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Abstract

Transport time scales such as flushing time and residence time are often used to explain variability in
phytoplankton biomass. In many cases, empirical data are consistent with a positive phytoplankton–transport time
relationship (i.e., phytoplankton biomass increases as transport time increases). However, negative relationships,
varying relationships, or no significant relationship may also be observed. We present a simple conceptual model, in
both mathematical and graphical form, to help explain why phytoplankton may have a range of relationships with
transport time, and we apply it to several real systems. The phytoplankton growth–loss balance determines whether
phytoplankton biomass increases with, decreases with, or is insensitive to transport time. If algal growth is faster
than loss (e.g., grazing, sedimentation), then phytoplankton biomass increases with increasing transport time. If loss
is faster than growth, phytoplankton biomass decreases with increasing transport time. If growth and loss are
approximately balanced, then phytoplankton biomass is relatively insensitive to transport time. In analyses of
several systems, portions of an individual system, or time periods, apparent insensitivity of phytoplankton biomass
to changes in transport time could arise due to the superposition of cases with different phytoplankton–transport
time relationships. Thus, in order to understand or predict responses of phytoplankton biomass to changes in
transport time, the relative rates of algal growth and loss must be known.

Aquatic scientists and resource managers commonly
invoke time for transport through a surface water body to
help explain variability in phytoplankton biomass, often
seeking empirical relationships between phytoplankton and
transport time scales such as flushing time and residence
time to characterize that variability. A positive phyto-
plankton–transport time (P–T) relationship suggests that as
transport time increases (or decreases), so does phyto-
plankton biomass or production. Observations consistent
with a positive P–T relationship are frequently made in
rivers and lakes (Søballe and Kimmel 1987; Reynolds 2000;
Allan and Benke 2005), floodplains (Schemel et al. 2004;
Ahearn et al. 2006), estuaries (Howarth et al. 2000; Jassby
2008), and lagoons (Torréton et al. 2007), and weak
flushing (long transport time) has been identified as a
condition favoring harmful algal blooms in aquatic systems
across the globe (Paerl and Huisman 2008). High flow
(short transport time) has thus been offered as an
explanation for low phytoplankton biomass and resistance
to eutrophication (Wetzel 2001; Caraco et al. 2006).
Despite the prevalence of positive P–T relationships in
nature, negative (Søballe and Bachmann 1984), spatially
variable (Søballe and Bachmann 1984; Paerl et al. 2006),
temporally variable (Alpine and Cloern 1992; Strayer et al.
2008), or non-monotonic (Walz and Welker 1998; Hein
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et al. 2003) relationships are also observed within and
across aquatic systems. In other cases, no significant
relationship may be detected (Basu and Pick 1996).

Here we address the question: Why is this broad range of
relationships observed between phytoplankton biomass
and transport time? We present a simple conceptual model
that includes parameters accounting for algal growth, loss,
and advective transport in a generic aquatic system.
Despite all of its simplifications and assumptions, the
conceptual model offers an explanation of why diverse P–T
relationships are observed within and across systems,
demonstrating that the relationship is determined by the
algal growth–loss balance. We further show how the
framework presented extends previous conceptual models
of phytoplankton regulation in surface waters.

Methods

Development of the conceptual model—The distribution
of suspended algal biomass undergoing growth, loss, and
transport in an idealized, advective, steady-state system can
be described by

B xð Þ~ Bout ~ Bin exp
mgrowth { mloss

u
x

� �
ð1Þ

B is algal biomass concentration (e.g., as mg chlorophyll a
[Chl a] L21 or cells L21), x is distance downstream from the
inlet, Bin is algal biomass concentration entering the system
at a defined upstream boundary (x 5 0), mgrowth (d21) is the
algal specific growth rate, mloss (d21) is the sum of specific
loss rates due to biological (e.g., pelagic and benthic
grazing, senescence, disease) and physical processes (e.g.,
sedimentation), and u is the characteristic velocity along the
primary flow direction in dimensions of length/time. Here
‘‘loss’’ is meant to include only biomass removal processes
operating between the upstream and downstream bound-
aries, not the loss of biomass from the system due to
downstream advection. Equation 1 was derived from a
time-varying one-dimensional partial differential equation
(PDE) for streamwise advection and first-order growth and
loss of phytoplankton.

The PDE on which Eq. 1 is based and its underlying
assumptions (uniformity of all properties across the flow
cross section, no longitudinal mixing, concentrations can
vary in the streamwise direction) are consistent with the
well-known ‘‘plug flow’’ model of chemical engineering
(Himmelblau and Bischoff 1968; Coulson and Richardson
1971; Perry et al. 1984). To obtain Eq. 1, it was further
assumed that at any point in space B does not vary in time
(i.e., hB/ht 5 0, ‘‘steady-state’’), and that geometry,
velocity, and growth–loss parameters are uniform and
constant. Constancy of u implies unidirectional flow. These
assumptions may be best satisfied in shallow, narrow,
rapidly flowing channel environments. The resulting
relationship shown in Eq. 1 is identical to steady-state plug
flow relationships derived for chemical reactors (Himmel-
blau and Bischoff 1968) and similar to expressions
previously used in aquatic ecology to describe relationships
between phytoplankton biomass concentration, benthic
grazing and settling (Coughlan 1969; Søballe and Bach-

mann 1984), and algal growth (de Ruyter van Steveninck et
al. 1992; Walz and Welker 1998; Reynolds 2000).

