

# Aquatic Toxicology Laboratory School of Veterinary Medicine University of California Davis, California

# Pelagic Organism Decline (POD): Acute and Chronic Invertebrate and Fish Toxicity Testing in the Sacramento-San Joaquin Delta 2008-2010

**Progress Report** 

29 September, 2009

Charissa Reece, Dan Markiewicz, Linda Deanovic, Richard Connon, Sebastian Beggel, Marie Stillway, Inge Werner

# **ACKNOWLEDGMENTS**

We would like to thank the staff of the UC Davis Aquatic Toxicology Laboratory for their hard work. We are grateful for the services provided by the California Department of Fish and Game, in particular the assistance of their boat operators and use of boats for the collection of water samples. The UC Davis Fish Conservation and Culture Laboratory, Byron, CA, supplied delta smelt and a wealth of much needed advice for our laboratory studies with the species. We also thank the IEP-POD Management Team for advice and guidance to ensure the success of this work. Funding was provided by the Interagency Ecological Program, Sacramento, California (Contract No. 4600008070 to I. Werner).

# **CONTENTS**

|    |                     |                                                     | <u>Page</u> |  |  |  |  |  |  |
|----|---------------------|-----------------------------------------------------|-------------|--|--|--|--|--|--|
| 1. | Execu               | ative Summary                                       | 1           |  |  |  |  |  |  |
| 2. | Back                | ground and Approach                                 | 5           |  |  |  |  |  |  |
| 3. | Toxicity Monitoring |                                                     |             |  |  |  |  |  |  |
|    | 3.1                 | Sampling Sites                                      | 7           |  |  |  |  |  |  |
|    | 3.2                 | Collection of Water Samples                         | 10          |  |  |  |  |  |  |
|    | 3.3                 | Water Quality at Sampling Sites                     | 10          |  |  |  |  |  |  |
| 4. | Moni                | toring with Hyalella azteca (Amphipoda)             | 12          |  |  |  |  |  |  |
|    | 4.1                 | Methods                                             | 12          |  |  |  |  |  |  |
|    | 4.1.1               | Toxicity Testing                                    | 12          |  |  |  |  |  |  |
|    | 4.1.2               | Toxicity Identification Evaluations                 | 12          |  |  |  |  |  |  |
|    | 4.1.3               | Statistical Analysis                                | 13          |  |  |  |  |  |  |
|    | 4.1.4               | Analytical Chemistry                                | 13          |  |  |  |  |  |  |
|    | 4.2                 | Results                                             | 14          |  |  |  |  |  |  |
|    | 4.2.1               | Acute Toxicity – Effects on 10-d Survival           | 14          |  |  |  |  |  |  |
|    | 4.2.2               | Chronic Toxicity – Effects on 10-d Growth           | 16          |  |  |  |  |  |  |
|    | 4.2.3               | Toxicity Identification Evaluations                 | 18          |  |  |  |  |  |  |
|    | 4.2.4               | Analytical Chemistry                                | 18          |  |  |  |  |  |  |
| 5. | Moni                | toring with Delta Smelt (Hypomesus transpacificus)  | 21          |  |  |  |  |  |  |
|    | 5.1                 | Methods                                             | 21          |  |  |  |  |  |  |
|    | 5.1.1               | Toxicity Testing                                    | 21          |  |  |  |  |  |  |
|    | 5.1.2               | Statistical Analysis                                | 22          |  |  |  |  |  |  |
|    | 5.2                 | Results                                             | 22          |  |  |  |  |  |  |
| 6. | In Sit              | u Monitoring on the Sacramento & San Joaquin Rivers | 24          |  |  |  |  |  |  |
|    | 6.1                 | System Design                                       | 24          |  |  |  |  |  |  |
|    | 6.1.1               | Methods                                             | 25          |  |  |  |  |  |  |
|    | 6.1.2               | Statistical Analysis                                | 27          |  |  |  |  |  |  |
|    | 6.2                 | Results                                             | 27          |  |  |  |  |  |  |
|    | 6.2.1               | Discussion                                          | 28          |  |  |  |  |  |  |

| Euryt | emora affinis 7-d Toxicity Testing                                                                                                                                                                                                              | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.1   | Methods                                                                                                                                                                                                                                         | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.1.1 | Toxicity Testing                                                                                                                                                                                                                                | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.1.2 | Statistical Analysis                                                                                                                                                                                                                            | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7.2   | Results                                                                                                                                                                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Speci | es Sensitivity Studies                                                                                                                                                                                                                          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.1   | Methods                                                                                                                                                                                                                                         | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.1.1 | H. transpacificus Sensitivity Tests                                                                                                                                                                                                             | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.1.2 | P. promelas Sensitivity Tests                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.1.3 | H. azteca Sensitivity Tests                                                                                                                                                                                                                     | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.1.4 | E. affinis Sensitivity Tests                                                                                                                                                                                                                    | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.1.5 | Statistical Analysis                                                                                                                                                                                                                            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.2   | Results                                                                                                                                                                                                                                         | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.2.1 | H. transpacificus Sensitivity Tests                                                                                                                                                                                                             | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.2.2 | Fathead Minnow (Pimephales promelas) Sensitivity Tests                                                                                                                                                                                          | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.2.3 | H. azteca Sensitivity Tests                                                                                                                                                                                                                     | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.2.4 | Eurytemora affinis Sensitivity Tests                                                                                                                                                                                                            | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.2.5 | Interspecies Comparison of Sensitivity to<br>Select Toxicants                                                                                                                                                                                   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Suble | thal Indicators of Contaminant Effects                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9.1   | Toxicity of commercial insecticide formulations and their active ingredients to larval fathead minnow ( <i>Pimephales promelas</i> ). Beggel S., Werner I., Connon R.E., Geist J.                                                               | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9.2   | Molecular biomarkers in endangered species: neuromuscular impairments following sublethal copper exposures in the delta smelt ( <i>Hypomesus transpacificus</i> ). Connon R.E., Pfeiff J., Loguinov A.S., D'Abronzo L.S., Vulpe C.D., Werner I. | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9.3   | Molecular Evaluation of Environmental Contaminant Extracts in Striped bass collected from Semi Permeable Membrane Devices (SPMD) in the San Francisco Estuary. Connon R.E., D'Abronzo L.S., Werner I.                                           | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Quali | ty Assurance/Quality Control                                                                                                                                                                                                                    | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Refer | ences                                                                                                                                                                                                                                           | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | 7.1 7.1.1 7.1.2 7.2 Speci 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.2 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 Suble 9.1 9.2                                                                                                                                     | <ul> <li>7.1.1 Toxicity Testing</li> <li>7.1.2 Statistical Analysis</li> <li>7.2 Results</li> <li>Species Sensitivity Studies</li> <li>8.1 Methods</li> <li>8.1.1 H. transpacificus Sensitivity Tests</li> <li>8.1.2 P. promelas Sensitivity Tests</li> <li>8.1.3 H. azteca Sensitivity Tests</li> <li>8.1.4 E. affinis Sensitivity Tests</li> <li>8.1.5 Statistical Analysis</li> <li>8.2 Results</li> <li>8.2.1 H. transpacificus Sensitivity Tests</li> <li>8.2.2 Fathead Minnow (Pimephales promelas) Sensitivity Tests</li> <li>8.2.3 H. azteca Sensitivity Tests</li> <li>8.2.4 Eurytemora affinis Sensitivity Tests</li> <li>8.2.5 Interspecies Comparison of Sensitivity to Select Toxicants</li> <li>Sublethal Indicators of Contaminant Effects</li> <li>9.1 Toxicity of commercial insecticide formulations and their active ingredients to larval fathead minnow (Pimephales promelas). Beggel S., Werner I., Connon R.E., Geist J.</li> <li>9.2 Molecular biomarkers in endangered species: neuromuscular impairments following sublethal copper exposures in the delta smelt (Hypomesus transpacificus). Connon R.E., Pfeiff J., Loguinov A.S., D'Abronzo L.S., Vulpe C.D., Werner I.</li> <li>9.3 Molecular Evaluation of Environmental Contaminant Extracts in Striped bass collected from Semi Permeable Membrane Devices (SPMD) in the San</li> </ul> |

# **APPENDIX**

- A. Final Report: Acute Toxicity of Ammonia, Copper, and Pesticides to Eurytemora affinis, of the San Francisco Estuary (Swee et al., 2009)
- B. Summary Tables of *H. azteca* Toxicity Tests and Water Chemistry
- C. Summary Tables of Delta Smelt Toxicity Tests and Water Chemistry
- D. Summary Tables of *in situ* Toxicity Tests and Water Chemistry
- E. Summary Tables of *E. affinis* Toxicity Test and Water Chemistry
- F. Summary Tables of Delta Smelt LC50 Tests and Water Chemistry
- G. Summary Tables of Fathead Minnow LC50 Tests and Water Chemistry
- H. Summary Tables of *H. azteca* LC50 Tests and Water Chemistry
- I. Analyte Method Detection and Reporting Limits

# 1. Executive Summary

This report covers the project period of January 1– June 30, 2009. The study described here encompasses a sampling and toxicity monitoring program in the Sacramento-San Joaquin (SSJ) Delta, including several sites in Suisun Bay and the Napa River. Biweekly toxicity tests were performed using *Hyalella azteca*, an amphipod species resident in the Delta, and during March - May, additional ambient water from five sites (340, Cache-Lindsay, Hood, Light 55, and Suisun) was collected for larval delta smelt (*Hypomesus transpacificus*) toxicity testing. *In situ* monitoring was conducted at two DWR water quality monitoring stations (Rough & Ready Island on the San Joaquin River and Hood on the Sacramento River) using *H. transpacificus*, fathead minnows (*Pimephales promelas*), and *H. azteca*. A 7-d bioassay using low conductivity ambient waters from the lower Sacramento River watershed was conducted with the calanoid copepod, *Eurytemora affinis*. In addition, effect concentrations for pesticides, copper, and ammonia were determined for *H. transpacificus*, *P. promelas*, *H. azteca*, and *E. affinis*. Sensitivity testing with the water flea, *Ceriodaphnia dubia* is currently in progress.

Water Quality at Field Sites: Site-specific water quality parameters were routinely monitored in the field at the time of sampling. During this project period, temperature ranged from 7.3 (Cache-Ulatis) to  $25.8^{\circ}$ C (Rough & Ready Island), dissolved oxygen from 5.5 (Suisun Slough at Rush Ranch) to 13.8 mg/L (Cache-Ulatis), specific conductivity from 116 (Hood) to  $24,360 \,\mu\text{S/cm}$  (340), electrical conductivity from 98 (711) to  $19,947 \,\mu\text{S/cm}$  (340), pH from 6.43 (915) to 8.61 (Cache-Ulatis) and turbidity from 2.4 (Rough & Ready Island) to 713.3 NTU (Napa). Total ammonia-N concentrations were highest at stations 405, 340 and Hood with maximum concentrations of 0.62, 0.59, and 0.56 mg/L, respectively. Un-ionized ammonia concentrations were highest at stations Cache-Lindsey and Light 55 with maximum concentrations of 0.021 and 0.017 mg/L, respectively.

