Effects of Hypoxia on Fish Assemblages in a Vegetated Waterbody

K. JACK KILLGORE and JAN JEFFREY HOOVER

ABSTRACT

We evaluated fish species composition relative to dissolved oxygen concentrations in Mercer Bayou, a vegetated impoundment in southwest Arkansas. Sampling stations were distributed among three reaches that varied in dissolved oxygen concentrations ranging from 0.2 to 7.5 mg/l. Hypoxia was pronounced at the downstream reach of the bayou because of stagnant water and nearly complete shading of the water’s surface by floating plants. Fishes were sampled in each reach by seining and gill netting. Forty-five fish species were collected and the assemblage was dominated by phytophilic taxa. In upper and middle reaches, species richness was relatively high (>13 species per sample). In the lower hypoxic reach, species richness was low (<8 species per sample). Polynomial regression indicated a significant positive relation ($R^2 = 0.67$) between species richness (y) and dissolved oxygen (x): $y = 8.03 + 7.19x - 0.72x^2$. Species richness, abundance, and size of fish were substantially reduced at dissolved oxygen concentrations below 0.5 mg/l, suggesting a threshold response level of assemblage composition. Gars, topminnows, and small backwater sunfishes (29% of all species documented) persisted at low dissolved oxygen concentrations, but other sunfishes, darters, and larger benthic fishes avoided hypoxic waters, probably due to physiological limitations. Species adapted for aerial and surface film respiration dominated the fish assemblage in hypoxic waters. Our model suggests that dissolved oxygen can be used to predict fish species composition and quantify habitat quality in vegetated areas.

Key words: dissolved oxygen, fish species richness, fish size, fish abundance, respiration, aquatic plants, littoral zone.

INTRODUCTION

Submersed macrophytes influence dissolved oxygen levels through photorespiration, shading, and stagnation (Carpenter and Lodge 1986, Carter et al. 1988, Carter et al. 1991). Hypoxia, usually defined as dissolved oxygen concentrations less than 5 mg/l, typically occurs in dense vegetation and affects many physiological, biochemical, and behavioral processes in fish (Davis 1975, Kramer 1987). Hypoxia can change fish assemblage composition and may lead to mortality if fish cannot escape to more oxygenated waters (Smale and Rabeni 1995). As aquatic macrophytes increase in coverage and density, widespread hypoxia can occur that can lead to major fish kills. Hypoxic water, however, can be inhabited by various fish species tolerant of low dissolved oxygen concentrations.

Managing aquatic plants requires an understanding of the physiochemical changes associated with a control program. Reduction of plant density may minimize hypoxia, and therefore provide a benefit to aquatic organisms that are sensitive to low dissolved oxygen. Hypoxia tolerance studies indicate that fish species composition can be predicted over a range of dissolved oxygen concentrations, although we are not aware of this type of study being conducted in vegetated waterbodies. Our objectives in this study were to document fish species composition in vegetated locations differing in dissolved oxygen concentrations, and to develop a predictive model that can be used to evaluate impacts or benefits of aquatic plant management programs for fishes relative to dissolved oxygen concentrations.

MATERIALS AND METHODS

This study was conducted in Mercer Bayou, an impounded tributary of the Sulphur River in the Red River drainage system. Mercer Bayou is a 405-ha bottomland hardwood wetland approximately 14.5 km long, and is part of the Sulphur River Wildlife Management Area in southwest Arkansas. Upstream and downstream culverts with flap gates were constructed in the mid-1950s and control discharge through the bayou. Sampling stations were distributed among upper, middle, and lower reaches so that a range of habitat conditions, including dissolved oxygen, could be evaluated. Six stations were sampled in May and August 1999.

