7 180														
	cfs) allowed for Jul – Sep for reducing														
	impact of NMFS BO (Jun 2009) Action														
	IV.2.1 ^v on SWP ^w														
CVP C.W. Bill Jones Pumping Plant	Permit capacity is 4,600 cfs but exports	Permit capacity is 4,600 cfs in all months	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
(Tracy PP)	limited to 4,200 cfs plus diversions	(allowed for by the Delta-Mendota													
	upstream of DMC constriction	Canal–California Aqueduct Intertie)													
Users Dalla Mandata Canal	Fuintin -	Evision also 400 efe Dalla Mandata	Come on No. Antion Alternative	Come on Ma Antion Alternative	Corrector No. Antion Alternative		Como os No	Antina Alternative		Come as No Asting Alternative	Corrector Man Antion Alternative	Corrector Mandation Alternation	Corres on No. Antion. Alternation	Come of No Antion Alternative	
Opper Delta-Meridota Canal Canacity	Existing	Canal-California Aqueduct Intertie	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as no action Alternative	
CCWD Intakes	Los Vagueros existing storage capacity.	Los Vagueros existing storage capacity.	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	2008 OCAP BA did not include the AIP in Existing:
	100 TAF, existing pump locations	100 TAF, existing pump locations,													AIP was considered under a separate consultation
		Alternative Intake Project (AIP) included ^P													
San Francisco Bay Region															
South Bay Aqueduct (SBA)	Existing capacity	SBA rehabilitation, 430 cfs capacity from	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Consistent with 2008 OCAP BA; CA did not include
		Junction with California Aqueduct to													SBA renabilitation in Existing
		diversion point													
South Coast Region		averaion point													
California Aqueduct East Branch	Existing capacity	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	1	Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	2008 OCAP BA and CA did not include rehabilitation of
															capacity at California Aqueduct pool 49 (2,875 cfs)

DADAMETER CATECORY / STUDY	EXISTING CONDITIONS	NO ACTION AL TERNATIVE	Altornativo 1A 1P 1C	Alternative 24 2P 2C	Alternative 2	1	Alte	ornativo 4		Altomative F	Altornativo 4A 4P 4C	Altornativo 7	Altomative 9	Altornativo 0	COMMENTS
TARAMETER GATEGORT / STODT	Existing conditions	NO ACTION ALTERNATIVE	Anomalive IA, Ib, Io	Anomalive 2A, 2D, 20	Anternative 5	H1 (Low O	utflow H2 (includes Enhanced	H3 (excludes Enhanced	H4 (High Outflow	Anemalive 5	Anomalive on, ob, oc	Anternative /	Alternative o	Antimative	COMMENTS
						Scenar	io) Spring Outflow; exclude:	s Spring Outflow; includes	Scenario)						
							Fall X2)	Fall X2)							
REGULATORY STANDARDS															
Trinity River						-									
Minimum flow below Lewiston	Trinity EIS Preferred Alternative (369-815	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Dam Trinity Reservoir end-of-	TAF/yr) Trinity FIS Preferred Alternative (600 TAF	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
September minimum storage	as able)	Carlo as Existing Conditions	Carrie de Novieller / Mendalive	Sand do No Adion / Romano	danie de Notion / Mematre		Gund do Ho			cane as no ricion ricinative	Currie us no rielien riterinano	Carlo as no ricion menano	Carlo as no reaction atomatic	Carlo us no no no na na na na na	
Sacramento River Region															
Clear Creek Minimum flow below	Downstream water rights 1963 USBP	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Predetermined flows based on Aug 08 2008 BA
Whiskeytown Dam	Proposal to USFWS and NPS,	Carlo as Existing Contations		Sand do No Adion / Romano	danie de Notori vitemative		Gund do Ho			cane as no ricion ricinative	Currie us no ricitati riteritati o	Carlo as no ricion menano	Carlo as No Malor Allomatic	Cane us no no no no name	Studies; reflects Management Team direction regarding
	predetermined CVPIA 3406(b)(2) flows ^q ,														interpretation of NMFS BO (Jun 2009)
	and NMFS BO (Jun 2009) Action I.1.1*														
Upper Sacramento River															
Shasta Lake end-of-September	NMFS 2004 Winter-run Biological	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Management Team direction regarding interpretation of
minimum storage	Opinion, (1900 TAF in non-critically dry years) and NMES BO (Jun 2009) Action														NMFS BO (Jun 2009)
	1.2.1 ^v														
Minimum flow below Keswick	SWRCB WR 90-5 temperature control,	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Predetermined flows based on Aug 08 2008 OCAP BA
Dam	predetermined CVPIA 3406(b)(2) flows ^q ,														Studies; reflects Management Team direction regarding interpretation of NMES BO (Jun 2009)
	and NMFS BO (Jun 2009) Action 1.2.2														
Feather River															
Minimum flow below Thermalito	2006 Settlement Agreement (700 / 800	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Consistent with 2008 OCAP BA; CA assumed 1983
Minimum flow below Thermalito	1983 DWR, DFG Agreement (750-1.700	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as Ne	o Requirements under N	o Same as No Action	Requirements	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	DWR, DFG Agreement (600 cis)
Afterbay outlet	cfs)					Action Alter	native Action Alternative, and	Alternative	under No Action						
							additional flow contributi	on	Alternative, and additional flow						
							outflow requirement ^{ab}	9	contribution for the						
									enhanced spring						
									requirement ^{ab}						
Yuba River															
Minimum flow below Daguerre	D-1644 Operations (Lower Yuba River	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Consistent with 2008 OCAP BA; CA assumed D-1644
Point Dam	Accord) ^r														(long-term, without Lower Yuba River Accord)
American River															
Minimum flow below Nimbus	American River Flow Management ^s as	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Modified to reflect NMFS BO; consistent with 2008
Dam	required by NMFS BO (Jun 2009) Action														OCAP BA; CA did not include American River Flow Management
Minimum Flow at H Street	SWRCB D-893	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	-	Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Lower Sacramento River		-													
Minimum Flow at Freeport	None	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	SWRCB Minimum Requirement of 55% of	of Same as No Action Alternative	
													Minimum flow requirement capped at		
												-	40,000 cfs.	-	
North Delta Diversion Bypass Flow	None	Same as Existing Conditions	Constant Low-Level Pumping: Diversions up to 6% of river flow for flows	Constant Low-Level Pumping: Diversions up to 6% of river flow for flows	Constant Low-Level Pumping: Diversions up to 6% of river flow for flows	Diversion	Constant Lc ns up to 6% of river flow for flows	ow-Level Pumping: s greater than 5.000 cfs (No d	diversion if it would	Constant Low-Level Pumping: Diversions up to 6% of river flow for flows	Constant Low-Level Pumping: Diversions up to 6% of river flow for flows	Constant Low-Level Pumping: Diversions up to 5% of river flow for flows	Constant Low-Level Pumping: Diversions up to 5% of river flow for flows	Same as No Action Alternative	
			greater than 5,000 cfs (No diversion if it	greater than 5,000 cfs (No diversion if it	greater than 5,000 cfs (No diversion if it	cause	downstream flow less than 5,000) cfs). No more than 300 cfs a	at any one intake	greater than 5,000 cfs (No diversion if it	greater than 5,000 cfs (No diversion if it	greater than 5,000 cfs (No diversion if it	greater than 5,000 cfs (No diversion if it		
			would cause downstream flow less than 5 000 cfs). No more than 300 cfs at any	would cause downstream flow less than 5 000 cfs) No more than 300 cfs at any	would cause downstream flow less than 5 000 cfs). No more than 300 cfs at any		(combined	l limit of 900 cfs).		would cause downstream flow less than 5 000 cfs). No more than 300 cfs at the	would cause downstream flow less than 5 000 cfs). No more than 300 cfs at any	would cause downstream flow less than 5 000 cfs). No more than 300 cfs at any	would cause downstream flow less than 5 000 cfs). No more than 300 cfs at any		
			one intake (combined limit of 1,500 cfs).	one intake (combined limit of 1,500 cfs).	one intake (combined limit of 600 cfs).					intake.	one intake (combined limit of 1,500 cfs).	one intake (combined limit of 900 cfs).	one intake (combined limit of 900 cfs).		
	None	Same as Existing Conditions	Initial Pulse Protection:	Initial Pulse Protection:	Initial Pulse Protection:		Initial Pu	Ise Protection:		Initial Pulse Protection:	Initial Pulse Protection:	Initial Pulse Protection:	Initial Pulse Protection:	Same as No Action Alternative	-
	Nono-	Carlo as Existing Contations	Low level pumping maintained through the	 Low level pumping maintained through the 	 Low level pumping maintained through the 	e Low level p	oumping maintained through the	initial pulse period. For the pu	urpose of monitoring,	Low level pumping maintained through the	 Low level pumping maintained through the 	e Low level pumping maintained through th	he Low level pumping maintained through the	e anno do rico ricolori ricolindare	
			initial pulse period. For the purpose of	initial pulse period. For the purpose of	initial pulse period. For the purpose of	the initiatio	n of the pulse is defined by the f	ollowing criteria: (1) Wilkins Sl	Slough flow changing	initial pulse period. For the purpose of	initial pulse period. For the purpose of	initial pulse period. For the purpose of	initial pulse period. For the purpose of		
			defined by the following criteria: (1) Wilkins	s defined by the following criteria: (1) Wilkin:	s defined by the following criteria: (1) Wilkin:	ns pumping co	ntinues until (1) Wilkins Slough	returns to prepulse flows (flow	v on first day of 5-day	defined by the following criteria: (1) Wilkins	is defined by the following criteria: (1) Wilkin	is defined by the following criteria: (1) Wilking	ins defined by the following criteria: (1) Wilkin:	s	
			Slough flow changing by more than 45%	Slough flow changing by more than 45%	Slough flow changing by more than 45%	increase),	(2) Wilkins Slough flows decreas	se for 5 consecutive days, or ((3) Bypass flows are	Slough flow changing by more than 45%	Slough flow changing by more than 45%	Slough flow changing by more than 45%	Slough flow changing by more than 45%		
			over a five day period and (2) flow greater than 12,000 cfs. I ow-level pumping	over a five day period and (2) flow greater than 12,000 cfs. Low-level pumping	over a five day period and (2) flow greater than 12,000 cfs. I ow-level pumping	r greater t	han 20,000 cfs for 10 consecutiv will return to the bypass flow table	ve days. After pulse p e (SubTable A). If the first flus	period has ended, sh begins before Der	over a five day period and (2) flow greater than 12,000 cfs. Low-level pumping	over a five day period and (2) flow greater than 12 000 cfs. I ow-level pumping	 over a five day period and (2) flow greate than 12,000 cfs. Low-level pumping 	er over a five day period and (2) flow greater than 12,000 cfs. I ow-level pumping		
			continues until (1) Wilkins Slough returns	continues until (1) Wilkins Slough returns	continues until (1) Wilkins Slough returns	s	1, a second pulse period will	have the same protective oper	eration.	continues until (1) Wilkins Slough returns	continues until (1) Wilkins Slough returns	continues until (1) Wilkins Slough returns	s continues until (1) Wilkins Slough returns		
			to prepulse flows (flow on first day of 5-day	y to prepulse flows (flow on first day of 5-day	y to prepulse flows (flow on first day of 5-day	ау				to prepulse flows (flow on first day of 5-day	y to prepulse flows (flow on first day of 5-da	to prepulse flows (flow on first day of 5-da	ay to prepulse flows (flow on first day of 5-day	у	
			decrease for 5 consecutive days, or (3)	decrease for 5 consecutive days, or (3)	decrease for 5 consecutive days, or (3)					decrease for 5 consecutive days, or (3)	decrease for 5 consecutive days, or (3)	decrease for 5 consecutive days, or (3)	decrease for 5 consecutive days, or (3)		
			Bypass flows are greater than 20,000 cfs	Bypass flows are greater than 20,000 cfs	Bypass flows are greater than 20,000 cfs					Bypass flows are greater than 20,000 cfs	Bypass flows are greater than 20,000 cfs	Bypass flows are greater than 20,000 cfs	s Bypass flows are greater than 20,000 cfs		
			for 10 consecutive days. After	for 10 consecutive days. After	for 10 consecutive days. After					for 10 consecutive days. After	for 10 consecutive days. After	for 10 consecutive days. After	for 10 consecutive days. After		
			return to the bypass flow table (SubTable	return to the bypass flow table (SubTable	return to the bypass flow table (SubTable	,				return to the bypass flow table (SubTable	return to the bypass flow table (SubTable	return to the bypass flow table (SubTable	e return to the bypass flow table (SubTable		
			A). If the first flush begins before Dec 1, a	A). If the first flush begins before Dec 1, a	A). If the first flush begins before Dec 1, a	а				A). If the first flush begins before Dec 1, a	A). If the first flush begins before Dec 1, a	A). If the first flush begins before Dec 1,	a A). If the first flush begins before Dec 1, a	1	
			protective operation.	protective operation.	protective operation.					protective operation.	protective operation.	protective operation.	protective operation.		
1						1								1	
					1										
1	None	Some on Evipting Conditions	Post Bulos Operational	Post Pulso Operation	Post Bulas Operation		D D -			Post Bulas Operation	Reat Rules Operations	Post Bulos Operation	Rost Rulas Operations	Same on No Antion Alternative	-{
1	NUTE	Same as Existing Conditions	After initial pulse(s), apply Level I post-	After initial pulse(s), apply Level I post-	After initial pulse(s), apply Level I post-	After initial	pulse(s), apply Level I post-pulse	e bypass rule (see SubTable /	A) until 15 total davs	After initial pulse(s), apply Level I post-	After initial pulse(s), apply Level I post-	After initial flush(es), go to Level I post-	After initial flush(es), go to Level I post-	Same as no Action Alternative	
			pulse bypass rule (see SubTable A) until	pulse bypass rule (see SubTable A) until	pulse bypass rule (see SubTable A) until	of bypass	flows above 20,000 cfs. Then a	pply Level II post-pulse bypas	ss rule until 30 total	pulse bypass rule (see SubTable A) until	pulse bypass rule (see SubTable A) until	pulse bypass rule (see SubTable A for	pulse bypass rule (see SubTable A for		
1			15 total days of bypass flows above 20 000 cfs. Then apply I evel II post suites	15 total days of bypass flows above 20 000 cfs. Then apply I eval II poct suites	15 total days of bypass flows above 20 000 cfs. Then apply Level II post suice	days o	f bypass flows above 20,000 cfs	. Then apply Level III post-pul	ilse bypass rule.	15 total days of bypass flows above 20 000 cfs. Then apply I eval II post suites	15 total days of bypass flows above 20 000 cfs. Then apply Level II post subs	Level 1) until 20 total days of bypass flow above 20 000 cfs. Then go to the Level	ws Level 1) until 20 total days of bypass flows	S	
1			bypass rule until 30 total days of bypass	bypass rule until 30 total days of bypass	bypass rule until 30 total days of bypass	Ĭ				bypass rule until 30 total days of bypass	bypass rule until 30 total days of bypass	post-pulse bypass rule (Subtable A for	post-pulse bypass rule (Subtable A for	1	
			flows above 20,000 cfs. Then apply Level	flows above 20,000 cfs. Then apply Level	flows above 20,000 cfs. Then apply Level	el				flows above 20,000 cfs. Then apply Level	I flows above 20,000 cfs. Then apply Leve	Level II) until 45 total days of bypass flow	ws Level II) until 45 total days of bypass flows	8	
			in post-puise bypass rule.	in post-pulse bypass rule.	in post-pulse bypass rule.					in post-pulse bypass rule.	in posc-puise bypass rule.	post-pulse bypass rule (Subtable A for	post-pulse bypass rule (Subtable A for		
					1							Level III).	Level III).		
Minimum flow near Rio Vista	SWRCB D-1641	Same as Existing Conditions	Sep-Dec: SWRCB D-1641; Jan-Aug:	Sep-Dec: SWRCB D-1641; Jan-Aug:	Sep-Dec: SWRCB D-1641; Jan-Aug:		Sep-Dec: SWRCB D-1641;	Jan-Aug: minimum of 3,00	10 cfs	Sep-Dec: SWRCB D-1641; Jan-Aug:	Sep-Dec: SWRCB D-1641; Jan-Aug:	Sep-Dec: SWRCB D-1641; Jan-Aug:	Sep-Dec: SWRCB D-1641; Jan-Aug:	Sep-Dec: SWRCB D-1641; Jan-Aug:	
1	1		minimum of 3.000 cts	minimum of 3,000 crs	minimum of 3,000 cts	1				minimum of 3.000 cts	minimum of 3,000 cfs	minimum of 5.000 cts	minimum of 5.000 cfs	minimum of 5.000 cts	

PARAMETER CATEGORY / STUDY	EXISTING CONDITIONS	NO ACTION AL TERNATIVE	Alternative 1A 1B 1C	Alternative 24 2B 2C	Alternative 3	r	Alter	native A		Alternative 5	Alternative 64 6B 6C	Alternative 7	Alternative 8	Alternative 9	COMMENTS
	Enternite continuint			7 110/111/0 271, 28, 20	, and a design of the second sec	H1 (Low Outflow	H2 (includes Enhanced	H3 (excludes Enhanced	H4 (High Outflow	7.11.07.11.11.0 0		, including ,			COMMENTO
						Scenario)	Spring Outflow; excludes Fall X2)	Spring Outflow; includes Fall X2)	Scenario)						
San Joaquin River Region															
Minimum flow below Camanche	FERC 2916-029, 1996 (Joint Settlement	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No A	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Dam Minimum flow below Woodbridge Diversion Dam	Agreement) (100-325 cfs) FERC 2916-029, 1996 (Joint Settlement Agreement) (25-300 cfs)	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No A	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Stanislaus River Minimum flow below Goodwin Dam	1987 USBR, DFG agreement, and flows required for NMFS BO (Jun 2009) Action	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No A	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Reflects Management Team direction regarding interpretation of NMFS BO (Jun 2009); flow schedule to be provided
Minimum dissolved oxygen	SWRCB D-1422	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No A	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Merced River Minimum flow below Crocker-	Davis-Grunsky (180-220 cfs, Nov-Mar),	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No A	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Huffman Diversion Dam Minimum flow at Shaffer Bridge	and Cowell Agreement FERC 2179 (25-100 cfs)	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No.	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Tuolumne River		Carlo do Existing Conditions			Carlo do No Acianti Acindaro		Calle as No.						Cano do No Nolar A Mondario		
Minimum flow at Lagrange Bridge	FERC 2299-024, 1995 (Settlement Agreement) (94-301 TAF/yr)	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No A	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
San Joaquin River San Joaquin River below Friant	Water Vear 2010 Interim Flows Project ^u	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No A	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	2008 OCAP BA document did not include San Joaquin
Dam/ Mendota Pool	Water real 2010 Interim rows roject														River Restoration; CA did not include restoration flows
Maximum salinity near Vernalis Minimum flow near Vernalis	SWRCB D-1641 SWRCB D-1641, and NMFS BO (Jun	Same as Existing Conditions Same as Existing Conditions	Same as No Action Alternative Same as No Action Alternative	Same as No Action Alternative Same as No Action Alternative	Same as No Action Alternative Same as No Action Alternative		Same as No A Same as No A	Action Alternative		Same as No Action Alternative Same as No Action Alternative	Same as No Action Alternative Same as No Action Alternative	Same as No Action Alternative Same as No Action Alternative	Same as No Action Alternative Same as No Action Alternative	Same as No Action Alternative Same as No Action Alternative	2008 BA and CA assumed VAMP flows
Commente Divers Com Jaconie Dalta	2009) Action IV.2.1 ^v														
Sacramento River–San Joaquin Delta Region															
Delta Outflow Index (Flow, NDOI)	SWRCB D-1641	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No <i>I</i>	Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	SWRCB D-1641 & SWRCB Flow Criteria of 55% of Umreparied Flow at Freeport (capped by 40.000 cfs); Trinity, Shasta, to enable more cold water pool storage: by increasing Storage Level 3 to 75% of the maximum storage, within Storage Level 3, exports are gradually reduced until Storage Level 2 is reached in the reservoir.	Same as No Action Alternative	2008 BA and CA assumed D-1641 only. For the BDCP PROPOSE DPACIECT EARLY LONG-TERM, proportional Reservoir release concept will continure to be evaluated to the extent that it provides similar response to outliow, inflow and upstream storage conditions
Delta Outflow Index (Salinity, X2) - Spring	SWRCB D-1641	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Requirements under No Action Alternative, and additional flow for the enhanced spring outflow requirement ^{ab}	Same as No Action Alternative	Requirements under No Action Alternative, and additional flow for the enhanced spring outflow requirement ^{ab}	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	2008 BA and CA assumed D-1641 only
Delta Outflow (Salinity, X2) - Fall	None	FWS BO (Dec 2008) Action 4	None	Same as No Action Alternative	None	None	None	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Delta Cross Channel gate operation	SRWCB D-1641 with additional days	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No A	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Oct-Nov: DCC gate closed if fish are	2008 BA and CA assumed D-1641 only
	closed from Oct 1 st – Jan 31 st based on NMFS BO (Jun 2009) Action IV.1.2 st (closed during flushing flows from Oct 1 st – Dec 14 th unless adverse water quality conditions)													present (assumé 15 days per month; may be open longer; consistent with logic used for the BDCP proposed project) Dec-Jun: DCC gate closed if Sac < 11,000 cfs or Sac >25,000 cfs Jul-Sep: DCC gate open	
South Dolto ovporto (Joppo DD and	SWRCR D 1641 Verselie flow based	Some as Evisting Conditions	Rhypical consoity	Physical Capacity	Physical Capacity		Dhusion	Conosity		Same as No Astion Alternative	Nono	Rhysical Casasity, AND South Data	Rhusiaal Casasity AND South Dalta	SWRCR D 1611 when S ID flow = 10 000	2008 BA and CA assumed dispretionany use of CV/DIA
South Detta exports (Jones PP and Banks PP)	switcB D-1641, vernalis flow-based export limits Apr 1 st – May 31 st as required by NMFS BO (Jun, 2009) Action IV.2.1 ^v (additional 500 cfs allowed for Jul – Sep for reducing impact on SWP) ^w	Same as Existing Conditions	Physical capacity	Physical Capacity	Physical Capacity		Physica	а Сарасиу		Same as No Action Alternative	None	Physical Capacity, AND South Delta Export to San Joaquin Inflow ratio: 50% in Dec through Mar and in June.	Physical Capacity, AND South Deta Export to San Joaquin Inflow ratio: 50% in Dec through Mar and in June.	SWRCB D-1641 When SJR flow < 10,000 ds, Same as No Action Alternative when SJR flow > 10,000 cfs	2008 bA and CA assumed discretionary use of CVPIA 3406(b)(2): 2008 BA also assumed limited Environmental Water Account
Combined Flow in Old and Middle River (OMR)	FWS BO (Dec 2008) Actions 1 through 3 and NMFS BO (Jun 2009) Action IV-2.3"	Same as Existing Conditions	Same as No Action Alternative	More positive of the No Action Alternative assumptions and the assumption noted below: • Jan: 0 (M), 3500 (AN), -4000 (BN), - 5000 (D, C) • Feb: 0 (M), -3500 (AN, -4000 (BN, D, C) • Agr - 0 (W, AN), -3500 (AN, BN, D, C) • Agr - Jun: Varies based on San Joaquin inflow relationship to OMR povided below in Sub-Table B [*] • Jul: - Sge: No Restrictions • Oct - Nov: Varies based SJR pulse flow condition * • Dec: -5000 when north Delta initial pulse flows are triggered or -2000 when delta smelt action 1 triggers + HORB noneal is restrictions	Same as No Action Alternative	More positive c Apr - Jun: Varia Dec: -5000 w	<pre>ft the No Action Alternative - Jan: 0 (W), -3500 (AN</pre>	assumptions and the assumptions of the assumption (D, A00) (BN, C) a000 (BN, C) a000 (BN, C) a000 (BN, D, C) (BNO relationship to OMR pool de B ¹ No Restrictions d SJR pulse (how condition ⁴ GJR pulse (how condition ⁴ flows are utiggered or -2000 1 triggers ing is restricted ³⁴	ption noted below: vided below in Sub-	Same as No Action Alternative	No Restrictions	South Delta exports cannot cause OMR to fall below + 1000 cfs during Dec-Mar. South Delta exports cannot cause OMR to fall below + 3000 cfs during Jun. South Delta pumping is not allowed during April. May, Oct, and Nov No restrictions during Jul-Sep.	South Delta exports cannot cause OMR to fail below + 1000 c5 during Dec-Mar. South Delta exports cannot cause OMR to fail below + 3000 c5 during Jun. South Delta pumping is not allowed during April, May, Oct, and Nov No restrictions during Jul-Sep.	Same as No Action Alternative	2008 BA and CA did not assume FWS BO (Dec 2008) or other OMR restrictions
Delta Water Quality	SWRCB D-1641	Same as Existing Conditions	Existing SWRCB D-1641, EXCEPT moved compliance point from Emmaton to Three Mile SI near Sacramento R.	Existing SWRCB D-1641, EXCEPT moved compliance point from Emmaton to Three Mile SI near Sacramento R.	Existing SWRCB D-1641, EXCEPT moved compliance point from Emmaton to Three Mile SI near Sacramento R.	Existing SWRCB	D-1641, EXCEPT moved on near Sac	compliance point from Emma cramento R.	aton to Three Mile SI	Existing SWRCB D-1641, EXCEPT moved compliance point from Emmaton to Three Mile SI near Sacramento R.	Existing SWRCB D-1641, EXCEPT moved compliance point from Emmaton to Three Mile SI near Sacramento R.	Existing SWRCB D-1641, EXCEPT moved compliance point from Emmaton to Three Mile SI near Sacramento R.	Existing SWRCB D-1641, EXCEPT moved compliance point from Emmaton to Three Mile SI near Sacramento R.	Existing SWRCB D-1641, EXCEPT Rock Slough compliance point is not specifically targeted	Currently only operate for D1641 standards
SPECIFIC															
Sacramento River Region Upper Sacramento River: Flow objective for navigation (Wilkins	NMFS BO (Jun 2009) Action I.4 ^v ; 3,500 – 5,000 cfs based on CVP water supply	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No /	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Slough) American River: Folsom Dam flood control	condition Variable 400/670 flood control diagram (without outlet modifications)	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No A	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Feather River: Flow at Mouth of Feather River (above Verona)	Maintain DFG/DWR flow target of 2,800 cfs for Apr – Sep dependent on Oroville	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No A	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Son Joaquin Pirro Dool	inflow and FRSA allocation														
San Joaquin Kiver Region Stanislaus River: Flow below Goodwin Dam ¹	Revised Operations Plan ¹ and NMFS BO (Jun 2009) Action III.1.2 and III.1.3 v	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No A	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	2008 BA assumed draft Transitional New Melones Operations Plan; CA assumed Interim Plan
San Joaquin River: Salinity at	Grasslands Bypass Project (partial	Grasslands Bypass Project (full	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No A	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Existing condition assumptions to be determined Year
Vernalis	implementation)	implementation)						-							2010

