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INTRODUCTION

The challenge of deciphering the rules of phyto-
plankton community assembly remains a central prob-
lem of aquatic ecology. Phytoplankton photosynthesis
fixes up to 50 Gt of carbon per year, contributing nearly
half of global primary production (Falkowski et al.
1998). The biogeochemical consequences and fate of
that production are determined by the way in which it
is packaged into species having distinct biochemical
contents and cell sizes spanning 6 orders of magnitude.
Diatom production is a net sink for CO2, whereas coc-
colithophorid production is a net source, so community
composition at this level determines the direction of

ocean–atmosphere CO2 exchange, with corresponding
influence on the climate system (Harrison 2000).
Micron-sized picoplankton are not directly accessible
to most metazoan consumers (Tamigneaux et al. 1995),
so their energy content is routed through the microbial
loop, with large respiratory losses. Some algal taxa
synthesize biochemicals that are essential dietary com-
ponents for animal consumers (Müller-Navarra et al.
2004), while others produce potent toxins to disrupt
animal growth or reproduction (Cembella 2003). The
pathways and efficiencies of energy transfer from pri-
mary producers to aquatic food webs, including those
sustaining upper trophic levels, are therefore deter-
mined by phytoplankton community composition.
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In his seminal paper ‘The paradox of the plankton’,
Hutchinson (1961) asked how ‘is it possible for a number
of species to coexist in a relatively isotropic or unstruc-
tured environment all competing for the same sorts of
materials’? The paradox was coexistence of many spe-
cies when the competitive exclusion principle predicts
‘that one species alone would out compete all the others
so that in a final equilibrium situation the assemblage
would reduce to a population of a single species.’ The
paradox was grounded on assumptions that: (1) phyto-
plankton communities are assembled on the basis of
differential growth rates among species, determined by
the availability of inorganic nutrients, (2) species inter-
act through competition for mineral nutrients, and (3)
pelagic habitats are homogeneous closed systems. In the
4 decades since, our concepts of pelagic ecology have
been revolutionized by fundamental new discoveries
that resolve the paradox, largely through confirmation of
mechanisms anticipated by Hutchinson (1961): species
immigration, biological interactions, and habitat vari-
ability that precludes community equilibrium.

Here, we synthesize those discoveries and their con-
tribution to the revolutionized view of pelagic ecology
since Hutchinson’s era. We build this synthesis with
examples of species occurrence and distributional pat-
terns from a decade-long survey of phytoplankton
communities in San Francisco Bay. We use this case
study as a foundation to synthesize important dis-
coveries since Hutchinson’s paper to address 2 funda-
mental ecological questions: (1) What are the patterns
and processes of phytoplankton community assembly
in open ecosystems such as estuaries and oceanic
current systems? and (2) How does phytoplankton
community composition influence ecosystem functions
such as food supply to consumers and energy transfer
to pelagic and benthic food webs?

MATERIALS AND METHODS

San Francisco Bay: the case study. San Francisco
Bay, the estuary between California’s 2 largest rivers
and the Pacific Ocean, is a site of long-term ecological
research designed to reveal patterns and processes of
variability in a coastal ecosystem (Cloern 1996). Estu-
aries are open systems strongly influenced by river
inflows, mixing with the coastal ocean, and exchanges
across the sediment–water interface that drive physi-
cal and biogeochemical variability. Estuaries are tur-
bulent advective systems in which the pelagic and
its biota are dispersive and transient. Their pelagic
habitats are time-varying mixtures of seawater and
freshwater, situated within spatial gradients of salinity,
temperature, nutrients, turbidity and heterotroph com-
munities along a river–ocean continuum. Long-term

observations across the habitat gradients of San Fran-
cisco Bay provide an appropriate data set for illustrat-
ing principles that have emerged from the discovery of
processes beyond resource competition that shape
phytoplankton communities.

Methods. For a decade (1992 to 2001), we sampled
seasonally along the salinity gradients of San Francisco
Bay between the tidal freshwater Sacramento River,
marine-influenced Central Bay, and brackish-marine
South San Francisco Bay (Fig. 1). We measured salin-
ity, temperature, irradiance, phytoplankton biomass as
chlorophyll a, suspended sediment and dissolved in-
organic nutrient (N, P, Si) concentrations to capture
variability associated with annual cycles of river flow
and biomass and activity of herbivores (Cloern 1996).
Phytoplankton samples were collected within the 6
sub-regimes of the river-estuary system (Fig. 1), identi-
fied from tree-based regressions of chlorophyll dis-
tributions (Jassby et al. 1997). These 6 primary stations
were sampled during spring 1992 and then roughly
bimonthly each year from 1993 through 2001 (see
Fig. 2E). Additional (ca. weekly) samples were collected
in South Bay when the biomass fluctuated around
neap-spring periodicity of tidal mixing.

Vertical profiles of temperature, salinity and photo-
synthetically active radiance (Iz) were measured with a
Seabird Electronics CTD and LiCor 192 quantum sen-
sor. The light-attenuation coefficient k was calculated
as the slope of linear regression of ln(Iz) against
depth z. Vertical distributions of suspended particulate
matter (SPM) and chlorophyll a were measured with a
D&A Instruments optical backscatter sensor and Sea-
Tech fluorometer calibrated with discrete measures
of SPM and chlorophyll a in near-surface and near-
bottom water samples. Chlorophyll a samples were
filtered onto Gelman A/E glass-fiber filters and frozen.
Dried filters were ground in 90% acetone, extracted in
a freezer for 24 h, and the absorbance of centrifuged
extracts measured with a Hewlett Packard 8452A
diode-array spectrophotometer. Chlorophyll a concen-
tration was calculated using Lorenzen’s (1967) equa-
tions with corrections for phaeopigments. SPM was
determined gravimetrically using samples collected
onto pre-weighed Nuclepore (0.4 µm pore size) filters.
From 1992 through 2001, we measured 4118 vertical
profiles along the river–estuary transect. We present
(Fig. 2) only measurements at 1 m depth, correspond-
ing to the depth of phytoplankton sampling.

Nutrient samples were filtered through 0.4 µm Nucle-
pore filters and frozen until analyzed. Concentrations
of dissolved inorganic nitrogen (DIN = NH4

+ + NO3
– +

NO2
–), reactive phosphorus and silica were mea-

sured using modifications of standard colorimetric
methods (Hager & Schemel 1997) with a Technicon
AutoAnalyzer II. We computed indices of nutrient
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limitation as measured concentrations normalized by
half-saturation constants for growth (K), assuming that
KN = 0.7 µM, KP = 0.1 µM, KSi = 1.8 µM (Chapra 1997).
We computed an index of light limitation as mean
water-column irradiance [= E/(kH), where H is water
depth and E is daily surface irradiance], scaled by a
characteristic irradiance at which growth rate is half the
maximum (KI = 2.4 mol quanta m–2 d–1; Cloern 1999).

