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The Collapse of Pelagic Fishes in the Upper San Francisco Estuary
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Figure 1. The San 
Francisco estuary. 
The estuary includes 
the region from San 
Francisco Bay upstream 
to Sacramento and a 
location 56 km upstream 
of Stockton. The delta 
represents the portion 
of the estuary upstream 
of the confluence of the 
Sacramento and San 
Joaquin rivers. 
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Globally, the collapse of many of the 
world’s fisheries remains the most impor-
tant issue facing fisheries managers. The 
collapses are most pronounced in coastal 
regions, where declines have occurred on 
the scale of decades to millennia (Worm et 
al. 2006). With the 2007 American Fisher-
ies Society Annual Meeting in San Fran-
cisco, the fisheries community will come 
together in close proximity to one of the 
more recent resource collapses in North 
America, the decline of pelagic fishes in 
the upper San Francisco Estuary (Figure 1). 
As in many other estuaries, the origin of 
this collapse dates back many decades, and 
coincides with increasing anthropogenic 
pressure (Lotze et al. 2006). However, an 
apparent recent change toward exception-
ally low abundance indices for pelagic fish-
es caused great concern among California’s 
resource managers, who had invested hun-
dreds of millions of dollars in habitat res-
toration and environmental water for the 
upper San Francisco Estuary over the past 
decade. Our objectives in this paper are 
to describe the extent of the problem, its 
management consequences, and the evolv-
ing research effort to identify the causes.

THE SAN FRANCiSCo ESTUARy

The San Francisco Estuary is the largest 
estuary on the U.S. Pacific Coast (Figure 1). 
It is formed by the confluence of two major 
sources of water: ocean water transported 
into the estuary by tides and freshwater 
runoff from small Coast Range streams and 

the Sacramento-San Joaquin watershed, 
which drains 40% of California’s surface 
area including the western slope of the Si-
erra Nevada and the Central Valley. The 
estuary grades from marine dominance in 
central and southern San Francisco bays to 
freshwater dominance in the Sacramento-
San Joaquin Delta. Suisun and San Pablo 
bays are the regions of greatest salinity 
variation, which occurs primarily through 
mixing of seawater with freshwater inflow 
from the delta. The northern part of Su-
isun Bay is fringed by Suisun Marsh, the 

largest contiguous wetland along the Pa-
cific coast of the western United States.

The estuary has been heavily modified 
since California’s Gold Rush in the mid-
nineteenth century (Atwater et al. 1979; 
Nichols et al. 1986). A timeline of some of 
the major alterations is provided as Table 1, 
reflecting the long-term habitat modifica-
tions, frequent species introductions, and 
changes to hydrology. Over the past 150 
years, large-scale reclamation of marshes 
fringing south San Francisco Bay, Suisun 
Marsh, and the delta for agriculture, mu-
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reclutamiento igualmente moderado, y de una inversión de cientos de millones de dólares para la restauración del hábitat y el asegu-
ramiento de cuerpos de agua que sirven de hábitat a los peces nativos. Como respuesta a la caída de los peces pelágicos, un ambicioso 
equipo de trabajo constituido por diversas agencias, ha venido trabajando desde 2005 para evaluar las causas del colapso, las cuales se-
guramente involucran diversos factores, tales como: efectos sobre la relación parentela-progenie, disminución de la calidad del hábitat, 
aumento en las tasas de mortalidad y una reducción en la disponibilidad de alimento debido a la presencia de especies introducidas.

Table 1. Timeline of some of the major anthropogenic changes to the San Francisco estuary. 

