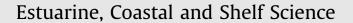

Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.


In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Estuarine, Coastal and Shelf Science 104-105 (2012) 91-101

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/ecss

The effect of inorganic nitrogen speciation on primary production in the San Francisco Estuary

Alexander E. Parker*, Victoria E. Hogue, Frances P. Wilkerson, Richard C. Dugdale

Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3152 Paradise Drive, Tiburon, CA 94920, USA

ARTICLE INFO

Article history: Received 31 August 2011 Accepted 1 April 2012 Available online 20 April 2012

Keywords: San Francisco Estuary primary production phytoplankton carbon ammonium nitrate

ABSTRACT

We describe the results of a series of 96-h enclosure experiments conducted using water from stations in the northern San Francisco Estuary (SFE) along a gradient in ammonium (NH_4) and nitrate (NO_3) concentrations. Using dual-labeled $^{13}C/^{15}N$ tracers, we followed the timing and sequence of primary (carbon, C) production and phytoplankton nitrogen (N) use during experimental phytoplankton blooms. Our results show that diatoms consistently drive the phytoplankton blooms in the enclosures. By tracing both C and N uptake we provide clear evidence that high rates of C uptake are linked to phytoplankton NO₃, and not NH₄, use. Results from kinetics experiments demonstrated higher specific uptake rates (V_{MAx}) for NO₃ compared to NH₄ in the SFE. Finally, dissolved inorganic carbon and nutrient drawdown ratios in the enclosures from the chronically high NH₄ regions of the SFE were substantially lower than predicted from the Redfield ratio, suggesting suppressed C uptake, in relation to other elemental uptake. Our conceptual model of the DIN interactions that lead to higher primary production and phytoplankton blooms in the SFE suggests that higher rates of primary production that accompany phytoplankton NO₃ uptake are sufficient to outpace phytoplankton losses, leading to blooms, compared to the lower rates associated with NH₄ uptake (only 20% of that based upon NO₃). Historical changes in wastewater practices have increased the proportion of NH₄ to the DIN pool in the SFE leading to reduced access to NO₃ by phytoplankton. This may help to explain some of the reduced primary production and phytoplankton biomass observed there since the 1970s.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The San Francisco Estuary (SFE) is the major west coast estuary of the U.S. and like many large estuaries worldwide has been modified as a result of urbanization (Nichols et al., 1986). Among the many manifestations of population growth and development are the diversion of freshwater from the Sacramento and San Joaquin Rivers that feed the SFE to California's Central Valley for agriculture and to southern California's urban centers (Nichols et al., 1986), ballast water introductions of invasive species (Cohen and Carlton, 1998), and nutrient loading from agricultural and municipal wastewater sources (Nichols et al., 1986; Hager and Schemel, 1996; Jassby, 2008). In recent decades declines in phytoplankton (Jassby et al., 2002) and zooplankton (Orsi and Mecum, 1996; Kimmerer and Orsi, 1996; Kimmerer, 2005) have been observed and since the early 2000's several fish, including state and federally threatened species, have also declined (Feyrer et al., 2007). These changes have led to local concern that the estuary is experiencing a "pelagic organism decline" (POD) (Sommer et al., 2007).

Historically, primary production was low in the SFE compared to other estuaries (Boynton et al., 1982; Cloern, 2001), due to high suspended sediment loads resulting in reduced photic zone depth (Cole and Cloern, 1984, 1987; Alpine and Cloern, 1988). A decline to now chronically low chlorophyll-a (chl-a) concentrations occurred in the northern SFE in the late 1980s and was attributed mainly to grazing by the overbite clam, Corbula amurensis (Carlton et al., 1990), which was introduced to the estuary in 1986 (Alpine and Cloern, 1992). However, C. amurensis abundance alone may be insufficient to explain annual chl-a trends, as winter chl-a in the northern estuary began to decline before the clam's introduction (Jassby et al., 2002) and rare spring phytoplankton blooms have been observed in the northern SFE (Dugdale et al., submitted; Wilkerson et al., 2006; Glibert et al., 2011; Dugdale et al., submitted) since the clam's introduction even while clam biomass has been relatively stable.

^{*} Corresponding author.

E-mail addresses: aeparker@sfsu.edu (A.E. Parker), vhogue6417@gmail.com (V.E. Hogue), fwilkers@sfsu.edu (F.P. Wilkerson), rdugdale@sfsu.edu (R.C. Dugdale).

^{0272-7714/\$ -} see front matter \odot 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.ecss.2012.04.001

Until recently (Wilkerson et al., 2006; Dugdale et al., 2007) nutrients were eliminated as a factor in the low primary production condition in the SFE as they are always found in sufficient supply (Hager and Schemel, 1996; Jassby et al., 2002). Wilkerson et al. (2006) and Hogue et al. (2005) made the first direct measurements of phytoplankton nitrogen productivity in SFE using ¹⁵N tracers and found that ammonium (NH₄) fueled primary production much of the time even though high nitrate (NO₃) was present. This has been described for other estuaries (e.g. Pennock, 1987) and is explained by NH₄ inhibition of phytoplankton NO₃ uptake (e.g. Conway, 1977; Dortch, 1990). Wilkerson et al. (2006) noted an exception to the dominance of phytoplankton NH₄ uptake during spring phytoplankton blooms when phytoplankton displayed high rates of NO₃ uptake allowing the larger pool of dissolved inorganic nitrogen (DIN) to be used for growth and chl-a accumulation. This occurred only under conditions of low NH₄. Biomass-specific NO₃ uptake rates during these periods were the highest phytoplankton N uptake observed in the estuary during the annual productivity cvcle.

A limitation of the Wilkerson et al. (2006) study is that the authors considered phytoplankton N uptake only and did not measure primary production directly as C uptake or dissolved inorganic carbon (DIC) drawdown. To estimate C production the authors assumed a fixed C to N uptake ratio (i.e. Redfield stoichiometry; Redfield et al., 1963) or used chl-*a* biomass as a proxy of phytoplankton C biomass. These assumptions may not hold as C and N uptake have been shown to be uncoupled on shorter time scales in response to perturbations in light and time of day (Cochlan et al., 1991), nutrient concentrations (e.g. surge uptake; Harrison et al., 1977), and nutrient availability. Parker (2004) reported low C uptake in Delaware Bay enclosure experiments when the N nutrient supplied was NH₄. Yoshiyama and Sharp (2006) attributed a low productivity zone in the Delaware River to high ambient NH₄ concentrations.

To establish if the speciation of ambient DIN may result in differences in carbon uptake in the SFE (i.e. a secondary bottom-up control) we conducted enclosure experiments along a natural gradient of DIN concentrations with varying NO₃ to NH₄ ratios. The goal of this study was to link phytoplankton C and N uptake processes to more fully characterize productivity – nutrient dynamics along the DIN gradient by measuring carbon uptake and DIC use directly. We hypothesize that phytoplankton in the northern SFE show a physiological advantage to growth supported by NO₃ such that higher C uptake and biomass accumulation are linked with NO₃ uptake. Observed low rates of primary production in the northern SFE may be exacerbated by a lack of access to the high ambient concentrations of NO₃ as a result of suppression of NO₃ uptake by increased anthropogenic NH₄ supply.

2. Methods and materials

2.1. Experimental design

A series of enclosure experiments were conducted in the northern SFE during 2005. Experiments were designed specifically to remove light limitation by exposing phytoplankton to 50% of surface photosynthetically active radiation (PAR) (Lorenzi, 2006) and eliminate benthic grazing by *C. amurensis*. No attempt was made to remove zooplankton grazers. Water for enclosures was collected at three stations during March, July and September. Stations were selected to represent the three subembayments of the northern estuary, Suisun (SUI; 38°2.1′ N, 122° 5.8′ W), San Pablo (SPO; 38°1.7′ N, 122° 22.2′ W), and Central Bays (CEN; 37° 53.8′ N, 122° 25.5′ W) (Fig. 1). We relied on differences in initial ambient

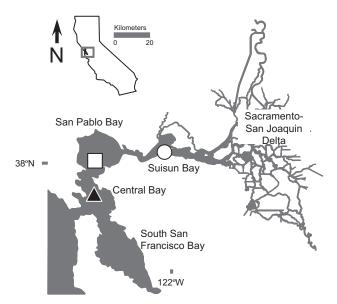


Fig. 1. Map of study site, indicating the sampling locations within the three subembayments of the northern San Francisco Bay.

concentrations of NO_3 and NH_4 at the three stations to create experimental treatment conditions (Table 1).