BARANETER ANTEADRY (ATUR)				44 44 44 45 44	AU							A		AU	0014151170
PARAMETER CATEGORY / STUDY	EXISTING CONDITIONS	NO ACTION ALTERNATIVE	Alternative IA, IB, IC	Alternative 2A, 2B, 2C	Alternative 3	H1 (Low Outflow Scenario)	Alte H2 (includes Enhanced Spring Outflow; excludes Fall X2)	H3 (excludes Enhanced Spring Outflow; includes Fall X2)	H4 (High Outflow Scenario)	Alternative 5	Alternative 6A, 6B, 6C	Alternative 7	Alternative 8	Alternative 9	COMMENTS
OPERATIONS CRITERIA															
SYSTEMWIDE															
North & South Delta Intakes Operation															
Water quality and residence time	None	Same as Existing Conditions	Jul-Sep: prefer sourth Delta pumping up to 3,000 cfs before diverting from North. Oct- Jun: prefer North Delta pumping (real-time operation flexibility) (No explicit implementation in the model).	Jul-Sep: prefer sourth Delta pumping up to 3,000 cfs before diverting from North. Oct- Jun: prefer North Delta pumping (real-time operation flexibility) (No explicit implementation in the model).	Jul-Sep: prefer sourth Delta pumping up to 3,000 cfs before diverting from North. Oct- Jun: prefer North Delta pumping (real-time operation flexibility) (No explicit implementation in the model).	Jul-Sep: prefer s prefer North Del	sourth Delta pumping up to Ita pumping (real-time opera n	3,000 cfs before diverting fr ation flexibility) (No explicit im nodel).	om North. Oct-Jun: plementation in the	Jul-Sep: prefer sourth Delta pumping up to 3,000 cfs before diverting from North. Oct- Jun: prefer North Delta pumping (real-time operation flexibility) (No explicit implementation in the model).	North Delta Pumping only	Jul-Sep: prefer sourth Delta pumping up to 3,000 cfs before diverting from North. Oct- Jun: prefer North Delta pumping (real-time operation flexibility) (No explicit implementation in the model).	Jul-Sep: prefer sourth Delta pumping up to 3,000 cfs before diverting from North. Oct- Jun: prefer North Delta pumping (real-time operation flexibility) (No explicit implementation in the model).	Same as No Action Alternative	Not explicitly included in model; model results with existing weight structure are consistent with intake preferences
CVP water allocation															
Settlement / Exchange	100% (75% in Shasta critical years)	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Į
Retuges	100% (75% in Shasta critical years)	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Agriculture Service	100%-0% based on supply, South-or- Delta allocations are additionally limited due to D-1641, FWS BO (Dec 2008) and NMFS BO (Jun 2009) export restrictions ⁶	Same as Existing Conditions	Same as no Action Alternative	Same as No Action Alternative	Same as no Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	2008 OCAP BA and CA did not assume FWS BO (Dec 2008) or NMFS BO (Jun 2009)
Municipal & Industrial Service	100%-50% based on supply, South-of- Delta allocations are additionally limited due to D-1641, FWS BO (Dec 2008) and NMFS BO (Jun 2009) export restrictions"	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	2008 OCAP BA and CA did not assume FWS BO (Dec 2008) or NMFS BO (Jun 2009)
SWP water allocation	Contract on a life	Come on Evicting Constitues	Company and No. Antiony Alternation	Corres on No. A sting. Alternative	Come on No. Action Alternative		Come on No	Antina Alterantica		Come on No. Action Alternation	Corres on No. A sting. Alternative	Company No. Antion Alternative	Corres on No. A sting. Alternative	Control on Min Antion Alternation	
North Of Delta (IrRSA) South of Delta (including North Bay Aqueduct)	Contract specific Based on supply: equal prioritization between Ag and M&I based on Monterey Agreement; allocations are additionally limited due to D-1641, FWS BO (Dec 2008) and NMFS BO (Jun 2009) export restrictions ^V	Same as Existing Conditions	Same as NO Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as NO Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	2008 OCAP BA and CA did not assume FWS BO (Dec 2008) or NMFS BO (Jun 2009)
CVP-SWP coordinated operations						a N	b b b c c	0 0 0 0	10 N					0 H A C AN C	
Sharing of responsibility for in-basin- use	1996 Coordinated Operations Agreement (FRWP EBMUD and 2/3 of the North Bay Aqueduct diversions considered as Delta Export; 1/3 of the North Bay Aqueduct diversion considered as in-basin-use)	Same as Existing Conditions y	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative ^{ab}	Same as No Action Alternative	Same as No Action Alternative ^{ab}	Same as No Action Alternative	Same as No Action Alternative	Same as no Action Alternative	Same as No Action Alternative	Same as NO Action Alternative	CA included exchange of SWP to convey 50 TAF/yr of Level 2 refuge supplies at Banks PP (July – August) and CVP to provide up to max of 37.5 TAF/yr to meet SWP In-Basin-Use (released from Shasta)
Sharing of surplus flows	1986 Coordinated Operations Agreement	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Sharing of total allowable export capacity for project-specific priority pumping	Equal sharing of export capacity under SWRCB D-1641, FWS BO (Dec 2008) and NMFS BO (Jun 2009) export restrictions ^{et}	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	2008 OCAP BA and CA did not assume FWS BO (Dec 2008) or NMFS BO (Jun 2009)
Water transfers	Acquisitions by SWP contractors are wheeled at priority in Banks Pumping Plant over non-SWP users; LYRA included for SWP contractors ^w	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	2008 OCAP BA assumed transfer of LYRA acquisitions for reducing impact of VAMP on SWP, formerly known as limited-EWA; CA assumed SVWMA and short term temporary transfers
Sharing of export capacity for lesser priority and wheeling-related pumping	Cross Valley Canal wheeling (max of 128 TAF/yr), CALFED ROD defined Joint Point of Diversion (IPOD)	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
San Luis Reservoir	San Luis Reservoir is allowed to operate to a minimum storage of 100 TAF	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
CVPIA 3406(b)(2) ^{v.q}															
Policy Decision	Per May 2003 Dept. of Interior Decision	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Discretionary 3406(b)(2) operations being replaced by pon-discretionary operations for FWS BO (Dec 2008)
Allocation	800 TAF, 700 TAF in 40-30-30 dry years and 600 TAF in 40-30-30 critical years as a function of Ag allocation	, Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	and NMFS BO (Jun 2009)
Actions	Pre-determined upstream fish flow objectives below Whiskeytown and Keswick Dams, non-discretionary NMFS BO (Jun 2009) actions for the American and Stanislaus Rivers, and NMFS BO (Jun 2009) and FWS BO (Dec 2008) actions leading to export restrictions'	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	2008 OCAP BA and CA did not assume FWS BC (Dec 2008) or NMFS BO (Jun 2009)
Accounting	Releases for non-discretionary FWS BO (Dec 2006) and MMFS BO (Jun 2009)" actions may or may not always be deeme (D)(2) actions; in general, it is anticipated that accounting of these actions using (b)(2) metrics; the sum would worked three no additional actions are considered and no accounting logic is included in the model ¹	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	2008 OCAP BA and CA did not assume FWS BO (Dec 2008) or NMFS BO (Jun 2009)
WATER MANAGEMENT ACTIONS															
Water Transfer Supplies (long term		1													
programs) Lower Yuba River Accord ^w	Yuba River acquisitions for reducing impact of NMFS BO export restrictions ^V on SWP	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative		Same as No	Action Alternative		Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	2008 BA assumed Yuba River acquisitions for reducing impact of NMFS BO export restrictions, formerly known as limited-EWA; CA did not include LYRA
Phase 8	None	None	None	None	None			None		None	None	None	None	None	
Water Transfers (short term or															
temporary programs) Sacramento Valley acquisitions commend	Poet-analysis of available conseits	Poet-analysis of available conceits	Poet-analysis of available conseits	Poet-analysis of available consoits	Poet-analysis of available conseits		Doot opphysic	of available canonity		Poet-analysis of available consoits	Poet-analysis of available consols	Poet-analyzie of available consoity	Poet-analysis of available consoits	Post-analysis of available conseity	Consistent with 2008 OCAP RALCA model outputs
through Banks PP *	i oo ahayaa u avanauro capdulty	, on analysis of available capabily		, con analysis of available capacity	. Socialization available capacity		i ost-andiysis (, оок алилузно от амалално сарасцу	· cost analysis or available capacity	, our analysis or available capacity	r oor anaysis of available capacity	our analysis of available capability	available capacity to support such analysis

_														
	PARAMETER CATEGORY / STUDY	EXISTING CONDITIONS	NO ACTION ALTERNATIVE	Alternative 1A, 1B, 1C	Alternative 2A, 2B, 2C	Alternative 3	Alternative 4	4	Alternative 5	Alternative 6A, 6B, 6C	Alternative 7	Alternative 8	Alternative 9	COMMENTS
							H1 (Low Outflow H2 (includes Enhanced H3 (e	(excludes Enhanced H4 (High Outflow						
							Scenario) Spring Outflow; excludes Spring	ring Outflow; includes Scenario)						
							Fall X2)	Fall X2)						

CALSIM Notes

These ares to be of the observation for the Department of Water Resources (Department) and Bureau of Reclamation) management team for the Bay Delta Conservation of at least 17,000 to 20,000 acres of floodplain rearing habitat for juvenile where-run and spring-run chinock salmon for a least 8,000 acres of intertial and associated subtial habitat in the Delta and Suisun Marsh required by the 2008 USFWS BO and restoration of at least 17,000 to 20,000 acres of floodplain rearing habitat for juvenile where-run and spring-run chinock salmon and Central Valley steelhead in the Yolo Bypass and/or suitable areas of the lower Sacramento River required by the NMFS 2009 BO are not included in the No Action Alternative assumptions der of the Notice of Preparation/Notice of Intert (February 13, 2009) ^b The Sacramento Valley hydrology used in the Existing Conditions CALSIM II model reflects nominal 2005 land-use assumptions. The nominal 2005 land-use was determined by interopation between the 1995 and projected 2020 land-use assumptions developed by Reclamation. Existing-level projected land-use assumptions are being coordinated with the California Water Plan Update for future models.

**The Sacramento Valley hydrology used in the Existing Conditions CALSIM II model reflects 2005 land-use assumptions are being coordinated with the California Water Plan Update for future models. *The Sacramento Valley hydrology used in the beine value assumptions accoultated with the California Water Plan Update for future models. *Cord Contract amounts have been updated according to existing and amended contracts as appropriate. Assumptions regarding CVP agricultural and M&I service contracts and Settlement Contract amounts are being coordinated with the California Water Plan Update for future models. *SWP contract amounts have been updated according to existing and amended contracts as appropriate. Assumptions regarding SWP agricultural and M&I service contract amounts are being coordinated with the California Water Plan Update for future models. *SWP contract amounts have been updated as appropriate. Assumptions regarding SWP agricultural and M&I contract amounts are documented in the Delivery Specifications attachments. *Water needs the documented in the Delivery Specifications attachments. The Sacramento Area Water Forum agreement, its dry year diversion reductions, Middle Fork Project Operations, Middle Fork Project Operations attachments. The Sacramento Area Water Forum agreement, its dry year diversion reductions, Middle Fork Project Operations, and *mitigation* water in the individue set of the Delivery Specifications attachments. The Sacramento Area Water Forum agreement, its dry year diversion reductions, Middle Fork Project Operations, Middle Fork Project Ope

The CALSD Into del representation of the Statistical Rev does not represent a laboration of the Statistical Rev does not represent a laboration of the Statistical Rev does not represent Relativity and represent Relativity

the cance the set the

1D-1644 and the Lower Yuba River Accord is assumed to be implemented for Existing and No Action Alternative. The Yuba River Accord El3/EIR study team.

1¹ The model operates the Stanislaus River using a 1997 Interim Plan of Operation-like structure, i.e., allocations are based on NMFS BO Action III.1.2. NMFS BO Action III.1.2. NMFS BO Action III.1.2. NMFS BO Action III.2.1's flow component of the refects a different and refects a structure of the refects a different and refects a structure and refects a structu

¹⁹ SJR Restoration Water Year 2010 Interim Flows Project are assumed, but are not input into the models; operation not regularly defined at this time ¹ In cooperation with Reclamation, National Marine Fisheries Service, Fish and Validife Service, and Ca Department of the Fina AG Game, the Ca Department of Water Resources has developed assumptions for implementation of the FWS BO (bec 15th 2008) and NMFS BO (June 4th 2009) in CALSIM II. ¹⁴ Acquisitions of Component 1 water under the Lower Vuba River Accord, and use of 60 cis dedicated capacity at Banks PP during Jul – Sep, are assumed to be used to reduce as much of the impact of the Apr – May Delta export actions on SWP contractors as possible.

* Only acquisitions of Lower Yuba River Accord Component 1 water are included.

^y Sub-Table B. San Joaquin Inflow Relation	nship to OMR:		
April a	nd May		June
If San Joaquin flow at Vernalis is the following	Average OMR flows would be at least the following (interpolated linearly between values)	If San Joaquin flow at Vernalis is the following	Average OMR flows would be at least the following
≤ 5,000 cfs	-2,000 cfs	≤ 3,500 cfs	-3,500 cfs
6,000 cfs	+1000 cfs		0 cfs
10,000 cfs	+2000 cfs	3,501 to 10,000 cts	
15,000 cfs	+3000 cfs	10,001 to 15,000 cfs	+1000 cfs
≥30,000 cfs	+6000 cfs	>15,000 cfs	+2000 cfs

^{ab} Enhanced Spring Delta Quiflow required during the Mar-May Period. This additional Mar-May Beight River Index (BR]. For modeling purposes the Mar-May Eight River Index (BR]. For modeling purposes the Mar-May Period is determined based on the forecasted based on the forecasted based and the forecasted based on the forecasted form the varie (score), if the outflow target is released from the varie (score), if the outflow target is released from the orecasted based on the forecasted based on the forecasted based on the forecasted form the orecasted based on a "in-basin use" for CVP-SWP Coordinated Operations. This outflow requirement is met through first by curtailing Delta exports at Banks and Jones Pumping Plants by an amount needed to meet the outflow target is released from the Oroville reservoir as long as its projected end-of-May storage is at or above 2 MAF.

Percent Exceedance of Forecasted									
Mar-May 8RI based on Jan-Feb 8RI	10%	20%	30%	40%	50%	60%	70%	80%	90%
values:									
Proposed Mar-May Delta Outflow	44 500	44 500	25.000	22,000	22.000	17 200	12 200	11.400	0.200
Target (cfs):	44,500	44,500	35,000	32,000	23,000	17,200	13,300	11,400	9,200

Sub Table A: North Delta Diversion Bypass Flows

Level I			Level II				Level III		
	De	c - Apr		De	c - Apr	_		De	c - Apr
If Sacramento River flow is over	But no over	The bypass is	If Sacramento River flow is over	But no over	The bypass is		If Sacramento River flow is over	But no over	The bypass is
0 cfs	15,000 cfs	100% of the amount over 0 cfs	0 cfs	11,000 cfs	100% of the amount over 0 cfs	1	0 cfs	9,000 cfs	100% of the amount over 0 cfs
15,000 cfs	17,000 cfs	15,000 cfs plus 80% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 60% of the amount over 11,000 cfs		9,000 cfs	15,000 cfs	9,000 cfs plus 50% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,600 cfs plus 60% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,400 cfs plus 50% of the amount over 15,000 cfs		15,000 cfs	20,000 cfs	12,000 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	18,400 cfs plus 30% of the amount over 20,000 cfs	20,000 cfs	no limit	15,900 cfs plus 20% of the amount over 20,000 cfs		20,000 cfs	no limit	13,000 cfs plus 0% of the amount over 20,000 cfs
		May			May				May
If Sacramento River flow is over	But no over	The bypass is	If Sacramento River flow is over	But no over	The bypass is		If Sacramento River flow is over	But no over	The bypass is
0 cfs	15,000 cfs	100% of the amount over 0 cfs	0 cfs	11,000 cfs	100% of the amount over 0 cfs		0 cfs	9,000 cfs	100% of the amount over 0 cfs
15,000 cfs	17,000 cfs	15,000 cfs plus 70% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 50% of the amount over 11,000 cfs	Ī	9,000 cfs	15,000 cfs	9,000 cfs plus 40% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,400 cfs plus 50% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	13,000 cfs plus 35% of the amount over 15,000 cfs		15,000 cfs	20,000 cfs	11,400 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	17,900 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	14,750 cfs plus 20% of the amount over 20,000 cfs	1	20,000 cfs	no limit	12,400 cfs plus 0% of the amount over 20,000 cfs
-		Jun			Jun	-			Jun
If Sacramento River flow is over	But no over	The bypass is	If Sacramento River flow is over	But no over	The bypass is		If Sacramento River flow is over	But no over	The bypass is
0 cfs	15,000 cfs	100% of the amount over 0 cfs	0 cfs	11,000 cfs	100% of the amount over 0 cfs		0 cfs	9,000 cfs	100% of the amount over 0 cfs
15,000 cfs	17,000 cfs	15,000 cfs plus 60% of the amount over 15,000 cfs	11,000 cfs	15,000 cfs	11,000 cfs plus 40% of the amount over 11,000 cfs		9,000 cfs	15,000 cfs	9,000 cfs plus 30% of the amount over 9,000 cfs
17,000 cfs	20,000 cfs	16,200 cfs plus 40% of the amount over 17,000 cfs	15,000 cfs	20,000 cfs	12,600 cfs plus 20% of the amount over 15,000 cfs		15,000 cfs	20,000 cfs	10,800 cfs plus 20% of the amount over 15,000 cfs
20,000 cfs	no limit	17,400 cfs plus 20% of the amount over 20,000 cfs	20,000 cfs	no limit	13,600 cfs plus 20% of the amount over 20,000 cfs		20,000 cfs	no limit	11,800 cfs plus 0% of the amount over 20,000 cfs
	-								

DSM2 Assumptions:												
PARAMETER CATEGORY / STUDY	EXISTING CONDITIONS	NO ACTION ALTERNATIVE	Alternative 1A,1B,1C	Alternative 2A,2B,2C	Alternative 3	Alternative 4 (All four decision tree scenarios)	Alternative 5	Alternative 6A, 6B, 6C	Alternative 7	Alternative 8	Alternative 9	COMMENTS
GENERAL												
Alternate period of simulation (for use	16 years (1976-1991) ^{a,b}	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
when need or BC data limited) HYDROLOGY												
Boundary flows	Monthly timeseries from CALSIM II output ^c	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
REGIONAL DEMANDS AND CONTRACTS	2005 Louis DMD Dullatia 400 00	and have DMD Delete too ood	Same as No Action Altomative	Same as No Action Alternative	Some as No Action Altomative	Sama as No Action Altomative	Same as No Action Alternative	Some on No. Action Altomative	Sama as No Action Alternative	Same as No Action Alternative	Sama as No Action Alternativo	
TIDAL BOUNDARY	2005 Level, DWR Bulletin 160-98*	2020 Level, DW R Bulletin 160-98*	Same as NO ACION Alternative	Same as NO ACION Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as NO ACTION Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as NO ACION Alternative	Same as NO Action Alternative	
Martinez stage	15-minute adjusted astronomical tide*	15-minute adjusted astronomical tide modified to account for the sea level rise at the early long-term and late long-term phases ^{8,p}	15-minute adjusted astronomical tide modified to account for the sea level rise and proposed habitat restoration at the early long-term and late long-term phases ^{a,p}	15-minute adjusted astronomical tide modified to account for the sea level rise and proposed habitat restoration at the early long-term and late long-term phases ^{a,p}	15-minute adjusted astronomical tide modified to account for the sea level rise and proposed habitat restoration at the early long-term and late long-term phases ^{a,p}	15-minute adjusted astronomical tide modified to account for the sea level rise and proposed habitat restoration at the early long-term and late long-term phases ^{a,p}	15-minute adjusted astronomical tide modified to account for the sea level rise and proposed habitat restoration at the early long-term and late long-term phases ^{a,p}	15-minute adjusted astronomical tide modified to account for the sea level rise and proposed habitat restoration at the early long-term and late long-term phases ^{a,p}	15-minute adjusted astronomical tide modified to account for the sea level rise and proposed habitat restoration at the early long-term and late long-term phases ^{a,p}	15-minute adjusted astronomical tide modified to account for the sea level rise and proposed habitat restoration at the early long-term and late long-term phases ^{a,p}	15-minute adjusted astronomical tide modified to account for the sea level ris and proposed habitat restoration at the early long-term and late long-term phases ^{a,p}	e
WATER QUALITY Vernalis EC	Monthly time series from CALSIM II	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Agricultural Return EC	output ^e Municipal Water Quality Investigation	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Martinez EC	Program analysis Monthly not Dolto Outflow from CALSIM	Monthly not Dolta Outflow from CALSIM	Monthly not Dolto Outflow from CALSIN	Monthly not Dolto Outflow from CALSIM	Monthly not Dolto Outflow from CALSIM	Monthly not Dolto Outflow from CALSIM	Monthly not Data Outflow from CALSIM	Monthly not Dolto Outflow from CALSIM	Monthly not Dolta Outflow from CALSIM	Monthly not Dolto Outflow from CALSIM	Monthly not Data Quiffor from CALSI	4
	output & G-model	output & G-model, modified to account for sea level rise at the early long-term and late long-term phases ^{1,7}	output & G-model, modified to account for sea level rise and the proposed habitat restoration at the early long-term and late long-term phases ^{1,r}	output & G-model, modified to account for sea level rise and the proposed habitat restoration at the early long-term and late long-term phases ¹	output & G-model, modified to account for sea level rise and the proposed habitat restoration at the early long-term and late long-term phases ¹	output & G-model, modified to account for sea level rise and the proposed habitat restoration at the early long-term and late long-term phases ¹	output & G-model, modified to account for sea level rise and the proposed habitat restoration at the early long-term and late long-term phases ^{1,r}	output & G-model, modified to account for sea level rise and the proposed habitat restoration at the early long-term and late long-term phases ¹ .	output & G-model, modified to account for sea level rise and the proposed habitat restoration at the early long-term and late long-term phases ¹	output & G-model, modified to account for sea level rise and the proposed habitat restoration at the early long-term and late long-term phases ^{1,r}	output & G-model, modified to account for sea level rise and the proposed habitat restoration at the early long-term and late long-term phases ^{tr}	1
MORPHOLOGICAL CHANGES												
Mokelumne River	None	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
Middle River	None	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Dredging on Middle River and Victoria	
											Canal ^{SC}	_
Contra Costa Water District Delta Intakes	Rock Slough Pumping Plant, Old River at Highway 4 Intake and Alternate Improvement Project Intake on Victoria Canal	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	_
South Delta barriers	Temporary Barriers Project	Same as Existing Conditions	None	Same as No Action Alternative	None	Same as No Action Alternative	Same as No Action Alternative	None	None	None	None ^{SC}	2008 BA and CA assumed South Delta Improvements Program Permanent Operable Gates (Stage 1); 2008 BA and CA did not consider FWS Delta Smelt BO related operations
Franks Tract Program	None	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Three Mile Slough Operable Gate Installed ^{SC}	
Isolated Facility	None	Same as Existing Conditions	North Delta Diversion: 5 intakes with a 3,000 cfs maximum capacity (total maximum capacity of 15,000 cfs) ^s	North Delta Diversion: 5 intakes with a 3,000 cfs maximum capacity (total maximum capacity of 15,000 cfs) ^w	North Delta Diversion: 2 intakes with a 3,000 cfs maximum capacity (total maximum capacity of 6,000 cfs) ^t	North Delta Diversion: 3 intakes with a 3,000 cfs maximum capacity (total maximum capacity of 9,000 cfs) ^x	North Delta Diversion: 1 intake with a 3,000 cfs maximum capacity ^y	North Delta Diversion: 5 intakes with a 3,000 cfs maximum capacity (total maximum capacity of 15,000 cfs) ^s	North Delta Diversion: 3 intakes with a 3,000 cfs maximum capacity (total maximum capacity of 9,000 cfs) ^u	North Delta Diversion: 3 intakes with a 3,000 cfs maximum capacity (total maximum capacity of 9,000 cfs) ^u	Same as No Action Alternative	
SPECIFIC PROJECTS												
Freeport Regional Water Project	None	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	
Stockton Delta Water Supply Project	None	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	
City of Antioch Delta	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	Monthly output from CALSIM II	
Projects Veale Tract Drainage Relocation	The Veale Tract Water Quality Improvement Project, funded by CALFED, relocates the agricultural drainage outlet was relocated from Rock Slough channel to the southern end of Veale Tract, on Indian Slough ¹	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	
OPERATIONS CRITERIA Delta Cross Channel	Monthly time series of number of days open from CALSIM II output	Monthly time series of number of days open from CALSIM II output	Monthly time series of number of days open from CALSIM II output	Monthly time series of number of days open from CALSIM II output	Monthly time series of number of days open from CALSIM II output	Monthly time series of number of days open from CALSIM II output	Monthly time series of number of days open from CALSIM II output	Monthly time series of number of days open from CALSIM II output	Monthly time series of number of days open from CALSIM II output	Monthly time series of number of days open from CALSIM II output	Oct-Nov: Number of days open from CALSIM II output Dec-Jun: DCC gate open if 11,000 < Sac < 25,000 cfs Jul-Sep: DCC gate open only if Sac 26 00 cfc	
Clifton Court Forebay	Priority 3, gate operations synchronized with incoming tide to minimize impacts to low water levels in nearby channels	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Not installed ^{SC}	
South Delta barriers	Temporary Barriers Project operated based on San Joaquin River flow time series from CALSIM II output; HORB is assumed only installed Sep 16 – Nov 30 Agricultural barriers on Old and Middle starting from May 16 th and the one on Grant Line Canal from Junn 1 th ; All the three barriers are allowed to be operated until November 30 th ; May 16 th to May 31 th the idial gates are assumed to be ided open for the barriers on Old and Middle Rivers th .	Same as Existing Conditions	Not installed	Same as No Action Alternative for South Delta Temporary Agricultural Barriers; Modified operations for Head of Old River Barrier ⁴	Not installed	Same as No Action Alternative for South Delta Temporary Agricultural Barriers; Modified operations for Head of Old River Barrier ²	Same as No Action Alternative	Not installed	Not installed	Not installed	Not installed ^{SC}	2008 BA and CA assumed South Delta Improvements Program Permanent Operable Gates (Stage 1): 2008 BA and CA did not consider FWS Delta Smelt BO related operations
North Delta Diversion Intakes	None	Same as Existing Conditions	Proposed north Delta diversion intakes are operated with priority from north to south. Maximum of 3,000 cfs is withdrawn at each intake while meeting velocity of 0.4 fps downstream. Daily diversion volume equivalent to CALSIM output	Proposed north Delta diversion intakes are operated with priority from north to south. Maximum of 3,000 cfs is withdrawn at each intake while meeting velocity of 0.4 fps downstream. Daily Il diversion volume equivalent to CALSIM output	Proposed north Delta diversion intakes are operated with priority from north to south. Maximum of 3,000 cfs is withdrawn at each intake while meeting velocity of 0.4 fps downstream. Daily Il diversion volume equivalent to CALSIM output	Proposed north Delta diversion intakes are operated with priority from north to south. Maximum of 3,000 cfs is withdrawn at each intake while meeting velocity of 0.4 fps downstream. Daily Il diversion volume equivalent to CALSIM output	Proposed north Delta diversion intakes are operated with priority from north to south. Maximum of 3,000 cfs is withdrawn at each intake while meeting velocity of 0.4 fps downstream. Daily diversion volume equivalent to CALSIM I output	Proposed north Delta diversion intakes are operated with priority from north to south. Maximum of 3,000 cfs is withdrawn at each intake while meeting velocity of 0 4 fog downstream. Daily diversion volume equivalent to CALSIM output	Proposed north Delta diversion intakes are operated with priority from north to south. Maximum of 3,000 cls is withdrawn at each intake while meeting velocity of 0.4 fos downstream. Daily diversion volume equivalent to CALSIM output	Proposed north Delta diversion intakes are operated with priority from north to south. Maximum of 3,000 cfs is withdrawn at each intake while meeting velocity of 0.4 fps downstream. Daily Il diversion volume equivalent to CALSIM I output	Same as No Action Alternative	
Preferential CVP Jones pumping	None	Same as Existing Conditions	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	Same as No Action Alternative	If SJR>10,000 cfs, CVP Pumping from Existing Location If SJR<10,000 cfs, CVP Pumping from Clifton Court Forebay ^{SC}	
Habitat Restoration	Nana	Somo oo Evisting Conditions	25 000 porce et estular - trans-t	25,000 porce et estular stranget	25 000 percent certular - torrat	25 000 pares at eath last three th	25 000 perce at early last time to the	25 000 percent perturbations to the	25 000 percent entryley a travel	25,000 percent entries - transiti	25 000 poros et eertuler - torre -t	Elood plan and Dimerica
naviat Kestoration		Same as Existing Conditions	20,000 acres at early long-term phase and 65,000 acres at late long-term phase of Tidal Marsh (inclusive of intertidal, subtidal, and sea level rise accommodation area)	25,000 acres at early long-term phase and 65,000 acres at late long-term phase of Tidal Marsh (inclusive of intertidal, subtidal, and sea level rise accommodation area)	and 65,000 acres at early long-term phase and 65,000 acres at late long-term phase of Tidal Marsh (inclusive of intertidal, subtidal, and sea level rise accommodation area)	and 65,000 acres at early long-term phase and 65,000 acres at late long-term phase of Tidal Marsh (inclusive of intertidal, subtidal, and sea level rise accommodation area)	and 65,000 acres at early long-term phase and 65,000 acres at late long-term phase of Tidal Marsh (inclusive of intertidal, subtidal, and sea level rise accommodation area)	and 65,000 acres at early long-term phase and 65,000 acres at late long-term phase of Tidal Marsh (inclusive of intertidal, subtidal, and sea level rise accommodation area)	and 65,000 acres at early long-term phase and 65,000 acres at late long-term phase of Tidal Marsh (inclusive of intertidal, subtidal, and sea level rise accommodation area)	25,000 acres at early long-term phase and 65,000 acres at late long-term phase of Tidal Marsh (inclusive of intertidal, subtidal, and sea level rise accommodation area)	co.uou acres at early long-term phase and 65,000 acres at late long-term phase of Tidal Marsh (inclusive of intertidal, subtidal, and sea level rise accommodation area)	пиои риал ала киралал acres not included in the model

PARAMETER CATEGORY / STUDY	EXISTING CONDITIONS	NO ACTION ALTERNATIVE	Alternative 1A,1B,1C	Alternative 2A,2B,2C	Alternative 3	Alternative 4 (All four decision tree scenarios)	Alternative 5	Alternative 6A, 6B, 6C	Alternative 7	Alternative 8	Alternative 9	COMMENTS

DSM2 Notes: ^a A new adjusted astronomical tide for use in DSM2 planning studies has been developed by DWR's Bay Delta Office Modeling Support Branch Delta Modeling Section in cooperation with the Common Assumptions workgroup. This tide is based on a more extensive observed dataset and covers the entire 82-year period of record.

^b The 16-year period of record is the simulation period for which DSM2 has been commonly used for impacts analysis in many previous projects, and includes varied water year types. ^c Although monthly CALSIM output was used as the DSM2+HYDRO input, the Sacramento and San Jacquit is invers were interpolated to daily values in order to smooth the transition from high to low and low to high flows. DSM2 then uses the daily flow values along with a 15-minute adjusted astronomical tide to simulate effect of the spring and neap tides. ^d The Delta Island Consumptive Use (DICU) model is used to calculate diversions and return flows for all Delta islands based on the level of development assumed. The nominal 2005 Deltar egion hydrology inputs and assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions septer Bulletin 160-98. The Common Assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions septer Bulletin 160-98. The Common Assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions septer Bulletin 160-98. The Common Assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions septer Bulletin 160-98. The Common Assumptions work group is adopting 2030 land-use/hydrology inputs and assumptions septer Bulletin 160-98. The Common Assumptions work group is adopting 2030 land-use/hydrology inputs and assumpti

* CALSIM II calculates monthly EC for the San Joaquin River, which was then converted to daily EC using the monthly EC and flow for the San Joaquin River. Fixed concentrations of 150, 175, and 125 µmhos/cm were assumed for the Sacramento River, Yolo Bypass, and eastside streams, respectively

⁹ Footnote removed
^h Footnote removed
^h

ⁱ Footnote removed

¹ Footinude removed ¹ Footinute removed ^k Information are so btained based on the information from the draft final "Delta Region Drinking Water Quality Management Plan" dated June 2005. The DICU drainage currently simulated at node 204 is moved to node 202 in DSM2.

