Independent Peer Review of USFWS’s Draft Effects Analysis for the Operations Criteria and Plan’s Biological Opinion

October 23, 2008

Prepared for:

United States Fish & Wildlife Service
Sacramento Fish & Wildlife Office
2800 Cottage Way
Room W-2605
Sacramento, CA 95825

Prepared by:

PBS&J
1200 2nd Street
Sacramento CA 95814
TABLE OF CONTENTS

Table of Acronyms.. 1
Introduction... 2
Summary of Review .. 2
 Positive Comments ..2
 Responses to the Five Questions ...3
Tier 1 Comments... 4
 1) Baseline ...4
 2) Elements Missing from Analysis..5
 3) Specific Analyses ..6
 4) Synthesis..9
 5) Uncertainty ..10
 6) Presentation of Statistical Results. ..10
 7) Critical Habitat Analysis ..11
 8) Cumulative Effects. ..11
 9) Future Context 2030 ..12
 10) Organization and Formatting ..12
 11) Conceptual Framework ...13
Tier 2 Comments... 13
Figure Comments.. 16
Literature Cited for Review of Effects Analysis ... 18

Appendix A: Panel Member Resumes

Appendix B: Preliminary Review Draft Effects Analysis, October 17, 2008 (with line numbers and without figures)
Table of Acronyms

<table>
<thead>
<tr>
<th>TERM</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>Biological Assessment</td>
</tr>
<tr>
<td>BO</td>
<td>Biological Opinion</td>
</tr>
<tr>
<td>CALFED</td>
<td>CALFED Bay-Delta Program</td>
</tr>
<tr>
<td>CALSIM-II</td>
<td>California Department of Water Resources Water Simulation Model</td>
</tr>
<tr>
<td>CDFG</td>
<td>California Department of Fish and Game</td>
</tr>
<tr>
<td>CPUE</td>
<td>Catch Per Unit Effort</td>
</tr>
<tr>
<td>DRERIP</td>
<td>Delta Regional Ecosystem Restoration Implementation Plan - Conceptual Models</td>
</tr>
<tr>
<td>DSM2</td>
<td>Delta Simulation Model 2</td>
</tr>
<tr>
<td>EA</td>
<td>Effects Analysis</td>
</tr>
<tr>
<td>E:I</td>
<td>Export:Inflow</td>
</tr>
<tr>
<td>EWA</td>
<td>Environmental Water Account</td>
</tr>
<tr>
<td>GAM</td>
<td>Generalized Additive Model</td>
</tr>
<tr>
<td>LOWESS</td>
<td>Locally Weighted Least Squares Regression</td>
</tr>
<tr>
<td>LSZ</td>
<td>Low Salinity Zone</td>
</tr>
<tr>
<td>MWT</td>
<td>Midwater Trawl</td>
</tr>
<tr>
<td>NBA</td>
<td>North Bay Aqueduct</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service</td>
</tr>
<tr>
<td>OCAP</td>
<td>Operations Criteria and Plan</td>
</tr>
<tr>
<td>OMR</td>
<td>Old and Middle Rivers</td>
</tr>
<tr>
<td>pce</td>
<td>primary constituent elements</td>
</tr>
<tr>
<td>POD</td>
<td>Pelagic Organism Decline</td>
</tr>
<tr>
<td>psu</td>
<td>practical salinity units</td>
</tr>
<tr>
<td>PTM</td>
<td>Particle Tracking Model</td>
</tr>
<tr>
<td>RI</td>
<td>Recovery Index</td>
</tr>
<tr>
<td>SWRCB</td>
<td>State Water Resources Control Board</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>VAMP</td>
<td>Vernalis Adaptive Management Program</td>
</tr>
<tr>
<td>X2</td>
<td>Location in the Delta defined by the 2 parts-per-thousand salinity threshold</td>
</tr>
</tbody>
</table>
Introduction

The U.S. Fish and Wildlife Service (USFWS) requested a peer review of the scientific data and the use of those data in the draft Effects Analysis (EA) of the biological opinion (BO) on delta smelt for the Operations Criteria and Plan (OCAP). The USFWS requested that a Panel of experts review the EA to assess whether the appropriate data were used in the analysis and if the analysis was scientifically defensible.

The five questions that the USFWS asked the Panel to address were:

1. Does the USFWS have the best available science in the effects analysis; and did they use it appropriately?
2. Is the USFWS presentation organized in a manner that is clear, concise, and complete (i.e., is it understandable)?
3. Are there sources of best available information that were not considered?
4. Did USFWS present a reasoned basis for their findings based on the best available information?
5. Are there missing pieces/relevant impacts that USFWS missed?

The USFWS hired PBS&J to organize, facilitate and conduct the independent review of the EA. Four Panel members were selected and approved by the USFWS. Brief biographies of the Panel members are included in Appendix A.

The review Panel received the EA on Friday evening, October 17, 2008 and then convened in Sacramento October 18th through October 21st. The Panel created a list of questions that were discussed via conference call on October 19th with members from the USFWS, California Department of Fish and Game (CDFG), and the Bureau of Reclamation to get clarification on portions of the document. The Panel points out that the review was conducted in a four-day period under a tight schedule.

We first present our responses to the five questions posed to the Panel. Then we present our specific comments grouped into two tiers: Tier 1 are major, substantive comments and Tier 2 are minor comments linked to specific line numbers and figures in the document.

Summary of Review

Positive Comments

The Panel commends the USFWS for requesting this review. Peer review is a valuable and absolutely critical part of preparing documents like this EA, which forms the basis of the BO.
The Panel sincerely offers this report in the spirit of trying to ensure the scientific quality of the EA.

The Panel understands the time constraints inherent in this BO process, and wants to acknowledge that the draft EA received by the Panel was in sufficient form for the Panel to conduct a thorough review. The willingness of the USFWS to answer clarifying questions during the review is also appreciated.

This EA addresses three issues that deserve special mention. First, the EA went beyond how operations will affect hydrology and attempted to analyze how these changes in hydrology would affect delta smelt numbers and habitat. The Panel strongly endorses this approach and philosophy. Second, the information and literature used in the EA was up to date and current. Third, the inclusion of climate change scenarios in the simulated studies significantly strengthens the analysis.

Responses to the Five Questions

Does the USFWS have the best available science in the effects analysis; and was the material used appropriately?

The Panel’s response is a qualified “yes.” Overall, the Panel determined that the quantitative analyses that were included in the draft EA (adult salvage, larval/juvenile entrainment, habitat, *Pseudodiaptomus* entrainment) were based upon the best available science. The Panel has several questions relating to the definition of baseline (comment 1). The Panel also offers many comments about the details of the analyses (comment 3), questions the utility and defensibility of the *Pseudodiaptomus* analysis (comment 3), and suggests another metric (residence time) for possible inclusion (comment 2). Some statements made in the text need to be revised for factual accuracy (sprinkled among the Tier 2 comments). We were not able to completely evaluate the scientific validity of all of the specific analyses because of incomplete reporting of assumptions and diagnostic information about the fitted statistical models (comment 6).

Is the USFWS presentation organized in a manner that is clear, concise, and complete (i.e., is it understandable)?

The Panel’s response to this question is “no.” The version of the EA provided to the Panel was a draft and had not been adequately edited for general organization, consistency across sections in how analyses were described and reported, and for redundancies. While the Panel, with some help from the USFWS via a conference call, was able to understand what analyses were performed and why, most readers would have a difficult time. We offer many suggestions for improving the readability of the EA that we hope will be incorporated into subsequent drafts (see comments 4, 8, 10, and 11, and various Tier 2 comments).
Are there sources of best available information that were not considered?

The Panel’s response to this question is a qualified “yes.” For the effects that were treated quantitatively, the Panel judged that all available information had been evaluated. However, there is additional qualitative information available that could be used in the components of the EA. For example, the EA did not discuss the ongoing planning efforts for a future Delta (comment 9), presented a weakly justified Cumulative Effects section (comment 8), and a Critical Habitat section that was insufficient in content (comment 7). The EA would also benefit from a concise discussion of the effects that were not included and the reasons they were not included (comment 2).

Did USFWS present a reasoned basis for their findings based on the best available information?

The Panel could not completely answer this question. Although the draft EA presents some finding statements sprinkled through the text, the draft EA did not include clearly stated definitive findings, and did not synthesize across analyses. We do offer some comments that will come into play when the USFWS progresses further into the findings stage. These relate to how the results will be synthesized (comment 4), how uncertainty will be presented and factored into the findings (comment 5), and how the cumulative effects and critical habitat sections are prepared (comments 7 and 8).

Are there missing pieces/relevant impacts that USFWS missed?

The Panel’s response to this question is “possibly.” There are many impacts that could be listed as possibly important but most simply do not have sufficient data available to enable quantitative analysis of the impacts with sufficient certainty. Other sections in the BO besides the EA have general information about the delta smelt life cycle and likely factors that affect delta smelt dynamics. It would be helpful to have a bridge that explains how the USFWS narrowed its inquiry down to the four impact metrics discussed in the EA. The Panel suggests that a quantitative analysis of the changes in residence time might be scientifically feasible and informative (comment 2).

Tier 1 Comments

1) Baseline

The Panel suggests that the definition of baseline conditions be carefully considered because of its importance as the basis of evaluation of impacts and interpretation of the various simulated scenarios. Typically, baseline conditions used in an EA are meant to represent population status before the impact of a proposed project. However, in this case, water operations have been in place before the period of assessment began. Baseline conditions here are representative of the current conditions in the smelt population including the effects of operations. For this, the EA
used historical data (1967-2007 for adult salvage, larval-juvenile percent losses, habitat; 1988-2007 for *Pseudodiaptomus forbesi*) as the baseline condition. These time periods are characterized by a downward trend in the delta smelt population, various trends in environmental variables, changes in operational requirements (e.g., X2 standards), and a variety of changes in structure of the ecosystem. Superimposed on these is the Pelagic Organism Decline (POD) period. Because the system has changed so frequently, the choice of time period used to define baseline can greatly affect the computed values of baseline conditions. For example, salvage of adults would in general be higher in earlier years and lower in recent years, and confounded with how operations varied within and among years. A long historical baseline would therefore show a higher level of salvage than a baseline comprising only more recent years. In contrast to this approach, the revised Biological Assessment (BA) and previous BO both used the results of a simulation study to define the baseline.

The historical baseline differed greatly from CALSIM-II Study 7.0 simulated results. Although Study 7.0 includes some changes from current operations, the Panel was surprised at the degree of divergence between these results. The large difference between Study 7.0 results and the historical baseline conditions defined with data can confuse the comparisons of metrics, such as relative percent changes, between a simulated study and historical baseline. This also raises the question of how representative Study 7.0 is of current and near-future conditions.

Ideally, a model-simulated baseline should be available that is consistent with the historical data for several periods within the historical record; for example, baselines could be prepared for an early period, a pre-POD period, and a post-POD period. The Panel noted that the BA included a pre-POD study (Study 6.1) but that there were concerns as to how well this scenario mimicked the actual historical record. It is unfortunate that model-generated baselines with a high degree of reliability were not made available for this analysis.

2) **Elements Missing from Analysis**

The EA focuses chiefly on four general modes by which project operations affect delta smelt: salvage of adults, proportional losses of juveniles, prey availability, and habitat in the fall. Good arguments are presented for each analysis on their own, and we understand why some issues were analyzed to a lesser degree, but there is no overall roadmap that describes how the selections were made.

The Panel has two main concerns about the choices of impacts to address. First, it is not documented in the EA why these modes were chosen for emphasis and others were excluded. Possible effects that have been proposed include: changes in predation pressure, contaminants, water temperature, changes in the food web besides *P. forbesi*, water quality and habitat shifts due to *Egeria* invasion, and toxic blooms of *Microcystis* (Baxter et al. 2008).
Second, the Panel suggests another mode of impact that could be important and possibly analyzed quantitatively is residence time. There is a strong relationship between flows (chiefly inflow, outflow, and export flow) in the Delta and local residence time (see Figure 8 in Kimmerer and Nobriga 2008). There is also a clear link, in at least some seasons, between flow in the Delta and phytoplankton biomass (Jassby et al. 2002). Because freshwater zooplankton may be generally limited by food supply (Müller-Solger et al. 2002), there is a logical and potentially important link between hydrology and delta smelt via the plankton foodweb.

We do not know whether these links add up to an effect that would be large enough to warrant specific, quantitative treatment. However, we think it is worth a preliminary examination to evaluate the feasibility of the analysis, and suggest the following general approach. The particle tracking model (PTM) results of Kimmerer and Nobriga (2008) can be reduced to a small number of spatial regions in the Delta, each corresponding to one or more particle release sites. The model-generated data are in the form of probabilities of particles exiting the Delta from each release point. The next step would be to examine how these probabilities vary with hydraulic replacement time of the Delta. If there is a relationship, these probabilities could then be combined with chlorophyll concentrations from long-term monitoring under various flow conditions. Although the direct link to delta smelt abundance would be difficult to make, this analysis might provide another way of viewing how system productivity (which supports delta smelt and other fishes) varies with flow, and how operations scenarios could affect productivity in places and seasons that coincide with delta smelt distributions.

3) Specific Analyses

Adult Analysis

The Panel suggests that the use of predicted salvage of adult smelt should be normalized for population size. Total numbers salvaged is influenced by a variety of factors, particularly the number of fish in the population. One way to normalize salvage for population size is to divide by the previous fall Midwater Trawl (MWT) index. A similar regression model to the one fitted to salvage would relate the normalized salvage to Old and Middle River (OMR) flows. Normalized salvage is not the fraction of the population lost, but rather an index of the impact of entrainment (assuming salvage indexes entrainment) on the population. Expressing salvage as a normalized index may help remove some of the confounding of the temporal trends during the baseline period (see comment 1).

On a more detailed level, elimination from the analysis of years with real zero values implies that the regression model may be inappropriate. Rather than fitting a linear regression with the zeros eliminated and truncating at zero, the USFWS should investigate alternative regression models (e.g., broken line) that would be fit to all of the data.
Habitat and Population Dynamics

The EA would benefit from a clear and concise discussion of how habitat can affect delta smelt population abundance. The various discussions of habitat seem to presume that a habitat effect requires relatively high abundance of delta smelt because habitat would only be limiting when smelt become crowded. The Panel is not entirely sure of this assumption and proposes that habitat could be limiting even under low delta smelt abundances. The key is the degree of specificity of the habitat requirements and how the potentially rare good habitat is spatially distributed. For example, suppose during the migration to freshwater the smelt enter the Delta and then go to the spawning area in the Sacramento River. If the available spawning habitat has shrunk or become fragmented, then the smelt may use up energy reserves finding good habitat elsewhere, or may settle for less than optimal habitat, thereby producing fewer eggs. This effect would not depend on smelt abundance.

The EA discusses possible density dependence in the smelt population but only as a compensatory process that would become important at relatively high smelt abundances. The Panel suggests that the EA should also briefly discuss the concept of depensatory density dependence and how it might manifest itself at low smelt abundances. By not accounting for depensatory density dependence, the current analysis is less conservative (i.e., less protective of the species), because it neglects to account for a potential acceleration in the rate of decline of an already declining population.

The Panel thinks that the analysis relating X2 to habitat is sound, but suggests that habitat quality be considered in the analysis. The EA should document the assumptions about habitat quality underlying the relationships they borrowed from Feyrer et al. (2007; 2008). Certain threshold values for probability of capture were mentioned in the EA (10 percent, 25 percent, and 40 percent), citing a manuscript in preparation as the source. Probability of capture is based on presence/absence data. The Panel is unclear whether different threshold values for probability of capture used to compute the area of “good” habitat may or may not reflect different levels of habitat quality. What is the interpretation of different thresholds for probability of capture based on presence/absence data? How would the fitted Generalized Additive Models (GAMs) change if fish density (rather than presence/absence) were used as the response variable, thereby weighting for habitat quality?

Stock-Recruitment Analysis

The third step of the habitat analysis was to examine the relationship between fall X2 and smelt abundance. Specifically, fall X2 and fall MWT index were used as predictor variables with summer townet index as the response variable. The EA points out that the residuals from this analysis are not normally distributed and that some transformation might be required. We suspect that a few of the data points may have high influence on the outcome. These results together suggest that the model may be inappropriate for the data being used. The Panel also
questions whether the use of the recovery index (RI) is necessary, as normalizing by the fall MWT would account for adjusting salvage for population abundance. Furthermore, the information underlying the RI appears to be old (i.e., a 1996 report is cited). The use of the term “stock-recruit” led to some confusion among Panel members about the analysis, which ultimately was a partial regression with the fall MWT term fixed to predict future responses of the summer index to changes in fall X2.

Analysis of *Pseudodiaptomus forbesi*

The EA addresses the impact of flow conditions on delta smelt arising through the entrainment of the copepod *Pseudodiaptomus forbesi*. The conceptual model underlying this selection is presented clearly: a) delta smelt are probably severely food limited much of the time; b) *P. forbesi* is the smelt’s principal food organism in summer to early fall; c) during this time the delta smelt are mainly in the low-salinity zone (LSZ) but the maximum abundance of *P. forbesi* is in freshwater; and d) therefore, the abundance of copepods where the smelt live may vary inversely with export flow (as copepods are removed from the Delta by the export pumps) and directly with outflow (which affects the flux of copepods from freshwater into the LSZ). These two variables characterizing the hydrology are often combined as the export:inflow (E:I) ratio.

The Panel agrees with this conceptual model and with the justification of its elements, which are well-supported. The principal concerns are about specific details of the analysis. The first issue is the use of the E:I ratio as the independent variable in the analysis. The EA (Appendix B, line 868) states: “(T)he E:I ratio is a useful metric of factors like entrainment risk and residence time…” Actually E:I is closely linked to entrainment risk only after an unlimited duration of exposure, but residence time is better predicted by flow rates (inflow, export, or outflow depending on the initial location; Kimmerer and Nobriga 2008). The second problem with E:I is that it is a ratio of two highly variable, but largely uncorrelated, properties. Because of this, results using this ratio can be difficult to interpret, and the statistical properties of E:I may not be amenable to parametric statistical analysis. Furthermore, if E:I appears to have an effect on a response variable, there is no way to tell whether this occurs through inflow, export, or outflow (approximately E – I). For example, Figure 19 shows what seems to be a very weak relationship between E:I and catch per unit effort (CPUE) of *P. forbesi*; assuming there is a relationship, does it arise because fewer copepods are lost when export flow is low, because more copepods are advected to the LSZ when outflow is high, or both? A better approach would be to use export flow and either inflow or outflow as separate independent variables (with inflow or outflow log-transformed) so that the effects of export versus inflow can be ascertained.

The second issue is the conflation of Suisun Bay with the LSZ. They are not the same. When outflow is low, the LSZ can be well into the Delta (e.g., in most falls, as shown elsewhere in the EA). Under these conditions, *P. forbesi* will be uncommon in Suisun Bay simply because the seaward limit of their habitat (at salinity of ~5) is in the Delta. Yet, the abundance of *P. forbesi*...
could be just as high in the LSZ under these conditions as under higher-flow conditions. If there is a relationship between outflow and abundance of *P. forbesi* in the LSZ, it can be detected only by comparing the distributions of copepods in salinity space rather than relying on sampling station locations. The same is true for exports. Likewise, delta smelt tend to occur slightly to the east of X2 at about 1 psu in the summer-fall period, following the salinity gradient rather than a fixed geographic position.

A third issue is that adults and juveniles (copepodites) of *P. forbesi* have different spatial distributions; the juveniles are more abundant than adults far into the Delta in freshwater. Because these life stages are reported separately, their patterns can be easily analyzed separately (if there is not too much correlation between juveniles and adults).

Finally, the figures meant to support this analysis are not convincing. Figure 20 plots CPUE during summer in the “Red Zone” (an undefined term) against E:I. There is no relationship (as discussed in the EA). Figure 19 is a similar plot for Suisun Bay, and (excluding data from 1989, which seems reasonable), there is a very weak negative relationship with E:I. This is not convincing as a demonstration of a substantial effect. Furthermore, this graph was not supported by any statistical analysis.

The Panel suggests that this analysis be redone with the above considerations in mind. If a revised analysis does not show a substantial (not necessarily statistically significant) pattern, the analysis should be mentioned but the results dropped as quantitative metric from the EA.

4) Synthesis

The volume and diversity of information on potential impacts to delta smelt reported in the EA is substantial. Quantitative analyses of a range of study scenarios were examined and discussed in detail. A qualitative assessment of critical habitat impacts was also provided (comment 7), and the Cumulative Effects section (comment 8) identified and discussed a suite of other possible effects. We believe that the EA would be strengthened by a concluding summary of the likely collective impact of the quantitatively and qualitatively analyzed effects. How do the results of the various analyses combine into an overall population impact? Does the cumulative impact of the effects deemed “small” amount to an effect of concern? For example, the EA appears to conclude that the impact of the North Bay Aqueduct (NBA) on smelt larvae is likely to be small (page 18). Similarly, the impact of Article 21 flows on critical habitat is characterized as small (page 38). Is the sum of all of the “small” impacts still small?