Near-surface water (<1°m depth) was collected by clean bucket at each station and dispensed into three replicate 20-L low density polyethylene (LDPE) cubitainers (=enclosures), stored in the dark in coolers, and returned to the laboratory within 2 h of collection. Temperature and salinity were measured using a YSI 85 conductivity/temperature probe (Yellow Springs Instruments, Inc.). The enclosures were placed in baywater-cooled incubation tanks with surface photosynthetically active radiation (PAR) reduced by 50% with window screening and incubated for up to 96 h. Water flow within the incubation tanks was sufficient to keep the enclosures in gentle motion during the incubation period, homogenizing the light field experienced by replicate enclosures and allowing continuous mixing with little discernable accumulation of organic matter inside enclosure walls. The nine enclosures were sampled once daily around 10:00 h local time to track changes in DIC and inorganic nutrient concentrations. Phytoplankton were assessed daily by sampling for size-fractionated chl-*a* into two fractions (GF/ F 0.7 µm nominal pore size and 5.0 µm polycarbonate filters). Primary production (C uptake) and phytoplankton NO₃ and NH₄ uptake were measured daily using stable isotope tracer techniques (Slawyk et al., 1977). Phytoplankton urea uptake was measured during one enclosure experiment conducted in April 2006, representing at most 20% of NO₃ uptake (data not shown).

Water was also collected in April 2005 at CEN to study phytoplankton N uptake kinetics. After collection, water was held for 48h at 50% PAR to allow phytoplankton to reduce the ambient N concentration prior to studying phytoplankton N uptake with increasing NH₄ or NO₃ concentrations. After 48-h, NH₄ was reduced to <1 µmol N L⁻¹. However, ambient NO₃ concentrations were still too high (>12 µmol NO₃ L⁻¹) to be able to carry out Michaelis–Menten type kinetics experiments. Consequently, additions of NO₃ were made to a series of bottles in order to determine V_{MAx} NO₃ at NO₃ concentrations in excess of 12 µmol L⁻¹.

2.2. Routine analytical methods

DIC was measured in 20-ml samples using a Monterey Bay Research Institute-clone DIC analyzer with acid-sparging and nonTable 1

Hydrographic data and initial chemistry at stations in Suisun Bay (SUI), San Pablo Bay (SPO) and Central Bay (CEN) during 2005. Temperature and salinity data were not determined (NA) in SUI and SPO stations in September.

Experiment	Station	Sal. (psu)	Temp. (°C)	$NO_3 \ \mu mol \ N \ L^{-1}$	$NH_4 \ \mu mol \ N \ L^{-1}$	Urea $\mu mol \; N \; L^{-1}$	$PO_4 \ \mu mol \ P \ L^{-1}$	Si(OH)_4 μmol Si L^{-1}	Chl-a µg L^{-1}	Chl-a % >5- μ m
March	SUI	2.7	15.4	39.43	9.18	1.93	1.76	281	1.3	70
	SPO	15.3	15.6	35.12	5.71	1.81	1.61	165	2.4	71
	CEN	19.4	15.2	31.37	4.91	1.57	1.55	128	1.9	79
July	SUI	7.2	20.0	22.60	8.61	1.18	2.92	182	0.9	33
	SPO	17.8	19.5	21.51	5.54	1.19	3.12	115	1.0	60
	CEN	24.1	18.4	17.30	5.21	0.82	2.58	69	1.5	33
September	SUI	NA	NA	23.99	5.65	0.76	3.00	182	1.9	48
	SPO	NA	NA	18.58	5.25	1.00	3.19	105	2.3	56
	CEN	NA	16.4	15.41	4.60	0.90	2.94	80	2.0	60

dispersive infrared (NDIR) analysis (Friederich et al., 2002; Parker et al., 2006) following preservation with 200 μ L of 5% w/v HgCl₂ (Sharp et al., 2009).

Samples for inorganic nutrients were passed through a GF/F filter to remove particulate matter before nutrient analysis (Wilkerson et al., 2006). Twenty-ml filtered water samples were analyzed using a Bran and Luebbe AutoAnalyzer II with MT-19 manifold chemistry module for NO₃ + NO₂ and NO₂ according to Whitledge et al. (1981) and Bran and Leubbe (1999a,b) Method G-172-96, phosphate (PO₄) according to Bran and Luebbe Method G-175-96 and silicate (Si(OH)₄) by Bran and Luebbe Method G-177-96. $NO_3 + NO_2$ is referred to as NO_3 throughout the text as NO_2 concentrations were very low ($<1.0 \mu mol L^{-1}$). Urea concentrations were measured in all experiments using the method of Revilla et al. (2005) with concentrations rarely exceeding 1 μ mol L⁻¹ (representing <3% of the DIN pool). Separate 25-ml samples were collected for manual colorimetric determination of NH₄ according to Solorzano (1969) using a 10-cm path length cell. Sample water (50-ml-100-ml) was filtered for determination of in vitro chla using the extraction protocol of Arar and Collins (1992) and read on a Turner Designs fluorometer calibrated with commercially available chl-a (Turner Designs).

2.3. Carbon and nitrogen assimilation

Dual-labeled ¹³C/¹⁵N stable isotope tracer incubations were carried out to estimate hourly C and N uptake rates (Slawyk et al., 1977). Trace additions of NaH¹³CO₃ and either K¹⁵NO₃ or ¹⁵NH₄Cl (99 atom %) were added to samples to approximately 10% of the ambient concentration. Samples were incubated in 180-ml polycarbonate bottles for 4-h around local noon, held in baywatercooled incubator tables screened to 50% of surface PAR. Incubations were terminated by gentle vacuum filtration onto precombusted (450 °C for 4 h) 25-mm Whatman GF/F filters. Filters were frozen until analysis for ¹³C and ¹⁵N enrichment and particulate organic carbon and nitrogen concentration with a Europa 20/ 20 isotope ratio-mass spectrometer system. Nitrogen uptake rates (ρ , μ mol L⁻¹ h⁻¹) and biomass-specific uptake (V, h⁻¹) were calculated according to Dugdale and Wilkerson (1986). Carbon uptake was calculated in the same manner, using measured DIC concentrations to calculate substrate enrichment (Legendre and Gosselin, 1996; Parker, 2005). We report both V and ρ because while the two rates are related (ρ is derived from V), V provides an indication of phytoplankton physiology, while p provides information on C and N flux and cycling. The particulate carbon and nitrogen retained on GF/F filters likely contained particleassociated and some fraction of free-living heterotrophic bacteria (Hoch and Kirchman, 1995). Recent measurements suggest that between 76 and 90% of bacteria in the northern SFE are free-living minimizing their contribution to the organic matter captured on the filters (Parker, Unpublished data). Because of the potential for bias in V due to detrital particulate N (Garside, 1991), specific C and N uptake were also estimated by normalizing uptake rates to chla and cells L⁻¹ (Kudela et al., 1997) and showed the same trends as the traditional measure of V, normalized to PON. We report here V, normalized to PON to be consistent with previous work in the SFE (i.e. Hogue et al., 2005; Wilkerson et al., 2006; Dugdale et al., 2007). An *f*-ratio was calculated as $\rho NO_3/(\rho NO_3 + \rho NH_4)$ to evaluate the relative importance of NO₃ uptake in phytoplankton N uptake.

No correction for NH₄ regeneration and isotope dilution was made. This may result in underestimation of NH₄ uptake. However, by keeping incubation times to 4-h we have lessened the importance of NH₄ regeneration (LaRoche, 1983). In addition, the high NH₄ (ca. 10 µmol N L⁻¹) conditions and relatively low ρ NH₄ (ca. 0.10 µmol N L⁻¹ h⁻¹) characteristic of the northern SFE (Wilkerson et al., 2006; Dugdale et al., 2007; Parker et al., 2012) all minimize the potential impact of NH₄ regeneration on isotope dilution. Assuming an initial ¹⁵N isotopic enrichment of 10% and NH₄ regeneration equivalent to uptake (0.1 µmol N L⁻¹ h⁻¹) the isotope enrichment would be reduced to 9.80% after 4-h resulting in an understate of NH₄ uptake by 2% (Dugdale and Wilkerson, 1986).