Phytoplankton samples were preserved with acid
Lugol’s solution, and 2 to 50 ml aliquots were settled in
chambers for 6 to 24 h, and then counted and identified
using a phase-contrast inverted microscope (Utermöhl
1958). Entire aliquots were examined at 125× magnifi-
cation and all cells >30 µm diameter were enumerated.
Cells smaller than 30 µm were counted at 1250× magni-
fication; at least 100 cells of the most numerous taxon
were counted using the strip-count method (APHA
1989). Diatoms and dinoflagellates were identified after
the cell contents were cleared in 30% hydrogen per-
oxide and mounted in Hyrax Mounting Medium. Cell
volumes were estimated for dominant taxa by measuring
50 to 100 cells (Hillebrand et al. 1999) and applying the
geometric formulas of Wetzel & Likens (1991). The bio-
mass of each taxon was computed as the product of
abundance (cells ml–1) and cell biovolume (µm3 ml–1).

From mean cell dimensions we computed the size of
each species as equivalent spherical diameter (ESD).

San Francisco Bay as a habitat mosaic. Phytoplank-
ton communities were sampled across a mosaic of
physical–chemical habitats, where the variability of
salinity (0.05 to 32.2 psu), temperature (8.7 to 22.7°C),
turbidity (SPM from 1 to 556 mg l–1) and nutrient con-
centrations (dissolved inorganic nitrogen, DIN, from
0.05 to 221 µM) reflected a broad range of environ-
mental factors that regulate phytoplankton growth
(Fig. 2). Hydrologic conditions ranged from seasonal
low riverine inflow of ~100 m3 s–1 during summer and
autumn to exceptional flood events (>9000 m3 s–1,
Fig. 2A). The salinity distribution responded with rapid
estuary-wide displacements of seawater and its plank-
ton community during periods of high inflow followed
by progressive salinity intrusion during the low flow in
summer and autumn (Fig. 2C). Spatial distributions of
SPM (Fig. 2D) created large river–ocean gradients in
turbidity and light limitation of phytoplankton growth.
Most samples had chlorophyll a concentrations <3 µg
l–1. Exceptions occurred as blooms, mostly in South
Bay (Fig. 2E), when chlorophyll a exceeded 20 µg l–1

and reached maxima >100 µg l–1. DIN, Si and P usu-
ally exceeded concentrations that limit phytoplankton
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Fig. 1. Sampling locations in San
Francisco Bay (�). Vertical profiles
of chlorophyll a, suspended partic-
ulate matter, irradiance, tempera-
ture, and salinity were measured at
all stations. Phytoplankton and nu-
trient samples were collected at the
primary stations distributed among
6 subregions along the salinity gra-
dient. Data are available at http://
sfbay.wr.usgs.gov/access/wqdata
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Fig. 2. Daily (A) river inflow and color contours showing interpolated distributions of near-surface: (B) water temperature, 
(C) salinity, (D) suspended particulate matter (SPM), and (E) chlorophyll a concentration along the San Francisco Bay sampling
transect from 1992 to 2001. In (B), blue symbols identify times and locations of 4118 measurements of temperature, salinity, SPM,
and chlorophyll a. In (E), red circles identify times and locations where phytoplankton samples were collected for microscopic
analysis. Primary sampling sites were Lower South Bay (LSB), South Bay (SB), Central Bay (CB), San Pablo Bay (SPB), Suisun Bay 

(SUB), and Sacramento River (SR) (see Fig. 1 for locations)
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growth. Scaled concentrations of DIN (N' = DIN/KN)
indicate that phytoplankton growth was potentially
limited by N (N' <1) in only 4% of samples (Fig. 3). Si
was at rate-limiting concentrations for diatoms (Si' <1)
in only 1% of samples, and P limitation was never indi-
cated. Irradiance profiles indicated light limitation of
growth in 74% of samples (Fig. 3D), confirming that
phytoplankton growth is predominately limited by the
light resource in this enriched estuary (Cloern 1999). 

Phytoplankton community of San Francisco Bay. We
detected 500 distinct phytoplankton taxa, of which 396
could be identified to species. Accurate enumeration and
identification of prokaryotes and some small eukaryotic
algae is not possible by light microscopy, and some frag-
ile taxa (e.g. the raphidophyte Heterosigma akashiwo)
can only be detected in live samples. Therefore, our
analysis of size and taxonomic diversity is constrained to
those forms that were well-preserved and identifiable
by light microscopy. Of these taxa, cell volume ranged
from 1 to 3 µm3 for the smallest taxa (Nannochloropsis
sp., Chromulina mikroplankton, Merismopedia spp.,
Aphanocapsa spp.) to 4–6 × 105 µm3 for the largest
(Coscinodiscus centralis var. pacifica, Thalassiosira
anguste-lineata, Coscinodiscus oculus-iridis, Noctiluca
scintillans). We compiled mean cell size for the 81 most
important species (Table 1), a community of cosmo-
politan phytoplankton commonly observed in temperate
estuaries and coastal waters globally.

The phytoplankton community was dominated by a
small number of species: the top 10 contributed 77% to
cumulative biomass in the 599 samples, and the top
100 species contributed >99% (Fig. 4A). Diatoms (divi-
sion Bacillariophyta) contributed 81% to cumulative
biomass in all samples (Fig. 4B). Dinoflagellates (Pyrro-
phyta) and cryptophytes contributed 11 and 5%,
respectively, to cumulative biomass. Other divisions
(Chlorophyta, Cyanophyta, Chrysophyta, Eugleno-
phyta) were minor components of overall biomass,
although their contributions were important in some
individual samples. We probed the San Francisco Bay
data set to extract patterns illustrating principles of
phytoplankton community assembly that have emerged
from discoveries since Hutchinson’s era. 

