

Figure ES-3 Location of Conveyance Facility Alignment for Alternatives 4, 4A, 2D and 5A

a w . c										Al	ternat	ive									
Chapter 5 – Water Sup	pply	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	6C	7	8	9	4A	2D	5A
	SWP	n/a	-4%	6%	6%	6%	2%	2%	2%	6%	H1: 6% H4: 2%	2%	-5%	-5%	-5%	-5%	-9%	-1%	0%	2%	3%
WS-2: Change in SWP/CVP		n/a	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
deliveries (average annual total TAF)	CVP	n/a	-11%	23%	23%	23%	15%	15%	15%	21%	H1: 17% H4: -3%	8%	-13%	-13%	-13%	-13%	-30%	-1%	5%	15%	9%
		n/a	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

											Alte	rnativ	e								
Chapter 7 – Ground	dwater	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	6C	7	8	9	4A	2D	5A
GW-1: During construction groundwater supplies or ir groundwater recharge, alt groundwater levels, or red production capacity of pre nearby wells (Decrease in	nterfere with er uce the existing groundwater	n/a	n/a	10-20 ft/ 20 ft	<10-20 ft/ <20 ft	<10-20 ft/ <20 ft	<10-20 ft/ <20 ft	10-20 ft/ 20 ft	10-20 ft/ 20 ft	10-20 ft/ 20 ft	10-20 ft/ 20 ft	<10-20 ft/ <20 ft	n/a	<10-20 ft/ <20 ft	<10-20 ft/ <20 ft	<10-20 f <20 ft					
in vicinity of intakes / in vi Clifton Court Forebay)	cinity of	n/a	n/a	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	LTS/NA	SU/A	SU/A	SU/A
GW-8: During operations, deplete groundwater supplies or interfere with groundwater recharge,	San Joaquin and Tulare	2,964	2,519	3,070	3,070	3,070	2,846	2,846	2,846	3,023	H1: 2,949 H2: 2,767 H3: 2,781 H4: 2,610	2,709	2,285	2,285	2,285	2,272	2,069	2,529	2,762	3,016	2,928
alter groundwater levels, or reduce the production capacity of preexisting nearby wells (SWP and CVP deliveries [TAF/yr] to	Central Coast	47	40	51	51	51	49	49	49	50	H1: 49 H2: 40 H3: 48 H4: 39	45	34	34	34	36	27	43	45	51	48
hydrologic regions located south of the Delta)	Southern California	1,647	1,484	1,853	1,853	1,853	1,711	1,711	1,711	1,821	H1: 1,784 H2: 1,491 H3: 1,668 H4: 1,370	1,613	1,136	1,136	1,136	1,162	803	1,410	1,663	1,819	1,728
		n/a	n/a	В	В	В	LTS/NA	LTS/NA	LTS/NA	LTS/B	SU/A	LTS/NA	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	LTS/B	LTS/B	LTS/B
		Key Level of (Quantity acres, etc.)	y of imp	act: num			-			ncreasing l	evel of sian	ificance	→		> <u>0</u>	not appl greater tl ess than about eq	han	_			
		Level of (CEQA Fi				er mitiga	tion	S Sig	inding Impact ss than s gnificant	significar	nt		NE No	neficial Effect t Advers			4-	_			

									Al	terna	tive									
Chapter 8 – Water Quality	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	60	7	8	9	4A	2D	5A
WQ-5: Bromide (CM1) - Percent increase in long-term average concentration at		-2%	38/43%	38/43%	38/43%	22/26%	22/26%	22/ 26%	34/38%	40/44%	23/27%	19/22%	19/22%	19/22%	-2/1%	4/8%	19/23%	-2/2%	-2/2%	-4/0%
Barker Slough		LTS	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A ^a	S/A a	S/A	LTS/NA	LTS/NA	LTS/NA
WQ-7: Chloride - Percent of years when 150 mg/L water quality objective	7%	0	13%	13%	13%	13%	13%	13%	7%	7%	13%	13%	13%	13%	20%	13%	13%	0%	0%	0%
exceeded at CCPP#1 b	770	S	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	LTS/NA	LTS/NA	LTS/NA
WQ-11: EC - Percent of days Emmaton objective would be exceeded	6%	14	31%	31%	31%	26%	26%	26%	30%	27-29% ^c	25%	32%	32%	32%	19%	22%	18%	16% c	7% ^c	10% ^c
	6%	S	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	S/A	LTS/NA	LTS/NA	LTS/NA
WQ-13: Mercury (CM1) - Maximum percent increase in fish tissue	6%	6%	8/10%	8/10%	8/10%	13/11%	13/11%	13/11%	6/8%	15/12%	8/7%	64/58%	64/58%	64/58%	45/39%	46/41%	66/59%	8/7%	10/9%	5/3%
	0%	LTS	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	S/A	S/A	S/A	S/A	S/A	S/A	LTS/NA	LTS/NA	LTS/NA

Notes

- ^a While the long-term average increases in bromide would be low, the drought period increases would be 34% for Alternative 7 and 50% for Alternative 8, relative to Existing Conditions and the No Action Alternative. These increases in the drought period were considered significant/adverse.
- b Water quality degradation as measured by use of available assimilative capacity also played a significant role in determining effects by alternative, and degradation varied by alternative.
- ^c Alternative 4 does not include a change in compliance location from Emmaton to Threemile Slough, but the modeling used to evaluate the alternative did include the change. Thus, although the percent of days the Emmaton objective was exceeded is high, it is expected that under the alternative it would be similar to the No Action.