3. Results

3.1. Conditions in the embayments at time of sampling for enclosures

Salinity increased moving from SUI to SPO and CEN while water temperature was similar between locations, varying by <0.4 °C in March and 1.6 °C in July (Table 1). Initial nutrient and chla concentrations revealed a gradient in conditions from SUI to SPO and CEN (Table 1) with the highest inorganic nitrogen concentrations found always at SUI compared to other locations. The greatest difference in initial NO3 and NH4 concentrations between SUI and the other stations occurred in March. During July and September NO3 and NH4 concentrations in the stations were more similar but with the same trends of decreasing concentrations in the seaward direction. Initial urea concentrations were $<2 \mu mol N L^{-1}$ with higher urea measured in March compared to July and September. PO₄ concentrations increased from March to September with no consistent spatial pattern. In contrast, Si(OH)₄ was highest in March compared to July and September and consistently declined in the seaward direction during each sampling date. Chl-a concentrations were similar between stations during each sampling date but consistently lowest at SUI (Table 1). The absolute differences in initial chl-a between stations for a given sampling date were \leq 1.1 µg L⁻¹. The percentage of chl-*a* in cells >5-µm varied systematically by date but not location. The majority of chl-a was found in cells $>5 \mu m$ during March whereas during July, smaller sized cells ($<5-\mu m$) accounted for as much as 70% of the initial chla in SUI and CEN. Chl-a was most evenly divided between cells <5- μ m and >5- μ m in September (Table 1).

3.2. Enclosure experiments: dissolved inorganic carbon, chlorophyll and inorganic nitrogen concentrations

During the enclosure time series chl-a increased and was always greatest in enclosures collected at SPO and CEN compared to SUI for the first 72 h (Fig. 2A) with the absolute chl-a concentrations highest in March compared to July and September. In each experiment the maximum chl-a in CEN enclosures was always observed at 72-h and began to decline by 96-h, likely in response to nutrient exhaustion (Fig. 3 shows March data). Chl-a in SPO enclosures continued to increase throughout the 96-h incubation period, while SUI enclosures consistently lagged SPO and CEN enclosures with no significant increases in chl-a during the initial 48-h. Common to all enclosures, the chl-a produced was mostly in the $>5-\mu m$ size fraction (% $>5 \mu m$; ca. 72–100%; Table 2). The decrease in dissolved inorganic carbon concentrations in SPO and CEN enclosures (Fig. 2B, Table 2) was substantially greater than in SUI enclosures during all experiments. For example, the decrease in DIC concentration was 5- and 6-fold greater in CEN and SPO enclosures, respectively, compared to SUI during March (Fig. 2B, Table 2). The larger drawdown of DIC in SPO and CEN suggests that higher primary production was occurring in those enclosures compared to SUL

Nutrients declined less in SUI than SPO and CEN enclosures during the 96-h incubation period (Fig. 3, Table 2). In each of the experiments NH₄ concentrations in SPO and CEN enclosures declined within the first 24-h and were reduced to $< 1 \mu mol N L^{-1}$ within 48-h (Fig. 3A for March, Table 3). In contrast, NH₄ concentrations in SUI enclosures required 72-h to reach $<1 \mu mol N L^{-1}$ in March and September and 96-h in July (Table 3). NO₃ concentrations began to decrease in SPO and CEN enclosures during the first 24-h in March (Fig. 3B) and within 48-h in July and September (data not shown); NO₃ exhaustion occurred by 96-h in these enclosures (Table 3). NO₃ in SUI enclosures remained largely unchanged for 72-h in March (Fig. 3B) and July and declined by 1 $\mu mol N L^{-1}$ -4 $\mu mol N L^{-1}$ by 96-h (Table 3). During September,

NO₃ in SUI enclosures decreased by $\sim 5 \mu mol L^{-1}$ by 72-h (data not shown) with a further decline by 96-h.NO₃ was never exhausted in any of the SUI enclosures (Table 3).

Nutrient drawdown ratios, based on the disappearance of nutrients over the 96-h incubation period, show major deviations from the Redfield ratio for SUI enclosures (Table 2). C:N drawdown ratios in SUI were 3.7, 3.7 and 4.3 for March, July, and September, respectively. In contrast, C:N ratios in CEN were 6.7, 10.8, and 10.6 and in SPO were 5.5, 8.2, and 7.5. N and Si(OH)₄ drawdown was similar (i.e. N:Si \approx 1) in all enclosures during March, in CEN enclosures in July, and SPO and CEN in September (Table 2).

3.3. Enclosure experiments: carbon and nitrogen uptake

Carbon uptake (V_C, h^{-1} and ρ C, μ mol C L⁻¹ h^{-1}) supports the patterns observed for chl-a increase and DIC decrease in enclosures, with SUI enclosures revealing lower carbon uptake compared to SPO and CEN (Fig 2, Figs. 3C, D, Table 3). During March, both Vc and ρ C showed little change in the first 24-h and then increased in SPO and CEN by 48-h, reaching maximal values at 72-h (Fig. 3C, D, Table 3). The maximum C uptake in SUI enclosure represented \sim 30% of the maximum value at SPO and CEN (Fig. 3C,D). Similarly, in July, C uptake in SPO and CEN enclosures increased after 48-h and peaked at 96-h. C uptake in SUI enclosures lagged SPO and CEN by 24-h (Table 3). During September, C uptake in excess of 4 μ mol C L⁻¹ h⁻¹ were observed in enclosures from all three bays by 48-h (data not shown). However, the maximum V_{C} and ρC in SUI enclosures was lower than that observed in SPO and CEN enclosures (Table 3) Overall, the time series of C uptake that was observed in the enclosures (Fig. 3C, D) resembled the pattern observed for NO₃ uptake rather than NH₄ uptake (Fig. 3E, F, G, H).

Phytoplankton N uptake was dominated initially by NH_4 uptake followed by NO_3 uptake in all enclosure experiments (e.g. March time series, Fig. 3E, F, G, H). During March, VNH₄ reached maxima within 24 h in SPO and CEN enclosures and ca.72-h in SUI (Fig. 3G). Although the time of peak VNH₄ (V_{MAX} NH₄) in SUI enclosures was

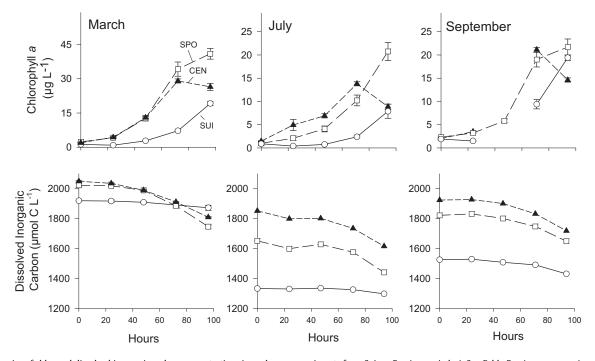
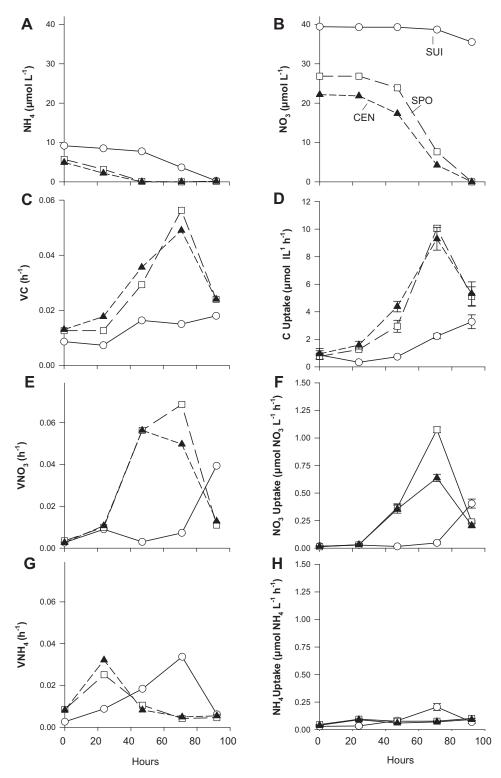



Fig. 2. Time series of chl-*a* and dissolved inorganic carbon concentrations in enclosure experiments from Suisun Bay (open circles), San Pablo Bay (open squares) and Central Bay (closed triangles) during March, July and September. Error bars represent one standard deviation based on three replicate 20-L enclosures. Note different *y*-axis scale for chl-*a* for March experiment.