Juvenile and adult fishes were sampled during the day in littoral areas by seining (3 by 2.4 m, 5 mm mesh); ten seine hauls were taken at each station and pooled into one sample. Pelagic fishes were sampled with experimental mesh gill nets (27 m by 1.8 m, six mesh panels ranging from 2 to 9 cm); two nets were set overnight at each station. Concurrent with seineing, physical habitat was characterized at each station using bathymetry data (cross-sectional transects of depth, channel width), and water quality parameters (dissolved oxygen, pH, conductivity, turbidity). Water quality was measured at the surface and bottom with a Hydrolab multi-parameter water quality probe. Aquatic plant coverage was estimated based on percentage of surface area obscured by floating and emergent species observed for a minimum distance of 100 m and areas free of submersed aquatic vegetation encountered while seining. Aquatic plants were identified in the field and listed. Dominant species and distribution of plants within the channel were noted.
A Pearson’s correlation coefficient was calculated for percent plant coverage and dissolved oxygen concentration (SAS 1989). Relationships between species richness and dissolved oxygen concentration were evaluated using linear and polynomial regression. Fish abundance and total length were log₁₀ transformed and compared among stations with different dissolved oxygen concentrations using ANOVA. Means that were significantly different (p < 0.05) were compared using the Student-Neuman-Keuls (SNK) multiple range test.

RESULTS AND DISCUSSION

Water temperatures ranged from 21-34 C during the sampling period. The mean (±SD, n = 12) water depth of the main stem Mercer Bayou during summer and fall was 0.8 ± 0.3 meters; maximum depth was 2.1 meters immediately behind the downstream water control structure. There was no flow in the bayou during sampling. Substrates consisted of mud and detritus, primarily due to the annual senescence of aquatic vegetation. Water quality was typical of vegetated habitats during summer and fall: mean turbidity was low (11 ± 5.4 NTU’s) and dissolved oxygen ranged from 0.2-7.5 mg/l. Vertical stratification of temperature and dissolved oxygen occurred in deeper waters (>1.5 m). Hypoxia was pronounced at the downstream reach during May and August because of deep, stagnant water and nearly complete shading of the water’s surface by floating plants. Dissolved oxygen concentration was negatively correlated (Pearson’s coefficient = -0.78, n = 12, p = 0.003) with surface coverage of aquatic plants. Conductivity and pH were similar among stations, with means of 150 ± 47 µmhos/cm and 6.9 ± 0.4, respectively.

Cypress trees (*Taxodium distichum* (L.) Rich.) and submersed woody structure occurred at all sites. Willows (*Salix* sp.) and oaks (*Quercus* sp.) occurred at most sites. Aquatic vegetation was moderately diverse, abundant, and varied in composition along the length of the bayou. Dominant taxa (in decreasing order of frequency observed) were: duckweed (*Lemna minor* L.), American lotus (*Nelumbo lutea* (Willd.) Pers.,), coontail (*Ceratophyllum demersum* L.), emergent forbs and buttonbush (*Cephalanthus occidentalis*), water pennywort (*Hydrocotyle umbellata* L.), clumps of unidentified filamentous algae, alligator weed (*Alternanthera philoxeroides* (Mart.), azolla (*Azolla caroliniana* Willd.), and water hyacinth (*Eichhornia crassipes* (Mart.) Solms. In May, coverage ranged from 20-50% of the surface area in the upper and middle reaches with most vegetation occurring near the shoreline or in patches throughout the channel. In August, coverage increased to 50-100%. Dominant taxa were American lotus, which occurred at all sites on both dates, and duckweed and alligator weed. In the lower reach, coverage was 100% in May and in August. Dominant taxa were duckweed and water pennywort. American lotus did not occur.