Physical and biological process rates were converted into
time scales, which places them in a single, comparable
currency. The relationship described by Eq. 1 can be
represented as a function of three key time scales: ttran

(the time scale for transport of water and algae through the
system), tgrowth (the time scale for algal growth), and tloss (the
time scale for combined algal losses). Such time scales
represent the inverses of rates, are positive numbers, and are
often expressed in units of days. For the idealized plug flow
system considered here, ttran 5 x/u, the time for a water
parcel to travel through a domain of length x. tloss is the
reciprocal of the sum of specific loss rates (mloss). Here, we
define mloss to include, depending on data availability, the
zooplankton grazing rate mzp (d21), the depth-averaged
effect of grazing by benthic filter feeders expressed as
benthic grazing rate BG (m3 m22 d21) divided by water
column height H (m), and the algal sedimentation rate
expressed as sinking speed Ws (m d21) divided by H. Other
loss processes such as senescence and death by parasitism
and disease (Suttle 2005; Kagami et al. 2007) could also be
incorporated into mloss. We estimate tgrowth as the reciprocal
of mgrowth, taken as a depth-averaged net growth rate (i.e.,
proportional to photosynthesis minus respiration); it
would, however, be acceptable to use gross growth rate
and incorporate respiration losses into tloss, especially if net
growth were negative. Substituting the time scales for
transport, growth, and loss into Eq. 1, the conceptual
model equation expressed in terms of our three time scales
is obtained:

Bout ~ Bin exp
ttran

tgrowth

{
ttran

tloss

 !
ð2Þ

Transformation of Eq. 1 (a function of x) to the
equivalent form expressed in terms of time scales (Eq. 2)
implicitly converts the relationship from an Eulerian (‘‘field
description’’) perspective to a Lagrangian (‘‘particle-
following’’) perspective (cf. Kundu 1990; Munson et al.
1990). The role of ttran here is to characterize the time for a
water parcel to travel through a defined region (i.e., a
‘‘transit time’’), thus relating the time phytoplankton
within the parcel are exposed to that region’s growth–loss
conditions. The simple expression ttran 5 x/u (or equiva-
lently volume/flow) may represent well the time of transit
for strongly advective systems with unidirectional flow
(e.g., rivers), but may not accurately characterize transit
time in other (e.g., horizontally inhomogeneous, geomet-
rically complex, strongly tidal, or dispersive) systems that
deviate substantially from the plug flow model assump-
tions. A true time of transit for water parcels from a
specified inlet to a specified outlet in such systems may not
be easily estimated.

The shorter the time scale, the faster and therefore more
dominant the process. Ratios of time scales represent the
relative speed or dominance of two processes. For example,
the dimensionless ratio t �loss 5 tloss : tgrowth is less than unity
when the time scale for losses is shorter than the time scale
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for growth. In other words, losses are collectively more
rapid than growth. t �loss is greater than unity when the time
scale for losses is longer than the time scale for growth, i.e.,
when growth is more rapid than losses. Similarly, the ratio
t �tran 5 ttran : tgrowth is less than unity when transport
through the system is faster than growth, but greater than
unity when growth is faster than transport.

Combining many variables into dimensionless ratios can
help one express a mathematical relationship in terms of
fewer variables (Munson et al. 1990). If Eq. 2 is divided by
Bin and the right-hand side is expressed in terms of the two
time scale ratios above, a dimensionless expression for algal
biomass in our generic system is obtained:

B�out ~
Bout

Bin

~ exp 1 {
1

t�loss

� �
t�tran

� �
ð3Þ

Equation 3 describes B �out, a nondimensional number
representing the algal biomass concentration at some
downstream domain boundary or outlet (location x)
normalized by the biomass concentration at the upstream
boundary or inlet (x 5 0). From a Lagrangian perspective,
B �out represents the relative change in biomass concentra-
tion within a water parcel as it travels through the domain
over time ttran. From an Eulerian perspective, B �out

represents the steady-state ratio of biomass export from
the domain to biomass import to the domain. If B �out 5 1,
the biomass concentrations at the inlet and outlet are the
same; if B �out , 1, then biomass at the outlet is less than
biomass at the inlet; and if B �out . 1, biomass at the outlet is
greater than biomass at the inlet.

In Fig. 1, we present contours of B �out calculated from
Eq. 3 as a function of t �loss and t �tran, both over the range
0.1–100. This range corresponds to reasonable ranges of
ttran, tloss, and tgrowth for aquatic systems (Strayer et al.
1999; see also Web Appendix 1, www.aslo.org/lo/toc/
vol_54/issue_1/0381a1.pdf). The sensitivity of algal biomass
to transport time is revealed by whether contours are
crossed as the plot is traversed horizontally (i.e., as
dimensionless transport time changes).