Field Monitoring with *H. azteca*: The UC Davis Aquatic Toxicology Laboratory (UCD ATL) and California Department of Fish and Game (CDFG) collected water samples twice a month from 12 sites (340, 405, 508, 602, 609, 711, Light 55, Cache-Lindsey, Cache-Ulatis, 815, 902, and 915) by boat, and samples from four additional sites (Hood, Rough & Ready Island, Suisun, and Napa) via bank sampling. Samples exhibiting salinities greater than the *H. azteca* testing limit of 15 ppt were not collected. Waters were tested using a 10-day *H. azteca* water column bioassay with survival and growth as acute and chronic endpoints, respectively. Routine partial toxicity identification evaluation (TIE) tests were conducted on all water samples with piperonyl-butoxide (PBO), a chemical synergist/antagonist, to provide early evidence for the presence of two classes of toxic insecticides: pyrethroids and organophosphates. If toxicity (≥50% mortality within 7 days) was observed in a water sample, TIEs were initiated to identify the causative agent(s) and if a sample caused ≥50% mortality within 96 hours, follow-up samples were collected to investigate the source of toxicity. Water samples were submitted to the California Department of Fish and Game Water Pollution Control Laboratory (CDFG-WPCL) for chemical analysis when significant acute or chronic toxicity was detected.

Acute Toxicity to *H. azteca*: During this project period, one water sample collected from site 711 on 6/25/09 was acutely toxic, causing a significant reduction in amphipod survival within the 10 day test period. This sample reduced survival by 44%, but did not meet the resample or TIE triggers of  $\geq 50\%$  mortality within 96 hours or 7 days, respectively. An analytical sample was submitted to the CDFG-WPCL for analysis of a comprehensive suite of chemicals, and results are currently pending.

PBO Effect on 10-d Survival: The addition of PBO led to significant decreases in the survival of *H. azteca* in two ambient samples when compared to their non-PBO counterparts: site 340 collected 5/13/09 and Hood collected 6/23/09. The PBO-induced reduction in survival at site 340 was detected by the conservative Tukey's multiple comparison procedure and by USEPA standard statistical protocols, while the reduction in survival at Hood was only detected by the less conservative USEPA protocols. A sample collected at site 902 on 6/25/09 showed significantly reduced survival when treated with PBO compared to the PBO-treated control, but this reduction in survival was not significant when compared to survival in the untreated ambient sample water. Analytical samples from sites 340 and Hood were sent to the CDFG-WPCL for pyrethroid analysis. Pyrethroids were not detected in the sample collected from site 340 and results from Hood are currently pending.

<u>Chronic Toxicity to H. azteca</u>: Chronic toxicity (reduced growth compared to control) to H. azteca was not detected during this project period. In general, this endpoint was not a sensitive indicator of toxicity due to the variable size of the organisms, the variability of food content in Delta water samples, and the lack of food content in the control waters.

PBO Effect on 10-d Growth: The most common significant effects detected in *H. azteca* ambient sample tests were differences in growth resulting from the addition of PBO relative to the unmanipulated ambient samples. The conservative Tukey's test detected 5 significant reductions in growth (2.5% of samples tested) and 4 significant increases (2%), while the more sensitive USEPA protocol detected 18 reductions (9%) and 15 increases (7.5%). All samples resulting in a significant reduction or increase in growth detected by the Tukey's test were submitted for chemical analysis as were the majority of those detected by the more sensitive USEPA standard statistical protocols.

<u>Toxicity Identification Evaluation (TIE)</u>: TIEs were not performed during this reporting period.

Analytical Chemistry Results: A total of 39 ambient water samples were analyzed for chemical contaminants during this reporting period, resulting in detections at 8 sites. Pyrethroid insecticides were detected in low concentrations from samples collected at Rough & Ready Island on 3/17/2009 (0.003 µg/L cyfluthrin) and Hood on 3/18/2009 (0.003 µg/L permethrin). The organophosphate insecticides chlorpyrifos, diazinon, and disulfoton were detected singularly or in combination at sites 508, 602, 815, 902, Cache-Ulatis, and Light 55. Although the majority of these detections were below the reporting limit of the analytical laboratory, the sample collected from Cache-Ulatis on 4/2/2009 resulted in the detection of 0.078 µg/L chlorpyrifos. Table 4-7 presents a detailed summary of samples submitted for chemical analysis, reason for submission, scan type, and results. In addition, beginning in February, water samples collected from sites 711, 902, Cache-Lindsey, Rough & Ready Island, and Suisun were submitted for routine metals analysis in order to obtain baseline metals data (Table 4-8). Results are pending.

Monitoring with Delta Smelt: During March – May, 2009, six delta smelt toxicity tests were conducted with samples collected from sites 340, Cache-Lindsey, Hood, Light 55, and Rough & Ready Island. At 96 hours, *H. transpacificus* survival was found to be significantly reduced relative to conductivity-specific and turbidity-specific controls in water from Cache-Lindsey collected on 4/15/09 and from Rough & Ready Island collected on 5/12/09. At 7 days, survival was reduced in Hood water collected on 4/28/09, Cache-Lindsey water collected on 4/30/09, and in Rough & Ready water collected on 5/12/09. Other instances of significantly

reduced survival relative to conductivity-specific controls are difficult to interpret because of low turbidity in the sample waters, which is considered stressful to larval delta smelt. Survival was consistently high in samples collected at the high conductivity, high turbidity site at Suisun Slough at Rush Ranch, as was observed in tests performed in 2008. At site 340, where conductivity was higher and turbidity was lower than in Suisun Slough, survival was generally lower.

<u>In Situ Monitoring</u>: During the months of March - May, *in situ* monitoring was conducted at the DWR water quality monitoring stations located in Hood, CA (Sacramento River) and Rough & Ready Island in Stockton, CA (San Joaquin River). Six exposures using *H. transpacificus*, *P. promelas*, and *H. azteca* were conducted concurrently with ambient delta smelt toxicity testing in the laboratory. During this pilot project, no toxicity was detected in the Sacramento River at Hood or the San Joaquin River at Rough and Ready Island. *H. transpacificus* survival was generally higher in ambient water than in the control, potentially due to slightly higher water temperatures in the control system, *H. azteca* survival was consistently high in ambient water as well as controls throughout the *in situ* season. *P. promelas* survival was variable in both the control and ambient water. Poor *P. promelas* survival in controls was attributed to the addition of algal paste to optimize turbidity conditions for delta smelt larvae.

Copepod Testing: A 7-d bioassay using juvenile *E. affinis* was initiated on 5/1/09 with four low conductivity samples (711, Cache-Ulatis, Hood, and Light 55) and a series of low conductivity controls (100, 250, 500, 1000, 1900 μS/cm). The test method was modeled after the USEPA *Ceriodaphnia dubia* 7-d Survival and Reproduction Test (USEPA, 2002), chosen for its high survival, minimal water requirements, and ease of recording survival/mortality. In the control series, survival was highest in the 1900 μS/cm control (90% survival in 7-d) and decreased with decreasing conductivity. Survival was low in ambient samples with the exception of Cache-Ulatis (100% survival in 7-d) which may be due in part to the site's food content and/or higher turbidity. Survival was low in most of the ambient samples tested likely due to low conductivity, however, survival was always higher in ambient samples than in the corresponding conductivity controls.

Species Sensitivity Tests: Toxic effect concentrations for *H. transpacificus*, *P. promelas*, *H. azteca* and *E. affinis* were determined for a series of chemical contaminants present in the SSJ Delta, including pesticides, copper, and ammonia. Effect concentrations for *C. dubia* are currently being determined. *H. transpacificus* was found to be more sensitive than *P. promelas* to nearly all materials tested, while the relative sensitivities of the three invertebrate species varied depending on the material tested.

#### Sublethal Indicators of Contaminant Effects:

Three manuscripts are currently in preparation: *Beggel et al.* describe a study on the lethal and sublethal toxicity of commercial pesticide formulations and their active ingredients to larval fathead minnow (*P. promelas*), as the first part of an effort to link stress response at the molecular and the organism-level of biological organization. This study compared toxicity of two current-use insecticides, the pyrethroid bifenthrin, and the phenylpyrazole fipronil, to their commercial formulations, Talstar® and Termidor®. Commercial pesticide formulation contain a significant proportion (>90%) of so-called inert ingredients, which may alter the toxicity of the active ingredient(s). These insecticides are used for mosquito control, landscape treatment and structural pest control, and can be transported into surface water bodies via stormwater and

irrigation runoff. The study presented here used fathead minnow larvae (*Pimephales promelas*), to determine effect thresholds for survival, growth and swimming performance after short-term (24 h) exposure to pure insecticides and insecticide formulations. Results demonstrate detrimental effects on swimming performance at 50% (fipronil) and 20% (bifenthrin) of the 24-h LC10. The LC10 was 0.92  $\mu g.L^{-1}$  for bifenthrin, and 305.57  $\mu g.L^{-1}$  for fipronil. Swimming performance was significantly impaired at 0.14  $\mu g.L^{-1}$  bifenthrin and 142  $\mu g.L^{-1}$  fipronil (measured). Detrimental effects on 7-d growth were observed following 24 h exposure to 53  $\mu g.L^{-1}$  (10% LC10) fipronil. Based on measured insecticide concentrations, both formulation products were more toxic than their pure active ingredients, suggesting that altered toxic effects due to inert ingredients should be considered in pesticide risk assessments and establishment of water quality criteria.

Connon et al. used a cDNA microarray with 8,448 Expressed Sequence Tags (ESTs) for delta smelt to study the effects of copper. Gene responses were measured in 60-day old juveniles exposed to 50µg.L<sup>-1</sup> copper chloride for 7 days. Responding genes were predominantly involved in digestion and metabolism, and neuromuscular activity with further effects on immune system, redox, and metal ion binding. Selected genes were assessed using q-PCR on 57-day old juveniles, exposed for 96 h to copper concentrations ranging from 2.0 to 32.0 µg.L<sup>-1</sup>, concentrations which resulted in no mortality. Quantitative PCR expression analyses corroborated neuromuscular impairments. Our results support the use of molecular biomarkers such as amylase-3, myozenin, calpain, sarcoendoplasmic reticulum calcium ATPase (SER-Ca) and creatine kinase in delta smelt in the determination of digestive and neuromuscular responses to sublethal contaminant exposure.

In collaboration with Dr. D. Ostrach, tissue samples from juvenile striped bass exposed to SPMD extracts were analyzed for expression of four stress-responsive genes, vitellogenin, CYP1A, metallothionein and hsp70. Preliminary results are presented in Chapter 9.3.

Publications (published and in review) resulting from this project to date:

Geist J.P., Werner I., Eder K.J., Leutenegger C.M. 2007. Comparisons of tissue-specific transcription of stress response genes with whole animal endpoints of adverse effect in striped bass (*Morone saxatilis*) following treatment with copper and esfenvalerate. *Aquatic Toxicology* 85:28-39.

Brander Susanne M., Werner I., White J.W., Deanovic L.A. 2009. Toxicity of a dissolved pyrethroid mixture to *Hyalella azteca* at environmentally relevant concentrations. *Environmental Toxicology and Chemistry*: Vol. 28, No. 7 pp. 1493–1499.

Werner I., Deanovic L.A., Markiewicz D., Khamphanh J., Reece C.K., Stillway M., Reece C. In review. Monitoring water column toxicity in the Sacramento-San Joaquin Delta, California, USA, using the euryhaline amphipod, *Hyalella azteca*: 2006-2007. *Integrated Environmental Assessment and Monitoring*.

Connon, R.E., I. Werner. In review. Endocrine, neurological and behavioral responses to sublethal pyrethroid exposure in the endangered delta smelt, *Hypomesus transpacificus* (Fam. Osmeridae). *Marine Environmental Research*.