Key

Level of significance or effect **before** mitigation (Quantity of impact: number of sites, structures, acres, etc. affected)

	Inc	creasing level	of significan	ce
Bromide - Percent increase (%)	<0	1 - 20	21 - 40	>40
Chloride - % of years objective exceeded (%)	0	1-12	13-19	>20
EC - percent of days objective exceeded (%)	<10	11 - 20	20 - 30	>30
Mercury (CM1) - Percent increase (%)	<10	10 - 20	21 - 50	>50
Mercury (CM2-CM22) - restoration acres	0	1 - 100	25,000	65,000
Organic Carbon (CM1) - mg/L	< 0.1	0.1 - 0.5	0.6 - 1.0	>1.0
Organic Carbon (CM2-CM21) - restoration acres	0	1 - 100	25,000	65,000
Selenium - Exceedance Quotient	0.87	0.88 - 0.93	0.94 - 0.99	>1.0
Microcystis - relative rank	1	2	3	4

Level of significance or effect **after** mitigation (CEQA Finding / NEPA Finding)

c	F	O	Α	F	in	d	ir	nq	
•	_	v	_			ч	••	ш	

NI No Impact

LTS Less than significant

S Significant

SU Significant and unavoidable

NEPA Finding

B Beneficial NE No Effect

NA Not Adverse

A Adverse

n/a not applicable

- > greater than
- < less than
- about equal to

Continued on Figure ES-7b

Chapter 8 – Water Quality									Al	terna	tive									
(continued)	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	60	7	8	9	4A	2D	5A
WQ-14: Mercury (CM2-CM21) - Amount (acres) of new tidal habitat restoration	0	0	65,000	65,000	65,000	65,000	65,000	65,000	65,000	65,000	25,000	65,000	65,000	65,000	65,000	65,000	65,000	59	65	55
that could contribute additional methylmercury	v	d	S/A																	
WQ-17: Organic Carbon (CM1) – Maximum increase in long-term average		<0.1	0.3	0.3	0.3	0.4	0.4	0.4	0.2	0.4	0.2	1.2	1.2	1.2	0.8	0.8	0.7	0.2	0.2	0.1
DOC (mg/L) at interior Delta locations	elta locations	LTS	LTS/NA	S/A	S/A	S/A	S/A	S/A	S/A	LTS/NA	LTS/NA	LTS/NA								
WQ-18: Organic Carbon (CM2-CM21) - Amount (acres) of new tidal habitat	0	0	65,000	65,000	65,000	65,000	65,000	65,000	65,000	65,000	25,000	65,000	65,000	65,000	65,000	65,000	65,000	59	65	55
restoration that could contribute additional DOC	Ů	d	S/A	LTS/NA	LTS/NA	LTS/NA														
WQ-25: Selenium (CM1) - High threshold exceedance quotient for whole	97	0.87	0.89	0.89	0.89	0.92	0.92	0.92	0.89	0.93	0.89	1.1	1.1	1.1	1.1	1.1	1.2	0.91	0.89	0.90
body sturgeon (concentration divided by threshold) during drought period		LTS	LTS/NA	S/A	S/A	S/A	S/A	S/A	S/A	LTS/NA	LTS/NA	LTS/NA								
WQ-32 and 33: Microcystis (CM1-CM21) -		2	4	4	4	4	4	4	4	4	3	4	4	4	4	4	4	2	2	2
potential for increased production in Delta ^e		5	S/A	LTS/NA	LTS/NA	LTS/NA														

Notes

Key

Level of significance or effect **before** mitigation (Quantity of impact: number of sites, structures, acres, etc. affected)

	Inc	creasing leve	of significan	ce
Bromide - Percent increase (%)	<0	1 - 20	21 - 40	>40
Chloride - % of years objective exceeded (%)	0	1-12	13-19	>20
EC - percent of days objective exceeded (%)	<10	11 - 20	20 - 30	>30
Mercury (CM1) - Percent increase (%)	<10	10 - 20	21 - 50	>50
Mercury (CM2-CM22) - restoration acres	0	1 - 100	25,000	65,000
Organic Carbon (CM1) - mg/L	< 0.1	0.1 - 0.5	0.6 - 1.0	>1.0
Organic Carbon (CM2-CM21) - restoration acres	0	1 - 100	25,000	65,000
Selenium - Exceedance Quotient	0.87	0.88 - 0.93	0.94 - 0.99	>1.0
Microcystis - relative rank	1	2	3	4
Microcystis - relative rank	1	2	3	4

Level of significance or effect **after** mitigation (CEOA Finding / NEPA Finding)

CEQA Finding	1	NE
(CEQA Finding / NEPA Finding)		

NI No Impact

LTS Less than significant

S Significant

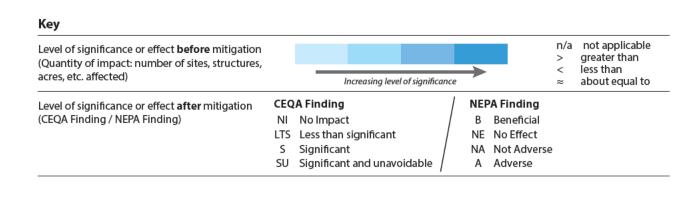
SU Significant and unavoidable

NEPA Finding

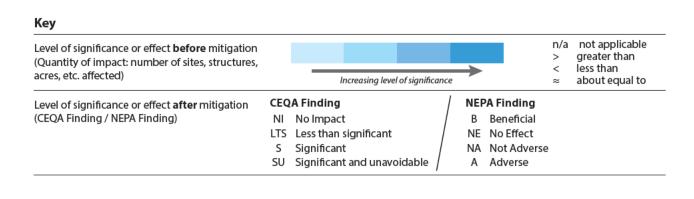
B Beneficial

NE No Effect

NA Not Adverse A Adverse


n/a not applicable

- > greater than
- < less than
- about equal to


d CM2-CM21 are not a component of Existing Conditions or the No Action Alternative, thus, no impact call was made for this effect in the EIR/EIS.

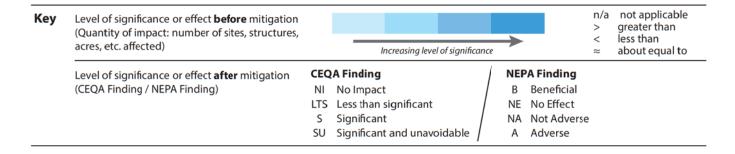
e The Microcystis was qualitative. Thus, the severity of the impact was established as a rank from 1 to 4, with the rankings based on the alternative-specific factors that would contribute to increased Microcystis production, including restoration area, diversions of Sacramento River water at the north intakes, and net Delta outflow.