Fig. 3. Time series of NH_4 and NO_3 concentrations, specific uptake, and transport rates during 4-h daily incubations for C, NH_4 and NO_3 during March enclosure experiments conducted in Suisun Bay (open circles), San Pablo Bay (open squares) and Central Bay (closed triangles). A) NH_4 , B) NO_3 , C) specific C uptake, V_C , D) C uptake rate, ρ C, E) specific NO_3 uptake, VNO_3 , F) NO_3 uptake rate, ρNO_3 , G) specific NH_4 uptake rate, ρNH_4 . H) NH_4 uptake rate, ρNH_4 .

always 1–2 days later than in CEN or SPO enclosures, the V_{MAx} NH₄ values were similar to those of CEN and SPO in the three experiments (0.025–0.46 h⁻¹) (Table 3). ρ NH₄ was low in both March (Fig. 3H) and July (Table 3) but higher in September. There was essentially no measurable NO₃ uptake in CEN and SPO enclosures

for the first 24-h but a rapid increase in both VNO₃ and ρ NO₃ was observed at 48-h (matching the increase in C uptake), reaching maximal ρ NO₃ by 72-h (Fig. 3F, Table 3). ρ NO₃ in SUI enclosures remained low up to 72-h, and only increased at 96-h. V_{MAx} NO₃ was almost always greater than V_{MAx} NH₄, often by a factor of >2

Author's personal copy

A.E. Parker et al. / Estuarine, Coastal and Shelf Science 104-105 (2012) 91-101

Table 2

96

Elemental drawdown of dissolved inorganic carbon (DIC), dissolved inorganic nitrogen (DIN, NO₃ and NH₄), phosphate and silicate reported as total change in nutrient concentrations over 86–90-hr. Ratios of Δ C: Δ N: Δ P: Δ Si are shown normalized to P. In March PO₄ and NH₄ concentrations were exhausted by 72-hr in SPO and CEN enclosures (*); elemental drawdown ratios are given based on 72-hrs in these cases. %Chl-a >5 is the percentage of chl-*a* that was measured in cells >5-µm in diameter after 96-hr.

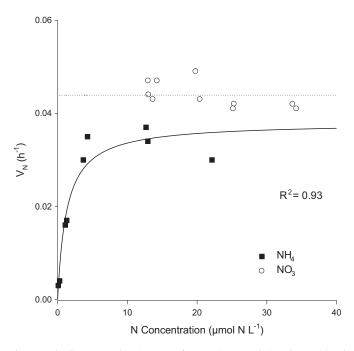
Experiment	Element (μ mol L ⁻¹)	SUI	SPO	CEN
March	ΔDIC	47	270	240
	ΔDIN	12.8	48.51	36.16
	ΔP	0.74	1.61*	1.55*
	ΔSi	10.89	33.24	26.59
	C:N:P:Si	63:17:1:15	167:30:1:21	154:23:1:17
	C:N	3.7:1	5.5:1	6.7:1
	%DIN uptake as NH ₄	72	12	12
	$%$ Chl- a >5- μ m	90	100	81
uly	ΔDIC	35	211	236
-	ΔDIN	9.39	26.92	22.42
	ΔΡ	0.75	2	1.82
	ΔSi	0.58	4.3	NA
	C:N:P:Si	46:12.5:1:1	106:13:1:2.2	129:12:1:NA
	C:N	3.7:1	8.2	10.8
	%DIN uptake as NH ₄	92	21	23
	$%$ Chl- a >5- μ m	100	72	100
September	ΔDIC	94	172	205
-	ΔDIN	22.07	23.64	19.74
	ΔP	1.43	1.91	1.93
	ΔSi	5.96	16.29	15.84
	C:N:P:Si	65:15:1:4	90:12:1:9	106:10:1:8
	C:N	4.3	7.5	10.6
	%DIN uptake as NH ₄	26	22	23
	$%$ Chl- $a > 5-\mu m$	89	88	79

(Table 3). The exception to this was in SUI enclosures where phytoplankton had little access to NO_3 due to the high NH_4 . In these cases V_{MAx} for NO_3 and NH_4 were comparable (Table 3).

3.4. Uptake kinetics

VNH₄ versus NH₄ concentration showed a hyperbolic relationship, with K_s for NH₄ of 1.3 µmol L⁻¹ and V_{MAx} of 0.033 \pm 0.003 h⁻¹ (Fig. 4). Because ambient NO₃ was not reduced <12 µmol L⁻¹, we were unable to fit a Michaelis–Menten type curve or derive K for NO₃. However, saturating NO₃ uptake was V_{MAx} at 0.044 \pm 0.002 (\pm sd) h⁻¹ over a range of NO₃ from 12 µmol N L⁻¹ to 35 µmol N L⁻¹. The difference in V_{MAx} for NO₃ represented ~33% increase over the V_{MAx} than achieved for NH₄.

4. Discussion


The maximum primary production reported here for enclosures are higher than rates reported previously for the northern SFE (Cole and Cloern, 1984; Kimmerer et al., 2012) reflecting the fact that light limitation was eliminated through the experimental design. The sequence of phytoplankton nutrient use and patterns of phytoplankton C and N uptake described here likely reflect periods in the estuary when light limitation is eliminated through vertical stratification of the water column. Higher C and N uptake were measured in Central and San Pablo Bays compared to Suisun Bay. Our hypothesis that phytoplankton populations in the northern SFE show a physiological advantage to growth when they use NO₃ is supported by these findings as all experiments showed elevated phytoplankton C uptake and chl-*a* accumulation associated with phytoplankton NO₃ use. Even allowing for possible isotope dilution and an underestimation of NH₄ uptake, maximum NO₃ uptake rates were consistently higher than maximum phytoplankton NH₄ uptake rates, ensuring effective use of the high ambient NO₃ concentrations in the northern SFE.

Three lines of evidence suggest that the phytoplankton group that responded most favorably to the enclosures conditions were diatoms. Results of size-fractionated chl-*a* showed that the phytoplankton community was dominated by larger cells which have been interpreted previously as diatom biomass in the SFE (Cloern

Table 3

Summary of enclosure experiments in March. July and September 2005. V_{MAx} and ρM_{Ax} (maximum V and ρ observed in the enclosure) and time to reach V_{MAx} for C, NO₃, and NH₄. Initial NO₃ and NH₄ and time to NO₃ exhaustion and NH₄ < 1 μ mol L⁻¹ also provided.

	March			July			September		
	SUI	SPO	CEN	SUI	SPO	CEN	SUI	SPO	CEN
V _{MAx} C (h ⁻¹)	0.018	0.056	0.049	0.041	0.043	0.040	0.055	0.085	0.102
$\rho_{MAx} C (\mu mol C L^{-1} h^{-1})$	3.27	10.06	9.29	10.53	10.53	9.67	8.89	13.38	15.97
Time to V _{MAx} C (h)	96	72	72	96	72	72	72	48	48
Initial NO ₃ (μ mol N L ⁻¹)	39.43	35.12	31.37	22.60	21.51	17.30	23.99	18.58	15.41
Time to exhaustion, (h)	>96	96	96	>96	96	96	>96	96	96
$V_{MAx} NO_3 (h^{-1})$	0.039	0.069	0.056	0.041	0.046	0.075	0.030	0.088	0.116
Time to V_{MAx} NO ₃ (h)	92	71	71	92	47	47	72	47	47
$\rho_{MAx} NO_3 (\mu mol N L^{-1} h^{-1})$	0.40	1.08	0.64	0.24	0.35	0.76	1.35	1.18	0.41
Initial NH ₄ (μ mol N L ⁻¹)	9.18	5.71	4.19	8.61	5.54	5.21	5.65	5.25	4.60
Time to $<1 \mu mol L^{-1}$	72	48	48	96	48	48	72	48	48
$V_{MAx} NH_4 (h^{-1})$	0.034	0.025	0.032	0.046	0.040	0.031	0.028	0.032	0.038
$\rho_{MAx} NH_4 (\mu mol N L^{-1} h^{-1})$	0.21	0.03	0.07	0.28	0.30	0.27	0.72	0.72	0.72

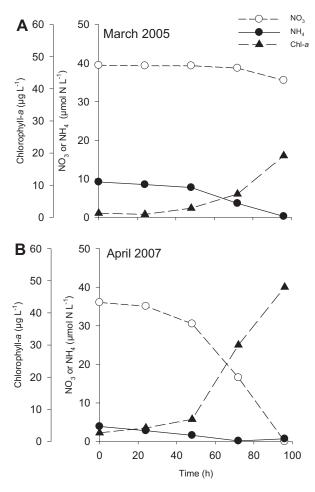
Fig. 4. Michaelis–Menten kinetic curves for NO₃ (open circles) and NH₄ (closed squares) in central San Francisco Bay in April 2005. Data for VNH₄ vs. [NH₄] were fit to a hyperbolic function. Dotted line is average V_{NO3} .

and Dufford, 2005; Wilkerson et al., 2006). N to Si nutrient drawdown ratios approached 1:1, as would be expected if diatoms contributed significantly to phytoplankton production (Brzezinski, 1985). Limited microscopy conducted on samples from our enclosure experiments identified several diatom species including *Skeletonema costatum, Leptocylindrus minimus* and small centric diatoms making up the bulk of the phytoplankton biomass (E. Carpenter, pers. comm.). Diatom dominance in the experimental enclosures is consistent with previous field studies in the northern SFE that have shown diatom dominance during phytoplankton blooms (Dugdale et al., submitted; Cloern, 1979; Cloern and Dufford, 2005; Lidström, 2009; Dugdale et al., submitted) and as an important food source within the pelagic foodweb of the SFE (Peterson et al., 1985).