Connon R.E., Geist J., Pfeiff, J., Loguinov A.S., D'Abronzo L.S., Wintz, H., Vulpe C.D., I. Werner. In review. Linking mechanistic and behavioral responses to sublethal pyrethroid exposure in the endangered delta smelt, *Hypomesus transpacificus* (Fam. Osmeridae). *BMC Genomics*.

## 2. Background and Approach

In the last several years, abundance indices of numerous pelagic fish species residing in the Sacramento-San Joaquin Delta of California, USA, have shown marked declines and record lows for the endemic delta smelt (*Hypomesus transpacificus*), age-0 striped bass (*Morone saxatilis*), longfin smelt (*Spirinchus thaleichthys*) and threadfin shad (*Dorosoma petenense*)(Stevens and Miller, 1983; Stevens et al., 1985; Moyle et al., 1992; Moyle and Williams, 1990). While several of these species - including in particular longfin smelt and juvenile striped bass - have shown evidence of long-term declines, there appears to have been a precipitous "step-change" to very low abundance during the period 2002-2004 (Bryant and Souza, 2004; Hieb et al., 2005; Feyrer et al., 2007). It is presently unclear what might have caused this critical population decline, but toxic contaminants may be one of several factors acting individually or in concert to lower pelagic productivity.

The goal of this study is to assess the potential for contaminated water to contribute to the observed declines of pelagic species in the Delta. The 2008-2010 study design built on the results of our 2006-2007 Delta-wide monitoring project to investigate toxicity of Delta water samples to invertebrates and early life stages of fish species of concern. In 2006-2007, water samples for invertebrate toxicity testing were collected twice a month at 15 sites characterizing primary inflows to the Delta as well as geographic regions important to pelagic fish of interest (Werner et al., 2008). Test results in 2007 showed acute toxicity in the lower Sacramento and Suisun Bay, and the possible presence of pyrethroids (reduced survival after synergist addition) at sites 804 (Middle of Broad Slough, west end), Suisun Bay, off Chipps Island (508), and Suisun Bay, east of middle point (504). Chronic amphipod growth effects after synergist addition were repeatedly detected in the south-eastern Delta, the lower Sacramento and Suisun Bay indicating the presence of low concentrations of pyrethroid (negative growth effects after synergist addition) or - far less frequently - organophosphate (OP; positive growth effects after synergist addition) insecticides. Several samples contained detectable concentrations of pyrethroid insecticides, primarily lambda-cyhalothrin, cyfluthrin and permethrin. The OP diazinon was detected in one sample. Delta smelt survival was reduced in two water samples from the lower Sacramento River. The 2008-10 study intensified toxicity testing in some important areas (Cache Slough/lower Sacramento, Suisun Marsh and Bay) of the Delta where acute toxicity was detected in 2007, as well as the south-eastern Delta. If acute toxicity to the amphipod Hyalella azteca (≥50% mortality within 7 d) is detected, toxicity identification evaluations and chemical analysis are used to identify toxicant(s). If a sample causes ≥50% mortality within 96 h, follow-up samples are to be collected in an attempt to identify the sources of toxicity. Appropriate sites for follow-up sampling were determined early in 2008 using land use and point source information. In addition, laboratory toxicity tests with larval delta smelt were performed in late April-July on water samples from select locations of special concern such as Cache Slough, lower Sacramento and San Joaquin Rivers, and Suisun Marsh.

Single species toxicity tests are the traditional approach used for ambient toxicity testing and *in situ* tests to determine the presence of toxicity in water samples or a water body. Single species tests are valuable first tier assessments that can be used as screening tools to identify potentially toxic conditions in the environment. Results should be used as guidance for additional studies such as exposure characterizations to provide insight on possible causality or biological assessments to identify potential ecological impairment. Because of their limitations with regard

to species sensitivity, exposure scenarios, and sublethal effects, these tests should not be used as the final quantitative indicator of absolute ecological impairment, but as one line of evidence or first tier investigation. Sources of uncertainty identified when extrapolating from single species tests to ecological effects include: variability in individual response to toxicant exposure; variation among species and different life-stages in sensitivity; effects of time varying and repeated exposures; the potential for sublethal effects difficult to quantify in standard toxicity tests, for example, endocrine disruption, immune system modulation, behavioral effects, and susceptibility to predation, and extrapolation from individual to population-level endpoints. This study begins to address two of the limitations listed above: exposure scenario and species sensitivity. In situ tests with fish (delta smelt and fathead minnows) and the invertebrate H. azteca will be conducted at suitable locations (Hood, Rough & Ready Island) to expose test species to water in the field and integrate potential water toxicity over time. With regard to species sensitivity, this study will generate effect data in the form of 96-h LC50, EC50, no observed effect level (NOEC), and lowest observed effect level (LOEC) in order to compare the sensitivity of Delta species with that of standard toxicity test species. Testing will include Pseudodiaptomus forbesi, Eurytemora affinis, Ceriodaphnia dubia, H. azteca, delta smelt, and fathead minnow for select chemicals.

Presently, the overwhelming lack of information on the toxic effects of contaminants on resident Delta species, among them delta smelt and two important prey species, Pseudodiaptomus forbesi and Eurytemora affinis, prevents an estimation of the risk of chemical contamination to pelagic organisms of concern. There is an urgent need for information on their sensitivity to toxic chemicals relative to standard test species. For standard test species, these tests will be performed using laboratory control water as well as Delta water to ensure environmental relevance of the test results. Delta smelt will only be tested in Delta (hatchery) water. Copepods will only be tested in laboratory control water. The chemicals were selected based on their known presence in the Delta, recent past or present, and are copper, ammonia, the organophosphate insecticides chlorpyrifos and diazinon, and the pyrethroid insecticides cyfluthrin, bifenthrin, and permethrin. Copper is used as a pesticide in various forms, is a common chemical in stormwater runoff, and is ubiquitous in the aquatic environment. Ammonia is released from wastewater treatment plants. Chlorpyrifos is one of the most heavily used agricultural insecticides, and has recently been shown to be present at toxic concentrations in Ulatis Creek (Werner & Kuivila, 2004, unpublished data) and agricultural drains (California Regional Water Quality Control Board Agricultural Waiver Program, 2007). Diazinon, cyfluthrin, bifenthrin and permethrin were detected in 2007 in water column samples from various sites in the Delta (Werner et al., 2008). Bifenthrin has also commonly been detected in sediment samples from the region (K. Larsen, CVRWQCB, personal communication).

Sublethal effects of aquatic contaminants are difficult to detect, quantify and interpret in an ecological context. Changes in the gene transcription of stress response genes in resident fish can be powerful biomarkers for the identification of sublethal impacts of environmental stressors on aquatic organisms, and can provide information on the causative agents. Molecular biomarkers have been developed for striped bass in 2006-07 (Geist et al., 2007), and are being used to detect and quantify stress responses in field-collected specimens from 2005-2009 (in collaboration with DFG and D. Ostrach, UC Davis) to detect sublethal toxic effects and help identify the causative chemical(s) or other stressors. Additional biomarkers for delta smelt have been selected and developed based on microarray studies with the immediate aim of selecting appropriate biomarkers for use in field and *in situ* studies, as well as in laboratory studies to

determine cause and effect. A complementary study is focused on linking cellular biomarker responses detected in delta smelt and striped bass to ecologically relevant effects such as swimming ability, growth and survival using a model species (fathead minnow).

# 3. Toxicity Monitoring

# 3.1 Sampling Sites

Sampling occurred on a bi-weekly basis from the period of 6 January, 2009 through 25 June, 2009 (Tables 3-1, 3-2, Fig. 3-1).

Table 3-1. Site locations and sampling schedule for *H. azteca* 

| Station   | Location                                                            | Latitude      | Longitude      | Collection day |
|-----------|---------------------------------------------------------------------|---------------|----------------|----------------|
| 340       | Napa River, Historic 340 at the seawall                             | 38-05'-51"N   | 122-15'-43.9"W | Wednesday      |
| 405       | Carquinez Straight, just west of Benicia army dock                  | 38-02'-22.9"N | 122-09'-01.8"W | Wednesday      |
| Suisun    | Suisun Slough at Rush<br>Ranch                                      | 38-12'-28.2"N | 122-01'56.9"W  | Tuesday        |
| 508       | Suisun Bay, off Chipps<br>Island, opposite Sac. North<br>Ferry Slip | 38-02'-43.8"N | 121-55'-07.7"W | Wednesday      |
| 602       | Grizzly Bay, northeast of<br>Suisun Slough at Dolphin               | 38-06'-50.4"N | 122-02'-46.3"W | Wednesday      |
| 609       | Montezuma Slough at Nurse Slough                                    | 38-10'-01.9"N | 121.56'-16.8"W | Wednesday      |
| 711       | Sacramento River at the tip of Grand Island                         | 38-10'-43.7"N | 121-39'-55.1"W | Thursday PM    |
| Light 55  | Sacramento River Deep<br>Water Channel at Light 55                  | 38-16'-26.5"N | 121-39'-13.6"W | Thursday AM    |
| Hood      | DWR water quality monitoring station                                | 38-22'-03.6"N | 121-31'-13.6"W | Tuesday        |
| Cache-Lin | Confluence of Lindsey<br>Slough/Cache Slough                        | 38-14'-39.2"N | 121-41'-19.5"W | Thursday AM    |
| Cache-Ul  | Upper Cache Slough, mouth of Ulatis Creek                           | 38-17'-02.7"N | 121-43'-04.3"W | Thursday AM    |
| 815       | San Joaquin, Confluence of Potato Slough                            | 38-05'-06.4"N | 121-34'-20.4"W | Thursday PM    |
| 902       | Old River at mouth of Holland Cut                                   | 38-01'-09.1"N | 121-34'-55.9"W | Thursday PM    |
| 915       | Old River, western arm at<br>Railroad Bridge                        | 37-56'-33"N   | 121-33'-48.6"W | Thursday PM    |
| R&R       | San Joaquin, Rough & Ready Island                                   | 37-57'45.4"N  | 121-21'55.9"W  | Tuesday        |
| Napa      | Napa River in Napa City at end of River Park Blvd.                  | 38-16'-39.7"N | 122-16'-56.9"W | Tuesday        |

Table 3-2. Follow-up sampling sites

| Station   | Location                                                      | Follow-up Sampling                                                                                                                   |
|-----------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 340       | Napa River, Historic 340 at the seawall                       | Resample of 340                                                                                                                      |
| 405       | Carquinez Straight, just west of<br>Benicia army dock         | Resample of 405;<br>Pacheco Creek                                                                                                    |
| Suisun    | Suisun Slough, downstream of<br>Boynton Slough                | Resample of Suisun;<br>Upstream Boynton Slough, upstream Rush Ranch                                                                  |
| 508       | Suisun Bay, off Chipps Island, opposite Sac. North Ferry Slip | Resample of 508; upstream Sac River, upstream San Joaquin River, 602                                                                 |
| 602       | Grizzly Bay, northeast of Suisun Slough at Dolphin            | Resample of 602;<br>Suisun, 609, 508, 405                                                                                            |
| 609       | Montezuma Slough at Nurse<br>Slough                           | Resample of 609;<br>Nurse Slough, Mouth at Van Sickle Island                                                                         |
| 711       | Sacramento River at the tip of Grand Island                   | Resample of 711;<br>704, Sac River near Locke, Gate from Moklumne                                                                    |
| Light 55  | Sacramento River Deep Water<br>Channel at Light 55            | Resample of Light 55                                                                                                                 |
| Hood      | DWR water quality monitoring station                          | Resample of Hood                                                                                                                     |
| Cache-Lin | Confluence of Lindsey<br>Slough/Cache Slough                  | Resample of Cache-Lin; Lindsey Slough, Cache-Ul                                                                                      |
| Cache-Ul  | Upper Cache Slough, mouth of Ulatis Creek                     | Resample of Cache-Ul; upstream Ulatis Creek                                                                                          |
| 815       | San Joaquin, Confluence of Potato<br>Slough                   | Resample of 815; Mokelumne Slough, Potato<br>Slough, upstream San Joaquin River, San Joaquin<br>River to Franks Tract Connector, 812 |
| 902       | Old River at mouth of Holland Cut                             | Resample of 902;<br>815, 915, Connection Slough                                                                                      |
| 915       | Old River, western arm at Railroad<br>Bridge                  | Resample of 915;<br>North Woodward Island, 902, Rock Slough                                                                          |
| R&R       | San Joaquin, Rough & Ready<br>Island                          | Resample of R&R Calaveras, Port of Stockton, upstream San                                                                            |
| Napa      | Napa River in Napa City at end of River Park Blvd.            | Joaquin River, French Camp<br>Resample of Napa                                                                                       |

