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A Fish Model of Renal Regeneration and Development

Renate Reimschuessel

Abstract

The fish kidney provides a unique model for investigating
renal injury, repair, and development.  Like mammalian
kidneys, fish kidneys have the remarkable ability to repair
injured nephrons, designated renal regeneration.  This response
is marked by a recovery from acute renal failure by replacing
the injured cells with new epithelial cells, restoring tubule
integrity.  In addition, fish have the ability to respond to renal
injury by de novo nephron neogenesis.  This response occurs
in multiple fish species including goldfish, zebrafish, catfish,
trout, tilapia, and the aglomerular toadfish.  New nephrons
develop in the weeks after the initial injury.  This nephro-
genic response can be induced in adult fish, providing a more
abundant source of developing renal tissue compared with
fetal mammalian kidneys.  Investigating the roles played by
different parts of the nephron during development and repair
can be facilitated using fish models with differing renal
anatomy, such as aglomerular fish.  The fish nephron neo-
genesis model may also help to identify novel genes involved
in nephrogenesis, information that could eventually be used
to develop alternative renal replacement therapies.
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Introduction

The mammalian kidney’s ability to repair sublethal toxic
injury has been known for more than 100 yr
(Podwyssozki 1885).  Numerous nephrotoxicants have

been used to demonstrate the pattern of cellular repopulation
along the proximal tubule (Cuppage and Tate 1967; Oliver
1915; Reimschuessel et al. 1990b, 1991).  Although the time
course may vary, the basic pattern of regeneration after
exposure to these nephrotoxicants is similar.  The denuded
basement membrane is lined by basophilic, flattened, squamous
cells several days after the administration of the toxicant.
Later, these cells develop into a cuboidal basophilic epithe-
lium and eventually differentiate into a mature epithelium.
This type of repair has been designated classically as renal

regeneration, with regeneration referring to the repopulation
of the existing nephron after cells have been destroyed.  If,
however, there is overwhelming injury to the nephron, includ-
ing destruction of the basement membrane, the nephron will
degenerate and the glomerulus undergoes fibrosis.

Another well-characterized response of the mammalian
kidney is compensatory renal hypertrophy, or the enlarge-
ment of the remaining kidney after unilateral nephrectomy
(Fine 1986; Kaufman et al. 1975).  Unilateral nephrectomy
in the neonate induces cellular multiplication in the remain-
ing kidney (Karp et al. 1971; Sands et al. 1979) whereas in
the adult, 80% of the increase in renal size is due to cellular
hypertrophy (Johnson and Vera Roman 1966).

A third renal repair response, nephron neogenesis, has
been described in fish (Reimschuessel and Gonzales 1998;
Reimschuessel and Williams 1995; Reimschuessel et al.
1990a, 1993).  Regeneration in mammalian kidneys in response
to toxic injury does not include the development of new
nephrons.  Neither compensatory renal hypertrophy follow-
ing unilateral nephrectomy, nor regeneration in mammalian
kidneys in response to toxic injury, results in the develop-
ment of new nephrons (Fine 1986; Kaufman et al. 1975;
Kazimierczak 1982; Larsson et al. 1980).  Postnatal develop-
ment of new nephrons in mammals occurs only in the neo-
natal period of some  species.  For example, in the normal
neonatal rat, the kidney continues to produce new nephron
anlages for up to 3 days after birth (Larsson 1975, 1982;
Neiss and Klehn 1981; Reeves et al. 1980).  These anlages
develop into mature nephrons by 12 days.  After this period,
however, no further nephron development takes place.

Although new nephron development occurs only in the
neonatal period of some mammals (e.g., the rat), it proceeds
throughout life in fish (Yasutake and Wales 1983).  Intensely
basophilic, compact developing tubules can occasionally be
seen in normal adult fish kidneys.  They are seen with greater
frequency in young, rapidly growing fish. After nephrotoxicant-
induced injury, however, the number of developing nephrons
in both young and adult fish increases significantly (Brown
and Reimschuessel 1998; Reimschuessel et al. 1990a, 1993).
Because adult fish can respond to injury by nephron neo-
genesis, providing much more tissue than can be found in
larval or embryonic kidneys, fish are excellent models for
studying both renal regeneration and nephron development.