Event year(s) of Occurrence
Hydraulic gold mining 1849-1884 a

Channelization and wetland reclamation 1860-1930a

Early fish introductions 1871-1908b

Contra Costa Canal Diversion 1940
Shasta Dam closure 1942
Friant Dam closure 1948
Central valley Project Tracy Pumping Plant 1951
Threadfin shad introduction 1954-1963c

oroville Dam construction and closure 1957-1968
State Water Project Banks Pumping Plant 1963-1969d

Clifton Court Forebay 1974
overbite clam introduction 1986
Period of rapid nonnative copepod invasions 1963-1994e

Bay-Delta Accord signed 1994f

a Mount (1995)
b This was the period of most intentional sport fish introductions including striped bass (Morone saxatilis), 

American shad (Alosa sapidissima), carp (Cyprinus carpio), and several species of centrarchidae and ictaluridae.
c Threadfin shad (Dorosoma petenense) was introduced into southern California in 1954. It was detected in 

upper San Francisco Estuary fishery surveys by 1963 (Turner 1966).
d Increasing numbers of pumps came online during this period.
e Increasing shipping traffic and associated ballast water releases during this period led to the establishment 

of seven zooplankton species in the upper San Francisco Estuary: Oithona davisae, Limnoithona sinensis, 
Sinocalanus doerri, Pseudodiaptomus forbesi, Tortanus dextrilobatus, Acartiella sinensis, and Limnoithona 
tetraspina (Kimmerer and orsi 1996; Kimmerer 2004)

f The Bay Delta Accord resulted in substantial changes delta outflow and export requirements (Koehler 1995)
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nicipal, and industrial uses removed 95% of historical wetlands 
from the estuary. Other principal changes included channeliza-
tion and dredging of rivers, removal of large woody debris, sub-
stantial alteration of the flow regime, and introduction of numer-
ous exotic organisms. As an indication of the degree of alteration 
by introduced species, the estuary has been called the most invad-
ed on the planet (Cohen and Carlton 1998). Additional chang-
es are likely in the near future: for example, the quagga mussel 
(Dreissena bugensis) was discovered in southern California in late 
2006. In the likely event that the quagga mussel invades the up-
per San Francisco estuary, it could have effects similar to zebra 
mussels (Dreissena polymorpha), a close relative that has severely 
degraded other regions of the United States (Strayer et al. 1999). 

During the past 60 years, the delta has 
been increasingly maintained as a per-
manent freshwater environment through 
large-scale regulation and manipulation of 
river flows in order to maintain high qual-
ity water for agriculture, municipal, and 
industrial uses. Two large water diversions 
and two smaller diversions in the delta 
(Figure 1), components of the State Water 
Project (SWP) and federal Central Valley 
Project (CVP), are allowed to export up 
to 35%-65% of river inflows depending on 
the time of year (Table 2; Figure 2). More 
than 2,500 smaller, privately-owned water 
diversions are also scattered throughout 
the Suisun Bay/Marsh and delta to sup-
ply water for municipalities, waterfowl 
management, and agriculture (Herren and 
Kawasaki 2001). The combined net annual 
diversion rate from these smaller facilities 
is 2 km3, comprising a substantial fraction 
of water use in the delta (Kimmerer 2002a). 

The fish community of the San Francis-
co Estuary is especially rich (e.g., Matern et 
al. 2002; Feyrer and Healey 2003; Nobriga 
et al. 2005), with 87 species collected since 
1993 from just two of the sampling pro-
grams—the fall midwater trawl conducted 
by the California Department of Fish and 
Game (DFG) and salvage of fishes at the 
screens of the SWP pumping plant (http://
baydelta.water.ca.gov/). Species richness 
is inflated by the presence of introduced 
species, which comprised over 40% of the 
total number reported in the two surveys. 
As in other estuaries (e.g., Bulger et al. 
1993), salinity plays a major role in the distributions of individual 
species and life stages; anadromous, marine-resident, estuarine, 
and freshwater-resident assemblages are all represented. In gen-
eral, introduced species are most abundant in the freshwater-resi-
dent assemblage (Feyrer and Healey 2003; Nobriga et al. 2005)

THE PELAGiC oRGANiSM DECLiNE (“PoD”)