A total of 45 species of fishes were collected (Table 1). Sunfishes and black bass were the most common group of fishes collected with seines. Other common taxa, typically found in aquatic vegetation, included golden topminnow (*Fundulus chrysotus* (Günther)), western mosquitofish, (*Gam- busia affinis* (Baird and Girard)), brook silverside (*Etheostoma chlorosomum* Hay),), slough darter (*Etheostoma gracile* (Girard)), and grass pickerel (*Esox americana-nus Gmelin). Gill nets caught larger fishes including spotted gar (*Lepisosteus oculatus* (Winchell)), bowfin (*Amia calva* Linnaeus), buffalo (*Ictiobus sp.)*, channel catfish (*Ictalurus punctatus* Rafinesque), brown bullhead (*Ameiurus nebulosus* (Lesueur), yellow bass (*Morone mississippiensis* Jordan and Eigenmann), white bass (*Morone chrysops* Rafinesque), and freshwater drum (*Aplodinotus grunniens* Rafinesque). Shad (*Dorosoma sp.*), were commonly collected with seines and gill nets. In the upper and middle reaches, species richness was relatively high (>13 species per sample) and fish were abundant (>200 individuals) at each sampling station. In the lower reach, species richness (<8 species per sample) and abundance was low, particularly at the lowermost station (<100 individuals).

Eleven species were collected in dissolved oxygen concentrations less than 1.0 mg/l (Table 1), although not exclusively. A bivariate plot of species richness and mean dissolved oxygen concentrations showed a curvilinear relationship and water temperature did not affect the distribution (Figure 1). Consequently, polynomial regression using May and August samples was used to develop the following model to predict species richness (y) as a function of dissolved oxygen concentration (x): y = 8.03 + 7.19x - 0.72x². Species richness was the total number of species collected at an individual station (using seines and gillnets) and dissolved oxygen (mg/l) was the mean of surface and bottom values measured at the point and time of fish collections.

Topwater species were commonly collected in waters less than 0.5 mg/l, particularly golden topminnow and mosquitofish. Both species have dorsally-oriented mouths and dor-so-ventrally flattened heads that facilitate surface film respiration, or “piping” (Lewis 1970, Meffe and Snelson 1989). These species skim the oxygen-rich surface layer and can therefore occupy hypoxic and even anoxic waters.

Other species collected in hypoxic waters exhibit specific behavioral and morphological adaptations to hypoxia. Band-ed pygmy sunfish (*Elassoma zonatum* Jordan) and pirate perch are solitary species exhibiting low levels of activity (Robison and Buchanan 1988), which should reduce respiration rates. Sunfishes, such as bluegill (*Lepomis macrochirus* Rafinesque) and warmouth (*Lepomis gulosus* (Cuvier)), are tolerant of hypoxia <1 mg/l (Moore 1942, Matthews 1987). These sunfishes have a well-developed accessory organ for respiration, the pseudobranch, which should reduce respiration rates. Sunfishes, such as bluegill (*Lepomis macrochirus* Rafinesque) and warmouth (*Lepomis gulosus* (Cuvier)), are tolerant of hypoxia <1 mg/l (Moore 1942, Matthews 1987). These sunfishes have a well-developed accessory organ for respiration, the pseudobranch, which should reduce respiration rates. Sunfishes, such as bluegill (*Lepomis macrochirus* Rafinesque) and warmouth (*Lepomis gulosus* (Cuvier)), are tolerant of hypoxia <1 mg/l (Moore 1942, Matthews 1987). These sunfishes have a well-developed accessory organ for respiration, the pseudobranch, which should reduce respiration rates. Sunfishes, such as bluegill (*Lepomis macrochirus* Rafinesque) and warmouth (*Lepomis gulosus* (Cuvier)), are tolerant of hypoxia <1 mg/l (Moore 1942, Matthews 1987). These sunfishes have a well-developed accessory organ for respiration, the pseudobranch, which should reduce respiration rates. Sunfishes, such as bluegill (*Lepomis macrochirus* Rafinesque) and warmouth (*Lepomis gulosus* (Cuvier)), are tolerant of hypoxia <1 mg/l (Moore 1942, Matthews 1987). These sunfishes have a well-developed accessory organ for respiration, the pseudobranch, which should reduce respiration rates. Sunfishes, such as bluegill (*Lepomis macrochirus* Rafinesque) and warmouth (*Lepomis gulosus* (Cuvier)), are tolerant of hypoxia <1 mg/l (Moore 1942, Matthews 1987). These sunfishes have a well-developed accessory organ for respiration, the pseudobranch, which should reduce respiration rates. Sunfishes, such as bluegill (*Lepomis macrochirus* Rafinesque) and warmouth (*Lepomis gulosus* (Cuvier)), are tolerant of hypoxia <1 mg/l (Moore 1942, Matthews 1987). These sunfishes have a well-developed accessory organ for respiration, the pseudobranch, which should reduce respiration rates.
TABLE 1. FISHES COLLECTED AT 6 STATIONS IN MERCER BAYOU, ARKANSAS DURING MAY AND AUGUST 1999. SPECIES WITH ASTERISK WERE COLLECTED IN DISSOLVED OXYGEN CONCENTRATIONS LESS THAN 1.0 MG/L.