Along with the summary recommended for the quantitative analyses, we suggest that one or more tables that summarize all of the effects in a similar format would help the reader understand the totality of the EA and enable easier comparisons among study scenarios. These tables would be organized by smelt life stage, study scenario, and effect, and would list how these effects were
assessed, any conclusions about the importance of the effects, and where in the text the evidence for the conclusions is presented. A summary set of tables would provide the reader with a concluding “big picture” that we believe will enhance the EA.

5) Uncertainty

The Panel believes that several forms of uncertainty should be addressed throughout the EA. This includes uncertainty in the results of analyses, uncertainty in the assumptions driving the CALSIM-II runs, and uncertainty in future conditions in the Delta.

The Panel has several suggestions for how uncertainty can be presented. We do not expect a formal uncertainty analysis using Monte Carlo or other methods because of unknown uncertainties in some of the steps in the analysis and because of time constraints. We recommend the following to help the reader appreciate the uncertainty in the analysis: (a) a discussion of the realism of the various CALSIM-II study simulations used in the EA; (b) improved presentation of statistical results (see comment 5); and (c) discussion of the degree of conservatism (in terms of protection of the species) of the major assumptions that were made at each step of the analysis. The basis for these statements about uncertainty should be described and related to available evidence.

A particular concern is the realism of the CALSIM-II simulations. For example, the analysis appears to have used historical Vernalis Adaptive Management Program (VAMP) (BA pages 2-66 and 9-43) flows instead of incorporating the expected revision to VAMP that will include only export reductions, not flow augmentations. Similarly, the basis for assumptions about the future of the Environmental Water Account (EWA) was not made clear. In both cases a non-conservative choice seems to have been made about the future conditions. Uncertainty in future conditions is discussed further in comment 9.

6) Presentation of Statistical Results.

A great deal of data analysis has gone into the EA. The Panel suggests that these results should be clear, consistent, and statistically defensible. As it stands, the EA does not always meet these criteria. Results are presented without analysis (Fig. 19), with incomplete analysis (Fig. 28), or with analyses that do not fully support the conclusions, often because incomplete information is presented.

The Panel recommends that raw data be provided as time series plots (see comment 10). Diagnostic plots or statements regarding how data meet assumptions underlying statistical procedures should be included for all analyses. This would facilitate assessment of the appropriateness of each analysis and its applicability to the problem. The Panel recommends
consultation with a qualified, in-house statistician regarding the appropriateness of analyses and ways to make the analyses more robust.

Results should be reported completely; for example, effect sizes, degrees of freedom, and other such statistics are essential for interpreting output. The Panel recommends against the use of a p value as the sole criterion for including an effect in a model, because the p value depends on the number of data points and exogenous (e.g., sampling) variability. An analysis with many data points might show a statistically significant effect that is biologically unimportant. More importantly for analyses of a listed species, a biologically important effect might be obscured by variability, especially if few data points are available. Parameter estimates with confidence limits can provide more useful information about the model and its utility than p values.

7) Critical Habitat Analysis

The critical habitat analysis in the EA should be substantially revised to be scientifically defensible. Table XX (pages 38-39) provided a summary of expected effects to critical habitat, but little justification was provided for the statements about the magnitude of the effects, and statements were not clearly linked back to the analyses. How was “small” determined? At what point do a series of small effects constitute a large effect? Table XX states that the impact of operations on physical habitat is small; this seems to contradict the analysis of habitat effects that seemed to show a nearly 50 percent decrease (page 36). The critical habitat analysis is also important to an understanding of how the proposed action will affect smelt recovery.

The discussion of the primary constituent elements (PCEs) should be expanded to describe how the USFWS evaluated the proposed action’s impacts on physical habitat, water supply, river flow, water quality, and salinity throughout the designated area. Ensuring the completeness of the PCE definitions is critical to a defensible analysis. Specifically, how are the measures of water temperature, turbidity, and conductance, all of which are used to describe favorable or unfavorable environmental conditions for smelt, used in the analysis and what are the resultant conclusions? The effects analyzed quantitatively included a presumed food effect (P. forbesi, but see Comment 3); yet, there is no connection between food and PCEs in the table. As each smelt life stage is discussed relative to its geographic distribution within its critical habitat, it would be helpful to provide a map showing current distribution to the extent known and the geographic locations referenced in the discussion.

8) Cumulative Effects.

The Panel is concerned that the cumulative effects section of the EA is rather weak and limited in scope. We recommend that this section be expanded to include a wider variety of likely cumulative effects. While the Panel appreciates that the USFWS cannot estimate the quantitative impact of each additional impact on smelt, we believe that the USFWS can, at a minimum, state
whether the effects are likely to be minor, moderate, or substantial in impacting smelt survival and distribution. Also, will these cumulative effects further adversely impact critical habitat or limit smelt recovery? Citations to supporting references should be included.

9) Future Context 2030

The Panel recommends that the EA consider, at least qualitatively, how the Delta may change over the duration of the proposed action (i.e., 2030). The EA addresses climate change, but other substantial changes during that time frame are likely due to levee failure (Mount and Twiss 2005), human activities such as restoration and development, and introduced species such as quagga or zebra mussels. All of these changes will affect delta smelt and potentially how the population responds to project operations.

10) Organization and Formatting

The EA was irregular in its presentation. The document lacked consistency in how methods were described and results were reported. Redundancies arose from the lack of integration among sections. We acknowledge that different teams worked on different sections and there was insufficient time for a thorough integration. However, the organization and clarity of this document will affect comprehension; we point out that some Panel members were already quite familiar with the analyses and data presented and were able to piece together what was done, whereas the ultimate readership of this document will need more help.

The Panel has several suggestions to help in the organization and clarity of the next version of the EA. The Introduction section of the EA should include a conceptual model of the analysis (see comment 11) and the rationales for the choices of the modes of impact that were analyzed. Following this, an overall assessment of Delta hydrology and the use of the CALSIM-II model common to all of the main analyses should be provided to ensure consistency and eliminate repetition among sections. All variables used in common among different analyses should be described and source data identified, and plots included of their raw values. For example, a variety of summary statistics related to OMR flows are used in the analyses (e.g., median winter flow, average winter flow, average April-May flow). Each of these should be shown in plots. The methods and results sections would follow the section on common variables.
Formatting should be similar among sections, including the use of parallel sub-headings. To the extent possible, the results should be placed in a common tabular or graphical format to allow for easy comparison. In the EA, for example, the estimates of adult salvage are presented in a table, whereas the estimates of larval and juvenile entrainment are presented graphically. Using a common format for presenting the data and results of analyses will greatly aid in comprehension and interpretation of the results.

The EA contains extraneous information that generally falls into two categories: effects that are understood to have limited impact compared to the main components of the analysis, and other effects that may be important but are beyond the scope of the quantitative analysis presented here (see comment 4). This information is important but the details should be placed in tables and appendices to enable a linear flow from introduction to methods to results. Brief listing and discussion of these effects can be in the main body of the report with appropriate referencing to the tables and appendices for supporting information.

11) Conceptual Framework

The EA would benefit by including a section that clearly lays out the analyses performed. Information is available in the BA, other sections of the BO, and in other documents (e.g., the Delta Conceptual Models [DRERIP]) that place the various analyses in the context of current understanding of the biology and status of delta smelt. A roadmap of the EA, including a life cycle diagram and a flowchart showing how the various data sets were used in the analyses, would greatly help comprehension. This should include a discussion of the effects selected for quantitative analysis, the criteria for selection, and the basis for selection of each analysis. A timeline of events that occurred during the historical baseline period (e.g., flow conditions, species introductions, changes in operational practices) would also be helpful to readers.

Tier 2 Comments

1. Lines 33-37 – Clarification is needed. What is meant by “balanced conditions” and how does this relate to the relative importance of project operations on mortality?

2. Lines 39-40 – Clarify how the analyses were conducted in 2005 and why a different approach was taken in this EA.

3. Lines 45-49 – How does it follow that if smelt are entrained and food is entrained (especially during December to June) the loss of food does not need to be evaluated?

4. Lines 49-51 – This is an odd interpretation. Smelt entrainment is low in mid-July to mid-December because the fish move seasonally to brackish water and export facilities pump freshwater.
5. Line 64 – No fisheries data are included in this section; there is no fishery on delta smelt. The term “fish data” is more appropriate.

6. Line 67 – Table 1 should be greatly expanded to include the specifics of data sets, time periods that were estimated and observed, and data sources. Figures should be referenced that show time series values (see comment 10).

7. Lines 69-72 and elsewhere – The methods used to determine OMR flows are not completely clear. Clarify where measured flows were used, where they were filled in by regression (and from what other variables), and that DSM2 was used to calculate OMR flows for the simulations.

8. Line 96 – Define water years and provide reference. A brief discussion might be warranted.

9. Lines 105-107 – What does “virtual flow meter” mean and how was it used? What other variables were predicted by DSM2?

10. Lines 109-145 – Create a table that summarizes scenarios and model outputs for different studies to allow for easier evaluation, or refer directly to the specific BA pages. See Comment 11 about the need for a timeline diagram.

11. Lines 121-124 – Clarify how demand was estimated and what contract deliveries entail, or refer to the specific pages of the BA. Is it realistic to assume that the water agencies will provide full contract deliveries in the future?

12. Line 147 – Consider a table for ancillary affects (e.g., upstream diversions) that the USFWS is dismissing as less than significant. Details of the USFWS’s rationale should be in an appendix.

14. General: Consistently cite the specific location (page number) within the BA where information is referenced.

15. Line 177 – Table 2. Clarify the title, purpose of the table, and what the percentages are referenced to. The citation of Kimmerer (2008) within table in reference to Collection Screens is inaccurate – clarify how Kimmerer (2008) was interpreted.

16. Lines 187-190 – Consider the use of abundance “indices” instead of abundance and expand on the sentence to clarify the meaning and connection between abundance and exports.

17. Lines 199-200 – How exact is first flush as a trigger for spawning migration? The EA should describe the variability in this relationship.

18. Lines 211-213 – Clarify how metrics were calculated.

19. Lines 213-214 – Clarify the reasons for using RI (see Tier 1 comment 3)
20. Lines 216-232 - OMR flows should be clarified (see the Tier 1 comment 10)

21. Lines 244 – Entrainment was not actually predicted in the EA. Clarify this statement.

22. Lines 261-282 – Revise the paragraph if RI discussion is revised.

23. Line 296 – “Future version of this analysis…” applies to what future version?

24. Line 297 – Explicitly state there is a downward trend in the smelt population early in the analysis that uses adult salvage as the response variable.

25. Lines 311-313 – Clarify the use of salvage and salvage fraction (see the Tier 1 comment).

26. Line 312 – Define what is meant by ‘significant’.

27. Table 3 – Expand Table 3 to also present salvage numbers as well as percent change.

28. Lines 350-515 – See Tier 1 comment 10. This part of the document should be condensed and moved to tables to the extent possible.

29. Line 522 – Smelt biology does not need to be presented again.

30. Lines 554-558 – In the cited paper, particle tracking simulations were only used for supporting data, and salvage efficiency was not used to estimate entrainment proportion.

31. Lines 563-565. This seems to say that two different entrainment figures were available for each year. We understand this to mean instead that two different X2 averaging periods were used. This should be clarified, but we do not think it is quite legitimate since the most appropriate period for averaging would seem to be the entire period of exposure to entrainment (March or April – June).

32. Lines 578-597 – Reorganize these sections by moving them to a common analysis methods discussion.

33. Line 649 – Clarify the implementation of the X2 standard in the dataset.

34. Lines 629-630 – “These patterns do not change in the climate change scenarios.” Recommend providing the data to support this conclusion.

35. Lines 835-836 – Need an introductory statement describing the methods used which should be moved into the overall methods section.

36. Line 1130 – The habitat association should be a negative association, not a positive association.

37. Lines 1154-1156 – Provide the specific page numbers for the BA information.

38. Lines 1222-1224 – X2 values are calculated entirely from outflow values, not “largely”.
39. Lines 1224-1226 – The E:I ratio is not the same as I-E. Since X2 is linearly related to log (outflow) or nearly log (E-I), it would be expected to have a nonlinear relationship to E:I; it does not add to the EA to display this relationship.

40. Line 1275 – The range of the overbite clam may have increased, but it is not clear that it is due to a change in the clam’s reproductive success.

41. Lines 1277-1278 – Strike E:I unless the ratios are supported with data.

42. Lines 1220-1325 – Provide the reason for this analysis and move it to the other effects discussion

43. Line 1570 – Table XX should have references to sources in the final table

44. Line 1570 – Table XX habitat reductions in table referred to as ‘small’ do not correspond to the large percentages presented in the text. Reasoning for determinations such as ‘small’ are not presented.

Figure Comments

1. Figure 1 – This figure is incomplete and incompletely explained. What is the reason for the straight line? What are the open and filled circles? Where did the equation come from?

2. Figure 2 - Define what each water year is or reference the description in the text.

3. Figure 3 – This is an interesting approach, please explain in more detail and provide complete information in the legend.

4. Figure 5 – If the percent entrained is not split up between seasons then the use of two plots should be reconsidered. This figure is not referenced in text.

5. Figures 6-9 – These can be put into a four-panel graph.

6. General Figure Comment – The LOWESS lines should be removed unless they are used or referred to. They should be used only if a model is fit to the data in which case a GAM should be used (since it would allow model checking).

7. General Figure Comment – The scaling on the all of box plots are too compressed, please use the “break” feature on the plots.

8. Figure 16 – This figure needs to be explained. It is not appropriate to model confidence limits with regressions. It may be possible to propagate errors using appropriate methods.

9. General Figure Comment – The authors need to pay careful attention to the use of percents and fractions with probabilities, and be sure to label axis correctly.

10. Figure 17 - Should be shown as a histogram and not cumulative. The y-axis should be a percent, not frequency. Use of percent eliminates the need to extrapolate to 82 years.
11. Figure 18 - The y-axis should be a percent, not frequency. This is an example where putting the results in a consistent format would greatly help interpretation.

12. Figures 19 and 20 – These are not convincing figures. See Tier 1 Comment 3.

13. Figures 21-25 – See previous comments on box plots.

14. Figure 26 – This figure provides some of the diagnostic plots that we requested (Tier 1 Comment 6) but they need to be enlarged, formatted, and standardized appropriately. Redundant figures can be removed. Cubic functions need to be treated carefully to ensure that predictions are not being made outside of the domain, and that the models are not over-fitting the available data.

15. Figure 27 – Same comments as for Figure 25.

16. Figure 28 – Include which years were included in this analysis.

17. Figure 29 – Same comments as for Figure 25.

18. Figure 30 and 31 - If the fitted line is going to be used in subsequent figures then the LOWESS fit should be determined with a GAM function. See Tier 1 comment 3 regarding E:I ratios.

19. Figure 32 – This figure should be enlarged.

20. Figure 33 – This looks to be the same as Figure 30.

21. Figure 34 – See general figure comments.

22. Figure 35 – See general figure comments.
Literature Cited for Review of Effects Analysis

Appendix A

Panel Member Resumes
KENNETH A. ROSE

Department of Oceanography and Coastal Sciences
Energy, Coast and Environment Building
Louisiana State University
Baton Rouge, LA 70803-7503
Phone: (225) 578-6346
E-mail: karose@lsu.edu

EDUCATION:
M.S., Fisheries Science, University of Washington, 1981.

PROFESSIONAL EXPERIENCE:
2001-present Professor, Coastal Fisheries Institute and Department of Oceanography and
Coastal Sciences, Louisiana State University.
1998-2001 Associate Professor, Coastal Fisheries Institute and Department of Oceanography
and Coastal Sciences, Louisiana State University.
1983-1987 Scientist, Martin Marietta Environmental Systems (now Versar), Columbia, MD.
Adjunct Faculty: Department of Ecology and Evolutionary Biology, University of Tennessee
School of Natural Resources and Environment, University of Michigan
Department of Marine Sciences, University of South Alabama

SELECTED PROFESSIONAL ACTIVITIES:
Associate Editor: Transactions of the American Fisheries Society, Ecological Applications,
Environmetrics, Canadian Journal of Fisheries and Aquatic Sciences, Marine and Coastal
Fisheries
Fellow of the American Association for the Advancement of Science (AAAS)
Ad-hoc reviewer for over 25 journals
Member of the Independent Review Panel of the Delta Risk Management Strategy (DRMS)
Member of the Review Team of NOAA’s OCAP Biological Opinion on Endangered Salmon
Member of the Independent Science Advisors for the Bay Delta Conservation Plan
Member of the Tier 3 Independent Advisory Science Panel (never activated)
Past Member of the Science Review Panel of the Environmental Water Account Program
Past Member of the Independent Science Board of CALFED
Member of the Review Panel of the Regional Salmon Outmigration Study Proposal
Co-PI on the CALFED funded project entitled “Modeling the Delta Smelt Population of the San
Francisco Estuary”
Consultant to the DWR POD-funded project entitled “Development and Implementation of
Life-Cycle Models of Striped Bass in the Bay-Delta Watershed”
Chairperson of 12 graduate student committees; member of another 20 student committees.
Speaker of over 50 invited presentations; co-author on over 150 presentations made by others.

SELECTED PUBLICATIONS (from a total greater than 100):
fishes: Implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences
49:2196-2218.

WIM J. KIMMERER, PH.D
Telephone: (W) (415) 338-3515
(H) (510) 848-7388
FAX: (415) 435-7120
Email: kimmerer@sfsu.edu
Web: http://online.sfsu.edu/~kimmerer/

Current Position
Research Professor, Romberg Tiburon Center for Environmental Studies, San Francisco State University.

Education
University of Hawaii, Ph.D. 1980, Biological Oceanography
Purdue University, B.S. 1967, Chemistry

Research and Professional Experience
1994-present Senior Research Scientist & Research Professor, Romberg Tiburon Center
1982-1985 Research Fellow, University of Melbourne (Australia), Zoology Dept.
1980-1982 Research Associate/Assistant Director, Hawaii Institute of Marine Biology
1976-1980 Research Assistant, University of Hawaii
1973-1980 Graduate student, University of Hawaii
1972-1973 Flight instructor
1967-1972 U.S. Navy submarine force, final rank Lieutenant

Research Interests
The ecology of estuaries and coastal waters, with emphasis on the San Francisco Estuary. Influence of physical environment including freshwater flow, tidal currents, and turbulence on behavior, movement, and population dynamics of plankton and fish. Predatory control of species composition and abundance of plankton populations. Modeling of ecosystems, populations, and material cycling. Modeling and analyzing salmon populations in California’s Central Valley. Human impacts on aquatic ecosystems and the interaction of science and management.

Other Professional Activities
• Member, Strategic Planning Core Team, CALFED Bay-Delta Program, 1998-99
• Co-Chair, Science Board, CALFED Bay-Delta Ecosystem Restoration Program, 2000-2005
• Co-founder and Past President, California Estuarine Research Society, the newest affiliate society of the Estuarine Research Federation.
• Chair, Estuarine Ecology Team, Interagency Ecological Program for the San Francisco
Kimmerer CV
October 2008
Page 2

- Advisor to the CALFED Lead Scientist
- Advisory committee, Georgia Coastal Estuaries LTER Program, J.T. Hollibaugh, Pl.
- Invited participant in workshops at the University of Rhode Island (effects of freshwater flow on estuaries), Louisiana Universities Marine Consortium (coastal restoration), and the University of British Columbia (science needs for coastal management).
- Associate Editor, San Francisco Estuary and Watershed Science.
- Reviewer for professional journals including Limnology and Oceanography, Marine Biology, Marine Ecology Progress Series, Estuaries and Coasts, Estuarine, Coastal, and Shelf Science, ICES Journal of Marine Science, Hydrobiologia, Environmental Biology of Fishes.
- Reviewer of grant proposals for the National Science Foundation, EPA, and Seagrant offices.
- Steering committee, Bay-Delta Modeling Forum, 1995-2001
- Co-convenor, CALFED Ecosystem Restoration Program workshop on adaptive management, 2002
- Co-convenor, CALFED workshop on hatchery impacts on Battle Creek, California, 2003.
- Member, Steering Committee, Delta Risk Management Strategy (Department of Water Resources).

Recent and Current Students
Keun-Hyung Choi (research associate), Diego Holmgren, Karen Edwards, Lindsay Sullivan (post-docs); Heather Peterson, Lenny Grimaldo, Jena Bills, Paola Bouley, John Durand, Renny Talianchich, Allegra Briggs, Alison Gould, Laurie Kara, Valiere Greene (all Masters’ students).