¹Based on the FWS Delta Smelt BO Action 5, Head of Old River Barrier (HORB) is assumed to be not installed in April or May; therefore HORB is only installed in the Fall as shown.

ⁿ Based on the FWS Delta Smelt BO Action 5 and the project description provided in the page 119.

^a Near-term proposed Project South Delta export values from CALSMI II are post-processed to re-operate Banks and Jones Pumping Plants during OMR control periods ^a Narinez baseline stage is modified to account for the proposed habitat restoration in the near-term phase of the proposed project based on RMA2 modeling ^b Martinez baseline stage is modified to account for the sea level rise at early (15 cm) and late (45 cm) long-term phases under all Alternatives and proposed habitat restoration at the early long-term (25000 ac) and late long-term (65000 ac) phases of the with-project Alternatives based on RMA2 modeling

⁶ Martinez EC is modified to account for the proposed habitar restoration in the near-term phase of the proposed project based on RMA2 modeling ⁸ Martinez EC is modified to account for the sea level rise at early (15 cm) and late (45 cm) long-term phases under all Alternatives and proposed habitar restoration at the early long-term (25000 ac) and late long-term (65000 ac) phases of the with-project Alternatives based on RMA2 modeling ⁸ Five proposed intakes are modeled as transfers from new channels originating DSM2 nodes 334, a35, a36, a37 and 338 to a new DSM2 reservoir called IF_FOREBAY ¹ Two proposed intakes are modeled as transfers from new channels originating DSM2 nodes 334 and 335 to a new DSM2 reservoir called IF_FOREBAY

¹ Three proposed inakes are indeed as transfer from the chaines of and 305 and 338 to an ew DSM2 reservoir called IF_FOREBAY ¹ Three proposed inakes are modeled as transfer from the chaines of and 305 and 338 to an ew DSM2 reservoir called IF_FOREBAY ² Head of Old River Operable Barrier (HORB) Operations/Modeling assumptions only. Action proposed: Before the D-1641 pulse = no OMR restrictions (HORB open), During the D-1641 pulse = no South Delta exports for two weeks (HORB closed), After the D-1641 pulse = -5,000 cfs OMR through November (HORB open 50% for 2 weeks), Exact timing of the action will be based on hydrologic conditions; 3. The HORB becomes operational at 50% when salmon fry are immigrating (based on real time monitoring). This generally occurs when flood flow releases are being made.)

* Five proposed intakes are modeled as transfers from new channels originating DSM2 nodes 334, 335, 336, 705 and 341 to a new DSM2 reservoir called IF FOREBAY. Node 705 and 341 are in the Sacramento River reach between Steamboat Slough and Delta Cross Channel

* Three proposed intakes are modeled as transfers from new channels originating at DSM2 nodes 334, 335 and 336 to a new DSM2 reservoir called IF FOREBAY ³ One proposed intake is modeled as transfer from new channel originating at DSM2 node 334 to a new DSM2 reservoir called IF FOREBAY Separate Corridor (SC) DSM2 Notes:

Old River is separated from Middle River by blocking connections with gates. Old River is completely disconnected from Victoria Canal and Clifton Court Forebay.

³ Cition Court Forebay is directly connected to Victoria Canal. Old River connection through gate to the Forebay is removed.

The Meadows Slough is now connected to Sacramento River. A gate is installed on the Meadows Slough to block flow from August through November and when Sacramento flow is greater than 25,000 cfs.

⁹ Middle River and Victoria Canal are dredged based on DHCCP Design Drawings
 ¹⁰ Both SWP and CVP are pumping from Clifton Court Forebay when SJR flow is below 10,000 cfs. For SJR flow above 10,000 cfs, CVP is assumed to be pumping from existing intake.
 ¹¹ An operable gate in Three Mile Slough is installed which is consistent with Franks Tract Program.

1 B.7. American River Demands

- 2 This section includes the information provided to and agreed to by the lead agencies in the "Bay
- 3 Delta Conservation Plan EIR/EIS Project CALSIM II Baselines Models American River
- 4 Assumptions", on February 17, 2010.

1 Introduction

- 2 This memorandum describes the assumptions that are being used for the American River in the
- 3 Existing Conditions and No Action Alternative CALSIM II Baselines models. These
- 4 assumptions were selected by the DWR management team for the BDCP EIR/EIS in
- 5 coordination with the Reclamation, USFWS and NMFS. The following sections provide an
- 6 overview of the assumptions, followed by a summary table of the specific diversion related
- 7 assumptions for each diverter.

8 Overview of Assumptions

- 9 The following is a summary of the assumptions that will be used to develop the Existing
- 10 Conditions and No Action Alternative models. For specific diversion related assumptions, see
- 11 the following section.
- 12 <u>Existing Conditions:</u>
- American River Flow Management is included, as required by the NMFS Biological Opinion
 (Jun 2009) Action II.1
- •Water rights and Central Valley Project (CVP) contract demands are assumed at year 2005 2010 levels
- 17 Placer County Water Agency (PCWA) Pump Station is included at full demand
- 18 Freeport Regional Water Project (FRWP) is not included
- 19 Sacramento River Water Reliability Project (SRWRP) is not included
- Sacramento Area Water Forum is not included (dry year "wedge" reductions and mitigation
 water releases are not included)
- 22 <u>No Action Alternative:</u>
- American River Flow Management is included, as required by the NMFS Biological Opinion
 (Jun 2009) Action II.1
- Water rights and Central Valley Project (CVP) demands are assumed at a full "Build-out"
 condition with CVP contracts at full contract amounts
- Placer County Water Agency (PCWA) Pump Station is included at full demand
- Freeport Regional Water Project (FRWP) is included at full demand (EBMUD CVP contracts and SCWA CVP contract and new appropriative water rights and water acquisitions as modeled in the FRWP EIS/R)
- Sacramento River Water Reliability Project (SRWRP) is not included
- Sacramento Area Water Forum is not included (dry year "wedge" reductions and mitigation
- 33 water releases are not included)

1 Summary of Demands

- 2 The Table B-19 below summarizes the water rights, CVP contract amounts, and demand
- amounts for each diverter in the American River system in the Existing Conditions and No
- 4 Action Alternative.

Table B-19: American River Diversions Assumed in the Existing Conditions and No Action Alternative

American River Diversion An Conditions Baselines Models	mounts Assu 5	med in the	Existing a	nd Future		As of F 20	ebruary,)10
		Exis	sting Condit	ions	No A	Action Alterr	native
		<u> </u>	(TAF/Yr)			(TAF/Yr)	
	Diversion Location	CVP M&I Contracts (max- imum ¹)	Water Rights (max- imum)	Diversio n Limit (max- imum capacity)	CVP M&I Contracts (max- imum ¹)	Water Rights (max- imum)	Diversion Limit (max- imum capacity)
American River Diversions							
Placer County Water Agency	Auburn Dam Site		35.5	35.5		35.5	35.5
Total	Dani Site	0	35.5	35.5	0	35.5	35.5
Sacramento Suburban Water District ²	Folsom Reservoir		17	17		17	17
City of Folsom - includes P.L. 101-514		7	27	34	7	27	34
Folsom Prison			2	2		5	5
San Juan Water District (Placer County)			17	17		24	24
San Juan Water District (Sac County) - includes P.L. 101- 514	-	24.2	33	44.2	24.2	33	57.2
El Dorado Irrigation District	-	7.55	0	7.55	7.55	17	24.55
City of Roseville		32	5	37	32	5	37
Placer County Water Agency		0		0	35		35
El Dorado County - P.L.101- 514		15		4	15		15
Total	1	85.75	101	162.75	120.75	128	248.75
So. Cal WC/Arden Cordova WC	Folsom South Canal		5	5		5	5
California Parks and Recreation		5		1	5		5

SMUD		30	15	20	30	15	45
Canal Losses	-		1	1		1	1
Total	-	35	21	27	35	21	56
		1	1	I	1		
City of Sacramento ³	Lower		58	58		82.26	82.26
Carmichael Water District	River		12	12		12	12
Total		0	70	70	0	94.26	94.26
Total American River		120 75	227.5	295 25	155 75	278 76	434 51
Diversions		120.70	227.0	270.20	100.70	270.70	101.01
Sacramento River Diversions							
City of Sacramento	Sacrament o River		0	0		0	0
Placer County Water Agency	Water						
(Sac Suburban, Roseville and	Reliability		0	0		0	0
others	Project						
Total		0	0	0	0	0	0
City of Sacramento	Sacrament		62.3	62.3		162.74	162.74
Sacramento County Water	Pump	15		15	10		10
Agency	Station	15		15	10		10
Total		15	62.3	77.3	10	162.74	172.74
	1	L	I		I		
Sacramento County Water	Freeport	0		0	20		20
	Water						
Sacramento County Water Agency - P.L. 101-514	Project	0		0	15		15
	-						
Sacramento County Water			0	0		varies4,	
Agency - water rights and acquisitions			0	0		average 31.2	varies ⁴
East Bay Municipal Utilities	-						
District		0		0	133		varies ⁵
Total		0	0	0	168	31.2	35
Total Sacramento River		0	0	0	169	31.0	35
Diversions					100	01.2	

Total		120.75	227.5	295.25	323.75	309.96	469.51
1/ When the CVP Contract qua the diversion modeled is the qua times the CVP M&I allocation p quantity of the Diversion Limit 2/ Diversion is only allowed if a	ntity exceeds ntity allocated percentage) plu and when Mar	the quantit to the CV us the Wate -Nov Folso	y of the Div P Contract er Right (if d m Unimpai	ersion Limi (based on th any), but wa red Inflow	t minus the e CVP con ith the sum (FUI) excee	e Water Rig tract quanti limited to t ds 1600 TA	ht (if any), ity shown he F
3/ When the Hodge single dry y American River is limited to 50 (physical capacity of Sacramento	iear criteria is TAF and dive 9 River plant)	triggered, I ersion on th	Mar-Nov F e Sacramen	UI falls belc to River is i	w 400 TAI increased to	F, diversion 164.013 T.	on the AF
4/ SCWA targets 68 TAF of sur assumed to come from two source	rface water sup ces:	pplies annu	ally. The p	ortion unm	et by CVP	contract wa	ter is
(1) Delta "excess" water- at assumed to divert excess flow wi	verages 16.5 T hen it is availa	AF annual able, and wh	ly, but varie hen there is	es according available pi	g to availabi imping cap	ility. SCW. acity.	A is
(2) "Other" water- derived but varying according remainin	from transfers g unmet dema	s and/or oth and.	er appropri	ated water,	averaging 1	14.8 TAF ar	ınually
5/ EBMUD CVP diversions are	e governed by	the Amend	atory Contr	act, stipula	ting:		
(1) 133 TAF maximum dive	rsion in any g	iven year					
(2) 165 TAF maximum dive	rsion amount	over any 3	year period				
(3) Diversions allowed only	when EBMUI	D total stor	age drops b	elow 500 TA	AF		
(4) 155 cfs maximum divers	ion rate						

1 B.8. SWP Variable Demands

- 2 The State Water Project has 29 long-term contracts for water supply totaling about 4.2 million
- 3 acre-feet annually, of which about 4.1 million acre-feet are for contracting agencies with service
- 4 areas south of the Sacramento-San Joaquin Delta. About 70 percent of this amount is the
- 5 contract entitlement for urban users and the remaining 30 percent for agricultural users.
- 6 CALSIM II allocations are set per the Monterey Agreement criteria, which imposes any
- 7 deficiencies equally between agricultural and M&I requests as a percentage. The information
- 8 noted in this section for the Existing Conditions simulation is consistent with the assumptions
- 9 from 2008 OCAP BA, as noted in the Appendix D (USBR, 2008a).
- 10 SWP contract amounts as simulated in Existing Conditions and No Action Alternative models
- 11 are summarized in Table B-20.
- 12

13 Table B-20: Summary of SWP Contract Amounts (TAF/Year)

Contract Type	North Of Delta	South of Delta
Existing Conditions		
Feather River Service Area	796	0
Water Right	187	0
Agriculture	0	1048
M&I	108	3008
No Action Alternative		
Feather River Service Area	796	0
Water Right	187	0
Agriculture	0	1032
M&I	114	3024

14

15 The SWP Table A amounts and Article 21 demands for each North-of-the-Delta and South-of-

16 Delta contractor is provided in the Section B.9. In addition, the tables show Feather River

17 Service Area water rights and the assumed losses on the California Aqueduct.

18 SWP south of Delta demands are simulated as full contract amounts in No Action Alternative

19 (SWP AG: 1032 taf, MWDSC M&I: 1911.5 taf, and other M&I: 1226.5 taf) whereas AG and

20 MWDSC demands are variable in Existing Condition. In Existing Condition, SWP agricultural

21 demands in the San Joaquin Valley are capped to the full assigned amount, but are reduced in

22 wetter years using an index developed from annual Kern River inflows to Lake Isabella. Table

23 B-21 shows SWP south of Delta AG demands for years 1921-2003.

24 Metropolitan Water District of Southern California (MWDSC) demands are variable for Existing

25 Conditions model. Table B-22 shows MWDSC demands for years 1921-2003 assumed in the

26 Existing Conditions CALSIM II simulation.

1Table B-21: SWP south of Delta AG demands simulated in Existing Conditions model (TAF/Year)2with a minimum of 834 TAF and a maximum of 1048 TAF

Year	SWP SOD AG DEMANDS	Year	SWP SOD AG DEMANDS	Year	SWP SOD AG DEMANDS
1921	1048	1949	1048	1977	1048
1922	1048	1950	1048	1978	834
1923	1048	1951	1048	1979	1048
1924	1048	1952	834	1980	834
1925	1048	1953	1048	1981	1048
1926	1048	1954	1048	1982	1002
1927	1048	1955	1048	1983	834
1928	1048	1956	1048	1984	1048
1929	1048	1957	1048	1985	1048
1930	1048	1958	1002	1986	834
1931	1048	1959	1048	1987	1048
1932	1048	1960	1048	1988	1048
1933	1048	1961	1048	1989	1048
1934	1048	1962	1048	1990	1048
1935	1048	1963	1048	1991	1048
1936	1048	1964	1048	1992	1048
1937	1002	1965	1048	1993	1048
1938	1002	1966	1048	1994	1048
1939	1048	1967	1002	1995	1002
1940	1048	1968	1048	1996	1048
1941	834	1969	834	1997	1048
1942	1048	1970	1048	1998	1002
1943	1002	1971	1048	1999	1048
1944	1048	1972	1048	2000	1048
1945	1048	1973	1048	2001	1048
1946	1048	1974	1048	2002	1048
1947	1048	1975	1048	2003	1048
1948	1048	1976	1048		

3

1Table B-22: SWP MWDSC demands simulated in Existing Conditions model (TAF/Year) with a2minimum of 1006 TAF and a maximum of 1900 TAF

Year	MWDSC SWP DEMANDS	Year	MWDSC SWP DEMANDS	Year	MWDSC SWP DEMANDS
1921	1524	1949	1649	1977	1732
1922	1192	1950	1596	1978	1125
1923	1502	1951	1564	1979	1312
1924	1746	1952	1077	1980	1197
1925	1725	1953	1575	1981	1619
1926	1562	1954	1618	1982	1281
1927	1328	1955	1545	1983	1006
1928	1682	1956	1424	1984	1477
1929	1737	1957	1544	1985	1537
1930	1707	1958	1312	1986	1344
1931	1756	1959	1840	1987	1689
1932	1458	1960	1900	1988	1811
1933	1723	1961	1900	1989	1882
1934	1766	1962	1473	1990	1746
1935	1481	1963	1419	1991	1742
1936	1554	1964	1691	1992	1664
1937	1282	1965	1370	1993	1344
1938	1248	1966	1507	1994	1524
1939	1458	1967	1270	1995	1281
1940	1497	1968	1577	1996	1477
1941	1013	1969	1156	1997	1344
1942	1368	1970	1498	1998	1281
1943	1463	1971	1622	1999	1477
1944	1348	1972	1796	2000	1504
1945	1397	1973	1396	2001	1746
1946	1495	1974	1434	2002	1882
1947	1739	1975	1504	2003	1504
1948	1744	1976	1798		

3

4

1 B.9. Delivery Specifications

- 2 This section lists the State Water Project (SWP) and Central Valley Project (CVP) contract
- 3 amounts and other water rights assumptions used in the BDCP EIR/EIS Existing Conditions
- 4 and No Action Alternative CALSIM II simulations. These specifications are based upon the
- 5 OCAP BA and have been modified under direction of Reclamation and DWR as described in
- 6 the preceding sections.

Table B-23.	Delta -	Baselines -	Existing	Conditions
-------------	---------	--------------------	----------	------------

SWP CONTRACTOR	Geographic Location	CALSIM II Diversion	Water Right (TAF/yr)	SWP 7 Amoun	Table A at (TAF)	SWP Article 21 Demand (TAF/mon)	CVP Water Service Contracts (TAF/yr)		Other (TAF/yr)
				Ag	M&I		AG	M&I	
North Delta									
City of Vallejo	City of Vallejo	D403A						16.0	
CCWD ^a	Contra Costa County	D420						140.0	
Napa County FC&WCD	North Bay Aqueduct	D403B			23.20	1.0			
Solano County WA	North Bay Aqueduct	D403C			47.41	1.0			
Fairfield, Vacaville and Benecia Agreement	North Bay Aqueduct	D403D	31.60						
City of Antioch	City of Antioch	D406B	18.0						
Total North Delta			49.6	0.0	70.6	2.0	0.0	156.0	
South Delta									
Delta Water Supply Project	City of Stockton	D514A	0.0						
Total South Delta			0.0	0.0	0.0	0.0	0.0	0.0	
Total			49.6	0.0	70.6	2.0	0.0	156.0	

a The new Los Vaqueros module in CALSIM II is used to determine the range of demands that are met by CVP contracts or other water rights.

SWP CONTRACTOR	Geographic Location	CALSIM II Diversion	FRSA Amount (TAF)	Water Right (TAF/yr)	t Table A Amount (TAF) Ag M&I		Article 21 Demand (TAF/mon)	Other (TAF/yr)
Feather River								
Palermo	FRSA	D6		17.6				
County of Butte	Feather River	D201				27.5		
Thermalito	FRSA	D202		8.0				
Western Canal	FRSA	D7A	150.0	145.0				
Joint Board	FRSA	D7B	550.0	5.0				
City of Yuba City	Feather River	D204				9.6		
Feather WD	FRSA	D206A	17.0					
Garden, Oswald, Joint Board	FRSA	D206B						
Garden	FRSA	D206BA	12.9	5.1				
Oswald	FRSA	D206BB	2.9					
Joint Board	FRSA	D206BC	50.0					
Plumas, Tudor	FRSA	D206C						
Plumas	FRSA	D206CA	8.0	6.0				
Tudor	FRSA	D206CB	5.1	0.2				
Total Feather River Area			795.8	186.9	0.0	37.1		
Other								
Yuba County Water Agency	Yuba River	D230						Variable 333.6
Camp Far West ID	Yuba River	D285						12.6
Bear River Exports	American R/DSA70	D283						Variable 95.2
Feather River Exports to American River (left bank to DSA70)	American R/DSA70	D223		11.0				

Table B-24. SWP North-of-the-Delta - Baselines - Existing Conditions

SWP CONTRACTOR	Geographic Location	CALSIM II Diversion	Table A (TA	Amount AF)	Article 21 Demand	Losses (TAF/yr)
	CDA mashes 1.4	D010	Ag	17 CO		
Alameda Co. FC&WCD. Zone 7	SBA reaches 5-6	D810		47.00	1.00 None	
Manieda Co. 1 CC WCD, Zone 7	SDA reactics 5-0	Total		80.62	1.00	
Alameda County WD	SBA reaches 7-8	D814		42.00	1.00	
Santa Clara Valley WD	SBA reach 9	D815		100.00	4.00	
Oak Flat WD	CA reach 2A	D802	5.70		None	
County of Kings	CA reach 8C	D847	9.31		None	
Dudley Ridge WD	CA reach 8D	D849	57.34		1.00	
Empire West Side ID	CA reach 8C	D846	3.00		1.00	
	CA reaches 3, 9-13B	D851	582.31	134.60	None	
	CA reaches 14A-C	D859	118.80		180.00	
Kern County Water Agency	CA reaches 15A-16A	D863	66.42		None	
	CA reach 31A	D867	96.60		None	
		Total	864.13	134.60	180.00	
		D 040	05.00		15.00	
Tulare Lake Basin WSD	CA reaches 8C-8D	D848	95.92		15.00	
San Luis Obispo Co. FC&WCD	CA reaches 33A-35	D869		25.00	None	
Santa Barbara Co. FC&WCD	CA reach 35	D870		45.49	None	
Antelope Valley-East Kern WA	CA reaches 19-20B, 22A-B	D877		141.40	1.00	
	CA reach 31A	D868	12 70		1.00	
Castaic Lake WA	CA reach 30	D896	12.70	82.50	None	
		Total	12.70	82.50	1.00	
Coachella Valley WD	CA reach 26A	D883		121.10	2.00	
Crestline-Lake Arrowhead WA	CA reach 24	D25		5.80	None	
Desert WA	CA reach 26A	D884		50.00	5.00	
Littlerock Creek ID	CA reach 21	D879		2.30	None	
Mojave WA	CA reaches 19, 22B-23	D881		75.80	None	

Table B-25. SWP South-of-the-Delta - Baselines - Existing Conditions

			Table A	Amount	Article 21	
SWD CONTRACTOR	Geographic	CALSIM II			Demand	Losses
SWPCONTRACTOR	Location	Diversion	(17	AF)	Demand	(TAF/vr)
			Ag	M&I	(TAF/mon)	
	CA reach 26A	D885		148.67	90.70	
	CA reach 30	D895		756.69	74.80	
Metropolitan WDSC	CA reaches 28G-H	D899		102.71	27.60	
	CA reach 28J	D27		903.43	6.90	
		Total		1911.50	200.00	
Palmdale WD	CA reaches 20A-B	D878		21.30	None	
San Bernardino Valley MWD	CA reach 26A	D886		102.60	None	
San Gabriel Valley MWD	CA reach 26A	D887		28.80	None	
San Gorgonio Pass WA	CA reach 26A	D888		17.30	None	
	CA reach 29H	D28		3.15	None	
Ventura County FCD	CA reach 30	D29		16.85	None	
-		Total		20.00		
	CA reaches 1-2	D803				7.70
	SBA reaches 1-9	D816				0.60
	CA reach 3	D824				10.80
	CA reach 4	D826				2.60
	CA reach 5	D827				3.90
	CA reach 6	D828				1.20
	CA reach 7	D829				1.60
	CA reaches 8C-13B	D854				11.90
	Wheeler Ridge PP					
	and CA reaches					
	14A-C	D862				3.60
SWP Losses	Chrisman PP and CA	Date				1.00
	reaches 15A-18A	D864				1.80
	Pearblossom PP and	D990				5.10
	CA reaches 17-21	D880		1		5.10
	Mojave PP and CA	D992				1.00
	reaches 22A-25	D882		1		4.00
	A 291	D990				1.40
	24-28J	D889				1.40
	CA reaches 29A-29F	D891				1.90
	Castaic PWP and CA					
	reach 29H	D893				3.10
	REC and CA reach		1	1		-
	30	D894				2.40
Total						63.60
Total			1048.10	3008.11	412.00	63.60

Table B-25. SWP South-of-the-Delta - Baselines - Existing Conditions

Table B-26. CVP North-of-the-Delta - Baselines - Existing Conditions

CVP CONTRACTOR	Geographic Location	CALSIM II Representation		CVP Water Service Contracts (TAF/yr)		Settlement / Exchange Contractor	Water Rights/Non- CVP(TAF/yr)	Level 2 Refuges ^a
		Diversion	Region	AG	M&I	(TAF/yr)		(TAF/yr)
Anderson Cottonwood ID	_	D104A	DSA 58			128.0		
Clear Creek CSD	_	D104B	DSA 58	13.8	1.5			
Bella Vista WD	_	D104C	DSA 58	22.1	2.4			
Shasta CSD	_	D104D	DSA 58		1.0			
Sac R. Misc. Users	Sacramento River	D104F	DSA 58			3.4		
Redding, City of	Redding Subbasin	D104G	DSA 58			21.0		
City of Shasta Lake	_	D104H	DSA 58	2.5	0.3			
Mountain Gate CSD		D104I	DSA 58		0.4			
Shasta County Water Agency		D104J	DSA 58	0.5	0.5			
Redding, City of/Buckeye		D104K	DSA 58		6.1			
Total		D104		38.9	12.2	152.4		0.0
Corming WD		D171	WDA 4	22.0				
Probarta WD	_	D171	WDA 4	25.0	-			
Thomas Crask WD	Corning Canal	D171	WBA 4	5.5				
Thomes Creek WD		DI/I	WDA 4	0.4 32.0	0.0	0.0		0.0
Total				32.9	0.0	0.0		0.0
Kirkwood WD		D172	WBA 4	2.1				
Glide WD		D174	WBA 7N	10.5				
Kanawha WD		D174	WBA 7N	45.0				
Orland-Artois WD		D174	WBA 7N	53.0				
Colusa, County of		D178	WBA 7S	20.0				
Colusa County WD	Tehama-Colusa Canal	D178	WBA 7S	62.2				
Davis WD		D178	WBA 7S	4.0				
Dunnigan WD		D178	WBA 7S	19.0				
La Grande WD	7	D178	WBA 7S	5.0	1			
Westside WD	7	D178	WBA 7S	65.0				
Total				285.8	0.0	0.0		0.0
Sac. River Misc. Users	Sacramento River	D113A	WBA 4			1.5		

Table B-26. CVP North-of-the-Delta - Baselines - Existing Conditions

CVP CONTRACTOR	Geographic Location	CALSIM II Representation		CVP Water Service Contracts (TAF/yr)		Settlement / Exchange Contractor	Water Rights/Non- CVP(TAF/yr)	Level 2 Refuges ^a (TAE/yr)
		Diversion	Region	AG	M&I	(TAF/yr)		(TAF/yr)
Glenn Colusa ID		D143A	WBA 8NN			441.5		
	-	D145A	WBA 8NS			383.5		
Sacramento NWR	Glenn-Colusa Canal	D143B	WBA 8NN					41.3
Delevan NWR	_	D145B	WBA 8NS					19.5
Colusa NWR		D145B	WBA 8NS					24.5
		D180	WBA 8NN	_		7.7	-	
Colusa Drain M.w.C.	Colusa Basin Drain	D182A/ D18302	WBA 8NS			62.3		
Total		D10002		0.0	0.0	895.0		85.4
Princeton-Cordova-Glenn ID		D122A	WBA 8NN			67.8		
Provident ID		D122A	WBA 8NN			54.7		
	Sacramento River	D122A	WBA 8NN			1.8		
Maxwell ID		D122B	WBA 8NS			16.2		
Sycamore Family Trust		D122B	WBA 8NS			31.8		
Roberts Ditch IC		D122B	WBA 8NS			4.4		
Sac P. Mise Users		D122A	WBA 8NN			4.9		
Sac R. Mise. Users		D122B	WBA 8NS			9.5		
Total				0.0	0.0	191.2		0.0
Reclamation District 108		D122B	WBA 8NS	_		12.9		
Divor Cordon Forms	-	D129A	WBA 85			219.1		
River Gardell Farins	-	D129A	WBA 85			29.8		
Meridian Farms WC	-	D128	DSA 15			35.0		
Pelger Mutual WC	-	D128	DSA 15			8.9		
Reclamation District 1004		D128	DSA 15			71.4		
	Sacramento River	D128	DSA 15			4.7		
Sutter MWC		D128	DSA 15			226.0		
Tisdale Irrigation & Drainage Co.	4	D128	DSA 15			9.9		
Sac R. Misc. Users		D128	DSA 15			103.4		
Feather River WD export	4	D129A	DSA 15	20.0		0.9		
Total	4	D120	DUAID	20.0	0.0	722.1		0.0
1000				20.0	0.0	122.1		0.0
				1	1			

Table B-26.	CVP North-of-the-Delta	- Baselines -	- Existing	Conditions
-------------	-------------------------------	---------------	------------	------------

CVP CONTRACTOR	Geographic Location	CALSIM II Representation		CVP Water Service Contracts (TAF/yr)		Settlement / Exchange Contractor	Water Rights/Non- CVP(TAF/yr)	Level 2 Refuges ^a
		Diversion	Region	AG	M&I	(TAF/yr)		(TAF/yr)
Sutter NWR	Sutter bypass water for Sutter NWR	C136B	DSA 69					14.0
Gray Lodge WMA		C216B	DSA 69					41.4
Butte Sink Duck Clubs	Feather River	C221	DSA 69					15.9
Total				0.0	0.0	0.0		71.3
Sac R. Misc. Users		D163	DSA 65			56.8		
City of West Sacramento	t Sacramento River	D165	DSA 65			23.6		
Davis-Woodland Water Supply Project		D165	DSA 65					
Total				0.0	0.0	80.4		0.0
Sac R. Misc. Users		D162A	DSA 70			4.8		
Natomas Central MWC		D162B	DSA 70			120.2		
Pleasant Grove-Verona MWC	Lower Sacramento	D162C	DSA 70			26.3		
City of Sacramento	River	D162D	DSA 70		0.0		0.0	
Placer County Water Agency (Sac Suburban, Roseville and others)		D162E	DSA 7 0		0.0		0.0	
Total					0.0	151.3	0.0	
Total CVP North-of-Delta				377.6	12.2	2193.8	0.0	156.7

^a Level 4 Refuge water needs are not included.