The following sections will examine more fully the
normal development of the mammalian and fish kidney, the
regenerative response in the mammalian and fish kidney,
and finally the nephron neogenic response in fish.
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Development of the Vertebrate Kidney

Vertebrate development generally proceeds in the direction
of anterior to posterior.  The development of the kidney also
follows this pattern.  Anterior segments develop and become
functional earlier than posterior segments, producing in
sequence the pronephros, the mesonephros, and the meta-
nephros (Berrill and Karp 1976; Fraser 1950; Goodrich 1958;
Kerr 1919).  The pronephros develops from the intermediate
mesoderm located between the somatic mesoderm (myotome)
and the lateral-plate mesoderm.  Pronephric tubules develop
in each segment from a solid mass of cells, the nephrotome
(also called renal anlage or nephrogenic blastema).

The pronephros is functional throughout life in some
genera of fish (Fierasfer, Zoarces, Lepadogaster) (Hickman
and Trump 1969; Kerr 1919; Lagler et al. 1977).  In most
vertebrates, however, the pronephros degenerates and dis-
appears as the mesonephros develops.  As with development,
this process progresses from the anterior to the posterior end.

The mesonephros arises from the nephrotome in more
posterior segments.  The tubular outgrowths, Bowman’s cap-
sule and glomerulus, form in a manner similar to that of the
pronephros (Fraser 1950; Goodrich 1958; Kerr 1919).  The
nephrotome consists of a solid mass of cells near the pro-
nephric excretory duct.  A cavity forms in the center of this
mass and forms the renal vesicle (Figure 1).  As it grows, the
vesicle is first C-shaped but soon develops an S-shape.  The
medial end of the S invaginates further and develops into the
glomerulus with an outgrowth forming the peritoneal funnel.
The remainder of the S becomes the primary tubule.  The
tubule grows out and fuses with the pronephric excretory
duct, which eventually becomes the mesonephric or Wolffian
duct.  Secondary and tertiary tubules develop from nephro-
genic blastema of the nephrotome, elongate, and fuse with
the primary tubule, forming a collecting tubule.  The tertiary
tubules open into the secondary tubules.  The tubules all
elongate, coil, and intertwine, producing the mesonephros.

In the teleosts, the tubules of the anterior region of the
mesonephros degenerate, and the “head kidney” becomes a
hematopoietic, lymphoid, and endocrine organ.  The meso-
nephros is the functional kidney of adult teleosts, and it is
also functional in the mammalian embryo (Altschule 1930;
Bremer 1916; Davies and Routh 1957; de Martino and

Zamboni 1966; Fraser 1920; Leeson and Baxter 1957; Lewis
1920; MacCallum 1902; Tiedemann 1976).

The metanephros develops in the Amniota: reptiles, birds,
and mammals (Berrill and Karp 1976; Fraser 1950; Goodrich
1958; Huber 1905; Kerr 1919).  A ureteric bud develops as a
diverticulum of the dorsal side of the mesonephric duct, and
it grows forward and dorsally toward the remaining nephro-
genic blastema.  Except for the development of the loop of
Henle, the development of the metanephric nephron parallels
that of the mesonephric nephron: formation of the renal
vesicle, the S-stage, fusion with the collecting duct, and elon-
gation of the tubular portion.

In both the mesonephros and the metanephros, the
nephrogenic blastema develops in close association with the
Wolffian duct or the ureteric bud, respectively.  In vitro
experiments (Erickson 1968; Grobstein 1955, 1957) have
shown that when the metanephric blastema is cultured
together with ureteric bud, it undergoes tubulogenesis.  Cell-
to-cell contact is required for induction of tubule formation
(Sariola et al. 1989; Weller et al. 1991).  Branching of the
ureteric bud is also dependent on co-culture with a meta-
nephric blastema that has not yet undergone tubulogenesis
(Humes et al. 1996; Sakurai and Nigam 1998).  This blastema
also simulates what occurs in vivo.  The ureteric bud branches
after entering the nephrogenic blastema, which in turn forms
caps and differentiates into nephrons.  Thus, there are complex
interactions between the ductular and tubular elements during
development of both the mesonephros and the metanephros.