4.1. Anomalously low phytoplankton carbon and nitrogen assimilation in Suisun Bay

In many ways the Suisun Bay enclosures showed different responses compared to Central and San Pablo enclosures. Suisun Bay enclosures had the highest initial NH₄ and phytoplankton showed a lagged response to the improved light conditions afforded by the experimental design. The timing of the maximal phytoplankton C and NH₄ uptake and the initiation of phytoplankton NO₃ uptake and chl-*a* accumulation was delayed by at least 24-h in Suisun Bay compared to San Pablo and Central Bay enclosures. The observed lag in phytoplankton NH₄ uptake in Suisun Bay was previously unappreciated. This lag and lower rate of NH₄ uptake, together with elevated ambient NH₄ acts to further delay the initiation of phytoplankton NO₃ use and the accompanied accumulation of chl-a. In nature, the delay in the timing of phytoplankton bloom initiation would likely result in fewer observed blooms in Suisun Bay (Dugdale et al., 2007). The delayed NO₃ uptake and the apparent link between carbon uptake and NO₃ uptake in Suisun Bay (Fig. 3D, F) results in lower C:N drawdown ratios than would be predicted by the Redfield Ratio (Redfield et al.,

1963), with DIC drawdown only 40–60% of the carbon uptake predicted based on DIN drawdown (Table 2). We interpret these anomalous responses by Suisun Bay phytoplankton to reflect some stress on growth processes. The high NH₄ condition, the result of wastewater loading to the northern SFE (Jassby, 2008), is potentially exacerbated by some additional stress that results in low NH₄ uptake rates. Owing to its proximity to the Sacramento/San Joaquin Delta, which receives nearly half of California's surface water, there are a large number of potential contaminants including herbicides and pesticides (Kuivila and Hladik, 2008; Weston and Lydy, 2010; Werner et al., 2010), and metals (Johnson et al., 2010).


4.2. Ammonium effects on phytoplankton production

Investigators working in other systems have suggested that anthropogenic NH₄ concentration above some value may inhibit phytoplankton primary production. MacIsaac et al. (1979) investigated the effect of sewage effluent on coastal productivity and found that at >20 μ mol NH₄ L⁻¹, C uptake was depressed, resulting in C:N uptake ratios of 2:1-3:1, similar to what was observed here for enclosures from Suisun Bay. Yoshiyama and Sharp (2006) examined a 26-yr dataset form the Delaware estuary and observed a "striking decline in production at NH4 levels above a low threshold (10 μ mol L⁻¹) suggesting a strongly negative influence of NH₄ itself, or something that accompanies high NH₄ concentrations, or both". Depression of primary production and phytoplankton NH₄ uptake was recently reported for the Sacramento River, immediately downstream of the Sacramento Regional Wastewater Treatment Plant (SRWTP) (Parker et al., 2012). Suisun Bay chronically experiences high ambient NH₄ concentrations with 90% of NH₄ in Suisun Bay originating at the SRWTP (Jassby, 2008). During the three year time series of Wilkerson et al. (2006) only one phytoplankton bloom with chl- $a > 30 \ \mu g \ L^{-1}$ was observed in Suisun Bay that occurred during a period of anomalously low NH4 and substantial phytoplankton NO₃ uptake. Similarly, Dugdale et al. (submitted) documented two spring phytoplankton blooms in Suisun Bay during 2010 (the first known blooms in Suisun Bay since 2000), with their initiation attributed to low initial NH₄ concentrations as a result of freshwater dilution. In April 2007, we also observed a similar low NH₄ period in Suisun Bay and conducted an enclosure experiment. In this case, Suisun Bay phytoplankton dynamics followed the sequence typically observed in San Pablo and Central Bays (Fig. 5) and the phytoplankton were able to use all of the available NO₃ and accumulate chl-a within the 96-h incubation period. The present findings and those of Wilkerson et al. (2006) suggest that there are situations when Suisun Bay phytoplankton have the capacity to grow as well as those in Central Bay when NO₃ is made available by low NH₄ concentrations.

We observed NH₄ inhibition of NO₃ uptake in the enclosure experiments using water collected in all three embayments of the northern SFE and plotting pNO₃ vs NH₄ concentrations (Fig. 6A, B), as seen in previous studies (Dugdale et al., 2007; their Fig. 2). We found that in the enclosure experiments with $>1 \mu mol NH_4 L^{-1}$, NO₃ uptake was relatively low and uniform. NH₄ inhibition of NO₃ uptake at low NH₄ concentrations ($<1 \mu$ mol L⁻¹) has been known for some time in oceanic studies (e.g. Eppley et al., 1969; Conway, 1977) and at higher concentrations for several estuaries (e.g. Glibert et al., 1982; Pennock, 1987; Collos, 1989). While the phenomenon of NH₄ inhibition of NO₃ uptake is accepted universally, as pointed out in the review by Dortch (1990), its ubiquity in natural systems is less clear This may be particularly true in high NO₃ eutrophic systems where in some cases NO₃ uptake does not appear to be influenced by NH₄ concentration. At high NO₃ concentrations NO₃ may even inhibit phytoplankton NH₄ uptake (Dortch, 1990).

Author's personal copy

A.E. Parker et al. / Estuarine, Coastal and Shelf Science 104-105 (2012) 91-101

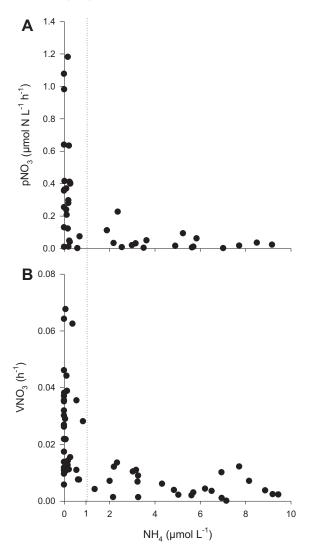


Fig. 5. NH_4 , NO_3 and Chl-a concentrations over 96-h time series in enclosures collected at the same location in Suisun Bay during 2005 (A) and 2007 (B). Initial NH_4 concentrations in 2005 were 9.2 µmol L^{-1} and 3 µmol L^{-1} in 2007.

The sequential use of first NH₄ and then NO₃ as a result of the inhibition of phytoplankton use of NO₃ by NH₄ is often interpreted as a "preference for NH₄" (McCarthy et al., 1977). However, some phytoplankton, particularly diatoms, may display an increased capacity for NO₃ assimilation compared to NH₄ and may grow as well, or better on NO₃ (Thompson et al., 1989; Cochlan et al., 1991) and could equally be interpreted as a "preference" for NO₃ (Lomas and Gilbert, 1999a). The significance of this interaction between NH₄ and NO₃ in this study is that at low NH₄ concentrations, NO₃ uptake and high rates of primary production and chlorophyll accumulation can occur.