^b Refer to Table 8 for more information

^c The new Los Vaqueros module in CALSIM II is used to determine the range of demands that are met by CVP contracts or other water rights.

Table B-27.	CVP and Wa	ater Rights for	American River	- Baselines -	Existing Conditions

CVP CONTRACTOR	Geographic Location	CALSIM II Diversion	CVP Water Service Contracts (TAF/yr)		Settlement/ Exchange Contractor	Water Rights/ Non-CVP (TAF/vr)	Diversion Limit (Maximum	Footnotes
			AG	M&I ¹	(TAF/yr)	(111, 91)	Capacity) (TAF/Yr)	
Placer County Water Agency	Auburn Dam Site	D300		0.0		35.5	35.5	
Sacramento Suburban Water District ²	Folsom Reservoir	D8A				17.0	17.0	
City of Folsom (includes P.L. 101-514)		D8B		7.0		27.0	34.0	1
Folsom Prison		D8C				2.0	2.0	
San Juan Water District (Placer County)		D8D				17.0	17.0	
San Juan Water District (Sac County) (includes P.L. 101-514)		D8E		24.2		33.0	44.2	1
El Dorado Irrigation District		D8F		7 55		0.0	7 55	1
City of Roseville		D8G		32.0		5.0	37.0	1
Placer County Water Agency		D8H		0.0		5.0	0.0	-
El Dorado County (P.L. 101-514)		D8I		15.0			4.0	1
Total			0.0	85.8	0.0	101.0	162.8	
So. Cal WC/ Arden Cordova WC	Folsom South Canal	D9AA				5.0	5.0	
California Parks and Recreation		D9AB		5.0			1.0	1
SMUD (export)		D9B		30.0		15.0	20.0	1
Canal Losses		D9A				1.0	1.0	
Total			0.0	35.0	0.0	21.0	27.0	
City of Secremente ³		D202A				59.0	59.0	
Carmichael Water District	Lower American River	D302A				38.0	38.0	
Total		D302C	0.0	0.0	0.0	70.0	70.0	
			0.0	0.0	0.0	70.0	70.0	
City of Sacramento		D167A				62.3	62.3	
Sacramento County Water Agency (includes	Lower Sacramento River	D167B		15.0			15.0	
SMUD transfer)		D168C		0.0			0.0	
Sacramento County Water Agency (P.L. 101- 514)		D168C		0.0			0.0	
Sacramento County Water Agency - assumed								
Appropriated Water		D168C				0.0		2
EBMUD (export)		D168B		0.0				3
Total			0.0	15.0	0.0	62.3	77.3	
Terest (Augusting D)				105.55	0.00	200.00		
Total (American K)			0.0	135.75	0.00	289.80		
Table B-28. CVP South-of-the-Delta - Baselines - Existing Conditions

CVP CONTRACTOR	Geographic Location	CALSIM II Diversion	CVP Wat Contracts	ter Service s (TAF/yr)	Settlement / Exchange Contractor	Water Rights / Non-CVP	s Level 2 Refuges ^a (TAF/yr)	Losses (TAF/yr)
	Location	Diversion	AG	M&I	(TAF/yr)	(TAF/yr)	(TAF/yr)	(1111,51)
Byron-Bethany ID		D700	20.6					
		D700		10.0				
Tracy, City of	Upper DMC	D700		5.0				
		D700		5.0				
Banta Carbona ID		D700	20.0					
Total		D700	40.6	20.0	0.0	0.0	0.0	0.0
Del Puerto WD		D701	12.1					
avis WD		D701	5.4					
D D		D701	10.8					
Foothilli WD		D701	34.1					
H ern Canon WD		D701	7.7					
K tang WD		D701	14.7					
Musrestimba WD		D701	15.9					
O uinto WD Q ero WD	Upper DMC	D701	8.6	CVP Water Service Contracts (TAF/yr) Settlement / Exchange Contractor (TAF/yr) Water Rights / Non-CVP (TAF/yr) I 20.6 (TAF/yr) (TAF/yr) (TAF/yr) 20.6 10.0 1 1 20.6 10.0 1 1 5.0 1 1 1 20.0 0 0.0 0.0 1 40.6 20.0 0.0 0.0 1 12.1 1 1 1 1 5.4 1 1 1 1 10.8 1 1 1 1 34.1 1 1 1 1 17.7 1 1 1 1 15.9 1 1 1 1 15.1 1 1 1 1 1 16.6 1				
		D701	5.2					
Romlado WD		D701	9.1					
Sa lower WD		D701	16.6					
West Stanislaus WD		D701	50.0					
Patterson WD		D701	16.5			6.0		
Total	_	D701	206.7	0.0	0.0	6.0	0.0	0.0
								10.5
Upper DMC Loss	Upper DMC	D702						18.5
Panoche WD		D706	6.6					
San Luis WD		D706	65.0					
Laguna WD	Lower DMC Volta	D706	0.8					
Eagle Field WD	Lower Divice Volta	D706	4.6					
Mercy Springs WD		D706	2.8					
Oro Loma WD	1	D706	4.6					1
Total	1	D706	84.4	0.0	0.0	0.0	0.0	0.0
Upper DMC Exchange Contractors	Lower DMC Volta	D707						
entral California ID	LOWEI DIVIC VOILA	D707			140.0			
С								

Table B-28. CVP South-of-the-Delta - Baselines - Existing Conditions

CVP CONTRACTOR	Geographic	CALSIM II	CVP Water Service Contracts (TAF/yr)		Settlement / Exchange	Water Rights / Non-CVP	Level 2 Refuges ^a	Losses (TAF/yr)
	Location	Diversion	AG	M&I	(TAF/yr)	(TAF/yr)	(TAF/yr)	(141/91)
Grasslands via CCID	Lawy DMC Value	D708					81.8	
Los Banos WMA	Lower DIVIC Volta	D708					11.2	
Kesterson NWR		D708					19.6	
Freitas - SJBAP		D708					6.9	
Salt Slough - SJBAP		D708					10.3	
China Island - SJBAP	Lower DMC Volta	D708					7.2	
Volta WMA		D708					15.9	
Grassland via Volta Wasteway		D708					23.2	
Total		D708	0.0	0.0	140.0	0.0	176.1	0.0
Fresno Slough WD		D607A	4.0			0.9		
James ID		D607A	35.3			9.7		
Coelho Family Trust	-	D607A	2.1			1.3		
Tranquillity ID	-	D607A	13.8			20.2		
Tranquillity PUD	1	D607A	0.1			0.1		
Reclamation District 1606	1	D607A	0.2			0.3		
Exchange Contractors	-	D607B						
Central California ID	San Joaquin River at	D607B			392.4			
Columbia Canal Co.	Mendota Pool	D607B			59.0			
Firebaugh Canal Co.	1	D607B			85.0			
San Luis Canal Co.	1	D607B			23.6			
M.L. Dudley Company	1	D607B				2.3		
Grasslands WD	-	D607C					29.0	
Mendota WMA	-	D607C					37.9	
Losses	1	D607D						101.5
Total		D607	55.5	0.0	560.0	34.8	66.9	101.5
Exchange Contractors		D608B						
San Luis Canal Co.		D608B			140.0			
Grasslands WD		D608C					2.3	
Los Banos WMA	San Joaquin River at	D608C					12.4	
San Luis NWR	Sack Dam	D608C					23.8	
West Bear Creek NWR		D608C					7.5	
East Bear Creek NWR		D608C					0.0	
Total		D608	0.0	0.0	140.0	0.0	46.0	0.0

Table B-28. CVP South-of-the-Delta - Baselines - Existing Conditions

CVP CONTRACTOR	Geographic	CALSIM II Diversion	CVP Wat Contracts	ter Service s (TAF/yr)	Settlement / Exchange	Water Rights / Non-CVP	Level 2 Refuges ^a	Losses (TAF/vr)
	Location	AG Ma	M&I	(TAF/yr)	(TAF/yr)	(TAF/yr)	(IIII/yI)	
San Benito County WD (Ag)		D710	35.6					
Santa Clara Valley WD (Ag)		D710	33.1					
Pajaro Valley WD	Con Foline	D710	6.3					
San Benito County WD (M&I)	San renpe	D711		8.3				
Santa Clara Valley WD (M&I)		D711		119.4				
Total		D710/D711	74.9	127.7	0.0	0.0	0.0	0.0
San Luis WD		D833	60.1					
CA. State Darks and Dec		D922	2.2					
Affense/Les Pares Crevel Co	CA reach 3	D033	2.5					
Total	_	D033	0.5	0.0	0.0	0.0	0.0	0.0
10141		D855	02.0	0.0	0.0	0.0	0.0	0.0
Panoche WD	CVP Dos Amigos PP/	D835	87.4					
Pacheco WD	CA reach 4	D835	10.1					
Total		D835	97.5	0.0	0.0	0.0	0.0	0.0
Westlands WD (Centinella WD)		D836	2.5					
Westlands WD (Broadview WD)		D836	27.0					
Westlands WD (Mercy Springs WD)	CA reach 4	D836	4.2					
Westlands WD (Widern WD)		D836	3.0					
Total		D836	36.7	0.0	0.0	0.0	0.0	0.0
Westlands WD: CA Joint Reach 4	CA reach 4	D837	219.0					
Westlands WD: CA Joint Reach 5	CA reach 5	D839	570.0					
Westlands WD: CA Joint Reach 6	CA reach 6	D841	219.0					
Westlands WD: CA Joint Reach 7	CA reach 7	D843	142.0					
Total			1150.0	0.0	0.0	0.0	0.0	0.0
Avenal, City of	_	D844		3.5		3.5		
Coalinga, City of	CA reach 7	D844		10.0				
Huron, City of		D844		3.0				
Total		D844	0.0	16.5	0.0	3.5	0.0	0.0

Table B-28.	. CVP South-of-the-Delta	- Baselines -	Existing Conditions
-------------	--------------------------	---------------	---------------------

CVP CONTRACTOR	Geographic Location	CALSIM II Diversion	CVP Water Service Contracts (TAF/yr)		Settlement / Exchange Contractor	Water Rights / Non-CVP	Level 2 Refuges ^a (TAF/vr)	Losses (TAF/vr)
	Location	Diversion	AG	M&I	(TAF/yr)	(TAF/yr)	(TAF/yr)	(,,-)
CA Joint Reach 3 - Loss	CVP Dos Amigos PP/CA reach 3	D834						2.5
CA Joint Reach 4 - Loss	CA reach 4	D838						10.1
CA Joint Reach 5 - Loss	CA reach 5	D840						30.1
CA Joint Reach 6 - Loss	CA reach 6	D842						12.5
CA Joint Reach 7 - Loss	CA reach 7	D845						8.5
Total			0.0	0.0	0.0	0.0	0.0	63.7
Cross Valley Canal - CVP								
Fresno, County of		D855	3.0					
Hills Valley ID-Amendatory		D855	3.3					
Kern-Tulare WD		D855	40.0					
Lower Tule River ID		D855	31.1					
Pixley ID	CA reach 14	D855	31.1					
Rag Gulch WD	CA leach 14	D855	13.3					
Tri-Valley WD		D855	1.1					
Tulare, County of		D855	5.3					
Kern NWR		D856					14.3	
Pixley NWR		D856					1.3	
Total			128.3	0.0	0.0	0.0	15.6	0.0
Total CVP South-of-Delta			1937.1	164.2	840.0	44.3	304.6	183.7

^a Level 4 Refuge water needs are not included

CVP CONTRACTOR	CALSIM II Representation			Geograph	ic Location	Settlement Contractor Supply (AF/year)			
				-	Bank		FF 5 (⁻ 5 ⁻	,	
	Diversion	DSA	WBA	River Mile	(Left, Right)	Base	Project	Total	
Riverview Golf & Country Club				240.8	L	255	25	280	
Daniell, Harry			3	240.3	L	13	7	20	
Redding Rancheria (Frmrly High-Low Nursery)				240.2	L	70	135	205	
Lake Cal. Property Owners Assn			2	221	R	580	200	780	
Leviathan, Inc.	D104F	58	2	221	R	355	345	700	
Driscoll Strawberry Associates, Inc.				207.5	L	330	490	820	
J. B. Unlimited, Inc.			2	197	L	220	290	510	
Micke, Daniel & Nina			3	196.6	L	81	19	100	
Gjermann, Hal				196.55	L	8	4	12	
Total	D104F					1,912	1,515	3,427	
Meyer, Herbert (Frmrly Diamond Holdings, Inc.)		58		191.5	R	195	230	425	
Exchange Bank (The Nature Conservancy)				168.85	R	210	570	780	
Rubio, Exequiel (Frmrly Elliott&Hadracky)				166.8	R	11	5	16	
Penner, Roger & Leona	D113A	10	4	156.8	R	159	21	180	
Freeman, Vola		10		156.1	R	11	19	30	
Mclane, Robert				155.6	R	17	23	40	
Alexander, Thomas Et Ux				155.6	R	9	13	22	
Total	D113A					612	881	1,493	
Green Valley Corp. (Frmrly Cannell, F.)				106	R	680	210	890	
Green Valley Corp. (Frmrly Stegeman Ranch)				106	R	555	325	880	
Tuttle, Charles W Trust	D122A	15	8NN	103.9	R	120	270	390	
Cachil Dehe Band Of Wintun Indians(Lee Farms)	DIZZA	15	OININ	103.7	R	80	100	180	
Seaver, Charles				99.3	R	200	260	460	
Odysseus Farms				93.15	R	1,920	150	2,070	
Total	D122A					3,555	1,315	4,870	
King, Ben And Laura (Frmrly Dommer, E.)				89.2	R	12	7	19	
King, Laura				89.2	R	13	13	26	
Wisler, John W. Jr. (Frmrly Cribari, E.)				88	R	8	27	35	
Mehrhof, Susan M.(frmrly.Swinford Tract)				87.7	R	164	16	180	
Steidlmayer, Anthony E., Et Al.	D122B	15	8NS	83	R	610	700	1,310	
Jansen, Peter & Sandy (Frmrly E. J. Ritchey)				70.4	R	150	40	190	
Gillaspy, William & Mary (Frmrly Fay Gillaspy)				70.4	R	120	90	210	
Beckley, Ralph, And Ophelia	_			70.4	R	165	135	300	
Driver, Gary, Et Al.				69.2	R	8	22	30	

Table B-29. Sacramento River Miscellaneous Users Breakdown by CALSIM II Arc location - Baselines - Existing Conditions

CVP CONTRACTOR	CALSIN	A II Renre	sentation	Geograph	ic Location	Settlement Contractor			
	ention	i ii itepi e	jentation	Geograph	Geographic Location Bank		pply (AF/ye	ar)	
				54	Bank			-	
TT ' 1 ' 1	Diversion	DSA	WBA	River Mile	(Left, Right)	Base	Project	Total	
Heidrick, Mildred M.	_			30.6	R	86	34	120	
Tenhunfeld, F. Wallace, Jack, Et Al.	D122B	65	8NS	29.7	R	2,680	960	3,640	
Heidrick, Mildred M.	_			29.2, 30.3	R	370	60	430	
Hershey Land Company				28.1	R	2,570	450	3,020	
Total	D122B					6,956	2,554	9,510	
Pacific Realty Assoc., L.P. (M&T Chico Ranch)				140.8, 141.5	L	16,980	976	17,956	
Spence, Ruth Ann (Spence Farms)				104.8	L	630	100	730	
Anderson, Arthur Et Al (Frmrly Westfall, Mary)				102.5	L	445	45	490	
Forry, Laurie E.				99.8	L	2,285	0	2,285	
Otterson, Mike (Frmrly Wells Joyce M.)				98.9	L	1,515	300	1,815	
Nene Ranch, Llc (Frmrly Hollins, Mariette B.)				98.6	L	1,360	200	1,560	
Griffin, Jospeh, Et Al.				95.8	L	1,610	1,150	2,760	
Baber, Jack Et Al.				95.6	L	3,630	2,630	6,260	
Eastside Mwc (Frmrly A&F Boeger Corp.)				95.25	L	2,170	634	2,804	
Zelmar Ranch, Inc. (Frmrly Martin, Andrew)				92.5	L	112	52	164	
Gomes, Judith (Frmrly. Martin, Andrew)				92.5	L	168	78	246	
Butte Creek Farms				89.26	L	20	16	36	
Butte Creek Farms			9	89.24	L	40	55	95	
Butte Creek Farms (Frmrly Mayfair Farms)				88.7	L	196	8	204	
Butte Creek Farms(Area 1)				88.7	L	300	340	640	
Howard, Theordore W. And Linda M.				88.7	L	74	2	76	
Locvich, Paul	D128	15		88.2	L	80	70	150	
Ehrke, Allen A. Et Ux				86.8	L	220	160	380	
Fedora, Sib Et Al.				82.7	L	190	20	210	
Reische, Laverne Et Ux				82.5	L	183	267	450	
Reische, Eric				82.5	L	37	53	90	
Tarke, Stephen & Debra				81.5	L	1,700	1,000	2,700	
Churkin, Michael, Et Al.				79.5	L	75	55	130	
Eggleston, Ronald Et Ux				79	L	53	12	65	
Hale, Judith Et Al.				79	L	117	13	130	
Hale, Judith Et Al.				79	L	58	17	75	
Pires, Lawrence And Beverly				77.9	L	185	95	280	
Davis, Ina M.				76.2	L	71	14	85	
Chesney, Adona (R & A, Bypass Trust)			10	76.15	L	310	390	700	
Andreotti, Beverly F., Et Al.	7		18	72.1	L	2,060	1,560	3,620	
Mclaughlin, Jack	1			72	L	430	220	650	
Lomo Cold Storage (& J. J. Micheli)]			67.5	L	6,410	700	7,110	
Anderson, R And J, Prop.				67.1	L	149	88	237	

Table B-29. Sacramento River Miscellaneous Users Breakdown by CALSIM II Arc location - Baselines - Existing Conditions

CVP CONTRACTOR	CALSIN	I II Ronros	sontation	Ceograph	ic Location	Settlement Contractor			
	CALSIN	i ii Kepres		Geographi		Su	pply (AF/ye	ar)	
					Bank				
	Diversion	DSA	WBA	River Mile	(Left, Right)	Base	Project	Total	
Lonon, Michael Et Al.				67.1	L	715	440	1,155	
Oji Brothers Farm, Inc.				63.9	L	1,340	1,860	3,200	
Young, Russell, Et Al.				63.3	L	2	8	10	
Sekhon, Arjinderpal & Daljit			18	62.3	L	350	470	820	
Butler, Leslie A., Et Ux				60.5, 61.8	L	180	280	460	
Howald Farms Inc.				60.4	L	1,350	1,410	2,760	
Kary, Carol				59.8	L	400	600	1,000	
Dennis Wilson Farms (Frmrly M&L Farms (Area 1)				58.9	L	295	60	355	
Lockett, William P. & Jean B.				58.3	L	370	47	417	
O'brien, Janice				58.3	L	550	289	839	
Wirth, Marilyn L. (Frmrly Davis, Marilyn)				57.75	L	180	340	520	
Bardis, C. Et Al 9(Reynen/Broomieside Farms)				55.1	L	8,070	2,000	10,070	
Wakida, Tomio				53.9	L	50	275	325	
Wakida, Tomio				52.3	L	25	135	160	
Nelson, Thomas L., Et Ux				52	L	38	98	136	
Rauf, Abdul & Tahmina (Frmrly Forster, J.)				50	L	2,450	710	3,160	
Hiatt, Thomas(Hiatt Family Trust)				49, 49.7	L	947	538	1,485	
Hiatt, Thomas(Illerich, Phillip)				49	L	372	212	584	
Oji, Mitsue Family Partnership	D128	15		48.7	L	3,430	1,310	4,740	
Henle, Thomas N.				46.5	L	935	0	935	
Windswept Land&Livestock Co. (P. Burroughs)				44.2, 45.6, 46.45	L	4,040	0	4,040	
Schreiner, Joe & Cleo			10	38.8	L	180	20	200	
Munson, James T., Et Ux			19	37.75	L	70	85	155	
Klsy, Llc (Frmrly Mirbach-Harff Antonius)				37.2	L	80	90	170	
Driver, John A. & Clare M.				36.45	L	150	80	230	
Driver, John A. & Clare M.				36.45	L	6	10	16	
Quad-H Ranches, Inc.				36.2	L	190	310	500	
Giusti, Richard, Et Al.				36.2	L	850	760	1,610	
Drew, Jerry				35.85	L	24	12	36	
Jaeger, William, Et Al.						385	485	870	
Morehead, Joseph Et Ux						115	140	255	
Heidrick, Joe Jr.				33.75	L	360	200	560	
Leiser, Dorothy L.				33.75	L	36	24	60	
Mcm Properties Inc				33.75	L	860	610	1,470	
Richter, Henry D. (Richter Brothers, Et Al.)				33.2	L	1,750	1,030	2,780	
Furlan, Emile, Et Ux	1			32.5, 33.2	L	570	350	920	
Byrd, Anna C. And Osborne, Jane	1			26.8, 30.5	L	1,055	200	1,255	
Total	D128					76,633	26,808	103,441	

Table B-29. Sacramento River Miscellaneous Users Breakdown by CALSIM II Arc location - Baselines - Existing Conditions

CVP CONTRACTOR	CALSIM II Representation			Geographi	ic Location	Settlement Contractor Supply (AF/year)			
	Diversion	DSA	WBA	River Mile	Bank (Left, Right)	Base	Project	Total	
Edson, Wallace L. & Mary O. *	Diversion	DSA	WDA	33.85	R	40	64	104	
Driver, William A.(Frmrly Collier, T.)				32.5	R	54	106	160	
Driver, Gregory E.(Frmrly Collier, T.)	D129A	65	8S	32.5	R	54	106	160	
Giovannetti, B.E. & Mary				31.5	R	470	50	520	
Total	D129A					618	326	944	
Odysseus Farms Prtnrshp.(Frmrly Leal, Robert)				19.6	L	220	410	630	
Cummings, Wm. (Frmrly Verona Farming Prtnrshp)				18.7	L	180	120	300	
Lauppe, Burton And Kathyrn				18.45	L	720	230	950	
Natomas Basin Conservancy				18.2	L	221	269	490	
E.L.H. Sutter Properties, Inc.	DICA	70	NT/ A	18.2	L	12	28	40	
Lauppe, Burton And Kathyrn	D102A	70	N/A	18.2	L	153	197	350	
Siddiqui, J.&A.T.				10.75	L	110	20	130	
Willey, Edwin, Mr. And Mrs.				10.75	L	75	20	95	
Siddiqui, Javed&Amna (Et Al.&Fmly.Partnshp.)				10.25	L	860	200	1,060	
Sacramento, County Of				9.3	L	520	230	750	
Total	D162A					3,071	1,724	4,795	
Sacramento River Ranches(Frmrly Deseret Farms)				16.6, 17.0, 22.5	R	4,000	0	4,000	
Knaggs Walnut Ranches Co. Lp				16.1	R	630	0	630	
Conway Preservation Group	DIC			12	R	50,190	672	50,862	
Wilson Ranch Partnership	D163	65	N/A	11.1	R	370	0	370	
Reclamation Distrs. 900 And 1000 (Frm.Amen,H.)				9.35	R	281	123	404	
Riverby Limited Partnership				5.25	R	470	30	500	
Total	D163					55,941	825	56,766	
Total						149,298	35,948	185,246	

Table B-29. Sacramento River Miscellaneous Users Breakdown by CALSIM II Arc location - Baselines - Existing Conditions

^a Source: Settlement contractor data provided by USBR

Table B-30.	Delta -	Baselines -	- Future	Conditions

SWP CONTRACTOR	Geographic Location	CALSIM II Diversion	Water Right (TAF/yr)	SWP 7 Amoun	Table A at (TAF)	SWP Article 21 Demand (TAF/mon)	CVP Water Service Contracts (TAF/yr)		Other (TAF/yr)
				Ag	M&I	· · · ·	AG	M&I	
North Delta									
City of Vallejo	City of Vallejo	D403A						16.0	
CCWD ^a	Contra Costa County	D420						195.0	
Napa County FC&WCD	North Bay Aqueduct	D403B			29.02	1.0			
Solano County WA	North Bay Aqueduct	D403C			47.76	1.0			
Fairfield, Vacaville and Benecia Agreement	North Bay Aqueduct	D403D	31.60						
City of Antioch	City of Antioch	D406B	18.0						
Total North Delta			49.6	0.0	76.8	2.0	0.0	211.0	
South Delta									
Delta Water Supply Project	City of Stockton	D514A	32.4						
Total South Delta			32.4	0.0	0.0	0.0	0.0	0.0	
Total			82.0	0.0	76.8	2.0	0.0	211.0	

a The new Los Vaqueros module in CALSIM II is used to determine the range of demands that are met by CVP contracts or other water rights.