<table>
<thead>
<tr>
<th></th>
<th>Seine</th>
<th>Gill nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of samples</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Number of individuals</td>
<td>2149</td>
<td>217</td>
</tr>
</tbody>
</table>

Lepisosteidae
- Spotted gar, *Lepisosteus oculatus* (Winchell) 2
- Longnose gar, *L. osseus* (Linnaeus)* 4

Amiidae
- Bowfin, *Amia calva* Linnaeus 8

Clupeidae
- Gizzard shad, *Dorosoma cepedianum* (Lesueur) 39
- Threadfin shad, *D. petenense* (Günther) 123

Esocidae
- Grass pickerel, *Esox americanus* Gmelin 33

Cyprinidae
- Common carp, *Cyprinus carpio* Linnaeus 5
 - Golden shiner, *Notemigonus crysoleucas* (Mitchill) 55
 - Taillight shiner, *Notropis maculatus* (Hay) 10
 - Pugnose minnow, *Opsopoeodus emilius* (Hay) 75
 - Bullhead minnow, *Pomoxis nigromaculatus* (Baird and Girard) 4

Catostomidae
- River carpsucker, *Carpiodes carpio* Rafinesque 7
 - Smallmouth buffalo, *Ictiobus bubalus* (Rafinesque) 2
 - Bigmouth buffalo, *I. cyprinellus* (Valenciennes) 22
 - Black buffalo, *I. niger* (Rafinesque) 3
 - Spotted sucker, *Minytrema melanops* (Rafinesque) 1

Ictaluridae
- Channel catfish, *Ictalurus punctatus* (Rafinesque) 9
 - Brown bullhead, *Ameiurus nebulosus* (Lesueur) 5
 - Black bullhead, *A. melas* (Rafinesque) 9
 - Yellow bullhead, *A. natalis* (Lesueur)* 3

Aphredoderidae
- Pirate perch, *Aphredoderus sayanus* (Gilliams)* 59

Cyprinodontidae
- Starhead topminnow, *Fundulus blarrei* Wiley and Hall 7
- Golden topminnow, *F. chrysotus* (Günther)* 234
- Blackstripe topminnow, *F. notatus* (Rafinesque) 1

Poeciliidae
- Western mosquitofish, *Gambusia affinis* (Baird and Girard)* 122

Atherinidae
- Brook silverside, *Labidesthes sicculus* (Cope) 140

Percichthyidae
- White bass, *Morone chrysops* (Rafinesque) 1
- Yellow bass, *M. mississippiensis* (Jordan and Eigenmann) 4

Centrarchidae
- Banded pygmy sunfish, *Elassoma zonatum* Jordan* 37
 - Warmouth, *Lepomis gulosus* (Cuvier)* 66
 - Orangespotted sunfish, *L. humilis* (Girard) 18
 - Bluegill, *L. macrochirus* Rafinesque* 296
 - Dollar sunfish, *L. marginatus* (Holbrook) 7
- Redear sunfish, *L. microlophus* (Günther)* 140
- Redspotted sunfish, *L. miniatus* (Valenciennes)* 38
- Bantam sunfish, *L. symmetricus* Forbes* 198
- Largemouth bass, *Micropterus salmoides* (Lacépède) 222
- White crappie, *Pomoxis annularis* Rafinesque 59
- White crappie, *P. nigromaculatus* (Lesueur) 63