Interpretation of the conceptual model—Examination of
the dimensionless expression above (Eq. 3) and its graph-
ical representation in Fig. 1 reveals a range of relationships
between algal growth, loss, transport, and biomass. If t �loss
5 1 (growth and loss are equally fast), then the expression
within the parentheses in Eq. 3 is zero, making B �out 5 1,
regardless of the value of t �tran. In other words, if losses
balance growth, algal biomass does not change as it is
transported through the system and transport time does
not affect algal biomass concentration. This regime is
represented by the horizontal B �out 5 1 contour located at
t �loss 5 1 in Fig. 1. In this part of the plot, B �out contours are
not crossed as the plot is traversed horizontally; therefore,
B �out does not change as dimensionless transport time, t �tran,
changes. Thus, if growth and losses are equal, then there is
no relationship between phytoplankton biomass and
transport time.

If t �loss . 1 (growth dominates losses), then the
expression within the parentheses in Eq. 3 is positive,
making B �out . 1; in this case, if t �tran increases, then B �out
increases. Thus, biomass is enhanced during travel through
the system, and downstream biomass increases with
transport time. This regime is represented by the portion
of the plot above the horizontal t �loss 5 1 line in Fig. 1.
Here, all contours of B �out are greater than 1, and increasing
contours are crossed as the plot is traversed toward the
right, in the direction of increasing t �tran. Therefore, if
growth is faster than losses, then an increased transport
time will amplify net biomass growth. This case represents
the positive P–T relationship.

When losses dominate growth (t �loss , 1), then the
expression within the parentheses in Eq. 3 is negative; B �out
is less than unity and decreases if t �tran increases. Biomass is
thus diminished during transit and downstream biomass
decreases with increasing transport time. This regime
corresponds to the portion of the plot below the horizontal
t �loss 5 1 line, where all contours of B �out are less than 1.
Decreasing contour values are crossed as the plot is
traversed toward the right. Therefore, if losses are
collectively faster than growth, then an increased transport
time amplifies net biomass loss. This case represents the
negative P–T relationship.

It is also evident from Eq. 3 that as t �tran approaches
zero, the term in parentheses approaches zero and B �out

approaches unity. Thus, as transport becomes very fast,
algal biomass concentration within a water parcel barely
changes as it moves through the system. This case
corresponds to the far left side of Fig. 1, where t �tran is
small and, regardless of t �loss, B �out contours are not
significantly different from 1. This fast transport case

Fig. 1. Contours of B �out, the ratio of downstream (outgoing) to
upstream (incoming) algal biomass, as a function of t �loss (time scale
for algal loss normalized by the time scale for algal growth) and t �tran

(time scale for transport normalized by the time scale for
algal growth).
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signifies the decreasing importance of growth and loss
processes as transport becomes more rapid, i.e., the faster
algal biomass is transported through an environment, the
less opportunity the biomass has to be modified by growth
or loss.

To summarize, the primary lessons from the idealized
conceptual model (Eq. 3; Fig. 1) are as follows: (1) The
relative rates of growth and loss, not transport time,
determine the sign of phytoplankton biomass change (i.e.,
increase or decrease) within an aquatic system. (2)
Transport time modulates the relative magnitude of
biomass increase or decrease during transport over a given
distance x; therefore, an increased transport time can
enhance accumulation or depletion of algal biomass,
depending on the growth–loss balance. (3) If growth is
balanced by losses, then transport time has no effect on
biomass. (4) Through its modulating role, transport time is
related to downstream algal biomass concentration relative
to the upstream concentration (i.e., Bout : Bin), not to the
absolute magnitude of downstream biomass (Bout).

Results

The P–T relationship varies between systems—From the
conceptual model and lessons discussed above, it is evident
that there are three possible relationships between phyto-
plankton biomass and transport time: positive, negative,
and none (i.e., zero slope in a regression of biomass against
transport time). The sign of the relationship depends on the
growth–loss balance, as represented by t �loss. Real aquatic
systems display the full range of t �loss and thus of P–T
relationships (see Table 1). For example, values of t �loss for
the upper Rhine in May (weak benthic grazing) and
September (stronger benthic grazing) 1990 are estimated to
have been 7 and 2, respectively; this scaling places that
system in the upper portion of Fig. 1, where an increase in
transport time causes an increase in downstream biomass
(see Web Appendix 1 for details and data sources for all
real-system calculations). t �loss for the Merced River,
California, during summer 2003 is estimated to have been
about 0.9, which places that system near the horizontal t �loss
5 1 line in Fig. 1, where algal growth and loss are roughly
in balance and, consequently, phytoplankton biomass is

relatively insensitive to changes in transport time. In 1981,
after dense colonization by the freshwater clam Corbicula
fluminea, t �loss in the freshwater tidal Potomac River is
estimated to have been 0.4, placing that system in the lower
portion of Fig. 1, where an increase in transport time
causes a decrease in downstream biomass and B �out. This
range of t �loss observed in nature suggests that a consistent
P–T relationship (or even sign) should not be expected
among systems.