RESULTS AND DISCUSSION

Eight principles of phytoplankton community 
assembly

(1) Cell size is determined by nutrient supply and
selective grazing: Major conceptual breakthroughs of
pelagic ecology have come from discoveries of the
microbial loop (Pomeroy 1974, Azam et al. 1983) and
the distinction between new and regenerated produc-
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Fig. 3. Frequency distributions (number of occurrences) of nu-
trient (N, Si, P) concentrations and water-column irradiance
(I), measured in San Francisco Bay from 1992 to 2001. Mea-
surements were normalized to half-saturation constants
defining resource limitation of phytoplankton growth. Note 

difference in x-axis scale between (A–C) and (D)
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Table 1. Common phytoplankton taxa in San Francisco Bay, listing those species occurring in >10 (of 599) samples and contribut-
ing >0.01% of cumulative biomass as biovolume contained in all samples. Mean cell size as equivalent spherical diameter (ESD). 

n = no. of occurrences

Taxon Division Biomass (%) ESD (µm) n

Thalassiosira rotula Meunier Bacillariophyta 20.970 28 140
Chaetoceros socialis Lauder Bacillariophyta 11.980 12 48
Skeletonema costatum (Greville) Cleve Bacillariophyta 9.51 8 277
Ditylum brightwellii (T. West) Grunow Bacillariophyta 7.44 85 103
Gymnodinium sanguineum Hirasaka Pyrrophyta 7.40 61 41
Coscinodiscus oculus-iridis Ehrenberg Bacillariophyta 6.30 101 66
Thalassiosira hendeyi Hasle & Fryxell Bacillariophyta 4.85 51 203
Thalassiosira punctigera (Castracane) Hasle Bacillariophyta 3.31 72 27
Plagioselmis prolonga var. nordica Novarino, Lucas & Morrall Cryptophyta 2.65 5 495
Coscinodiscus curvatulus Grunow Bacillariophyta 2.15 73 49
Mesodinium rubrum Lohmann Holotrich ciliate 2.03 30 190
Teleaulax amphioxeia (Conrad) Hill Cryptophyta 2.02 9 375
Chaetoceros debilis Cleve Bacillariophyta 1.84 11 31
Eucampia zodiacus Ehrenberg Bacillariophyta 1.80 30 29
Coscinodiscus radiatus Ehrenberg Bacillariophyta 1.77 53 66
Thalassiosira eccentrica (Ehrenberg) Cleve Bacillariophyta 1.48 55 136
Protoperidinium sp. Pyrrophyta 1.45 37 21
Thalassiosira decipiens (Grunow) Jorgensen Bacillariophyta 0.90 20 136
Coscinodiscus centralis var. pacifica Gran & Angst Bacillariophyta 0.72 103 23
Rhizosolenia setigera Brightwell Bacillariophyta 0.49 29 102
Noctiluca scintillans (Macartney) Kofoid & Swezy Pyrrophyta 0.46 98 36
Nitzschia bilobata W. Smith Bacillariophyta 0.44 35 33
Cyclotella atomus Hustedt Bacillariophyta 0.43 7 304
Coscinodiscus jonesianus (Greville) Ostenfeld Bacillariophyta 0.33 68 17
Pyramimonas orientalis Butcher Chlorophyta 0.31 5 175
Rhodomonas marina (Dangeard) Lemmermann Cryptophyta 0.26 10 116
Protoperidinium depressum (Bailey) Balech Pyrrophyta 0.23 60 41
Heterocapsa triquetra (Ehrenberg) Stein Pyrrophyta 0.23 18 138
Protoperidinium claudicans (Paulsen) Balech Pyrrophyta 0.22 26 52
Cyclotella choctawhatcheeana Prasad Bacillariophyta 0.22 12 74
Alexandrium tamarense (Lebour) Balech Pyrrophyta 0.21 23 109
Nannochloropsis sp. Chrysophyta 0.20 2 424
Thalassiosira nodulolineata (Hendey) Hasle & Fryxell Bacillariophyta 0.18 49 40
Chlorella salina Butcher Chlorophyta 0.17 3 97
Chaetoceros wighamii Brightwell Bacillariophyta 0.17 9 43
Eutreptia lanowii Steur Euglenophyta 0.16 11 167
Prorocentrum minimum (Pavillard) Schiller Pyrrophyta 0.16 14 116
Aulacoseira lirata (Ehrenberg) Ross Bacillariophyta 0.15 12 12
Rhizosolenia styliformis Brightwell Bacillariophyta 0.13 48 22
Entomoneis paludosa (W. Smith) Reimer Bacillariophyta 0.12 28 30
Odontella mobiliensis (Bailey) Grunow Bacillariophyta 0.11 71 17
Gyrosigma balticum (Ehrenberg) Rabenhorst Bacillariophyta 0.11 53 36
Pleurosigma strigosum W. Smith Bacillariophyta 0.09 32 61
Leptocylindrus minimus Gran Bacillariophyta 0.09 11 36
Gyrodinium spirale (Bergh) Kofoid & Swezy Pyrrophyta 0.09 51 21
Thalassiosira visurgis Hustedt Bacillariophyta 0.08 21 50
Oxytoxum milneri Murray & Whitting Pyrrophyta 0.08 28 75
Lithodesmium undulatum Ehrenberg Bacillariophyta 0.08 69 14
Gyrosigma fasciola (Ehrenberg) Griffith & Henfrey Bacillariophyta 0.08 32 91
Cyclotella striata (Kuetzing) Grunow Bacillariophyta 0.08 13 63
Heterocapsa rotundata (Lohmann) Hansen Pyrrophyta 0.07 11 94
Pyramimonas disomata Butcher Chlorophyta 0.07 14 112
Chaetoceros subtilis Cleve Bacillariophyta 0.07 7 57
Chaetoceros gracilis Schutt Bacillariophyta 0.05 7 23
Asterionellopsis glacialis (Castracane) Round Bacillariophyta 0.05 20 33
Guinardia delicatula (Cleve) Hasle Bacillariophyta 0.05 21 100
Chlorella marina Butcher Chlorophyta 0.05 5 86
Paralia sulcata (Ehrenberg) Cleve Bacillariophyta 0.05 13 166
Actinoptychus senarius Ehrenberg Bacillariophyta 0.05 58 39
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tion (Dugdale & Goering 1967). We know now that
phytoplankton biomass and production are dominated
by micron-sized picoplankton in oligotrophic lakes and
much of the ocean. Small size (high surface:volume
ratio) provides a competitive advantage in nutrient-
impoverished regenerating systems (Chisholm 1992),
but this advantage disappears in new-production sys-
tems when physical processes inject nutrients into the

euphotic zone and promote selective growth of large
cells that escape predation by fast-responding micro-
heterotrophs (Kiørboe 1993). As predicted from this
principle, phytoplankton biomass in the nutrient-rich
San Francisco Bay is dominated by large taxa: cells
<8 µm contributed only 4% of community biomass, but
cells >30 µm contributed 40% (Fig. 4B). This is con-
sistent with an earlier study demonstrating that ultra-
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Table 1 (continued)

