Effect of wastewater treatment plant effluent on algal productivity in the Sacramento River Part 1: Grow-out and wastewater efficient addition experiments Alex Parker, Rich and Dugdale, Frances Wilkerson, Al Marchi, Jan Dickel-Davicson, Sarah Blaser, and Jim Fuller Romberg Tiburon Center, SFSU August 18, 2009

River Grow-Out Experiments 20-L enclosures were used to investigate the <u>potential</u> *timing* and *magnitude* of Sacrame to River phytoplankton blooms by <u>recoving light limitation</u>.

A. Does NH₄ inhibit NO₅ uptake?

B. Is there a difference in rates of phytoplankton N assimilation for NH₄ and NO₃?

C. Does NH₄ delay the initiation of phytoplankton blooms?

River Grow-Out Experiments 20-L enclosures were used to investigate the <u>potential</u> *timing* and *magnitude* of Sacrane to River phytoplankton blooms by <u>recoving light limitation</u>.

Phytoplankton will only assimily to NH_4 as long as NH_4 concentrations are found in excess of inhibit, ry concentrations.

Maximum specific NH_4 uptake rates by phytoplankton will be lower than maximum specific NO_3 uptake.

Initiation of phytoplankton increase will be delayed as a function of initial NH_4 concentration.

Phytoplankton will only assimilate NH_4 as long as NH_4 concentrations are found in excess of inhibitory concentration March 2009 Enclosure Experiments GRC GR/ NH4 (µM) NO UM Time (hr) Time (hr)

Phytoplankton will only assimilate NH_4 as long as NH_4 concentrations are found in excess of inhibitory concentration March 2009 Enclosure Experiments 0.030 030 GRC GRC+N3 0.025 0.025 0.020 Cite GRC+N4 RM-44 0.020 $VNO_3 (h^{-1})$ 0 0.015 0.015 0.010 0.010 0.005 0.005 0.000 0.000 20 80 120 0 40 60 100 0 20 40 60 80 100 120 Time (h) Time (h)

Phytoplankton will only assimilate NH₄ as long as NH₄ concentrations are found in excess of inhibitory concentration March 2009 Enclosure Experiments 0.025 0.25 GRC 0.020 0.20 1RC+ GRC h⁻¹) 015 VNO₃ (h⁻¹) 0.015 pNO₃ (µm 0.10 0.010 0.005 0.05 0.000 0.00 0 10 12 14 16 0 2 10 16 2 8 8 12 14 6 4 6 NH4 (µM) NH_4 (μM)

Phytoplankton will only assimilate NH_4 as long as NH_4 concentrations are found in excess of inhibitory concentration.

Experiment	Treatment	Initial P 14	Tì → to deplete NH ₄	NO ₃ uptake inhibition? (Y/N)
WBD08-1	GRC	0 2 1	<24hr	N (?)
JUI UO	RM-44	9.1 0.8	72hr	Y
WBD08-2 Nov 08	GRC	3.4	C 2 Ahr	Y
	RM 44	71.9	>144hr	Y
WBD09-1 Mar 09	L PC	1.0 ± 0.4	24hr	Y
	GRC+N	1.5 04	24hr	Y
	GRC+N4	12.1 ± 1.2	96hr	Y
	RM-44	12.5 ± 1.5	96hr	Y
WBD09-3 May 09	GRC	1.4 ± 0.6	24hr	Y
	GRC+N3	1.5 ± 0.2	24hr	Y
	GRC+N4	6.8 ± 0.2	96hr	Y
	RM-44	9.5 ± 0.4	96hr	Y

Maximum specific NH_4 uptake rates by phytoplankton will be lower than maximum specific NO_3 uptake.

Initiation of phytoplankton increase will be delayed as a function of initial NH₄ concentration.

Initiation of phytoplankton increase will be delayed as a function of initial NH₄ concentration.

River Grow-Out Experiments

20-L enclosures were used to investigate the potential timing and magnitude of Szcramento River phytoplankton blooms by removing light limitation.

Phytoplankton will only assimilate NH₄ as long as NH₄ concentrations are found in excess of initibitory concentrations.

Maximum specific NH_4 uptake rates by phytoplankton will be lower than maximum specific NO_3 uptake.

Initiation of phytoplankton increase will be delayed as a function of initial NH_4 concentration.

Wastewater / NH₄CI **Amendment Experiments** Serial addition experiments using SRWTP effluent and NH₄Cl were conducted in 6 or incubations to investigate direct impact of wastewater and NH₄ on primary production and phytoplankton N uptake. Questions that we can address with this approach: A. Does SRWTP offluent or WH4 inhibit <u>NO3</u> uptake? **B.Does SRWTP effluent or NH**₄ inhibit <u>NH</u>₄ uptake? **C. Does SRWTP effluent or NH**₄ inhibit C uptake (primary production)?

Wastewater / NH₄CI **Amendment Experiments** Serial addition experiments using SRWTP effluent and NH₄Cl were conducted in 6 or incubations to investigate direct impact of wastewater and NH₄ on primary production and phytopla kkon N uptake. NO₃ uptake will be inhibited with NH₆×1µM: For effluent For NH₄CI NH4 uptake will increase at low concentrations and be inhibited at high NH₁: **For** effluent For NH₄CI **Primary Production will be inhibited at high NH**₄: **For effluent** For NH₄CI Id Toms

C production may show some effect at elevated NH₄
No effect observed for NH₄ uptake
Clear inhibition of NO₃ uptake

Wastewater NH₄ Addition Experiments

Wastewater NH₄ Addition Experiments

Wastewater / NH₄CI **Amendment Experiments** Serial addition experiments using **NRWTP** effluent and NH₄Cl were conducted in 6 (ir incubations to investigate direct impact of wastewater and NH₄ on primary production and phytopla kkon N uptake. NO_3 uptake will be inhoit d with $NH_4 \approx 1 \mu M$: For effluent For NH₄Cl NH4 uptake will increase at low concentrations and be inhibited at high NH₄: **For** effluent For NH₄Cl Primary Production will be inhibited at high NH₄: **For effluent** For NH₄CI Id Toms

Summary

- NH₄ inhibition of NO₃ uptake holds everywhere
- Unlike Suisun and Ris Vista, chl-a accumulation is not delayed as a result of BIN composition.
- Effluent reduces 6 and N_4^{\bullet} uptake (and NO₃ uptake) at concentrations >8 µM but NH₄Cl does not.