SWP CONTRACTOR	Geographic Location	CALSIM II Diversion	FRSA Amount (TAF)	Water Right (TAF/yr)	Table A (T	Amount AF)	Article 21 Demand (TAF/mon)	Other (TAF/yr)
Feather River			(1111)		Ag	Ivici		
Palermo	FRSA	D6		17.6				
County of Butte	Feather River	D201				27.5		
Thermalito	FRSA	D202		8.0				
Western Canal	FRSA	D7A	150.0	145.0				
Joint Board	FRSA	D7B	550.0	5.0				
City of Yuba City	Feather River	D204				9.6		
Feather WD	FRSA	D206A	17.0					
Garden, Oswald, Joint Board	FRSA	D206B						
	FRSA	D206BA	12.9	5.1				
Garden	FRSA	D206BB	2.9					
Oswald	FRSA	D206BC	50.0					
PRintag, Ptictor	FRSA	D206C						
	FRSA	D206CA	8.0	6.0				
Plumas	FRSA	D206CB	5.1	0.2				
Tudor								
Total Feather River Area			795.8	186.9	0.0	37.1		
Other								
Yuba County Water Agency	Yuba River	D230						Variable 333.6
Camp Far West ID	Yuba River	D285						12.6
Bear River Exports	American R/DSA70	D283						Variable 95.2
Feather River Exports to American River (left bank to DSA70)	American R/DSA70	D223		11.0				

Table B-31. SWP North-of-the-Delta - Baselines - Future Conditions

SWP CONTRACTOR	Geographic Location	CALSIM II Diversion	Table A (TA	Amount AF)	Article 21 Demand	Losses (TAF/yr)
	CDA 1 14	D010	Ag	Mai		
Alameda Co. EC&WCD. Zone 7	SBA reaches 5-6	D810	-	28.88	1.00 None	
Alameda Co. I C& WCD, Zone 7	SDA leaches 5-0	Total		80.62	1.00	
Alameda County WD	SBA reaches 7-8	D814		42.00	1.00	
Santa Clara Valley WD	SBA reach 9	D815		100.00	4.00	
Oak Flat WD	CA reach 2A	D802	5.70		None	
County of Kings	CA reach 8C	D847	9.00		None	
Dudley Ridge WD	CA reach 8D	D849	57.34		1.00	
Empire West Side ID	CA reach 8C	D846	3.00		1.00	
	CA reaches 3, 9-13B	D851	600.61	134.60	None	
	CA reaches 14A-C	D859	111.68		180.00	
Kern County Water Agency	CA reaches 15A-16A	D863	62.77		None	
	CA reach 31A	D867	73.07		None	
		Total	848.13	134.60	180.00	
		2010			1 7 0 0	
Tulare Lake Basin WSD	CA reaches 8C-8D	D848	96.23		15.00	
San Luis Obispo Co. FC&WCD	CA reaches 33A-35	D869		25.00	None	
Santa Barbara Co. FC&WCD	CA reach 35	D870		45.49	None	
Antelope Valley-East Kern WA	CA reaches 19-20B, 22A-B	D877		141.40	1.00	
	CA reach 31A	D868	12 70		1.00	
Castaic Lake WA	CA reach 30	D896	12.70	82.50	None	
		Total	12.70	82.50	1.00	
Coachella Valley WD	CA reach 26A	D883		133.10	2.00	
Crestline-Lake Arrowhead WA	CA reach 24	D25		5.80	None	
Desert WA	CA reach 26A	D884		54.00	5.00	
Littlerock Creek ID	CA reach 21	D879		2.30	None	
Mojave WA	CA reaches 19, 22B-23	D881		75.80	None	

Table B-32. SWP South-of-the-Delta - Baselines - Future Conditions

SWP CONTRACTOR	Geographic Location	CALSIM II Diversion	Table A (TA	Amount AF) M&I	Article 21 Demand (TAF/mon)	Losses (TAF/yr)
	CA reach 26A	D885	8	778.13	90.70	
	CA reach 30	D895		719.66	74.80	
Metropolitan WDSC	CA reaches 28G-H	D899		410.31	27.60	
*	CA reach 28J	D27		3.40	6.90	
		Total		1911.50	200.00	
Palmdale WD	CA reaches 20A-B	D878		21.30	None	
San Bernardino Valley MWD	CA reach 26A	D886		102.60	None	
San Gabriel Valley MWD	CA reach 26A	D887		28.80	None	
San Gorgonio Pass WA	CA reach 26A	D888		17.30	None	
	CA reach 29H	D28		3.15	None	
Ventura County FCD	CA reach 30	D29		16.85	None	
-		Total		20.00		
	CA reaches 1-2	D803				7.70
	SBA reaches 1-9	D816				0.60
	CA reach 3	D824				10.80
	CA reach 4	D826				2.60
	CA reach 5	D827				3.90
	CA reach 6	D828				1.20
	CA reach 7	D829				1.60
	CA reaches 8C-13B	D854				11.90
	Wheeler Ridge PP					
	and CA reaches					
	14A-C	D862				3.60
SWP Losses	Chrisman PP and CA reaches 15A-18A	D864				1.80
	Pearblossom PP and					
	CA reaches 17-21	D880				5.10
	Mojave PP and CA					
	reaches 22A-23	D882				4.00
	REC and CA reaches					
	24-28J	D889				1.40
	CA reaches 29A-29F	D891				1.90
	Castaic PWP and CA					
	reach 29H	D893				3.10
	KEU and CA reach	D804				2.40
Total	50	D074				63.60
				ļ		00.00
Total			1032 10	302/ 11	412.00	63.60
10(a)	1	1	1052.10	3024.11	412.00	05.00

 Table B-32.
 SWP South-of-the-Delta - Baselines - Future Conditions

Table B-33. CVP North-of-the-Delta - Baselines - Future Conditions

CVP CONTRACTOR	Geographic Location	CALSIM II Representation		CVP Water Service Contracts (TAF/yr)		Settlement / Exchange Contractor	Water Rights/Non- CVP(TAF/yr)	Level 2 Refuges ^a
		Diversion	Region	AG	M&I	(TAF/yr)		(1 AF/yr)
Anderson Cottonwood ID	_	D104A	DSA 58			128.0		
Clear Creek CSD	_	D104B	DSA 58	13.8	1.5			
Bella Vista WD		D104C	DSA 58	22.1	2.4			
Shasta CSD		D104D	DSA 58		1.0			
Sac R. Misc. Users	Sacramento River	D104F	DSA 58			3.4		
Redding, City of	Redding Subbasin	D104G	DSA 58			21.0		
City of Shasta Lake		D104H	DSA 58	2.5	0.3			
Mountain Gate CSD		D104I	DSA 58		0.4			
Shasta County Water Agency		D104J	DSA 58	0.5	0.5			
Redding, City of/Buckeye		D104K	DSA 58		6.1			
Total		D104		38.9	12.2	152.4		0.0
Corning WD		D171	WBA 4	23.0				
Proberta WD	Coming Compl	D171	WBA 4	3.5				
Thomes Creek WD	Corning Canal	D171	WBA 4	6.4				
Total				32.9	0.0	0.0		0.0
Kirkwood WD		D172	WBA 4	2.1				
Glide WD		D174	WBA 7N	10.5				
Kanawha WD		D174	WBA 7N	45.0				
Orland-Artois WD		D174	WBA 7N	53.0				
Colusa, County of		D178	WBA 7S	20.0				
Colusa County WD	Tehama-Colusa Canal	D178	WBA 7S	62.2				
Davis WD		D178	WBA 7S	4.0				
Dunnigan WD]	D178	WBA 7S	19.0				
La Grande WD]	D178	WBA 7S	5.0				
Westside WD	1	D178	WBA 7S	65.0	1			
Total	1			285.8	0.0	0.0		0.0
Sac. River Misc. Users	Sacramento River	D113A	WBA 4			1.5		

Table B-33. CVP North-of-the-Delta - Baselines - Future Conditions

CVP CONTRACTOR	Geographic Location	CALSIM II Representation		CVP Water Service Contracts (TAF/yr)		Settlement / Exchange Contractor	Water Rights/Non- CVP(TAF/yr)	Level 2 Refuges ^a
		Diversion	Region	AG	M&I	(TAF/yr)		(TAF/yI)
Glenn Colusa ID		D143A	WBA 8NN			441.5		
	-	D145A	WBA 8NS			383.5		
Sacramento NWR	Glenn-Colusa Canal	D143B	WBA 8NN					53.4
Delevan NWR	_	D145B	WBA 8NS					24.0
Colusa NWR		D145B	WBA 8NS					28.8
Coluce Durin MWC		D180	WBA 8NN	_		7.7		
Colusa Drain M.w.C.	Colusa Basin Drain	D182A/ D18302	WBA 8NS			62.3		
Total		D10502		0.0	0.0	895.0		106.2
Princeton-Cordova-Glenn ID		D122A	WBA 8NN			67.8		
Provident ID		D122A	WBA 8NN			54.7		
Maxwell ID		D122A	WBA 8NN			1.8		
		D122B	WBA 8NS			16.2		
Sycamore Family Trust	Sacramento River	D122B	WBA 8NS			31.8		
Roberts Ditch IC		D122B	WBA 8NS			4.4		
Sac R. Misc. Users		D122A	WBA 8NN			4.9		
T. ()	-	D122B	WBA 8NS	0.0	0.0	9.5		0.0
lotal				0.0	0.0	191.2		0.0
		DICOR	WD A ONC			12.0		
Reclamation District 108		D122B	WBA 8NS			219.1		
River Garden Farms		D129A	WBA 8S			29.8		
Meridian Farms WC		D128	DSA 15			35.0		
Pelger Mutual WC		D128	DSA 15			8.9		
Reclamation District 1004		D128	DSA 15			71.4		
Carter MWC	Sacramento River	D128	DSA 15			47		
Sutter MWC		D128	DSA 15			226.0		
Tisdale Irrigation & Drainage Co	1	D128	DSA 15			99		
	1	D128	DSA 15			103.4		
Sac R. Misc. Users]	D129A	WBA 8S			0.9		
Feather River WD export]	D128	DSA 15	20.0				
Total]			20.0	0.0	722.1		0.0

Table B-33. CVP North-of-the-Delta - Baselines - Future Conditions

CVP CONTRACTOR	Geographic Location	CALSIM II Representation		CVP Water Service Contracts (TAF/yr)		Settlement / Exchange Contractor	Water Rights/Non- CVP(TAF/yr)	Level 2 Refuges ^a
		Diversion	Region	AG	M&I	(TAF/yr)		(1AF/yr)
Sutter NWR	Sutter bypass water for Sutter NWR	C136B	DSA 69					25.9
Gray Lodge WMA		C216B	DSA 69					41.4
Butte Sink Duck Clubs	Feather River	C221	DSA 69					15.9
Total				0.0	0.0	0.0		83.2
Sac R. Misc. Users		D163	DSA 65			56.8		
City of West Sacramento		D165	DSA 65			23.6		
Davis-Woodland Water Supply Project	Sacramento River	D165	DSA 65	DSA 65				
Total	-			0.0	0.0	80.4		0.0
Sac R. Misc. Users		D162A	DSA 70			4.8		
Natomas Central MWC		D162B	DSA 70			120.2		
Pleasant Grove-Verona MWC	Lower Sacramento	D162C	DSA 70			26.3		
City of Sacramento (PCWA)	River	D162D	DSA 70		0.0		0.0	
PCWA (Water Rights)	1	D162E	DSA 70		0.0		0.0	
Total				0.0	0.0	151.3	0.0	
Total CVP North-of-Delta				377.6	12.2	2193.8	0.0	189.4

^a Level 4 Refuge water needs are not included.

^b Refer to Table 8 for more information

Table B-34.	CVP and	Water Right	s for Ameri	can River	- Baselines	- Future	Conditions
-------------	---------	-------------	-------------	-----------	-------------	----------	------------

CVP CONTRACTOR	Geographic Location	CALSIM II Diversion	CVP Wa Contract	ter Service s (TAF/yr)	Settlement/ Exchange Contractor	Water Rights/ Non-CVP (TAF/yr)	Diversion Limits (TAF/Yr)	Foot-notes
			AG	M&I ¹	(TAF/yr)	(1111,91)		
Placer County Water Agency	Auburn Dam Site	D300		0.0		35.5	35.5	
Sacramento Suburban Water District ²		D8A				17.0	17.0	
City of Folsom (includes P.L. 101-514)	+	D8B		7.0		27.0	34.0	1
Folsom Prison	+	D8C		7.0		5.0	5.0	1
San Juan Water District (Placer County)		D8D				24.0	24.0	
San Juan Water District (Sac County)		202				21.0	21.0	
(includes P.L. 101-514)	Folsom Reservoir	D8E		24.2		33.0	57.2	1
El Dorado Irrigation District		D8F		7.55		17.0	24.55	1
City of Roseville		D8G		32.0		5.0	37.0	1
Placer County Water Agency	+	D8H		35.0			35.0	1
El Dorado County (P.L. 101-514)		D8I		15.0			15.0	1
Total			0.0	120.8	0.0	128.0	248.8	
So. Cal WC/ Arden Cordova WC		D9AA				5.0	5.0	
California Parks and Recreation		D9AB		5.0			5.0	1
SMUD (export)	Folsom South Canal	D9B		30.0		15.0	45.0	1
Canal Losses		D9A				1.0	1.0	
Total			0.0	35.0	0.0	21.0	56.0	
3								
City of Sacramento	Lower American	D302A				82.26	82.26	
Carmichael Water District	River	D302C				12.0	12.0	
Total			0.0	0.0	0.0	94.3	94.3	
City of Sacramento		D167A				162.74	162.74	
Sacramento County Water Agency (including		D167B		10.0			10.0	1
SMUD transfer)		D168C		20.0			20.0	
Sacramento County Water Agency (P.L. 101- 514)	Lower Sacramento	D168C		15.0			15.0	
Sacramento County Water Agency - assumed Appropriated Water	Kiver	D168C				varies ⁴	varies ⁴	2
EBMUD (export)		D168B		133.0			varies ⁵	3
Total	1		0.0	178.0	0.0	varies ⁴	varies ^{4,5}	
Total			0.0	333.75	0.0	varies ⁴	varies ^{4,5}	

Table B-35. CVP South-of-the-Delta - Baselines - Future Conditions

CVP CONTRACTOR	Geographic Location	CALSIM II Diversion	CVP Wat Contract	ter Service s (TAF/yr)	Settlement / Exchange Contractor	Water Rights / Non-CVP	Level 2 Refuges ^a	Losses (TAF/yr)
			AG	M&I	(TAF/yr)	(TAF/yr)	(TAF/yr)	
Byron-Bethany ID		D700	20.6					
		D700		10.0				
Tracy, City of	Upper DMC	D700		5.0				
	- oppor Divic	D700		5.0				
Banta Carbona ID		D700	20.0					
Total		D700	40.6	20.0	0.0	0.0	0.0	0.0
Del Puerto WD		D701	12.1					
		D701	5.4					
Davis WD		D701	10.8					
Foothill WD		D701	34.1					
Hospital WD		D701	7.7					
Kern Canon WD Mustang WD Orestimba WD Quinto WD	-	D701	14.7					
		D701	15.9					
	Upper DMC	D701	8.6					
		D701	5.2					
Romero WD		D701	9.1					
Salado WD		D701	16.6					
Wustigmans MB WD		D701	50.0					
Patterson WD		D701	16.5			6.0		
Total		D701	206.7	0.0	0.0	6.0	0.0	0.0
	U. DVC	D702						10.5
Upper DMC Loss	Upper DMC	D702						18.5
Panoche WD		D706	6.6					
San Luis WD		D706	65.0					
Laguna WD	Lower DMC Volta	D706	0.8					
Eagle Field WD	Lower Divice Volta	D706	4.6					
Mercy Springs WD		D706	2.8					
Oro Loma WD	7	D706	4.6					
Total		D706	84.4	0.0	0.0	0.0	0.0	0.0
Upper DMC Exchange Contractors	Lower DMC Value	D707						
	Lower DIMC Volta	D707			140.0			
Central California ID								

Table B-35. CVP South-of-the-Delta - Baselines - Future Conditions

CVP CONTRACTOR	Geographic Location	CALSIM II Diversion	CVP Water Service Contracts (TAF/yr)		Settlement / Exchange Contractor	Water Rights / Non-CVP	Level 2 Refuges ^a	Losses (TAF/vr)
	Location	Diversion	AG	M&I	(TAF/yr)	(TAF/yr)	(TAF/yr)	(1127,91)
Grasslands via CCID	Lower DMC Volta	D708					81.8	
Los Banos WMA	Lower Divice volta	D708					11.2	
Kesterson NWR		D708					10.5	
Freitas - SJBAP		D708					6.3	
Salt Slough - SJBAP		D708					8.6	
China Island - SJBAP	Lower DMC Volta	D708					7.0	
Volta WMA		D708					13.0	
Grassland via Volta Wasteway		D708					23.2	
Total		D708	0.0	0.0	140.0	0.0	161.5	0.0
Fresno Slough WD		D607A	4.0			0.9		
James ID		D607A	35.3			9.7		
Coelho Family Trust		D607A	2.1			1.3		
Tranquillity ID		D607A	13.8			20.2		
Tranquillity PUD		D607A	0.1			0.1		
Reclamation District 1606	-	D607A	0.2			0.3		
Exchange Contractors		D607B						
	San Joaquin River at	D607B			392.4			
Central California ID	Mendota Pool	D607B			59.0			
Columbia Canal Co.		D607B			85.0			
Firebaugh Canal Co.		D607B			23.6			
Man Inis Conchangen		D607B				2.3		
Grasslands WD		D607C					29.0	
Mendota WMA		D607C					27.6	
Losses		D607D						101.5
Total		D607	55.5	0.0	560.0	34.8	56.6	101.5
Exchange Contractors		D608B						
		D608B			140.0			
Gans Italiai Campi Co.		D608C					2.3	
Los Banos WMA	San Joaquin River at	D608C					12.4	
San Luis NWR	Sack Dam	D608C					19.5	
West Bear Creek NWR]	D608C					7.5	
East Bear Creek NWR]	D608C					8.9	
Total]	D608	0.0	0.0	140.0	0.0	50.6	0.0

Table B-35. CVP South-of-the-Delta - Baselines - Future Conditions

CVP CONTRACTOR	Geographic Location	CALSIM II Diversion	CVP Wat Contracts	er Service (TAF/yr)	Settlement / Exchange Contractor	Water Rights / Non-CVP	Level 2 Refuges ^a	Losses (TAF/yr)
			AG	M&I	(TAF/yr)	(1AF/yr)	(TAF/yr)	
San Benito County WD (Ag)		D710	35.6					
Santa Clara Valley WD (Ag)		D710	33.1					
Pajaro Valley WD	San Feline	D710	6.3					
San Benito County WD (M&I)	Suittenpe	D711		8.3				
Santa Clara Valley WD (M&I)]	D711		119.4				
Total		D710/D711	74.9	127.7	0.0	0.0	0.0	0.0
San Luis WD		D833	60.1					
CA, State Parks and Rec	CA reach 3	D833	2.3					
Affonso/Los Banos Gravel Co.]	D833	0.3					
Total		D833	62.6	0.0	0.0	0.0	0.0	0.0
Panoche WD	CVP Dos Amigos PP/	D835	87.4					
Pacheco WD	CA reach 4	D835	10.1					
Total		D835	97.5	0.0	0.0	0.0	0.0	0.0
Westlands WD (Centinella)		D836	2.5					
Westlands WD (Broadview WD)		D836	27.0					
Westlands WD (Mercy Springs WD)	CA reach 4	D836	4.2					
Westlands WD (Widern WD)		D836	3.0					
Total		D836	36.7	0.0	0.0	0.0	0.0	0.0
		Deez	210.0					
Westlands WD: CA Joint Reach 4	CA reach 4	D837	219.0					
Westlands WD: CA Joint Reach 5	CA reach 5	D839	570.0					
Westlands WD: CA Joint Reach 7	CA reach 7	D841	142.0					
Total	CA leach /	D645	142.0	0.0	0.0	0.0	0.0	0.0
			1150.0	0.0	0.0	0.0	0.0	0.0
Avenal, City of	1	D844		3.5		3.5		
Coalinga, City of	-	D844		10.0				
Huron, City of	CA reach 7	D844	1	3.0				
Total	1	D844	0.0	16.5	0.0	3.5	0.0	0.0
	1							

Table B-35.	. CVP South-of-the-Delta - Baselines - Future Conditions
-------------	--

CVP CONTRACTOR	Geographic Location	CALSIM II Diversion	CVP Water Service Contracts (TAF/yr)		Settlement / Exchange Contractor	Water Rights / Non-CVP	Level 2 Refuges ^a	Losses (TAF/vr)
	2000000	Diversion	AG	M&I	(TAF/yr)	(TAF/yr)	(TAF/yr)	(1127,51)
CA Joint Reach 3 - Loss	CVP Dos Amigos PP/CA reach 3	D834						2.5
CA Joint Reach 4 - Loss	CA reach 4	D838						10.1
CA Joint Reach 5 - Loss	CA reach 5	D840						30.1
CA Joint Reach 6 - Loss	CA reach 6	D842						12.5
CA Joint Reach 7 - Loss	CA reach 7	D845						8.5
Total			0.0	0.0	0.0	0.0	0.0	63.7
Cross Valley Canal CVD								
Closs valley Canal - CVP	-	D955	2.0					
Erespo, County of		D855	3.0					
Hills Valley ID-Amendatory	-	D855	40.0					
Kern-Tulare WD	-	D855	40.0					
Lower Tule River ID		D855	31.1					
Pixley ID	CA reach 14	D855	12.2					
Rag Gulch WD		D855	13.3					
Tri-Valley WD	-	D855	5.3					
HulanexCounty of	-	D855	5.5				11.0	
Divley NWR	-	D856					13	
Total	-	0000	128.3	0.0	0.0	0.0	12.3	0.0
			120.3	0.0	0.0	0.0	12.5	0.0
Total CVP South-of-Delta			1937.1	164.2	840.0	44.3	281.0	183.7

^a Level 4 Refuge water needs are not included

CVP CONTRACTOR	CALSIM II Representation			Geographic Location		Settlement Contractor Supply (AF/year)		
					Bank			
	Diversion	DSA	WBA	River Mile	(Left, Right)	Base	Project	Total
Riverview Golf & Country Club				240.8	L	255	25	280
Daniell, Harry			3	240.3	L	13	7	20
Redding Rancheria (Frmrly High-Low Nursery)		58		240.2	L	70	135	205
Lake Cal. Property Owners Assn			2	221	R	580	200	780
Leviathan, Inc.	D104F		2	221	R	355	345	700
Driscoll Strawberry Associates, Inc.			3	207.5	L	330	490	820
J. B. Unlimited, Inc.				197	L	220	290	510
Micke, Daniel & Nina				196.6	L	81	19	100
Gjermann, Hal				196.55	L	8	4	12
Total	D104F					1,912	1,515	3,427
Meyer, Herbert (Frmrly Diamond Holdings, Inc.)	_	58		191.5	R	195	230	425
Exchange Bank (The Nature Conservancy)			4	168.85	R	210	570	780
Rubio, Exequiel (Frmrly Elliott&Hadracky)				166.8	R	11	5	16
Penner, Roger & Leona	D113A	10		156.8	R	159	21	180
Freeman, Vola	-	10		156.1	R	11	19	30
Mclane, Robert				155.6	R	17	23	40
Alexander, Thomas Et Ux				155.6	R	9	13	22
Total	D113A					612	881	1,493
Green Valley Corp. (Frmrly Cannell, F.)	_	15	8NN	106	R	680	210	890
Green Valley Corp. (Frmrly Stegeman Ranch)				106	R	555	325	880
Tuttle, Charles W Trust	D122A			103.9	R	120	270	390
Cachil Dehe Band Of Wintun Indians(Lee Farms)	DIZZI			103.7	R	80	100	180
Seaver, Charles				99.3	R	200	260	460
Odysseus Farms				93.15	R	1,920	150	2,070
Total	D122A					3,555	1,315	4,870
King, Ben And Laura (Frmrly Dommer, E.)		15		89.2	R	12	7	19
King, Laura				89.2	R	13	13	26
Wisler, John W. Jr. (Frmrly Cribari, E.)				88	R	8	27	35
Mehrhof, Susan M.(frmrly.Swinford Tract)			8NS	87.7	R	164	16	180
Steidlmayer, Anthony E., Et Al.	D122B			83	R	610	700	1,310
Jansen, Peter & Sandy (Frmrly E. J. Ritchey)				70.4	R	150	40	190
Gillaspy, William & Mary (Frmrly Fay Gillaspy)				70.4	R	120	90	210
Beckley, Ralph, And Ophelia				70.4	R	165	135	300
Driver, Gary, Et Al.				69.2	R	8	22	30

Table B-36. - Sacramento River Miscellaneous Users Breakdown by CALSIM II Arc locationa - Baselines - Future Conditions

CVP CONTRACTOR	CALSIM II Representation			Geographic Location		Settlement Contractor		
						Supply (AF/year)		
	D	DCA			Bank	n	.	T ()
TT '1'1 M'11 1M	Diversion	DSA	WBA	River Mile	(Left, Right)	Base	Project	Total
Heidrick, Mildred M.	_			30.6	R	86	34	120
lenhunfeld, F. Wallace, Jack, Et Al.	D122B	65	8NS	29.7	R	2,680	960	3,640
Heidrick, Mildred M.	_			29.2, 30.3	R	370	60	430
Hershey Land Company				28.1	R	2,570	450	3,020
Total	D122B					6,956	2,554	9,510
Pacific Realty Assoc., L.P. (M&T Chico Ranch)				140.8, 141.5	L	16,980	976	17,956
Spence, Ruth Ann (Spence Farms)				104.8	L	630	100	730
Anderson, Arthur Et Al (Frmrly Westfall, Mary)				102.5	L	445	45	490
Forry, Laurie E.				99.8	L	2,285	0	2,285
Otterson, Mike (Frmrly Wells Joyce M.)				98.9	L	1,515	300	1,815
Nene Ranch, Llc (Frmrly Hollins, Mariette B.)				98.6	L	1,360	200	1,560
Griffin, Jospeh, Et Al.				95.8	L	1,610	1,150	2,760
Baber, Jack Et Al.				95.6	L	3,630	2,630	6,260
Eastside Mwc (Frmrly A&F Boeger Corp.)				95.25	L	2,170	634	2,804
Zelmar Ranch, Inc. (Frmrly Martin, Andrew)			9	92.5	L	112	52	164
Gomes, Judith (Frmrly. Martin, Andrew)				92.5	L	168	78	246
Butte Creek Farms				89.26	L	20	16	36
Butte Creek Farms	D128	15		89.24	L	40	55	95
Butte Creek Farms (Frmrly Mayfair Farms)				88.7	L	196	8	204
Butte Creek Farms(Area 1)				88.7	L	300	340	640
Howard, Theordore W. And Linda M.				88.7	L	74	2	76
Locvich, Paul				88.2	L	80	70	150
Ehrke, Allen A. Et Ux				86.8	L	220	160	380
Fedora, Sib Et Al.				82.7	L	190	20	210
Reische, Laverne Et Ux				82.5	L	183	267	450
Reische, Eric				82.5	L	37	53	90
Tarke, Stephen & Debra				81.5	L	1,700	1,000	2,700
Churkin, Michael, Et Al.				79.5	L	75	55	130
Eggleston, Ronald Et Ux				79	L	53	12	65
Hale, Judith Et Al.				79	L	117	13	130
Hale, Judith Et Al.				79	L	58	17	75
Pires, Lawrence And Beverly				77.9	L	185	95	280
Davis, Ina M.				76.2	L	71	14	85
Chesney, Adona (R & A, Bypass Trust)	ן ר		18	76.15	L	310	390	700
Andreotti, Beverly F., Et Al.]			72.1	L	2,060	1,560	3,620
Mclaughlin, Jack				72	L	430	220	650
Lomo Cold Storage (& J. J. Micheli)				67.5	L	6,410	700	7,110
Anderson, R And J, Prop.				67.1	L	149	88	237

Table B-36. - Sacramento River Miscellaneous Users Breakdown by CALSIM II Arc locationa - Baselines - Future Conditions

CVP CONTRACTOR	CALSIM II Representation		Geographic Location		Settlement Contractor			
					Supply (AF/year)			
	.	50.			Bank			
T M' 1 1 D' A1	Diversion	DSA	WBA	River Mile	(Left, Right)	Base	Project	Total
Lonon, Michael Et Al.	-			67.1	L	715	440	1,155
Oji Brothers Farm, Inc.	-		18	63.9	L	1,340	1,860	3,200
Young, Russell, Et Al.	-			63.3	L	2	8	10
Sekhon, Arjinderpal & Daljit				62.3	L	350	470	820
Butler, Leslie A., Et Ux				60.5, 61.8	L	180	280	460
Howald Farms Inc.				60.4	L	1,350	1,410	2,760
Kary, Carol				59.8	L	400	600	1,000
Dennis Wilson Farms (Frmrly M&L Farms (Area 1)				58.9	L	295	60	355
Lockett, William P. & Jean B.				58.3	L	370	47	417
O'brien, Janice				58.3	L	550	289	839
Wirth, Marilyn L. (Frmrly Davis, Marilyn)				57.75	L	180	340	520
Bardis, C. Et Al 9(Reynen/Broomieside Farms)				55.1	L	8,070	2,000	10,070
Wakida, Tomio				53.9	L	50	275	325
Wakida, Tomio			19	52.3	L	25	135	160
Nelson, Thomas L., Et Ux				52	L	38	98	136
Rauf, Abdul & Tahmina (Frmrly Forster, J.)				50	L	2,450	710	3,160
Hiatt, Thomas(Hiatt Family Trust)				49, 49.7	L	947	538	1,485
Hiatt, Thomas(Illerich, Phillip)	D128	15		49	L	372	212	584
Oji, Mitsue Family Partnership				48.7	L	3,430	1,310	4,740
Henle, Thomas N.				46.5	L	935	0	935
Windswept Land&Livestock Co. (P. Burroughs)				44.2, 45.6, 46.45	L	4,040	0	4,040
Schreiner, Joe & Cleo				38.8	L	180	20	200
Munson, James T., Et Ux				37.75	L	70	85	155
Klsy, Llc (Frmrly Mirbach-Harff Antonius)				37.2	L	80	90	170
Driver, John A. & Clare M.				36.45	L	150	80	230
Driver, John A. & Clare M.				36.45	L	6	10	16
Ouad-H Ranches, Inc.				36.2	L	190	310	500
Giusti, Richard, Et Al.				36.2	L	850	760	1 610
Drew. Jerry				35.85	L	24	12	36
Jaeger, William, Et Al.				00100	2	385	485	870
Morehead, Joseph Et Ux						115	140	255
Heidrick, Joe Jr.				33.75	T.	360	200	560
Leiser Dorothy I				33.75	L	36	200	60
Mcm Properties Inc				33.75	L	860	610	1.470
Richter Henry D (Richter Brothers Et Al.)	-			33.75	L	1.750	1.030	2,780
Furlan Emile Et Ux				32 5 33 2	I	570	350	020
Byrd Anna C And Osborne Jane				34.3, 33.4 26.8, 20.5	L	1.055	200	1 255
Total	D128			20.0, 30.3	L	76 622	200	1,233
	D120					70,035	20,000	105,441

Table B-36. - Sacramento River Miscellaneous Users Breakdown by CALSIM II Arc locationa - Baselines - Future Conditions

CVP CONTRACTOR	CALSIM II Representation			Geographic Location		Settlement Contractor Supply (AF/year)		
					Bank			
	Diversion	DSA	WBA	River Mile	(Left, Right)	Base	Project	Total
Edson, Wallace L. & Mary O. *		65	8S	33.85	R	40	64	104
Driver, William A.(Frmrly Collier, T.)	D129A			32.5	R	54	106	160
Driver, Gregory E.(Frmrly Collier, T.)	Dizm			32.5	R	54	106	160
Giovannetti, B.E. & Mary				31.5	R	470	50	520
Total	D129A					618	326	944
Odysseus Farms Prtnrshp.(Frmrly Leal, Robert)				19.6	L	220	410	630
Cummings, Wm. (Frmrly Verona Farming Prtnrshp)		70	N/A	18.7	L	180	120	300
Lauppe, Burton And Kathyrn				18.45	L	720	230	950
Natomas Basin Conservancy	D162A			18.2	L	221	269	490
E.L.H. Sutter Properties, Inc.				18.2	L	12	28	40
Lauppe, Burton And Kathyrn				18.2	L	153	197	350
Siddiqui, J.&A.T.				10.75	L	110	20	130
Willey, Edwin, Mr. And Mrs.				10.75	L	75	20	95
Siddiqui, Javed&Amna (Et Al.&Fmly.Partnshp.)				10.25	L	860	200	1,060
Sacramento, County Of				9.3	L	520	230	750
Total	D162A					3,071	1,724	4,795
Sacramento River Ranches(Frmrly Deseret Farms)				166 170 225	R	4 000	0	4 000
Knaggs Walnut Ranches Co. Lp		65	N/A	16.1	R	630	0	630
Conway Preservation Group				12	R	50 190	672	50.862
Wilson Ranch Partnership	D163			11.1	R	370	0	370
Reclamation Distrs. 900 And 1000 (Frm.Amen.H.)				9.35	R	281	123	404
Riverby Limited Partnership				5.25	R	470	30	500
Total	D163					55,941	825	56,766
			1					
Total						149,298	35,948	185,246

Table B-36. - Sacramento River Miscellaneous Users Breakdown by CALSIM II Arc locationa - Baselines - Future Conditions

^a Source: Settlement contractor data provided by USBR

1 B.10. USFWS RPA Implementation

- 2 The information included in this section is consistent with what was provided to and agreed
- 3 by the lead agencies in the, "Representation of U.S. Fish and Wildlife Service Biological Opinion
- 4 Reasonable and Prudent Alternative Actions for CALSIM II Planning Studies", on February 10,
- 5 2010 (updated May 18, 2010).