Selected Publications

Kimmerer, W.J., E. Gartside, and J.J. Orsi. 1994. Predation by an introduced clam as the
probable cause of substantial declines in zooplankton in San Francisco Bay. Marine Ecology-Progress Series 113:81-93.

http://repositories.cdlib.org/jmie/sfews/vol2/iss1/art1

http://repositories.cdlib.org/jmie/sfews/vol3/iss1/art2

In preparation

* Available in pdf format at http://online.sfsu.edu/~kimmerer/Files/
Selected Presentations

Kimmerer, W.J. Foodweb support for the threatened delta smelt: Subtle interactions may be a cause of the pelagic organism decline. CALFED Science Conference, Sacramento, October 2006.

G. Roy Leidy
Senior Scientist, Aquatic Ecologist
PBS&J

Education
B.S., Forestry and Resource Management, University of California, Berkeley, 1972

Certifications
Certified SCUBA Diver, N.A.U.I., 1978
Certified Fisheries Scientist, #1730, American Fisheries Society, 1985
California Registered Environmental Assessor, #02704, 1991

George R. “Roy” Leidy is a Certified Fisheries Scientist who specializes in conservation biology and fish and wildlife management. His responsibilities include technical review and guidance of natural resource studies, as well as regulatory permitting and compliance. Roy has broad technical expertise based on his 37 years as a fish and wildlife biologist and regulatory specialist. He frequently assists clients and their legal counsels as an expert witness in both technical and regulatory matters.

Roy’s technical experience includes fish and wildlife impact assessments using HEP, WHR and IFIM, wetlands delineations and assessments, endangered species surveys and impact evaluations, HCP/HMP planning, river-reservoir ecosystem modeling, reservoir fisheries management, water quality modeling, toxicological analysis, stream channel stability, watershed assessments, fish passage and screening design, Clean Water Act permitting, and water resources development evaluations. He possesses extensive knowledge of resource management issues in the western United States.

Over the past 37 years, Roy has published professional papers on a wide range of environmental topics and contributed to hundreds of unpublished reports on various environmental issues related to natural resource management, including endangered species, water resources, watershed management, mining impacts and remediation, instream flows, water quality, habitat restoration, and regulatory compliance.

Water Resources Development

Mammoth Lakes Basin Comprehensive Water Management Environmental Impact Report, Mammoth Lakes, California. Roy was the project manager and CEQA specialist for an EIR evaluating a full range of alternatives for managing the water resources of the Mammoth Lakes Basin for the Mammoth County Water District. The project involved coordination with the U.S. Forest Service, Inyo National Forest. Key issues evaluated included fisheries impacts, aesthetics, recreation, and groundwater and surface water management.

Garden Bar Dam and Reservoir Pumped Storage Hydroelectric Project, Nevada, Yuba, and Placer Counties, California. Roy, project manager and senior scientist, for a large team of scientists conducting extensive, multi-year reservoir/river fisheries investigations of Camp Far West Reservoir and the Bear River for the South Sutter Water District. He directed investigations that included an instream flow study (IFIM), water quality and temperature simulation modeling for various reservoir operational modes, riparian impacts to the Bear River, fisheries and wildlife (HEP) impacts, a migratory mule deer study, and endangered plant surveys. He directed work on the biological and water quality topics for a Federal Energy Regulatory Commission license application and for the draft Environmental Impact Report (CEQA). Responsibilities also included public meeting participation and coordination with numerous local, state, and federal agencies.

Santa Ana River Supplemental Water Supply Project, San Bernardino County, California. Roy served as the lead aquatic ecologist and expert witness in support of water rights applications to the State Water Resources Control Board for the appropriation of up to 200,000 acre-feet per year of local water captured by Seven Oaks Dam during flood control operations. Lead agencies included the San Bernardino Valley Municipal Water District and Western Municipal Water District. Roy and his team evaluated the impacts of maintaining a conservation pool at Seven Oaks Dam on aquatic and riparian resources in the inundation zone upstream of the
G. Roy Leidy
Senior Scientist, Aquatic Ecologist

dam and along the Santa Ana River between Seven Oaks Dam and Prado Dam located 20 miles downstream. Investigations focused on threatened native fishes, water temperature and water quality, hydrology, and riparian vegetation maintenance. Roy also participated in mitigation discussions with the California Department of Fish and Game.

Big Bear Lake Sediment Loading Analysis, Big Bear Lake, California. EIP Associates conducted a sediment loading analysis for the Rathbone Creek watershed for Big Bear MWD. At issue was the contribution of sediment from the watershed to Big Bear Lake. Roy Leidy and Dr. Jack Humphrey surveyed Rathbone Creek to develop data for use in the HSPF model. Local climatology and hydrology was developed as well. The modeling results indicated that about 90 percent of the sediment loading to Big Bear Lake occurred during infrequent severe storm events with an exceedance frequency of 10 percent or less. In addition, the modeling indicated that most of the sediment was derived from granitic soils on land managed by the U.S. Forest Service, and was not derived from urban development near the lake. The study results were used to address TMDL issues at Big Bear Lake.

Environmental Impact Evaluations

Amador Water System Transmission Project Environmental Impact Report and Section 7 Compliance, Amador County, California. Roy was the technical lead in the preparation of an EIR for the Amador Water Agency. This EIR evaluated the impacts of replacing a 23-mile long Gold Rush-era mining ditch that delivered the primary water supply for much of Amador County with an 11 mile buried pipeline. Over the length of the ditch up to 50 percent of the surface flows was historically lost to leakage. Key issues focused on surface and groundwater water hydrology, special-status plants and animals, water quality, cultural resources, and aesthetics. Following field studies, Roy also completed consultations with the California Department of Fish and Game regarding several special-status species, and with the U.S. Fish and Wildlife Service regarding the California red-legged frog. The EIR was certified and the pipeline constructed.

Bodie Mineral Exploration Program Environmental Impact Report, Mono County, California. Roy served as project manager for a comprehensive EIR for a proposed mineral exploration program adjacent to Bodie State Historic Park for the Mono County Planning Department. Extensive field investigations and analyses were completed to address a wide range of environmental issues including endangered species, resident and migratory wildlife, wetlands, water quality, noise, aesthetics, archeological resources, and air quality. A mitigation and monitoring program was developed to address the significant effects of the project.

Conway Ranch Environmental Impact Report, Mono County, California. Roy was project manager and CEQA specialist for a team of resource specialists in the preparation of draft and final EIRs for a proposed destination fly fishing resort at Conway Ranch for the Mono County Planning Department. Key issues addressed in the EIRs were aesthetics and visual resources, biological impacts, socioeconomics, provisions for community services such as fire, water, and garbage, and wetland impacts. The final EIR was certified by the Mono County Board of Supervisors.

Instream Flow Studies

Fisheries Investigations of the Yuba River, Yuba County, California. Roy led a
large team of fisheries scientists in the completion of an instream flow study (IFIM) for the lower Yuba River downstream of Englebright Dam, a U.S. Army Corps of Engineers facility. The focus of the study, prepared for the California Department of Fish and Game, was to determine appropriate flows for the maintenance of steelhead and fall run Chinook salmon. Flows were also needed to maintain fluvio-geomorphic processes and to allow fish passage over Daguerre Dam.

Rush Creek Instream Flow Study, Mono County, California. Roy directed this high-profile flow study (IFIM) for Rush Creek, located in the Mono Basin. Landmark litigation regarding the maintenance of streamflows for fish downstream of Grant Lake, a Los Angeles Department of Water and Power facility, required that the flow needs of rainbow and brown trout be evaluated and appropriate flows established. For the California Department of Fish and Game, Roy and his team completed the flow study and proposed flow releases based on maintaining trout habitat conditions similar to pre-diversion conditions.

American River Instream Flow Evaluation, Sacramento County, California. Roy was retained as the lead aquatic biologist and expert witness in litigation regarding the instream flow needs for steelhead and fall run Chinook salmon in the lower American River downstream of Nimbus Dam, a U.S. Bureau of Reclamation facility. Roy evaluated the instream flow study (IFIM) completed by the U.S. Fish and Wildlife Service and testified in Superior Court regarding the flows required to maintain suitable habitat in the river. Ultimately, the court ruled in favor of Roy’s clients, the County of Sacramento and Friends of the American River, and required streamflows similar to those recommend in his testimony.

Ecological Studies

Tributary Production Enhancement Report to Congress, Central Valley, California. Roy served as project manager and senior scientist in the preparation of a Report to Congress for the U.S. Fish and Wildlife Service. This report addressed the requirements of the Central Valley Project Improvement Act to restore and enhance the production of Chinook salmon and steelhead populations in tributary streams to the Sacramento and San Joaquin rivers. Specifically, the report evaluated the feasibility, cost, and desirability of implementing measures to eliminate migration barriers and to enhance the natural production of salmonids in 24 Central Valley streams. Roy also managed public participation and landowner involvement.

Ecology, Status and Management of the Giant Garter Snake, Central Valley, California. Roy conducted field work and prepared an extensive report describing the ecology and status of this threatened species in California for the Natomas Landowners Association. The report was presented to the U.S. Fish and Wildlife Service for use in its listing process under the Endangered Species Act. A financial bonus was paid by the client in recognition of the quality of the work performed.

Special-Status Species Survey and Riparian Vegetation Assessment for the Angels Creek Project, Calaveras County, California. For the Calaveras County Water District, Roy conducted extensive field investigations for rare, threatened, and endangered flora and fauna along Angels Creek, Cherokee Creek, and the South Fork Calaveras River in support of a proposed water diversion from the Stanislaus River Basin to the Calaveras River Basin. He evaluated the impacts of diversion on the riparian communities of these streams and on aquatic fauna. A technical report was provided to the client and the California Department of Fish and Game.
Hydroelectric Projects

Facilitation and Relicensing of Three Southern California Edison Company Hydroelectric Projects, San Bernardino County, California. Roy was retained to assist 14 water agencies, with biological and hydrological issues related to the relicensing proceedings for the Santa Ana River 1 and 3, Mill Creek, and Lytle Creek hydroelectric projects operated by Southern California Edison Company. Technical analyses and evaluations were conducted related to instream flow evaluation, hydrology, water quality and water temperature, sediment transport, historical stream channel stability, fisheries, aquatic invertebrates, riparian vegetation, terrestrial wildlife, threatened and endangered species, recreation, groundwater, and habitat restoration. A collaborative effort with the State Water Resource Control Board led to the issuance of a Clean Water Act section 401 Water Quality Certification for the SAR 1 and 3 Project. Following NEPA compliance, the Federal Energy Regulatory Commission (FERC) issued new licenses for each project.

Upper American River Project and the Iowa Hill Pumped Storage Hydroelectric Project, El Dorado and Placer Counties, California. Roy was retained by the Sacramento Municipal Utilities District’s (SMUD) legal team to provide technical assistance in preparing responses to resource agency submittals to the FERC regarding licensing of the UARP. He completed various technical analyses on instream flow, water quality, fisheries, macroinvertebrate, and geomorphic issues contested during the licensing process. Roy served as aquatic resources senior scientist for SMUD in the preparation of a Supplemental Preliminary Draft Environmental Assessment. He was also senior aquatic scientist and expert witness for SMUD in the preparation of reports and submittals for trial-type hearings before the Department of Agriculture.

El Dorado Hydroelectric Project, El Dorado County, California. Roy provided the El Dorado Irrigation District with technical assistance in the completion of the license for the El Dorado Hydroelectric Project located in the South Fork American River watershed. He was responsible for management and technical guidance for 17 studies ranging in diversity from bat surveys to visual resource analysis. He assisted EID staff in the settlement negotiation process on issues of instream flow, water quality, and fluvio-geomorphology.

Expert Witness Testimony

- Technical work and testimony on fishery issues in Alameda Superior Court regarding instream flow needs for steelhead and Chinook salmon in the American River, Sacramento County, California
- Technical work and testimony on aquatic resource issues before the State Water Resources Control Board regarding Bear Creek, San Bernardino County, California
- Testimony on fishery issues before the State Water Resources Control Board regarding a Bay/Delta Water Transfer, Sacramento River, California
- Technical work and testimony on aquatic resource issues before San Francisco Superior Court regarding Forest Creek, Calaveras County, California
- Technical work and testimony on aquatic resource issues before the State Water

G. Roy Leidy
Senior Scientist, Aquatic Ecologist
Resources Control Board regarding water conservation at Seven Oaks Dam, San Bernardino County, California

WORK EXPERIENCE
1996-Present Director, Fisheries and Aquatic Sciences. EIP Associates

Director, Natural Resource Sciences. EIP Associates, a division of PBS&J

- Senior biologist specializing in fish and wildlife management. Responsible for project management, technical review, guidance, and field implementation of natural resource studies and all aspects of federal, state, and local regulatory compliance. Management and administrative responsibilities included: planning, organization coordination and project management for numerous projects often exceeding $500,000 in budget; fiscal management of the Natural Resource Sciences; supervision and personnel management of seven environmental specialists; management of subcontractor contracts and contractor work performance; preparation of proposals; representation of EIP/PBS&J and its clients before various governmental agencies.

- Senior Aquatic Ecologist. Technical assistance to the Sacramento Municipal Utility District legal team in preparing responses to resource agency submittals to the FERC regarding licensing of the Upper American River Project and the Iowa Hill Pumped Storage Hydroelectric Project. Completed various technical analyses on instream flow, water quality, fisheries, macroinvertebrate, and geomorphic issues contested during the licensing process. Aquatic resources senior scientist for SMUD in the preparation of a Supplemental Preliminary Draft Environmental Assessment. Also senior aquatic scientist and expert witness for SMUD in the preparation of reports and submittals for trial-type hearings before the Department of Agriculture.

- Senior Scientist and Project Manager. Provided the El Dorado Irrigation District with technical assistance in the completion of the license for the El Dorado Hydroelectric Project located in the South Fork American River watershed. Responsible for management and technical guidance for 17 studies ranging in diversity from bat surveys to visual resource analysis. Assisted EID staff in the settlement negotiation process on issues of instream flow, water quality, and fluvio-geomorphology.

- Technical Director and Project Manager. Retained by Lake Elsinore & San Jacinto Watersheds Authority to prepare a Fisheries Management Plan for Lake Elsinore, California. The primary goal of the FMP was to develop a detailed rehabilitation and enhancement program for fisheries resources at Lake Elsinore.

- Technical Director and Project Manager. Collaborated with 14 water agencies with biological and hydrological issues related to the relicensing proceedings for the Santa Ana River 1 and 3, Mill Creek, and Lytle Creek hydroelectric projects operated by Southern California Edison Company.

- Technical Director and Project Manager. Prepared a Report to Congress for the U.S. Fish and Wildlife Service on salmon and steelhead production enhancement opportunities in 24 tributaries to the Sacramento and San Joaquin rivers, California.

- Project Manager and Principal Scientist. Evaluated of the impacts of heavy metals from cement kiln dust effluent on the biota of Sullivan Creek, a tributary to the Pend Oreille River, Washington, supporting bull trout and westslope cutthroat trout.
G. Roy Leidy
Senior Scientist, Aquatic Ecologist

- Project Manager. Conducted an evaluation of the potential for steelhead habitat restoration in Pilarcitos Creek, a coastal stream south of San Francisco, California.
- Project Manager. Conducted an environmental assessment of the effects of flushing sediment from three diversion dams on the biota of the North Fork Stanislaus River, California.
- Project Manager and Expert Witness. Designed and implemented a biomonitoring program for aquatic resources in Bear Creek, a designated Wild Trout stream located within San Bernardino National Forest, California.

1995-1996 Ecologist, Georgia-Pacific West, Inc.

Fish, wildlife and botanical project/resource manager for 125,000 acres of private, commercial timberland in the Sierra Nevada. Provided technical expertise to foresters and the California Department of Forestry and Fire Protection on the management of flora and fauna to ensure viable populations of all biota on managed timberlands. Provided technical expertise on all non-forestry environmental issues requiring regulatory compliance (e.g., state and federal endangered species laws and regulations, water quality laws and regulations, and mine closure permitting, reclamation and monitoring). Provided expertise to G-P staff on the interpretation of various state and federal environmental statutes (e.g., Endangered Species Act, California Environmental Quality Act, Forest Practice Rules, Water Code of California, Fish and Game Code of California). Responsible for the preparation and fiscal management of the environmental budget, organization, and management of G-P's environmental compliance and monitoring program, and the management of subcontracts. Served as G-P's representative to various professional and public organizations, including the Mokelumne River Association, the El Dorado-Amador Forest Forum, and the Sierra Nevada Ecosystem Project. Selected projects:

- Project Manager. Routinely surveyed for state and federally listed rare, threatened, or endangered species, including the Sierra Nevada red fox, great gray owl, southwestern willow flycatcher, and California red-legged frog.
- Project Manager. Prepared a 100-year wildlife habitat management plan that integrated forest practices with maintenance of biological diversity. Developed a methodology for predicting the potential impacts of forest practices on individual wildlife species and wildlife communities for any spatial and temporal scale desired, including a procedure for evaluating long-term cumulative effects.
- Project Manager and Technical Director. Technical lead in permitting and management of a program developed in cooperation with the Central Valley Regional Water Quality Control Board to reclaim, close and monitor soil and water quality at the Hazel Creek Mine site located on G-P property. Directed the testing of soils and surface waters for various constituents of concern at this site which was classified as a Group B waste management unit.
- Developed a water quality and cumulative watershed effects program to monitor the effects of forest practices on water quality and sediment in watersheds subject to timber harvesting. Emphasis was placed on the identification of road related problems that required remedial action to correct historical design problems.

1993-1995 Manager, Biological Resources Group, EIP Associates.
Project and technical manager for natural resource studies and local, state, and federal regulatory compliance. Technical work included: review and guidance of natural resource studies and regulatory and compliance, including NPDES permitting; biological impact assessments using HEP, WHR and IFIM modeling techniques; wetland delineations; endangered species field studies; preparation of Habitat Conservation Plans/Habitat Management Plans; river reservoir ecosystem modeling; water quality modeling and analysis; stream channel stability analysis and watershed assessments; preparation of Environmental Impact Reports and Environmental Impact Statements necessary to comply with the provisions of the California Environmental Quality Act and the National Environmental Policy Act; and expert witness testimony. Management and administrative responsibilities included: planning, organization coordination and project management for numerous projects often exceeding $500,000 in budget; fiscal management of the Biological Resources Group; supervision and personnel management of seven environmental specialists; management of subcontractor contracts and contractor work performance; preparation of proposals; representation of EIP and its clients before various governmental agencies. Selected projects:

- Project Manager and Senior Scientist. Central Valley Project Improvement Act. Prepared a report to Congress on behalf of the U.S. Fish and Wildlife Service on the feasibility of restoring and enhancing salmon and steelhead in over 24 streams tributary to the Sacramento and San Joaquin rivers. Also managed public participation and landowner involvement.

- Technical Director. Yolo County Habitat Conservation Plan. Developed with staff a county wide state and federal HCP for over 30 species of threatened and endangered flora and fauna pursuant to section 10 of the Endangered Species Act and section 2081 of the Fish and Game Code of California. Extensive public involvement and intergovernmental coordination with the cities of West Sacramento, Davis, Woodland, and Winters. The draft HCP was considered by the U.S. Fish and Wildlife Service to be a "model" multi-species plan. Managed project budget and directed and coordinated the work of a large staff of technical experts. Prepared administrative and technical reports for this large, multi-year project.

- Project Manager and Senior Scientist. Mill Creek Stream Channel Stability and Watershed Assessment. Prepared a report for a private forest products company on the characteristics and condition of the channel of Mill Creek and its tributaries in the Mokelumne River Basin, California. Field data collection included characterization of instream habitat types, riparian vegetation, aquatic resources, water quality, sedimentation, and land uses.

- Project Manager and Senior Scientist and Expert Witness. Bear Creek Instream Flow Study, San Bernardino National Forest, California. Conducted extensive investigations of the instream flow needs of Bear Creek, included aquatic invertebrate diversity, fish population composition and distribution, water quality, sedimentation, impact assessment on bald eagles, wetlands, and reservoir fisheries. Provided expert testimony before the California State Water Resources Control Board on instream flow and water quality issues. Managed project budget and the work of several subcontractors.

work included fish and wildlife management, habitat restoration, environmental impact assessment (CEQA/NEPA), regulatory compliance and permitting, and endangered species investigations. Responsible for the fiscal, administrative, and personnel management of PEC. Managed the consultancy from its inception to a successful business with six months of backlogged contracts. PEC was purchased by EIP Associates in 1993 to expand its ability to provide environmental services to its clients. Selected projects:

- Project Manager and Senior Scientist. Ecology, Status and Management of the Giant Garter Snake. Conducted field work and prepared an extensive report describing the ecology and status of this threatened species in California. Presented results to the U.S. Fish and Wildlife Service for use in its listing process under the Endangered Species Act. A financial bonus was paid by the client in recognition of the quality of the work performed.

- Project Manager and Senior Scientist. Special Status Species Survey and Riparian Vegetation Assessment for the Angels Creek Project. Conducted extensive field investigations for rare, threatened, and endangered flora and fauna along Angels Creek, Cherokee Creek, and the South Fork Calaveras River for the Calaveras County Water District in support of a proposed water diversion from the Stanislaus River Basin to the Calaveras River Basin. Evaluated the impacts of diversion on the riparian communities of these streams. Report provided to the client and the California Department of Fish and Game.