The Interagency Ecological Program (IEP), a consortium of 
nine state and federal agencies, has been monitoring fish popula-
tions in the San Francisco Estuary for decades, and has developed 

one of the longest and most comprehensive data records on es-
tuarine fishes in the world. One of the most widely-used IEP data-
bases is fish catch from the fall midwater trawl survey, which has 
been regularly conducted by DFG since 1967 (Stevens and Miller 
1983; Sommer et al. 1997). This survey samples the pelagic fish 
assemblage in the upper estuary, the tidal freshwater and brack-
ish portion of the system from the delta to San Pablo Bay. The 
most abundant resident pelagic fishes captured are two native spe-
cies, delta smelt (Hypomesus transpacificus; Figure 3) and longfin 
smelt (Spirinchus thaleichthys), and two introduced species, striped 
bass (Morone saxatilis) and threadfin shad (Dorosoma petenense). 

Table 2. Summary of annual export volumes (km3) from the four state 
and federal water diversions in the Sacramento-San Joaquin Delta for 
water years following the Bay-Delta Accord (1995-2005). The Contra 
Costa and Tracy diversion facilities are part of the federal Central valley 
Project (CvP). The Harvey o. Banks and North Bay Aqueduct diversion 
facilities are part of the State Water Project (SWP).

Water diversion 1st year of operation Average volume  
  (range) 

Contra Costa 1940 0.15 (0.12–0.23)
Tracy (CvP) 1951 3.10 (2.60–3.50)
Banks (SWP) 1968 3.60 (2.10–4.90)
North Bay Aqueduct 1988 0.05 (0.03–0.07)

Figure 2. Delta outflow (m3/s) averaged over water years (top) and export flow (m3/s) averaged 
over seasons (bottom). Water years begin on 1 october of the previous calendar year. Seasons are 
in 3-month increments starting in october. Export flows are the sum of diversions to the federal 
Central valley Project and State Water Project pumping plants. The outflow and export data are 
from California Department of Water Resources (http://iep.water.ca.gov/dayflow). 
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The San Francisco Estuary is physically 
very dynamic, so it is not surprising that 
annual abundance of all of these popula-
tions is extremely variable (Figure 4), and 
that much of this variability is associated 

with hydrology (Figure 2). Historically, 
the lowest abundance levels for the pe-
lagic fishes typically have occurred in dry 
years, such as a six-year drought during 
1987–1992. Consistent with this observa-

tion, several of these species show strong 
statistical associations with flow during 
their early life stages (Stevens and Miller 
1983; Jassby et al. 1995; Kimmerer 2002a). 

As some of the leading scientists in 
the IEP, we became concerned when 
fall midwater trawl abundance indices 
for these four pelagic fishes began to de-
cline around 2000 (Figure 4). The situa-
tion deteriorated over the next several 
years. Abundance indices for 2002-2005 
included record lows for delta smelt and 
young-of-the-year striped bass, and near-
record lows for longfin smelt and thread-
fin shad. By 2004, these declines became 
widely recognized and discussed as a seri-
ous issue, and collectively became known 
as the Pelagic Organism Decline (POD). 

The extreme variability in the data 
makes it difficult to say whether these 
indices are truly at unprecedented low 
levels. Mean catch per trawl with 95% 

Figure 4. Trends in four pelagic fishes during 1967–2006 based on the fall midwater trawl, a DFG survey that samples the upper San Francisco 
estuary. Symbols with heavy lines and error bars (left y axis) show mean catch per trawl (all stations) with approximate 95% confidence intervals 
determined by bootstrap analysis (Kimmerer and Nobriga 2005), and the thin lines (right y-axis) show abundance indices. No sampling occurred in 
1974 or 1979. Development of abundance indices from catch data is described by Stevens and Miller (1983). Note that the y-axes are on logarithmic 
scales.