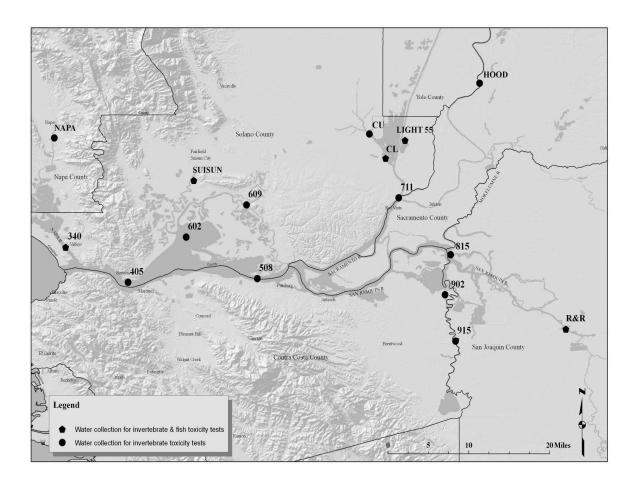



Figure 3-1. Water toxicity sampling locations based on IEP summer townet survey stations in 2008.

## 3.2 Collection of Water Samples

Staff from the UC Davis Aquatic Toxicology Laboratory (UCD ATL) and the California Department of Fish and Game (CDFG) collected water samples from 16 sites: 340, 405, 508, 602, 609, 711, Light 55, Cache-Lindsey, Cache-Ulatis, 815, 902, and 915 by boat and Hood, Rough & Ready, Suisun, and Napa via bank sampling. If the salinity exceeded the H. azteca testing limit of 15 ppt, samples were not collected for H. azteca toxicity tests. Subsurface grab samples were pumped from a depth of approximately 0.5 m using a standard water pump into clean, 1-gal amber LDPE cubitainers for invertebrate tests and 5-gal clear LDPE cubitainers for delta smelt tests. In addition, site water was also collected in 1-gal clear LDPE cubitainers and 1-L amber-glass bottles for analytical chemistry. Water samples were transported, stored and preserved following protocols outlined in the UCD ATL standard operating procedures (SOP), nos. 5-1 and 5-2 (UCD ATL, 2009). All cubitainers used for water collections were labeled with the site ID, collection date and time, and the initials of the sampler and then rinsed three times with ambient sample water prior to filling. Eight gallons of water were collected from each site for invertebrate testing along with two liters for analytical chemistry. During the Spring, an additional 35 gallons were collected for delta smelt toxicity testing. All samples were placed into an ice chest on wet ice for transport to the UCD ATL and ice was renewed as needed to keep the sample temperature at 0-6°C (USEPA, 2002). Upon receipt at UCD ATL, water samples were stored in an environmental chamber at 0-6°C.

## 3.3 Water Quality at Sampling Sites

Field measurements including pH, specific conductivity (SC), electrical conductivity (EC), dissolved oxygen (DO) and temperature were recorded for each site and sampling time. DO and SC were measured using YSI 85 meters, and pH was measured with a Beckman 240 pH meter. DO/SC and pH meters were calibrated according to the manufacturer's instructions at the start of each field day. Turbidity and ammonia nitrogen were measured within 24 hours of sample receipt at UCD ATL using a Hach 2100P Turbidimeter and a Hach AmVer Ammonia Test'N Tube Reagent Set, respectively. For ammonia measurements the "low range" test kit (0-2.5 mg/L N) was used first. If the maximum value was exceeded the "high range" test kit (0-50 mg/L N) was used. Unionized ammonia concentrations for all samples were calculated using measured total ammonia-N, field temperature, and field pH. General weather conditions and GPS coordinates were recorded for each site and sampling event. Tables 3-3 and 3-4 summarize minimum and maximum water quality data by site.

Table 3-3. Minimum and maximum water quality parameters measured at sites sampled during January - June 2009.

| Sample            | N  | SC (uS/cm) |       | EC ( | EC (uS/cm) |      | Temp (°C) |      | pН   |     | DO (mg/L) |  |
|-------------------|----|------------|-------|------|------------|------|-----------|------|------|-----|-----------|--|
|                   |    | Min        | Max   | Min  | Max        | Min  | Max       | Min  | Max  | Min | Max       |  |
| 340               | 9  | 9460       | 24360 | 6981 | 19947      | 10.0 | 18.6      | 6.58 | 7.88 | 8.7 | 13.0      |  |
| 405               | 10 | 4080       | 23650 | 3550 | 17370      | 10.2 | 19.7      | 7.14 | 7.84 | 8.9 | 13.0      |  |
| 508               | 13 | 358        | 12810 | 277  | 9121       | 8.3  | 20.5      | 6.54 | 7.87 | 8.8 | 11.7      |  |
| 602               | 13 | 425        | 19800 | 330  | 13306      | 8.6  | 22.1      | 6.75 | 8.00 | 8.9 | 13.4      |  |
| 609               | 12 | 2030       | 8000  | 1583 | 5568       | 9.5  | 22.0      | 6.66 | 7.70 | 7.5 | 11.9      |  |
| 711               | 13 | 120        | 417   | 98   | 299        | 7.9  | 23.2      | 6.61 | 7.68 | 8.1 | 12.1      |  |
| 815               | 13 | 176        | 572   | 156  | 406        | 7.8  | 22.7      | 6.58 | 7.87 | 8.2 | 12.0      |  |
| 902               | 13 | 204        | 830   | 193  | 571        | 7.6  | 23.6      | 6.58 | 7.90 | 8.0 | 11.8      |  |
| 915               | 13 | 217        | 745   | 209  | 511        | 7.6  | 24.1      | 6.43 | 7.80 | 7.7 | 12.6      |  |
| Cache-Lindsey     | 13 | 183        | 674   | 155  | 543        | 7.9  | 22.1      | 6.80 | 7.86 | 8.4 | 12.1      |  |
| Cache-Ulatis      | 13 | 207        | 674   | 187  | 543        | 7.3  | 21.2      | 6.88 | 8.61 | 8.3 | 13.8      |  |
| Hood              | 13 | 116        | 303   | 99   | 216        | 8.2  | 23.2      | 6.55 | 7.55 | 7.5 | 12.0      |  |
| Light 55          | 13 | 215        | 409   | 189  | 331        | 7.9  | 22.0      | 7.02 | 8.03 | 8.4 | 12.5      |  |
| Napa              | 13 | 237        | 20870 | 176  | 16000      | 9.6  | 24.2      | 6.51 | 7.98 | 6.0 | 11.4      |  |
| Rough and Ready   | 13 | 435        | 1107  | 442  | 797        | 8.2  | 25.8      | 7.08 | 7.94 | 6.0 | 11.3      |  |
| Suisun Rush Ranch | 13 | 2673       | 11780 | 2010 | 8317       | 8.5  | 20.4      | 6.51 | 7.53 | 5.5 | 11.9      |  |

Table 3-4. Minimum and maximum turbidity, ammonia, hardness and alkalinity measured at sites sampled during January - June 2009.

| Sample            | N  | Turbidity (NTU) |       | Ammonia<br>Nitrogen (mg/L) |      | Unionized<br>Ammonia<br>(mg/L) |       | Hardness<br>(mg/L as<br>CaCO3) |      | Alkalinity<br>(mg/L as<br>CaCO3) |     |
|-------------------|----|-----------------|-------|----------------------------|------|--------------------------------|-------|--------------------------------|------|----------------------------------|-----|
|                   |    | Min             | Max   | Min                        | Max  | Min                            | Max   | Min                            | Max  | Min                              | Max |
| 340               | 9  | 21.3            | 77.9  | 0.09                       | 0.59 | 0.000                          | 0.002 | 1040                           | 2880 | 88                               | 108 |
| 405               | 10 | 10.5            | 424.3 | 0.00                       | 0.62 | 0.000                          | 0.003 | 800                            | 2400 | 80                               | 104 |
| 508               | 13 | 9.1             | 40.4  | 0.00                       | 0.31 | 0.000                          | 0.004 | 92                             | 1800 | 64                               | 106 |
| 602               | 13 | 8.3             | 379.0 | 0.06                       | 0.33 | 0.000                          | 0.005 | 152                            | 2280 | 68                               | 106 |
| 609               | 12 | 24.4            | 137.7 | 0.00                       | 0.34 | 0.000                          | 0.005 | 292                            | 880  | 78                               | 100 |
| 711               | 13 | 4.3             | 146.3 | 0.04                       | 0.47 | 0.000                          | 0.012 | 48                             | 100  | 46                               | 134 |
| 815               | 13 | 4.0             | 16.7  | 0.00                       | 0.30 | 0.000                          | 0.013 | 56                             | 124  | 52                               | 94  |
| 902               | 13 | 3.8             | 12.3  | 0.00                       | 0.15 | 0.000                          | 0.005 | 56                             | 140  | 58                               | 92  |
| 915               | 13 | 3.1             | 9.2   | 0.00                       | 0.15 | 0.000                          | 0.006 | 72                             | 140  | 58                               | 98  |
| Cache-Lindsey     | 13 | 6.4             | 132.7 | 0.07                       | 0.47 | 0.000                          | 0.021 | 64                             | 114  | 62                               | 118 |
| Cache-Ulatis      | 13 | 9.1             | 151.3 | 0.00                       | 0.23 | 0.000                          | 0.007 | 68                             | 226  | 70                               | 204 |
| Hood              | 13 | 5.4             | 43.9  | 0.02                       | 0.56 | 0.000                          | 0.004 | 44                             | 80   | 50                               | 92  |
| Light 55          | 13 | 8.2             | 96.9  | 0.05                       | 0.38 | 0.001                          | 0.017 | 64                             | 124  | 66                               | 124 |
| Napa              | 13 | 8.1             | 713.3 | 0.00                       | 0.35 | 0.000                          | 0.004 | 70                             | 2360 | 54                               | 284 |
| Rough and Ready   | 13 | 2.4             | 13.3  | 0.02                       | 0.43 | 0.000                          | 0.006 | 96                             | 212  | 68                               | 240 |
| Suisun Rush Ranch | 13 | 20.5            | 395.3 | 0.08                       | 0.46 | 0.000                          | 0.004 | 380                            | 1360 | 130                              | 248 |

# 4. Monitoring with *Hyalella azteca*

#### 4.1. Methods

# 4.1.1 Toxicity Testing

*H. azteca* purchased from Aquatic Research Organisms (Hampton, NH) were received at the UCD ATL 48 hours prior to test initiation and acclimated to laboratory conditions. Before initiating bioassays, the water samples were mixed rigorously in the original sampling containers, filtered through a 60-μm screen, brought to the test temperature of 23°C, and aerated at a rate of 100 bubbles/min until the dissolved oxygen concentration was approximately 8.5 mg/L. Deionized water amended to US EPA moderately hard standards (DIEPAMHR) was used as the laboratory control water.