42

J. Aquat. Plant Manage. 39: 2001.
tive respiration (aerial or anaerobic), exhibit avoidance behaviors, or die (Davis 1975, Smale and Rabeni 1995). Our study, however, suggests that some fish species commonly found in vegetated habitats can tolerate dissolved oxygen concentrations less than 0.5 mg/l, albeit their abundance’s are considerably lower compared to normoxic waters.

We compared abundance of all fish species collectively among sampling stations with extreme hypoxic (<0.5 mg/l), hypoxic (0.5 to 5.0 mg/l), and normoxic (>5.0 mg/l) waters. Dissolved oxygen concentrations greater than 5.0 mg/l were considered normal because this value is widely accepted as a standard for the protection of fish, although it is not necessarily based on factual information (Doudoroff and Shumway 1970). A significant (df = 11, F = 6.60, p = 0.02) difference in fish abundance existed among these stations. Based on the SNK test, fish abundance (mean ± SD) at stations with extreme hypoxia was significantly lower (86 ± 77, n = 4) than stations with moderate hypoxia (289 ± 143, n = 4) and normal dissolved oxygen concentrations (216 ± 69, n = 4). A higher standard deviation of abundance at stations with slight to moderate hypoxia may suggest that these dissolved oxygen concentrations are approaching threshold levels that result in greater shifts in habitat use to avoid physiological impairment.

Total lengths (mean ± SD in mm) of all species combined were evaluated similarly. Fish species that inhabited hypoxic water were significantly (df = 11, F = 5.03, p = 0.03) smaller (80 ± 35), primarily due to the prevalence of topminnows and juvenile sunfishes, than at stations with moderate hypoxia (171 ± 69) and normal oxygen concentrations (180 ± 108). Three species accounted for 50% of all individuals collected in water less than 0.5 mg/l: golden topminnow, warmouth, and bantam sunfish (*Lepomis symmetricus* Forbes). In moderately hypoxic water, bluegill, bantam sunfish, redear sunfish (*Lepomis microlophus* (Gunther)), and golden topminnow comprised approximately 50% of all individuals collected. Largemouth bass, bluegill, pugnose minnow, and golden shiner accounted for 50% of all individuals collected in normoxic water.

Hypoxia eliminates those species maladapted for aerial and surface film respiration. Studies have concluded that low dissolved oxygen concentrations will contribute to a decline in fish species richness and abundance in riverine backwaters (Knights et al. 1995), river channels (Pihl et al. 1992), and lakes (Castleberry and Cech 1993). In Mercer Bayou, which is dominated by phytophilic species (Dibble et al. 1996), hypoxia results in a decline from 18-28 species per station to less than 8 species, and abundance and size of fish are reduced by a factor of 2 to 3 times.

Dense plant beds reduce hydraulic circulation and increase biological oxygen demand, both of which lower dissolved oxygen concentrations. However, the structural component of aquatic plants may offset some of the negative effects of slight to moderate hypoxia by providing numerous

Table 1. (Continued) Fishes collected at 6 stations in Mercer Bayou, Arkansas during May and August 1999. Species with asterisk were collected in dissolved oxygen concentrations less than 1.0 mg/l.