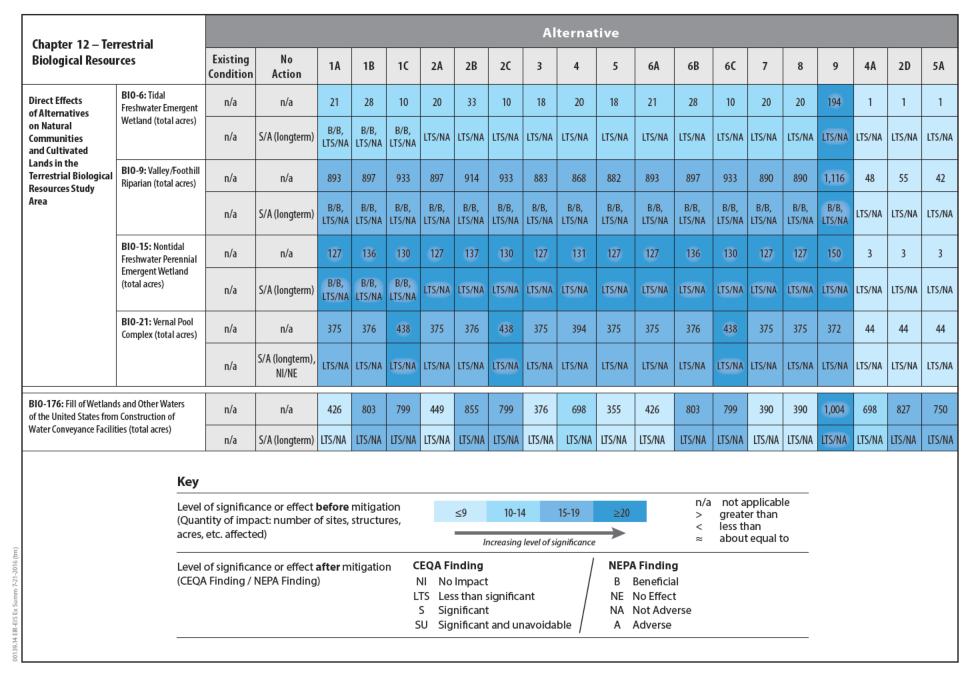
Chapter 9 – Geology and									Αŀ	ternat	tive									
Seismology	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	60	7	8	9	4A	2D	5A
GEO-3: Loss of Property, Personal Injury, or Death from Ground Settlement during Construction of Water Conveyance Features (number of segments that pose greatest risk of settlement per alternative)	n/a	n/a	2	6	1	2	6	1	2	2	2	2	6	1	2	2	2	2	2	2
	n/a	n/a	LTS/NA	LTS/N/																

G									Αl	ternat	tive									
Chapter 10 – Soils	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	6C	7	8	9	4A	2D	5A
SOILS-2: Loss of topsoil from excavation, overcovering, and inundation as a result of constructing the proposed water conveyance facilities (Acres)	n/a	3,618	7,771	21,832	18,039	7,771	21,832	18,039	<7,771	7,590	>7,771	7,771	21,832	18,039	<7,771	<7,771	<7,771	7,590	>7,590	<7,590
	n/a	S/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A								
SOILS-7: Loss of Topsoil from Excavation, Overcovering, and Inundation Associated with Restoration Activities as a Result of Implementing the Proposed Conservation Measures (Acres)	n/a	1,352	77,600	77,600	77,600	77,600	77,600	77,600	77,600	77,600	<77,600	77,600	77,600	77,600	87,600	77,600	77,600	1,176	>1,000	≈1,000
measures (Acres)	n/a	S/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A								

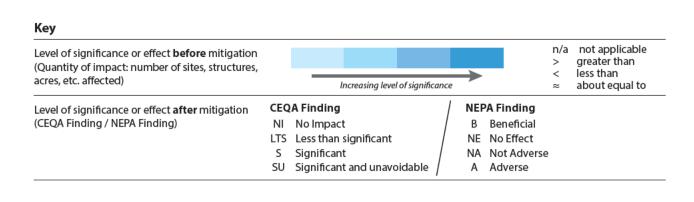
Chapter 11 – Fish and									Alt	ternat	ive								
Aquatic Resources		1A	1B	10	2 A	2B	20	3	4	5	6A	6B	6C	7	8	9	4A	2D	5A
South Delta Entrainment of Adult Delta Smelt (% actual change in fish entrained compared to baseline, % relative change in entrainment	Existing Condition	-2.3, -30	-2.3, -30	-2.3, -30	-2.2, -29	-2.2, -29	-2.2, -29	-1.2, -15	H1: -1.7, -22 H2: ≈H4 H3: -1.7, -22 H4: -1.8, -24	-0.4, -6	-2.3, -30	-2.3, -30	-2.3, -30	-3, -39	-4, -52	ainment of tives (not ly analyzed)	H3:-1.7, -22 H4:-1.8, -23	-2.2, -28	-0.3, -4
compared to baseline)	No Action	-2.1, -28	-2.1, -28	-2.1, -28	-2,-27	-2, -27	-2, -27	-1,-13	H1: -1.5, -20 H2: ≈H4 H3: -1.5, -20 H4: -1.6, -22	-0.3, -3	-2.1, -28	-2.1, -28	-2.8, -28	-2.8, -38	-3.8, -51	Lowest entrainment of all alternatives (not quantitatively analyzed)	H3:-1.7, -22 H4:-1.8, -23	-2, -28	-0.3, -4