The 10-day tests consisted of four 250 ml replicate glass beakers, each containing 100 ml of sample, a one-square-inch piece of nitex screen for artificial substrate, and 10 organisms. Tests were initiated with 7 to 14 day old *H. azteca*. Animals in each replicate were fed 1000 µl of YCT (a mixture of yeast, organic alfalfa and trout chow) on test initiation and days 2, 4, 6, 8 following the renewal of 75% of the test waters. Each series of tests included a standard laboratory control, and if necessary, "high EC controls" and a "low EC control". "High EC" control water was reconstituted to EPA moderate hardness and the EC was adjusted to match the highest EC of the ambient water samples (typically found at the Napa River and site 405), with pre-filtered Pacific Ocean seawater obtained from Bodega Bay Marine Laboratory, Bodega Bay, CA. Multiple high EC controls were sometimes included when ambient waters showed a wide range of conductivities. "Low EC" control water was reconstituted to EPA moderate hardness and the EC was adjusted to match the lowest EC of the water samples (typically found at sites 711, Cache-Ulatis, Cache-Lindsey, and Hood) by diluting with deionized water.

All ambient samples were tested with and without the addition of piperonyl butoxide (PBO). PBO was added because of its synergistic and antagonistic action with pyrethroid and organophosphate insecticides, respectively. A five parts per million (5 ppm) PBO stock solution was prepared and added to 500 ml of sample water to yield the desired test concentration. Tests were conducted with 25 ppb of PBO, which did not affect survival or growth of *H. azteca* (Werner et al. 2008).

Tests were conducted at a temperature of  $23 \pm 2^{\circ}$  C with a 16h:8h Light:Dark photoperiod. Mortality was recorded daily, and water was renewed on days 2, 4, 6 and 8. On day 10, the surviving *H. azteca* were dried and weighed to determine dry tissue weight per individual and relative growth.

# 4.1.2 Toxicity Identification Evaluations (TIEs)

If  $\geq 50\%$  mortality of test organisms occurred within 7 days in the survival and growth H. azteca bioassay, a TIE was initiated to characterize the cause of toxicity. TIEs involve procedures to either remove or inactivate specific classes of chemicals. After manipulation, the toxicity of a sample is tested and compared to the corresponding method blank. During this period, no TIEs were performed.

# 4.1.3 Statistical Analysis

Statistical analysis of H. azteca 10-day chronic toxicity data involved two endpoints: 10day survival and 10-day weight, and was performed using JMP 5.0.1 (SAS 2003). We used oneway ANOVA and Tukey's multiple comparison procedure to evaluate all comparisons among waters not treated with PBO (one-tailed alpha = 0.05). Tukey's multiple comparison procedure is useful in this experimental design because it allows all possible pairwise comparisons between treatments to be examined while minimizing the chance of false positive results (experimentwide alpha is maintained at 0.05 regardless of the number of comparisons examined). The USEPA protocol requires that data are tested for normality and homogeneity of variance before being tested using ANOVA. However, Zar (1996) reports that tests for homogeneity of variance perform poorly and are not recommended for testing the underlying assumptions of ANOVA, and reports that ANOVA is reliable for multisample testing among means even in cases of substantial heterogeneity of variances or considerable deviations from normality. Therefore, data were not tested for normality or homogeneity of variance before being tested with ANOVA and Tukey's procedure. In tests containing high or low conductivity samples (high EC > 10,000 uS/cm; low EC < 100 uS/cm), significant reductions in survival and weight were evaluated relative to the control with the most appropriate conductivity.

Comparisons involving PBO-treated waters and PBO effects were evaluated by full factorial two-way ANOVA (two-tailed alpha = 0.05). The three terms in the ANOVA were 1) the identity of test water, 2) the presence or absence of PBO and 3) an interaction term between test water and PBO presence. When there was a significant overall effect of PBO or interaction effect, a Tukey's multiple comparison procedure was performed to identify if a significant difference existed between any control or test water and its PBO treated counterpart, and to identify if any PBO-treated sample showed a significant decrease in survival or weight relative to the PBO-treated control of the most appropriate conductivity.

Since the statistical analyses used by ATL are very rigorous to minimize the occurrence of false positive results, we also examined the results of the *H. azteca* tests performed during this time period using the standard USEPA-recommended single-concentration statistical protocols in order to achieve the greatest possible statistical sensitivity (USEPA, 2002).

# 4.1.4 Analytical Chemistry

Water samples for analytical chemistry were collected at each sampling site during each sampling event using two acid-cleaned, 1-L amber-glass bottles. These samples were transported on ice and stored in an environmental chamber maintained at 4°C upon receipt at the UCD ATL. 10 ml of dichloromethylene (DCM) was added to one 1-L sample to prevent possible degradation of insecticides during storage. If a sample noticeably affected survival or growth of *H. azteca*, it was then submitted to the California Department of Fish and Game – Water Pollution Control Laboratory, Rancho Cordova, CA, for chemical analysis on whole water samples. Samples submitted for total and/or dissolved metals analysis were sent to the California Department of Fish and Game – Moss Landing Marine Laboratory, Moss Landing, CA.

Water samples were typically sent in for pyrethroid or organophophate scans when a signal obtained with PBO indicated that one of these insecticide groups may be responsible for the observed toxic effect. When the possible cause of toxicity was less apparent, water samples

were analyzed for a "comprehensive" suite of chemicals including metals (dissolved and total), PAHs, pyrethroids, organophosphates, carbamates, and fipronil and degredates. Appendix I gives analytes and their corresponding method detection and reporting limits for organophosphates, pyrethroids, carbamates, fipronil and metabolites, PAHs, and trace metals.

#### 4.2 Results

A total of 200 water samples were collected and tested for toxicity with *H. azteca* during the reporting period of January 1 - June 30, 2009. Results of the toxicity tests are summarized below in Tables 4-1 through 4-5. Detailed results and water chemistry data are shown in Appendix B.

## 4.2.1 Acute Toxicity to *H. azteca* - Effects on 10-d Survival

During this project period, one water sample collected from site 711 on 6/25/09 was acutely toxic, causing a significant reduction in amphipod survival within the 10 day test period. This sample reduced amphipod survival by 44%, but did not meet the re-sample or TIE triggers of  $\geq$ 50% mortality within 96 hours or 7 days, respectively. An analytical sample was submitted to the CDFG-WPCL for analysis of a comprehensive suite of chemicals, and results are currently pending.

PBO Effect on 10-d Survival: The addition of PBO led to significant decreases in the survival of *H. azteca* in two ambient samples when compared to their non-PBO counterparts: site 340 collected 5/13/09 and Hood collected 6/23/09. The PBO-induced reduction in survival at site 340 was detected by the conservative Tukey's multiple comparison procedure and by USEPA standard statistical protocols, while the reduction in survival at Hood was only detected by the less conservative USEPA protocols. A sample collected at site 902 on 6/25/09 showed significantly reduced survival when treated with PBO compared to the PBO-treated control, but was not significantly different from the ambient sample without PBO.

Table 4-1. 10-day Survival of H. azteca in treatments showing significant differences in survival compared to controls or with the addition of PBO, as detected by ANOVA and Tukey's multiple comparison procedure. Significant differences detected by USEPA standard statistical protocols are given in parenthesis.

| Comple Tune | Comparison                | #       | # Survival |           | Weight  |           |  |
|-------------|---------------------------|---------|------------|-----------|---------|-----------|--|
| Sample Type | Comparison                | Samples | Reduced    | Increased | Reduced | Increased |  |
| Ambient     | v EC-specific Control     | 200     | 1(1)       | -         | 0(1)    | -         |  |
| PBO Treated | v EC-specific PBO Control | 200     | 1 (4)      | -         | 0 (0)   | -         |  |
| PBO Treated | Ambient                   | 200     | 1 (2)      | 0 (0)     | 5 (18)  | 4 (15)    |  |

<sup>1.</sup> These numbers do not include quality assurance samples.

Table 4-2. Survival of *H. azteca* in treatments showing significant differences in survival compared to controls or with the addition of PBO as detected by Tukey's multiple comparison procedure.

|        |                    | Test               | Survival (%) |     |                          | Significance     |                  |               |                 |
|--------|--------------------|--------------------|--------------|-----|--------------------------|------------------|------------------|---------------|-----------------|
| Sample | Collection<br>Date | Initiation<br>Date | Non-PBO      | РВО | v Non-<br>PBO<br>Control | v PBO<br>Control | Non-PBO<br>v PBO | Chem.<br>Type | Chem.<br>Result |
| 340    | 5/13/2009          | 5/16/2009          | 61           | 14  | NS                       | S (19%)          | S (23%)          | P             | ND              |
| 711    | 6/25/2009          | 6/26/2009          | 45           | 61  | S (51%)                  | NS               | NS               | C             | Pending         |

Chemical Analysis: P: Pyrethroid, O: Organophosphate, C: Comprehensive, Cb: Carbamate, M: Metal

Table 4-3. Survival of *H. azteca* in treatments showing significant differences in survival compared to controls or with the addition of PBO as detected by USEPA standard statistical protocols.

|        |                    | Test<br>Initiation<br>Date | Survival (%) |     |  |                          |                  |                  |               |                 |
|--------|--------------------|----------------------------|--------------|-----|--|--------------------------|------------------|------------------|---------------|-----------------|
| Sample | Collection<br>Date |                            | Non-PBO      | РВО |  | v Non-<br>PBO<br>Control | v PBO<br>Control | Non-PBO<br>v PBO | Chem.<br>Type | Chem.<br>Result |
| 340    | 5/13/2009          | 5/16/2009                  | 61           | 14  |  | NS                       | S (19%)          | S (23%)          | P             | ND              |
| Hood   | 6/23/2009          | 6/25/2009                  | 87           | 66  |  | NS                       | S (73%)          | S (76%)          | P             | Pending         |
| 711    | 6/25/2009          | 6/26/2009                  | 45           | 61  |  | S (51%)                  | S (79%)          | NS               | C             | Pending         |
| 902    | 6/25/2009          | 6/26/2009                  | 90           | 85  |  | NS                       | S (89%)          | NS               |               |                 |

Chemical Analysis: P: Pyrethroid, O: Organophosphate, C: Comprehensive, Cb: Carbamate, M: Metal

# 4.2.2 Chronic Toxicity to *H. azteca* - Effects on 10-d Growth

<u>Chronic Toxicity to *H. azteca*</u>: Chronic toxicity (reduced growth compared to control) to *H. azteca* was not detected during this project period. In general, this endpoint was not a sensitive indicator of toxicity due to the variable size of the organisms, the variability of food content in Delta water samples, and the lack of food content in the control waters.

PBO Effect on 10-d Growth: The most common significant effects detected in *H. azteca* ambient sample tests were differences in growth resulting from the addition of PBO relative to the unmanipulated ambient samples. The conservative Tukey's test detected 5 significant reductions in growth (2.5% of samples tested) and 4 significant increases (2%), while the more sensitive USEPA protocol detected 18 reductions (9%) and 15 increases (7.5%). All samples resulting in a significant reduction or increase in growth detected by the Tukey's test were submitted for chemical analysis as were the majority of those detected by the more sensitive USEPA standard statistical protocols. Of the analytical results received to date, statistical differences detected by the more conservative Tukey's test were more likely to result in pesticide detections.