<table>
<thead>
<tr>
<th>Number of samples</th>
<th>Seine</th>
<th>Gill nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Number of individuals</td>
<td>2149</td>
<td>217</td>
</tr>
</tbody>
</table>

Percidae
- Mud darter, *Etheostoma asprigene* (Forbes) 4
- Bluntnose darter, *E. chlorosomum* (Hay) 42
- Slough darter, *E. gracile* (Girard) 31
- Cypress darter, *E. proeliare* (Hay) 6
- Logperch, *Percina caprodes* (Rafinesque) 2

Sciaenidae
- Freshwater drum, *Aplodinotus grunniens* Rafinesque 3

Total Number of Species
- 33 22

Table 1. Fishes collected at 6 stations in Mercer Bayou, Arkansas during May and August 1999. Species with asterisk were collected in dissolved oxygen concentrations less than 1.0 mg/l.

<table>
<thead>
<tr>
<th>Number of samples</th>
<th>Seine</th>
<th>Gill nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Number of individuals</td>
<td>2149</td>
<td>217</td>
</tr>
</tbody>
</table>

Percidae
- Mud darter, *Etheostoma asprigene* (Forbes) 4
- Bluntnose darter, *E. chlorosomum* (Hay) 42
- Slough darter, *E. gracile* (Girard) 31
- Cypress darter, *E. proeliare* (Hay) 6
- Logperch, *Percina caprodes* (Rafinesque) 2

Sciaenidae
- Freshwater drum, *Aplodinotus grunniens* Rafinesque 3

Total Number of Species
- 33 22

Figure 1. Bivariate plot of dissolved oxygen concentration and fish species richness from seining and gill net data collected at Mercer Bayou, Arkansas in May and August, 1999. May samples were collected in water temperatures ranging from 21.4 to 28.1 ºC; August in temperatures ranging from 26.1 to 34.5 ºC.

Table 1. (Continued) Fishes collected at 6 stations in Mercer Bayou, Arkansas during May and August 1999. Species with asterisk were collected in dissolved oxygen concentrations less than 1.0 mg/l.

<table>
<thead>
<tr>
<th>Number of samples</th>
<th>Seine</th>
<th>Gill nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Number of individuals</td>
<td>2149</td>
<td>217</td>
</tr>
</tbody>
</table>

Percidae
- Mud darter, *Etheostoma asprigene* (Forbes) 4
- Bluntnose darter, *E. chlorosomum* (Hay) 42
- Slough darter, *E. gracile* (Girard) 31
- Cypress darter, *E. proeliare* (Hay) 6
- Logperch, *Percina caprodes* (Rafinesque) 2

Sciaenidae
- Freshwater drum, *Aplodinotus grunniens* Rafinesque 3

Total Number of Species
- 33 22

Figure 1. Bivariate plot of dissolved oxygen concentration and fish species richness from seining and gill net data collected at Mercer Bayou, Arkansas in May and August, 1999. May samples were collected in water temperatures ranging from 21.4 to 28.1 ºC; August in temperatures ranging from 26.1 to 34.5 ºC.

Table 1. Fishes collected at 6 stations in Mercer Bayou, Arkansas during May and August 1999. Species with asterisk were collected in dissolved oxygen concentrations less than 1.0 mg/l.

<table>
<thead>
<tr>
<th>Number of samples</th>
<th>Seine</th>
<th>Gill nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Number of individuals</td>
<td>2149</td>
<td>217</td>
</tr>
</tbody>
</table>

Percidae
- Mud darter, *Etheostoma asprigene* (Forbes) 4
- Bluntnose darter, *E. chlorosomum* (Hay) 42
- Slough darter, *E. gracile* (Girard) 31
- Cypress darter, *E. proeliare* (Hay) 6
- Logperch, *Percina caprodes* (Rafinesque) 2

Sciaenidae
- Freshwater drum, *Aplodinotus grunniens* Rafinesque 3

Total Number of Species
- 33 22

Figure 1. Bivariate plot of dissolved oxygen concentration and fish species richness from seining and gill net data collected at Mercer Bayou, Arkansas in May and August, 1999. May samples were collected in water temperatures ranging from 21.4 to 28.1 ºC; August in temperatures ranging from 26.1 to 34.5 ºC.