South Delta Entrainment of Larval/ Juvenile Delta Smelt (% actual change in fish entrained compared to baseline, % relative change in	Existing Condition	2.1, 17	2.1, 17	2.1, 17	1.5, 12	1.5, 12	1.5, 12	3.7, 30	H1: 1.8, 15 H2: ≈H4 H3: 1.8, 15 H4: -0.6, -4	2.9, 23	2.1, 17	2.1, 17	2.1, 17	-2.9, -24	-6.1, -50	rainment of tives (not ly analyzed)	H3:0.6, 5 H4:-1.7, -14	0.3, 3	1.4, 12
entrainment compared to baseline)	No Action	-0.3, -2	-0.3, -2	-0.3, -2	-0.8, -5	-0.8, -5	-0.8, -5	1.3, 9	H1: -0.5, -3 H2: ≈H4 H3: -0.5, -3 H4: -2.9, -20	0.6, 4	-0.3, -2	-0.3, -2	-0.3, -2	-5.2, -36	-8.4, -58	Lowest entrair all alternativ quantitatively a	H3:-0.4, -3 H4:-2.7, -20	-0.7, -5	0.5, 3
Effects of Water Operations on Rearing Habitat for Delta Smelt (Avg. abiotic habitat index across all years, % change in abiotic habitat	Existing Condition	840, 21	840, 21	840, 21	2325, 58	2325,58	2325, 58	867, 22	H1: 821, 20.6 H2: 821, 20.6 H3: 2335, 59 H4: 2289, 57.5	2264,57	3302, 83	3302, 83	3302,83	3037,76	2325,58	2109,53	H3:1150, 29 H4:1184, 30	1133, 28	1036, 26
index) ^a	No Action	-46, -1	-46, -1	-46, -1	1439, 30	1439, 30	1439, 30	-18, 0	H1: -155, -3 H2: -155, -3 H3: 1449, 30 H4: 1453, 28	1378, 28	2416, 50	2416, 50	2416,50	2152,44	1439, 30	1224, 25	H3:99, 2 H4:132, 3	82, 2	-15,0
Effects of Water Operations on Spawning, Egg Incubation, and Rearing Habitat for Longfin Smelt (Avo. fall midwater trawl index across all	Existing Condition	-1,501, -31	-1,501, -31	-1,501, -31	-1665, -32	-1665, -32	-1665, -32	-1724, -33	H1: -2879, -32 H2: -2959, -33 H3: -2959, -33 H4: -2879, -32	-1606, 31	-915, -18	-915, -18	-915, -18	-730, -14	204, 4	-1238, -24	H3:-1502,-17 H4:-622,-7	-1627, -18	-1433, -16
water year types, % change in fall midwater trawl index across all water year types) b	No Action	-304, -8	-304, -8	-304, -8	-1885	-1885	-1885	-247, -7	H1: 157, 3 H2: 77, 1 H3: 77, 1 H4: 157, 3	-129, -3	561, 15	561, 15	561, 15	747, 20	1680, 46	239, 6	H3: -475,-6 H4: 404, 5	601,-8	-407,-5
Juvenile Winter-Run Chinook Salmon Through-Delta Survival (% raw change in survival rate across all water year types, % relative survival rate	Existing Condition	-1.6, -5	-1.6, -5	-1.6, -5	-1.9, -5	-1.9, -5	-1.9, -5	-1.4, -4	H1: -1.6, 5 H2: ≈H4 H3: -1.6, 5 H4: -1.6, 5	-1.2, -3	-1.3, -4	-1.3, -4	-1.3, -4	-1.6, -4	-1.4, -4	1.5, 4	H3: -2.1, -6 H4: -1.7, -5	-2.1, -7	-1.4, -4
across all water year types)	No Action	-0.9, -3	-0.9, -3	-0.9, -3	-1.2, -4	-1.2, -4	-1.2, -4	-0.7, -2	H1: -0.9, -3 H2: ≈H4 H3: -1, -3 H4: -0.9, -3	-0.6, -2	-0.7, -2	-0.7, -2	-0.7, -2	-0.9, -3	-0.8, -2	1.9, 6	H3: -2.0, -6 H4: 1.7, -5	-1.6, -5	-0.9, -3