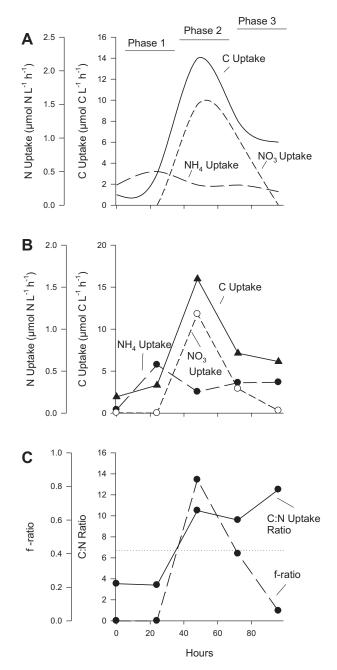
4.3. Maximal NO₃ uptake exceeds maximal NH₄ uptake

In these enclosures, as in the enclosures described in Dugdale et al. (2007) maximal rates on NO₃ uptake achieved (once NH₄ inhibition was alleviated) were always greater than those of NH₄. This may be due to different uptake kinetics with linear, not Michaelis—Menten hyperbolic, NO₃ uptake and to acceleration (or shift-up) of NO₃ but not NH₄ uptake. In this study we observed classical Michaelis—Menten kinetics for NH₄ but were unable to determine N uptake kinetics for NO₃, although comparing rates obtained with saturating level of the two DIN species, there was higher V_{MAx} for NO₃ compared to NH₄. Deviation (to linear or biphasic) from the hyperbolic relationship for NO₃ uptake at saturating to supersaturating concentrations have been described in

Fig. 6. A) NO₃ uptake rates versus NH₄ concentration. B) Biomass-specific NO₃ uptake versus NH₄ concentration. Results from enclosure experiments conducted in March, July and September (n = 120).

many algal species including diatoms (Serra et al., 1978; Watt et al., 1992; Collos et al., 1992, 1997, 2005; Lomas and Glibert, 1999b) and upwelled phytoplankton (Dugdale et al., 2006). Two studies (Huntsman and Barber, 1977; Lancelot and Billen, 1985) showed that C and N uptake were coupled during linear NO₃ uptake at high concentrations. We are aware of only one study demonstrating deviations from Michaelis-Menten kinetics for NH4 uptake, associated with the paralytic-shellfish poison-producing dinoflagellate Alexandrium catenella (Collos et al., 2006). Acceleration of NO3 uptake (V_{MAx} NO₃) as a function of NO₃ concentrations (termed "shift-up") was described in recently upwelled waters (Dugdale et al., 1990) and shipboard enclosures (Wilkerson and Dugdale, 1987) with the consequence that all of the initial NO_3 was exhausted in 4-5 days, regardless of initial NO₃ concentration. V_{MAx} NH₄ uptake does not appear to accelerate linearly with NH₄ concentration. Consequently, the ratio of V_{MAx} NO₃:V_{MAx} NH₄ is variable and, as in this study, almost always >1 after 24-h to 48-h of incubation under favorable irradiance. Although the shift-up phenomenon for NO₃ uptake was originally described for the coastal ocean, it appears to also occur in estuaries, and may help to explain how the maximal uptake of NO3 is greater than that of NH4 in the experimental enclosures.

4.4. Phytoplankton C Uptake and biomass accumulation linked to phytoplankton NO_3 use


Phytoplankton specific carbon uptake, normalized to either POC or chl-*a*, was higher during periods of phytoplankton NO₃ uptake compared to periods of phytoplankton NH₄ uptake (Fig. 3C, Table 3). Few published studies exist showing enhanced phytoplankton growth with NO₃ versus NH₄ (Thompson et al., 1989; Cochlan et al., 1991; Lomas and Gilbert, 1999a). Parker (Unpublished data) conducted mesocosm experiments in the Delaware Estuary in which phytoplankton were supplied with either NO₃ or NH₄ and found 2-fold higher increases in POC and chl-*a* increase in the NO₃ treatment over 56-h. Serra et al. (1978) showed that *S. costatum* growth rates were initially higher with NH₄ compared to NO₃ and NO₂ but NO₃ growth eclipsed NH₄ growth later in the experiment; the difference attributed to inducible adaptive enzymes required for NO₃ uptake (e.g. nitrate reductase).

The carbon drawdown and nutrient drawdown ratios observed in these enclosures (Table 2) show that when NH₄ is the major source of DIN being used by the phytoplankton (i.e. in SUI enclosures) C drawdown is low and the C:N drawdown ratio is roughly half of the Redfield ratio (Table 2). Conversely when both NO₃ and NH₄ are being used (as exemplified by the CEN and SPO enclosures) then the C drawdown is high and C:N drawdown approaches or exceeds the Redfield ratio. For example in March, DIC drawdown in SUI was only 17% of that observed in SPO. An NH₄ based system will likely exhibit a primary production of <20% of that where NO₃ is fully used. It is true that heterotrophic bacteria in our enclosures likely contribute to some fraction of DIN disappearance, complicating this interpretation. However, the large phytoplankton biomass in the experimental enclosures (>20 µg chl-a L⁻¹) probably far exceeds bacterial biomass and nutrient cycling processes.

4.5. An evolving conceptual model of phytoplankton bloom development in high NH₄ estuaries with Implications for management

The classical view is that phytoplankton blooms in SFE are controlled by the availability of light, with spring blooms occurring as a result of brief periods of water column stratification (Alpine and Cloern, 1988). However, anthropogenic NH₄ may play a modulating role in bloom formation by limiting access to the NO₃ pool reducing the potential for enhanced phytoplankton C and NO₃ uptake once light conditions improve. We suggest the following scenario of C, NO₃ and NH₄ uptake and phytoplankton bloom development for northern SFE (Fig. 7A). Phase 1 is characterized by low NH₄ uptake and low C uptake; there is virtually no NO₃ uptake due to NH₄ inhibition and C:N uptake ratios are low. Once NH₄ is almost exhausted, phase 2 begins with a rapid uptake of NO₃ coupled with high C uptake; C:N uptake ratios increase over this period. Finally, as NO₃ is exhausted, the system enters phase 3 of bloom development, and phytoplankton become N-limited, relying primarily on recycled NH₄ or intracellularly stored NO₃; relatively high C:N uptake ratios are observed.

Results from the Central Bay enclosure experiments completed in September (Table 3) are plotted for comparison with this conceptual model (Fig. 7B). C:N ratios calculated from 13 C and 15 N tracer results and the f-ratio are provided (Fig. 7C). C:N ratios confirm the progression from low C:N to balanced growth and finally high C:N ratios as the f-ratio increased, reflecting a greater dependence on NO₃ over NH₄ uptake. In general, phytoplankton remain in phase 1 of the scenario much of the time in the northern SFE as a result of poor light conditions and high ambient NH₄. These conditions result in low primary production and low biomass. In

Fig. 7. A) Idealized sequence of carbon, NH₄ and NO₃ uptake in enclosure experiments. B) Data from central Bay enclosures during September. C) C:N uptake ratios and f-ratio for September.

recent years this has prevented spring blooms occurring in Suisun Bay except twice in 2000 and 2010 when NH₄ concentrations were low (Dugdale et al. submitted; Wilkerson et al., 2006) and phytoplankton shifted to phase 2 and 3 of the bloom progression.

NH₄ concentrations have steadily increased in the northern SFE since 1979 (California DWR; Jassby, 2008) as a result of human population increase; the major input of NH₄ being wastewater discharge (Hager and Schemel, 1992; Jassby, 2008). In Suisun Bay, the 4 μ mol NH₄ L⁻¹ threshold (Dugdale et al., 2007) for the inhibition of phytoplankton NO₃ uptake is generally exceeded during spring and summer (Jassby, 2008). We speculate that changing wastewater management practices to favor the discharge of NO₃ rather than NH₄ may increase primary production in the northern

SFE. NO₃ stimulated primary production would likely enhance secondary production, which may be beneficial to fisheries in the Bay and nearshore (Pacific) waters. Understanding the phytoplankton response to nutrient enrichment is a major challenge to estuarine scientists and will require more sophisticated models of coastal eutrophication (i.e. Cloern, 2001; Sharp, 2001). We suggest that careful consideration of not only DIN loading but also N speciation of the DIN must also be considered for effective nutrient management strategies. As well illustrated by this study, enabling NO₃ utilization by phytoplankton will increase the rate of carbon uptake (i.e. primary production), and chl-*a*, whereas contaminant levels of NH₄ will keep carbon uptake low and may even be sufficiently toxic to decrease productivity directly.

Acknowledgements

We wish to thank the captain and crew of the RV Questuary. We would also like to thank A. Marchi for nutrient analysis, F. Koch and K. Lew for enclosure sampling and K. Lew for flow cytometry analysis. E. Carpenter completed phytoplankton identification. We are also grateful to W. Kimmerer, J.H. Sharp and D. Bronk for comments on this manuscript. This research was supported by USC Sea Grant award to FW and RCD and by the San Francisco Regional Water Quality Control Board.

