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Aquatic ecosystems are increasingly stressed not only by

increased nutrient loads (eutrophication) but also by changing

forms and proportions of nutrients. Nutrient enrichment,

composition and stoichiometry interact with aquatic food web

dynamics in complex ways. Both algal species composition

and emergent properties within species change with changing

nutrient composition, in turn affecting food webs at all levels.

Consumers further regulate – and may even accelerate –

discrepancies in nutrient stoichiometry by various feedbacks,

release, and recycling pathways. Stoichiometric regulation of

aquatic ecosystem structure also occurs at the sediment

interface via altered biogeochemical processes and benthic

food webs when nutrient composition changes. Thus, multiple

feedbacks serve to alter food web structure when nutrient

loads are altered. Such feedbacks may also lead to conditions

conducive to invasive species and altered stable states as

illustrated for the San Francisco Bay Delta and the Rhine River.
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Introduction
Much has been written about the eutrophication of lakes,

estuaries and coasts ([1��,2,3] and references therein).

Anthropogenic activities have significantly altered nutri-

ent loads and their composition, in turn profoundly

affecting ecosystem health [4]. For example, well-docu-

mented effects of increased nutrient loads and eutrophi-

cation include loss of biodiversity, increased harmful algal

blooms, and development of dead zones [5,6]. Beyond

eutrophication, changes in nutrient loads are impacting

ecosystem dynamics in complex ways. Changes in nutri-

ent form (chemical state, oxidized vs reduced, organic vs

inorganic, dissolved vs particulate) and the proportion of

different elements (C, N, P, Si, etc.) have both proximal
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and ultimate effects on ecosystems (sensu [7]). The

stoichiometry (proportions) of nutrients, especially nitro-

gen (N) and phosphorus (P), in many aquatic systems is

changing as a result of both increasing nutrient loads

(often dominated by N) on the one hand, and manage-

ment efforts focused on single nutrient control (often P)

on the other. At the primary producer level, many of these

effects are well understood, framed largely in the con-

cepts of Leibig’s law of the minimum and Redfield

stoichiometry (reviewed by [8�,9,10�]). At the proximal

scale, here defined as the scale of growth of primary

producers, nutrient form and concentration affect the cell

physiological processes of uptake, assimilation, and those,

in turn, regulate the internal concentrations that regulate

growth (e.g. [11]). At the ultimate scale, the total load and

balance of nutrient elements have effects that propagate

through the food web, with the potential of transforming

ecosystems to new stable states. The regulation of food

web structure by nutrient stoichiometry is further con-

trolled by the various and complex feedbacks, release,

and recycling pathways that that are all fundamentally

constrained by nutrient load, form or stoichiometry. Just

as different elemental ratios may affect the composition

of the primary producers, different nutrient requirements

of higher trophic levels will have an impact on their ability

to thrive as community composition changes at the base.

The latter is the emphasis of this brief communication.

Stoichiometry, biotic feedbacks, and
biogeochemistry
An ecological stoichiometric approach is based on the

transfer of elements through the food web, not just the

flow of carbon (C) [12��]. Generally, homeostatic mech-

anisms keep the acquisition of materials and energy in

balance with the cellular growth demands of primary

producers and the general consistency of Redfield stoichi-

ometry in phytoplankton is corroborative (e.g. [10�]).
Ecological stoichiometry recognizes that at the base of

the food web, the elemental composition of the primary

producers is affected by nutrient composition whether

nutrients are limiting or not. While the total nutrient load

of the nutrient considered to be limiting for phytoplank-

ton production may control overall biomass, the compo-

sition, both in form of nutrients and the proportion of

different nutrient elements affects the composition of the

primary producers. When nutrient loads change in

amount, form or proportion, cellular adjustments in acqui-

sition efficiency lead to altered emergent properties such

as the proportions of ribosomes, enzyme activities, gene

regulation, cellular pigmentation complement, and
www.sciencedirect.com
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cellular elemental composition [12��]. These properties