The possibility of different, even opposite, P–T relation-
ships can explain why in some cases no relationship is
detected. The conceptual model suggests that when
searching for a single P–T relationship among systems,
one must first consider whether those systems may be
growth-dominated (t �loss . 1) or loss-dominated (t �loss , 1).
If the growth–loss balance is not considered, then multiple,
superimposed P–T relationships may be collectively dis-
guised as ‘‘no relationship.’’ For example, Basu and Pick
(1996; see their table 1) surveyed phytoplankton biomass
(as Chl a), total zooplankton biomass (TZ), total phos-
phorus (TP), total nitrogen (TN), and transport time (as
‘‘age’’) in an extensive study of 31 Canadian rivers (the
‘‘age’’ of a water parcel is the time that has elapsed since it
entered the water body; Bolin and Rodhe 1973; Zimmer-
man 1976). Basu and Pick (1996) concluded that there was
no statistically significant relationship between algal
biomass and transport time (r2 5 0.03; see Fig. 2A). If
their data are subdivided based on possible t �loss , 1, t �loss .
1, and t �loss 5 1 regimes, significant relationships appear.

We plotted Chl a vs. age for the subset of Basu and
Pick’s (1996) rivers most likely to be loss-dominated, i.e.,
rivers with the highest reported TZ (TZ . 9 mg L21).
Zooplankton grazing rate is proportional to zooplankton
biomass (Cloern 2007); therefore, of the total data set, these
six rivers appear the most likely, based on the available
data, to have losses that dominate growth (t �loss , 1). A
significant negative relationship exists between Chl a and
age for these cases, consistent with the conceptual model
for t �loss , 1 (Fig. 2B; r2 5 0.69, p , .05, n 5 6; regression
performed on log-transformed data). The TZ threshold of
9 mg L21 is used here because it maximizes the Chl a–age
correlation for ‘‘high’’-TZ systems and is statistically
significant. Negative relationships were evident with other

Table 1. Time scales, ratios, and observed and predicted B �out for nine cases in six aquatic systems. tloss is the time scale for algal loss;
ttran is the transport time scale; and tgrowth is the time scale for algal growth. t �loss and t �tran are the dimensionless loss and transport time
scales, each normalized by tgrowth. B �out is the ratio of outgoing (downstream) algal biomass to incoming (upstream) algal biomass;
observed B �out is based on measurements of streamwise biomass gradients, and predicted B �out is calculated using Eq. 3. Calculation details
and data sources are provided in Web Appendix 1.

System tloss (d) ttran (d) tgrowth (d) t �loss t �tran Observed B �out Predicted B �out

Merced River 0.97 1.2 1.1 0.92 1.2 1.1 0.90
Krumme Spree 1.6 1.1 2.2 0.75 0.52 0.32 0.84
Rhine, May 1990 18 1.0 2.6 6.9 0.38 2 1.4
Rhine, Sep 1990 5.3 1.3 2.2 2.4 0.59 2 1.4
Hudson, 1991 50 35 24 2.1 1.5 4.7 2.1
Hudson, 1993 3 31 5 0.60 6.2 1.3 0.02
Mildred Island 4.2 4.8 3.1 1.4 1.5 4.4 1.5
Potomac, Sep 1979 16 3 7.1 2.3 0.42 1.1 1.3
Potomac, Jul 1981 3 3 7.1 0.42 0.42 0.72 0.56
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TZ thresholds, but the variability accounted for by the
regression decreased substantially with lower TZ cutoffs (r2

5 0.44 and 0.41 for cutoff TZ values of 2 and 3 mg L21,
respectively). Our interpretation is that as the ‘‘high’’-TZ
subset of rivers is restricted to higher zooplankton biomass,
it becomes more distinctly loss-dominated (i.e., t �loss
becomes smaller), displaying a stronger negative P–T
relationship.

For the remainder of the rivers (those with TZ ,
9 mg L21), a plot of Chl a vs. age reveals two more distinct
relationships. Basu and Pick (1996) showed that Chl a was
significantly correlated with TP (R2 5 0.76, p , 0.001)
across their entire data set and argued, based on TN : TP
ratios, that P must be the limiting nutrient. We therefore
split this subset of rivers using the guideline of 25 mg L21

suggested by Dodds et al. (1998) as the oligotrophic–
mesotrophic TP boundary for streams. We found that a
significant positive Chl a–age relationship exists for all but
one of the rivers in the low-TZ subset with TP greater than