Taxon Division Biomass (%) ESD (µm) n

Pleurosigma normanii Ralfs Bacillariophyta 0.04 47 17
Pseudo-nitzschia seriata (Cleve) Peragallo Bacillariophyta 0.04 15 34
Cyclotella meneghiniana Kuetzing Bacillariophyta 0.04 13 57
Gyrosigma acuminatum (Kuetzing) Rabenhorst Bacillariophyta 0.04 42 24
Melosira varians Agardh Bacillariophyta 0.03 22 26
Nitzschia pusilla Grunow Bacillariophyta 0.03 7 69
Alexandrium catenella (Whedon & Kofoid) Balech Pyrrophyta 0.03 26 22
Ceratium furca (Ehrenberg) Claparede & Lachmann Pyrrophyta 0.03 41 11
Thalassiosira nordenskioeldii Cleve Bacillariophyta 0.03 16 40
Gyrosigma macrum (W. Smith) Griffith & Henfrey Bacillariophyta 0.03 31 71
Stephanodiscus hantzschii Grunow Bacillariophyta 0.03 11 11
Prorocentrum micans Ehrenberg Pyrrophyta 0.02 30 29
Scrippsiella hangoei (Schiller) Larsen Pyrrophyta 0.02 32 18
Prorocentrum gracile Schutt Pyrrophyta 0.02 20 17
Aulacoseira granulata (Ehrenberg) Simonsen Bacillariophyta 0.02 14 32
Synechocystis salina Wislouch Cyanophyta 0.02 2 61
Aulacoseira italica (Ehrenberg) Simonsen Bacillariophyta 0.02 13 18
Protoperidinium bipes (Paulsen) Balech Pyrrophyta 0.02 22 43
Nitzschia closterium (Ehrenberg) W. Smith Bacillariophyta 0.02 7 122
Nitzschia longissima (Brebisson) Ralfs Bacillariophyta 0.02 11 143
Thalassionema nitzschioides (Grunow) Mereschkowsky Bacillariophyta 0.02 13 47
Cryptomonas ovata Ehrenberg Cryptophyta 0.02 15 27
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Fig. 4. (A) Cumulative distribution of total phytoplankton biomass in 599 samples versus number of species included, ranked by
biomass; 10 most important species contributed 77% of cumulative biomass, and 100 species accounted for > 99% of cumulative
biomass. (B) Cumulative frequency distribution of phytoplankton biomass versus cell size (ESD, equivalent spherical diameter);
top inset shows relative contributions to total biomass by diatoms, dinoflagellates, cryptophytes and phototrophic ciliate Meso-
dinium rubrum. Photomicrograph inset shows a sample collected during a spring diatom bloom dominated by Thalassiosira 

punctigera having mean diameter ~90 µm
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plankton (cells passing a 5 µm filter) contributed only
3 to 28% to chlorophyll biomass and annual primary
production in different regions of San Francisco Bay
(Cole et al. 1986). Much of the large-cell production
occurred during blooms, when biomass was dominated
by Thalassiosira rotula, T. hendeyi, T. punctigera,
Chaetoceros socialis, C. debilis, Skeletonema costa-
tum, Ditylum brightwellii, Coscinodiscus oculus-iridis,
C. curvatulus, C. radiatus and Eucampia zodiacus
(Table 1). Analyses by epifluorescence microscopy
(Ning et al. 2000) confirmed that picoplankton (primar-
ily cyanobacteria Synechococcus spp.) contributed
about 15% to community biomass during nonbloom
conditions and only 2% during blooms. Phytoplankton
dynamics in upwelling systems and many estuaries
are characterized by boom–bust cycles of large cells
against a background of stable picoplankton biomass
(Cullen et al. 2002). The damped biomass fluctuations
of small cells result from tight coupling between their
production and consumption by fast-responding pro-
tistans (Murrell & Hollibaugh 1998). As a consequence
of fast grazing in the microbial loop and lagged
responses of metazoan consumers (Malone 1992),
nutrient enrichment amplifies large-cell production
(Duarte et al. 2000).

(2) Diatoms respond rapidly to nutrient pulses: The
phytoplankton community of San Francisco Bay is
overwhelmingly dominated by diatoms (Fig. 4B), a
result of dominance during blooms when their cell-
division rate exceeds loss rates from grazing, sedimen-
tation, transport and mortality. Large diatoms are key
species in this estuary just as they are in the ocean
following physically-driven events such as upwelling
events that inject nutrients into the euphotic zone
(Goldman & McGillicuddy 2003). The bloom mecha-
nism in nutrient-rich San Francisco Bay is a release
from strong light limitation by other physical pro-
cesses, including runoff-induced salinity stratification
(Cloern 1996) or increased euphotic-zone depth as
sediment suspension is damped during weak neap
tides (May et al. 2003).

Community studies in San Francisco Bay and in up-
welling systems support the empirically-based princi-
ple that diatoms respond rapidly to episodic high-light
high-nutrient conditions. Surprisingly, there is no con-
sensus explanation of why diatoms best exploit these
opportunities for fast population growth. One view is
from the bottom up: diatoms divide faster than other
taxa, either because they have inherently high growth
rates (Smayda 1997), accelerated N assimilation under
nitrate-rich conditions (Dugdale & Wilkerson 1992),
high growth efficiency at low light (Goldman & Mc-
Gillicuddy 2003), or because they can utilize bicarbon-
ate during blooms when CO2 limits photosynthesis of
other algae (Hobson 1988). Other explanations work

from the top down: diatoms succeed because their
silica cell wall resists the cracking force of feeding
structures such as copepod mandibles (Hamm et al.
2003) and attack by small predatory flagellates or
pathogens (Smetacek 1995). Large diatoms can regu-
late their buoyancy (Waite et al. 1992) to suppress sink-
ing, and this is important in shallow environments such
as San Francisco Bay, where most phytoplankton pro-
duction is consumed by benthic suspension feeders
and avoidance of the benthic boundary layer is a key to
population survival.