Notes

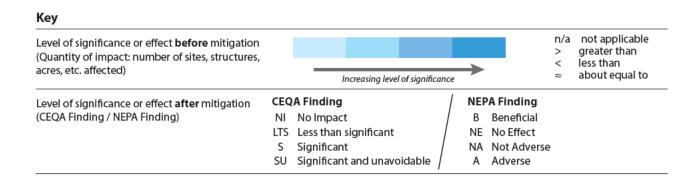

^a For more information on abiotic habitat, see Table 11-15 in Section 11.3.2, Methods for Analysis.


b The fall midwater trawl is an annual fish sampling survey conducted in the upper estuary during September through December by the California Department of Fish and Wildlife. Abundance indices are calculated from survey results for several pelagic species, including delta smelt, longfin smelt, threadfin shad, American shad, splittail and Age-0 striped bass.

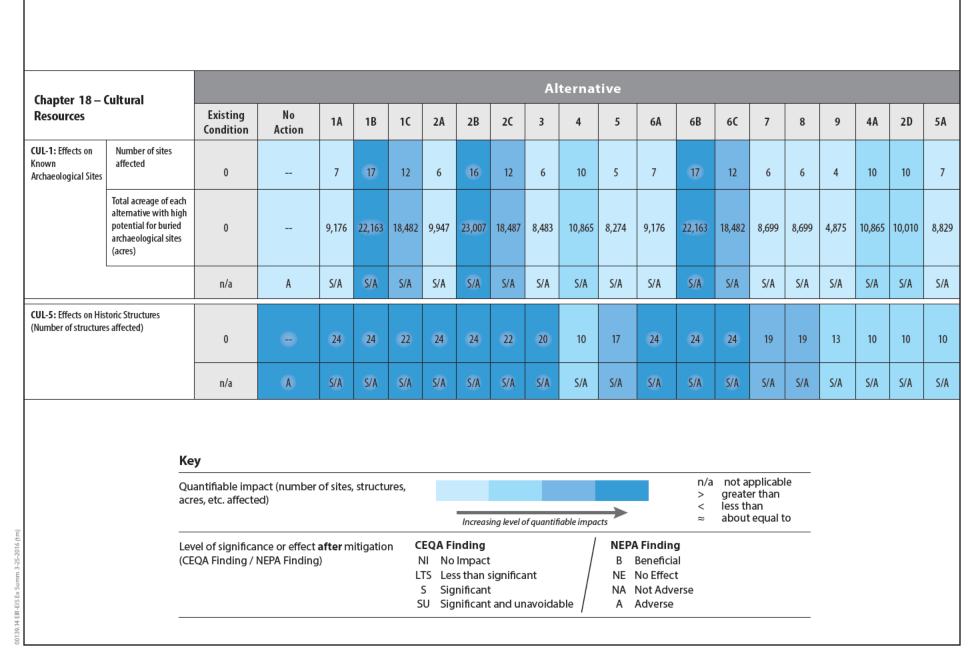
Chapter 11 – Fish and									Alt	ternat	ive								
Aquatic Resources (continued)		1A	1B	10	2A	2B	20	3	4	5	6A	6B	6C	7	8	9	4A	2D	5A
Juvenile Spring-Run Chinook Salmon Through-Delta Survival (% raw change in survival rate across all water year types, % relative survival rate	Existing Condition	-1.9, -5	-1.9, -5	-1.9, -5	-2.3, -7	-2.3, -7	-2.3, -7	-1.8, -6	H1: -2.2, -7 H2: ≈H4 H3: -2.2, -7 H4: -0.6, -2	-1.6, -5	-2.3, -7	-2.3, -7	-2.3, -7	-2.3, -7	-0.9, -3	1.4,4	H3: -2.5,-8 H4: -0.7, -2.2	-2.5, -7	-1.8, -5
across all water year types)	No Action	-1.0, -2	-1.0, -2	-1.0, -2	-1.4, -5	-1.4, -5	-1.4, -5	-0.9, -3	H1: -1.2, -4 H2: ≈H4 H3: -1.3, -4 H4: 0.4, 1	-0.6, -2	-1.4, -5	-1.4, -5	-1.4, -5	-1.4, -5	0,0	2.3,8	H3: -2.5,-8 H4: -0.7, -2.2	-1.9, -6	-1.2, -4
Juvenile Sac. R. Fall-Run Chinook Salmon Through-Delta Survival (% raw change in survival rate across all water year types, % relative survival	Existing Condition	-1.4, -6	-1.4, -6	-1.4, -6	-1.5, -6	-1.5, -6	-1.5, -6	-1.2, -5	H1: -1.4, -6 H2: ≈H4 H3: -1.4, -1 H4: -0.3, -1	-1.2, -4	-1.9, -7	-1.9, -7	-1.9, -7	-2, -8	-0.9, -4	2.3,9	H3: -1.5,-6 H4: -0.1, -0.4	-4.3, -12	0,2
rate across all water year types)	No Action	-0.3, -1	-0.3, -1	-0.3, -1	-0.3, -1	-0.3, -1	-0.3, -1	-0.1, <-1	H1: -0.3, -1 H2: ≈H4 H3: -0.2, -1 H4: 0.8, 3	0,0	-0.8, -3	-0.8, -3	-0.8, -3	-0.8, -3	0.2, 1	3.4, 14	H3: -1.5,-6 H4: 0.1, -0.4	-2.8, -8	-0.3, 0
Upstream flow and temperature-related effects to	(vs. NAA)																		
winter-run Chinook salmon ^C	(vs. EC)																		
	CEQA/NEPA finding (spawning, rearing, migration)	S/A, S/A, S/A	S/A, S/A, S/A	S/A, S/A, S/A	S/A, LTS/NA, S/A	S/A, LTS/NA, S/A	S/A, LTS/NA, S/A	S/A, S/A LTS/A	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, LTS/NA	LTS/NA, S/A, S/A	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	S/A, LTS/NA, S/A	LTS/NA, LTS/NA, LTS/NA
Upstream flow and temperature-related effects to	(vs. NAA)																		
spring-run Chinook salmon	(vs. EC)																		
	CEQA/NEPA finding (spawning, rearing, migration)	S/A, LTS/NA, S/A	S/A, LTS/NA, S/A	S/A, LTS/NA, S/A	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, S/A	S/A, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, LTS/NA	LTS/NA, S/A, S/A	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, LTS/NA


Notes Upstream effects are based on the combination of all analyses of impacts to spawning, rearing, and migration. As such, this summary cannot conform to the format for in-Delta results and is, therefore, presented differently here.

Chapter 11 – Fish and									Alt	ernati	ive								
Aquatic Resources (continued)		1A	1B	10	2A	2B	20	3	4	5	6A	6B	6C	7	8	9	4A	2D	5A
Upstream flow and temperature-related effects to	(vs. NAA)																		
steelhead	(vs. EC)																		
	CEQA/NEPA finding (spawning, rearing, migration)	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, S/A	LTS/NA, S/A, S/A	LTS/NA, S/A, S/A	LTS/NA, S/A, S/A	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, LTS/NA	LTS/NA, S/A, LTS/NA	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, LTS/NA	LTS/NA, S/A, S/A	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, LTS/NA
Upstream flow and temperature-related effects to	(vs. NAA)																		
green sturgeon	(vs. EC)																		
	CEQA/NEPA finding (spawning, rearing, migration)	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, S/A	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA	LTS/NA, LTS/NA, LTS/NA



Chamber 13 Land Hea									Αŀ	ternat	ive									
Chapter 13 – Land Use	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	60	7	8	9	4A	2D	5 A
LU-1: Incompatibility with Applicable Land Use Designations, Goals, and Policies as a Result of Constructing the Proposed Water Conveyance Facility (Total acres)	n/a	n/a	7,160	21,992	17,362	7,695	22,552	17,362	6,557	7,957	6,352	7,160	21,992	17,362	< 1A	< 1A	4,884	7,957	8,064	7,303
	n/a	n/a	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE	NI/NE
LU-2: Conflicts with existing land uses as a result of constructing the proposed water conveyance facility (CM1) (Estimated total conflicts with existing structures)	n/a	n/a	207	412	726	225	434	726	147	76	126	207	409	726	146	146	255	76	114	61
	n/a	n/a	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A



Chapter 15 – Recreation									Al	ternat	tive									
chapter 13 - Necreation	Existing Condition	No Action	1A	1B	10	2A	2B	2C	3	4	5	6A	6B	60	7	8	9	4A	2D	5A
REC-1: Permanent displacement of existing well-established public use or private commercial recreation facility available for public access as a result of the location of	n/a	n/a	0	3	0	0	0	0	0	2	0	0	3	0	0	0	6	2	2	2
the proposed water conveyence facilities (Number of sites)	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	SU/A	LTS/NA	LTS/NA	LTS/NA
REC-2: Result in long-term reduction of recreation opportunities and experiences as a result of constructing the proposed water conveyence facilities (Number of sites)	n/a		7	18	11	7	18	11	5	8	7	7	18	11	8	8	3	8	8	8
	n/a	LTS/NA	SU/A	SU/A	SU/A	SU/A	SU/A													