25 mg L21 (Fig. 2C, filled circles; r2 5 0.82, p , 0.05, n 5 6;
regression performed on log-transformed data). It appears
likely that phytoplankton in these rivers with high TP and
low TZ were not significantly nutrient-limited and thus had
large growth rates and values of t �loss greater than 1. The
positive Chl a–age relationship for these six rivers supports
this idea and is consistent with the conceptual model for
t �loss . 1. The single river with high TP and low TZ that
deviated from the positive P–T relationship (the Grand
River, denoted by *D in Fig. 2C,D) has one of the highest
biodiversities of freshwater bivalves in Ontario (Metcalfe-
Smith et al. 2000). Based on the data available, estimation
of benthic grazing losses for this river was not possible.
However, given the much lower Chl a measured for this
river relative to that predicted from the positive empirical
P–T relationship in Fig. 2C and the transport time
provided by Basu and Pick (1996), we hypothesize that
some significant loss term not accounted for here (e.g.,
benthic grazing) is responsible for the Grand River’s

Fig. 2. Data from 31 Canadian rivers previously published by Basu and Pick (1996; see their table 1). Chlorophyll a vs. water age for
(A) all 31 rivers, with no significant relationship between Chl a and age, (B) the subset of rivers with total zooplankton biomass (TZ)
above 9 mg L21 and with a significant negative relationship between Chl a and age, and (C) the subset of rivers with TZ below 9 mg L21

and with two evident relationships: a positive Chl a–age relationship (filled circles) and a level response of Chl a to age (open triangles). In
(D), total phosphorus (TP) vs. TZ for all 31 rivers with symbols coded for positive, negative, and no relationship between Chl a and age;
symbols are consistent with (B) and (C). *D indicates the Grand River.
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deviation from the relationship describing the other rivers
with high TP and low TZ.

Chl a in the remainder of the low-TZ rivers showed no
sensitivity to age (r2 5 0.02; Fig. 2C, triangles). Based on
the data available, we could not estimate tloss or tgrowth for
this or the other subsets of the Basu and Pick (1996) data
set. However, given that neither TZ nor TP were
particularly high in this subset (except for the Grand
River, discussed above) and that Chl a had no sensitivity to
age, we hypothesize that for these rivers growth and losses
were approximately balanced (t �loss < 1). Therefore,
although the Chl a–age relationship for this subset is not
statistically significant, it is nonetheless meaningful, as we
suggest that it arises for a mechanistically understandable
reason: growth of algal biomass approximately equaled
losses within these rivers.

Figure 2D summarizes graphically how the Chl a–age
relationship for Basu and Pick’s (1996) 31 rivers is tied to
TZ (an apparent surrogate for algal loss) and TP (an
apparent surrogate for algal growth). For 30 out of 31
rivers, TZ and TP provide delineations between regimes for
which Chl a increases with, decreases with, and has no
sensitivity to age. One cannot expect TZ and TP to
delineate these regimes for all aquatic systems, because in
other systems other factors may limit or suppress algal
growth rate (e.g., other nutrients, turbidity) or dominate
losses (e.g., benthic grazing, sedimentation). However, we
do expect consideration of the growth–loss balance to help
explain the relationship—or relationships—between phy-
toplankton biomass and transport time for other aquatic
systems.

Equations 1–3 suggest that it is not the absolute
magnitude of downstream algal biomass, but rather that
magnitude normalized by an upstream biomass, that is
related to growth, loss, and transport time. Therefore,
according to the conceptual model, measurement of the
streamwise biomass gradient is required if a relationship is
sought between algal biomass and transport time. Howev-
er, despite the lack of chlorophyll gradient information, the
Basu and Pick (1996) data appear to represent strong
relationships between un-normalized biomass (Bout) and
transport time. We hypothesize that the applicability of the
conceptual model to un-normalized biomass stems from
Basu and Pick’s (1996) use of water ‘‘age’’ for transport
time; age was calculated based on the watershed area and
represents the entire time the water has been in the river
system. Suspended algal biomass is generally small at the
source of a river (Hilton et al. 2006), so upstream biomass
concentration (Bin) may not have varied significantly
between the rivers studied. We would not expect this
situation to necessarily apply in other systems, whose
incoming concentrations could vary significantly.

The P–T relationship varies temporally within systems—
Just as the growth–loss balance (and P–T relationship) may
vary between aquatic systems, that balance can also change
over time within an individual system. For example, in the
South San Francisco Bay (Thompson et al. 2008) and the
Moselle River (Descy et al. 2003), benthic grazing rates
have been observed to change significantly over seasonal