Table 4-4. Weight of *H. azteca* in treatments showing significant differences in weight compared to controls or with the addition of PBO as detected by Tukey's multiple comparison procedure.

|        | Callandan          | Test               | Weight (mg/individual) |       |                          | Significan       |                  | Chem.    |         |
|--------|--------------------|--------------------|------------------------|-------|--------------------------|------------------|------------------|----------|---------|
| Sample | Collection<br>Date | Initiation<br>Date | Non-<br>PBO PBO        |       | v Non-<br>PBO<br>Control | v PBO<br>Control | Non-PBO<br>v PBO | Analytes | Result  |
| R&R    | 1/6/2009           | 1/8/2009           | 0.117                  | 0.064 | NS                       | NS               | S (55%)          | P        | ND      |
| CU     | 2/4/2009           | 2/5/2009           | 0.121                  | 0.063 | NS                       | NS               | S (52%)          | P        | ND      |
| 902    | 2/4/2009           | 2/5/2009           | 0.119                  | 0.044 | NS                       | NS               | S (37%)          | P        | ND      |
| 508    | 3/4/2009           | 3/5/2009           | 0.131                  | 0.083 | NS                       | NS               | S (63%)          | P        | ND      |
| 815    | 3/18/2009          | 3/20/2009          | 0.046                  | 0.087 | NS                       | NS               | S (189%)         | O        | Detect  |
| 508    | 4/1/2009           | 4/2/2009           | 0.087                  | 0.130 | NS                       | NS               | S (149%)         | O        | Detect  |
| CU     | 4/2/2009           | 4/3/2009           | 0.036                  | 0.106 | NS                       | NS               | S (294%)         | О        | Detect  |
| NAPA   | 6/9/2009           | 6/11/2009          | 0.053                  | 0.040 | NS                       | NS               | S (75%)          | P        | Detect  |
| R&R    | 6/23/2009          | 6/25/2009          | 0.075                  | 0.133 | NS                       | NS               | S (177%)         | О        | Pending |

Chemical Analysis: P: Pyrethroid, O: Organophosphate, C: Comprehensive, Cb: Carbamate, M: Metal

Table 4-5. Weight of *H. azteca* in treatments showing significant differences in weight compared to controls or with the addition of PBO as detected by USEPA standard statistical protocols.

|          |                    | Test               | Wei<br>(mg/indi |       |                          | Significano      | ce               |          |                 |
|----------|--------------------|--------------------|-----------------|-------|--------------------------|------------------|------------------|----------|-----------------|
| Sample   | Collection<br>Date | Initiation<br>Date | Non-<br>PBO     | РВО   | v Non-<br>PBO<br>Control | v PBO<br>Control | Non-PBO<br>v PBO | Analytes | Chem.<br>Result |
| R&R      | 1/6/2009           | 1/8/2009           | 0.117           | 0.064 | NS                       | NS               | S (55%)          | P        | ND              |
| 508      | 1/21/2009          | 1/22/2009          | 0.045           | 0.073 | NS                       | NS               | S (162%)         | О        | ND              |
| 915      | 1/22/2009          | 1/23/2009          | 0.084           | 0.127 | NS                       | NS               | S (151%)         | О        | ND              |
| 902      | 1/22/2009          | 1/23/2009          | 0.127           | 0.075 | NS                       | NS               | S (59%)          | P        | ND              |
| 711      | 1/22/2009          | 1/23/2009          | 0.107           | 0.078 | NS                       | NS               | S (73%)          | P        | ND              |
| CU       | 2/4/2009           | 2/5/2009           | 0.121           | 0.063 | NS                       | NS               | S (52%)          | P        | ND              |
| 902      | 2/4/2009           | 2/5/2009           | 0.119           | 0.044 | NS                       | NS               | S (37%)          | P        | ND              |
| CL       | 2/4/2009           | 2/5/2009           | 0.105           | 0.060 | NS                       | NS               | S (57%)          | P        | ND              |
| Light 55 | 2/4/2009           | 2/5/2009           | 0.079           | 0.050 | NS                       | NS               | S (63%)          | P        | ND              |
| 508      | 2/5/2009           | 2/6/2009           | 0.028           | 0.046 | NS                       | NS               | S (164%)         |          |                 |
| Suisun   | 2/17/2009          | 2/19/2009          | 0.035           | 0.060 | NS                       | NS               | S (171%)         | 0        | Pending         |
| 340      | 2/18/2009          | 2/19/2009          | 0.023           | 0.052 | NS                       | NS               | S (226%)         | 0        | Pending         |
| 815      | 2/19/2009          | 2/20/2009          | 0.056           | 0.098 | NS                       | NS               | S (175%)         | 0        | Pending         |
| CU       | 2/19/2009          | 2/20/2009          | 0.074           | 0.042 | NS                       | NS               | S (57%)          | P        | Pending         |
| 508      | 3/4/2009           | 3/5/2009           | 0.131           | 0.083 | NS                       | NS               | S (63%)          | P        | ND              |
| CU       | 3/5/2009           | 3/6/2009           | 0.073           | 0.040 | NS                       | NS               | S (55%)          | P        | ND              |
| 405      | 3/17/2009          | 3/19/2009          | 0.075           | 0.061 | NS                       | NS               | S (81%)          |          |                 |
| 340      | 3/17/2009          | 3/19/2009          | 0.073           | 0.057 | NS                       | NS               | S (78%)          |          |                 |
| R&R      | 3/17/2009          | 3/19/2009          | 0.093           | 0.064 | NS                       | NS               | S (69%)          | P        | Detect          |
| Light 55 | 3/18/2009          | 3/19/2009          | 0.072           | 0.097 | NS                       | NS               | S (135%)         | О        | Detect          |
| 915      | 3/18/2009          | 3/20/2009          | 0.093           | 0.069 | NS                       | NS               | S (74%)          | P        | ND              |
| CU       | 4/2/2009           | 4/3/2009           | 0.036           | 0.106 | NS                       | NS               | S (294%)         | 0        | Detect          |
| 902      | 4/2/2009           | 4/3/2009           | 0.090           | 0.124 | NS                       | NS               | S (138%)         | 0        | Detect          |
| 405      | 4/14/2009          | 4/16/2009          | 0.030           | 0.044 | S (65%)                  | NS               | NS               |          |                 |
| Suisun   | 4/15/2009          | 4/17/2009          | 0.050           | 0.090 | NS                       | NS               | S (180%)         | 0        | ND              |
| Suisun   | 4/28/2009          | 4/30/2009          | 0.090           | 0.119 | NS                       | NS               | S (132%)         | 0        | ND              |
| Hood     | 4/28/2009          | 4/30/2009          | 0.077           | 0.099 | NS                       | NS               | S (129%)         | 0        | ND              |
| 602      | 4/29/2009          | 4/30/2009          | 0.054           | 0.081 | NS                       | NS               | S (150%)         | 0        | ND              |
| 340      | 4/29/2009          | 4/30/2009          | 0.048           | 0.070 | NS                       | NS               | S (146%)         |          |                 |
| 609      | 5/27/2009          | 5/28/2009          | 0.090           | 0.075 | NS                       | NS               | S (83%)          |          |                 |
| Light 55 | 6/11/2009          | 6/12/2009          | 0.086           | 0.064 | NS                       | NS               | S (74%)          | P        | Detect          |
| 902      | 6/11/2009          | 6/12/2009          | 0.081           | 0.060 | NS                       | NS               | S (74%)          | P        | Detect          |
| CL       | 6/25/2009          | 6/26/2009          | 0.083           | 0.043 | NS                       | NS               | S (52%)          | P        | Pending         |
| 915      | 6/25/2009          | 6/26/2009          | 0.055           | 0.078 | NS                       | NS               | S (142%)         | О        | Pending         |

Chemical Analysis: P: Pyrethroid, O: Organophosphate, C: Comprehensive, Cb: Carbamate, M: Metal

## 4.2.3 Toxicity Identification Evaluation

TIEs were not performed during this reporting period.

# 4.2.4 Results of Analytical Chemistry

Whole water samples were submitted to CDFG-WPCL for chemical analysis after the detection of acute toxicity in either statistical method and samples exhibiting a reduction or increase in growth were evaluated for submission on a case by case basis. A total of 39 ambient water samples were submitted for analysis for chemical contaminants during this reporting period, resulting in detections in 8 out of 27 samples for which analysis has been completed. Apart from one detection in early January, all detections occurred from mid-March to early April.

Pyrethroids were not detected in the one sample analyzed to date that showed a significant reduction in survival, even though this reduction in survival was associated with PBO addition. Pyrethroids and organophosphates were, however, detected in some of the samples that showed reductions or increases in H. azteca weight, respectively. Pyrethroid insecticides were detected in low concentrations from samples collected at Rough & Ready Island on 3/17/2009 (0.003 µg/L cyfluthrin) and Hood on 3/18/2009 (0.003 µg/L permethrin). The organophosphate insecticides chlorpyrifos, diazinon, and disulfoton were detected singularly or in combination at sites 508, 602, 815, 902, Cache-Ulatis, and Light 55. Although the majority of these detections were below the reporting limit of the analytical laboratory, a sample collected from Cache-Ulatis on 4/2/2009 resulted in the detection of 0.078 µg/L chlorpyrifos. This sample was submitted to CDFG-WPCL following a significant increase in growth with the addition of PBO in the 10-d H. azteca bioassay. Although survival was not affected, this concentration of chlorpyrifos is greater than the 10-d control water LC50 of 67.2 pptr determined by UCD-ATL in January 2009. A sample collected from Light 55 on 3/19/09 caused a significant increase in growth when treated with PBO and resulted in the detection of 0.010 µg/L chlorpyrifos. Table 4-6 presents a detailed summary of samples submitted for chemical analysis, reason for submission, scan type, and results. In addition, beginning in February, water samples collected from sites 711, 902, Cache-Lindsey, Rough & Ready Island, and Suisun were submitted for routine metals analysis in order to obtain baseline metals data (Table 4-7). Results are pending.

Low levels of detected pesticides in samples showing survival or weight PBO effects may be due to the generally high pesticide sensitivity of *H. azteca*. Sensitivity studies show that effective concentrations of bifenthrin and cyfluthrin are close to the reporting and detection limits of the chemical analysis (Table 4-8). Analyte degradation may have further reduced our capability to detect the small amounts of pesticide capable of affecting *H. azteca*. Although samples destined for pyrethroid analysis were preserved with DCM within 12 hours of collection, the time interval from sample collection to observation of toxicity caused a latency of approximately two weeks from sample collection to delivery to the analytical laboratory.