(3) Pelagic habitats select phytoplankton species on
the basis of their form and function: Hutchinson’s
paradox came from the premise that phytoplankton
species are functional equivalents competing for finite
resources in an ‘isotropic’ fluid medium. However,
Margalef (1978) later recognized the ecological signif-
icance of variability among species in their form (size,
density) and function (motility, behavior) as adapta-
tions to an ‘unstable and turbulent environment’.
Margalef’s Mandala is now a central paradigm of
phytoplankton community ecology, expressing the
principle that phytoplankton life forms are adaptations
to specific pelagic habitat types defined along gradi-
ents of turbulence intensity and nutrient concentra-
tions (Cullen et al. 2002). As an alternative to the
resource-competition perspective, Margalef (1978)
postulated that the ‘combination of sedimentation with
turbulence’ shapes communities as the pelagic varies
between extremes of a fertile-turbulent state (pro-
moting diatom growth) and exhausted-stratified state
(promoting growth of flagellates and dinoflagellates
that migrate vertically to exploit nutrient gradients;
Smayda & Reynolds 2001). This framework provides a
basis for exploring the diverse patterns of species
occurrence in estuaries. One pattern in San Francisco
Bay is restricted seasonal occurrence, exemplified by
the marine diatoms (Fig. 5A) that dominate spring
blooms. A second pattern, exemplified by Mesodinium
rubrum and some dinoflagellates (Fig. 5B), is nonsea-
sonal population growth in response to short-term
events, such as sunny calm weather that establishes an
ephemeral thin upper layer within which motile spe-
cies accumulate (Cloern et al. 1994). Gyrosigma fasci-
ola illustrates a different nonseasonal pattern (Fig. 5C)
driven by wind events and periodic tidal stresses that
suspend benthic forms into the plankton.

Margalef’s (1978) conceptual framework also pro-
vides a foundation for exploring the diversity of
community dynamics among coastal ecosystems. The
textbook depiction of phytoplankton seasonality at
temperate latitudes is dominance by diatoms in spring
and dinoflagellates in summer, but this idealized sea-
sonal succession does not occur in San Francisco Bay
or in the Bay of Brest (perennial diatom dominance:
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Del Amo et al. 1997), Neuse River Estuary (dinoflagel-
late dominance in winter: Mallin & Paerl 1994), Gulf
of Naples (small diatoms in summer: Ribera d’Alcalà
et al. 2004), Orbetello Lagoon (cryptophytes in winter
and spring: Nuccio et al. 2003), or Norwegian fjords
(coccolithophorids in summer: Smayda 1980). Diatoms
contribute over 80% to phytoplankton biomass in San
Francisco Bay, but dinoflagellates contribute over 85%
to biomass in the Patapsco River estuary (Sellner et
al. 2001), and biomass is evenly distributed among
diatoms, dinoflagellates, cryptophytes, chlorophytes and
cyanobacteria in the Neuse River Estuary (Pinckney
et al. 1998). Margalef’s Mandala suggests the (as yet
untested) hypothesis that this large community vari-
ability between ecosystems is a consequence of differ-
ences in their input of exogenous energy and the per-
sistence of vertical structure in their pelagic habitats.

Margalef’s (1978) conceptual framework was built
from the principle that specialized life forms have
evolved as adaptations to physical habitat variability,
but some species are clearly generalists. The pico-
cyanobacteria and some small eukaryotes (Nanno-
chloropsis sp., Teleaulax amphioxeia, Plagioselmis
prolonga) are persistent and ubiquitous across large
habitat gradients in San Francisco Bay (Fig. 5D),
implying resilience to variability in turbulent mixing,
optical properties, salinity and temperature. Some
marine species (Thalassiosira frauenfeldii, Ceratium
furca, Pyramimonas parkeae) are confined to near-
coastal domains of San Francisco Bay (Fig. 6) and some
freshwater species (Anabaena affinis, Synedra ulna,
Cryptomonas ovata) are confined to the tidal river, but
many others occur across broad salinity and tem-
perature ranges (Fig. 6). These generalist species are
apparently not constrained to occupying fixed niches,
so their seasonal occurrences and timing of peak bio-
mass can vary markedly from year to year (Karentz &
Smayda 1984). One mode of resilience to environmen-
tal variability is the occurrence within morphospecies
of genetically distinct strains having variable life histo-
ries (French & Hargraves 1986, Montresor et al. 2003),
growth rates (Rynearson & Armbrust 2000), and toler-
ance to salinity and temperature variability (Krawiec
1982).

(4) Pelagic communities are shaped by species
interactions across trophic levels: The mean doubling
time of phytoplankton in San Francisco Bay is only
about 4 d (Cloern et al. 1985) but, except during
blooms, biomass does not build up (Fig. 2E) because
most phytoplankton primary production is consumed
at a comparable rate. Many metazoan and protistan
consumers are selective in their herbivory, exerting a
top–down control on phytoplankton community com-
position. Based on this principle, Verity & Smetacek
(1996) suggested that the traditional emphasis on

resource-driven community regulation has been self-
limiting, and they proposed a revised conceptual
framework ‘that predation and resource availability
act through morphologies and life history strategies
of organisms to structure pelagic ecosystems’. The
calanoid copepod Acartia sp. adapts its diet with
selectivity in San Francisco Bay for large flagellates
and diatoms (Coscinodiscus spp., Thalassiosira spp.),
the chain-forming diatom Skeletonema costatum, and
dinoflagellates (Rollwagen-Bollens & Penry 2003).
The microheterotrophs ingest small forms, with very
fast (up to 2 d–1) consumption of picocyanobacteria
(Murrell & Hollibaugh 1998).

The phytoplankton have evolved a battery of taxon-
specific chemical, morphological and behavioral de-
fenses against predation. For example, some dino-
flagellates (Gymnodinium catenatum, Dinophysis acu-
minata, Alexandrium spp.) synthesize metabolites that
inhibit feeding and growth of copepods (Carlsson et al.
1995, Teegarden 1999, Calbet et al. 2002). Some algae
synthesize multiple compounds which inhibit growth
of bacteria, other phytoplankton, protozoan and meta-
zoan grazers (Fistarol et al. 2003) to structure plank-
tonic communities from both the top down and bottom
up. At least 20 marine phytoplankton species are in-
fected with host-specific viruses (Zingone et al. 1999),
suggesting that pathogens play an important role in
regulating phytoplankton biomass and species compo-
sition (Short & Suttle 2003). We have just begun to
explore the population ecology of algal pathogens and
chemically-based species interactions, but these forces
of community assembly are just as powerful as re-
source competition and habitat selection (Zingone &
Wyatt 2004). Many of these biological interactions
were unknown in Hutchinson’s era, so the 1961 con-
ceptual framework was missing key processes now
viewed as central regulators of pelagic community
structure.