Anatomy of the Teleost Kidney

The kidneys of fish are retroperitoneal, as in the mammal.
The gross anatomy of the kidney varies in different species
from distinctly bilobed cranial and caudal kidneys, to kidneys
that are fused and intimately embedded between the verte-
brae (Ogawa 1962).  The cranial or “head” kidney contains
hematopoietic, lymphoid, and endocrine tissue.  The caudal
kidney is composed of nephrons surrounded by hemato-
poietic and lymphoid tissue dispersed throughout the organ.
Species variations in tubular segmentation also exist (Edwards
and Schnitter 1933; Endo and Kimura 1982; Hentschel and
Elger 1988; Hickman and Trump 1969; Longley and Fisher

Figure 1   General development of the mesonephric tubule.  A solid mass of cells near the archinephric duct develops a cavity and forms the
renal vesicle.  As it grows, the vesicle is first C-shaped and then S-shaped.  One end of the S-shaped stage indents further, forming the
glomerulus, while the other end grows outward and fuses with the archinephric duct.  The tubules elongate, coil, and intertwine as the nephron
develops.  RV, renal vesicle; C, C-shaped stage; S, S-shaped stage; DN, developing nephron.
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1Abbreviations used in this article:  HCBD, hexachlorobutadiene; IGF-I,
insulin-like growth factor-I; WT-1, Wilms’ tumor transcription factor gene.

Figure 2   Schematic of different types of fish nephrons.

1954; Ogawa 1962; Sakai 1985) (Figure 2).  These variations
are most evident when comparing freshwater and marine
species, which is not surprising because their environments
make different demands on their kidneys.  The freshwater
nephron typically has a well-vascularized glomerulus, a cili-
ated neck segment, two proximal segments, a ciliated inter-
mediate segment, a distal segment, and a collecting duct
system.  The mesangium of many marine forms is thickened,
and the glomerular filtration rate is lower than that of fresh-
water fish.  Some estuarine or marine fish have no glomeruli,
and many marine teleosts have no distal tubule.  These
changes probably occurred as evolutionary adaptations when
freshwater teleosts reinvaded the oceans (Hickman and
Trump 1969; Smith 1939).  Such differing anatomical types
provide the creative research scientist unique opportunities
to study aspects of renal function and development that would
be impossible to study in mammalian models.

Renal Regeneration in the
Mammalian Kidney

Renal regeneration of cells in an existing nephron has been
well documented in mammals.  Oliver (1915) described renal
epithelial regeneration after administration of uranium nitrate
in the rat, rabbit, and guinea pig.  Since that time, there have
been numerous reports of proximal tubular regeneration in
the rat after ischemia or the administration of nephrotoxicants
(Boti et al. 1982; Cuppage and Tate 1967; Haagsma and
Pound 1980; Houghton et al. 1976; Ishmael et al. 1982;
Kociba et al. 1977; Ormos and Gohus 1979; Peterson and
Carone 1979; Spangler et al. 1980; Venkatachalam et al.
1981; Wellwood et al. 1976).  The basic pattern of regenera-
tion is similar for these nephrotoxicants.  For example, in the
rat, a sublethal dose of mercuric chloride causes the epithe-
lium of the mid- and terminal portions of the proximal tubule
to degenerate and eventually slough into the lumen of the

tubule, leaving the denuded basement membrane intact.
Within 3 to 4 days after the injury, the tubules are lined by
basophilic, flattened squamous cells.  Mitotic figures are
often noted in these regenerating cells.  By 5 to 7 days, the
epithelium is composed of short, cuboidal basophilic cells.
Most tubules regain normal morphology between 3 and 4 wk
(Boti et al. 1982; Cuppage et al. 1972).   This entire process
of regeneration, which involves epithelial cell dedifferentia-
tion, movement, proliferation, and  redifferentiation, restores
the functional integrity of the nephron (Abbate et al. 1999;
Imgrund et al. 1999; Safirstein 1999).  Renal function, as
measured by creatinine clearance, parallels the structural
changes after mercuric chloride toxicosis.  Creatinine clear-
ance is impaired during the first 5 days but improves during
the latter phases (days 7-10) of regeneration (Cuppage and
Tate 1967).

The regenerative response in rat proximal tubules after
mercuric chloride administration is similar to that seen after
hexachlorobutadiene (HCBD1) exposure.  HCBD nephro-
toxicity has been studied extensively in the rat (Berndt and
Mehendale 1979; Davis et al. 1980; Gage 1970; Harleman
and Seinen 1979; Ishmael et al. 1982; Kociba et al. 1977;
Lock and Ishmael 1979).  Unlike mercuric chloride, HCBD
does not cause hepatocellular damage in addition to its effects
on the kidney (Davis et al. 1980).  HCBD causes marked
necrosis and vacuolation in the proximal tubules. By 5 days,
most of the injured tubules are lined by a cuboidal basophilic
epithelium that contains many mitotic figures.