have implications for competition and species success,

leading, eventually, to changes in species dominants and

biodiversity. In addition, properties such as lipid compo-

sition, toxin production, cell membrane thickness, and

other chemical constituents, which are also, at least partly,

functions of cellular elemental availability, can alter the

quality of food for consumers, in some cases turning

‘good’ food to ‘bad’ [13,14]. Production of toxins in algae,

for example, often occurs when nutrient stoichiometry is

not in classic (‘Redfield’) stoichiometric proportions

[14,15]. Toxic species can be harmful to higher trophic

levels, disrupting normal ecosystem function. The dom-

inance of such algae can result in a failure of normal

predator-prey interactions, which in turn enhances the

transfer of nutrients that sustain such species at the

expense of competing algal species [16–18].

While primary producers may be flexible to some degree

in their elemental composition [19��,20], heterotrophs are

typically far less flexible [10�,12��,21��]. The nutritional

quality of the food at the base of the food web affects all

aspects of the abilities of consumers to meet their nutri-

tional and reproductive demands. Nutrient stoichiometry

and food quality can have differential effects on consu-

mers depending on their life stage, for example, larval or

adult [22–25]. Larvae would be expected to have higher P

demands, for example, than adults, owing to their higher

growth rates [22]. Heterotrophs typically maintain a more

strict stoichiometry than phytoplankton through their

various excretion and release mechanisms [12��,26],

and the relationship between their biomass elemental

requirements and the proportion of those elements in

their food determines the extent to which they are a sink

or a source of N, P or C [12��,27]. In general, as one moves

up the food web, stoichiometric constraints on grazers

increase, as does the organismal requirement for P, owing

to fixed stoichiometry in body tissue, especially bone

[12��]. Heterotrophs thus can exert significant control

on the N and P available for primary producers [12��,28].

The biota thus modify the environment through nutrient

uptake and regeneration which differs from species to

species based on their elemental requirements and the

nutrient substrates available to them as dissolved nutri-

ents or as food. In addition to the biotic feedbacks and

regulatory controls whereby individual organisms main-

tain their stoichiometry under mass balance constraints, at

the ecosystem level, growth of different species also

modifies the physical and chemical environment through

alterations in physical habitat (e.g. turbidity, flow), light,

oxygen, pH, as well as substrate availability. These factors

can alter the pathways by which nutrients are released

from the sediment, or the rates by which they are trans-

formed in the sediment or water column by such pro-

cesses as nitrification, denitrification, anammox, or

dissimilatory nitrate reduction to ammonium (DNRA).
www.sciencedirect.com 
In eutrophic systems, increased algal productivity may

lead to depressed water column oxygen which may result

in increased recycling of N and P by changes in redox

potential, or pH [29��,30,31]. These fluxes can positively

reinforce an ecosystems’ degradation trajectory, as

suggested to be the case for the Chesapeake Bay [31].

By contrast, in systems with a reduced nutrient load,

lower algal abundance in the water column, higher light,

and higher redox potential may help to reinforce higher

rates of nitrification and denitrification, leading to nutri-

ent removal and potentially eutrophication reversal [31].

Biogeochemical pathways together with homeostatic con-

trol serve to provide the mechanism(s) whereby nutrient

dynamics support trophodynamic structure. Positive rein-

forcing feedbacks of biogeochemistry and homeostasis

shift ecosystems to new stable states; such shifts can be

gradual or abrupt and communities may not return to their

original state once the disturbance (in this case, altered

nutrient loads) is removed.

Altered ecological stoichiometry and associated ecologi-

cal feedback mechanisms may also help to explain the

potential for a system to support the growth of organisms

previously not found in an area, that is, biological inva-

sions. While changes in climate, land-use and other

factors have long been recognized to be related to a

system’s susceptibility for invasive species to thrive, so

too is the possibility that altered nutrient loads may make

an environment more suitable for species with different

nutritional requirements [29��]. Such a suggestion does

not negate the importance of external vectors bringing

invaders to a new area, but nutritional loads, and the

associated ecological feedbacks that may alter habitat,

adds a mechanism to explain why some shifts occur when

they do, and when and why particular species are success-

ful in new environments [29��].