Table 4-6. Results of chemical analysis of whole water samples during January – June 2009.

| Site ID       | Collection    | H. azteca Performance           | Scan Type       | Results                   |
|---------------|---------------|---------------------------------|-----------------|---------------------------|
|               | Date          | Trigger                         | 71              |                           |
| Rough & Ready | 1/6/2009      | Weight reduced with PBO         | pyrethroid      | $ND^2$                    |
| 602           | 1/7/2009      | Weight increased with PBO       | organophosphate | 8 ng/L disulfoton*        |
| 508           | 1/21/2009     | Weight increased with PBO       | organophosphate | ND                        |
| 711           | 1/22/2009     | Weight reduced with PBO         | pyrethroid      | ND                        |
| 915           | 1/22/2009     | Weight increased with PBO       | organophosphate | ND                        |
| 902           | 1/22/2009     | Weight reduced with PBO         | pyrethroid      | ND                        |
| Hood          | 1/23/2009     | Weight reduced with PBO         | pyrethroid      | ND                        |
| Cache-Ulatis  | 2/4/2009      | Weight reduced with PBO         | pyrethroid      | ND                        |
| 902           | 2/4/2009      | Weight reduced with PBO         | pyrethroid      | ND                        |
| Cache-Lindsay | 2/4/2009      | Weight reduced with PBO         | pyrethroid      | ND                        |
| Light 55      | 2/4/2009      | Weight reduced with PBO         | pyrethroid      | ND                        |
| Suisun        | 2/17/2009     | Weight increased with PBO       | organophosphate | pending                   |
| 340           | 2/18/2009     | Weight increased with PBO       | organophosphate | pending                   |
| 815           | 2/19/2009     | Weight increased with PBO       | organophosphate | pending                   |
| Cache-Ulatis  | 2/19/2009     | Weight reduced with PBO         | pyrethroid      | pending                   |
| 508           | 3/4/2009      | Weight reduced with PBO         | pyrethroid      | ND                        |
| Cache-Ulatis  | 3/5/2009      | Weight reduced with PBO         | pyrethroid      | ND                        |
| Rough & Ready | 3/17/2009     | Weight reduced with PBO         | pyrethroid      | 0.003 μg/L cyfluthrin     |
| 815           | 3/18/2009     | Weight increased with PBO       | organophosphate | 0.002 μg/L diazinon*,     |
|               | 0, 0, 0, 0, 0 |                                 | *-8*****F-****  | 0.003 μg/L                |
|               |               |                                 |                 | chlorpyrifos*, 0.008      |
|               |               |                                 |                 | μg/L disulfoton*          |
| Hood          | 3/18/2009     | Weight reduced with PBO         | pyrethroid      | 0.003 µg/L permethrin     |
| 915           | 3/18/2009     | Weight reduced with PBO         | pyrethroid      | ND                        |
| Light 55      | 3/19/2009     | Weight increased with PBO       | organophosphate | 0.010 μg/L chlorpyrifos   |
| 508           | 4/1/2009      | Weight increased with PBO       | organophosphate | 0.002 µg/L chlorpyrifos*  |
| 902           | 4/2/2009      | Weight increased with PBO       | organophosphate | 0.002 μg/L                |
|               |               |                                 | *-8*****F-****  | chlorpyrifos*, 0.008      |
|               |               |                                 |                 | μg/L disulfoton*          |
| Cache-Ulatis  | 4/2/2009      | Weight increased with PBO       | organophosphate | 0.078 μg/L chlorpyrifos,  |
|               |               |                                 | *-8*****F-****  | 0.017 µg/L disulfoton*    |
| Suisun        | 4/15/2009     | Weight increased with PBO       | organophosphate | ND                        |
| Suisun        | 4/28/2009     | Weight increased with PBO       | organophosphate | ND                        |
| Hood          | 4/28/2009     | Weight increased with PBO       | organophosphate | ND                        |
| 602           | 4/29/2009     | Weight increased with PBO       | organophosphate | ND                        |
| 340           | 5/13/2009     | Survival reduced with PBO       | pyrethroid      | ND                        |
| Napa          | 6/9/2009      | Weight reduced with PBO         | pyrethroid      | 0.009 μg/L                |
| 1             |               | 2                               | 1.7             | esfenvalerate/fenvalerate |
| 340           | 6/10/2009     | Survival increased with PBO     | organophosphate | ND                        |
|               |               | (NS)                            |                 |                           |
| Light 55      | 6/11/2009     | Weight reduced with PBO         | pyrethroid      | 0.002 μg/L cypermethrin   |
| 902           | 6/11/2009     | Weight reduced with PBO         | pyrethroid      | 0.002 µg/L cypermethrin   |
| Hood          | 6/23/2009     | Survival reduced with PBO       | pyrethroid      | pending                   |
| Rough & Ready | 6/23/2009     | Weight increased with PBO       | organophosphate | pending                   |
| •             |               | (NS)                            | 1               | - <b>-</b>                |
| 711           | 6/25/2009     | Survival. reduced v Control     | comprehensive1  | pending                   |
| Cache-Lindsay | 6/25/2009     | Weight reduced with PBO         | pyrethroid      | pending                   |
| 915           | 6/25/2009     | Weight increased with PBO       | organophosphate | pending                   |
|               |               | includes PAH's carbamates pyret |                 |                           |

<sup>&</sup>lt;sup>1</sup> comprehensive chemical analysis includes PAH's, carbamates, pyrethroids, organophosphates, fipronyl and metabolites, and total and dissolved metals.

<sup>2</sup> no detection

<sup>\*</sup> detection below reporting limit

Table 4-7. Samples submitted to the DFG-MLML for routine dissolved metals analysis.

| Site                       |         | Sampling Date |         |         |         |  |  |  |  |  |
|----------------------------|---------|---------------|---------|---------|---------|--|--|--|--|--|
| 711                        | 2/19/09 | 3/18/09       | 4/15/09 | 5/28/09 | 6/25/09 |  |  |  |  |  |
| 902                        | 2/19/09 | 3/18/09       | 4/23/09 | 5/28/09 | 6/25/09 |  |  |  |  |  |
| Cache-Lindsay              | 2/19/09 | 3/18/09       | 4/15/09 | 5/28/09 | 6/25/09 |  |  |  |  |  |
| Rough & Ready Island       | 2/17/09 | 3/17/09       | 4/14/09 | 5/27/09 | 6/23/09 |  |  |  |  |  |
| Suisun Slough & Rush Ranch | 2/19/09 | 3/18/09       | 4/15/09 | 5/26/09 | 6/23/09 |  |  |  |  |  |

Table 4-8. Comparison of analytical detection limits and *H. azteca* sensitivities to organophosphate and pyrethroid pesticides. Toxicity values are averages calculated from dilution series using synthetic control water and delta water. LC50 / EC25 values were used preferentially, with LOEC substituted when necessary.

|              | Analytical Ch                              | emistry                | H. azteca Toxicity                    |                                     |  |  |  |
|--------------|--------------------------------------------|------------------------|---------------------------------------|-------------------------------------|--|--|--|
| Pesticide    | Estimated Method<br>Detection Limit (pptr) | Reporting Limit (pptr) | 10-day Survival<br>LC50 / LOEC (pptr) | 10-day Weight<br>EC25 / LOEC (pptr) |  |  |  |
| Chlorpyrifos | 2.0                                        | 5.0                    | 84.9                                  | > 66                                |  |  |  |
| Diazinon     | 2.0                                        | 5.0                    | 2900                                  | 2000                                |  |  |  |
| Bifenthrin   | 0.2                                        | 0.4                    | 3.3                                   | 0.9                                 |  |  |  |
| Cyfluthrin   | 0.4                                        | 0.8                    | 2.7                                   | 1.5                                 |  |  |  |
| Permethrin   | 0.6                                        | 1.0                    | 59.0                                  | > 80                                |  |  |  |

## 5. Monitoring with Delta Smelt (*Hypomesus transpacificus*)

Test protocols followed those developed at UCD-ATL and described in detail by Werner et al. (2008) for toxicity testing with delta smelt larvae at different stages of development. A flow-through system was used for testing ambient waters and the methods used are summarized below.

#### 5.1 Methods

# 5.1.1 Toxicity Testing

Test organisms and control water: Tests were performed using larval delta smelt ranging in age from 30-55 days old. Delta smelt were obtained from the UC Davis Fish Conservation and Culture Laboratory (UCD-FCCL) in Byron, CA. Hatchery water collected from the UCD-FCCL was used for all control treatments. Fish were transported to UCD-ATL following methods described by Werner et al. (2008).

Sampling sites: For flow-through tests, Delta water samples (35 gal/site) were collected from the DWR water quality monitoring stations at Hood (Sacramento River) and Rough & Ready Island (San Joaquin River), as well as from sites Light 55, Suisun Slough at Rush Ranch, Napa River at the Vallejo Seawall, and Cache Slough near the confluence with Lindsey Slough. Water collections for delta smelt toxicity testing occurred six times from 3/17/09 – 5/28/09.

Testing procedures: Upon arrival at UCD-ATL, the transport containers with fish were placed into a temperature-regulated water bath maintained at 16° C. 1-L beakers were used to collect the fish from the buckets, and fish were gently poured into a bread pan containing hatchery water at a depth of approximately 2 cm. The fish were carefully removed from the pan using 100 mL beakers and released into the replicate exposure tanks at random, submerging the beaker and allowing the fish to swim freely into the tanks. Twelve fish were placed into each of the tanks containing 7 L of water for a 48-h EC acclimation period. Hatchery water and ECadjusted hatchery water was used as acclimation and control water. EC was adjusted with distilled water (Low EC Control) to match the lowest EC of ambient water samples. When the turbidity of the hatchery water was below 11 NTUs, Nanno 3600<sup>TM</sup>, a concentrated Nannochloropsis algae solution (68 billion cells/ml; Reed Mariculture, Inc. Campbell, CA) was added to increase turbidity in control treatments. Turbidity in the Low Turbidity Control was matched to the lowest turbidity ambient sample on a daily basis. Antibiotics (Maracyn and Maracyn-2, Virbac AH Inc., Fort Worth TX) were added at the manufacturer's recommended dose throughout the acclimating and testing period. Final concentrations were 5.3 mg/L Maracyn (erythromycin) and 0.26 mg/L Maracyn-2 (minocycline). During acclimation and testing, fish were fed three times per day with 200 µL of Artemia and 300 µL of rotifers. At test initiation, the EC-adjusted control water was drawn down from 7 L to approximately 2 L to allow for an accurate count of living fish. Water quality parameters (EC, pH, temperature, DO, turbidity and ammonia) were measured daily. Dead fish were counted and removed daily. At test termination, surviving fish were counted, euthanized with MS-222, and preserved with liquid nitrogen for later molecular analysis.

## 5.1.2 Statistical Analysis

Data from exposures of delta smelt were analyzed using both USEPA standard single-concentration statistical protocols and by one-way ANOVA with Tukey's multiple comparison procedure (USEPA 2002). The USEPA method of data analysis showed the results of the tests according to the standardized statistical method used in aquatic toxicology monitoring and regulation throughout the United States. Each comparison of a sample to a control was treated as a separate statistical test, in accordance with USEPA 2002, Appendix H. The Tukey's procedure complemented the USEPA protocol by allowing comparisons other than each treatment paired with one control. Compared to the USEPA procedures, the Tukey's test provided a more conservative evaluation of significant differences between samples since it maintains the experiment-wide alpha at 0.05.

#### 5.2 Results

## 5.2.1 Toxicity Tests

At 96 hours, *H. transpacificus* survival was found to be significantly reduced relative to conductivity-specific and turbidity-specific controls in Cache-Lindsey collected on 4/15/09 and in Rough & Ready Island collected on 5/12/09. At 7 days, survival was reduced in Hood collected on 4/28/09 and Cache-Lindsey collected on 4/30/09 and in Rough & Ready collected on 5/12/09. Other instances of significantly reduced survival relative to conductivity-specific controls are difficult to interpret because of low turbidity in the sample waters, which can affect delta smelt survival. Survival was consistently high in samples collected at the high conductivity, high turbidity site at Suisun Slough at Rush Ranch, as was observed in tests performed in 2008. At site 340, where conductivity was higher and turbidity was lower than in Suisun Slough, survival was generally lower, indicating that turbidity is an important factor influencing delta smelt survival.