scales, potentially causing seasonal shifts between t �loss , 1
and t �loss . 1 states. Seasonal shifts in t �loss can also be
driven by changes in solar insolation and nutrient
availability. Long-term state changes in algal loss rates
and thus t �loss may result from invasions by nonindigenous
species. For example, we estimate that increased densities
of the freshwater clam C. fluminea in the Potomac caused a
switch from a growth-dominated t �loss 5 2.3 for September
1979 to a loss-dominated t �loss 5 0.42 in July 1981 (see
Table 1 and Web Appendix 1 for calculation details and
data sources). Alpine and Cloern (1992) recognized that in
northern San Francisco Bay there was one negative Chl a–
flow relationship (analogous to a positive P–T relationship)
when grazers were scarce, but a different regime, charac-
terized by consistently low Chl a, following the invasion of
the clam Corbula amurensis. Similarly, Strayer et al. (2008)
observed a shift in the slope of the Hudson’s chlorophyll–
flow relationship after the zebra mussel invaded; extensive
study of this estuary has shown that variations in loss terms
might alter the relationship between phytoplankton and
flow or transport time (Caraco et al. 2006; Cole and Caraco
2006; Strayer et al. 2008). Thus, although it may be possible
for some systems to predominantly inhabit one portion of
Fig. 1, thus displaying a single persistent relationship
between phytoplankton biomass concentration and trans-
port time, others may shift between the upper, middle or
lower portions, thereby potentially switching between
regimes with different P–T relationships. For an individual
system that shifts between loss-dominated, growth-domi-
nated, or balanced regimes, the search for a single P–T
relationship could be confounded by the existence of two or
three relationships masquerading collectively as ‘‘no
relationship.’’

Can the conceptual model equation predict algal bio-
mass?—Estimating B �out may be useful for projecting the
possible effects of changes in ecosystem parameters
controlling algal growth, loss, or transport. To explore
the quantitative applicability of the conceptual model
equation for estimating biomass in some real systems, we
used Eq. 3 to calculate predicted B �out (based on process
time scales estimated from published measurements or
models) for comparison with observed B �out (calculated
from observed streamwise algal biomass gradients; see Web
Appendix 1 for calculation details and data sources and
Table 1 for calculation summary). In many cases, predicted
B �out corresponded well with observed B �out (i.e., within a
factor of 2). This was the case for the Rhine in May 1990
and September 1990, the Merced River in summer 2003,
and the Potomac in September 1979 and July 1981. We
emphasize that because the conceptual model describes
relative change in algal biomass during transit, observation
of the biomass gradient along the primary flow path is
required in order to strictly compare conceptual model
biomass predictions with real-system measurements, as we
did here.

Although we did not expect the conceptual model to
quantitatively predict algal biomass in surface water
systems severely violating the basic underlying assumptions
(e.g., plug flow, constancy and longitudinal uniformity of
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physical and biological conditions), we tested it in such
cases to reveal sensitivity of the conceptual model to
the assumptions. Two such cases are the summertime tidal
freshwater Hudson and the freshwater tidal lake Mildred
Island, California. Compared to the Rhine, Merced, and
Potomac, correspondence between observed and predict-
ed B �out was not as good for the Hudson pre–zebra mussel
and post–zebra mussel, or for Mildred Island (Table 1).

We believe the lack of coherence between predicted and
observed B �out for these two systems stems from violations
of several of the conceptual model’s underlying assump-
tions. Longitudinal tidal dispersion is significant at Mildred
Island due to the combination of strong tidal currents and
complex geometry (Lucas et al. 2002), thus violating a key
plug flow assumption. Given the Hudson’s large tidal
excursion and large ratio of tidal to river-associated
velocity (Geyer and Chant 2006), it is possible that
significant tidally generated longitudinal mixing occurred
there as well. These systems also violated the plug flow
assumption of cross-sectional homogeneity, due to diel
density stratification (Baek 2006; Lucas et al. 2006) and
lateral hydrodynamic variability (Monsen et al. 2002) in
Mildred Island and, in the Hudson, lateral bathymetric
heterogeneity, which may be related to cross-stream
variations in algal growth (Cole et al. 1992) and benthic
grazing rates (Strayer et al. 1996). Oscillatory tidal currents
(Geyer and Chant 2006; Lucas et al. 2006), strong
longitudinal growth–loss gradients (Cole et al. 1992;
Strayer et al. 1996; Lopez et al. 2006), and tributary inlets
(Caraco et al. 1997) in these systems underlay divergence
from our other assumptions, namely constancy and
longitudinal uniformity of physical and biological param-
eters. Moreover, true transit times were not available for
the strongly tidal Hudson or Mildred Island, so we used
flushing times (see Web Appendix 1), which are intended as
integrative measures of an embayment’s general exchange
characteristics (Monsen et al. 2002) but which may not
effectively characterize transit time through regions with
complex, oscillatory, tidal flows.

The Krumme Spree is one more system for which the
conceptual model did not predict algal biomass well. We
hypothesize that errors for this system are related to spatial,
temporal, and methodological mismatches between sepa-
rate, previously published data sets that were not collected
for this purpose, but which we patched together to represent
this system (see Web Appendix 1). Aside from Mildred
Island, whose prediction errors likely stem from assumption
violations (see above), the systems with the most internally
consistent data sets (i.e., Potomac, Rhine, Merced) repre-
sented the greatest model–measurement coherence.