References

- Alpine, A.E., Cloern, J.E., 1988. Phytoplankton growth rates in a light-limited environment, San Francisco Bay. Marine Ecology Progress Series 44, 167–173.
- Alpine, A.E., Cloern, J.E., 1992. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. Limnology and Oceanography 37, 946–955.
- Arar, E.J., Collins, G.B., 1992. In vitro determination of chlorophyll a and phaeophytin a in marine and freshwater phytoplankton by fluorescence – USEPA Method 445.0. USEPA methods for determination of chemical substances in marine and estuarine environmental samples. Cincinnati, OH.
- Boynton, W.R., Kemp, W.M., Keefe, C.W., 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. In: Kennedy, V.S. (Ed.), Estuarine Comparisons. Academic Press, New York, pp. 69–90.
- Bran and Leubbe, 1999a. AutoAnalyzer Method No. G-175-96 Phosphate in water and seawater. Bran Luebbe, Inc., Buffalo Grove, IL.
- Bran and Leubbe, 1999b. AutoAnalyzer Method No. G-177-96 Silicate in water and seawater. Bran Luebbe, Inc, Buffalo Grove, IL.
 Brzezinski, M.A., 1985. The Si:C: N ratio of marine diatoms: interspecific variability
- Brzezinski, M.A., 1985. The Si:C: N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology 21, 347–357.
- Carlton, J.T., Thompson, J.K., Schemel, L.E., Nichols, F.H., 1990. Remarkable invasion of San Francisco bay (California, USA) by the Asian clam *Potamocorbula amur*ensis 1: introduction and dispersal. Marine Ecology Progress Series 66, 81–94.
- Cloern, J.E., 1979. Phytoplankton ecology of the San Francisco Bay system: the status of our current understanding. In: Conomos, T.J. (Ed.), San Francisco Bay: The Urbanized Estuary. Pacific Division, American Association for the Advancement of Science, . San Francisco, pp. 247–264.
- Cloern, J.E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210, 223–253.
- Cloern, J.E., Dufford, R., 2005. Phytoplankton community ecology: principles applied in San Francisco Bay. Marine Ecology Progress Series 285, 11–28.
- Cochlan, W.P., Harrison, P.J., Denman, K.L., 1991. Diel periodicity of nitrogen uptake by marine phytoplankton in nitrate-rich environments. Limnology and Oceanography 36, 1689–1700.
- Cohen, A.N., Carlton, J.T., 1998. Accelerating invasion rate in a highly invaded estuary. Science 279, 555–558.
- Cole, B.E., Cloern, J.E., 1984. Significance of biomass and light availability to phytoplankton productivity in San Francisco Bay. Marine Ecology Progress Series 17, 15–24.
- Cole, B.E., Cloern, J.E., 1987. An empirical model for estimating phytoplankton productivity in estuaries. Marine Ecology Progress Series 36, 299–305.
- Collos, Y., 1989. A linear model of external interactions during uptake of different forms of inorganic nitrogen by microalgae. Journal of Plankton Research 11, 521–533.
- Collos, Y., Siddiqi, M.Y., Wang, A.D., Glass, M., Harrison, P.J., 1992. Nitrate uptake kinetics by two marine diatoms using the radioactive tracer ¹³N. Journal of Experimental Marine Biology and Ecology 163, 251–260.
- Collos, Y., Vaquer, A., Bibent, B., Slawyk, G., Garcia, N., Souchu, P., 1997. Variability in nitrate uptake kinetics of phytoplankton communities in

a Mediterranean coastal lagoon. *Estuarine*. Coastal and Shelf Science 44, 369–375.

- Collos, Y., Vaquer, A., Souchu, P., 2005. Acclimation of nitrate uptake by phytoplankton to high substrate levels. Journal of Phycology 41, 466–479.
- Collos, Y., Lespilette, M.A., Vaquer, A., Laabir, M., Pastoureaud, A., 2006. Uptake and accumulation of ammonium by *Alexandrium catenella* during nutrient pulses. African Journal of Marine Science 28, 313–318.
- Conway, H.L., 1977. Interactions of inorganic nitrogen. the uptake and assimilation by marine phytoplankton. Marine Biology 39, 221–232.
- Dortch, Q., 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Marine Ecology Progress Series 61, 183–201. Dugdale, R.C., Wilkerson, F.P., 1986. The use of ¹⁵N to measure nitrogen uptake in
- Dugdale, R.C., Wilkerson, F.P., 1986. The use of ¹³N to measure nitrogen uptake in eutrophic oceans; experimental considerations. Limnology and Oceanography 31, 673–689.
- Dugdale, R.C., Wilkerson, F.P., Morel, F., 1990. Realization of new production in coastal upwelling areas: a means to compare relative performance. Limnology and Oceanography 35, 822–829.
- Dugdale, R.C., Wilkerson, F.P., Hogue, V.E., Marchi, A., 2006. Nutrient controls on new production in the Bodega Bay, California, coastal upwelling plume. Deep Sea Research II 53, 3049–3062.
- Dugdale, R.C., Wilkerson, F., Hogue, V., Marchi, A., 2007. The role of ammonium and nitrate in spring bloom development in San Francisco Bay. Estuarine, Coastal and Shelf Science 73, 17–29.
- Dugdale, R.C., Wilkerson, F.P., Parker, A.E., Marchi, A., Taberski, K. Anthropogenic ammonium impacts spring phytoplankton blooms in the San Francisco Estuary: the cause of blooms in 2000 and 2010. Estuarine and Coastal Shelf Science, submitted.
- Eppley, R.W., Coatsworth, J.L., Solorzano, L., 1969. Studies of nitrate reductase in marine phytoplankton. Limnology and Oceanography 14, 194–205.
- Feyrer, F., Nobriga, M.L., Sommer, T., 2007. Multidecadal trends for three declining fish species: habitat patterns and mechanisms in the San Francisco Estuary, California, USA. Canadian Journal of Fisheries and Aquatic Sciences 64, 723–734.
- Friederich, G.E., Walz, P.M., Burczynski, M.G., Chavez, F.P., 2002. Inorganic carbon in the central California upwelling system during the 1997–1999 El Nino – La Nina event. Progress in Oceanography 54, 185–203.
- Garside, C., 1991. Shift-up and the nitrate kinetics of phytoplankton in upwelling systems. Limnology and Oceanography 36, 1239–1244.
- Glibert, P.M., Lipschultz, F., McCarthy, J.J., Altabet, M.A., 1982. Isotope dilution models of uptake and remineralization of ammonium by marine plankton. Limnology and Oceanography 27, 639–650.
- Glibert, P.M., Fullerton, D., Burkholder, J.M., Cornwell, J., Kana, T.M., 2011. Ecological stoichiometry, biogeochemical cycling, invasive species, and aquatic food webs: San Francisco Estuary and comparative systems. Reviews in Fisheries Science 19, 358–417.
- Hager, S.W., Schemel, L.E., 1992. Sources of nitrogen and phosphorus to northern San Francisco Bay. Estuaries 15, 40–52.
- Hager, S.W., Schemel, L.E., 1996. Dissolved inorganic nitrogen, phosphorus and silicon in South San Francisco Bay. I. major factors affecting distributions. In: Hollibaugh, J.T. (Ed.), San Francisco Bay: The Ecosystem. AAAS, San Francisco, pp. 189–215.
- Harrison, P.J., Conway, H.L., Holmes, R.W., Davis, C.O., 1977. Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of *Chaetoceros debilis, Skeletonema costatum* and *Thalassiosira gravida*. Marine Biology 43, 19–31.
- Hoch, M.P., Kirchman, D.L., 1995. Ammonium uptake by heterotrophic bacteria in the Delaware Estuary and adjacent coastal waters. Limnology and Oceanography 40, 886–897.
- Hogue, V., Wilkerson, F.P., Dugdale, R.C., 2005. Ultraviolet-B radiation effects on natural phytoplankton assemblages of Central San Francisco Bay. Estuaries 28, 190–203.
- Huntsman, S., Barber, R.T., 1977. Primary production off northwest Africa: the relationship to wind and nutrient conditions. Deep Sea Research 24, 25–33.
- Jassby, A.D., Cloern, J.E., Cole, B.E., 2002. Annual primary production: patterns and mechanisms of change in a nutrient-rich tidal ecosystem. Limnology and Oceanography 47, 698–712.
- Jassby, A., 2008. Phytoplankton in the upper San Francisco Estuary: recent biomass trends, their causes and their trophic significance. San Francisco Estuary and Watershed Science 6. Article 2.
- Johnson, M.L., Werner, I., Teh, S., Loge, F., 2010. Evaluation of Chemical, Toxicological, and Histopathologic Data to Determine Their Role in the Pelagic Organism Decline. Report to the Central Valley Regional Water Quality Control Board, Rancho Cordova, CA. Available at: http://www.waterboards.ca.gov/ centralvalley/water_issues/delta_water_quality/comprehensive_monitoring_ program/contaminant_synthesis_report.pdf.
- Kimmerer, W., Orsi, J., 1996. Causes of long term declines in zooplankton in the San Francisco Bay Estuary since 1987. In: Hollibaugh, J.T. (Ed.), San Francisco Bay: The Ecosystem. Pacific Division, AAAS, San Francisco, pp. 403–424.
- Kimmerer, W.J., 2005. Long-term changes in apparent uptake of silica in the San Francisco Estuary. Limnology and Oceanography 50, 793–798.
- Kimmerer, W.J., Parker, A.E., Lidstrom, U.E. Short-term and interannual variability in primary productivity in the low-salinity zone of the San Francisco Estuary. Estuaries and Coasts, in press.
- Kudela, R.M., Cochlan, W.P., Dugdale, R.C., 1997. Carbon and nitrogen uptake response to light by phytoplankton during an upwelling event. Journal of Plankton Research 19, 609–630.