- Project Manager and Senior Scientist. Gerlach KGRA Special Status Species Surveys. Completed field surveys and report preparation related to the occurrence of threatened and endangered species on public lands managed by the U.S. Bureau of Land Management within the Gerlach (Nevada) Known Geothermal Resources Area. Extensive focus on rare reptiles, spring snails, and flora of this desert region.

Founder and Regional Manager of Beak's Sacramento office from 1986 to 1990. Responsibilities included office administration, fiscal management, personnel management, project management, and technical support to staff. Developed the consultancy from one individual to a team of twelve scientists and support staff over a five-year period. Selected projects:

- Project Manager and CEQA Specialist. Bodie Mineral Exploration Program Environmental Impact Report. Managed a team of resource specialists in the preparation of a draft EIR for the Mono County Planning Department for a mineral exploration project near Bodie State Historic Park. Areas of analysis personally prepared included: application for NPDES permit, cultural resources, geology, water resources, fish and wildlife resources, aesthetics and visual resources, and socioeconomics. Developed a mitigation monitoring program for the proposed project.

- Project Manager and CEQA Specialist. Mammoth Lakes Basin Comprehensive Water Management Environmental Impact Report. This project, which was subsequently held in abeyance by the Mammoth County Water District, involved the preparation of an EIR evaluating a full range of alternatives for managing the water resources of the Mammoth Lakes Basin, California. The project involved coordination with the U.S. Forest Service, Inyo National Forest. Key issues...
evaluated included fisheries impacts, aesthetics, recreation, and groundwater and surface water management.

- Project Manager and CEQA Specialist. Conway Ranch Environmental Impact Report. Managed a team of resource specialists in the preparation of draft and final EIRs for the Mono County Planning Department for a proposed destination fly fishing resort at Conway Ranch in the Mono Basin, California. Key issues addressed in the EIRs were aesthetics and visual resources, biological impacts, socioeconomics, provisions for community services such as fire, water, and garbage, and wetland impacts. The final EIR was subsequently certified by the Mono County Board of Supervisors.

- Project Manager and Senior Scientist. Garden Bar Dam and Reservoir Pumped Storage Hydroelectric Project. Managed a large budget and team of scientists conducting extensive, multi-year reservoir/river fisheries investigations of Camp Far West Reservoir and the Bear River, California, for the engineering firm of Parsons, Brinckerhoff, Quade & Douglas. Directed studies that included an instream flow study (IFIM), water quality and temperature simulation modeling for various reservoir operational modes, riparian impacts to the Bear River, fisheries and wildlife (HEP) impacts, a migratory mule deer study, and endangered plant surveys. Directed work on the biological and water quality topics for a Federal Energy Regulatory Commission license application and for the draft Environmental Impact Report (CEQA). Responsibilities also included public meeting participation and coordination with numerous local, state, and federal agencies.

Served as Senior Fisheries Scientist for Ott and also supervised the environmental staff of the Bellevue, Washington office. Responsible for all aspects of fisheries and aquatic resource work, including fish passage and screening, hatchery design, habitat improvement, and hydropower licensing. Selected projects:

- Senior Fisheries Scientist. Bonneville Second Powerhouse Fish Passage Evaluation, Columbia River, Oregon and Washington. Conducted an evaluation for the U.S. Army Corps of Engineers of downstream juvenile migrant passage problems for salmonids at Bonneville Second Powerhouse, including hydraulic conditions at turbine intakes and fish migratory behavior.

- Senior Fisheries Scientist. Lemhi River Habitat Improvement Study, Lemhi River, Idaho. Project completed for the Bonneville Power Administration involved the evaluation of fishery management alternatives for various water management scenarios. Responsibilities included extensive consultations with state and federal agencies to find workable solutions to water management issues.

Senior Staff Specialist for the Service's Division of Ecological Services, Sacramento, California. Responsible for directing and managing all work by staff biologists involving hydropower assessment, review, and consultation. Directed and participated in the assessment of environmental effects of over 800 hydroelectric projects involving the FERC process. Supervised data collection and analysis, provided technical guidance, and reviewed all work products for technical accuracy and compliance with all regulatory and legal mandates. Served as technical expert to the
U.S. Fish and Wildlife Service, Washington, D.C. office on the effects of hydro
development on biological resources and water quality, and the regulatory aspects of
the Federal Power Act.

Responsible for directing and managing river reservoir ecosystem modeling for the
National Reservoir Research Program of the Service in Fayetteville, Arkansas.
Developed fishery, zooplankton, and benthos models to assess the effects of reservoir
operations on aquatic resources. Published technical reports for the U.S. Army Corps
of Engineers, Waterways Experiment Station, Vicksburg, Mississippi, on the results of
various modeling studies.

1974-1975 Aquatic Biologist, California Department of Transportation.

Served as aquatic biologist for the Caltrans Transportation Laboratory, Sacramento,
California. Conducted research on the effects of road de-icing salts on aquatic
systems. Assisted transportation engineers throughout California with environmental
issues related to road design and construction. Coauthored an identification key to the
families of California aquatic insects. Conducted environmental impact assessments
related to Caltrans activities.

Forestry Aid (Biometrician) at the Pacific Southwest Forest and Range Experiment
Station, Berkeley, California. Performed computer programming and data analysis for
research scientists on various topics ranging from predicting fire hazards to simulating
optimum forest road system design.

1972-1974 Research Assistant, University of California, Berkeley.

Conducted microhabitat utilization research on rainbow and brook trout at Sagehen
Creek, California. Completed field data collection for a study evaluating the effects of
air pollutants on aquatic resources in the San Bernardino Mountains of California.
Served Dr. Don Erman as a research assistant in aquatic ecology.

Publications

The Ecology of Mill Creek, Bear Valley Mutual Water Company et al., 350 pp.

Leidy, George R. 1998. Draft Report to Congress on the Feasibility, Cost, and
Desirability of Implementing Measures Pursuant to Subsections 3406(e)(3) and
(e)(6) of the Central Valley Project Improvement Act (Tributary Production
Enhancement Report), U.S. Fish and Wildlife Service, Central Valley Fish and
Wildlife Restoration Program Office, Sacramento, California.

Leidy, George R., Smallwood, K. S., Wilcox, B., and Yarris, K. 1998. Indicators
Assessment for Habitat Conservation Plan of Yolo County, California, USA,

Leidy, George R., and Jenkins, R. M. 1977. The Development of Fishery Compartments and Population Rate Coefficients for Use in Reservoir Ecosystem Modeling, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, Miscellaneous Report Y 77-10.

Presentations
Leidy, George R. 2007. Historical Changes in the Freshwater Fish Fauna of the Santa Ana River, paper presented at the annual meeting of the Southern California Academy of Sciences, Fullerton, California.

Leidy, George R. 1985. Technical Developments for Environmental Protection at
Small Hydro Installations, paper presented at the U.S. Environmental Protection Agency’s Small Hydro Workshop, Chicago, Illinois.

Leidy, George R. 1970-present. Contributions to hundreds of unpublished reports on various environmental issues related to natural resource management, including endangered species, water resources, watershed management, mining impacts and remediation, instream flows, water quality, habitat restoration, air quality, and regulatory compliance.

Professional Development
University of California, Berkeley. Wildland Resource Science. Two years of graduate work toward M.S. degree researching salmonid behavior, 1972-1974
University of California, Davis. Aquatic Entomology, 1975
University of Arkansas, Fayetteville. Mathematical Modeling, 1976
University of Washington, Seattle. Modeling Aquatic Ecosystems, 1977
University of Arkansas, Fayetteville. Calculus and Analytic Geometry, 1978
U.S. Fish and Wildlife Service, Sacramento. Wetlands Classification, 1980
California Department of Fish and Game, Sacramento. California Wildlife Habitat Relationships System, 1995
Dr. Denton Belk (University of Texas), Sacramento. Fairy Shrimp Taxonomy and Identification, 1996

Honors and Awards
Audubon Society Scholarship and Wilderness Foundation Scholarship to attend a marine biology research camp, Santa Catalina Island, California, 1966

California Alumni Scholarship to attend the University of California at Berkeley, 1968
Member Upper Division and Graduate Students Honor Society, U.C., Berkeley, 1971

Member Xi Sigma Pi (forestry honor society), 1971

Frank Schwabacher Memorial Scholarship in Forestry to attend Graduate School at the School of Forestry and Conservation, U.C., Berkeley, 1972

Grant from the Foundation For Environmental Education to pursue research on the interaction of brook and rainbow trout fry, 1973

Grant from the Union Foundation Wildlife Fund to pursue research on the interaction of brook and rainbow trout fry, 1973

Howard M. Post Technical Achievement Award 2006 presented by Post, Buckley, Schuh, and Jernigan

Professional Affiliations
American Fisheries Society
American Society of Limnology and Oceanography
Desert Fishes Council
North American Benthological Society
American Society of Ichthyologists and Herpetologists
American Institute of Fishery Research Biologists
Southern California Native Aquatic Fauna Working Group
Santa Ana Sucker Conservation Team
John Durand

Graduate Group in Ecology 6600 Orchard Park Circle
Fish, Wildlife and Conservation Biology Apt. 6911
University of California, Davis Davis, Ca 95616
One Shields Avenue 530-759-7091
Davis, Ca 95616 jrdurand@ucdavis.edu

Education.
Ph.D., Graduate Group in Ecology, University of California, Davis. Expected Spring 2011. Dissertation: Sources of secondary production and loss in Suisun Bay and Marsh. Advisor: Dr. Peter Moyle

Areas of Specialization.
Estuarine and marine ecology Fish taxonomy
Zooplankton population ecology Fisheries biology
Source-sink dynamics in estuarine foodwebs Copepod taxonomy
Marine protected areas and fish recruitment and dispersal Conservation ecology

Research Experience.
Doctoral Research, University of California, Davis, 2006-2011. Surveying fish and invertebrates in Suisun Marsh as part of a long term study. Dr. Peter Moyle, Department of Wildlife, Fish and Conservation Biology, Center for Watershed Sciences.

Consultant, Delta Regional Ecosystem Restoration Implementation Plan, 2006-08. Conceptual model for the food web of the Sacramento-San Joaquin Delta; to be used in vetting restoration plans.

Masters Research, Romberg Tiburon Center for Environmental Studies, San Francisco State University, 2002-2006. Estimating production of key zooplankton in Suisun Bay and the Delta as a function of season and geography. Dr. Wim Kimmerer, Department of Biology.

Consultant, San Francisco State University, 2005. Pilot assessment of intertidal fish species composition in designated Areas of Importance within the Gulf of the Farallones National Seashore. Dr. Ralph Larson, Department of Biology.

Teaching Experience.

Graduate Teaching Assistant, Biology 230 and 240, San Francisco State University. Spring-Fall 2005. Drs. Ralph Larson and Nan Carnal, Department of Biology.

Graduate Assistant, Fisheries Biology and Animal Ecology, San Francisco State University. Fall 2004-Spring 2005. Dr. Ralph Larson, Department of Biology.

Publications.

Invited Presentations.

Professional Affiliations.

Estuarine Research Federation (ERF)
California Estuarine Research Society (CAERS)
American Fisheries Society (AFS)
American Society of Limnologists and Oceanographers (ASLO)

Academic Service.

California Estuarine Research Society Student Representative, 2005-07
Student Representative to SFSU College of Science and Engineering 2003-04, 2005-06
President, Romberg Tiburon Center Student Association 2003-04

Honors.

Center for Watershed Sciences Fellow, UC Davis, 2008-
Henry A. Jastro and Peter J. Shields Graduate Research Scholarship, UC Davis, 2007
Graduate Group in Ecology Block Grant, UC Davis, 2006-07
Sally Casanova Pre-doctoral Fellowship, SFSU, 2005-06
Robert W. Maxwell Memorial Scholarship, SFSU, Fall 2005
Nelson Biology Scholarship, SFSU, Spring 2005
College of Science and Engineering Student Project Showcase, 2nd Place, SFSU, Spring 2005
San Francisco Bay Scholarship, SFSU, Fall 2004
Appendix B

(with line numbers and without figures)
EFFECTS OF THE PROPOSED ACTION

Introduction
The Status of the Species/Environmental Baseline sections described the multitude of factors that affect delta smelt population dynamics including predation, contaminants, introduced species, entrainment, habitat suitability, food supply, aquatic macrophytes, and microcystis. The magnitude of the adverse effects of many of these factors on delta smelt is related to hydrodynamic conditions in the delta, which in turn are controlled to a large extent by CVP and SWP operations. Other sources of water diversion (NBA, CCWD, local agricultural diversions, power plants) adversely affect delta smelt largely through entrainment (see following discussion), but when taken together do not control hydrodynamics conditions throughout the delta to any degree that approaches the influence of the SWP and CVP. So while many of the other stressors that have been identified as adversely affecting delta smelt were not caused by CVP and SWP operations, the likelihood and extent to which they adversely affect delta smelt is highly influenced by how the projects are operated in the context of annual and seasonal hydrologic conditions. So, while research indicates that there is no single primary driver of delta smelt population dynamics, hydrodynamic conditions driven or influenced by project operation in turn influence the dynamics of delta smelt interaction with these other stressors.

The Service is following Bennett and Moyle (1996) and Bennett (2005), and the consensus emerging from the POD investigation (Sommer et al. 2007, Baxter et al. 2008), by assuming that delta smelt abundance trends have been driven by a mixture of factors, some of which are affected or controlled by water project operations and others that are not. The following analysis focuses on the subset of factors that is affected or controlled by water project operations, and includes discussion of other factors to the extent they modulate or otherwise affect the project-related factors affecting delta smelt. Although it is becoming increasingly clear that the long-term decline of delta smelt was very strongly affected by ecosystem changes caused by non-indigenous species invasions and other non-project factors, the water projects have played an important direct role. Further, the water projects have played an indirect role by creating an altered environment in the delta that has fostered the establishment of non-indigenous species and exacerbates these and other indirect effects to delta smelt. This analysis and others show that every day the system is in balanced conditions, the projects are a primary driver of Delta smelt abiotic and biotic habitat suitability, health, and mortality.

This effects analysis diverges from the 2005 biological opinion because it explicitly analyzes the proposed project’s effects on three types of effects: entrainment of delta smelt, habitat restriction, and entrainment of *Pseudodiaptomus forbesi*, the primary prey of delta smelt during summer-fall. These types of effects are considered in a life cycle context (Table 1). Thus, a second assumption of this analysis is that the proposed project is affecting delta smelt throughout the year either directly through entrainment or indirectly through influences on food supply and habitat suitability. During December-June, when delta smelt are commonly entrained at Banks and Jones, their habitat and co-
occurring food supply also are being entrained, so project effects on habitat and food
supply are only examined explicitly during July-December when delta smelt entrainment
is rare. Delta smelt entrainment is rare from about mid-July through mid-December each
year mainly because environmental conditions in the San Joaquin River and its
distributaries are not appropriate to support delta smelt. The water is too warm and clear,
so delta smelt actively avoid the central and southern Delta during summer and fall
(Feyrer et al. 2007; Nobriga et al. 2008). A third assumption is that any of these three
types of effects will adversely affect delta smelt, either alone or in combinations. This
approach is also consistent with Rose (2000), who used several different individual based
models to show how multiple interacting stressors can result in fish population declines
that would not be readily discernable using linear regression-based approaches.

This effects analysis uses a combination of available tools and data. These include the
CALSIM II model outputs provided in appendices to the Biological Assessment,
historical hydrologic data provided in the DAYFLOW database, statistical summaries
derived from 936 unique 90-day particle tracking simulations published by Kimmerer
and Nobriga (2008), and statistical summaries and derivative analyses of hydrodynamic
and fisheries data published by Feyrer et al. (2007), Kimmerer (2008), and Grimaldo et
al. (in press).

Table 1. The distribution of the three types of effects attributed to the Project Description
over the life cycle of delta smelt.

<table>
<thead>
<tr>
<th>Season</th>
<th>Delta smelt entrainment</th>
<th>Pseudodiaptomus entrainment/retention</th>
<th>Habitat suitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>X (adults)a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>X (larvae/juveniles)b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td>Xc</td>
<td>Xd</td>
</tr>
</tbody>
</table>

aHistorical hydrodynamic data are DAYFLOW 1967-2007; OMR was measured 1993-
2007 and estimated using regression on DAYFLOW variables by Cathy Ruhl (USGS) for
1967-1992; historical delta smelt salvage data are 1993-2007, the period when the data
are considered most reliable
bHistorical hydrodynamic data are DAYFLOW 1967-2007 (except OMR as noted in the
previous footnote); direct estimates of larval-juvenile entrainment are 1995-2005
(Kimmerer 2008); Entrainment was estimated statistically for 1967-1994 and 2006-2007
cHistorical hydrodynamic data (DAYFLOW; except OMR 1988-1992, see footnote a)
and Pseudodiaptomus density data (IEP monitoring) are 1988-2006 because
Pseudodiaptomus was introduced in 1988
dHistorical hydrodynamic data are DAYFLOW 1967-2007

Effects Analysis Methods (CALSIM II Modeling)

The CALSIM II model is a mathematical simulation model developed for statewide water
planning. It has the ability to estimate water supply, streamflows, and Delta water export
capability, keeping within “rules” such as water quality standards that limit model
outputs to plausibly achievable system operations. CALSIM II is DWR and USBR’s official SWP and CVP planning tool. The CALSIM II model is applied to the SWP, the CVP, and the Sacramento and San Joaquin Delta. The model is used to evaluate the performance of the CVP and SWP systems for: existing or future levels of land development, potential future facilities, and current or alternative operational policies and regulatory environments. Key model output includes reservoir storage, instream river flow, water delivery, Delta exports and conditions, biological indicators such as X2, and operational and regulatory metrics.

CALSIM II simulates 82 years of hydrology for the Central Valley region spanning water years 1922-2003. The model employs an optimization algorithm to find ways to move water through the SWP and CVP in order to meet assumed water demands on a monthly time step. The movement of water in the system is governed by an internal weighting structure that ensures regulatory and operational priorities are met. The Delta is also represented in CALSIM II by DWR’s Artificial Neural Network (ANN), which simulates flow and salinity relationships. Delta flow and electrical conductivity are output for key regulatory locations. Details of the level of land development (demands) and hydrology are discussed in Appendix D of the Biological Assessment, as are details of how the model simulates flexible operations like b(2) and EWA allocations. Most of the model data used were directly output from CALSIM II. However, certain Delta flow indicators, most notably OMR flows, were estimated by inputting CALSIM II outputs into DSM-2 HYDRO, which can be used as a “virtual flow meter” for Delta channels.

This effects analysis analyzes outputs from the following subset of studies presented in the BA: 7.0, 7.1, 8.0, and 9.0-9.5. Study 7.0 represents a 2005 level of development with b(2) allocations and a full Environmental Water Account. The full EWA was represented in the CALSIM II framework as up to 50,000 acre-feet of water export reductions during December-February, the VAMP pulse flow, and export reductions following VAMP (mid-May into June) when CALSIM II predicted the EWA had surplus water (i.e., collateral exceeded debt). Study 7.1 also represented a 2005 level of development with b(2) allocations, but with a limited EWA, which as described in the Project Description consists mainly of water from the Yuba Accord. In the limited EWA, there were no export reductions in February and June, but export reductions were possible during December to January and late May. The VAMP pulse flow was modeled in the same way as in the full EWA. Study 8.0 estimated SWP and CVP operations with a 2030 level of development, b(2) allocations and the limited EWA. Note that the 2030 demand was estimated as 100 percent of the CVP’s contract deliveries, 100 percent of the SWP’s Table A contract deliveries, and no variation in demand among water year types. In other words, 100 percent of contracted quantities were exported in each year of the simulation.

Study 9.1 represents a scenario in which sea level is assumed to be one foot higher than current, resulting in a four inch higher tidal elevation at Martinez, California. Studies 9.2-9.5 represent ‘bookends’ of climate change scenarios with the 2030 level of development. These bookends cannot be summarized simply except in qualitative terms. The bookends represent 10th and 90th percentiles of predicted changes in precipitation and temperature for 2010 to 2030 relative to 1971 to 2000. Generally, climate change models
agree the Central Valley will be warmer in the future, but they do not agree whether precipitation will increase or decrease (e.g., Dettlinger 2005). Thus, the climate change bookends include drier and wetter possibilities, but do not include cooler futures relative to current conditions. Thus, the temperature bookends can be called ‘less warming’ and ‘more warming’ or ‘warmer’ and ‘warmer still’. Study 9.2 is a wetter and warmer simulation, 9.3 is a wetter and warmer still simulation, 9.4 is a drier and warmer simulation, and 9.5 is a drier and warmer still simulation. Study 9.5 to represents the “worst-case scenario” among all simulations in the biological assessment because drier conditions are expected to result in more frequent conflicts over limited water resources. Further, springtime water temperatures influence the length of the spawning season for delta smelt (Bennett 2005) and summertime water temperature conditions already can be marginal for delta smelt (e.g., Nobriga et al. 2008). Thus, all warmer futures are expected to further stress delta smelt, but the warmer still scenarios have the highest potential for detrimental effects.