Renal function as measured by plasma urea increases
16 hr after HCBD injection, peaks at 3 days, and returns to
normal by day 7 (Davis et al. 1980; Ishmael et al. 1982).  The
time course of the decline in function and subsequent improved
function parallels the histopathological changes.  In both
mercuric chloride and HCBD nephrotoxicity, the appearance
of a regenerating epithelium is followed by improved renal
function.

Renal Injury and Regeneration in the Fish

Although renal injury has been well described in many fish
species, the repair responses of the fish kidney have only
recently been characterized in several fish species (Augusto
et al. 1996; Reimschuessel et al. 1989, 1990b, 1996).   Repair
of the existing nephron after toxicant-induced injury occurs
in goldfish, catfish, trout, zebrafish, and tilapia (Augusto et
al. 1996; Reimschuessel and Biggs 1996; Reimschuessel et
al. 1990b, 1993).  This process is similar to one that occurs in
the mammalian kidney.  There is an initial phase of cell death
and denuding of the basement membrane (Plate 1A, page
305).  During the ensuing days, a flattened basophilic epithe-
lium repopulates the remaining denuded basement membrane
(Plate 1B, page 305).  This process is accomplished by cell
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migration and replication both proximal and distal to the
lesion (Reimschuessel et al. 1990b).  Although the function
of the injured fish kidney is difficult to assess, clinical signs
such as exophthalmia, ascites and low hematocrit, and hypo-
proteinemia due to osmoregulatory failure are observed dur-
ing the acute injury phase (Plate 2, page 306).  As the
nephrons regenerate, the ascites resolves and hematological
parameters return to normal  (Reimschuessel et al. 1989).
These findings correlate well with what has been found in
mammalian models of renal repair.

Nephron Neogenesis in the Fish

The nephrotoxic injury phase in fish is first followed by the
repair phase.  There is, however, an additional phase that
makes the fish kidney valuable as a model for renal repair
and regeneration.  The fish kidney exhibits a unique nephron
neogenic response with de novo nephron development
(Augusto et al. 1996; Reimschuessel et al. 1990a, 1991,
1993). A similar neogenic response is not observed in
mammals.

The nephron neogenic response has been described in
multiple fish species, including goldfish (Reimschuessel et
al. 1990a), rainbow trout (Reimschuessel et al. 1993), tom
cod and catfish (Cormier et al. 1995),  zebrafish (Reimschuessel
and Biggs 1996), tilapia (Augusto et al. 1996), and even the
aglomerular toadfish (Brown and Reimschuessel 1998).  A
variety of toxicants, with differing mechanisms of toxicity,
have been used to demonstrate this response.   These toxicants
include HCBD (Reimschuessel et al. 1990a), mercuric chlo-
ride (Reimschuessel and Gonzales 1998), tetrachlorethylene
(Reimschuessel et al. 1993), and gentamicin (Brown and
Reimschuessel 1998; Reimschuessel and Williams 1995).
The new nephrons that form in goldfish after nephrotoxicant-
induced injury follow the same pattern of development as is
observed during nephrogenesis in developing mammalian
kidneys. Specifically, basophilic clusters of cells adjacent to
collecting ducts form renal vesicles and S-shaped tubules,
and the tubular outgrowths then fuse with the collecting
ducts.  Glomerular development results in glomeruli with
vascular tufts, parietal and visceral epithelia, and a clear
Bowman’s space (Plate 3, page 309).  The nephrons develop
over a period of 2 to 4 wk after exposure to the toxicant. This
neogenic response thus provides a unique model for studying
developing nephrons in an adult vertebrate organism.

Nephron Neogenesis in Aglomerular Fish

The anatomical variations in kidney structure found in
various fish species provide a unique opportunity to study
structure-specific development and function. Specifically,
whereas freshwater fish species have nephrons composed of
a glomerulus, a neck segment, proximal tubules, distal tubules,
and a collecting duct system, differing from mammalian
kidneys only in the absence of the loop of Henle and pres-

ence of interstitial myelopoietic tissue, the estuarine toadfish
is aglomerular (Hickman and Trump 1969).  Toadfish, with
nephrons that lack a glomerulus and distal tubules, thus rep-
resent a naturally occurring knockout model of glomerular
structure and function. Toadfish have historically been used
in studies that have had profound implications for under-
standing mammalian biology and physiology. For example,
studies in the aglomerular toadfish provided the first defini-
tive evidence for the role of renal tubular secretion in the
excretion of xenobiotics (Marshall and Grafflin 1928). Such
studies were not possible in mammalian systems due to the
potential contribution of the glomerulus.