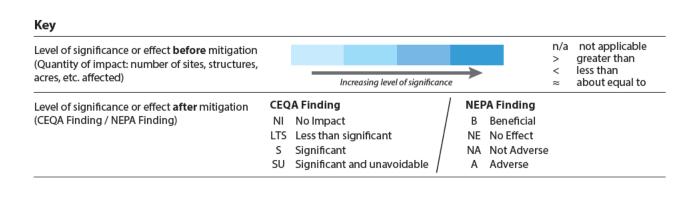
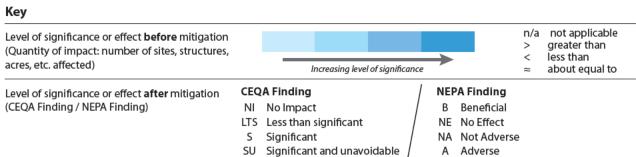
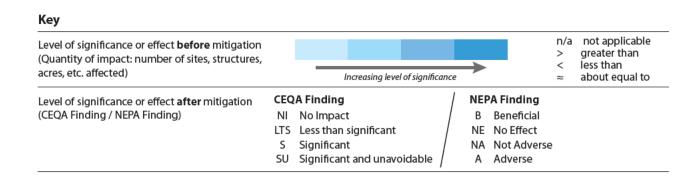

										Α	ltern	ative	2								
Chapter 16 – Socioeconom	ics	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	60	7	8	9	4A	2D	5A
ECON-1: Temporary effects on regional economics and employment in the Delta region	Total FTE jobs during construction (peak year)	n/a	n/a	12,716	12,985	11,698	≈Alt1A	≈Alt1B	≈Alt1C	10,297	8,673	5,073	≈Alt1A	≈Alt1B	≈Alt1C	11,018	11,018	6,371	8,673	9,818	7,528
during construction of the proposed water conveyance facilities.	Total FTE jobs - Agriculture (over 14-year construction period)	n/a	n/a	-100	-340	-240	-100	-340	-240	-88	-47	-83	-100	-340	-240	-94	-94	-38	-47	-44	-37
		n/a	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/N/
ECON-6: Effects on agricultural economics in the Delta region during construction of the proposed water	Total Crop Acreage Change from EC and NAA during Construction (thousand acres)	n/a	n/a	-5.6	-19.6	-14.3	-5.6	-19.6	-14.3	-5.1	-4.7	-5	-5.6	-19.6	-14.3	-5.3	-5.3	-2.6	-4.7	-4.9	-4.3
conveyance facilities.		n/a	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA
ECON-7: Permanent regional economic and employment effects in	Total FTE jobs during Operations and Maintenance	n/a	n/a	269	294	269	269	294	269	269	183	269	269	294	269	269	269	177	183	183	183
the Delta region during operation and maintenance of the proposed water conveyance facilities.	Total FTE jobs - Agriculture during Operations and Maintenance	n/a	n/a	-86	321	-216	-86	-321	-216	-86	-39	-86	-86	-321	-216	-86	-86	-36	-39	-39	-39
		n/a	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/N/
ECON-12: Permanent effects on agricultural economics in the Delta region during operation and maintenance of the proposed water	Total Crop Acreage Change from EC and NAA during Operation (thousand acres)	n/a	n/a	-4.4	-17.7	-11.7	-4.4	-17.7	-11.7	-4.3	-3.4	-4.3	-4.4	-17.7	-11.7	-4.4	-4.4	-2.3	-3.4	-3.4	-3.4
conveyance facilities.		n/a	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA
	Key																				
	Level of significance or effect (Quantity of impact: number acres, etc. affected)		_				Increasii	ng level d	of signific	ance	>		n, > < ≈	gre les:	ot appli eater th s than out equ	ian					
	Level of significance or effect (CEQA Finding / NEPA Finding)		igation	N LT S	Sig	Impac s than nifican	t signifi t	cant unavoi	dable		B B NE N NA N	Findir enefici lo Effec lot Adv	ial ct /erse				_				

Figure ES-16
Comparison of Impacts on Aesthetics and Visual Resources

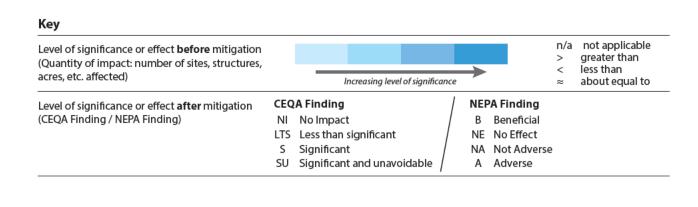


Charatar 10 Too										Al	terna	tive									
Chapter 19 – Tra	nsportation	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	60	7	8	9	4A	2D	5A
TRANS-1: Increased constrips resulting in unaccept conditions (Number of ro	table LOS adway segments	n/a	n/a	47	48	56	47	48	56	47	38	47	47	48	56	47	47	56	38	45	33
with unacceptable LOS co	onditions)	n/a	n/a	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A
TRANS-2: Increased constrips exacerbating unacce conditions (Number of se	eptable pavement gments that could	n/a	n/a	46	48	43	46	48	43	46	46	46	46	48	43	46	46	42	46	41	42
experience substantial pa effects)	evement condition	n/a																SU/A	SU/A	SU/A	SU/A
TRANS-4: Disruption of marine traffic during construction	Number of barge unloading facilities	n/a	n/a	6	1	2	6	1	2	6	7	6	6	1	2	6	6	7	7	7	7
	Number of barge trips	n/aª	n/a	n/aª	n/a ^a	n/a ^a	n/a ^a	n/a ^a	n/a ^a	n/a ^a	11,800	n/a ^a	n/a ^a	n/a ^a	n/a ^a	n/a ^a	n/a ^a	n/a ^a	11,800	11,800	11,800
		n/a	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA
TRANS-10: Increased tra	CM22	n/a	n/a	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	<15	<15	<15
(Number of roadways est affected)	imated to be	n/a	n/a	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A
		^a Tugboats and barg	es would be used	during con	struction o	f the Clifto	n Court fo	rebay, intal	ces, tunnel	reaches 6	and 7, and t	he combine	d pumping p	olant, as app	licable.						
	Ke	ey .																			
	(Qı	vel of significal uantity of impa res, etc. affecte	act: number					- II	ncreasing	level of si	ignificance	—		n/a > < ≈	greate less th	pplicab er than nan t equal t					
		vel of significa EQA Finding / I			nitigatio	 L'	TS Les S Sig	Impact s than nificant	significa		ble /	B NE NA	A Findin Beneficia No Effec Not Adv Adverse	al t erse							