Migrating and spawning adults (~ December through March)

Water Diversions and Reservoir Operations

Upstream Reservoirs and diversions

The following Project elements are included in the modeling results and are not specifically discussed in this analysis, rather the effects of these Project elements are included in the Adult Entrainment Effects and the Habitat Suitability Effects sections of the Effects Section: Project effects from the Trinity River Operations, Whiskeytown Operations, Clear Creek Operations, Shasta Lake and Keswick Dam Operations, Red Bluff Diversion Dam Operations, Oroville Dam and Feather River Operations, Folsom and Nimbus Dam Operations, New Melones Reservoir Operations, and Freeport Diversion Operations.

Banks and Jones Pumping Plants

Entrainment of delta smelt

The entrainment of delta smelt into the Banks and Jones pumping plants is a direct effect of SWP and CVP operations. See Brown et al. (1996) for a description of fish salvage operations. Total entrainment is calculated based upon estimates of the number of fish salvaged (Kimmerer 2008). However, these estimates are indices - most entrained fish are not observed (Table 2), so most of the fish are not salvaged and therefore do not survive. Many, if not most, of the entrained delta smelt that are salvaged likely die due to handling, transport, and predation at release sites (Bennett 2005). Projected diversions through CCWD are included in calculations of E:I ratios used in this effects analysis because they do contribute to reverse flows in Old River. NBA and CCWD effects to delta smelt are presented separately below.
<table>
<thead>
<tr>
<th>Table 2. Summary of factors that affect the difference between delta smelt entrainment and salvage.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
</tr>
<tr>
<td>Predation prior to encountering fish salvage facilities</td>
</tr>
<tr>
<td>Louver efficiency (based on Kimmerer 2008)</td>
</tr>
<tr>
<td>Collection screens (based on Kimmerer 2008)</td>
</tr>
<tr>
<td>Identification protocols</td>
</tr>
<tr>
<td>Handling, trucking and release back into the Delta</td>
</tr>
</tbody>
</table>

The population-level effects of delta smelt entrainment vary; delta smelt entrainment can best be characterized as a sporadically significant influence on population dynamics. Kimmerer (2008) estimated that annual entrainment of the delta smelt population (adults and their progeny combined) ranged from approximately 10 percent to 60 percent per year from 2002-2006. Major population declines during the early 1980s (Moyle et al. 1992) and during the recent “POD” years (Sommer et al. 2007) were both associated with hydrodynamic conditions that greatly increased delta smelt entrainment losses as indexed by numbers of fish salvaged. However, currently published analyses of long-term associations between delta smelt salvage and subsequent abundance do not support the hypothesis that entrainment is driving population dynamics year in and year out (Bennett 2005; Manly and Chotkowski 2006; Kimmerer 2008).

Adult entrainment effects

Adult delta smelt have been salvaged at Banks and Jones as early in the water year as November and as late as June, but most of the recent historical salvage has occurred between mid-December and March (Figure X in the Baseline). Delta smelt salvage usually occurs in a prolonged event that has one major peak. This is evidence that the maturing population makes a spawning migration into the Delta. The migration is cued by pulses of freshwater flow into the estuary, otherwise known as “first flush” events.
(Grimaldo et al. in press). Salvage of pre-spawning adults typically begins when river inflows and associated turbidity increase. The magnitude of cumulative annual salvage is best explained by OMR flow, whereby salvage increases with reverse OMR flow (Figure 1). Kimmerer (2008) calculated that entrainment losses of adult delta smelt in the winter removed 1% to 50% of the estimated population and were proportional to OMR flow, though the high entrainment case might overstate actual entrainment. This effect analysis evaluates the proposed project operations by comparing the long-term trends in OMR flows to OMR flows in the CALSIM II modeling presented in the Biological Assessment. Given the demonstrated relationships between smelt entrainment and salvage with OMR flows (Kimmerer 2008; Grimaldo et al. in review), differences in OMR flows (i.e., modeled from historic) were used to estimate if effects were to be expected. The metric used to estimate effects or entrainment losses (as measured by salvage) was derived by calculating changes in percent differences from historic salvage to predicted salvage using salvage-OMR relationships. The previous year’s FMWT Recovery Index (RI) was then used to scale the likely impact of cumulative salvage.

Combined Old and Middle River flow

The median and range of OMR flows were determined for each December to March period for each of the studies and the historic data by water year type (Figure 2). We defined the December to March period to be consistent with recent analyses (Kimmerer 2008, Grimaldo et al. in review) as this is the period when the majority of adults migrate upstream to spawn. We focused the evaluation over the full winter period and not on a month-by-month basis since the timing of migration is variable and because adult delta smelt are not vulnerable to entrainment until they begin to migrate upstream.

We used water years 1967 to 2007 to characterize historical OMR flow since it includes the fullest range of water year types available since the completion of the Banks pumping plant. Historic OMR flow data from 1987-2007 were taken from measured flow stations (Arthur et al. 1996, www.ipe.water.ca.gov/dayflow). Historic OMR flow from 1967 to 1987 was modeled from combined Jones and Banks exports and San Joaquin River flow (Ruhl et al. 2006). The median OMR flow for each winter period was derived from daily data values for the historic data and from the monthly values from the CALSIM II model studies.

Methods used to evaluate Project effects

As was done in the Biological Assessment (Reclamation 2008, Chapter 13), we have not attempted to separate the effects of SWP and CVP. The hydrodynamic effects of pumping that cause reverse OMR flow result from the combined action of both facilities. Finally, we have not attempted to estimate total entrainment of delta smelt at the facilities. To date, no studies have been done to evaluate pre-screen losses at the export facilities, and this analytical approach does not support the kind of population-level inferences drawn in Kimmerer (2008) and similar work. Rather, we use salvage as an index of numerical adult smelt entrainment at the facilities.

To quantitatively predict entrainment of delta smelt, we used a linear model (Grimaldo et al. in review) to predict annual winter salvage for each CALSIM II Study. The
predictions in this model do not capture the variability (i.e., peaks and valleys) of historical salvage but they do follow the trend that salvage increases as OMR flows decreases. In part, the variation is not captured because entrainment is not solely explained by OMR flows. Entrainment is also related to the number of adults that migrate into the vicinity of the projects. Although water year type may sometimes affect the spawning distribution (Sweetnam 1999), there is wide, apparently random variation in the use of the central and south delta by spawning delta smelt. For example, there are years when a greater proportion of the smelt population moves into the vicinity of the export facilities, which may lead to larger salvage events. In critical dry years, smelt often migrate into the North Delta (Sweetnam 1999) where entrainment risks would be low in such years when exports are generally small. Leaving aside differences due to spawning migration variability, the approach used here provides an expected salvage given an OMR flow. The percent differences between historic winter salvage and predicted winter salvage from modeled studies were examined for each water year.

To evaluate whether the proposed operations will have adverse impacts on the pre-spawning adult smelt population, we calculated the likelihood that take would exceed thresholds the Smelt Work Group (SWG) has historically regarded as detrimental to the population and the Service has adopted this approach. For this analysis, we calculated the historic median in salvage (1987-2007) with 25th and 75th percentiles and plotted them versus the preceding FMWT RI as the basis for evaluating salvage (Figure 3). The RI provides an indication of the status of the delta smelt population based on distributional and abundance criteria from a subset of September and October FWMT sampling (USFWS 1995). A low RI indicates the delta smelt population is at low levels, whereas a high RI value (~400) indicates a more robust population. We used years 1987 to 2007 as the historic baseline dataset for this analysis because they represent the period after which delta smelt experienced coincident declines in habitat and abundance (Feyrer et al. 2007). The Service has regarded the 25th percentile of recent historic winter salvage (1132 for 1987-2007 data) as a guideline for adverse impact when the previous RI is less than 29 (25th percentile of the RI index value) and the median (2046 fish for 1987-2007 data) when RI is greater than or equal to 29 and less than 71 (Figure 3). Salvage above these levels is likely to lead to large losses of spawners respective of their population size. For example, in 2003 and 2004, the projects salvaged 14,323 and 8,148 delta smelt respectively. These losses are disproportionately high (i.e., greater than the 75th percentile of historical salvage) for their given RI values, 33 (2003) and 101 (2004). According to Kimmerer (2008), 2003 and 2004 were years when entrainment accounted for 50% and 19% losses of adults from the population.

To estimate whether the historic median (median with 25th and 75th percentiles) would be exceeded under proposed OMR flows, we analyzed historic annual winter salvage and OMR flow data using logistic regression for different levels of exceedance. The event probabilities for each level were plotted against OMR flow and fitted with smoother lines (Figure 4). This graph was used to estimate the probability that the modeled OMR flows will exceed the specified level of salvage. Note, this graph indicates that the probability of salvaging between 0 and 1132 smelt in any year is greater than 90%. In part, this is
because some smelt are able to migrate upstream during periods of high total inflow and are entrained even during periods of positive OMR flow (i.e., 1997 and 1998).

We note that the analysis here uses 1987-2007 data to establish numerical salvage quantiles. This approach does not take into account the overall downtrend in delta smelt abundances that has exists in the historical data. A future version of this analysis will statistically scale the expected salvage range to account for trend, and will include a comparison of impact predictions derived from this analysis with entrainment estimates from Kimmerer (2008), which uses a different method.

CVP and SWP Effects

The median OMR flows from the CalSim-II modeled scenarios were more negative than historic OMR flow for all water year types except critically dry years (Figure 3; see Table 3b for all differences). The most pronounced differences occur during wet years, where median OMR flows are projected to be approximately 400 to 600% (-7100 to -3678 cfs) higher than historical wet years (-1032 cfs). Correspondingly, this decrease in OMR flow is predicted to cause up to a 65% increase in smelt salvage and therefore a substantial adverse effect to delta smelt in wet years when salvage levels have been generally low (see years 1995-1999 in Baseline Salvage Figure X). Proposed project operations for studies 7.0, 7.1, 8.0, 9.0, 9.1, 9.4, and 9.5 (median OMR flows -7100 to -5265 cfs) will result in an approximately 50% probability that salvage will exceed 5000 fish. This level of salvage would cause significant adverse affects to delta smelt given recent RI values have extremely low in recent years (2005=4, 2006=21, 2007=5).

The proposed operation conditions likely to have the greatest impact on delta smelt are those modeled during above normal water years. The modeled OMR flows for the above normal water years ranged between -8155 and -6242 cfs, a 33 to 57% decrease from the historic median of -5178 cfs. Though the predicted salvage would only be about 15-20% higher than historic salvage during these years (Table 3c), the modeled OMR flows would likely lead to significant population losses. The probability of salvage exceeding 7000 delta smelt would be approximately 48% at -6242 cfs and approximately 80% at -8155 cfs. Therefore, salvage during above normal water years are projected to cause significant adverse affects to delta smelt for any RI value but particularly substantial given that current RI values have remained less than 22 since 2005.

In below normal and dry water years, proposed OMR flows are also modeled to decrease from historic medians. Predicated salvage levels are likely to increase between 2 and 44%. More importantly, the modeled median flows from all studies in these water year types range between -5747 and -7438 cfs. Modeled OMR flows at these levels have a greater than 50% probability of exceeding 5000 fish, and near 75% probability of exceeding 2000 fish. Given that the population is at near record-low abundance, salvage during below normal and dry water years is likely to range from marginal to significant adverse affects given the current level of RI values.

During critically dry years, the median OMR flows for studies 7.0, 7.1, 8.0, 9.1, 9.4, and 9.5 are less than -5,000 cfs. These studies have predicted salvage lower than historic...
salvage. Though the event probability is still near a 70% chance of salvage exceeding 2000 smelt, the models might overestimate salvage during critical dry years when smelt are unlikely to migrate towards the interior delta due to lack of turbidity or first flush. Thus, the effects of critical dry operations on delta smelt take are probably small and lower than estimated.

In summary, adult entrainment is likely to be higher than it has been in the past under most operating scenarios, resulting in lower potential production of early life history stages in the spring in some years. While the largest predicted effects occur in Wet and Above Normal years, there are also likely adverse effects in Below Normal and Dry years. Only Critically Dry years are generally predicted to have lower entrainment than what has occurred in the recent past.
Table 3a. Historic and CALSIM II modeled median winter (Dec-Mar) OMR flows by water year type

<table>
<thead>
<tr>
<th>Water year type</th>
<th>Historic</th>
<th>7</th>
<th>7.1</th>
<th>8</th>
<th>9</th>
<th>9.1</th>
<th>9.2</th>
<th>9.3</th>
<th>9.4</th>
<th>9.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet</td>
<td>-1033</td>
<td>-5256</td>
<td>-5498</td>
<td>-5699</td>
<td>-5684</td>
<td>-5500</td>
<td>-3999</td>
<td>-3678</td>
<td>-7066</td>
<td>-6100</td>
</tr>
<tr>
<td>Above Normal</td>
<td>-5178</td>
<td>-7209</td>
<td>-7923</td>
<td>-8073</td>
<td>-8156</td>
<td>-7595</td>
<td>-6863</td>
<td>-6934</td>
<td>-7861</td>
<td>-7723</td>
</tr>
<tr>
<td>Below Normal</td>
<td>-2405</td>
<td>-6461</td>
<td>-7208</td>
<td>-7009</td>
<td>-6599</td>
<td>-6420</td>
<td>-5647</td>
<td>-6736</td>
<td>-6721</td>
<td>-6343</td>
</tr>
<tr>
<td>Dry</td>
<td>-5509</td>
<td>-6443</td>
<td>-6931</td>
<td>-6692</td>
<td>-6620</td>
<td>-6353</td>
<td>-6831</td>
<td>-7438</td>
<td>-5785</td>
<td>-5760</td>
</tr>
<tr>
<td>Critical</td>
<td>-5037</td>
<td>-4547</td>
<td>-4931</td>
<td>-4980</td>
<td>-5051</td>
<td>-5488</td>
<td>-5320</td>
<td>-5194</td>
<td>-4260</td>
<td>-3845</td>
</tr>
</tbody>
</table>

Table 3b. Winter OMR Flow percent difference from historic median value to CALSIM II model median value

<table>
<thead>
<tr>
<th>Water year type</th>
<th>7</th>
<th>7.1</th>
<th>8</th>
<th>9</th>
<th>9.1</th>
<th>9.2</th>
<th>9.3</th>
<th>9.4</th>
<th>9.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet</td>
<td>408.92%</td>
<td>432.37%</td>
<td>451.84%</td>
<td>450.36%</td>
<td>432.50%</td>
<td>287.16%</td>
<td>256.13%</td>
<td>584.15%</td>
<td>490.63%</td>
</tr>
<tr>
<td>Above Normal</td>
<td>39.21%</td>
<td>53.01%</td>
<td>55.90%</td>
<td>57.49%</td>
<td>46.67%</td>
<td>32.53%</td>
<td>33.91%</td>
<td>51.80%</td>
<td>49.13%</td>
</tr>
<tr>
<td>Below Normal</td>
<td>168.62%</td>
<td>199.68%</td>
<td>191.41%</td>
<td>174.35%</td>
<td>166.90%</td>
<td>134.75%</td>
<td>180.05%</td>
<td>179.42%</td>
<td>163.72%</td>
</tr>
<tr>
<td>Dry</td>
<td>16.95%</td>
<td>25.81%</td>
<td>21.48%</td>
<td>20.17%</td>
<td>15.32%</td>
<td>24.01%</td>
<td>35.02%</td>
<td>5.01%</td>
<td>4.57%</td>
</tr>
<tr>
<td>Critical</td>
<td>-9.74%</td>
<td>-2.12%</td>
<td>-1.14%</td>
<td>0.27%</td>
<td>-8.92%</td>
<td>5.61%</td>
<td>3.11%</td>
<td>-15.44%</td>
<td>-23.68%</td>
</tr>
</tbody>
</table>

Table 3c. Percent difference from historic median salvage to predicated salvage based on Dec-Mar OMR flows from CALSIM II studies

<table>
<thead>
<tr>
<th>Water year type</th>
<th>Study 7</th>
<th>Study 7.1</th>
<th>Study 8</th>
<th>Study 9</th>
<th>Study 9.1</th>
<th>Study 9.2</th>
<th>Study 9.3</th>
<th>Study 9.4</th>
<th>Study 9.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet</td>
<td>45.64%</td>
<td>48.26%</td>
<td>50.43%</td>
<td>50.26%</td>
<td>48.27%</td>
<td>32.05%</td>
<td>28.59%</td>
<td>65.20%</td>
<td>54.76%</td>
</tr>
<tr>
<td>Above Normal</td>
<td>15.15%</td>
<td>20.49%</td>
<td>21.60%</td>
<td>22.22%</td>
<td>18.04%</td>
<td>12.57%</td>
<td>13.10%</td>
<td>20.02%</td>
<td>18.99%</td>
</tr>
<tr>
<td>Below Normal</td>
<td>38.17%</td>
<td>45.20%</td>
<td>43.33%</td>
<td>39.46%</td>
<td>37.78%</td>
<td>30.50%</td>
<td>40.76%</td>
<td>40.61%</td>
<td>37.06%</td>
</tr>
<tr>
<td>Dry</td>
<td>6.80%</td>
<td>10.36%</td>
<td>8.62%</td>
<td>8.09%</td>
<td>6.15%</td>
<td>9.63%</td>
<td>14.05%</td>
<td>2.01%</td>
<td>1.83%</td>
</tr>
<tr>
<td>Critical</td>
<td>-3.70%</td>
<td>-0.81%</td>
<td>-0.43%</td>
<td>0.10%</td>
<td>-3.39%</td>
<td>2.13%</td>
<td>1.18%</td>
<td>-5.87%</td>
<td>-9.00%</td>
</tr>
</tbody>
</table>
349 Article 21

350 The CALSIM II modeling, as shown in the biological assessment, does not simulate two
351 major South of the Delta storage facilities, the Kern Water Bank and Diamond Valley
352 Lake. As shown in Table X of the Project Description, both of these facilities have been
353 used to store water moved under Article 21. As such, the full effects of Article 21
354 pumping are not accurately represented by the modeling. The modeling assumptions
355 assume that Article 21 water demand would be 314 TAF for each month December
356 through March and up to 214 TAF per month in all other months. As shown in the
357 project description in Figure X, there has been an increase in state water pumping
358 corresponding to an increase of the use of Article 21. This increased pumping at the
359 SWP from the year 2000 to present corresponds to the recent declines in the smelt
360 population, currently being studied by the IEP. This pumping is included in the exports
361 at Banks, and the effects to delta smelt are described in the adult entrainment effects
362 section. However, as described above, the modeling under estimates these effects and the
363 amounts of water that would be moved to SOD storage facilities. The previous section
364 showed that the proposed project would result in increased adult entrainment during
365 winter.
366
367 The export of Article 21 appears to be one of the factors that increase entrainment in the
368 months of December through March, demonstrated by the large increases of pumping at
369 Banks. The highest amounts of Article 21 water are pumped in the months when adult
370 delta smelt entrainment is also highest. The 2004 OCAP biological assessment and the
371 Service’s 2005 biological opinion only considered Article 21 pumping to occur during
372 wet and above normal water years and the analysis stated this would be an infrequent
373 occurrence. However, from 2004 to 2007, Article 21 has been used in more than in the
374 wet years. The effects of pumping of Article 21 water to adult delta smelt would be most
375 severe during below normal and dry years. Even though Article 21 may not be called
376 often in these water types, San Luis Reservoir can be filled in dryer years (for example if
377 the preceding year was wet). It is during these types of years that the increased pumping
378 associated with Article 21 would have the most detrimental effects to delta smelt and
379 significant adult entrainment may occur.
380
381 DMC-CA Intertie

382 As described in the Project Description, the DMC-CA Intertie would provide operational
383 flexibility between the DMC and the CA. In the CALSIM II modeling, Jones pumping
384 capacity increases from 4,200 cfs in Study 7.0 to 4,600 cfs in Study 8.0. While the
385 specific effects of the intertie on delta smelt cannot be separated out from the analysis,
386 the increased capacity of the Jones pumping plant is included in the adult entrainment
387 effects described above and can result in higher entrainment of adult, larval and juvenile
388 delta smelt at Jones. In addition, increase pumping at Jones can have indirect effects to
389 delta smelt by entraining their food source and reducing their available habitat, as
390 described in the habitat suitability section of this effects analysis.
Effects of the NBA

In general, NBA diversions are highest during the winter months. Diversion rates for study 8 in December (64 cfs) were higher than diversion rates for studies 7.0 (43 cfs). The hydrodynamic modeling of NBA diversions indicates that the majority of water diverted originates from Cambell Lake and Calhoun Cut during the winter. As previously mentioned, delta smelt migrate into the Delta during the winter months. However, since the screens on the intakes meet criteria for protecting 25 mm SL delta smelt, adult entrainment is not a concern.