(5) Phytoplankton species have mixed nutritional
modes: Hutchinson (1961) and his contemporaries knew
the phytoplankton as obligate phototrophs competing for
a finite number of resources. The presumption of strict
phototrophy was shattered by discoveries (e.g. Bird &
Kalff 1986, Estep et al. 1986) that some phototrophic fla-
gellates ingest bacteria, and dinoflagellates feed on
other algae with ‘zipper-like ‘mouths’ for swallowing
food, peduncles or feeding tubes for ‘sucking- up’ whole
prey or their cytoplasmic contents, and feeding veils for
encasing and externally digesting large prey’ (Coats
2002). Mixotrophic algae are key components of phyto-
plankton communities including the 2 prominent non-
diatom groups in San Francisco Bay: dinoflagellates
(mixotrophic species of Dinophysis, Prorocentrum and
Alexandrium) and cryptophytes (species of Plagioselmis,
Teleaulax, Rhodomonas and Cryptomonas).
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The discovery of mixotrophy was important because
it revealed that phytoplankton can tap the nutrient
pools contained in microbial biomass, relaxing the
constraint of strict growth regulation by the supply of
inorganic nutrients. Bacterial grazing by algal flagel-
lates is a mechanism for acquiring particulate organic
P to sustain blooms even at growth-limiting concentra-
tions of dissolved inorganic P (Nygaard & Tobiesen
1993). Although we know very little about the ener-
getics of mixotrophs, their capacity to acquire energy
heterotrophically also provides a mechanism to survive
in habitats such as turbid estuaries where photosyn-
thesis is strongly light-limited. The ubiquity and per-
sistence of cryptophytes (Fig. 5D) may reflect their
ability to ingest bacteria as a heterotrophic supplement
to light-limited phototrophy. The discovery of mixo-
trophy revealed that phytoplankton species are not all
functional equivalents occupying one trophic level.
Even for the primary producers, species do not ‘clearly
aggregate into discrete, homogeneous trophic levels’
(Polis & Strong 1996).

(6) Phytoplankton species have variable life histo-
ries: Since Hutchinson’s era we have discovered that
many algal species have different life forms, including
planktonic vegetative and benthic or suspended rest-
ing stages (e.g. Dale 2001). Life cycles were not explic-
itly included in conceptual models of phytoplankton
community ecology until Smetacek (1985) postulated
that mass sedimentation of bloom diatoms is a life his-
tory adaptation to nutrient depletion of surface waters,
a survival strategy creating a stock of resting cells to
seed population growth when seasonal mixing brings
nutrient-rich bottom waters back to the surface. Many
neritic species produce benthic resting stages, and the
sediments of coastal ecosystems contain a reservoir of
diatom spores or resting cells and dinoflagellate cysts
that provide a ready inoculum to seed blooms. Produc-
tion of benthic stages is also a mechanism to retain
a species’ genome within strongly advective systems
such as estuaries, and this retentive function may
explain why 92% of the biomass in San Francisco Bay
comes from the 2 algal divisions (diatoms and dinofla-
gellates) in which spore or cyst production is common.

The cues and periodicity of life-form alternation vary
among species, providing another mechanism of bio-
geographic diversity beyond physical-habitat selec-
tion. The dinoflagellate Alexandrium tamarense pro-
duces cysts that require prolonged dormancy before
germination, with a ‘univoltine’ life cycle of 1 annual
alternation between pelagic vegetative and benthic
resting stages (Montresor et al. 1998). Scrippsiella
trochoidea has a ‘multivoltine’ life strategy, producing
resting stages that require short periods of dormancy
and repeated cycles between life forms within a year.
Annual cycles of excystment are regulated by endo-

genous rhythms (A. tamarense, Anderson & Keafer
1987), or triggered by exogenous cues. Spore stages of
common diatoms in San Francisco Bay (Chaetoceros
socialis, C. debilis, C. decipiens, Thalassiosira norden-
skioeldii, Rhizosolenia setigera) germinate only when
the photoperiod reaches 13 h (Eilertsen et al. 1995), a
mechanism of providing viable inocula to seed spring
blooms that is not related to water column stability or
nutrient availability.

(7) Pelagic ecosystems are open: We now conceive
the pelagic as an open system in which immigration
and dispersal sustain community diversity. The phyto-
plankton metapopulation of San Francisco Bay in-
cludes all taxa in the linked river–estuary–coastal
ocean and pelagic–benthic systems (Table 1). The
openness of aquatic ecosystems is central to the di-
versity paradox because theoretical models show that
many species can coexist when immigration is in-
cluded as a process of community assembly (Hubbell
2001). Many key phytoplankton species in San Fran-
cisco Bay are the same taxa that develop blooms in the
adjacent coastal upwelling system, suggesting that
phytoplankton diversity inside the estuary is influ-
enced by exchanges with the coastal Pacific Ocean.
Some dinoflagellates and flagellates (Ceratium spp.,
Alexandrium catenella, Prorocentrum micans, P. gracile,
Dinophysis acuminata, Heterosigma akashiwo) occur
only within the high-salinity zone of rapid oceanic
exchange (Fig. 5F), suggesting these are allochthonous
species produced in coastal waters and transported
into the bay by surface currents or tidal dispersion.
Allochthonous freshwater taxa, such as Skeletonema
potamos (Fig. 5E), are delivered to the estuary by
pulses of river flow. Phytoplankton communities inside
the estuary are influenced by exchanges across a third
interface, between the sediments and overlying water.
Many diatoms sampled in the plankton are benthic
(Entomoneis paludosa, Gyrosigma balticum, G. fasci-
ola, G. acuminatum, Pleurosigma strigosum, P. nor-
manii, Nitzschia pusilla, N. [Cylindrotheca] closterium,
N. sigma) or meroplanktonic forms (Thalassiosira de-
cipiens, Cyclotella striata, C. meneghiniana, Paralia
sulcata, Actinoptychus senarius) common in surficial
sediments. Many freshwater taxa (Melosira varians,
M. moniliformis, Bacillaria paxillifer, Achnanthes spp.)
are common periphyton components in the tributary
rivers, so plankton species richness is augmented by
suspension of epipelic-epiphytic microalgae as an im-
migration process that was recognized by Hutchinson
(1961).