Figure 3. Adult delta smelt, a federally-listed species whose range overlaps with diversions that 
supply water for over 25 million people.
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confidence intervals developed using resa-
mpling methods indicate that the recent 
indices are indeed quite low, and for some 
species the lowest on record (Figure 4). 
Abundance improved somewhat for each 
species during 2006, but the levels remain 
relatively poor as compared to long-term 
trends. Moreover, these low abundance 
levels are remarkable in that winter and 
spring river flows into the estuary were 
moderate or very wet (2006) during the re-
cent years (Figure 2), conditions that typi-
cally result in at least modest recruitment 
of most of the pelagic fishes. Longfin smelt 
is perhaps the best example of this point as 

the species shows a very strong relation-
ship with delta outflow (Figure 5). The in-
troduction of the overbite clam (Corbula 
amurensis) in 1986 and associated changes 
in the food web reduced the magnitude of 
the response of longfin smelt without al-
tering its slope (Kimmerer 2002b). Specifi-
cally, the grazing effects from Corbula are 
thought to have resulted in a substantial 
decline in phytoplankton and calanoid 
copepods, the primary prey of early life 
stages of pelagic fishes. As a consequence, 
comparable levels of flow did not gener-
ate the expected levels of fish biomass (as 
indexed by abundance) after 1986. Dur-

ing the POD years, the abundance indices 
for longfin smelt deviated substantially 
downward from both the pre- and post-
Corbula relationships with outflow. The 
situation is similar for young-of-the-year 
striped bass, whose historical association 
with outflow was also altered by Corbula, 
and apparently again during the POD 
years, when abundance indices were well 
below the original relationship with out-
flow. Hence, it appears that the response 
of these pelagic fishes to environmental 
conditions has fundamentally changed. 

MANAGEMENT iMPLiCATioNS 
oF THE PoD

Delta smelt has been listed as a threat-
ened species since 1993 under the federal 
Endangered Species Act (ESA; Bennett 
2005). The geographic range of delta 
smelt is relatively narrow, and overlaps 
with the SWP and the CVP diversions 
(Figure 1) which supply water to over 25 
million people in the state and to over 
500,000 ha of farmland in the San Joaquin 
Valley alone, supporting a multi-billion 
dollar agriculture industry. Moreover, the 
delta smelt is primarily an annual species, 
so multiple age classes are not available 
to buffer the population against environ-
mental catastrophes. As a consequence, 
for many years the species has been the fo-
cus of a wide range of protective manage-
ment actions. Each year, decisions about 
water use costing millions of dollars are 
affected by the status and distribution of 
delta smelt. Much of the effort to improve 
the delta smelt population has been led by 
CALFED, an interagency group formed 
largely because of long-term declines in 
delta smelt and other native fishes (Koe-
hler 1995). To help improve the status of 
delta smelt and other native fishes, the 
CALFED effort invested $335 million 
in over 300 habitat restoration projects 
through 2002, and developed a large al-
location of water for use by fisheries agen-
cies, the Environmental Water Account 
(CALFED 2003). Note, however, that 
only a portion of these actions have been 
focused directly towards pelagic fishes.

Among the numerous consequences 
of the recent low abundance indices was 
a March 2006 petition by environmental 
groups to change the federal and state list-
ing status of delta smelt from “threatened” 
to “endangered” based on the argument 
that its extinction risk has increased. The 
collapse of the delta smelt population and 

Figure 5. Log-log relationships between fall midwater trawl abundance indices and delta outflow 
for longfin smelt and young-of-the-year striped bass. Delta outflow values represent the mean 
levels (m3/s) during January–June for longfin smelt, and during April–July for striped bass. The data 
are compared for pre-Corbula invasion years (1967–1987; white circles), post-Corbula invasion 
(1988–2000; dark circles), and during the PoD years (2001–2006; triangles). Fitted lines indicate 
linear regression relationships that are statistically significant at the P <0.05 level.
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the other pelagic fishes also resulted in a 
U.S. Fish and Wildlife Service ESA re-
consultation (Section 7) for the operation 
of the SWP and CVP diversions, several 
lawsuits filed against the water projects, 
numerous front-page newspaper articles, 
and hearings by the U.S. Congress and 
the California legislature. As of the writ-
ing of this article, the SWP is under court 
order to cease water diversions within 60 
days unless a California Endangered Spe-
cies Act permit is obtained to cover inci-
dental take of delta smelt and other listed 
species. The principal outcome of all this 
activity is substantial uncertainty about 
the reliability of the state’s water supply. 