- Kuivila, K.M., Hladik, M., 2008. Understanding the occurrence and transport of current-use pesticide in the San Francisco Estuary Watershed. San Francisco Estuary and Watershed Science 6, 1–19. Article 2.
- Lancelot, C., Billen, G., 1985. Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems. Advances in Aquatic Microbiology 3, 263–321.
- LaRoche, J., 1983. Ammonium regeneration: its contribution to phytoplankton nitrogen requirements in a eutrophic environment. Marine Biology 75, 231–240.
- Legendre, L., Gosselin, M., 1996. Estimation of N or C uptake rates by phytoplankton using ¹⁵N or ¹³C: revisiting the usual computation formulae. Journal of Plankton Research 19, 263–271.
- Lidström, U.E., 2009. Primary production, biomass and species composition of phytoplankton in the low salinity zone of the northern San Francisco Estuary. MS thesis, San Francisco State University, San Francisco, CA USA, unpublished.
- Lomas, M.W., Gilbert, P.M., 1999a. Interactions between NH⁺₄ and NO⁻₃ uptake and assimilation: comparison of diatoms and dinoflagellates at several growth temperatures. Marine Biology 133, 541–551.
- Lomas, M.W., Glibert, P.M., 1999b. Temperature regulation of nitrate uptake: a novel hypotheses about nitrate uptake and reduction in cool-water diatoms. Limnology and Oceanography 44, 556–572.
- Lorenzi, A., 2006 Primary productivity and rbcL gene expression in Central San Francisco Bay. MS thesis, San Francisco State University, San Francisco, CA USA, unpublished.
- McCarthy, J.J., Taylor, W.R., Taft, J.L., 1977. Nitrogenous nutrition of the plankton in the Chesapeake Bay. 1. Nutrient availability and phytoplankton preferences. Limnology and Oceanography 22, 996–1011.
- MacIsaac, J.J., Dugdale, R.C., Huntsman, S., Conway, H.L., 1979. The effects of sewage on uptake of inorganic nitrogen and carbon by natural populations of marine phytoplankton. Journal of Marine Research 37, 51–66.
- Nichols, F., Cloern, J.E., Luoma, S.N., Peterson, D.H., 1986. The modification of an estuary. Science 231, 567–573.
- Orsi, J.J., Mecum, W.L., 1996. Food limitation as the probable cause of a long-term decline in the abundance of *Neomysis mercedis* the opossum shrimp in the Sacramento-San Joaquin Estuary. In: Hollibaugh, J.T. (Ed.), San Francisco Bay: The Ecosystem. AAAS, San Francisco, pp. 375–401.
- Parker, A.E., 2004. Assessing the phytoplankton-heterotrophic link in the eutrophic Delaware Estuary. PhD Dissertation Graduate College of Marine Studies. Lewes, University of Delaware, Lewes, DE USA, unpublished.
- Parker, A.E., 2005. Differential supply of autochthonous organic carbon and nitrogen to the microbial loop of the Delaware Estuary. Estuaries 28, 856–867.
- Parker, A.E., Fuller, J., Dugdale, R.C., 2006. Estimating dissolved inorganic carbon concentrations from salinity in San Francisco Bay for use in ¹⁴C-primary production studies. Interagency Ecological Program for the San Francisco Estuary 19, 17–22.
- Parker, A.E., Wilkerson, F.P., Dugdale, R.C., 2012. Elevated ammonium concentrations from wastewater discharge depress primary productivity in the Sacramento River and the northern San Francisco estuary. Marine Pollution Bulletin. doi:10.1016/j.marpolbul.2011.12.016.
- Pennock, J.R., 1987. Temporal and spatial variability in phytoplankton ammonium and nitrate uptake in the Delaware Estuary. Estuarine, Coastal and Shelf Science 24, 841–857.

- Peterson, D.H., Smith, R.E., Hager, S.W., Harmon, D.D., Herndon, R.E., Schemel, L.R., 1985. Interannual variability in dissolved inorganic nutrients in Northern San Francisco Bay estuary. Hydrobiologia 129, 37–58.
- Redfield, A.C., Ketchum, B.H., Richards, F.A., 1963. The influence of organisms on the composition of sea water. In: Hill, M.N. (Ed.), The Sea. The Composition of Seawater Comparative and Descriptive Oceanography, vol. 2. Interscience Publishers, New York, pp. 26–77.
 Revilla, M., Alexander, J., Glibert, P.M., 2005. Urea analysis in coastal waters:
- Revilla, M., Alexander, J., Glibert, P.M., 2005. Urea analysis in coastal waters: comparison of enzymatic and direct methods. Limnology and Oceanography Methods 3, 290–299.
- Serra, J.L., Llama, M.J., Cadenas, E., 1978. Nitrate utilization by the diatom Skeletonema costatum. Plant Physiology 62, 991–994.
- Sharp, J.H., 2001. Marine and Aquatic Communities, Stress from Eutrophication. Encyclopedia of Biodiversity, vol. 4. Academic Press. 1–11.
- Sharp, J.H., Yoshiyama, K., Parker, A.E., Schwartz, M., Curless, S., Beauregard, A., Ossolinski, J., Davis, A., 2009. A biogeochemical view of estuarine eutrophication: seasonal and spatial trends and correlations in the Delaware estuary. Estuaries and Coasts 32. 1023–1043.
- Slawyk, G., Collos, Y., Auclair, J.-C., 1977. The use of ¹³C and ¹⁵N isotopes for the simultaneous measurement of carbon and nitrogen turnover rates in marine phytoplankton. Limnology and Oceanography 22, 925–932.
- Solorzano, L., 1969. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnology and Oceanography 14, 799–810.
- Sommer, T., Armor, C., Baxter, R., Breuer, R., Brown, L., Chotkowski, M., Culberson, S., Feyrer, F., Gingras, M., Herbold, B., Kimmerer, W., Mueller Solger, A., Nobriga, M., Souza, K., 2007. The collapse of pelagic fishes in the upper San Francisco estuary. Fisheries 32, 270–277.
- Thompson, P.A., Levasseur, M.E., Harrison, P.J., 1989. Light-limited growth on ammonium vs. nitrate: what is the advantage for marine phytoplankton. Limnology and Oceanography 34, 1014–1024.
- Watt, D.A., Armory, A.M., Cresswell, C.F., 1992. Effect of nitrogen supply on the kinetics and regulation of nitrate assimilation in *Chlamydomonas reinhardtii* Dangeard. Journal of Experimental Botany 43, 605–615.
- Werner, I.L., Deanovic, A., Markiewicz, D., Khamphanh, M., Reece, C.K., Stillway, M., Reece, C., 2010. Monitoring acute and chronic water column toxicity in the Northern Sacramento-San Joaquin Estuary, California, USA, using the euryhaline amphipod, *Hyalella azteca*: 2006–2007. Environmental Toxicology and Chemistry 29, 2190–2199.
- Weston, D.P., Lydy, M.J., 2010. Urban and agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California. Environmental Science & Technology 44, 1833–1840.
- Whitledge, T.E., Malloy, S.C., Patton, C.J., Wirick, C.D., 1981. Automated Nutrient Analyses in Seawater. Report 51398. Brookhaven National Laboratory, Upton, NY. Wilkerson, F.P., Dugdale, R.C., 1987. The use of large shipboard barrels and drifters to
- Wilkerson, F.P., Dugdale, R.C., 1987. The use of large shipboard barrels and drifters to study the effects of coastal upwelling on phytoplankton nutrient dynamics. Limnology and Oceanography 32, 368–382.
- Wilkerson, F.P., Dugdale, R.C., Hogue, V., Marchi, A., 2006. Phytoplankton blooms and nitrogen productivity in San Francisco Bay. Estuaries and Coasts 29, 401–416.
- Yoshiyama, K., Sharp, J.H., 2006. Phytoplankton response to nutrient enrichment in and urbanized estuary: apparent inhibition of primary production by overeutrophication. Limnology and Oceanography 51, 424–434.