Table 1. Fishes collected at 6 stations in Mercer Bayou, Arkansas during May and August 1999. Species with asterisk were collected in dissolved oxygen concentrations less than 1.0 mg/l.

<table>
<thead>
<tr>
<th>Number of samples</th>
<th>Seine</th>
<th>Gill nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Number of individuals</td>
<td>2149</td>
<td>217</td>
</tr>
</tbody>
</table>

Percidae
- Mud darter, *Etheostoma asprigene* (Forbes) 4
- Bluntnose darter, *E. chlorosomum* (Hay) 42
- Slough darter, *E. gracile* (Girard) 31
- Cypress darter, *E. proeliare* (Hay) 6
- Logperch, *Percina caprodes* (Rafinesque) 2

Sciaenidae
- Freshwater drum, *Aplodinotus grunniens* Rafinesque 3

Total Number of Species
- 33 22

Figure 1. Bivariate plot of dissolved oxygen concentration and fish species richness from seining and gill net data collected at Mercer Bayou, Arkansas in May and August, 1999. May samples were collected in water temperatures ranging from 21.4 to 28.1 ºC; August in temperatures ranging from 26.1 to 34.5 ºC.

Table 1. (Continued) Fishes collected at 6 stations in Mercer Bayou, Arkansas during May and August 1999. Species with asterisk were collected in dissolved oxygen concentrations less than 1.0 mg/l.

<table>
<thead>
<tr>
<th>Number of samples</th>
<th>Seine</th>
<th>Gill nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Number of individuals</td>
<td>2149</td>
<td>217</td>
</tr>
</tbody>
</table>

Percidae
- Mud darter, *Etheostoma asprigene* (Forbes) 4
- Bluntnose darter, *E. chlorosomum* (Hay) 42
- Slough darter, *E. gracile* (Girard) 31
- Cypress darter, *E. proeliare* (Hay) 6
- Logperch, *Percina caprodes* (Rafinesque) 2

Sciaenidae
- Freshwater drum, *Aplodinotus grunniens* Rafinesque 3

Total Number of Species
- 33 22

Figure 1. Bivariate plot of dissolved oxygen concentration and fish species richness from seining and gill net data collected at Mercer Bayou, Arkansas in May and August, 1999. May samples were collected in water temperatures ranging from 21.4 to 28.1 ºC; August in temperatures ranging from 26.1 to 34.5 ºC.
food items and refugia for younger and smaller fishes. The relatively high tolerances of phytophilic fishes collected at Mercer Bayou, and the inherent habitat value of aquatic plants, suggest that dissolved oxygen concentrations will have to decline below 1.0 mg/l to severely impact assemblage composition in vegetated areas. The relationship between species richness and dissolved oxygen developed in this study can be used to evaluate the relative habitat value of vegetated areas, and demonstrate that slight increases in dissolved oxygen can result in major gains in species richness and abundance. Thus, aquatic plant management can promote fish species diversity by minimizing dissolved oxygen concentrations below 1.0 mg/l through the reduction of dense plant beds.

ACKNOWLEDGMENTS

Assistance with field work was provided by Steven George, Bradley Lewis, and Dr. Neil Douglas. Dr. Neil Douglas identified fishes, catalogued, and deposited specimens into the Museum of Zoology, University of Louisiana at Monroe. Our appreciation goes to Mike Harris, Sulphur River Wildlife Management Area, for his logistical assistance in the field. Funding for this project was provided by the U.S. Army Corps of Engineers Aquatic Plant Control Research Program and the U.S. Army Engineer District, Vicksburg. Comments were provided by three anonymous reviewers. Permission was granted by the Chief of Engineers to publish this document.

LITERATURE CITED

Knights, B. C., B. L. Johnson, and M. B. Sandheimer. 1995. Responses of bluegills and black crappies to dissolved oxygen, temperature, and current in backwater lakes of the upper Mississippi River during winter. N. Am. J. Fish. Manage. 15: 399-399.