Examples from comparative systems
Two estuarine examples illustrate the important feed-

backs between changes in nutrient loads and their stoichi-

ometry, biogeochemistry, food web structure and

potential for biological invasions. The San Francisco

Bay Delta, a heavily modified and anthropogenically

impacted estuarine system, has had major changes in

nutrient loads over the past several decades ([29��,32]

and references therein). In particular, increases over time

in the N:P ratio of the major nutrient loads have been

attributed, at least partly, to increases in wastewater N

and removal of P from laundry detergents [29��]. Coinci-

dent with, and related to, these changes are declines in

water column algal biomass (as chlorophyll a), a shift in

the dominant zooplankton species from the calanoid

Eurytemora affinis, to the invasive cyclopoid Limnoithona
tetraspina, as well as invasions of the Asiatic clam, Corbula
amurensis, the macrophyte, Egeria dense, and various

species of centrarchid fish [29��]. Egeria dense is thought

to do particularly well under increasing water column N:P
Current Opinion in Environmental Sustainability 2012, 4:272–277
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Conceptual depiction of the change over time in major nutrients, flow, dominant biogeochemical processes, and the food web of the San Francisco

Bay Delta illustrating how multiple feedbacks serve to alter food web structure when nutrient loads are altered. The first panel represents the period

from 1975 to �1982, when flow was low, and diatoms were the dominant phytoplankton, and the calanoid copepod Eurytemora was the dominant

copepod, and pelagic planktivorous fish were common. The second panel represents the period from �1982 to 1986 when flow was high, and NH4
+

was increasing. During this period the food web began to change. Under very low flow conditions, depicted by the third panel, and representing

�1987–1995, the NH4
+ load was high but PO4

3� began to decrease. The food web also began to change significantly, with changes in the dominant

phytoplankton and zooplankton, increasing abundance of macrophytes, increased importance of sediment nutrient processes, and increase in

piscivores. Finally, post 1995, NH4
+ loads remain high, while PO4

3� loads have decreased. Sediment biogeochemical processes are of increasing

importance in nutrient processing, macrophyte production is important and piscivorous fish have increased.Reproduced from Glibert et al. [29��] with

permission of the publisher.
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loads because it can access P through the sediments, and

can tolerate high N, especially in the form of NH4
+, in the

water column. It also serves as an ‘ecological engineer’,

decreasing nutrients through uptake, reducing turbidity

by trapping sediments, and providing refuge for zoo-

plankton and habitat for fish such as largemouth bass

[33]. More importantly from a chemical perspective, it is

able to use bicarbonate effectively though a well-devel-

oped carbon-concentrating mechanism (e.g. [34]). The

consequence is that it does not become C-limited even

under periods of high productivity, in turn elevating pH

on a diel basis in the surrounding water as it grows, in

some cases substantially. Once pH is elevated, the funda-

mental physical–chemical relationships related to P

adsorption–desorption in the sediment change, as does

N biogeochemistry [35,36]. Moreover, under increased

pH conditions, the biogeochemistry of calcification is

altered, increasing the potential for calcification and

the growth of calcifying organisms. The change in the

abundance of the clam C. amurensis from the time of its

introduction in the mid-1980s to 2005 has been shown to

be highly and positively correlated to the increase in total

N:total P (r2 = 0.46; n = 20; p < 0.01; all data log trans-

formed), and the average annual abundance of this

species has also been found to be highly and positively

correlated with mean annual average pH in the estuary

(r2 = 0.64; n = 19; p < 0.01; species abundance data log

transformed) [29��]. Thus, over time nutrient loading

changes, biogeochemical changes and foodweb changes

were intertwined (Figure 1).

The River Rhine presents a parallel example [37,38].