(8) Communities respond to large-scale climatic
periodicity: In Hutchinson’s era we were unaware of
large-scale climatic fluctuations such as ENSO events
or longer-period climatic cycles such as the Pacific
Decadal Oscillation (PDO) and their influence on
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pelagic community dynamics. Our perception in that
era was that phytoplankton population dynamics
follow recurrent patterns of species occurrence each
year. Sustained observations and examination of
microfossils in the sedimentary record (e.g. Dale 2001)
have since revealed that communities and seasonal
patterns change, sometimes dramatically, and that
these shifts are coherent with annual variability and
interdecadal trends of climate change (McGowan et
al. 1998). During our decade of observation in San
Francisco Bay, some phytoplankton taxa (Prorocen-
trum aporum, Coscinodiscus marginatus, Protoperi-
dinium depressum, Eucampia zodiacus) apparently
disappeared after 1996 (Fig. 5G) while others (Pro-
toperidinum bipes, Pseudo-nitzschia delicatissima,
Scrippsiella trochoidea, Thalassiosira nodulolineata)
first appeared, and have occurred yearly, since
1997–1998 (Fig. 5H). The general timing of these
changes is coherent with a regime shift in the PDO and
large-scale changes in ocean temperature, regional
wind patterns, and biological communities across the
Pacific basin (Chavez et al. 2003). 

Manifestations of this shift included strengthening of
equatorward winds and surface currents, increased
abundances of cold-water species of copepods and
decreased abundances of warm-water species, and
altered distributions and abundance of euphausids in
the Eastern Pacific Boundary Current system after
1997–1998 (Swartzman & Hickey 2003). Simultaneous
species appearances and disappearances in San Fran-
cisco Bay suggest that climate-driven changes in
coastal plankton communities can propagate to induce
community change within estuaries. Estuarine com-
munities evolve continuously, driven by climatic trends
(Chiba & Saino 2002, McQuoid & Nordberg 2003,
Zingone & Wyatt 2004), but also global species trans-
locations (Hallegraeff & Bolch 1992) and disturbances
such as eutrophication (Anderson et al. 2002).

Ecological significance of phytoplankton functional
diversity

Phytoplankton photosynthesis is the primary energy
supply to metazoan food webs of San Francisco Bay
(Jassby et al. 1993, Sobczak et al. 2002) and other estu-
aries. The efficiency of energy transfer from phyto-
plankton to consumers and ultimate production at
upper trophic levels vary with algal species composi-
tion: diatom-dominated marine upwelling systems sus-
tain 50 times more fish biomass per unit of phyto-
plankton biomass than cyanobacteria-dominated lakes
(Brett & Müller-Navarra 1997). The nutritional quality
of algae varies with its elemental composition and
content of highly unsaturated fatty acids (HUFA), par-

ticularly eicosapentaenoic acid (EPA) and docosa-
hexaenoic acid (DHA). Growth and fecundity of in-
vertebrates are strongly correlated with the HUFA
content of their food (Brett & Müller-Navarra 1997),
and HUFA-rich diets are essential for development of
invertebrate and vertebrate larvae (Olsen 1999). The
17 top ranked species, contributing 89% to phyto-
plankton biomass in San Francisco Bay, comprise 12
diatoms, 2 dinoflagellates, 2 cryptophytes, and Meso-
dinium rubrum. Marine dinoflagellates are rich in
DHA, diatoms are rich in EPA (Olsen 1999), and cryp-
tophytes have high contents of both (Ravet et al. 2003),
so the phytoplankton in San Francisco Bay are of high
nutritional quality. This suggests the hypothesis that
trophic efficiency leading to production at upper
trophic levels is also high. Estuaries are rearing habi-
tats for shrimp, crabs, bivalves, demersal and pelagic
fishes, and this nursery function includes algal supply
of both energy and essential biochemicals. The high
nutritional quality of diatoms and dinoflagellates may
contribute to the generally higher efficiency of fish
production in estuarine–marine regions compared to
freshwater lakes (Nixon 1988).

This traditional view of efficient diatom-based food
webs has been challenged since discoveries that cope-
pods often select other food items (Kleppel 1993) and
have lower fecundity when fed diatom versus non-
diatom diets. This ‘diatom–copepod paradox’ (Ban et
al. 1997) is the conflicting high nutritional quality
yet potential toxicity of diatoms to consumers. Some
diatoms, including key species in San Francisco Bay
(Thalassiosira rotula, Skeletonema costatum, Chaeto-
ceros debilis, Ditylum brightwellii) synthesize alde-
hydes that block mitosis and arrest development of
invertebrate eggs (D’Ippolito et al. 2002). Although
there is uncertainty about the impairment of con-
sumers in natural environments (Colin & Dam 2002),
the prominence of these diatoms in San Francisco Bay
suggests that secondary production might be disrupted
by episodic blooms of key species that synthesize
cytotoxic biochemicals.

Pathways and efficiencies of energy transfer within
pelagic food webs vary also with phytoplankton cell
size and nutritional mode. Size is important because
many metazoan consumers, such as calanoid cope-
pods, cannot capture small particles, including the
nutritionally-rich nanoflagellates (Fenchel 1988). We
binned key phytoplankton species of San Francisco
Bay into 2 size classes (using 15 µm as the criterion
separating small and large algae; Rollwagen Bollens
& Penry 2003), and 3 nutritional modes (Fig. 7) distin-
guishing strict phototrophs and heterotrophic dino-
flagellates from mixotrophs capable of heterotrophic
nutrition through osmotrophy (Dinophysis spp., Prym-
nesiophytes) and ingestion of bacterial-sized particles
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(cryptophytes, Heterosigma spp., Prorocentrum spp.)
or small phototrophs (Gymnodinium spp., Oxyrrhis spp.).

Taxa within each bin fulfill distinct functions, in-
cluding a diverse array of feeding linkages that
cumulatively set the energy supply to metazoans. We
illustrate 5 trophic pathways (Fig. 7) leading from
phytoplankton primary production to production of
northern anchovy Engraulis mordax, the most abun-
dant fish species in San Francisco Bay. Anchovy larvae
feed on large dinoflagellates including Gymnodinium
(Akashiwo sanguineum), so they can function as pri-
mary consumers (Trophic Level 2) when they utilize
this pathway exclusively (Fig. 7A). Other pathways
lead to anchovy consumption of mesozooplankton such
as copepods, and the most direct is through cope-
pod predation on phototrophs, with selection for the
preferred species Mesodinium rubrum, flagellates,
Skeletonema costatum, Thalassiosira spp., and Coscino-
discus spp. (Rollwagen-Bollens & Penry 2003). This
pathway (Fig. 7B) places anchovies at Trophic Level 3,
and it dominates during the spring bloom when large-
cell primary production is high enough to support