1 Representation of U.S. Fish and Wildlife Service Biological

2 Opinion Reasonable and Prudent Alternative Actions for

3 CALSIM II Planning Studies

- 4 The U.S. Fish and Wildlife Service's (Service) Delta Smelt Biological Opinion (BO) was
- 5 released on December 15, 2008, in response to the U.S. Bureau of Reclamation's
- 6 (Reclamation) request for formal consultation with the Service on the coordinated
- 7 operations of the Central Valley Project (CVP) and State Water Project (SWP) in California.
- 8 To develop CALSIM II modeling assumptions for reasonable and prudent alternative
- 9 actions (RPA) documented in this BO, the California Department of Water Resources
- 10 (Department) led a series of meetings that involved members of fisheries and project
- 11 agencies. The purpose for establishing this group was to prepare the assumptions and
- 12 CALSIM II implementations to represent the RPAs in Existing and Future Condition
- 13 CALSIM II simulations for future planning studies.
- 14 This memorandum summarizes the approach that resulted from these meetings and the
- 15 modeling assumptions that were laid out by the group. The scope of this memorandum is
- 16 limited to the December 15, 2008 BO. Unless otherwise indicated, all descriptive information
- 17 of the RPAs is taken from Appendix B of the BO.
- 18 Table B-37 lists the participants that contributed to the meetings and information
- 19 summarized in this document.
- 20 The RPAs in the Service's BO are based on physical and biological phenomena that do not
- 21 lend themselves to simulations using a monthly time step. Much scientific and modeling
- 22 judgment has been employed to represent the implementation of the RPAs. The group
- 23 believes the logic put into CALSIM II represents the RPAs as best as possible at this time,
- 24 given the scientific understanding of environmental factors enumerated in the BO and the
- 25 limited historical data for some of these factors.

TABLE B-37 Meeting Participants

Aaron Miller/Department	Derek Hilts/Service
Steve Ford/Department	Steve Detwiler/Service
Randi Field/Reclamation	Matt Nobriga/CDFG
Gene Lee/Reclamation	Jim White/CDFG
Lenny Grimaldo/Reclamation	Craig Anderson/NMFS
Parviz Nader-Tehrani/Department Erik Reyes/Department Sean Sou/Department	Robert Leaf/CH2M HILL Derya Sumer/CH2M HILL

Notes:

- CDFG = California Department of Fish and Game
- NMFS = National Marine Fisheries Service
- 26
- 27 The simulated Old and Middle River (OMR) flow conditions and CVP and SWP Delta
- 28 export operations, resulting from these assumptions, are believed to be a reasonable
- 29 representation of conditions expected to prevail under the RPAs over large spans of years

- 1 (refer to CALSIM II modeling results for more details on simulated operations). Actual
- 2 OMR flow conditions and Delta export operations will differ from simulated operations for
- 3 numerous reasons, including having near real-time knowledge and/or estimates of
- 4 turbidity, temperature, and fish spatial distribution that are unavailable for use in CALSIM
- 5 II over a long period of record. Because these factors and others are believed to be critical for
- 6 smelt entrainment risk management, the Service adopted an adaptive process in defining
- 7 the RPAs. Given the relatively generalized representation of the RPAs, assumed for
- 8 CALSIM II modeling, much caution is required when interpreting outputs from the model.

9 Action 1: Adult Delta Smelt Migration and Entrainment

10 (RPA Component 1, Action 1 – First Flush)

11 Action 1 Summary:

- 12 **Objective:** A fixed duration action to protect pre-spawning adult delta smelt from
- entrainment during the first flush, and to provide advantageous hydrodynamic conditions
 early in the migration period.
- 15 **Action:** Limit exports so that the average daily Combined OMR flow is no more negative
- 16 than -2,000 cubic feet per second (cfs) for a total duration of 14 days, with a 5-day running

17 average no more negative than -2,500 cfs (within 25 percent).

18 **Timing**:

- 19 Part A: December 1 to December 20 Based upon an examination of turbidity data from
- 20 Prisoner's Point, Holland Cut, and Victoria Canal and salvage data from CVP/SWP (see
- 21 below), and other parameters important to the protection of delta smelt including, but not
- 22 limited to, preceding conditions of X2, the Fall Midwater Trawl Survey (FMWT), and river
- 23 flows; the SWG may recommend a start date to the Service. The Service will make the final
- 24 determination.
- 25 **Part B:** After December 20 The action will begin if the 3-day average turbidity at Prisoner's
- 26 Point, Holland Cut, and Victoria Canal exceeds 12 nephelometric turbidity units (NTU).
- 27 However the SWG can recommend a delayed start or interruption based on other conditions
- such as Delta inflow that may affect vulnerability to entrainment.

29 Triggers (Part B):

- 30 <u>Turbidity</u>: Three-day average of 12 NTU or greater at all three turbidity stations: Prisoner's
- 31 Point, Holland Cut, and Victoria Canal.
- 32 OR
- 33 <u>Salvage:</u> Three days of delta smelt salvage after December 20 at either facility or cumulative
- 34 daily salvage count that is above a risk threshold based upon the "daily salvage index"
- approach reflected in a daily salvage index value ≥ 0.5 (daily delta smelt salvage > one-half
- 36 prior year FMWT index value).
- 37 The window for triggering Action 1 concludes when either off-ramp condition described
- 38 below is met. These off-ramp conditions may occur without Action 1 ever being triggered. If

- 1 this occurs, then Action 3 is triggered, unless the Service concludes on the basis of the
- 2 totality of available information that Action 2 should be implemented instead.

3 **Off-ramps:**

- 4 <u>Temperature:</u> Water temperature reaches 12 degrees Celsius (°C) based on a three station
- 5 daily mean at the temperature stations: Mossdale, Antioch, and Rio Vista
- 6 OR
- 7 <u>Biological:</u> Onset of spawning (presence of spent females in the Spring Kodiak Trawl Survey
- 8 [SKT] or at Banks or Jones).

9 Action 1 Assumptions for CALSIM II Modeling Purposes:

- 10 An approach was selected based on hydrologic and assumed turbidity conditions. Under
- 11 this general assumption, Part A of the action was never assumed because, on the basis of
- 12 historical salvage data, it was considered unlikely or rarely to occur. Part B of the action was
- 13 assumed to occur if triggered by turbidity conditions. This approach was believed to tend to
- 14 a more conservative interpretation of the frequency, timing, and extent of this action. The
- 15 assumptions used for modeling are as follows:
- 16 Action: Limit exports so that the average daily OMR flow is no more negative than -
- 17 2,000 cfs for a total duration of 14 days, with a 5-day running average no more negative
- 18 than -2,500 cfs (within 25 percent of the monthly criteria).
- 19 **Timing:** If turbidity-trigger conditions first occur in December, then the action starts on
- 20 December 21; if turbidity-trigger conditions first occur in January, then the action starts on
- 21 January 1; if turbidity-trigger conditions first occur in February, then the action starts on
- 22 February 1; and if turbidity-trigger conditions first occur in March, then the action starts on
- 23 March 1. It is assumed that once the action is triggered, it continues for 14 days.
- 24 **Triggers:** Only an assumed turbidity trigger that is based on hydrologic outputs was
- considered. A surrogate salvage trigger or indicator was not included because there was no
 way to model it.
- 27 <u>Turbidity:</u> If the monthly average unimpaired Sacramento River Index (four-river index:
- 28 sum of Sacramento, Yuba, Feather, and American Rivers) exceeds 20,000 cfs, then it is
- assumed that an event, in which the 3-day average turbidity at Hood exceeds 12 NTU, has
- 30 occurred within the month. It is assumed that an event at Sacramento River is a reasonable
- 31 indicator of this condition occurring, within the month, at all three turbidity stations:
- 32 Prisoner's Point, Holland Cut, and Victoria Canal.
- 33 A chart showing the relationship between turbidity at Hood (number of days with turbidity
- 34 is greater than 12 NTU) and Sacramento River Index (sum of monthly flow at four stations
- 35 on the Sacramento, Feather, Yuba and American Rivers, from 2003 to 2006) is shown on
- 36 Figure B-2. For months when average Sacramento River Index is between 20,000 cfs and
- 37 25,000 cfs a transition is observed in number of days with Hood turbidity greater than 12
- 38 NTU. For months when average Sacramento River Index is above 25,000 cfs, Hood
- 39 turbidity was always greater than 12 NTU for as many as 5 days or more within the month
- 40 in which the flow occurred. For a conservative approach, 20,000 cfs is used as the threshold
- 41 value.

1 <u>Salvage:</u> It is assumed that salvage would occur when first flush occurs.

2

3 FIGURE B-2

```
RELATIONSHIP BETWEEN TURBIDITY AT HOOD AND SACRAMENTO RIVER INDEX
```

4 5

Off-ramps: Only temperature-based off-ramping is considered. A surrogate biological off ramp indicator was not included.

8 <u>Temperature</u>: Because the water temperature data at the three temperature stations

9 (Antioch, Mossdale, and Rio Vista) are only available for years after 1984, another parameter

10 was sought for use as an alternative indicator. It is observed that monthly average air

11 temperature at Sacramento Executive Airport generally trends with the three-station

12 average water temperature (see Figure B-3). Using this alternative indicator, monthly

- 13 average air temperature is assumed to occur in the middle of the month, and values are
- 14 interpolated on a daily basis to obtain daily average water temperature. Using the
- 15 correlation between air and water temperature, estimated daily water temperatures are
- 16 estimated from the 82-year monthly average air temperature. Dates when the three-station
- 17 average temperature reaches 12°C are recorded and used as input in CALSIM. A 1:1
- 18 correlation was used for simplicity instead of using the trend line equation illustrated on
- 19 Figure B-3.

Monthly Average Air Temperature at the Sacramento Executive Airport Related to the Three-station Average Monthly Water Temperature (Mossdale, Antioch, and Rio Vista)

1

2 FIGURE B-3

- 3 RELATIONSHIP BETWEEN MONTHLY AVERAGE AIR TEMPERATURE AT THE SACRAMENTO EXECUTIVE
- 4 AIRPORT AND THE THREE-STATION AVERAGE MONTHLY WATER TEMPERATURE

5

6 **Other Modeling Considerations:**

7 In the month of December in which Action 1 does not begin until December 21, for monthly

8 analysis, a background OMR flow must be assumed for the purpose of calculating a day-

9 weighted average for implementing a partial-month action condition. When necessary, the

10 background OMR flow for December was assumed to be -8,000 cfs.

11 For the additional condition to meet a 5-day running average no more negative

12 than -2,500 cfs (within 25 percent), Paul Hutton's equation⁴ is used. Hutton concluded that

- 13 with stringent OMR standards (1,250 to 2,500 cfs), the 5-day average would control more
- 14 frequently than the 14-day average, but it is less likely to control at higher flows. Therefore,
- 15 the CALSIM II implementation includes both a 14-day (approximately monthly average)
- 16 and a 5-day average flow criteria based on Hutton's methodology (see Attachment 1).
- 17 **Rationale:** The following is an overall summary of the rationale for the preceding
- 18 interpretation of RPA Action 1.

⁴Hutton, Paul/Metropolitan Water District of Southern California (MWDSC). Water Supply Impact Analysis of December 2008 Delta Smelt Biological Opinion, Appendix 5. February.

- 1 December 1 to December 20 for initiating Action 1 is not considered because seasonal peaks
- 2 of delta smelt salvage are rare prior to December 20. Adult delta smelt spawning migrations
- 3 often begin following large precipitation events that happen after mid-December.
- 4 Salvage of adult delta smelt often corresponds with increases in turbidity and exports. On
- 5 the basis of the above discussion and Figure B-2, Sacramento River Index greater than
- 6 25,000 cfs is assumed to be an indicator of turbidity trigger being reached at all three
- 7 turbidity stations: Prisoner's Point, Holland Cut, and Victoria Canal. Most sediment enters
- 8 the Delta from the Sacramento River during flow pulses; therefore, a flow indicator based
- 9 on only Sacramento River flow is used.
- 10 The 12°C threshold for the off-ramp criterion is a conservative estimate of when delta smelt
- 11 larvae begin successfully hatching. Once hatched, the larvae move into the water column
- 12 where they are potentially vulnerable to entrainment.
- 13 **Results:** Using these assumptions, in a typical CALSIM II 82-year simulation (1922 through
- 14 2003 hydrologic conditions), Action 1 will occur 29 times in the December 21 to January 3rd
- 15 period, 14 times in the January 1 to January 14 period, 13 times in the February 1 to
- 16 February 14 period, and 17 times in the March 1 to March 14 period. In 3 of these 17
- 17 occurrences (1934, 1991, and 2001), Action 3 is triggered before Action 1 and therefore
- 18 Action 1 is bypassed. Action 1 is not triggered in 9 of the 82 years (1924, 1929, 1931, 1955,
- 19 1964, 1976, 1977, 1985, and 1994), typically critically dry years. Refer to CALSIM II
- 20 modeling results for more details on simulated operations of OMR, Delta exports and other
- 21 parameters of interest.

Action 2: Adult Delta Smelt Migration and Entrainment (RPA Component 1, Action 2)

Action 2 Summary:

- 25 **Objective:** An action implemented using an adaptive process to tailor protection to
- changing environmental conditions after Action 1. As in Action 1, the intent is to protect
 pre-spawning adults from entrainment and, to the extent possible, from adverse
- 28 hydrodynamic conditions.
- 29 Action: The range of net daily OMR flows will be no more negative than -1,250 to -5,000 cfs.
- 30 Depending on extant conditions (and the general guidelines below), specific OMR flows
- 31 within this range are recommended by the Service's Smelt Working Group (SWG) from the
- 32 onset of Action 2 through its termination (see Adaptive Process description in the BO). The
- 33 SWG would provide weekly recommendations based upon review of the sampling data,
- 34 from real-time salvage data at the CVP and SWP, and utilizing most up-to-date
- 35 technological expertise and knowledge relating population status and predicted distribution
- to monitored physical variables of flow and turbidity. The Service will make the final
- 37 determination.
- 38 **Timing:** Beginning immediately after Action 1. Before this date (in time for operators to
- 39 implement the flow requirement) the SWG will recommend specific requirement OMR
- 40 flows based on salvage and on physical and biological data on an ongoing basis. If Action 1

- 1 is not implemented, the SWG may recommend a start date for the implementation of
- 2 Action 2 to protect adult delta smelt.

3 Suspension of Action:

- 4 <u>Flow:</u> OMR flow requirements do not apply whenever a 3-day flow average is greater than
- 5 or equal to 90,000 cfs in Sacramento River at Rio Vista and 10,000 cfs in San Joaquin River at
- 6 Vernalis. Once such flows have abated, the OMR flow requirements of the Action are again
- 7 in place.

8 **Off-ramps:**

- 9 <u>Temperature:</u> Water temperature reaches 12°C based on a three-station daily average at the 10 temperature stations: Rio Vista, Antioch, and Mossdale.
- 11 OR
- 12 <u>Biological:</u> Onset of spawning (presence of a spent female in SKT or at either facility).

13 Action 2 Assumptions for CALSIM II Modeling Purposes:

- 14 An approach was selected based on the occurrence of Action 1 and X2 salinity conditions.
- 15 This approach selects from between two OMR flow tiers depending on the previous
- 16 month's X2 position, and is never more constraining than an OMR criterion of -3,500 cfs.
- 17 The assumptions used for modeling are as follows:
- 18 **Action:** Limit exports so that the average daily OMR flow is no more negative than -3,500 or
- 19 -5,000 cfs depending on the previous month's ending X2 location (-3,500 cfs if X2 is east of
- 20 Roe Island, or -5,000 cfs if X2 is west of Roe Island), with a 5-day running average within
- 21 25 percent of the monthly criteria (no more negative than -4,375 cfs if X2 is east of Roe
- 22 Island, or -6,250 cfs if X2 is west of Roe Island).
- 23 **Timing:** Begins immediately after Action 1 and continues until initiation of Action 3.
- In a typical CALSIM II 82-year simulation, Action 1 was not triggered in 9 of the 82 years. In
- these conditions it is assumed that OMR flow should be maintained no more negative than -5,000 cfs.
- 27 **Suspension of Action:** A flow peaking analysis, developed by Paul Hutton⁵, is used to
- determine the likelihood of a 3-day flow average greater than or equal to 90,000 cfs in
- 29 Sacramento River at Rio Vista and a 3-day flow average greater than or equal to 10,000 cfs in
- 30 San Joaquin River at Vernalis occurring within the month. It is assumed that when the
- 31 likelihood of these conditions occurring exceeds 50 percent, Action 2 is suspended for the
- 32 full month, and OMR flow requirements do not apply. The likelihood of these conditions
- 33 occurring is evaluated each month, and Action 2 is suspended for one month at a time
- 34 whenever both of these conditions occur.

⁵ Hutton, Paul/MWDSC. 2009. Water Supply Impact Analysis of December 2008 Delta Smelt Biological Opinion, Appendix 4. February.

- 1 The equations for likelihood (frequency of occurrence) are as follows:
- 2 Frequency of Rio Vista 3-day flow average > 90,000 cfs:
- 3 0% when Freeport monthly flow < 50,000 cfs, OR
- 4 (0.00289 x Freeport monthly flow 146)% when 50,000 cfs \leq Freeport plus Yolo
- 5 Bypass monthly flow $\leq 85,000$ cfs, OR
- 6 100% when Freeport monthly flow >85,000 cfs
- 7 Frequency of Vernalis 3-day flow average > 10,000 cfs:
- 8 0% when Vernalis monthly flow < 6,000 cfs, OR
- 9 (0.00901 x Vernalis monthly flow 49)% when 6,000 cfs ≤ Vernalis monthly flow ≤ 10 16,000 cfs, OR
- 11 100% when Vernalis monthly flow >16,000 cfs
- 12 Frequency of Rio Vista 3-day flow average > 90,000 cfs equals 50% when Freeport plus Yolo

13 Bypass monthly flow is 67,820 cfs and the frequency of Vernalis 3-day flow average > 10,000

14 cfs equals 50% Vernalis monthly flow is 10,988 cfs. Therefore these two flow values are

- 15 used as thresholds in the model.
- Off-ramps: Only temperature-based off-ramping is considered. A surrogate biological off ramp indicator was not included.
- 18 <u>Temperature:</u> Because the water temperature data at the three temperature stations
- 19 (Antioch, Mossdale, and Rio Vista) are only available for years after 1984, another parameter
- 20 was sought for use as an alternative indicator. It is observed that monthly average air
- 21 temperature at Sacramento Executive Airport generally trends with the three-station
- 22 average water temperature (Figure B-3). Using this alternative indicator, monthly average
- air temperature is assumed to occur in the middle of the month, and values are interpolated
- on a daily basis to obtain daily average water temperature. Using the correlation between
- air and water temperature, daily water temperatures are estimated from the 82-year
- 26 monthly average air temperature. Dates when the three-station average temperature reaches
- 27 12°C are recorded and used as input in CALSIM. A 1:1 correlation was used for simplicity
- 28 instead of using the trend line equation illustrated on Figure B-3.
- **Rationale:** The following is an overall summary of the rationale for the precedinginterpretation of RPA Action 2.
- 31 Action 2 requirements are based on X2 location that is dependent on the Delta outflow. If
- 32 outflows are very high, fewer delta smelt will spawn east of Sherman Lake; therefore, the 33 need for OMR restrictions is lessened.
- 34 In the case of Action 1 not being triggered, CDFG suggested OMR > -5,000 cfs, following the
- actual implementation of the BO in winter 2009, because some adult delta smelt might moveinto the Central Delta without a turbidity event.
- Action 2 is suspended when the likelihood of a 3-day flow average greater than or equal to 90,000 cfs in Sacramento River at Rio Vista and a 3-day flow average greater than or equal to

1 10,000 cfs in San Joaquin River at Vernalis occurring concurrently within the month exceeds

- 2 50 percent, because at extreme high flows the majority of adult delta smelt will be
- 3 distributed downstream of the Delta, and entrainment concerns will be very low.
- 4 The 12°C threshold for the off-ramp criterion is a conservative estimate of when delta smelt
- 5 larvae begin successfully hatching. Once hatched, the larvae move into the water column
- 6 where they are potentially vulnerable to entrainment.

7 **Results:** Using these assumptions, in a typical CALSIM II 82-year simulation (1922 through

8 2003 hydrologic conditions), Action 1, and therefore Action 2, does not occur in 11 of the 82

9 years (1924, 1929, 1931, 1934, 1955, 1964, 1976, 1977, 1985, 1991, 1994, and 2001), typically

- critically dry years. The criteria for suspension of OMR minimum flow requirements,
 described above, results in potential suspension of Action 2 (if Action 2 is active) 6 times i
- described above, results in potential suspension of Action 2 (if Action 2 is active) 6 times in Ianuary, 11 times in February, 6 times in March (however Action 2 was not active in 3 of
- January, 11 times in February, 6 times in March (however Action 2 was not active in 3 of these 6 times), and 2 times in April. The result is that Action 2 is in effect 37 times in January
- 14 (with OMR at -3,500 cfs 29 times, and at -5,000 cfs 8 times), 43 times in February (with OMR
- 15 at -3,500 cfs 25 times, and at -5,000 cfs 18 times), 31 times in March (with OMR at -3,500 cfs
- 16 14 times, and at -5,000 cfs 17 times), and 80 times in April (with OMR at -3,500 cfs 46 times,

17 and at -5,000 cfs 34 times). The frequency each month is a cumulative result of the action

18 being triggered in the current or prior months. Refer to CALSIM II modeling results for

19 more details on simulated operations of OMR, Delta exports and other parameters of

20 interest.

Action 3: Entrainment Protection of Larval and Juvenile Delta Smelt (RPA Component 2)

Action 3 Summary:

24 **Objective:** Minimize the number of larval delta smelt entrained at the facilities by managing

25 the hydrodynamics in the Central Delta flow levels pumping rates spanning a time

26 sufficient for protection of larval delta smelt, e.g., by using a VAMP-like action. Because

protective OMR flow requirements vary over time (especially between years), the action isadaptive and flexible within appropriate constraints.

- 29 Action: Net daily OMR flow will be no more negative than -1,250 to -5,000 cfs based on a
- 30 14-day running average with a simultaneous 5-day running average within 25 percent of the
- 31 applicable requirement for OMR. Depending on extant conditions (and the general
- 32 guidelines below), specific OMR flows within this range are recommended by the SWG
- 33 from the onset of Action 3 through its termination (see Adaptive Process in Introduction).
- 34 The SWG would provide these recommendations based upon weekly review of sampling
- 35 data, from real-time salvage data at the CVP/SWP, and expertise and knowledge relating
- 36 population status and predicted distribution to monitored physical variables of flow and
- 37 turbidity. The Service will make the final determination.
- 38 **Timing:** Initiate the action after reaching the triggers below, which are indicative of
- 39 spawning activity and the probable presence of larval delta smelt in the South and Central
- 40 Delta. Based upon daily salvage data, the SWG may recommend an earlier start to Action 3.
- 41 The Service will make the final determination.

1 **Triggers:**

- 2 <u>Temperature</u>: When temperature reaches 12°C based on a three-station average at the
- 3 temperature stations: Mossdale, Antioch, and Rio Vista.
- 4 OR
- 5 <u>Biological:</u> Onset of spawning (presence of spent females in SKT or at either facility).
- 6 **Off-ramps:**
- 7 <u>Temporal:</u> June 30;
- 8 OR
- 9 <u>Temperature:</u> Water temperature reaches a daily average of 25°C for three consecutive days
- 10 at Clifton Court Forebay.

11 Action 3 Assumptions for CALSIM II Modeling Purposes:

- 12 An approach was selected based on assumed temperature and X2 salinity conditions. This
- 13 approach selects from among three OMR flow tiers depending on the previous month's X2
- 14 position and ranges from an OMR criteria of -1,250 to -5,000 cfs. Because of to the potential
- 15 low export conditions that could occur at an OMR criterion of -1,250 cfs, a criterion for
- 16 minimum exports for health and safety is also assumed. The assumptions used for modeling
- 17 are as follows:
- 18 Action: Limit exports so that the average daily OMR flow is no more negative than -
- 19 1,250, -3,500, or -5,000 cfs, depending on the previous month's ending X2 location (-1,250 cfs
- 20 if X2 is east of Chipps Island, -5,000 cfs if X2 is west of Roe Island, or -3,500 cfs if X2 is
- 21 between Chipps and Roe Island, inclusively), with a 5-day running average within 25
- 22 percent of the monthly criteria (no more negative than -1,562 cfs if X2 is east of Chipps
- 23 Island, -6,250 cfs if X2 is west of Roe Island, or -4,375 cfs if X2 is between Chipps and Roe
- Island). The more constraining of this OMR requirement or the VAMP requirement will be
- 25 selected during the VAMP period (April 15 to May 15). Additionally, in the case of the
- 26 month of June, the OMR criterion from May is maintained through June (it is assumed that
- 27 June OMR should not be more constraining than May).
- Timing: Begins immediately upon temperature trigger conditions and continues until off ramp conditions are met.
- 30 Triggers: Only temperature trigger conditions are considered. A surrogate biological trigger
 31 was included.
- 32 <u>Temperature</u>: Because the water temperature data at the three temperature stations
- 33 (Antioch, Mossdale, and Rio Vista) are only available for years after 1984, another parameter
- 34 was sought to be used as an alternative indicator. It is observed that monthly average air
- 35 temperature at Sacramento Executive Airport generally trends with the three-station
- 36 average water temperature (Figure B-3). Using this alternative indicator, monthly average
- air temperature is assumed to occur in the middle of the month, and values are interpolated
- 38 on a daily basis to obtain daily average water temperature. Using the correlation between
- 39 air and water temperature, estimated daily water temperatures are estimated from the 82-

- 1 year monthly average air temperature. Dates when the three-station average temperature
- 2 reaches 12°C are recorded and used as input in CALSIM. A 1:1 correlation was used for
- 3 simplicity instead of using the trend line equation illustrated on Figure B-3.
- 4 <u>Biological</u>: Onset of spawning is assumed to occur no later than *May* 30.
- 5 *Clarification Note: This text previously read "Onset of spawning is assumed to occur no later than*
- 6 April 30", where the CALSIM II lookup table has May 30 as the date. Based on RPA team
- 7 discussions in August 2009, it was agreed upon that onset of spawning could not be modeled in
- 8 CALSIM. This trigger was actually coded as a placeholder in case in future this trigger was to be
- 9 used; and the date was selected purposefully in a way that it wouldn't affect modeling results.
- 10 Temperature trigger for Action 3 does occur before end of April. Therefore it does not matter whether
- 11 the document is corrected to read May 30 or the model lookup table is changed to April 30.

12 **Off-ramps:**

13 <u>Temporal:</u> It is assumed that the ending date of the action would be no later than June 30.

14 OR

- 15 <u>Temperature</u>: Only 17 years of data are available for Clifton Court water temperature. A
- 16 similar approach as used in the temperature trigger was considered. However, because
- 17 3 consecutive days of water temperature greater than or equal to 25°C is required, a
- 18 correlation between air temperature and water temperature did not work well for this off-
- 19 ramp criterion. Out of the 17 recorded years, in one year the criterion was triggered in May
- 20 (May 31), and in 3 years it was triggered in June (June 3, 21, and 27). In all other years it was
- 21 observed in July or later. With only four data points before July, it was not possible to
- generate a rule based on statistics. Therefore, temporal off-ramp criterion (June 30) is usedfor all years.
- 24 Health and Safety: In CALSIM II, a minimum monthly Delta export criterion of 300 cfs for
- 25 SWP and 600 cfs (or 800 cfs depending on Shasta storage) for CVP is assumed. This
- 26 assumption is suitable for dry-year conditions when allocations are low and storage releases
- are limited; however, minimum monthly exports need to be made for protection of public
- 28 health and safety (health and safety deliveries upstream of San Luis Reservoir).
- 29 In consideration of the severe export restrictions associated with the OMR criteria
- 30 established in the RPAs, an additional set of health and safety criterion is assumed. These
- 31 export restrictions could lead to a situation in which supplies are available and allocated;
- 32 however, exports are curtailed forcing San Luis to have an accelerated drawdown rate. For
- 33 dam safety at San Luis Reservoir, 2 feet per day is the maximum acceptable drawdown rate.
- 34 Drawdown occurs faster in summer months and peaks in June when the agricultural
- 35 demands increase. To avoid rapid drawdown in San Luis Reservoir, a relaxation of OMR is
- allowed so that exports can be maintained at 1,500 cfs in all months if needed.
- 37 This modeling approach may not fit the real-life circumstances. In summer months,
- 38 especially in June, the assumed 1,500 cfs for health and safety may not be sufficient to keep
- 39 San Luis drawdown below a safe 2 ft/day; and under such circumstances the projects
- 40 would be required to increase pumping in order to maintain dam safety.
- 1 **Rationale:** The following is an overall summary of the rationale for the preceding
- 2 interpretation of RPA Action 3.
- 3 The geographic distribution of larval and juvenile delta smelt is tightly linked to X2 (or
- 4 Delta outflow). Therefore, the percentage of the population likely to be found east of
- 5 Sherman Lake is also influenced by the location of X2. The X2-based OMR criteria were
- 6 intended to model an expected management response to the general increase in delta
- 7 smelt's risk of entrainment as a function of increasing X2.
- 8 The 12°C threshold for the trigger criterion is a conservative estimate of when delta smelt
- 9 larvae begin successfully hatching. Once hatched, the larvae move into the water column
- 10 where they are potentially vulnerable to entrainment.
- 11 The annual salvage "season" for delta smelt typically ends as South Delta water
- 12 temperatures warm to lethal levels during summer. This usually occurs in late June or early
- 13 July. The laboratory-derived upper lethal temperature for delta smelt is 25.4°C.
- 14 **Results:** Action 3 occurs 30 times in February (with OMR at -1,250 cfs 9 times, at -3,500 cfs
- 15 11 times, and at -5,000 cfs 10 times), 76 times in March (with OMR at -1,250 cfs 15 times,
- 16 at -3,500 cfs 27 times, and at -5,000 cfs 34 times), all times (82) in April (with OMR at -1,250
- 17 cfs 17 times, at -3,500 cfs 29 times, and at -5,000 cfs 35 times), all times (82) in May (with
- 18 OMR at -1,250 cfs 19 times, at -3,500 cfs 37 times, and at -5,000 cfs 26 times), and 70 times in
- 19 June (with OMR at -1,250 cfs 7 times, at -3,500 cfs 37 times, and at -5,000 cfs 26 times). Refer
- 20 to CALSIM II modeling results for more details on simulated operations of OMR, Delta
- 21 exports and other parameters of interest. (Note: The above information is based on the
- August 2009 version of the model and documents the development process, more recent
- 23 versions of the model may have different results.)