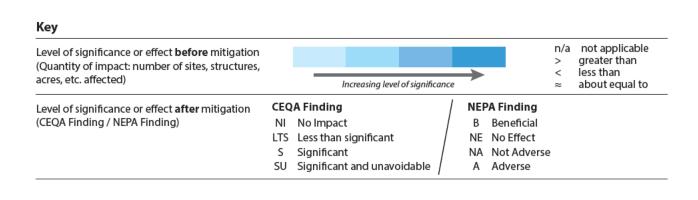
d										Αŀ	ternat	tive									
Chapter 21 – Energy	Existing Condition		No Action LLT	1A	1B	10	2A	2B	2C	3	4	5	6A	6B	60	7	8	9	4A	2D	5 <i>A</i>
ENG-1: Total electric energy use for construction (GWh)	n/a	0	0	1,428	407	791	1,428	407	791	1,321	H1: 2,132 H2: 2,132 H3: 2,132 H4: 2,132	730	1,428	407	791	1,357	1,357	186	2,132	2,148	2,1
	n/a		LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS
ENG-2: Total electric energy use for Conveyance (GWh/yr)	n/a	0	0	291	176	297	328	190	322	122	H1: 62 H2: 54 H3: 61 H4: 54	78	421	244	413	193	185	18	61	107	2
	n/a		LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS

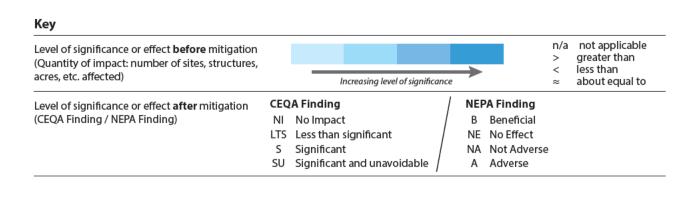


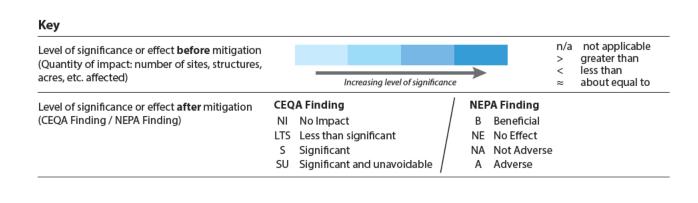
									Alt	ternat	ive									
Chapter 22 — Air Quality (continued)	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	6C	7	8	9	4A	2D	5A
AQ-10: Exposure of Sensitive Receptors to Health Hazards from Localized Particulate Matter in Excess of YSAQMD's Health Based	n/a	n/a	0.3/7 0.04/1		0.55/8.7 0.08/1.4	0.3/7 0.04/1		0.55/8.7 0.08/1.4	<0.3/7 <0.04/1	0.6/2.5 0.01/0.4	<0.3/7 <0.04/1	0.3/7 0.04/1	0.2/6.6 0.03/1.1	0.55/8.7 0.08/1.4	<0.3/7 <0.04/1	<0.3/7 <0.04/1	n/a	0.6/2.5 0.01/0.4	<0.3/7 <0.04/1	<0.6/2.5 <0.01/0.
Concentration Thresholds (PM10 Annual/24-hr; PM2.5 Annual/24-hr)	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA
AQ-11: Exposure of Sensitive Receptors to Health Hazards from Localized Particulate Matter in Excess of BAAQMD's HealthBased	n/a	n/a	0.33/31 0.07/6	0.2/53 0.04/9	1.1/108 0.2/19	0.33/31 0.07/6	0.2/53 0.04/9	1.1/108 0.2/19	<0.33/31 <0.07/6		<0.33/31 <0.07/6	0.33/31 0.07/6	0.2/53 0.04/9	1.1/108 0.2/19	<0.33/31 <0.07/6	<0.33/31 <0.07/6		0.21/37 0.04/6	0.21/37 0.04/6	0.21/37 0.04/6
Concentration Thresholds (PM10 Annual/24-hr; PM2.5 Annual/24-hr)	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA
AQ-12: Exposure of Sensitive Receptors to Health Hazards from Localized Particulate Matter in Excess of SJVAPCD's HealthBased	n/a	n/a	0.1/37.1 0.07/6.1	0.7/88 0.1/13		0.1/37.1 0.07/6.1	0.7/88 0.1/13		<0.1/37.1 <0.07/6.1		<0.1/37.1 <0.07/6.1	0.1/37.1 0.07/6.1	0.7/88 0.1/13	n/a		,	0.11/25.8 0.02/18.3			
Concentration Thresholds (PM10 Annual/24-hr; PM2.5 Annual/24-hr)	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA
AQ-14: Exposure of Sensitive Receptors to Health Hazards from Diesel Particulate Matter in Excess of SMAQMD's Chronic	n/a	n/a	0.003/9	0.003/9	0.001/3	0.003/9	0.003/9	0.001/3	<0.003/9	0.001/5	<0.003/9	0.003/9	0.003/9	0.001/3	<0.003/9	<0.003/9	0.019/57	0.001/5	0.001/5	<0.001
NonCancer and Cancer Risk Thresholds (Chronic Health Hazard/Cancer Health Risk Max Values)	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA
Key																				

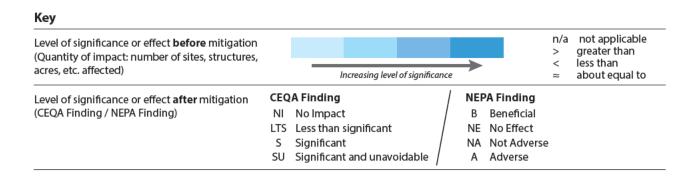


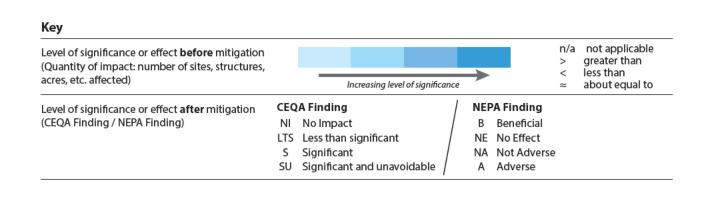
Continued on Figure 21-c See Figure 21-c for Key