maximum rates of copepod feeding and reproduction.
Heterotrophic dinoflagellates such as Protoperidinium
spp. compete with copepods for large algal cells (Olli &
Heiskanen 1999), and themselves are consumed by
copepods. The heterotrophic dinoflagellates introduce
an additional trophic linkage between phototrophs
and mesozooplankton (Fig. 7C), moving anchovies
to Trophic Level 4. Although the energy contained in
small algal cells is not directly accessible to adult cope-
pods, the mixotrophic algae function as intermediary
consumers to repackage a fraction of this energy into
accessible forms. The most direct pathway (Fig. 7D)
links picocyanobacteria (Synechococcus spp.) to small
mixotrophs (Plagioselmis spp., Teleaulax spp.), then
larger mixotrophs (Gymnodinium spp., Dinophysis spp.)
and copepods, placing anchovies at Trophic Level 5.
Longer pathways (Fig. 7E) to copepods, from bacteria
to mixotrophs such as Prorocentrum spp. and then to
heterotrophic dinoflagellates such as Polykrikos spp.
and Noctiluca spp., place anchovies at Trophic Level 6.
Assuming that the growth efficiency of protistans is
0.25 and that of metazoans is 0.1, potential anchovy
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Fig. 7. Phytoplankton classification by size (small cells <15 µm) and nutritional mode that influence pathways through which en-
ergy and essential biochemicals are supplied to benthic metazoans (e.g. bivalve mollusks) and pelagic metazoans (e.g. copepods
and anchovies). Trophic Pathway A is an efficient direct link from large-cell phototrophs to larval fishes. Other pathways route
energy through mesozooplankton: (B) directly from large-cell phototrophs, (C) from heterotrophic algae feeding on large-cell
phototrophs, or (D) from mixotrophs or (E) microheterotrophs deriving energy fixed by small-cell phototrophs and routed through 

the microbial loop. Some images redrawn from Tomas (1993, 1996)
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production can range from 10% of primary production
when based solely on consumption of phototrophic
dinoflagellates to only 0.016% of primary production
when based on the longest pathways (Fig. 7E). Neither
of these idealized pathways operates to the exclusion
of others, but this comparison illustrates how phyto-
plankton size and nutritional mode influence the eco-
logical efficiency of food webs supporting pelagic fish
production.

Phytoplankton size structure also influences energy
allocation between the competing benthic and pelagic
food webs because of differences in size-selective
feeding between benthic suspension feeders (e.g.
bivalve mollusks) and crustacean zooplankton (e.g.
calanoid copepods). Ciliary feeding provides bivalves
access to a broad size spectrum of food particles,
including the bacterial-sized picoplankton and small-
est eukaryotes (Wetz et al. 2002) that are inaccessible
to many pelagic crustaceans. Trophic linkages from
small-cell primary producers (species of Synecho-
coccus, Nannochloropsis, Pyramimonas, Plagioselmis,
Cyclotella) to benthic metazoans are direct and effi-
cient because no intermediary steps of transformation
(and associated respiratory loss) are required. The
stable biomass of picoplankton and small cryptophytes
provides a ubiquitous food resource to benthic inverte-
brates, whereas the size-selective copepods are more
dependent upon the episodic bursts of large-cell pro-
duction during blooms. Copepods utilize trophic path-
ways that are less efficient and less reliable than those
of bivalves, and this distinction partly explains why
benthic metabolism often exceeds pelagic metabolism
in shallow marine systems (Caffrey et al. 1998), benthic
macrofaunal biomass exceeds mesozooplankton bio-
mass (Baretta et al. 1988), and alien bivalves success-
fully compete with zooplankton for the phytoplankton
food resource, leading to dramatic declines of zooplank-
ton abundance following invasions by alien bivalves
(Orsi & Mecum 1996).

Resolution of Hutchinson’s paradox and a remaining
big challenge

The plankton diversity problem was originally con-
ceived as one of low dimensionality, whereby com-
munities were presumably assembled by competition
operating along a few resource gradients. Now we
conceive the problem as hyperdimensional, whereby
communities are assembled by selective forces operat-
ing on variation in algal size, motility, behavior, life
cycles, biochemical specializations, nutritional mode,
chemical and physiological tolerances, and dispersal
processes. Diversity is promoted by variability along
each of these dimensions. Four decades of discovery

and conceptual-model revisions have resulted in a
more complete and mechanistic understanding of why
phytoplankton diversity exceeds that predicted from
equilibrium resource-competition theory.

Resolution of Hutchinson’s (1961) plankton diversity
paradox has come from progress in understanding
phytoplankton community assembly at the level of
form, function and growth habitat: small versus large,
motile versus nonmotile, allochthonous versus auto-
chthonous, benthic versus pelagic taxa. This has not
yielded comparable advances in our knowledge of
community assembly at the level of species. Marine
ecologists understand, at least generally, why diatoms
dominate in turbulent nutrient-rich habitats, but not
why Thalassiosira rotula is the Rank 1 species in San
Francisco Bay or why toxic species are present but do
not form harmful blooms in this estuary, as they do in
others. The rules of phytoplankton community assem-
bly at the species level remain elusive, with 1 general
principle, that ‘the ultimate influences of species com-
position are precedent and stochasticity‘ (Reynolds
et al. 2000). The underlying processes will not be re-
vealed until we fill in details of the matrix of key species
and their repertoires of attributes on which the selec-
tive processes of community assembly operate, includ-
ing intraspecies genetic diversity (Zingone & Wyatt
2004). We know surprisingly little about the life cycles,
behavior, energetics, biochemical pathways, resource
requirements, susceptibility to pathogens, genetic vari-
ability and even growth rates of many key species such
as the ubiquitous and ecologically important crypto-
phytes. Our knowledge base is therefore insufficient
for constructing reliable numerical models of phyto-
plankton population dynamics at the species level, in
spite of our recognition that the functions provided by
the phytoplankton vary among species (Fig. 7).

Resolution of the species assembly puzzle demands
investment in a mode of scientific investigation ground-
ed in autecology, organism interactions and life history
that is perceived as unfundable or outmoded (Dale
2001, Smetacek et al. 2002). Until this investment is
made, our capacity to understand the mechanisms of
phytoplankton species dynamics, their ecological and
biogeochemical significance, and their variable pat-
terns between ecosystems will remain stifled (Verity &
Smetacek 1996, Reynolds 1998). Given the imperative
of forecasting ecological responses across the fast-
changing landscapes of the Earth system (Clark et al.
2001), species-level studies are required to build the
foundation for constructing models of pelagic commu-
nity responses under plausible scenarios of environ-
mental change through nutrient enrichment, introduc-
tions of alien species, hydrologic manipulations and
global warming. Resolution of Hutchinson’s paradox
is a source of intellectual satisfaction derived from
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progress in identifying the processes that assemble
communities at one level. The remaining big challenge
is to understand how these processes interact to as-
semble phytoplankton communities at the next, more
formidable, level of species.
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