Action 4: Estuarine Habitat During Fall (RPA Component 3)

Action 4 Summary:

- Objective: Improve fall habitat for delta smelt by managing of X2 through increasing Delta outflow during fall when the preceding water year was wetter than normal. This will help return ecological conditions of the estuary to that which occurred in the late 1990s when smelt populations were much larger. Flows provided by this action are expected to provide direct and indirect benefits to delta smelt. Both the direct and indirect benefits to delta smelt
- 31 are considered equally important to minimize adverse effects.
- 32 Action: Subject to adaptive management as described below, provide sufficient Delta
- 33 outflow to maintain average X2 for September and October no greater (more eastward) than
- 34 74 kilometers in the fall following wet years and 81 kilometers in the fall following above
- 35 normal years. The monthly average X2 position is to be maintained at or seaward of these
- 36 location for each individual month and not averaged over the two month period. In
- 37 November, the inflow to CVP/SWP reservoirs in the Sacramento Basin will be added to
- 38 reservoir releases to provide an added increment of Delta inflow and to augment Delta
- 39 outflow up to the fall X2 target. The action will be evaluated and may be modified or
- 40 terminated as determined by the Service.

1 Timing:

- 2 September 1 to November 30.
- 3 Triggers:
- 4 Wet and above normal water-year type classification from the 1995 Water Quality Control
- 5 Plan that is used to implement D-1641.

6 Action 4 Assumptions for CALSIM II Modeling Purposes:

- 7 Model is modified to increase Delta outflow to meet monthly average X2 requirements for
- 8 September and October and subsequent November reservoir release actions in Wet and
- 9 Above Normal years. No off-ramps are considered for reservoir release capacity constraints.
- 10 Delta exports may or may not be reduced as part of reservoir operations to meet this action.
- 11 The Action is summarized in Table B-38.

Fall Months following	Action Implementation
Wet or Above Normal	
Years	
September	Meet monthly average X2 requirement (74 km in Wet years,
	81 km in Above Normal years)
October	Meet monthly average X2 requirement (74 km in Wet years,
	81 km in Above Normal years)
November	Add reservoir releases up to natural inflow as needed to
	continue to meet monthly average X2 requirement (74 km
	in Wet years, 81 km in Above Normal years)

12 Table B-38. Summary of Action 4 implementation in CALSIM II.

13

14 Rationale: Action 4 requirements are based on determining X2 location. Adjustment and

15 retraining of the ANN was also completed to address numerical sensitivity concerns.

Results: There are 38 September and 37 October months that the Action is triggered over the
 82-year simulation period.

Action 5: Temporary Spring Head of Old River Barrier and the Temporary Barrier Project (RPA Component 2)

20 Action 5 Summary:

21 **Objective:** To minimize entrainment of larval and juvenile delta smelt at Banks and Jones or

- from being transported into the South and Central Delta, where they could later becomeentrained.
- 24 Action: Do not install the Spring Head of Old River Barrier (HORB) if delta smelt
- 25 entrainment is a concern. If installation of the HORB is not allowed, the agricultural barriers
- 26 would be installed as described in the Project Description. If installation of the HORB is
- allowed, the Temporary Barrier Project (TBP) flap gates would be tied in the open position
- 28 until May 15.

- 1 **Timing:** The timing of the action would vary depending on the conditions. The normal
- 2 installation of the spring temporary HORB and the TBP is in April.
- 3 **Triggers:** For delta smelt, installation of the HORB will only occur when particle tracking

4 modeling results show that entrainment levels of delta smelt will not increase beyond 1

5 percent at Station 815 as a result of installing the HORB.

6 **Off-ramps:** If Action 3 ends or May 15, whichever comes first.

7 Action 5 Assumptions for CALSIM II and DSM2 Modeling Purposes:

- 8 The South Delta Improvement Program (SDIP) Stage 1 is not included in the Existing and
- 9 Future Condition assumptions being used for CALSIM II and DSM2 baselines. The TBP is
- 10 assumed instead. The TBP specifies that HORB be installed and operated during April 1
- 11 through May 31 and September 16 through November 30. In response to the FWS BO,
- 12 Action 5, the HORB is assumed to not be installed during April 1 through May 31.

13

Attachment A

Excerpts from "Water Supply Impact Analysis of December 2008 Delta Smelt Biological Opinion", by Paul Hutton, Metropolitan Water District of Southern California, February 2009

Entitled

"Appendix 4: Approach to Suspend Actions During High Flows" and "Appendix 5: Approach to Relate 5-Day & 14-Day OMR Flows"

Appendix 4: Approach to Suspend Actions During High Flows

MEMO

Date: December 16, 2008

To: File

From: Paul Hutton

Subject: Modeling Delta Smelt High Flow Action Temporary Suspensions

This memo summarizes an approach that was developed to represent high flow periods when Delta smelt flow actions are temporarily suspended. The actions of interest include the following:

- Wanger Actions The winter pulse flow action (on or after December 25) is temporarily suspended if the 3-day average flow at Freeport exceeds 80,000 cfs. Similarly, the pre-spawning adult flow action (January and February) is temporarily suspended if the 3-day average flow at Freeport exceeds 80,000 cfs.
- Delta Smelt Biological Opinion Actions Action 2 is temporarily suspended if the 3-day average flows at Rio Vista and Vernalis exceed 90,000 cfs and 10,000 cfs, respectively.

Methodology

Given that (1) the actions are written in terms of 3-day flow averages and (2) typical water supply impact analyses are conducted assuming monthly average flows, a method is needed to characterize the action in terms of monthly average flows. Historical flows information from DAYFLOW was used to characterize relationships between 3-day flows and monthly flows. The desired product is to determine a frequency of exceeding the 3-day flow target as a function of a monthly flow value. This frequency will be used to proportionally reduce calculated water supply impacts in high flow months.

Results for Wanger Actions

Figure 4-1 plots the frequency that 3-day Freeport flows exceed 80,000 cfs as a function of monthly average Freeport flows (Q_F). The resulting mathematical frequency relationship (in percent units) is as follows:

0% when $Q_F < 50,000$ cfs

0.0126 * exp (0.000105*Q_F) when 50,000 cfs \leq Q_F \leq 85,000 cfs

100% when $Q_F > 85,000$ cfs

Results for BO Actions

Figure 4-2 plots the frequency that 3-day Rio Vista flows exceed 90,000 cfs as a function of monthly average Freeport flows (Q_F). The resulting mathematical frequency relationship (in percent units) is as follows:

0% when $Q_F < 50,000$ cfs

 $-146 + 0.00289^{*}Q_{F}$ when 50,000 cfs $\leq Q_{F} \leq 85,000$ cfs

100% when $Q_F > 85,000$ cfs

Figure 4-3 plots the frequency that 3-day Vernalis flows exceed 10,000 cfs as a function of monthly average Vernalis flows (Qv). The resulting mathematical frequency relationship (in percent units) is as follows:

0% when Qv < 6,000 cfs

 $-49 + 0.00901^{\circ}Q_{\circ}$ when 6,000 cfs $\leq Q_{\circ} \leq 16,000$ cfs

100% when Qv > 16,000 cfs

The BO requires Rio Vista and Vernalis flows to simultaneously exceed the targets to temporarily suspend the flow action. For modeling purposes, it is assumed that these flows are statistically independent. Hence, the suspension frequency is calculated as the product of the individual frequencies. Since Rio Vista and Vernalis flows are modestly correlated, the proposed approach may somewhat understate the true suspension frequency. However, a cursory paired data evaluation suggested that the assumption will provide reasonable results.

Figure 4-1. Frequency of Wanger Freeport Flow Trigger as a Function of Monthly Freeport Flow

Figure 4-2. Frequency of BO Rio Vista Flow Trigger as a Function of Monthly Freeport Flow

Figure 4-3. Frequency of BO Vernalis Flow Trigger as a Function of Monthly Vernalis Flow

2016

Appendix 5: Approach to Relate 5-Day & 14-Day OMR Flows

MEMO

Date:	January 2, 2009	
To:	File	
From:	Paul Hutton	
Subject:	How Frequently Will 5-Day OMR F Control Project Operations Under	lows (Rather than 14-Day OMR Flows) ⁻ New Delta Smelt Biological Opinion?

Background

Several flow actions specified in the December 2008 Delta Smelt biological opinion place limits on reverse flows in Old and Middle Rivers. Limits are given as 14-day averages, but the simultaneous 5-day averages are to be within 25% of the 14-day averages. This memo summarizes an investigation to answer the question "How frequently will 5-day OMR flows, rather than 14-day OMR flows, control project operations under the new Delta smelt biological opinion?"

Water supply impact studies assume the 14-day average flow controls. Such an approach would not be conservative if 5-day flows frequently control project operations. Based upon a recent meeting with SWP and CVP operators, the CVP operators believe that fishery agencies will accept violations of the 5-day flow limit provided that project operators maintain relatively stable pumping operations. Is this belief that 5-day flows will not control operations valid? Will the courts or environmental groups accept such an operation? An investigation into the potential frequency of 5-day flow control seems prudent, given that we don't know the answers to such questions.

Methods

The following methods were employed:

- Review historical Delta flow and operations data for the period between January 1990 and May 2008.
- Identify periods when (1) pumping operations were relatively stable and (2) 5-day OMR flows were more negative than 14-day OMR flows. For periods prior to

October 2006, running average OMR flows were computed from raw 24-hour USGS data. For periods after October 2006, running average OMR flows were computed from tidally filtered USGS data.

• Evaluate differences between 5-day and 14-day OMR flows. Evaluate differences between (1) average period values and (2) peak period values. The rationale for evaluating both differences is as follows. While a 5-day flow violation may be acceptable as a "peak" event, the acceptability of a flow violation over longer periods seems less likely.

Results

Fifty periods were identified when pumping operations were relatively stable and 5-day OMR flows were more negative than 14-day OMR flows. The duration of these periods was typically 7 to 9 days. These periods are summarized in Table 5-1.

<u>Differences Between Average Period Values.</u> For each period, the average 5-day OMR flow is plotted against average 14-day OMR flow in Figure 5-1. This graph shows a linear relationship, suggesting that differences are relatively constant over a wide range of OMR flows. This relationship further suggests that the percent difference between 14-day flows and 5-day flows will generally be greater when the absolute flow value is small. At a 50% confidence interval, 5-day OMR flows are more negative than 14-day OMR flows by nearly 400 cfs (389 cfs). At one standard error, or about 67% confidence, 5-day OMR flows are more negative than 14-day OMR flows by more than 550 cfs (389 cfs + 174 cfs = 563 cfs). At two standard errors, or about 95% confidence, 5-day OMR flows are more negative than 14-day OMR flows by more than 700 cfs (389 cfs + 2*174 cfs = 737 cfs).

By solving the Figure 5-1 regression equation for a condition when the 5-day OMR flow is 25% more negative than the 14-day OMR flow, the following limits are identified when 5-day OMR flows will control:

14-day OMR flow = -1670 cfs at a 50% confidence interval

-2420 cfs at a 67% confidence interval

-3160 cfs at a 95% confidence interval

<u>Differences Between Peak Period Values.</u> For each period, the peak 5-day OMR flow is plotted against peak 14-day OMR flow in Figure 5-2. This graph also shows a linear relationship, suggesting that differences are relatively constant over a wide range of OMR flows. This relationship further suggests that the percent difference between 14-day flows and 5-day flows will generally be greater when the absolute flow value is small. At a 50% confidence interval, 5-day OMR flows are more negative than 14-day OMR flows by nearly 700 cfs (679 cfs). At one standard error, or about 67% confidence,

5-day OMR flows are more negative than 14-day OMR flows by nearly 1000 cfs (679 cfs + 297 cfs = 976 cfs). At two standard errors, or about 95% confidence, 5-day OMR flows are more negative than 14-day OMR flows by nearly 1300 cfs (679 cfs + 2*297 cfs = 1273 cfs).

By solving the Figure 5-1 regression equation for a condition when the 5-day OMR flow is 25% more negative than the 14-day OMR flow, the following limits are identified when 5-day OMR flows will control:

14-day OMR flow = -2980 cfs at a 50% confidence interval

-4280 cfs at a 67% confidence interval

-5580 cfs at a 95% confidence interval

Conclusions

This memo summarizes an investigation to answer the question "How frequently will 5day OMR flows, rather than 14-day OMR flows, control project operations under the new Delta smelt biological opinion?" An analysis of historical flow and project operations data suggests that 5-day OMR flows will often control operations when the 14-day flow target is in the most stringent range of -1500 cfs to -2500 cfs. When the projects are operating to less stringent OMR flows in the range of -3000 cfs to -5000 cfs, 5-day OMR flows will occasionally be at least 25% more negative than 14-day OMR flows and might control project operations.

If the projects are required to strictly meet the 5-day OMR flow criteria, (1) the current water supply impact assumption of 14-day OMR flow control is not conservative and (2) it would be prudent to incorporate a factor of safety to address the 5-day flow criteria.

Figure 5-1. Average 5d OMR flows as a function of average 14d OMR flows during periods when pumping operations were stable and 5d flows were more negative than 14d flows.

Figure 5-2. Peak 5d OMR flows as a function of peak 14d OMR flows during periods when pumping operations were stable and 5d flows were more negative than 14d flows.

Bay Delta Conservation Plan/California WaterFix Final EIR/EIS

5A-B227

Table 5-1. Fifty periods were identified when pumping operations were relatively stable and 5-day OMR flows were more negative than 14-day OMR flows.

	Period	Duration	Daily Eq	port Range	(cfs)	14d Exp	ort Range	(cfs)	Averag	ge OMR Dif	ference	(cfs)	P	eak OMRI	Difference	e (cfs)	
Start Date	End Date	(days)	Min	Max	Range	Min	Max	Range	14d	5d	Diff	%Diff	Date	14d	5d	Diff	%Diff
24-Jan-90	1-Feb-90	(ddy3) 9	10000	10700	700	10400	10500	100	-8300	-8760	-460	6%	30-Jan-90	-8390	-9010	-620	7%
9-Feb-90	17-Feb-90	9	9900	10600	700	10400	10400	0	-8270	-8590	-320	4%	12-Feb-90	-8280	-8900	-620	7%
24-Feb-90	3-Mar-90	8	10000	10600	600	10400	10500	100	-8270	-8690	-420	5%	27-Feb-90	-8240	-8870	-630	8%
10-Mar-90	19-Mar-90	10	10000	10800	800	10300	10400	100	-8260	-8510	-250	3%	18-Mar-90	-8340	-8890	-550	7%
24-Mar-90	1-Apr-90	9	10300	10600	300	10300	10500	200	-8830	-9250	-420	5%	31-Mar-90	-9040	-9950	-910	10%
1-Apr-91	8-Apr-91	8	9300	10200	900	10200	10300	100	-7470	-8020	-550	7%	4-Apr-91	-7390	-8260	-870	12%
16-Mar-92	24-Mar-92	9	10000	10700	700	10300	10400	100	-8410	-9060	-650	8%	22-Mar-92	-8640	-9880	-1240	14%
20-Aug-93	27-Aug-93	8	10400	10900	500	10600	10700	100	-8730	-9350	-620	7%	24-Aug-93	-8870	-9850	-980	11%
4-Sep-93	10-Sep-93	6	10900	10900	600	10600	10700	100	-8360	-8790	-430	5% 0%	9-3ep-93	-8420	-8990	-570	1%
1-Ort-93	23-3ep-93	9	10300	11100	300	10600	10900	300	-8340	-9030	-700	8%	20-3ep-93 3-Ort-93	-8240	-9300	-1000	12%
17-Oct-93	22-Oct-93	6	10800	10900	100	10900	10900	000	-7790	-8170	-380	5%	18-Oct-93	-7980	-8500	-520	7%
22-Nov-95	30-Nov-95	9	4300	4800	500	4400	4400	Ő	-2780	-3300	-520	19%	25-Nov-95	-2810	-3640	-830	30%
7-Dec-95	13-Dec-95	7	4200	4400	200	4300	4400	100	-2900	-3100	-200	7%	12-Dec-95	-2930	-3360	-430	15%
22-Dec-95	28-Dec-95	7	4200	4400	200	4200	4300	100	-2370	-2980	-610	26%	26-Dec-95	-2250	-3130	-880	39%
12-Aug-99	22-Aug-99	11	8700	11600	2900	10900	11300	400	-9800	-10180	-380	4%	20-Aug-99	-10040	-10630	-590	6%
28-Aug-99	5-Sep-99	9	10900	11600	700	11100	11400	300	-10260	-10790	-530	5%	1-Sep-99	-10350	-11180	-830	8%
13-Sep-99	19-Sep-99	7	11400	11500	100	11500	11500	0	-10090	-10390	-300	3%	17-Sep-99	-10030	-10530	-500	5%
3-May-00	9-May-00	7	1700	2200	500	2100	2300	200	-1930	-2410	-480	25%	8-May-00	-1980	-2560	-580	29%
5-May-01	13-May-01	9	1500	1700	200	1500	1500	0	-2000	-2630	-630	32%	11-May-01	-2190	-3380	-1190	54%
22-May-01	29-May-01	8	800	1600	800	1500	1500	0	-2020	-2590	-570	28%	27-May-01	-2140	-3080	-940	44%
22-Jul-01	29-Jul-01	8	7900	8800	900	8100	8300	200	-8580	-9160	-580	7%	25-Jul-01	-8610	-9610	-1000	12%
20-Aug-01	26-Aug-01	7	7700	8900	1200	8100	8400	300	-8470	-9080	-610	7%	23-Aug-01	-8410	-9370	-960	11%
6-Sep-01	12-Sep-01		7200	8300	1100	7500	7600	100	-7760	-8580	-820	11%	8-Sep-01	-7720	-9030	-1310	17%
19-Sep-01	25-Sep-01	7	7200	8200	1000	1700	7800	100	-7750	-8310	-560	7%	22-Sep-01	-7680	-8720	-1040	14%
27-Apr-02	3-IVIAY-02	7	1400	1500	100	1500	2000	500	-2190	-2750	-560	26%	30-Apr-02	-2160	-2960	-800	31%
26-May-02	31-May-02	6	1600	1600	0	1600	1600	0	-2030	-2340	-250	120/	31_May_02	-2040	-2620	-520	25%
1-May-03	7-May-03	7	1400	1500	100	1500	1500	0	-2340	-2760	-420	18%	3-May-03	-2400	-2950	-550	23%
15-May-03	22-May-03	. 8	1500	2300	800	1400	1700	300	-2250	-2800	-550	24%	20-May-03	-2300	-3190	-890	39%
15-Aug-03	22-Aug-03	8	11300	11600	300	11200	11400	200	-11260	-12100	-840	7%	20-Aug-03	-11430	-12670	-1240	11%
31-Aug-03	6-Sep-03	7	11200	11500	300	11400	11500	100	-11140	-12070	-930	8%	3-Sep-03	-11170	-12750	-1580	14%
13-Sep-03	21-Sep-03	9	10000	11600	1600	11200	11400	200	-11130	-11880	-750	7%	16-Sep-03	-11030	-12240	-1210	11%
25-Jul-05	31-Jul-05	7	11500	11600	100	11500	11500	0	-10020	-10670	-650	6%	28-Jul-05	-10110	-11040	-930	9%
7-Aug-05	15-Aug-05	9	10900	11700	800	11500	11600	100	-10390	-11020	-630	6%	13-Aug-05	-10530	-11350	-820	8%
22-Aug-05	28-Aug-05	7	11600	11700	100	11500	11600	100	-10500	-11190	-690	7%	25-Aug-05	-10650	-11720	-1070	10%
13-Aug-06	18-Aug-06	6	11500	11600	100	11500	11600	100	-10070	-10560	-490	5%	15-Aug-06	-10170	-10930	-760	7%
26-Aug-06	3-Sep-06	9	11300	11600	300	11500	11500	0	-9760	-10260	-500	5%	1-Sep-06	-9840	-10520	-680	7%
10-Sep-06	16-Sep-06	7	11000	11600	600	11500	11600	100	-9900	-10610	-710	7%	14-Sep-06	-10090	-11040	-950	9%
5-Nov-06	13-Nov-06	9	8600	10000	1400	9200	9400	200	-6880	-7100	-220	3%	7-Nov-06	-6870	-7260	-390	6%
15-Nov-06	23-Nov-06	9	9200	10000	800	9200	9500	300	-7260	-7460	-200	3%	20-Nov-06	-7310	-7660	-350	5%
2-Dec-06	6-Dec-06	5	6200	6000	1800	9600	9800	200	-/1/0	-7530	-360	5% 110/	4-Dec-06	-7180	-7780	-600	8% 16%
27-Jan-07	12 Ecb 07	7	6400	6000	500	6900	6900	300	-3090	-4300	-410	00/	20-Jan-07	-3900	-4550	-030	10%
22-Eeb-07	28-Feb-07	7	00+00	6900	300	0000	0000	100	-4100	-4490	-300	7%	25-Feb-07	-4170	-4730	-500	17%
22-reb-07 3-Apr-07	9-Apr-07	7	5600	7100	1500	6200	6600	400	-4030	-4330	-300	10%	23-reb-07 7-Δpr-07	-4020	-4700	-000	17%
15-May-07	20-May-07	6	1200	1500	300	1400	1500	100	-1540	-1750	-210	14%	18-May-07	-1540	-1920	-380	25%
14-Aug-07	24-Aug-07	11	11600	11600	0	11500	11600	100	-10450	-10960	-510	5%	17-Aug-07	-10160	-10810	-650	6%
3-May-08	9-May-08	7	1500	1500	0	1500	1600	100	-310	-1110	-800	258%	6-May-08	-330	-1720	-1390	421%
18-May-08	22-May-08	5	1400	1700	300	1500	1500	0	-500	-710	-210	42%	20-May-08	-530	-900	-370	70%
							¥										

1 B.11. NMFS RPA Implementation

- 2 The information included in this section is consistent with what was provided to and agreed by
- 3 the lead agencies in the, "*Representation of U.S. Fish and Wildlife Service Biological Opinion*
- 4 Reasonable and Prudent Alternative Actions for CALSIM II Planning Studies", on February 10, 2010.

5

Representation of National Marine Fisheries Service Biological 1 **Opinion Reasonable and Prudent Alternative Actions for CALSIM** 2

II Planning Studies 3

4 The National Marine Fisheries Service's (NMFS) Biological Opinion (BO) on the Long-term 5 Operations of the Central Valley Project and State Water Project was released on June 4, 2009.

6 To develop CALSIM II modeling assumptions to represent the operations related reasonable

7 and prudent alternative actions (RPA) required by this BO, the California Department of Water

8 Resources (Department) led a series of meetings that involved members of fisheries and project

9 agencies. The purpose for establishing this group was to prepare the assumptions and CALSIM

10 II implementations to represent the RPAs in both Existing- and Future-Condition CALSIM II

11 simulations for future planning studies.

12 This memorandum summarizes the approach that resulted from these meetings and the

13 modeling assumptions that were laid out by the group. The scope of this memorandum is

14 limited to the June 4, 2009 BO. All descriptive information of the RPAs is taken from the BO.

15 Table B-39 lists the participants that contributed to the meetings and information summarized 16 in this document.

17 The RPAs in NMFS's BO are based on physical and biological processes that do not lend

18 themselves to simulations using a monthly time step. Much scientific and modeling judgment

19 has been employed to represent the implementation of the RPAs. The group believes the logic

20 put into CALSIM II represents the RPAs as best as possible at this time, given the scientific

21 understanding of environmental factors enumerated in the BO and the limited historical data

22 for some of these factors.

23 Given the relatively generalized representation of the RPAs assumed for CALSIM II modeling,

- much caution is required when interpreting outputs from the model. 24
- 25

TABLE B-39 Meeting Participants	
Aaron Miller/Department Randi Field/Reclamation Lenny Grimaldo/Reclamation Henry Wong/Reclamation	Derek Hilts/USFWS Roger Guinee/ USFWS Matt Nobriga/CDFG Bruce Oppenheim/ NMFS
Parviz Nader-Tehrani/ Department Erik Reyes/ Department Sean Sou/ Department Paul A. Marshall/ Department Ming-Yen Tu/ Department Xiaochun Wang/ Department	Robert Leaf/CH2M HILL Derya Sumer/CH2M HILL
Notes:	and Game

G = California Department of Fish and Game

NMFS = National Marine Fisheries Service

USFWS = US Fish and Wildlife Service

1 Action Suite 1.1 Clear Creek

- 2 **Suite Objective:** The RPA actions described below were developed based on a careful review of
- 3 past flow studies, current operations, and future climate change scenarios. These actions are
- 4 necessary to address adverse project effects on flow and water temperature that reduce the
- 5 viability of spring-run and CV steelhead in Clear Creek.

6 Action 1.1.1 Spring Attraction Flows

- 7 **Objective:** Encourage spring-run movement to upstream Clear Creek habitat for spawning.
- 8 Action: Reclamation shall annually conduct at least two pulse flows in Clear Creek in May and
- 9 June of at least 600 cfs for at least three days for each pulse, to attract adult spring-run holding
- 10 in the Sacramento River main stem.
- 11 Action 1.1.1 Assumptions for CALSIM II Modeling Purposes
- 12 Action: Model is modified to meet 600 cfs for 3 days twice in May. In the CALSIM II analysis,
- 13 Flows sufficient to increase flow up to 600 cfs for a total of 6 days are added to the flows that
- 14 would have otherwise occurred in Clear Creek.
- 15 **Rationale:** CALSIM II is a monthly model. The monthly flow in Clear Creek is an
- 16 underestimate of the the actual flows that would occur subject to daily operational constraints
- 17 at Whiskeytown Reservoir. The additional flow to meet 600 cfs for a total of 6 days was added
- 18 to the monthly average flow modeled.
- 19 Action 1.1.5. Thermal Stress Reduction
- 20 **Objective:** To reduce thermal stress to over-summering steelhead and spring-run during
- 21 holding, spawning, and embryo incubation.
- 22 Action: Reclamation shall manage Whiskeytown releases to meet a daily water temperature of:
- 1) 60°F at the Igo gage from June 1 through September 15; and 2) 56°F at the Igo gage from
 September 15 to October 31.
- 24 September 15 to October 31.
- 25 Action 1.1.5 Assumptions for CALSIM II Modeling Purposes
- 26 Action: It is assumed that temperature operations can perform reasonably well with flows
- 27 included in model.
- 28
- 29 **Rationale:** A temperature model of Whiskeytown Reservoir has been developed by
- 30 Reclamation. Further analysis using this or other temperature model is required to verify the
- 31 statement that temperature operations can perform reasonably well with flows included in
- 32 model.

Action Suite 1.2 Shasta Operations

- Objectives: To address the avoidable and unavoidable adverse effects of Shasta operations on
 winter-run and spring-run:
- Ensure a sufficient cold water pool to provide suitable temperatures for winter-run
 spawning between Balls Ferry and Bend Bridge in most years, without sacrificing the
 potential for cold water management in a subsequent year. Additional actions to those

- in the 2004 CVP/SWP operations Opinion are needed, due to increased vulnerability of
 the population to temperature effects attributable to changes in Trinity River ROD
 operations, projected climate change hydrology, and increased water demands in the
 Sacramento River system.
- Ensure suitable spring-run temperature regimes, especially in September and October.
 Suitable spring-run temperatures will also partially minimize temperature effects to
 naturally-spawning, non-listed Sacramento River fall-run, an important prey base for
 endangered Southern Residents.
- 9 3. Establish a second population of winter-run in Battle Creek as soon as possible, to
 10 partially compensate for unavoidable project-related effects on the one remaining
 11 population.
- Restore passage at Shasta Reservoir with experimental reintroductions of winter-run to
 the upper Sacramento and/or McCloud rivers, to partially compensate for unavoidable
 project-related effects on the remaining population.
- 15 Action 1.2.1 Performance Measures
- 16 **Objective:** To establish and operate to a set of performance measures for temperature
- 17 compliance points and End-of-September (EOS) carryover storage, enabling Reclamation and
- 18 NMFS to assess the effectiveness of this suite of actions over time. Performance measures will
- 19 help to ensure that the beneficial variability of the system from changes in hydrology will be
- 20 measured and maintained.
- 21 **Action:** To ensure a sufficient cold water pool to provide suitable temperatures, long-term
- 22 performance measures for temperature compliance points and EOS carryover storage at Shasta
- Reservoir shall be attained. Performance measures for EOS carryover storage at Shasta
- 24 Reservoir are as follows:
- 25 87 percent of years: Minimum EOS storage of 2.2 MAF ٠ 26 82 percent of years: Minimum EOS storage of 2.2 MAF and end-of-April storage of 27 3.8 MAF in following year (to maintain potential to meet Balls Ferry compliance 28 point) 29 40 percent of years: Minimum EOS storage 3.2 MAF (to maintain potential to meet • 30 Jelly's Ferry compliance point in following year) 31 Performance measures (measured as a 10-year running average) for temperature compliance 32 points during summer season are: 33 Meet Clear Creek Compliance point 95 percent of time 34 Meet Balls Ferry Compliance point 85 percent of time • 35 Meet Jelly's Ferry Compliance point 40 percent of time •
- Meet Bend Bridge Compliance point 15 percent of time

1 Action 1.2.1 Assumptions for CALSIM II Modeling Purposes

- 2 Action: No specific CALSIM II modeling code is implemented to simulate the Performance
- 3 measures identified. System performance will be assessed and evaluated through post-
- 4 processing of various model results.
- 5 Rationale: Given that the performance criteria are based on the CALSIM II modeling data used
- 6 in preparation of the Biological Assessment, the system performance after application of the
- 7 RPAs should be similar as a percentage of years that the end-of-April storage and temperature
- 8 compliance requirements are met over the simulation period. Post-processing of modeling
- 9 results will be compared to various new operating scenarios as needed to evaluate performance
- 10 criteria and appropriateness of the rules developed.