Character 22 Air Constitut									Alt	ernat	ive									
Chapter 22 – Air Quality (continued)	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	60	7	8	9	4A	2D	5A
AQ-15: Exposure of Sensitive Receptors to Health Hazards from Diesel Particulate Matter in Excess of YSAQMD's Chronic	n/a	n/a	0.002/5	0.0014/4	0.003/9	0.002/5	0.0014/4	0.003/9	<0.002/5	0.0003/1	<0.002/5	0.002/5	0.0014/4	0.003/9	<0.002/5	<0.002/5	n/a	0.0003/1	0.0003/1	<0.0003/1
NonCancer and Cancer Risk Thresholds (Chronic Health Hazard/Cancer Health Risk Max Values)	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA
AQ-16: Exposure of Sensitive Receptors to Health Hazards from Diesel Particulate Matter in Excess of BAAQMD's Chronic	n/a	n/a	0.004/13	0.0017/5	0.006/18	0.004/13	0.0017/5	0.006/18	<0.004/13	0.001/5	<0.004/13	0.004/13	0.0017/5	0.006/18	<0.004/13	<0.004/13	0.019/57	0.001/5	0.001/5	0.001/5
NonCancer and Cancer Risk Thresholds (Chronic Health Hazard/Cancer Health Risk Max Values)	n/a	LTS/NA	SU/A	LTS/NA	SU/A	SU/A	LTS/NA	SU/A	SU/A	LTS/NA	SU/A	SU/A	LTS/NA	SU/A	SU/A	SU/A	LTS/NA	LTS/NA	SU/A	SU/A
AQ-17: Exposure of Sensitive Receptors to Health Hazards from Diesel Particulate Matter in Excess of SJVAPCD's Chronic	n/a	n/a	0.001/3	0.004/15	0.006/18	0.001/3	0.004/15	n/a	<0.001/3	0.0008/3	< 0.001/3	0.004/15	0.006/18	n/a	<0.001/3	<0.001/3	0.003/11	0.0008/3	0.0008/3	0.0008/3
NonCancer and Cancer Risk Thresholds (Chronic Health Hazard/Cancer Health Risk Max Values)	n/a	LTS/NA	LTS/NA	SU/A	LTS/NA	LTS/NA	SU/A	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	SU/A	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA


Chapter 24 – Hazards and									Αŀ	ternat	tive									
Hazardous Materials	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	60	7	8	9	4A	2D	5A
HAZ-3: Potential to conflict with a known hazardous materials site and, as a result, create a significant hazard to the public or environment (Number of sites of concern within 0.5 miles of conveyance alignment)	n/a	n/a	4	9	9	4	9	9	4	3	4	4	9	9	4	4	4	3	3	3
	n/a	LTS/NA	NI/NE	LTS/NA	LTS/NA	NI/NE	LTS/NA	LTS/NA	NI/NE	NI/NE	NI/NE	NI/NE	LTS/NA	LTS/NA	NI/NE	NI/NE	LTS/NA	NI/NE	NI/NE	NI/N


									Al	ternat	tive									
Chapter 25 – Public Health	Existing Condition	No Action	1A	1B	10	2A	2B	2C	3	4	5	6A	6B	60	7	8	9	4A	2D	5A
PH-1: Increase in surface water in Plan Area that could result in increase in vector-borne diseases as a result of construction and operation of the water conveyance facilities	n/a	0	28	26	26	23	21	26	11	24	7	23	26	26	15	18	0	24	26	22
(Number of lagoons/basins/forebays/ inundation areas)	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA
PH-5: Increase in surface water in Plan Area that could result in increase in vector-borne diseases as a result of implementing CM2-CM7, CM10 and CM11	n/a	0	83,839	83,839	83,839	83,839	83,839	83,839	83,839	83,839	43,839	83,839	83,839	83,839	93,839	83,839	83,839	15836	18,097	15,516
(Acres of restoration)	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA


									Alt	ternat	ive									
Chapter 26 – Mineral Resources	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	6C	7	8	9	4A	2D	5A
MIN-2: Loss of availability of extraction potential from natural gas fields as a result of constructing the water conveyance facilities (Number of acres of non-abandoned natural gas field affected)	n/a	0	296	924	880	296	924	880	296	352	296	296	924	880	296	296	32	352	352	352
	n/a	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA	LTS/NA


Chapter 27 — Paleontological									Alt	ternat	ive									
Resources	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	6C	7	8	9	4A	2D	5A
PALEO-1: Amount of excavation that could potentially result in the destruction of unique or significant paleontological resources as a result of construction of water conveyance facilities (thousand cubic yards of material excavated for borrow, tunnels,	n/a	n/a	28,197	238,902	228,660	28,197	238,902	228,660	<28,197	56,000	<28,197	28,197	238,902	228,660	56,000	56,000	4,608	56,000	>56,000	<56,000
and canals)	n/a	S/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	SU/A	LTS/NA	SU/A	SU/A	SU/A

		Alternative																		
Chapter 28 – Environmental Justice	Existing Condition	No Action	1A	1B	10	2A	2B	20	3	4	5	6A	6B	6C	7	8	9	4A	2D	5A
Number of impacts that could potentially result in adverse EJ effects	0	2	20	20	19	20	21	19	18	22	18	19	22	20	22	21	19	18	20	19
	n/a	n/a	A	A	A	A	A	A	A	Α	A	A	A	A	A	A	A	A	A	A

Chapter 30 — Growth		Alternative																			
	Existing Conditons Deliveries (TAF/yr)	No Action Alternative (ELT) Deliveries (TAF/yr)	No Action Alternative (LLT) Deliveries (TAF/yr)	1A	1B	10	2A	2B	2C	3	4	5	6A	6B	60	7	8	9	4A	2D	5A
Change in south-of-Delta CVP/SWP water deliveries that could remove obstacles to growth in comparison to Existing Conditions	4,940	n/a	n/a	338	338	338	-48	-48	-48	253	H1: 138 H2: -376 H3: -164 H4: -671	-304	-1274	-1274	-1274	-1256	-1879	-704	-157	247	97
Change in south-of-Delta CVP/SWP water deliveries that could remove obstacles to growth in comparison to No Action Alternative (ELT or LLT)	n/a	4,690	4,290	988	988	988	602	602	602	903	H1: 788 H2: 274 H3: 486 H4: -21	346	-624	-624	-624	-606	-1229	-54	93	497	347