Although we did not find adequate data to apply the
conceptual model to a lake or reservoir, we do expect it to
apply to these systems if underlying assumptions are
reasonably met. The lessons discussed herein are in fact
consistent with observations in lakes and reservoirs where
the increase or decrease of phytoplankton biomass with
transport time appears related to the dominance of growth
or loss terms, respectively (Søballe and Bachmann 1984;
Walz and Welker 1998).

Discussion

Control of phytoplankton biomass—Up to this point, the
conceptual model plot (Fig. 1) has been used to elucidate
the sensitivity of phytoplankton biomass to changes in
transport time, with sensitivity indicated by whether (and
which) contours of B �out are crossed when moving
horizontally across the plot. The conceptual model plot
can also help clarify regimes of control, if a controlling
process is defined as the fastest process operating on the
phytoplankton.

Time scales (or, inversely, process rates) have previously
been used to elucidate control of phytoplankton dynamics
in aquatic systems. For example, the growth–loss relation-
ship, sometimes expressed as a ‘‘filtration pressure’’ (Smaal
and Prins 1993) or as a ratio of growth and grazing rates or
time scales, has been emphasized as an important
parameter in determining whether the filter feeding benthos
can control the phytoplankton (Officer et al. 1982; Koseff
et al. 1993; Cahoon and Owen 1996). The relative time
scales for transport and grazing have also been cited as
important in determining benthos control regimes (Hily
1991; Dame 1996; Strayer et al. 1999).

Strayer et al. (1999, see their fig. 1) described three
domains of phytoplankton biomass control in a two-
dimensional parameter space defined by hydrologic resi-

Fig. 3. Reprise of Fig. 1 with superimposed shaded areas
describing regimes in the t �loss–t �tran space where: (A) losses control
phytoplankton biomass, which is potentially very low due to
depletion during transit (darkest shading), (B) transport controls
phytoplankton biomass and biomass does not change significantly
while inside the system boundaries (moderate shading), and (C)
neither losses nor transport control phytoplankton biomass,
which is potentially very large because growth is the fastest
process (lightest shading). As in Fig. 1, contours represent B �out,
the ratio of downstream to upstream algal biomass. This
nondimensional plot extends the schematic of Strayer et al. (1999).

Reviews in L&O 387

http://www.aslo.org/lo/toc/vol_54/issue_1/0381a1.pdf
http://www.aslo.org/lo/toc/vol_54/issue_1/0381a1.pdf


dence time (an example of a transport time) on the
horizontal axis and bivalve clearance time (a potentially
major component of tloss) on the vertical axis. Those
authors acknowledged that the boundaries between do-
mains will vary, depending on phytoplankton growth rates.
With a setup similar to that of Strayer et al. (1999) but with
transport and loss time scales normalized by the growth
time scale, our conceptual model plot shows that those
control domain boundaries are defined by t �loss 5 1, t �tran

5 1, and t �loss 5 t �tran (Fig. 3). The distribution of B �out,
our metric indicating the ultimate effect of the combined
processes, is consistent with the domains described by
Strayer et al. (1999). In the lower Region A, tloss is less
than ttran and tgrowth, and losses are therefore dominant in
regulating phytoplankton; B �out is low due to net
depletion of algal biomass during transport through the
system. In the left Region B, ttran is less than tloss and
tgrowth, and transport therefore dominates in regulating
phytoplankton; B �out is not extremely different from 1 due
to the rapid transport and lack of opportunity for
phytoplankton to react substantially to growth or loss.
In the upper right Region C, tgrowth is less than tloss and
ttran, and growth is therefore the fastest process; B �out is
potentially large due to positive net accumulation of algal
biomass during transport through the system. Thus, by
incorporating algal growth and potentially any loss term,
the time scale ratios and metric quantity B �out used in this
paper help to extend and generalize the conceptual model
of phytoplankton regulation presented by Strayer et al.
(1999).

Extending the conceptual model—It has been shown that
different phytoplankton taxonomic groups (e.g., cyanobac-
teria, diatoms) may respond differently to changes in
transport time (Paerl et al. 2006). Thus, in addition to
explaining variability in total phytoplankton biomass, the
conceptual model presented here may also be applied to
explore variability among groups with different growth
rates, sedimentation rates, and susceptibilities to grazing.
Equations 1–3 could also be applied to other reactive,
waterborne constituents (e.g., nutrients, contaminants,
sediment, or zooplankton) if the major growth and loss
processes are estimable in terms of first-order process rates.
The conceptual model may serve as a useful tool for
exploring phytoplankton dynamics in offshore, near-
surface environments in which an advected water parcel
may be characterized by limited exchange with adjacent
parcels, be tracked through space as a Lagrangian particle,
and remain vertically and horizontally well mixed. The
same general set of processes affect phytoplankton biomass
change in the well-mixed surface layers of deeper marine
environments as in the shallower inland environments
discussed herein, i.e., growth and loss processes, with
benthic grazing and sedimentation losses to the bed for
shallower systems replaced by sinking losses through the
base of the mixed layer for deeper oceanic systems. Further,
the conceptual model provides a basic framework for
designing field studies that characterize the full set of
processes (growth, loss, and transport) and appropriate
measures of system response (i.e., streamwise biomass

gradients) for understanding variability in water quality or
suspended biota.