THE PoD iNvESTiGATioN

In response to the POD, the IEP 
formed a work team in 2005 to evaluate 
the potential causes of the decline (IEP 
2005, 2006). The team organized an inter-
disciplinary, multi-agency effort including 
staff from DFG, California Department of 
Water Resources, Central Valley Regional 
Water Quality Control Board, U.S. Bureau 
of Reclamation, U.S. Environmental Pro-
tection Agency, U.S. Geological Survey, 
CALFED, San Francisco State University, 
and the University of California at Davis. 
A suite of 47 studies was selected based 
on the ability of each project to evaluate 
the likely mechanisms for the POD, and 
the feasibility of each project in terms of 
methods, staffing, costs, timing, and data 
availability. In addition to funding for 
regular IEP monitoring, the program’s 
budget was augmented by $2.4 million in 
2005, and $3.7 million each for 2006 and 
2007 to fund the recommended research. 
Because of the high profile of the POD 
study, the team has committed to an un-
usually high level of outreach to agencies, 
the public, and the scientific community.

The POD study is organized around 
a relatively simple conceptual model to 
describe possible mechanisms by which 
a combination of long-term and recent 
changes in the ecosystem could produce 
the observed pelagic fish declines (Figure 
6). This conceptual model is rooted in 
classical food web and fisheries ecology 
and contains four major components: (1) 
prior fish abundance, which posits that 
continued low abundance of adults leads 
to reduced juvenile production (i.e., stock-
recruitment effects); (2) habitat, which 
posits that estuarine water quality variables, 
disease, and toxic algal blooms affect estu-

arine species; (3) top-down effects, which 
posits that predation and water project 
entrainment affect mortality rates; and (4) 
bottom-up effects, which posits that food 
web interactions in Suisun Bay and the 
west delta have limited fish abundance. 
For each model component, our work-
ing hypotheses are that the component 
was responsible for an adverse change at 
the time of the POD and that this change 
resulted in a population-level effect. 

The first model component, prior adult 
abundance, is based on the expected influ-
ences of stock-recruitment effects. At least 
weak stock-recruitment effects have been 
reported for delta smelt (Bennett 2005), al-
though environmental factors are thought 
to dominate at most abundance levels. Re-
cent habitat changes (Model Component 
2) include shifts in flow patterns, largely a 
consequence of upstream dam operations 
that have resulted in lower winter and 
spring inflow and higher summer inflow to 
the delta (Kimmerer 2002b), and fall sa-
linity encroachment (Feyrer et al. 2007). 
Changes in habitat include basic water 
quality variables such as salinity, turbid-
ity, and temperature. In addition, a broad 
suite of herbicides and insecticides are 
applied throughout the watershed, which 
can result in toxicity to fish and their prey 
(Werner et al. 2000; Kuivila and Moon 
2004). Recent changes in pesticide appli-

cations include the increasing use of pyre-
throids, which are highly toxic to aquatic 
organisms (Weston et al. 2004). Moreover, 
blooms of the toxic blue-green alga Micro-
cystis aeruginosa have been observed in the 
delta since 1999 (Lehman et al. 2005). 