In some years, delta smelt begin spawning in February when temperatures reach about 12°C (Bennett 2005). Thus in some years, delta smelt larvae may be entrained at the NBA diversions. However, since the majority of water diverted originates from Cambell Lake during the winter, this effect is likely to be minimized to Barker Slough near the NBA intakes. During years when the Yolo Bypass floods, the entrainment risk of larvae into the NBA is also probably extremely localized because of a hydrodynamic “plug” that forms between Barker and Lindsay sloughs with Cache Slough. When this happens, hydrodynamic mixing between Cache Slough and Lindsay/Barker sloughs decreases, causing spikes in turbidity and organic carbon in Barker and Lindsay Sloughs (DWR, North Bay Aqueduct Water Quality Report). Entrainment vulnerability would be greatest during dry years when the NBA diversions entrain a large portion of water from Barker and Lindsay Sloughs and are often years when delta smelt spawn in the North Delta (Sweetnam 1999). The fish screen at the NBA diversion was designed to exclude delta smelt larger than 25 mm. However, a study of a fish screen in Horseshoe Bend built to delta smelt standards excluded 99.7 percent of fish from entrainment even though most of these were only 15-25 mm long (Nobriga et al. 2004). Thus, the fish screen at NBA may protect many, if not most of the delta smelt larvae that do hatch and rear in Barker Slough.

CCWD diversions

As described in the Project Description, CCWD diverts water from three different intakes in the Delta. For the proposed project, water demands of the CCWD were anticipated to increase from 135 TAF/year in study 7.0 to 195 TAF/year in study 8.0.

Old River intake

CCWD currently diverts water using the Old River intake for its supplies directly from the Delta. In addition, when salinity is low enough, Los Vaqueros Reservoir is filled at a rate of up to 200 cfs from the Old River Intake. However, since this facility is fully screened to meet delta smelt fish screening criteria, adult entrainment is not a concern.

Rock slough

The Rock Slough Intake is presently unscreened. As described in the Project Description, Reclamation is required to screen this diversion and is seeking an extension for the completion of the fish screen.
Catches of delta smelt at the Rock Slough diversion are low based on sampling conducted using a sieve net three times per week from January through June and twice per week from July through December and using a plankton net at the headworks structure twice per week during times larval delta smelt could be present in the area (generally March through June). The numbers of delta smelt entrained by the facility since 1998 have been extremely low based on this monitoring, with only a single fish taken in February 2005. Most water diversions at the Rock Slough intake now occur during the summer months, so adult delta smelt entrainment is not likely to be high. In addition, Rock Slough is a dead-end slough with poor habitat for delta smelt, so the numbers of delta smelt using Rock Slough are usually low.

Alternative intake

Total entrainment at CCWD’s facilities is likely to be reduced when the CCWD’s Alternative Intake Project is completed. This diversion is going to be screened according to delta smelt fish screening criteria and will likely reduce unscreened diversions from the unscreened Rock Slough diversion. Because the Alternative Intake diversion is fully screened, adult delta smelt entrainment is not likely to be high.

Suisun Marsh Salinity Control Gates

The SMSCG is generally operated as needed September through May to meet State salinity standards in the marsh. The number of days the SMSCG are operated in any given year varies. Historically, the SMSCG were operated 60-120 days between October and May (1988-2004). With increased understanding of the effectiveness of SMSCG in lowering salinity in Montezuma Slough, salinity standards have been met with less frequent gate operations. In 2006 and 2007, the gates were operated periodically between 10-20 days annually. It is expected that this level of operational frequency (10-20 days per year) will continue in the future.

The SMSCG do not kill delta smelt. It is possible, however, for delta smelt and other fishes to be entrained behind the SMSCG in Montezuma Slough and Suisun Marsh when the SMSCG is closed. Fish may enter Montezuma Slough from the Sacramento River when the gates are open to draw freshwater into the marsh and then may not be able to move back out when the gates are closed. It is not known whether this harms delta smelt in any way, but they could be exposed to predators hovering around the SMSCG or they could have an increased risk of exposure to water diversions in the marsh (Culberson et al. 2004). It is possible that if delta smelt are indeed entrained into Montezuma slough and Suisun Marsh that they may be more vulnerable to water diversion such as DWR’s MIDS. Entrainment into MIDS from the Sacramento River may be unlikely based on particle tracking studies have demonstrated low entrainment vulnerability for particles released at random locations throughout Suisun Marsh (3.7 percent), and almost no vulnerability (<0.1 percent) to particles released at Rio Vista (Culberson et al. 2004).

Moreover, fish entrainment monitoring at MIDS showed very low entrainment of delta smelt (one larva in 2.3 million m3 of water sampled over a two-year period) because salinity in Suisun Slough was usually too high for delta smelt when the MIDS diversion needed to operate (Enos et al. 2007). The degree to which movement of delta smelt
around the low-salinity zone is constrained by opening and closing the SMSCG is also
unknown.

Indirectly, operations of the SMSCG may influence delta smelt habitat suitability and
entainment vulnerability. When the SMSCG are opened, the draw of freshwater into the
marsh effectively moves the Suisun Bay salinity field upstream. In some years, the
salinity field indexed by X2 may be shifted as far as 3 km upstream. Thus, depending on
the tidal conditions during and after gate operations, X2 may be transported upstream
nominally about 20 days per year. The consequence of this shift decreases smelt habitat
and moves the distribution of smelt upstream (Feyrer et al. 2007; see smelt habitat effects
section). Because juvenile smelt production decreases when X2 moves upstream during
the fall (Feyrer et al. 2007), any attributable shift in X2 between September to November
(December during low outflow years) caused by operations of SMSCG can be a concern.
However, a 3-km shift in X2 happening 20 days per year is far less significant than the
10-20 km shifts that have occurred for up to 120 or more days per year during late
summer through early winter due to south Delta diversions (see habitat effects section
below).

During January through March, most delta smelt move into spawning areas in the Delta.
Grimaldo et al (in review) found that prior to spawning entainment vulnerability of adult
delta smelt increased at the SWP and CVP when X2 was upstream of 80 km. Thus, any
upstream shift in X2 from SMSCG operations may influence entainment of delta smelt
at the CVP and SWP, especially during years of low outflow or periods of high
CVP/SWP exports. However, between January and June the SWP and CVP operate to
meet the X2 standards in D-1641, thus the effects of the SMSCG on X2 during this
period are negligible. Therefore, SMSCG operations from January to May are not likely
to affect entainment vulnerability. In addition, because delta smelt move upstream
between December and March, operations of the SMSCG are unlikely to adversely affect
delta smelt habitat suitability during this period.

Larvae and Juvenile Delta Smelt (~ March-June)
Water Diversions and Reservoir Operations

Banks and Jones

Larval and juvenile delta smelt are free-swimming and pelagic; they do not associate
strongly with structure or shorelines. Delta smelt use a variety of swimming behaviors to
maintain position within suitable habitats – even in regions of strong tidal currents and
net seaward flows (Bennett et al. 2002). Since the water exported during spring and early
summer (mainly March-June) from the central and south Delta is suitable habitat, young
delta smelt do not have a cue to abandon areas where water is flowing toward Banks and
Jones. Combinations of Delta inflows and export flows or variables like Delta outflow
and OMR are good predictors of larval and young juvenile delta smelt entrainment
(Kimmerer 2008). This effects analysis evaluates the proposed project operations by
exploring long-term trends in Delta outflow, or X2, and OMR flows during March-June
and comparing these to hydrodynamic conditions expected based on CALSIM II
modeling presented in the Biological Assessment. The analysis uses the larval-juvenile
entrainment estimates provided by Kimmerer (2008) and flow and export projections
from the Biological Assessment to estimate the annual percentages of the larval/juvenile
delta smelt population expected to be entrained.

This section examines the effects of entrainment on larval and juvenile delta smelt during
the months of March-June. The analysis is based on comparison of historical trends in
OMR, Delta outflow and X2 to the proposed project’s predictions of these variables
provided in the biological assessment for studies 7.0, 7.1, 8.0, and 9.0-9.5. The
hydrologic data are examined in light of recent estimates of larval/juvenile delta smelt
entrainment (Kimmerer 2008) that are reproduced well by Delta outflow (or X2) and
OMR (Figure 7). All analyses examine two sets of spring months; March-June, which
evercompasses most of the spawning season and April-May, which encompasses the
empirical hatch dates of most fish surviving to the fall in recent years (Bill Bennett, UC
Davis, unpublished data). Note that OMR was empirically measured during 1980-2006
using Acoustic Doppler Current Profilers installed in Old and Middle rivers (Oltmann
1998). The OMR values for 1967-1979 and for 2007 were estimated using a regression
relationship (Cathy Ruhl, USGS, pers. comm). All Delta outflow and X2 data were
retrieved from DAYFLOW.

Kimmerer (2008) proposed a method for estimating the percentage of the larval-juvenile
delta smelt population entrained at Banks and Jones each year. These estimates were
based on a combination of larval distribution data from the 20 mm survey, estimates of
net efficiency in this survey, estimates of larval mortality rates, estimates of spawn
timing, particle tracking simulations from DWR’s DSM-2 particle tracking model, and
estimates of Banks and Jones salvage efficiency for larvae of various sizes. Kimmerer
estimated larval-juvenile entrainment for 1995-2005. We used Kimmerer’s entrainment
estimates to develop multiple regression models to predict percent of the larval-juvenile
delta smelt population entrained based on a combination of X2 and OMR. We developed
two separate models, one for the March-June averaging period and one for the April-May
averaging period. The equations are:

March-June percent entrainment =

(0.00933*March-June X2) + (0.0000207*March-June OMR) – 0.556

April-May percent entrainment =

(0.00839*April-May X2) + (0.000029*April-May OMR) – 0.487.

The adjusted R^2 on these equations are 0.90 and 0.87, respectively. These equations were
used to predict historical springtime entrainment (1967-1994 and 2006-2007). Note that
1995 and 1998, which were both very high flow years with 0 percent predicted
entrainment were not included in the regression because they resulted in significant
nonlinearity. Thus, the resulting equations predict negative entrainment in similarly wet
years. The negative estimates were assumed to represent 0 percent entrainment for the
analysis.

We also used the above-mentioned regression equations to predict larval-juvenile
entrainment based on the hydrologic predictions provided in the Biological Assessment.
We used this to compare relative entrainment effect across the CALSIM II studies.

Historical Data (1967-2007)
Combined Old and Middle River flow

There has been no clear long term trend in OMR for either the March-June or April-May averaging periods (Figures 6-7). Since the early 1990s, minimum OMR flows during April-May have been higher (less negative) than 1967-1990 (Figure 7).

Delta outflow

Delta outflows generally declined from 1967-1990, but Delta outflows have generally been higher and comparable to 1970s levels since 1990. This is true for both the March-June and April-May averaging periods (Figures 8-9). Since the early 1990s, minimum Delta outflows flows during April-May have usually been slightly higher than 1967-1990. This is likely due to the combination of the X2 standard and the VAMP pulse flow.

Relationship between Delta outflow and OMR

There is a positive correlation between Delta outflow and OMR, but the relationship is not quite linear (Figures 10-11). Regardless of averaging period, OMR tends to be negative and unresponsive to outflow until outflow exceeds about 50,000 cfs (representing X2 seaward of Roe Island). At outflows higher than 50,000 cfs, the outflow-OMR relationship is approximately linear.

Predicted entrainment

Predicted entrainment is a function of both X2 and OMR, therefore higher flows and lower exports translate into lower entrainment of delta smelt. Predicted larval-juvenile entrainment was often higher prior to the implementation of the X2 standard in 1995 than it has been currently (Figure 16). The predictions for entrainment range from 0 to about 40 percent for 1967-1994 and 0 to about 30 percent for 1995-2007. However, the upper confidence limits reach substantially higher levels, ranging from 0 to about 65 percent between 1967 and 1994 and 0 to about 40 percent during 1995-2007. The effect of the X2 standard on larval-juvenile entrainment can be seen in Figure 17. The frequency of years in which 0 percent-10 percent of the larval-juvenile population was estimated to have been entrained was similar between 1967-1994 and 1995-2005 because wet years have always pushed X2 far downstream resulting in delta smelt distributions distant from the influence of the SWP and CVP diversions. However, there are substantial differences between the 1967-1994 and 1995-2005 time periods in terms of how frequently larger percentages of the larval-juvenile population was entrained. For instance, it is estimated that less than 20 percent of the larval-juvenile population was entrained in 67 percent of years from 1995-2005, but only 44 percent of years from 1967-1994 (Figure 17).

Further, predicted entrainment sometimes exceeded 30 percent during 1967-1994, but was never that high during 1995-2005. Note that we did not attempt to carry the confidence limits on entrainment estimates through these calculations. See Figure 16 for estimates of the confidence intervals.

Proposed Project Operations

Combined Old and Middle River flow

The Biological Assessment proposes that Banks and Jones pumping will cause March-June OMR flows to be more negative than 1967-2007 in wet and above normal years and
will cause April-May OMR flows to be more negative than 1967-2007 wet years (Figures 12-13). It is also anticipated there will be less variation in OMR during these time periods than there was historically in wet and above normal years. The predicted OMR flows are predicted to be higher (hovering near 0 cfs on average) in dry and critical years. This is true for both averaging periods. These patterns do not change in the climate change scenarios.

Most of the projected operations result in average March-June and average April-May X2 that are further downstream than historical (Figures 14-15). As stated previously, this is likely due to the full implementation of the X2 standard and VAMP export reduction in projected operations. The exception is wet years. In wet years, projected X2 is generally very similar to historical in both averaging periods except that the boxplots indicate no occurrences of X2 further downstream than 50 km. This is probably due to the proposed decreases in wet year OMR flows (Figures 6 and 7). The climate change scenarios predict April and May X2 will be further downstream in dry and critical years, but the differences are modest (< 5 km) and again likely due primarily to the modeling assumptions of meeting the X2 standard and providing an export reduction during VAMP.

Effects of forecasted operations

Note that we did not attempt to carry the confidence limits on entrainment estimates through these calculations. See Figure 16 for estimates of the uncertainty surrounding the following. The Biological Assessment’s assumptions of a continued X2 standard and an EWA-related export reduction during April-May, keep the frequency of years with larval-juvenile entrainment higher than 20 percent consistent with 1995-2005 expectations regardless of operational assumptions (Figure 18). However, the proposed project will decrease the frequency of years in which estimated entrainment is \(\leq 15 \) percent. Thus, over a given span of years, the project as proposed will increase larval-juvenile entrainment relative to 1995-2005 levels. This will have an adverse effect on delta smelt based on their current low population levels.

Article 21

See previous effects discussion

VAMP

VAMP which is described in the Project Description and the Status and Baseline Sections, provides benefits to larval and juvenile delta smelt. As described in the Status and Baseline Section of this opinion, Bennett (unpublished analysis) proposes that reduced spring exports resulting from VAMP has selectively enhanced the survival of delta smelt larvae that emerge during VAMP by reducing direct entrainment.

Since VAMP is an experiment, it is only projected to continue until 2009. As described in the Project Description, after VAMP ends, Reclamation has committed to maintaining
the export curtailment portion of the VAMP experiment. Since VAMP also contains a
San Joaquin River flow component, the maintaining the export curtailment after the end
of the VAMP experiment ends is not expected to provide the same benefits as the
complete VAMP experiment. In order for delta smelt produced during the VAMP period
to survive to the Fall, the export curtailments and the VAMP flows would be needed to
protect larval and juvenile delta smelt from becoming entrained.

In the Project Description, DWR will continue the export reductions at Banks as long as
there assets available from the Yuba Accord Water Transfer. Because the export
reductions may cost more than the Yuba Accord provides, the export curtailments at
Banks may be smaller and therefore provide less benefit to larval and juvenile delta
smelt. Also, as mentioned above, the export reductions at Jones and Banks are only part
of VAMP, and the Vernalis flow is also important for protection of delta smelt.

Intertie

See previous effects discussion

Effects of the NBA

In the modeling, the only difference in NBA diversions during the spring were for April,
where study 8.0 had an approximately 20 percent higher diversion rate than study 7.0
(Reclamation 2008). NBA diversions ranged between 30 and 54 cfs during the spring,
indicating that the majority of water diverted originates from Campbell Lake at these
diversions rates. Thus a 20 percent increase in Study 8 from Study 7.0 may have minimal
effects when you account for the source of water diverted. Overall, spring (March –June)
represents the period of greatest entrainment risk for delta smelt larvae at the NBA,
especially in dry years when delta smelt spawn in the North Delta. As described above,
based on Nobriga et al. 2004, the fish screen at NBA may protect many, if not most of the
delta smelt larvae that do hatch and rear in Barker Slough.

CCWD diversions

Old River intake

While the Old River diversion is screened to protect adult delta smelt, all CCWD
diversions implement additional fishery protection measures to protect larval smelt which
may be entrained. These measures consist of a 75-day period during which CCWD does
not fill Los Vaqueros Reservoir and a concurrent 30-day period during which CCWD
halts all diversions from the Delta, provided that Los Vaqueros Reservoir storage is
above emergency levels. The default dates for the no-fill and no-diversion periods are
March 15 through May 31 and April 1 through April 30, respectively; the Service, NMFS
and DFG can change these dates to best protect the subject species. Larval fish may
occur at this facility outside of the no-fill and no-diversion periods, and may be subject to
entrainment. However, larval fish monitoring behind the screens has shown very few
larval fish become entrained (Reclamation 2008) and as stated above for the NBA, the
fish screens at this facility may protect fish smaller than the screens’ designs.
Rock Slough

While most water diversions at the Rock Slough intake now occur during the summer months, the Rock Slough diversion is also subject to the no-fill and no-diversion periods that all CCWD diversions are operated under. Like the Old River diversion, larval fish may occur at this facility outside of the no-fill and no-diversion periods, and may be subject to entrainment. Since the Rock Slough diversion is not screened, larval entrainment at this facility may be a concern. However, larval fish monitoring behind the headworks has not shown that large numbers of larval fish become entrained (Reclamation 2008).

Alternative intake

Like the Old River diversion, the Alternative intake is screened to protect adult delta smelt from entrainment. Again, since larval smelt are not protected by these fish screens, the Alternative intake will also operate to the no-fill and no-diversion periods to protect larval fish from entrainment. Like the other two diversions, larval fish may occur at this facility outside of the no-fill and no-diversion periods, and may be subject to entrainment. Larval fish may also become entrained at this facility, but as stated above for the NBA, the fish screens at this facility may protect fish smaller than the screens’ designs.

South Delta Temporary Barriers

Hydrodynamic Effects

The TBP does not alter total Delta outflow, or the position of X2. However, the TBP causes changes in the hydraulics of the Delta, which may affect delta smelt. The HORB blocks San Joaquin River flow, which prevents it from entering Old River at that point. This increases the flow toward Banks and Jones from Turner and Columbia cuts, which can increase the predicted entrainment risk for particles in the east and central Delta by up to about 10 percent (Kimmerer and Nobriga 2008). In most instances, net flow is directed towards the Banks and Jones pumps and local agricultural diversions. The directional flow towards the Banks and Jones increases the vulnerability of fish to entrainment. Larval and juvenile delta smelt are especially susceptible to these flows.

The varying operational configurations of the TBP, natural variations in fish distribution, and a number of other physical and environmental variables limit statistical confidence in assessing fish salvage when the TBP is operational versus when it is not. In 1996, the installation of the spring HORB caused a sharp reversal of net flow in the south Delta to the upstream direction. Coincident with this change was a strong peak in delta smelt salvage (Nobriga et al. 2000). This observation indicates that short-term salvage can significantly increase when the HORB is installed in such a manner that it causes a sharp change or reversal of positive net daily flow in the south and central Delta. The physical presence of the TBP may attract piscivorous fishes and influence predation on delta smelt. However, past studies by the DFG TBP Fish Monitoring Program indicated that predation is negligible (DWR 2000a).

Vulnerability to Local Agricultural Diversions
Fish that may become trapped upstream of the TBP agricultural barriers may suffer increased vulnerability to local agricultural diversions. However, the risk of entrainment (Kimmerer and Nobriga 2008) or death from unsuitable water quality (as inferred from lack of occurrence in the south Delta during summer; Nobriga et al. 2008) is so high for delta smelt trapped in the south Delta that loss to irrigation diversions in this region is moot.

Effects to Potential Fish Prey Items

The extent to which the distribution and abundance of delta smelt prey organisms is influenced by the conditions posed by the TBP is difficult to determine. Because the TBP does not influence the position of X2, organisms that exhibit a strong abundance-X2 relationship (i.e. mysid shrimp) (Jassby and others 1995), will not be affected. However, the barriers might influence the flux of *Pseudodiaptomus* from the Delta to the low-salinity zone.

South Delta Permanent Operable Gates

Hydrodynamic Effects

As described in the Project Description, the South Delta Permanent Operable Gates (Operable Gates) are expected to be constructed in late 2012. The Operable Gates are expected to operate during similar time periods as the TBP, with the gate closing starting in April and operating thorough the winter. The Head of Old River Gate would operate in April and May and in the fall.