As noted above, fundamental assumptions of the simple
conceptual model included invariance of physical and
biological parameters in space and time. For a real aquatic
system characterized by significant longitudinal or tempo-
ral variability, the conceptual model may be applied
separately to portions of the system or time periods with
distinct and relatively uniform physical–biological proper-
ties. For example, if measurements suggested that algal
growth rate within a system differed substantially between
early and late bloom periods due to self-shading or the
development of nutrient limitation, then each of those
periods could be treated separately as pseudo–steady state
periods. In systems that experience strong seasonal (or
spatial) shifts in the abundance of grazers, low-grazing and
high-grazing periods (or regions) could be treated sepa-
rately. Errors associated with dilution or biomass addi-
tion by tributaries could be avoided by applying the
conceptual model individually to reaches separated by
tributaries.

If data were available to characterize spatial variability
of algal growth and/or loss rates as integrable (e.g., linear)
functions of downstream distance x, then a more general
form of the conceptual model equation would be

B�out ~ exp 1=u½ �
ðx

0

mgrowth jð Þ{ mloss jð Þ

 �

dj

� �

where all assumptions are as before except for the
permitted longitudinal variability of growth and loss (j is
a dummy variable of integration). This form could be
applied, for example, in systems where streamwise varia-
tions in grazing rates are associated with spatial gradients
in substrate for epibenthic or encrusting benthic grazers
(e.g., due to the presence of manmade structures). For cases
where longitudinal dispersion is significant, it may be
possible to implement established analytical expressions
that account for that process (Himmelblau and Bischoff
1968). Reynolds and Descy (1996) described equations
similar to our Eq. 1 that add the effect of long transport
time ‘‘dead zones’’ on downstream algal concentrations
within rivers.

In conclusion, we have presented a conceptual model
(Eqs. 1–3; Fig. 1) of phytoplankton biomass as it advects
through an aquatic system with interior algal biomass
growth and loss processes. Albeit highly idealized, the
conceptual model helps clarify and delineate the range of
possible relationships between phytoplankton biomass and
transport time. Transport time does not determine whether
phytoplankton biomass increases or decreases—the
growth–loss balance (represented by t �loss) does. If growth
is faster than loss, then phytoplankton biomass increases
with transport time. If loss is faster than growth, then
phytoplankton biomass decreases as transport time in-
creases. As growth and loss rates approach each other,
phytoplankton biomass sensitivity to transport time
diminishes. t �loss may vary between aquatic systems and
spatially or temporally within individual systems. For that
reason, in analyses of several systems, portions of an
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individual system, or time periods, phytoplankton biomass
may appear insensitive to changes in transport time (e.g., in
a linear regression) due to the superposition of cases with
very different t �loss ratios and thus P–T relationships. In
order to understand or project how phytoplankton in an
aquatic system will respond to a change in flow or flushing,
one needs to know whether the difference between growth
and loss is positive, negative, or about zero.

Numerous physical, biological, and geochemical charac-
teristics of surface water systems may covary with transport
time, especially if transport time is directly governed by
freshwater flow; examples of such characteristics include
density stratification and vertical turbulent mixing, nutrient
loading, water temperature, turbidity, salinity, and grazing
pressure (Kimmerer 2002; Paerl et al. 2006; Strayer et al.
2008). Covariation of these attributes with transport time
could confound the search for an empirical P–T relation-
ship because changes in these processes could also directly
drive changes in the phytoplankton. Because it incorpo-
rates time scales for growth and loss, the conceptual model
presented herein allows one to account for concomitant
changes in many of those covarying system attributes that
may influence algal growth and loss rates, as long as their
rates are known and the fundamental assumptions under-
lying the model are not violated.

If the model’s underlying assumptions are reasonably
met (e.g., negligible longitudinal mixing and cross-sectional
variability) and the transport time scale is appropriately
defined, then we would expect the conceptual model to
predict algal biomass (B �out) reasonably well, even within
tidal systems. For example, the good predictive perfor-
mance of the conceptual model for the Potomac relative to
the Hudson, another tidal river where the model was less
predictive, could be related to the relatively weaker tides in
the Potomac (as suggested by a smaller tidal excursion;
Schaffranek 1987) and potentially weaker longitudinal
dispersion and less severe violation of the model’s
assumptions. Even if violations of assumptions preclude
quantitative use of the conceptual model for algal biomass
prediction, an estimate of the growth–loss balance (t �loss) is
nonetheless informative for any aquatic environment, as it
provides an index to help intuit whether phytoplankton
biomass within a defined region will tend to increase or
decrease with transport time. Regardless of the challenges
in applying the conceptual model for quantitative predic-
tion, the primary lesson from the conceptual model
applies: there is a range of possible relationships between
phytoplankton biomass and transport time, and the
nature of the relationship is governed by the algal
growth–loss balance.
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