11 Action 1.2.2 November through February Keswick Release Schedule (Fall Actions)

- 12 **Objective:** Minimize impacts to listed species and naturally spawning non-listed fall-run from
- 13 high water temperatures by implementing standard procedures for release of cold water from
- 14 Shasta Reservoir.
- 15 **Action:** Depending on EOS carryover storage and hydrology, Reclamation shall develop and
- 16 implement a Keswick release schedule, and reduce deliveries and exports as needed to achieve 17 performance measures.
- 17 performance measures.

18Action 1.2.2Assumptions for CALSIM II Modeling Purposes

- 19 Action: No specific CALSIM II modeling code is implemented to simulate the Performance
- 20 measures identified. Keswick flows based on operation of 3406(b)(2) releases in OCAP Study
- 21 7.1 (for Existing) and Study 8 (for Future) are used in CALSIM II. These flows will be reviewed
- 22 for appropriateness under this action. A post-process based evaluation similar to what has been
- 23 explained in Action 1.2.1 will be conducted.
- 24 Rationale: Performance measures are set as percentage of years that the end-of-September and
- 25 temperature compliance requirements are met over the simulation period. Post-processing of
- 26 modeling results will be compared to various new operating scenarios as needed to evaluate
- 27 performance criteria and appropriateness of the rules developed.

Action 1.2.3 February Forecast; March – May 14 Keswick Release Schedule (Spring Actions)

- 30 **Objective:** To conserve water in Shasta Reservoir in the spring in order to provide sufficient
- 31 water to reduce adverse effects of high water temperature in the summer months for winter-
- 32 run, without sacrificing carryover storage in the fall.
- 33 Action: 1) Reclamation shall make its February forecast of deliverable water based on an
- 34 estimate of precipitation and runoff within the Sacramento River basin at least as conservative
- 35 as the 90 percent probability of exceedance. Subsequent updates of water delivery commitments
- 36 must be based on monthly forecasts at least as conservative as the 90 percent probability of
- 37 exceedance.
- 38 2) Reclamation shall make releases to maintain a temperature compliance point not in excess of
- 39 56 degrees between Balls Ferry and Bend Bridge from April 15 through May 15.

1 Action 1.2.3 Assumptions for CALSIM II Modeling Purposes

- 2 Action: No specific CALSIM II modeling code is implemented to simulate the Performance
- 3 measures identified. It is assumed that temperature operations can perform reasonably well 4 with flows included in model.
- 5 **Rationale:** Temperature models of Shasta Lake and the Sacramento River have been developed
- 6 by Reclamation. This modeling reflects current facilities for temperature controlled releases.
- 7 Further analysis using this or another temperature model can further verify that temperature
- 8 operations can perform reasonably well with flows included in model and temperatures are met
- 9 reliably at each of the compliance points. In the future, it may be that adjusted flow schedules
- 10 may need to be developed based on development of temperature model runs in conjunction
- 11 with CALSIM II modeled operations.
- 12 Action 1.2.4 May 15 through October Keswick Release Schedule (Summer Action)
- 13 **Objective:** To manage the cold water storage within Shasta Reservoir and make cold water
- 14 releases from Shasta Reservoir to provide suitable habitat temperatures for winter-run, spring-
- 15 run, CV steelhead, and Southern DPS of green sturgeon in the Sacramento River between
- 16 Keswick Dam and Bend Bridge, while retaining sufficient carryover storage to manage for next
- 17 year's cohorts. To the extent feasible, manage for suitable temperatures for naturally spawning
- 18 fall-run.
- 19 Action: Reclamation shall manage operations to achieve daily average water temperatures in
- 20 the Sacramento River between Keswick Dam and Bend Bridge as follows:
- 21 1) Not in excess of 56°F at compliance locations between Balls Ferry and Bend Bridge from May
- 22 15 through September 30 for protection of winter-run, and not in excess of 56°F at the same
- 23 compliance locations between Balls Ferry and Bend Bridge from October 1 through October 31
- 24 for protection of mainstem spring run, whenever possible.
- 25 2) Reclamation shall operate to a final Temperature Management Plan starting May 15 and26 ending October 31.
- 27 Action 1.2.4 Assumptions for CALSIM II Modeling Purposes
- 28 Action: No specific CALSIM II modeling code is implemented to simulate the Performance
- 29 measures identified. It is assumed that temperature operations can perform reasonably well
- 30 with flows included in model. During the detailed effects analysis, temperature modeling and
- 31 post-processing will be used to verify temperatures are met at the compliance points. In the
- 32 long-term approach, for a complete interpretation of the action, development of temperature
- 33 model runs are needed to develop flow schedules if needed for implementation into CALSIM II.
- 34 **Rationale:** Temperature models of Shasta Lake and the Sacramento River have been developed
- by Reclamation. This modeling reflects current facilities for temperature controlled releases.
- 36 Further analysis using this or another temperature model is required to verify the statement
- 37 that temperature operations can perform reasonably well with flows included in model and
- 38 temperatures are met reliably at each of the compliance points. It may be that alternative flow
- 39 schedules may need to be developed based on development of temperature model runs in
- 40 conjunction with CALSIM II modeled operations.

1 Action Suite 1.3 Red Bluff Diversion Dam (RBDD) Operations

- 2 **Objectives:** Reduce mortality and delay of adult and juvenile migration of winter-run, spring-
- 3 run, CV steelhead, and Southern DPS of green sturgeon caused by the presence of the diversion
- 4 dam and the configuration of the operable gates. Reduce adverse modification of the passage
- 5 element of critical habitat for these species. Provide unimpeded upstream and downstream fish
- 6 passage in the long term by raising the gates year-round, and minimize adverse effects of
- 7 continuing dam operations, while pumps are constructed replace the loss of the diversion
- 8 structure.

9 Action 1.3.1 Operations after May 14, 2012: Operate RBDD with Gates Out

- 10 Action: No later than May 15, 2012, Reclamation shall operate RBDD with gates out all year to
- 11 allow unimpeded passage for listed anadromous fish.
- 12 Action 1.3.1 Assumptions for CALSIM II Modeling Purposes
- 13 Action: Adequate permanent facilities for diversion are assumed; therefore no constraint on
- 14 diversion schedules is included in the Future condition modeling.
- 15 Action 1.3.2 Interim Operations
- Action: Until May 14, 2012, Reclamation shall operate RBDD according to the following
 schedule:
- •September 1 June 14: Gates open. No emergency closures of gates are allowed.
- •June 15 August 31: Gates may be closed at Reclamation's discretion, if necessary to deliver
 water to TCCA.
- 21 Action 1.3.2 Assumptions for CALSIM II Modeling Purposes
- 22 Action: Adequate interim/temporary facilities for diversion are assumed; therefore no
- 23 constraint on diversion schedules is included in the Existing Conditions modeling.

Action 1.4 Wilkins Slough Operations

- 25 **Objective:** Enhance the ability to manage temperatures for anadromous fish below Shasta Dam
- 26 by operating Wilkins Slough in the manner that best conserves the dam's cold water pool for
- 27 summer releases.
- 28 Action: The SRTTG shall make recommendations for Wilkins Slough minimum flows for
- anadromous fish in critically dry years, in lieu of the current 5,000 cfs navigation criterion to
- 30 NMFS by December 1, 2009. In critically dry years, the SRTTG will make a recommendation.
- Action 1.4 Assumptions for CALSIM II Modeling Purposes
- 32 Action: Current rules for relaxation of NCP in CALSIM II (based on BA models) will be used.
- 33 In CALSIM II, NCP flows are relaxed depending on allocations for agricultural contractors.
- 34 Table B-40 is used to determine the relaxation.
- 35
- 36

CVP AG Allocation (%)	NCP Flow (cfs)
<10	3250
10-25	3500
25-40	4000
40-65	4500
>65	5000

NCP FLOW SCHEDULE WITH RELAXATION

1

2 **Rationale:** The allocation-flow criteria have been used in the CALSIM II model for many years.

3 The low allocation year relaxations were added to improve operations of Shasta Lake subject to

4 1.9 MAF carryover target storage. These criteria may be reevaluated subject to the requirements

5 of Action 1.2.1

6 Action 2.1 Lower American River Flow Management

7 **Objective:** To provide minimum flows for all steelhead life stages.

8 Action: Implement the flow schedule specified in the Water Forum's Flow Management

9 Standard (FMS), which is summarized in Appendix 2-D of the NMFS BO.

10

11 Action 2.1 Assumptions for CALSIM II Modeling Purposes

12 Action: The AFRMP Minimum Release Requirements (MRR) range from 800 to 2,000 cfs based

13 on a sequence of seasonal indices and adjustments. The minimum Nimbus Dam release

14 requirement is determined by applying the appropriate water availability index (Index Flow).

15 Three water availability indices (i.e., Four Reservoir Index (FRI), Sacramento River Index (SRI),

16 and the Impaired Folsom Inflow Index (IFII)) are applied during different times of the year,

17 which provides adaptive flexibility in response to changing hydrological and operational

18 conditions.

19 During some months, Prescriptive Adjustments may be applied to the Index Flow, resulting in

- 20 the MRR. If there is no Prescriptive Adjustment, the MRR is equal to the Index Flow.
- 21 Discretionary Adjustments for water conservation or fish protection may be applied during the

22 period extending from June through October. If Discretionary Adjustments are applied, then

23 the resultant flows are referred to as the Adjusted Minimum Release Requirement (Adjusted

- 24 MRR).
- 25 The MRR and Adjusted MRR may be suspended in the event of extremely dry conditions,
- 26 represented by "conference years" or "off-ramp criteria". Conference years are defined when
- 27 the projected March through November unimpaired inflow into Folsom Reservoir is less than
- 28 400,000 acre-feet. Off-ramp criteria are triggered if forecasted Folsom Reservoir storage at any
- 29 time during the next twelve months is less than 200,000 acre-feet.
- 30 **Rationale:** Minimum instream flow schedule specified in the Water Forum's Flow Management
- 31 Standard (FMS) is implemented in the model.

- 1 Action 2.2 Lower American River Temperature Management
- 2 **Objective:** Maintain suitable temperatures to support over-summer rearing of juvenile
- 3 steelhead in the lower American River.
- 4 **Action:** Reclamation shall develop a temperature management plan that contains: (1) forecasts
- 5 of hydrology and storage; (2) a modeling run or runs, using these forecasts, demonstrating that
- 6 the temperature compliance point can be attained (see Coldwater Management Pool Model
- 7 approach in Appendix 2-D); (3) a plan of operation based on this modeling run that
- 8 demonstrates that all other non-discretionary requirements are met; and (4) allocations for
- 9 discretionary deliveries that conform to the plan of operation.
- 10 Action 2.2 Assumptions for CALSIM II Modeling Purposes
- 11 **Action:** The flows in the model reflect the ARFMP implemented under Action 2.1. It is assumed
- 12 that temperature operations can perform reasonably well with flows included in model.
- 13 **Rationale:** Temperature models of Folsom Lake and the American River were developed in the
- 14 1990's. Model development for long range planning purposes may be required. Further
- 15 analysis using a verified long range planning level temperature model is required to verify the
- 16 statement that temperature operations can perform reasonably well with flows included in
- 17 model and temperatures are met reliably

18 Action Suite 3.1 Stanislaus River / Eastside Division Actions

- 19 **Overall Objectives:** (1) Provide sufficient definition of operational criteria for Eastside Division
- 20 to ensure viability of the steelhead population on the Stanislaus River, including freshwater
- 21 migration routes to and from the Delta; and (2) halt or reverse adverse modification of steelhead
- 22 critical habitat.

Action 3.1.2 Provide Cold Water Releases to Maintain Suitable Steelhead

24 Temperatures

- 25 **Action:** Reclamation shall manage the cold water supply within New Melones Reservoir and
- 26 make cold water releases from New Melones Reservoir to provide suitable temperatures for CV
- 27 steelhead rearing, spawning, egg incubation smoltification, and adult migration in the
- 28 Stanislaus River downstream of Goodwin Dam.

29 Action 3.1.2 Assumptions for CALSIM II Modeling Purposes

- 30 Action: No specific CALSIM II modeling code is implemented to simulate the Performance
- 31 measures identified. It is assumed that temperature operations can perform reasonably well
- 32 with flow operations resulting from the minimum flow requirements described in action 3.1.3.
- 33 **Rationale:** Temperature models of New Melones Lake and the Stanislaus River have been
- 34 developed by Reclamation. Further analysis using this or another temperature model can
- 35 further verify that temperature operations perform reasonably well with flows included in
- 36 model and temperatures are met reliably. Development of temperature model runs is needed
- 37 to refine the flow schedules assumed.

Action 3.1.3 Operate the East Side Division Dams to Meet the Minimum Flows, as

2 Measured at Goodwin Dam

- 3 **Objective:** To maintain minimum base flows to optimize CV steelhead habitat for all life history
- 4 stages and to incorporate habitat maintaining geomorphic flows in a flow pattern that will
- 5 provide migratory cues to smolts and facilitate out-migrant smolt movement on declining limb
- 6 of pulse.
- 7 Action: Reclamation shall operate releases from the East Side Division reservoirs to achieve a
- 8 minimum flow schedule as prescribed in NMFS BO Appendix 2-E and generally described in
- 9 figure 11-1. When operating at higher flows than specified, Reclamation shall implement
- 10 ramping rates for flow changes that will avoid stranding and other adverse effects on CV
- 11 steelhead.

12 Action 3.1.3 Assumptions for CALSIM II Modeling Purposes

- 13 **Action:** Minimum flows based on Appendix 2-E flows (presented in Figure B-4) are assumed
- 14 consistent to what was modeled by NMFS (5/14/09 and 5/15/09 CALSIM II models provided
- 15 by NMFS; relevant logic merged into baselines models).

16

FIGURE B-4. MINIMUM STANISLAUS INSTREAM FLOW SCHEDULE AS PRESCRIBED IN APPENDIX 2-E OF THE
 NMFS BO (06/04/09)

19 Annual allocation in New Melones is modeled to ensure availability of required instream flows

- 20 (Table B-41) based on a water supply forecast that is comprised of end-of-February New
- 21 Melones storage (in TAF) plus forecasted inflow to New Melones from March 1 to September 30
- 22 (in TAF). The "forecasted inflow" is calculated using perfect foresight in the model. Allocated

- 1 volume of water is released according to water year type following the monthly flow schedule
- 2 illustrated in Figure B-4.

NEW MELONES ALLOCATIONS TO MEET MINIMUM INSTREAM FLOW REQUIREMENTS	
--	--

New Melones index (TAF)	Annual allocation required for instream flows (TAF)
<1000	0-98.9
1,000 - 1,399	98.9
1,400 - 1,724	185.3
1,725 – 2,177	234.1
2,178 - 2,386	346.7
2,387 - 2,761	461.7
2,762 - 6,000	586.9

3

- 4 Rationale: This approach was reviewed by NOAA fisheries and verified that the year typing
- 5 and New Melones allocation scheme are consistent with the modeling prepared for the BO.

6

7 Action Suite 4.1 Delta Cross Channel (DCC) Gate Operation, and

8 Engineering Studies of Methods to Reduce Loss of Salmonids in

- 9 Georgiana Slough and Interior Delta
- 10 Action 4.1.2 DCC Gate Operation
- 11 **Objective:** Modify DCC gate operation to reduce direct and indirect mortality of emigrating
- 12 juvenile salmonids and green sturgeon in November, December, and January.
- 13 Action: During the period between November 1 and June 15, DCC gate operations will be

14 modified from the proposed action to reduce loss of emigrating salmonids and green sturgeon.

15 From December 1 to January 31, the gates will remain closed, except as operations are allowed

- 16 using the implementation procedures/modified Salmon Decision Tree.
- 17 **Timing:** November 1 through June 15.
- 18 **Triggers:** Action triggers and description of action as defined in NMFS BO are presented in
- 19 Table B-42.
- 20
- 21
- 22
- 23
- 24
- 25 26
- 26
- 27
- 28 29

NIMES	DΟ	DCC	CATE		TDICCEDS	
INIVIL 2	ъυ	DCC	GATE	UPERATION	IRIGGERS	AND ACTIONS

NUM 5 DO DOO ONTE		
Date	Action Triggers	Action Responses
October 1 – November 30	Water quality criteria per D-1641 are met and either the Knights Landing Catch Index (KLCI) or the Sacramento Catch Index (SCI) are greater than 3 fish per day but less than or equal to 5 fish per day.	Within 24 hours of trigger, DCC gates are closed. Gates will remain closed for 3 days.
	Water quality criteria per D-1641 are met and either the KLCI or SCI is greater than 5 fish per day	Within 24 hours, close the DCC gates and keep closed until the catch index is less than 3 fish per day at both the Knights Landing and Sacramento monitoring sites.
	The KLCI or SCI triggers are met but water quality criteria are not met per D- 1641 criteria.	DOSS reviews monitoring data and makes recommendation to NMFS and WOMT per procedures in Action IV.5.
December 1 – December 14	Water quality criteria are met per D-1641.	DCC gates are closed. If Chinook salmon migration experiments are conducted during this time period (e.g., Delta Action 8 or similar studies), the DCC gates may be opened according to the experimental design, with NMFS' prior approval of the study.
	Water quality criteria are not met but both the KLCI and SCI are less than 3 fish per day.	DCC gates may be opened until the water quality criteria are met. Once water quality criteria are met, the DCC gates will be closed within 24 hours of compliance.
	Water quality criteria are not met but either of the KLCI or SCI is greater than 3 fish per day.	DOSS reviews monitoring data and makes recommendation to NMFS and WOMT per procedures in Action IV.5
December 15 –	December 15-January 31	DCC Gates Closed.
January 31	NMFS-approved experiments are being conducted.	Agency sponsoring the experiment may request gate opening for up to five days; NMFS will determine whether opening is consistent with ESA obligations.
	One-time event between December 15 to January 5, when necessary to maintain Delta water quality in response to the astronomical high tide, coupled with low inflow conditions.	Upon concurrence of NMFS, DCC Gates may be opened one hour after sunrise to one hour before sunset, for up to 3 days, then return to full closure. Reclamation and DWR will also reduce Delta exports down to a health and safety level during the period of this action.
February 1 – May 15	D-1641 mandatory gate closure.	Gates closed, per WQCP criteria
May 16 – June 15	D-1641 gate operations criteria	DCC gates may be closed for up to 14 days during this period, per 2006 WQCP, if NMFS determines it is necessary.

1

2 Action 4.1.2 Assumptions for CALSIM II Modeling Purposes

3 Action: The DCC gate operations for October 1 through January 31 were layered on top of the

4 D-1641 gate operations already included in the CALSIM II model. The general assumptions

5 regarding the NMFS DCC operations are summarized in Table B-43.

6 **Timing:** October 1 through January 31.

7

200 0/112 01 214 11011 114002		
Date	Modeled Action Triggers	Modeled Action Responses
October 1-December 14	Sacramento River daily flow at Wilkins Slough exceeding 7,500 cfs; flow assumed to flush salmon into the Delta	Each month, the DCC gates are closed for number of days estimated to exceed the threshold value.
	Water quality conditions at Rock Slough subject to D-1641 standards	Each month, the DCC gates are not closed if it results in violation of the D- 1641 standard for Rock Slough; if DCC gates are not closed due to water quality conditions, exports during the days in question are restricted to 2,000 cfs.
December 15 – January 31	December 15-January 31	DCC Gates Closed.

DCC GATE OPERATION TRIGGERS AND ACTIONS AS MODELED IN CALSIM II

1

2 **Flow Trigger:** It is assumed that during October 1 – December 14, the DCC will be closed if

3 Sacramento River daily flow at Wilkins Slough exceeds 7,500 cfs. Using historical data (1945

4 through 2003, USGS gauge 11390500 "Sacramento River below Wilkins Slough near Grimes,

5 CA"), a linear relationship is obtained between average monthly flow at Wilkins Slough and the

6 number of days in month where the flow exceeds 7,500 cfs. This relation is then used to

7 estimate the number of days of DCC closure for the October 1 – December 14 time period

8 (Figure B-5).

1

2 FIGURE B-5. RELATIONSHIP BETWEEN MONTHLY AVERAGES OF SACRAMENTO RIVER FLOWS AND NUMBER OF 3 DAYS THAT DAILY FLOW EXCEEDS 7,500 CFS IN A MONTH AT WILKINS SLOUGH

4 It is assumed that during December 15 through January 31 that the DCC gates are closed under5 all flow conditions.

6 **Water Quality:** It is assumed that during October 1 – December 14 the DCC gates may remain

7 open if water quality is a concern. Using the CALSIM II-ANN flow-salinity model for Rock

8 Slough, current month's chloride level at Rock Slough is estimated assuming DCC closure per

9 NMFS BO. The estimated chloride level is compared against the Rock Slough chloride standard

10 (monthly average). If estimated chloride level exceeds the standard, the gate closure is modeled

11 per D1641 schedule (for the entire month).

- 12 It is assumed that during December 15 through January 31 that the DCC gates are closed under13 all water quality conditions.
- 14 **Export Restriction:** During October 1 December 14 period, if the flow trigger condition is such
- 15 that additional days of DCC gates closed is called for, however water quality conditions are a
- 16 concern and the DCC gates remain open, then Delta exports are limited to 2,000 cfs for each day
- 17 in question. A monthly Delta export restriction is calculated based on the trigger and water
- 18 quality conditions described above.
- 19 **Rationale:** The proposed representation in CALSIM II should adequately represent the limited
- 20 water quality concerns were Sacramento River flows are low during the extreme high tides of
- 21 December.

1 Action Suite 4.2 Delta Flow Management

2 Action 4.2.1 San Joaquin River Inflow to Export Ratio

- 3 **Objectives:** To reduce the vulnerability of emigrating CV steelhead within the lower San
- 4 Joaquin River to entrainment into the channels of the South Delta and at the pumps due to the
- 5 diversion of water by the export facilities in the South Delta, by increasing the inflow to export
- 6 ratio. To enhance the likelihood of salmonids successfully exiting the Delta at Chipps Island by
- 7 creating more suitable hydraulic conditions in the main stem of the San Joaquin River for
- 8 emigrating fish, including greater net downstream flows.
- 9 Action: For CVP and SWP operations under this action, "The Phase II: Operations beginning is
- 10 2012" is assumed. From April 1 through May 31, 1) Reclamation shall continue to implement
- 11 the Goodwin flow schedule for the Stanislaus River prescribed in Action 3.1.3 and Appendix 2-
- 12 E of the NMFS BO); and 2) Combined CVP and SWP exports shall be restricted to the ratio
- 13 depicted in table B-44 below based on the applicable San Joaquin River Index, but will be no
- 14 less than 1,500 cfs (consistent with the health and safety provision governing this action.)

15 Action 4.2.1 Assumptions for CALSIM II Modeling Purposes

- 16 Action: Flows at Vernalis during April and May will be based on the Stanislaus River flow
- 17 prescribed in Action 3.1.3 and the flow contributions from the rest of the San Joaquin River
- 18 basin consistent with the representation of VAMP contained in the BA modeling. In many
- 19 years this flow may be less than the minimum Vernalis flow identified in the NOAA BO.
- 20 Exports are restricted as illustrated in Table B-44.
- 21

TABLE B-44	
MAXIMUM COMBINED CVP AND SWP	EXPORT DURING APRIL AND MAY
San Joaquin River Index	Combined CVP and SWP Export Ratio
Critically dry	1:1
Dry	2:1
Below normal	3:1
Above normal	4:1
Wet	4:1

22

Rationale: Although the described model representation does not produce the full Vernalis

flow objective outlined in the NOAA BO, it does include the elements that are within the

- control of the CVP and SWP, and that are reasonably certain to occur for the purpose of the
- 26 EIS/EIR modeling.

27

- 28 In the long-term, a future SWRCB flow standard at Vernalis may potentially incorporate the
- 29 full flow objective identified in the BO; and the Merced and Tuolumne flows would be based on
- 30 the outcome of the current SWRCB and FERC processes that are underway.

1 Action 4.2.3 Old and Middle River Flow Management

- 2 **Objective:** Reduce the vulnerability of emigrating juvenile winter-run, yearling spring-run, and
- 3 CV steelhead within the lower Sacramento and San Joaquin rivers to entrainment into the
- 4 channels of the South Delta and at the pumps due to the diversion of water by the export
- 5 facilities in the South Delta. Enhance the likelihood of salmonids successfully exiting the Delta
- 6 at Chipps Island by creating more suitable hydraulic conditions in the mainstem of the San
- 7 Joaquin River for emigrating fish, including greater net downstream flows.
- 8 Action: From January 1 through June 15, reduce exports, as necessary, to limit negative flows to
- 9 -2,500 to -5,000 cfs in Old and Middle Rivers, depending on the presence of salmonids. The

10 reverse flow will be managed within this range to reduce flows toward the pumps during

- 11 periods of increased salmonid presence. Refer to NMFS BO document for the negative flow
- 12 objective decision tree.
- 13Action 4.2.3Assumptions for CALSIM II Modeling Purposes
- 14 Action: Old and Middle River flows required in this BO are assumed to be covered by OMR
- 15 flow requirements developed for actions 1 through 3 of the FWS BO Most Likely scenario
- 16 (Representation of U.S. Fish and Wildlife Service Biological Opinion Reasonable and Prudent
- 17 Alternative Actions for CALSIM II Planning Studies DRAFT, 6/10/09).
- 18 **Rationale:** Based on a review of available data, it appears that implementation of actions 1
- 19 through 3 of the FWS RPA, and action 4.2.1 of the NOAA RPA will adequately cover this action
- 20 within the CALSIM II simulation. If necessary, additional post-processing of results could be
- 21 conducted to verify this assumption.
- 22
- 23
- 24

1 B.12. References

- 2 Atejlevich, E. and Yu, M. (2007). "Chapter 4: Extended 82-year Martinez Planning Tide".
- 3 Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun
- 4 Marsh. 28th Annual Progress Report to the State Water Resources Control Board.
- 5 Sacramento,CA.
- 6 Atejlevich, E. (2001). "Chapter 11 Improving Estimates of Salinity at the Martinez Boundary".
- 7 Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun
- 8 Marsh. 22nd Annual Progress Report to the State Water Resources Control Board.
- 9 Sacramento,CA.
- 10 BDCP Steering Committee, 2010. SAIC Proposed Long-Term BDCP Water Operations Analytical
- 11 *Range (February 5, 2010 Draft),* February 11, 2010.
- 12 (http://baydeltaconservationplan.com/Libraries/Dynamic_Document_Library/2_11_10_SC_
- 13 <u>Mtg_HO_Proposed_BDCP_Long_Term_Water_Operations_Table_revised.sflb.ashx</u>)
- 14 CH2M HILL, 2009. DSM2 Recalibration. Prepared for California Department of Water
- 15 Resources, October, 2009.
- 16 MacWilliams, Michael L. and Edward S. Gross, 2010. UNTRIM San Francisco Bay–Delta Model
- 17 Sea Level Rise Scenario Modeling Report. Prepared for Science Applications International
- 18 Corporation and California Department of Water Resources. Draft Report, July 16, 2010.
- 19 National Marine Fisheries Service (NMFS), 2009. Biological Opinion and Conference Opinion on
- 20 the Long-Term Operations of the Central Valley Project and State Water Project.
- 21 Resource Management Associates (RMA), 2010. Numerical Modeling In Support Of Bay Delta

22 Conservation Plan Technical Study #4 – Evaluation Of Tidal Marsh Restoration Effects Effects

- 23 Analysis, For Internal Review Only, August 2010.
- 24 SWRCB, 2000. Revised Water Right Decision 1641, March 15, 2000.
- 25 U. S. Bureau of Reclamation, 2008. Central Valley Project and State Water Project Operations
- 26 Criteria and Plan Biological Assessment, Appendix D CALSIM-II Model, May 2008.
- U. S. Bureau of Reclamation, 2008. Central Valley Project and State Water Project Operations
 Criteria and Plan Biological Assessment, Appendix F DSM2 Model, May 2008.
- 29 U. S. Fish and Wildlife Service, 2008. Formal Endangered Species Act Consultation on the
- Proposed Coordinated Operations of the Central Valley Project (CVP) and State Water Project(SWP).