The effects of the Operable Gates are expected to be similar to the effects of the TBP. The Operable Gates will open daily to maintain water levels at 0.0 foot mean sea level in Old River near the Jones pumping plant, and these daily openings would provide passage for delta smelt. Like the TBP, the operations of the Operable Gates are not expected to decrease Delta outflows, but the increase in entrainment risk at Banks and Jones is expected to remain the same. Also, OMR flows would be affected by the Operable Gates and may result in more negative OMR flows which could further lead to entrainment.

If the Operable Gates are operated during periods when the TBP have not been installed, additional effects to delta smelt could occur. For example, if the Operable Gates are closed during the winter (December through March), flow cues from the San Joaquin River may be disrupted and may affect adult delta smelt migration into the Delta. Also, if the Operable Gates are closed during this period, the available habitat for delta smelt would be reduced. The south Delta can be suitable habitat for delta smelt in some years; if this habitat is inaccessible to the delta smelt due to the Operable Gates being closed, adverse effects to the delta smelt and their habitat would occur.

Vulnerability to Local Agricultural Diversions

Delta smelt would be affected similarly as with the TBP although delta smelt may be less susceptible to entrainment at local agricultural diversion since the Operable Gates are likely to be opened more often. As described above, the risk of entrainment or death
from unsuitable water quality is so high for delta smelt trapped in the south Delta that loss to irrigation diversions in this region is moot.

Effects to Potential Fish Prey Items

These effects would be the similar as for the TBP, but may be less affected since the Operable Gates will be open more than the TBP.

Suisun Marsh Control Gates

See previous effects discussion

American River Demands

In Study 8.0, total American River Division annual demands on the American and Sacramento Rivers are estimated to increase from about 324,000 acre-feet in 2005 to 605,000 acre-feet in 2030, without the Freeport Regional Water project maximum of 133,000 acre-feet during drier years. These increases in demands and diversions are included in the modeling results and are therefore included in the Habitat Suitability sections.

Delta Cross Channel

The DCC will be closed for fishery protection as described in the Project Description. These actions are not expected to change in the future. The effects of the DCC are included in the CALSIM II modeling results and are included in the Habitat Suitability section.

Juveniles and adults (~ July-December)

Entrainment of *Pseudodiaptomus forbesi*

Historically, the diet of juvenile delta smelt during summer was dominated by the copepod *Eurytemora affinis* and the mysid shrimp *Neomysis mercedis* (Moyle et al. 1992; Feyrer et al. 2003). These prey bloomed from within the estuary’s low-salinity zone and were decimated by the overbite clam *Corbula amurensis* (Kimmerer and Orsi 1996), so delta smelt switched their diet to other prey. *Pseudodiaptomus forbesi* has been the dominant summertime prey for delta smelt since it was introduced into the estuary in 1988 (Lott 1998; Nobriga 2002; Hobbs et al. 2006). Unlike *Eurytemora* and *Neomysis*, *Pseudodiaptomus* blooms originate in the freshwater Delta (John Durand San Francisco State University, oral presentation at 2006 CALFED Science Conference). This freshwater reproductive strategy provides a refuge from overbite clam grazing, but *Pseudodiaptomus* has to be transported to the low-salinity zone (LSZ) during summer to co-occur with most of the delta smelt population. This might make *Pseudodiaptomus* more vulnerable to pumping effects from the export facilities than *Eurytemora* and *Neomysis* were. Therefore, the projects have more effect on the food supply available to
delta smelt than they did before the overbite clam changed the low-salinity zone food web.

There is statistical evidence suggesting that the co-occurrence of delta smelt and *Pseudodiaptomus forbesi* has a strong statistical influence on the survival of young delta smelt from summer to fall (Miller 2007). In addition, recent histopathological evaluations of delta smelt have shown evidence of heat stress/food limitation in delta smelt during the summer (Bennett 2005 and Bennett et al. 2008 as summarized by Nobriga and Herbold 2008).

Most quantitative sections of this effects analysis use OMR as a predictor variable. This analysis evaluates the proposed project operations by comparing the long-term trends in the E:I ratio during June-September relative to conditions expected based on CalSim II modeling. The E:I ratio is a useful metric of factors like entrainment risk and residence time that reflect the transport of particles among regions of the Delta (Kimmerer and Nobriga 2008). A recent study of tidal and daytime versus nighttime movements of fish and zooplankton in Old River did not find any evidence that *Pseudodiaptomus* used behaviors in Old River that would prevent its entrainment or render particle tracking model outputs based on simulations using neutrally-buoyant particles inappropriate to predict the relative effect of proposed operations (Lenny Grimaldo, USBR, unpublished data).

The Interagency Ecological Program’s Environmental Monitoring Program has conducted zooplankton surveys in the estuary since 1974. We used these data, along with data on historic project operations, to investigate whether there has been a demonstrable effect of the water projects on *P. forbesi* availability to delta smelt during the summer. During summer delta smelt occur mainly in the LSZ near the Sacramento-San Joaquin River confluence (Nobriga et al. 2008). Due to retention and entrainment of *P. forbesi* to the south Delta by the export pumps, we expected an inverse relationship between E:I and the abundance of *P. forbesi* in Suisun Bay during the summer.

We determined the average monthly catch per unit effort (CPUE) for *P. forbesi* for June-September 1988-2006 at each station in two regions, Suisun Bay (stations NZD 06, NZO 28, NZO 32, NZS 42, NZO 42, and NZO 48) and the south Delta (NZN 10, NZD 28, NZO 86, and NZO 92). The monthly average CPUEs were then grouped into regional average CPUEs. We expected to see two things in the data. First, that *Pseudodiaptomus* densities would be higher in the south Delta region than in Suisun Bay because the Delta is the production region, and second, that *Pseudodiaptomus* densities in Suisun Bay would be inversely related to the summertime E:I ratio because it represents hydrodynamic influence on particle residence time and entrainment (Kimmerer and Nobriga 2008).

The summertime density of *Pseudodiaptomus* is generally higher in the south Delta than in Suisun Bay. The ratio of south Delta *Pseudodiaptomus* density to Suisun Bay *Pseudodiaptomus* density was greater than one in 73 percent of the collections from June-September 1988-2006. The average value of this ratio is 22, meaning that on average
summer *Pseudodiaptomus* density has been 22 times higher in the south Delta than Suisun Bay. Densities in the two regions are not correlated ($P > 0.30$). This demonstrates that the presence of high copepod densities in the south Delta do not necessarily occur simultaneously in Suisun Bay. The density of *Pseudodiaptomus* appears to be reduced when E:I exceeds about 0.5 (Figure 19). The data for 1989 weaken this relationship, but the Service interprets the 1989 values as an initial “explosion” of the *Pseudodiaptomus* population following its introduction in 1988. This pattern of population explosion is commonly seen when species invade new ecosystems (Simberloff and Gibbons 2003).

The decline in *Pseudodiaptomus* density that occurs when E:I ratios exceed 0.5 does not occur where the *Pseudodiaptomus* bloom originates in the Delta (Figure 20). This is consistent with the hypothesis that high E:I ratios retain *Pseudodiaptomus* in the Delta, impairing its flux to delta smelt’s summertime rearing habitat. This finding is also consistent with Kimmerer and Nobriga’s (2008) analyses of particle entrainment risk in different regions of the Delta. As E:I increases, the probability that a particle will be entrained into the export facilities increases. Residence times from some locations also increase as E:I ratios increase. Both of these effects can reduce the flux of *Pseudodiaptomus* from the Delta to the low-salinity zone.

Proposed Operations

During June and July the projected monthly E:I ratios resulting from proposed project operations do not diverge dramatically from historic conditions and for the most part, do not surpass 0.5 (Figures 21-22). One exception occurs in June of critical years, when proposed project operations would reduce E:I relative to historic conditions. During July, in above normal through critical years, monthly E:I occasionally surpasses 0.5 for proposed project operations, whereas the actual monthly E:I has exceeded 0.5 only in dry years since 1988. This would likely further decrease the flux of *Pseudodiaptomus* to the low-salinity zone compared to current operations.

In August, a clear change in monthly E:I is projected for proposed project operations relative to historic conditions for wet and above normal WYT’s (Figure 23). E:I ratios greater than 0.5 are proposed in most years. Historically, wetter years rarely had E:I ratios exceeding 0.5 and above normal years did so only occasionally. The occurrence of only a single below normal WYT makes it difficult to assess potential changes between historic and proposed conditions. Dry years commonly have a projected August E:I greater than 0.5 for proposed operations, but this is not a change relative to historic conditions.

The proposed September operations resemble August operations in that E:I ratios will increase relative to historic conditions (Figure 24). Note that an important difference between September and August is that the projected E:I ratios are much higher in September in most above normal, below normal, dry, and critical water years. Projected E:I ratios in September are generally above 0.5 in all but critical water years, and frequently exceed 0.6. This operation will likely decrease the flux of *Pseudodiaptomus* to the low-salinity zone.
Water transfers

Water transfers would increase Delta exports by 0 to 360,000 acre-feet (af) in most years (the wettest 80 percent of years) and by up to 600,000 af in Critical and some Dry years (approximately the driest 20 percent years). Most transfers will occur at Banks (SWP) because reliable capacity is not likely to be available at Jones except in the driest 20 percent of years. Although transfers can occur at any time of year, the exports for transfers described in this assessment would occur only in the months July-September. Delta smelt are rarely present in the Delta in these months, so no increase in salvage due to water transfers during these months is anticipated.

Post-processing of Model Data for Transfers

This section shows results from post-processed available pumping capacity at Banks and Jones for the Study 8.0 (Future Conditions - 2030). These results are used for illustration purposes. Results from the Existing Conditions CVP-OCAP study alternatives do not differ greatly from those of Study 8.0, and produce similar characteristics and tendencies regarding the opportunities for transfers over the range of study years. The assumptions for the calculations are:

- Capacities are for the Late-Summer period July through September total.
- The pumping capacity calculated is up to the allowable E:I ratio and is limited by either the total physical or permitted capacity, and does not include restrictions due to ANN salinity requirements with consideration of carriage water costs.
- The quantities displayed on the graph do not include the additional 500 cfs of pumping capacity at Banks (up to 7,180 cfs) that is proposed to offset reductions previously taken for fish protection. This could provide up to a maximum about 90 taf of additional capacity for the July-September period, although 60 taf is a better estimate of the practical maximum available from that 500 cfs of capacity, allowing for some operations contingencies.
- Figure XX and Figure XX in the Project Description show the available export capacity from Study 8.0 (Future Conditions-2030) at Banks and Jones, respectively, with the 40-30-30 water year type on the x-axis and the water year labeled on the bars. The SWP allocation or the CVP south of Delta Agriculture allocation is the allocation from CalSim-II output from the water year.

From Figure XX of the Project Description, Banks will have the most ability to move water for transfers in Critical and certain Dry years (driest 20 percent of study years) which generally have the lowest water supply allocations, and reflect years when transfers may be higher to augment water supply to export contractors. For all other study years (generally the wettest 80 percent) the available capacity at Banks for transfer ranges from about 0 to 500 taf (not including the additional 60 taf accruing from the proposed permitted increase of 500 cfs at Banks. But, over the course of the three
months July-September other operations constraints on pumping and occasional
contingencies would tend to reduce capacity for transfers. In consideration of those
factors, proposed transfers would be up to 360 taf in most years when capacity is
limiting. In Critical and some Dry years, when capacity would not be a limiting factor,
exports for transfers could be up to 600 taf (at Banks and Jones combined). Transfers at
Jones (Figure XX of the biological assessment) are probably most likely to occur only in
the driest of years (Critical years and some Dry years) when there is available capacity
and low allocations.

Limitations

The analysis of transfer capacity available derived from the CalSim-II study results
shows the capacity at the export pumps and does not reflect the amount of water available
from willing sellers or the ability to move through the Delta. The available capacity for
transfer at Banks and Jones is a calculated quantity that should be viewed as an indicator,
rather than a precise estimate. It is calculated by subtracting the respective project
pumping each month from that project’s maximum pumping capacity. That quantity may
be further reduced to ensure compliance with the Export/Inflow ratio required. In actual
operations, other contingencies may further reduce or limit available capacity for
transfers: for example, maintenance outages, changing Delta outflow requirements,
limitations on upstream operations, water level protection criteria in the south Delta, and
fishery protection criteria. For this reason, the available capacity should be treated as an
indicator of the maximum available for use in transfers under the assumed study
conditions.

Proposed Exports for Transfers

In consideration of the estimated available capacity for transfers, and in recognition of the
many other operations contingencies and constraints that might limit actual use of
available capacity, for this assessment proposed exports for transfers (months July-
September only) are as follows:

<table>
<thead>
<tr>
<th>Water Year class</th>
<th>Maximum Amount of Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical</td>
<td>up to 600 kaf</td>
</tr>
<tr>
<td>Consecutive Dry</td>
<td>up to 600 kaf</td>
</tr>
<tr>
<td>Dry after Critical</td>
<td>up to 600 kaf</td>
</tr>
<tr>
<td>All other Years</td>
<td>up to 360 kaf</td>
</tr>
</tbody>
</table>

Therefore, effects of water transfers are not expected to have direct entrainment effects to
adult delta smelt since the proposed transfer window is a time when delta smelt are
distributed the western Delta. However, water transfers could have adverse effects to
delta smelt habitat or food items by increased pumping during the summer or fall. These
habitat effects are captured in CALSIM II modeling and the habitat suitability section.

J POD

J POD, as described in the Project Description and included in the SWRCB’s D-1641,
gives Reclamation and DWR the ability to use/exchange each Project’s diversion
capacity capabilities to enhance the beneficial uses of both Projects. There are a number of requirements outlined in D-1641 that the Projects that restrict JPOD to protect Delta water quality and fisheries resources. The effects of JPOD are included in the CALSIM II modeling results and in the habitat suitability section.

500 cfs at Banks

Under the 500 cfs increased diversion, the maximum allowable daily diversion rate into CCF during the months of July, August, and September would increase from 13,870 AF up to 14,860 AF and three-day average diversions would increase from 13,250 AF up to 14,240 AF. This increased diversion over the three-month period would result in an amount not to exceed 90,000 AF each year. Maximum average monthly SWP exports during the three-month period from Banks Pumping Plant would increase to 7,180 cfs.

Variations to hydrologic conditions coupled with regulatory requirements may limit the ability of the SWP to fully utilize the proposed increased diversion rate. Also, facility capabilities may limit the ability of the SWP to fully utilize the proposed increased diversion rate.

Effects of the NBA

The summer pumping rates of NBA diversions in study 7.0 (average 42 cfs) were 12 percent lower than the pumping in study 8.0 (average 48 cfs) (Reclamation 2008). Hydrodynamic modeling results from the Solano County Water Agency (SCWA) indicate that at a 42 cfs pumping rate, the major water source pumped by the NBA during normal water years origins from Camell Lake, a small non-tidal lake north of Barker Slough. Thus under most summer-time conditions the entrainment effects are likely to be low, especially since delta smelt move downstream by July (Nobriga et al. 2008). In dry seasons, the NBA entrains water from Barker and Lindsay sloughs (SCWA), indicating a potential entrainment risk for delta smelt. Historically, delta smelt densities have been low in Barker and Lindsay sloughs but the modeling data suggest that delta smelt could exhibit some level of entrainment vulnerability during dry years. But it should be noted, that these effects are likely to be small since most delta smelt reach 20 mm SL by June (http://www.delta.dfg.ca.gov/data/NBA/) and are therefore protected by the fish screens on the NBA intakes designed to protect smelt this size.

CCWD diversions

See previous effects discussion.
Temp Ag barriers
See previous effects discussion

Permanent barriers
See previous effects discussion

American River Demands
See previous effects discussion

Delta Cross Channel
See previous effects discussion

Entrainment Effects

Water Diversions and Reservoir Operations

Banks and Jones

Entrainment effects during July through November are not expected to be significant. Delta smelt are not present during this time of year, so direct entrainment during this time of year is not likely a concern.

Intertie
See previous effects discussion

Suisun Marsh Control Gates
See previous effects discussion

Habitat suitability

Delta smelt distribution is highly constricted near the Sacramento-San Joaquin river confluence during periods of low river flow into the estuary when the population gets “pinned” in between saline water in Suisun Bay and warm, high transparency water in the Delta. It was recently shown that there has been a long-term decline in delta smelt habitat suitability during fall (Feyrer et al. 2007). In this analysis, the Service shows that X2 is an indicator of fall habitat suitability. Therefore, this analysis assumes that whenever the water projects are in balanced conditions, they are a primary driver of delta smelt habitat suitability.

This analysis is based on fall X2 and how it reflects the surface area of suitable abiotic habitat for delta smelt, and how that likely effects delta smelt abundance given current delta smelt population dynamics. Supporting background material on the effect of fall X2 on the amount of suitable abiotic habitat and delta smelt abundance is available from Feyrer et al. (2007, 2008). During fall when delta smelt are nearing adulthood, the amount of suitable abiotic habitat for delta smelt is positively associated with X2. This
results from the effects of delta outflow on salinity distribution throughout the estuary. Fall X2 also has a measurable effect on recruitment of juveniles the following summer in that it has been a significant covariate in delta smelt’s stock-recruit relationship since the invasion of the overbite clam. Potential mechanisms for the observed effect are several fold. First, positioning X2 seaward during fall provides a larger habitat area which presumably lessens the likelihood of density-dependent effects (e.g., food availability) on the delta smelt population. Second, a more confined distribution may increase the probability of stochastic events that increase mortality rates of adults. For delta smelt, this includes predation and anthropogenic effects such as contaminants and entrainment (Sommer et al. 2007).

This evaluation of habitat suitability considered three elements: X2 position, total area of suitable abiotic habitat, and predicted effect on delta smelt abundance the following summer. Effects of the proposed project operations were determined by comparing X2, area of suitable abiotic habitat, and effect on delta smelt abundance across the operational scenarios characterized by the CALSIM II model runs, and also as they compare to actual historic values from 1967 to the present. The modeled scenarios include: Study 7.0, Study 7.1, Study 8.0, and Studies 9.0-9.5. The section concludes with additional observations of the historic and modeled data with a discussion of the potential underlying mechanisms.

X2

The first step of the evaluation examined the effect of project operations on X2 (km) during fall, as determined by the CALSIM II model results. These model results are presented in a monthly time step and are provided in the appendices to the Biological Assessment. In order to be consistent with previous analyses (Feyrer 2007, 2008), X2 during fall was calculated as the average of the monthly X2 values from September through December obtained from the CALSIM II model results. The data were also differentiated by water year type according to that of the previous spring.

The median X2 across the CALSIM II modeled scenarios were 10-15 percent further upstream than actual historic X2 (Figure 25). Median historic fall X2 was 79km, while median values for the CALSIM II modeled scenarios ranged from 87 to 91km. The CALSIM II modeled scenarios all had an upper range of X2 at about 90km. The consistent upper cap on X2 shows that water quality requirements for the Delta ultimately constrain the upper limit of X2 in the simulations. These results were also consistent across water year types (Figure 25) with the differences becoming much more pronounced as years became drier. Thus, the proposed project operations will affect X2 by shifting it upstream in all years, and the effect is exacerbated in drier years.

Area of suitable abiotic habitat

The second step of the evaluation used the modeled X2 to estimate the total surface area of suitable abiotic habitat available for delta smelt. Feyrer et al. (2008) examined three different definitions of habitat suitability for delta smelt that were subsequently used to generate the hectares (ha) of suitable abiotic habitat. The three habitat criteria examined by Feyrer et al. (2008) were based on the statistical probability of delta smelt occurring in
a sample due to water salinity and clarity characteristics at the time of sampling. The probabilities of occurrence they examined and compared were \(\geq 10 \) percent, \(\geq 25 \) percent, and \(\geq 40 \) percent. This evaluation applied their intermediate definition of 25 percent to avoid potentially over- or under-estimating the effect. The quantitative model relating X2 to area of suitable abiotic habitat is presented in Figure 26.

The median amounts of suitable abiotic habitat based upon X2 values generated across the CALSIM II modeled scenarios were 49-57 percent smaller than that predicted by actual historic X2 (Figure 27). The median historic amount of suitable abiotic habitat was 9,164 ha, while median values for the CALSIM II modeled scenarios ranged from 3,995 to 4,631 ha. These results were also consistent across water year types (Figure 27), with the differences becoming much more pronounced in drier years. Thus, the proposed project operations affect the amount of suitable abiotic habitat by decreasing it as a result of moving X2 upstream, and the effect is exacerbated in drier years.