From 1977 to 2005, total P loads declined over 6-fold

owing to reductions in wastewater loading from municipal

and industrial facilities and the total N:total P ratio

increased 3-fold, in turn resulting in an 8-fold decline

in water column chlorophyll a [38]. Cumulative non-

indigenous species increased from �20 to >50 during

these years, a rate of accumulation higher than seen in any

year of record, dating back to 1825 [37]. Most of these

species were molluscs (22% of total) and crustacea (51%

of total); among the molluscs, the most abundant were the

clam Corbicula fluminea and the mussel Dreissena polymor-
pha (zebra mussel) [37]. The annual rate of change in

number of animal non-indigenous species and the rate of

change in the ratio of total N:total P in the water column

over this �30-year time period are highly and positively

correlated (r2 > 0.40; n = 28; p < 0.05). In addition, inva-

sive macrophytes, including E. dense, are increasingly

common in the Rhine [39], as they are in the San

Francisco Bay Delta.

While there are many vectors that may deliver non-

indigenous species to new areas, there is no question

that altered biogeochemical composition of the water

column, and the associated shifts in primary production

can set in motion a cascade of changes that facilitate the
www.sciencedirect.com 
success of new species. Thus, both the Rhine and the Bay

Delta had similar types of ecosystem changes following

changes in N:P stoichiometry: significant declines in

chlorophyll a, invasions of E. dense, bivalve clams, and

changes in crustacea. These examples illustrate that

when P is reduced relative to N, and when the system

production becomes more benthic in nature, new domi-

nants may emerge. In the case of filter-feeding molluscs,

they, in turn, may help to maintain the new water quality

condition by enhanced filtration of the water column.

Conclusions and implications
Nutrient stoichiometric control of ecosystem structure

and sustainability must be viewed within the context of

other factors in the environment, including the multiple

stressors that now impact systems, as well as the scale

(spatial, temporal and organismal; proximate or ultimate)

on which the system is being examined. Trophodynamics

and biogeochemical processes are fundamentally

coupled, but are also fundamentally constrained by the

availability and composition of elements relative to the

needs of the organisms. Ecological stoichiometry affects

ecosystems by setting elemental constraints on the

growth of organisms, with several important implications

for the health and sustainability of aquatic systems.

Stoichiometric imbalances may accelerate transform-

ations of nutrients or may alter the processes by which

nutrients are cycled in the ecosystem, further altering

nutrient availability or form for primary producers [28,40].

Food quality is linked to food web outcome via feedback

effects and nutrient biogeochemistry, key processes

determining biodiversity. Models of ecosystem function

based on classic nutrient or growth kinetic relationships,

or flow of single elements (i.e. C), are ill-suited to capture

the complexities of stoichiometric effects on ecosystems

[41]. Although far more complex than single currency

models, multiple currency models and ecological

stoichiometric concepts should be among the consider-

ations that should go into a new generation of ecosystem

models [11,29��,42�,43].

Ecological stoichiometry should be incorporated into our

thinking, management, and modeling of the dynamics of

nutrient-impacted systems. Imbalances in stoichiometry

may have impacts on ecosystems even at nutrient loads

normally taken to be saturating or supersaturating. The

effect of stoichiometric constraints has implications, for

example, on bioenergetics and all aspects of fish nutrition,

both from a basic ecological perspective as well as applied,

including aquaculture [21��,44]. Moreover, ecological

stoichiometry bears significantly on the debate of whether

aquatic ecosystem restoration efforts should focus on P

removal, N removal, or both (e.g. [45,46,47��] and refer-

ences therein). Single nutrient removal strategies drive

ecosystems into states of stoichiometric imbalance [29��].
Imbalances in stoichiometry may destabilize the dynamics

of consumers, shifting systems to new conditions. Single
Current Opinion in Environmental Sustainability 2012, 4:272–277
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nutrient removal strategies may have unintended con-

sequences for aquatic ecosystems.
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