Because large volumes of water are 
drawn from the estuary (Table 2; Figure 2), 
water diversions and inadvertent fish en-
trainment are among the best-studied top-
down effects (Model Component 3) in the 
San Francisco Estuary. The diversions are 
known to entrain most species of fish in 
the upper estuary (Brown et al. 1996), and 
are of particular concern in dry years, when 
the distributions of young striped bass, 
delta smelt, and longfin smelt shift closer 
to the SWP and CVP water diversion fa-
cilities (Stevens et al. 1985; Sommer et al. 
1997). As an indication of the magnitude 
of the effects, approximately 110 million 
fish were salvaged at the SWP screens and 
returned to the delta over a 15-year period 
(Brown et al. 1996). However, this esti-
mate does not include other substantial ef-
fects including mortality of fish in the wa-
terways leading to the diversion facilities, 
losses of larvae <20 mm FL that are not 
collected on fish screens, and losses at the 
CVP. The effects of predation are less well-
understood in the estuary. A recent prolif-
eration of aquatic weeds has provided hab-
itat resulting in a substantial increase in 

Figure 6. The basic conceptual model for the pelagic organism decline (PoD).
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inshore predators such as centrarchid fish-
es (Nobriga et al. 2005; Brown and Mich-
niuk 2007). However, it is unclear wheth-
er the littoral communities have a major 
effect on the dynamics of pelagic fishes.

The last model component, bottom-up 
effects, also has received substantial at-
tention in the estuary as a consequence of 
the extreme level of species introductions, 
resulting in major changes in the pelagic 
food web (Cohen and Carlton 1998). Phy-
toplankton biomass (as indexed by chlo-
rophyll a) has declined over the last 4 de-
cades, and species composition has shifted, 
with a sharp decline in diatom abundance 
and production in Suisun Bay and the 
western delta (Lehman 2002; Jassby et al 
2002; Kimmerer 2005). Key groups of zoo-
plankton have likewise declined in abun-
dance and biomass, with sharpest changes 
among calanoid copepods, a primary prey 
for early life stages of pelagic fishes (Kim-
merer and Orsi 1996; Kimmerer 2006). 

CoNCLUSioNS

Unlike the collapses of commercial 
fisheries for Pacific salmon (Onchorhynchus 
spp.) or Atlantic cod (Gadus morhua), the 
POD involves an entire fish assemblage, 
including rare native species as well as 
some of the most abundant introduced 
species in the estuary. As such, it has fo-
cused attention not only on traditional 
fishery management concerns such as 
harvest and water management, but has 
led to new ecological studies of water 
quality and several synergistic processes.

Fortunately, the San Francisco Estu-
ary has an exceptionally long and detailed 
history of environmental monitoring. The 
collapse required an integrated research 
program to analyze the problem. Analy-
sis of the historical data, coupled with an 
intensive program of sharply focused stud-
ies, has permitted the rapid development 
of a better understanding of factors that 
have affected fish abundance in both the 
short and long term. This multi-faceted 
approach should greatly assist in plan-
ning for aquatic resource protection from 
increasing human demands and other 
stressors such as global warming and the 
imminent invasion by quagga mussels.

 The scope of the POD investigations 
has also generated high expectations for 
“real-time” reporting and interpretation of 
the results. The pressing need to reverse the 
decline has also led to demands for specific 
practical actions to remediate problems 

that we only understand broadly. Manage-
ment actions based on incompletely inte-
grated results run the risk of ineffectiveness 
(Hutchings et al. 1997). Although the 
available data have allowed us to generate 
a conceptual model of the major factors, 
the individual and cumulative importance 
of the stressors remains unclear. Hence, 
effective management actions to reverse 
the POD will require quantitative models 
that can integrate the effects of multiple 
stressors and more detailed investigations 
into the causes and mechanisms of the de-
clines. Moreover, management actions will 
be most useful if they can be implemented 
using an adaptive approach that allows 
fisheries scientists and resource managers 
to learn from designed manipulations of 
the upper San Francisco estuary. Such ac-
tions are currently being considered as part 
of the approach to deal with the POD a. 
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