Effect on delta smelt abundance

The third step of the evaluation was to use the modeled X2 to estimate the effect on delta smelt abundance. The model relating X2 to delta smelt abundance was updated from that developed by Feyrer et al. (2008) by adding the most recent year of available data (Figure 28). This model incorporates X2 as a covariate in the standard stock-recruit (FMWT index-TNS index the following year; Bennett (2005)) relationship for delta smelt. The model is based on data available since 1987 and therefore represents current delta smelt population dynamics (Feyrer et al. 2007). Note that although the regression model is highly significant and explains 56 percent of the variability in the data set, the residuals are not normally distributed. The pattern of the residuals suggests that some type of transformation of the data would help to define a better fitting model (Figure 28). This analysis did not explore different data transformations. For generating predictions, the FMWT values in the model were held constant at 280, the median value over which the model was built. This was done for all iterations in order to make the results comparable across the scenarios examined. In plots that show “historic” TNS categories, the values are those predicted with the model using actual historic X2 values from 1967 to the present. This approach was necessary in order to examine the likely effects of the different scenarios on present-day delta smelt population dynamics.

The median values for the predicted TNS index based upon X2 values generated across the CALSIM II modeled scenarios were 60-80 percent smaller than those predicted from actual historic X2 (Figure 29). The median value for the TNS index predicted based upon historic X2 was 5, while median values predicted from X2 values generated from the CALSIM II modeled scenarios ranged from 1 to 2. These results were also consistent across water year types (Figure 29) with the differences becoming much more pronounced as years became drier. Thus, the proposed project operations are likely to negatively affect the abundance of delta smelt.

Additional long-term trends and potential mechanisms

There has been a long-term shift upstream for actual X2 during fall that is associated with a similar upstream shift in the E:I ratio (Figure 30). X2 is largely determined by Delta
outflow, which in turn is largely determined by the difference between total delta inflow and the total amount of water exported, commonly referred to as the E:I ratio. During fall, the E:I ratio directly affects X2, slightly less so when the E:I ratio reaches approximately 0.45 (Figure 30). The leveling off is due to the need to meet D-1641 salinity standards. Thus, the long-term positive trend in X2 and the associated negative affects on area of suitable abiotic habitat and predicted delta smelt abundance appear to be related to the long-term positive trend in E:I ratio. X2 in the time series for each of the CALSIM II model runs is even greater than the peak of the actual historic values (Figure 31). Based on the proposed operations, the upstream X2 shift will persist.

While the above results demonstrate the likely effects of project operations on X2 averaged over the fall period, the modeling scenarios indicate that X2 in individual months will vary by water year type classification and by the specific modeling scenario (Figure 32). In wetter years of Studies 7.0, 7.1, and 8.0 (wet and above average water year types), X2 tends to diverge from historic conditions in that it shifts upstream in September, October, and November, and shifts downstream in December. This pattern is much less pronounced in the climate change scenarios, Studies 9.0-9.5. In all model studies there is also a general decrease in interannual variability across all of the months. In drier years (below normal to critical water year types), the model scenarios indicate that for all months X2 will generally be shifted upstream and that much of the interannual historic variability will be lost.

The effects of project operations outlined above on X2 during the fall months have considerably altered the hydrodynamics of the estuary in two important ways other than which have already been described. First, the long-term upstream shift in fall X2 has created a situation where all fall seasons regardless of water year type now resemble dry or critical years (Figure 33). Second, the effects have also manifested in a divergence between X2 during fall and X2 during the previous spring (April-July spring averaging period), and the modeling studies indicate this condition will persist in the future (Figure 34). With one exception in 1967, the historic X2 during fall was always less than 10km upstream of X2 during the spring, regardless of water year type (Figure 35). However, since 1993, X2 during fall has moved considerably further upstream than X2 during spring in wet and above normal years. In wet and above normal years, fall X2 was, on average, 3km upstream of spring X2 from 1967 to 1992, while it was 19km upstream from 1993 to 2007.

Combined, these effects of project operations on X2 will have important direct and indirect effects on delta smelt. Directly, these changes will substantially alter the amount of suitable abiotic habitat for delta smelt, which in turn has the possibility of affecting delta smelt abundance. Delta smelt is probably not currently habitat limited given its extremely low abundance. However, it is clear that delta smelt has become increasingly habitat limited over time and that this has contributed to the population declining to record-low abundance levels (Bennett 2005; Baxter et al. 2008; Feyrer et al. 2007, 2008; Nobriga et al. 2008). Therefore, the continued loss and constriction of habitat proposed under future project operations significantly threatens the ability of a self-sustaining delta smelt population to recover and persist in the estuary at abundance levels higher than the
current record-lows. Indirectly, changes such as the extremely stable low outflow conditions resembling dry or critical years proposed for the fall across all water year types will likely a) contribute to higher water toxicity (Werner et al. 2008) because the proposed flows are always low in all water year types, b) contribute to the potential suppression of phytoplankton production by ammonia entering the system from wastewater treatment plants (Wilkerson et al. 2006; Dugdale et al. 2007) because diluting flows are minimal, c) increase the reproductive success of overbite clams allowing them to establish year-round populations further east because salinity is consistently high with low variability (Jan Thompson, USGS, unpublished data), d) correspond with high E:I ratios resulting in elevated entrainment of lower trophic levels, e) increase the frequency with which delta smelt encounter unscreened agricultural irrigation diversions in the Delta (Kimmerer and Nobriga 2008) because the eastward movement of X2 will shift the distribution of delta smelt upstream, and provide environmental conditions for nonnative fishes that thrive in stable conditions (Nobriga et al. 2005). Although there is no single driver of delta smelt population dynamics (Baxter et al. 2008), these indirect effects will exacerbate any direct effects on delta smelt and hinder the ability of the population to recover and maintain higher levels of abundance in the future (Bennett and Moyle 1996; Bennett 2005; Feyrer et al. 2007).
Water transfers

See previous effects discussion

American River Demands

See previous effects discussion

Delta Cross Channel

See previous effects discussion

Komeen Treatment

The Department of Boating and Waterways (DBW) prepared an Environmental Impact Report (2001) for a two-year Komeen research trial in the Delta. They determined there were potential effects to fish from Komeen treatment despite uncertainty as to the likelihood of occurrence. Uncertainties exist as to the direct impact that Komeen and Komeen residues may have on fish species. “The target concentration of Komeen is lower than that expected to result in mortality to most fish species, including delta smelt’’ (Huang and Guy 1998). However, there is evidence that, at target concentrations, Komeen could adversely impact some fish species. The possibility exists that Komeen concentrations could be lethal to some fish species, especially during the first nine hours following application. Although no tests have examined the toxicity of Komeen to Chinook salmon or steelhead, LC50 data for rainbow trout suggest that salmonids would not be affected by use of Komeen at the concentrations proposed for the research trials. No tests have been conducted to determine the effect of Komeen on spilttail, green sturgeon, pacific lamprey or river lamprey.” (DBW, 2001) or delta smelt.

In 2005, no fish mortality or stressed fish were reported during or after the treatment. The contractor, Clean Lakes, Inc was looking for dead fish during the Komeen application. In addition, no fish mortality was reported in any of the previous Komeen or Nautique applications. In 2005, catfish were observed feeding in the treatment zone at about 3 pm on the day of the application (Scott Schuler, SePro). No dead fish were observed. DWR complied with the NPDES permit that requires visual monitoring assessment. Due to the uncertainty of the impact of Komeen on fish that may be in the Forebay, we will assume that all delta smelt in the Forebay at the time of application are taken. The daily loss values vary greatly within treatments, between months and between years. Figure XX illustrates the presence of delta smelt in the Forebay during treatments. There are no loss estimates for delta smelt, so the relationship between salvage and true loss of delta smelt in the Forebay in unknown.
Figure XX May-September delta smelt salvage at the SWP Banks Pumping Plant, 1996-2005, with the start and end dates of Komeen or Nautique aquatic weed treatment indicated by the red diamonds.
Studies at Banks and Jones fish facilities

A number of studies are conducted at the Banks and Jones fish facilities to evaluate the efficiency of these facilities and to study if there are operational modifications that can increase these efficiencies.

Effects to Delta Smelt Critical Habitat

The Service’s primary objective in designating critical habitat was to identify the key components of delta smelt habitat that support successful spawning, larval and juvenile transport, rearing, and adult migration. The Service identified the following primary constituent elements as essential to the conservation of the species: physical habitat, water, river flow, and salinity concentrations required to conserve the species. These conditions may occur in different regions of the Delta at different times, and provide habitat for different life stages, but these conditions must be present when needed, and have sufficient connectivity to provide for the flow of energy, materials and organisms among the habitat components. The entire legal Delta plus Honker, Grizzly and Suisun Bay and Marsh and Carquinez Straight to the confluence with the Napa River is designated as critical habitat; over the course of a year, different life stages occupy all the critical habitat.

The primary constituent elements (PCEs) are affected by water project operations that have altered seasonal flows in the Delta. Springtime flows are decreased relative to the natural hydrograph, as reservoir operations change over from flood management to water storage. Further, summer and early fall flows may be increased over the natural hydrograph as reservoirs release stored water to support export operations (Kimmerer 2004). Changes in inflow affect the location of the highly-productive low-salinity zone, affecting habitat volume and quality. Within the Delta, water diversions alter water circulation patterns and flushing times and change salinity fields. The combined influence of recent hydrologic and other changes upon changes imposed in the 1980s and earlier has had the effect of moving the distribution of delta smelt to areas that are generally upstream of where they once occurred. The effects to delta smelt critical habitat are discussed largely in terms of how the proposed project will affect the location of X2. The location of X2 varies both between and within years, according to hydrology and project operations.

Whether considered a surrogate variable for freshwater flow or an indicator of habitat conditions, changing the location of X2 changes physical conditions in the upper estuary (Kimmerer 2004). The strategic placement of X2 is intended to have two benefits for delta smelt (1) improvement of environmental quality and (2) minimization of entrainment into the Banks and Jones export facilities. Temperature, turbidity and specific conductance (a surrogate for salinity) have been used as variables to describe favorable environmental conditions in the Delta; as such, they have been shown to be statistically significant predictors of fish occurrence (Feyrer et al. 2007). Long-term trend analysis has shown that environmental quality has declined across a broad geographical range, but most dramatically in the western, eastern and southern regions of
the Delta, leaving only a relatively restricted area around the confluence of the Sacramento and San Joaquin Rivers with the least habitat alteration, compared to the rest of the upper estuary. This reduced condition may contribute to the observed decline in delta smelt abundance by shrinking suitable physical habitat and by altering feeding conditions (availability of prey and efficiency of feeding). Improved inflow conditions associated with moving X2 westward may maintain the nutrient input that supports primary productivity (Jassby 2008; Cloern 2007) and the turbidity that delta smelt need to successfully forage and, in turn, to elude predators. Recent modeling indicates that the risk of entrainment is related to distribution and to hydrology (Kimmerer and Nobriga 2008; Culberson et al 2004). In the fall, delta smelt tend to occur in the low-salinity zone or just seaward of X2, and as they mature, move into freshwater to spawn. Moving X2 westward in the fall therefore reduces the risk of entrainment by increasing the geographic and hydrologic distance of delta smelt from the influence of the Project facilities.

Spawning. The PCEs required for spawning habitat are physical habitat, water, river flow and salinity. Changes to delta smelt spawning habitat include human alteration from a shallow, seasonally-brackish complex of low islands and marshes to armored islands surrounded by dredged channels kept artificially fresh; invasive species; contaminant loading; and altered hydrology. There is presently no evidence of habitat constriction during the spawning season (Baxter et al 2008), although no studies have addressed this question. Construction and subsequent maintenance of flow control “gates” in the South Delta would permanently modify areas that may function as delta smelt spawning habitat; however, since the footprint of the disturbance is likely to be minimal and the location is such that entrainment into the export facilities is all but assured, construction and maintenance of the gates may have minimal impact on the population overall. During the January to April period, when the bulk of spawning occurs in most years, inflow to the Delta is expected to remain similar to present conditions; however, Delta outflow is expected to decrease, with the biggest differences occurring in below-normal, dry and critical years.

Larval and juvenile transport. The PCEs required for larval and juvenile transport are water, river flow and salinity. Changes to delta smelt larval and juvenile transport habitat include water diversions that create net reverse flows in the Delta that entrain larval and juvenile delta smelt and prevent their transport to rearing areas, permanent and temporary barrier installation and operation that alters Delta hydrology and salinity fields, and diminished river inflows that change the relative location of the low-salinity zone. Both the current and proposed project operations affect larval and juvenile transport by flow disruption and by interception (entrainment) of fish. Under the proposed project, X2 will usually be located further downstream than historically in March through June, except in wet years (see Effects Analysis). Larval and juvenile delta smelt move from the areas where they are spawned and must leave the Delta before water temperatures reach their critical thermal maximum of 25.4°C. Flows must be adequate during the period when larvae and juveniles are being transported. The location of X2 must be west of the confluence of the Sacramento and San Joaquin Rivers when juveniles are being transported, to ensure that suitable rearing habitat is available. Flow regulation has
resulted in an overall decrease in riverine sediment load, as sediment is lost to upstream reservoirs (Arthur and Ball 1979). A turbid environment (>25 NTU) is necessary to elicit a first feeding response (Baskerville-Bridges et al. 2000; Baskerville-Bridges 2004). Successful feeding seems to depend on high density of food organisms and turbidity, and increases with stronger light conditions (Baskerville-Bridges et al. 2000; Mager et al. 2004; Baskerville-Bridges et al. 2004). Reduced frequency and magnitude of inflow events under the proposed project will decrease turbidity and affect feeding behaviors.

Rearing habitat. The PCEs required for larval and juvenile transport are water, river flow and salinity. Changes to delta smelt rearing habitat include altered flow regimes which result in seasonally-reduced freshwater inflow; invasive species; and contaminant loading. For delta smelt, environmental quality as indexed by water temperature, transparency and salinity is an important predictor of delta smelt occurrence and abundance (Feyrer et al. 2007, Feyrer et al. 2008). The position of the two-parts-per-thousand isohaline, X2, determines the amount of suitable abiotic habitat for delta smelt. River flow is the primary driver for the position of the low-salinity zone (Jassby et al. 1995). The location of the low-salinity zone (indexed by X2) is a function of total Delta outflow, which under most conditions is determined primarily by the operations of the SWP and CVP. Reduced river inflows under the proposed project will shift the median location of X2 10 percent to 15 percent further upstream over historic conditions, shrinking the areal extent of suitable abiotic habitat by 49 percent to 57 percent, with the effect most pronounced in drier years. To provide a productive, food-rich environment, and protect rearing delta smelt from entrainment, X2 must be located within an area extending eastward from Carquinez Strait up the Sacramento River to Three-Mile Slough, and south along the San Joaquin River, including Big Break, potentially from February through the summer.

Adult migration. The PCEs required for larval and juvenile transport are water, river flow and salinity. Adult migration habitat has been affected by changes in quantity and pattern (timing) of inflow to the Delta. The proposed project will likely have the greatest effect on adult migration habitat in wetter years, as a relatively greater proportion of inflow is diverted for export. During the December through March period, when most adult migration takes place, Delta outflows are expected to decrease relative to present conditions. During January, when the freshets that cue adult migration are expected, Delta outflow is expected to decrease in all but critically dry years, which may affect the timing, magnitude and duration of attraction flows.

Cumulative Effects

Cumulative effects include the effects of future State, Tribal, local, or private actions affecting listed species that are reasonably certain to occur in the area considered in this biological assessment. Future Federal actions not related to this proposed action are not considered in determining the cumulative effects, because they are subject to separate consultation requirements pursuant to section 7 of the Act.
Any continuing or future non-Federal diversions of water that may entrain adult or larval fish are not subject to ESA Section 7 and might contribute to cumulative effects to the smelt. Water diversions might include municipal and industrial uses, as well as diversions through intakes serving numerous small, private agricultural lands contribute to these cumulative effects. However, a recent study by Nobriga et al. (2005) suggested that these diversions entrain few delta smelt. Nobriga et al. reasoned that the littoral location and low-flow operational characteristics of these diversions reduced their risks. A study of the Morrow Island Distribution System by DWR produced similar results, with one demersal species and one species that associates with structural environmental features together accounting for 97-98 percent of entrainment, and only one delta smelt observed during the two years of the study (DWR 2007).

State or local levee maintenance may also destroy or adversely modify spawning or rearing habitat and interfere with natural long term habitat-maintaining processes. Operation of flow-through cooling systems on electrical power generating plants that draw water from and discharge into the area considered in this biological assessment may also contribute to cumulative effects to the smelt.

Additional cumulative effects result from the effects of point and non-point source chemical contaminant discharges. These contaminants include but are not limited to free ammonium ion, selenium, and numerous pesticides and herbicides, as well as oil and gasoline products associated with discharges related to agricultural and urban activities. Implicated as potential sources of mortality for smelt, these contaminants may adversely affect fish reproductive success and survival rates.

Two wastewater treatment plants, one located on the Sacramento River near Freeport and the other on the San Joaquin River near Stockton have received special attention because of their discharge of ammonia. The Sacramento Regional County Sanitation District wastewater treatment facility near Freeport discharges more than 500,000 cubic meters of treated wastewater containing more than 10 tonnes of ammonia into the Sacramento River each day (http://www.sacbce.com/378/story/979721.html). Preliminary studies commissioned by the IEP POD investigation and the Central Valley Regional Water Quality Control Board are evaluating the potential for elevated levels of Sacramento River ammonia associated with the discharge to adversely affect delta smelt and their trophic support. The Freeport location of the SRCSD discharge places it upstream of the confluence of Cache Slough and the mainstem Sacramento River, a location where delta smelt have been observed to congregate in recent years during the spawning season. The potential for exposure of a substantial fraction of delta smelt spawners to elevated ammonia levels has heightened the importance of this investigation. Ammonia discharge concerns have also been expressed with respect to the City of Stockton Regional Water Quality Control Plant, but its remoteness from the parts of the estuary frequented by delta smelt suggest that it is more a potential issue for migrating salmonids than for delta smelt. Other cumulative effects could include: the dumping of domestic and industrial garbage may present hazards to the fish because they could become trapped in the debris, injure themselves, or ingest the debris; golf courses reduce habitat and introduce pesticides and herbicides into the environment; oil and gas development and production may affect habitat and may introduce pollutants into the water; agricultural activities including
burning or removal of vegetation on levees reduce riparian and wetland habitats; and
grazing activities may degrade or reduce suitable habitat, which could reduce vegetation
in or near waterways.

The effects of the proposed action are not expected to alter the magnitude of cumulative
effects of the above described actions upon the critical habitat's conservation function for
the smelt.

Table XX. Summary of expected effects to critical habitat.

<table>
<thead>
<tr>
<th>Components of the Proposed Action</th>
<th>Physical Habitat</th>
<th>Primary Constituent Element</th>
<th>Water</th>
<th>River Flow</th>
<th>Salinity Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWP and CVP Operations</td>
<td>Small</td>
<td>- Changes to biotic elements of habitat and changes to extent and quality of physical pelagic habitat - Further spread of Microcystis</td>
<td>-Interception and entrainment of fish - Disruption of adult migratory behavior - Disruption of larval fish distribution - Enhancement of non-indigenous species - Concentration of environmental toxins</td>
<td>-Changes in quality, extent, and location of physical pelagic habitat</td>
<td></td>
</tr>
<tr>
<td>Intertie Between DMC and CA</td>
<td>Small</td>
<td>Small</td>
<td>-Interception and entrainment of fish</td>
<td>Small</td>
<td></td>
</tr>
<tr>
<td>Article 21</td>
<td>Small</td>
<td>Small</td>
<td>-Interception and entrainment of fish - Disruption of adult migratory behavior - Disruption of larval fish distribution</td>
<td>Small</td>
<td></td>
</tr>
<tr>
<td>North Bay Aqueduct</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project/Project Component</th>
<th>Small</th>
<th>Small</th>
<th>Small</th>
<th>Small</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeport Regional Water Project</td>
<td>-Interception and entrainment of fish - Disruption of adult migratory behavior - Disruption of larval fish distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Delta Temporary Barriers</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
</tr>
<tr>
<td>South Delta Permanent Operable Gates</td>
<td>-Interception and entrainment of fish - Disruption of adult migratory behavior - Disruption of larval fish distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suisun Marsh Salinity Control Gates</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
<td>-Changes in quality, extent, and location of physical pelagic habitat</td>
</tr>
<tr>
<td>CCWD Diversions</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
</tr>
<tr>
<td>Water Transfers</td>
<td>- Changes to biotic elements of habitat and changes to extent and quality of physical pelagic habitat - Further spread of Microcystis</td>
<td>-Interception and entrainment of fish - Disruption of adult migratory behavior - Disruption of larval fish distribution - Enhancement of non-indigenous species - Concentration of environmental toxins</td>
<td>-Changes in quality, extent, and location of physical pelagic habitat</td>
<td></td>
</tr>
</tbody>
</table>

Hobbs 2006

Kimmerer, WJ, Orsi, JJ. 1996.

Manly, Chotkowski

Simberloff and Gibbons 2003

USFWS. 1995.

Cloern 2007

Feyrer et al 2008

Feyrer et al 2007