Toadfish have been shown to be extremely sensitive to
gentamicin nephrotoxicosis at doses that are therapeutic for
other fish species (Reimschuessel et al. 1996).  There are
also major differences in the pharmacokinetics of gentamicin
in goldfish and aglomerular toadfish (Jones et al. 1997)
(Figure 3).  These differences are due to the fact that gen-
tamicin is excreted primarily via glomerular filtration.   Be-
cause toadfish are aglomerular, serum levels of gentamicin
remain high for several weeks after treatment.  However, as
soon as the serum levels of gentamicin are below detectable
levels, toadfish kidneys also produce new nephrons (Brown
and Reimschuessel 1998) (Plate 4, page 308).  It is possible
that future studies using aglomerular toadfish will identify
genes involved in glomerulus-specific development and repair.
Because approximately 25% of all cases of pediatric chronic
renal disease involve glomerular dysfunction (Watson 1996),
the identification of genes involved in normal glomerular
development and repair could have important implications
for the development of therapies for glomerular diseases.

Molecular Events in Renal Development,
Repair, and Disease

The precise regulation of cell proliferation and cell death is
critical for proper kidney development, repair, and homeo-

Figure 3   Mean gentamicin concentrations ((g/mL serum) in gold-
fish and toadfish after administration of 3.5 mg of gentamicin/kg
body weight.
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stasis in the mature organ. Accordingly, gene products that
function to initiate cell division, maintain cell cycle progres-
sion, and terminate proliferation via growth arrest or cell
death play essential roles in this dynamic process.  Many
genes are expressed both during development and during
regeneration, indicating that some events in renal regenera-
tion recapitulate renal development.  For example, myc
(Bendit et al. 1991; Cowley et al. 1989; Mugrauer and
Ekblom 1991), Pax-2 (Imgrund et al. 1999), and insulin-like
growth factor-I (IGF-I1) (Matejka 1998) have been identified
in developing kidneys and in repairing injured kidneys.

In addition to gene products with global functions in cell
proliferation (e.g., immediate early genes such as c-myc) or
cell death (e.g., bc1-2), studies in transgenic and knockout
mice have identified several genes that exhibit functions
restricted to the kidney and related tissues. For example,
mice carrying a targeted mutation of the Wilms’ tumor tran-
scription factor gene (WT-11) die in utero due to a failure in
kidney and gonad development (Kreidberg et al. 1993).
These mice do not express Pax-2, a putative regulatory factor
normally expressed in early kidney development (Dressler
and Drouglas 1992; Dressler et al. 1993). Because Pax-2
transgenic mice also exhibit aborted kidney development
(Torres et al. 1995), the regulation of Pax-2 is thought to be
an important function of WT-1 in kidney development. Abnor-
mal kidney development has also been reported in c-ret
knockout mice (Schuchardt et al. 1994), whereas over-
expression of the Hox gene, which is implicated in normal
renal development (Cillo et al. 1992; Clapp and Abrahamson
1993; Redline et al. 1994), results in the development of
renal cancers. Thus, although several gene products required
for kidney development have been identified, it is still neces-
sary to isolate upstream regulators and downstream effectors
of these genes to understand the molecular events in renal
development more completely.

Gene products that function in activities essential to the
viability of the organism, such as development, stress
response, and regulation of cell proliferation, are highly con-
served among vertebrates. Indeed, fish homologs of c-myc
(Schreiber-Agus et al. 1993; Van Beneden et al.1986; Zhang
et al. 1995), c-ret (Marcos-Gutierrez et al. 1997), Hox
(Levine and Schechter 1993; Ruddle et al. 1999), IGF-I
(Perrot et al. 1999), and WT-1 (Kent et al. 1995) have been
identified.  The nephroneogenic repair in fish and renal devel-
opment in mammals proceed through similar stages, sug-
gesting that conserved gene products mediate these similar
molecular events.

The fish nephron neogensis model system may help to
identify novel genes involved in nephrogenesis (Liu et al.
1998). Identification of these genes represents a requisite
first step toward understanding the genetic mechanisms
involved in nephrogenesis and the molecular basis for the
restricted nephrogenic response observed in mammals. Ulti-
mately, this information could be used in the development of
alternative renal replacement therapies based on the induc-
tion of de novo nephrogenesis in diseased kidneys.
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