Table 5-1. Survival in *H. transpacificus* tests examining the toxicity of water samples collected from sites in the Sacramento-San Joaquin delta. Results indicated in shaded boxes are significantly different from the most appropriate conductivity- and turbidity-specific control. Samples collected at Hood, Light 55, and Cache Sl. at Lindsey Sl. were compared to the Low EC Control. Those collected at the Rough and Ready DWR station were compared to the Mid EC Control. Those collected at Suisun Sl. at Rush Ranch were compared to the High EC Control. Those collected at the Napa River at Vallejo Seawall were compared to the High EC Control, and later to the Very High EC Control.

|                     | Sam                                          | pling Event           | 3/17/09 -<br>3/19/09 | 3/31/09<br>- 4/2/09 | 4/14/09 -<br>4/16/09                  | 4/28/09 -<br>4/30/09                  | 5/12/09 -<br>5/14/09 | 5/26/09 -<br>5/28/09 |
|---------------------|----------------------------------------------|-----------------------|----------------------|---------------------|---------------------------------------|---------------------------------------|----------------------|----------------------|
|                     | Age of                                       | Delta Smelt           | 30 days              | 44 days             | 54 days                               | 41 days                               | 41 days              | 55 days              |
| Endpoint            | Treatment                                    | Mean<br>EC<br>(uS/cm) |                      |                     | Survi                                 | val                                   |                      |                      |
| 96-hour<br>Survival | Low EC Control                               | 160                   | -                    | 85.0                | 84.7 <sup>N</sup> / 65.0 <sup>A</sup> | 79.2 <sup>N</sup> / 88.2 <sup>A</sup> | 76.4                 | 79.2                 |
|                     | Low EC Low Turbidity<br>Control              | 186                   | -                    | 66.8                | 46.7                                  | 92.5                                  | 68.8                 | 87.5                 |
|                     | Low EC Low Turbidity<br>Control with Tannins | 174                   | -                    | 31.8                | -                                     | -                                     | -                    | -                    |
|                     | Hood                                         | 157                   | -                    | 51.0*               | 67.0*                                 | 79.5                                  | 62.9                 | 89.7                 |
|                     | Light 55                                     | 262                   | -                    | 69.3                | 71.4                                  | 85.0                                  | 84.7                 | 91.9                 |
|                     | Cache Lindsey                                | 234                   | -                    | 53.6*               | 55.3                                  | 82.5                                  | 94.7                 | 91.3                 |
|                     | Mid EC Control                               | 644                   | -                    | 81.4                | 75.6                                  | 88.0                                  | 80.3                 | 70.8                 |
|                     | Rough and Ready Island                       | 593                   | -                    | 43.0*               | 59.8                                  | 90.7                                  | 56.7                 | 86.1                 |
|                     | High EC Control                              | 3751                  | -                    | 86.1                | 82.5                                  | 100.0                                 | 86.4                 | 92.5                 |
|                     | Low Turbidity Control                        | 3750                  | -                    | 81.6                | 83.3                                  | 88.6                                  | 85.4                 | 92.5                 |
|                     | Suisun                                       | 3672                  | -                    | 97.7                | 94.7                                  | 97.5                                  | 80.4                 | 89.2                 |
|                     | Very High EC Control                         | 15776                 | -                    | -                   | -                                     | -                                     | 72.1                 | 70.8                 |
|                     | 340                                          | 15078                 | -                    | 88.6                | 62.2**                                | 97.7                                  | 68.9                 | 67.5                 |
|                     |                                              |                       |                      |                     |                                       |                                       |                      |                      |
| 7-day<br>Survival   | Low EC Control                               | 160                   | 8.3                  | 70.0                | 58.9 <sup>N</sup> / 65.0 <sup>A</sup> | 69.4 <sup>N</sup> / 85.9 <sup>A</sup> | 71.4                 | 76.4                 |
|                     | Low EC Low Turbidity Control                 | 186                   | 2.8                  | 43.0                | 27.4                                  | 85.2                                  | 59.7                 | 75.0                 |
|                     | Low EC Low Turbidity<br>Control with Tannins | 174                   | -                    | 2.5                 | -                                     | -                                     | -                    | -                    |
|                     | Hood                                         | 157                   | 8.7                  | 19.5*               | 30.1*                                 | 55.3                                  | 52.3                 | 71.1                 |
|                     | Light 55                                     | 262                   | 23.6                 | 40.7*               | 55.8                                  | 80.2                                  | 85.5                 | 86.9                 |
|                     | Cache Lindsey                                | 234                   | 2.8                  | 25.0*               | 46.9                                  | 67.5                                  | 80.1                 | 81.3                 |
|                     | Mid EC Control                               | 644                   | 15.3                 | 69.5                | 67.5                                  | 76.4                                  | 71.9                 | 62.8                 |
|                     | Rough and Ready Island                       | 593                   | 2.8                  | 9.3*                | 42.2*                                 | 88.2                                  | 28.1                 | 72.8                 |
|                     | High EC Control                              | 3751                  | 18.6                 | 64.5                | 70.0                                  | 100.0                                 | 80.8                 | 82.5                 |
|                     | Low Turbidity Control                        | 3750                  | 18.1                 | 61.6                | 61.9                                  | 86.1                                  | 55.2                 | 71.4                 |
|                     | Suisun                                       | 3672                  | 95.0                 | 95.5                | 92.2                                  | 93.1                                  | 85.7                 | 86.4                 |
|                     | Very High EC Control                         | 15776                 | -                    | -                   | -                                     | -                                     | 62.5                 | 68.1                 |
|                     | 340                                          | 15078                 | 88.8                 | 74.8                | 62.2                                  | 88.2                                  | 63.9                 | 62.5                 |

<sup>\*:</sup> These samples showed significantly lower survival compared to an EC-specific control, but not compared to an EC- and turbidity-specific control.

<sup>\*\*:</sup> Significantly reduced survival was likely caused by extremely high conductivity.

A: Antibiotics added. Antibiotics were added to all treatments in tests initiated 4/30/09 and later.

N: No antibiotics added.

# 6. In Situ Monitoring on the Sacramento & San Joaquin Rivers

During the months of March - May, *in situ* monitoring was conducted at the DWR water quality monitoring stations located in Hood, CA (Sacramento River) and Rough & Ready Island in Stockton, CA (San Joaquin River). Six exposures using *H. transpacificus*, *P. promelas*, and *H. azteca* were conducted concurrently with ambient delta smelt toxicity testing in the laboratory. During this pilot project, no toxicity was detected in the Sacramento River at Hood or the San Joaquin River at Rough and Ready Island. *H. transpacificus* survival was generally higher in ambient water than in the control, potentially due to slightly higher water temperatures in the control system, *H. azteca* survival was consistently high in ambient water as well as controls throughout the *in situ* season. *P. promelas* survival was variable in both the control and ambient water. Poor *P. promelas* survival in controls was attributed to the addition of algal paste to optimize turbidity conditions for delta smelt larvae. Additional information including system design and exposure methods are provided below.

# 6.1 System Design

In situ devices were installed inside DWR water quality monitoring stations located directly above the Sacramento River in the town of Hood, CA and next to the San Joaquin River on Rough & Ready Island in Stockton, CA. Positioning the devices inside these small buildings had several advantages over placing the replicate cages inside the river itself, including improved temperature control, flow control, and ease of daily access. The device located at Rough & Ready Island was slightly different in layout than the device at Hood due to space restrictions, but overall function was the same. Ambient water was supplied from DWR's sampling station pump and delivered to the exposure chamber at 3.8 liters per minute (LPM). The apparatus consisted of three main parts: the ambient exposure chamber, the control exposure chamber, and the control sump. Plumbing that connected these three parts consisted primarily of common polyvinyl chloride (PVC) plumbing supplies. The function of each main part is described below.

The ambient exposure chamber consisted of a customized, white acrylic tank surrounded by an outer bath filled with flowing ambient water to maintain temperature. During the acclimation period for delta smelt, the chamber was filled with control water supplied from the control sump below, and at test initiation, control water was switched over to ambient water and the outer bath was drained. Held within the chamber were four replicate cages for each of the three test species (Figure 6-1). The largest cages, used for larval delta smelt, *H. transpacificus*, were made from one gallon high density polyethylene (HDPE) buckets. These buckets and lids were black to provide optimal lighting conditions (less than 1 ft-candle through a hole in the lid) for *H. transpacificus*. Cages used for *P. promelas* and *H. azteca* were constructed from two manufactured parts; a low density polyethelene pipe cap (Niagra, Erie, PA) and nylon tea strainer (The Republic of Tea, Navato, CA). The exposure chamber lid that covered these cages was constructed from clear acrylic in order to allow ambient light into the chamber (16:8 light:dark cycle).

The control exposure chamber, exposure cages and lids were identical to those in the ambient system. Control water was supplied from the control sump immediately below and the control exposure chamber was also surrounded by an outer ambient water bath in order to

maintain the temperature within 1 °C of the ambient water at all times. Flow was set at 3.8 LPM.

The control sump consisted of an 11 gallon HDPE bath containing a 210 gallons per hour (GPH) pond pump, which supplied recirculating control water to the control exposure chamber at all times, and to the ambient exposure chamber during acclimation only. The control water consisted of hatchery water diluted with deionized water or salted up with Instant Ocean to the same specific conductance as its corresponding ambient water. Approximately half the control water was replaced daily to reduce an accumulation of total ammonia in the control system and the control sump was aerated to ensure that dissolved oxygen levels remained at or near saturation.

#### 6.1.1 Methods

H. transpacificus obtained from the UCD FCCL were transported directly from the hatchery to each site. Upon arrival, the fish were loaded into replicate buckets containing SC adjusted hatchery water that matched their rearing conditions. The acclimation water also contained Nanno 3600 Instant Algae (ReedMariculture, Inc., Cambell, CA) to raise the turbidity to a minimum of 6 NTU. Over the course of the next 48 hours, the conductivity of the hatchery water was lowered slowly by adding deionized water or dilute hatchery water, until the conductivity matched that of the ambient water. At test initiation, organisms had been acclimated to an appropriate conductivity and temperature. Adult *H. azteca* were obtained from in house cultures and were acclimated in the lab for a minimum of 48 hours prior to the event. P. promelas were obtained from Aquatox, Inc. (Hot Springs, AR) and were acclimated a minimum of 24 hours prior to the event then deployed in the in situ exposure at 7 days old. A piece of dryed and leached leaf, measuring one cm squared, was placed into each H. azteca replicate cage prior to test initiation. All in situ species were fed once daily during the exposure period. P. promelas and H. azteca survival was recorded prior to test initiation and each day during the exposure. H. transpacificus survival was recorded at test initiation, on day 4, and at test termination due to the limited visibility in replicate buckets and the need to minimize disturbance.

Turbidity, temperature, total ammonia, pH, DO, SC, EC, hardness and alkalinity were measured in both the ambient and control exposure chambers daily. Once water was inside the exposure tanks, sediment did settle out to some degree causing an increase in sedimentation over the course of the experiment. Turbidity was also measured at the ambient water source to determine the turbidity going into the system. To the extent possible, SC, turbidity, and temperature were manipulated in the control to parallel the ambient exposure system. The SC and turbidity of the control water was adjusted daily immediately following a partial water exchange. Although we intended to adjust the turbidity of the control water to match the ambient water, we were unable to match the turbidity since the addition of too much alga confounds exposure results by increasing ammonia and producing more pathogens. Turbidity readings were consistently lower in the control water than the ambient water.

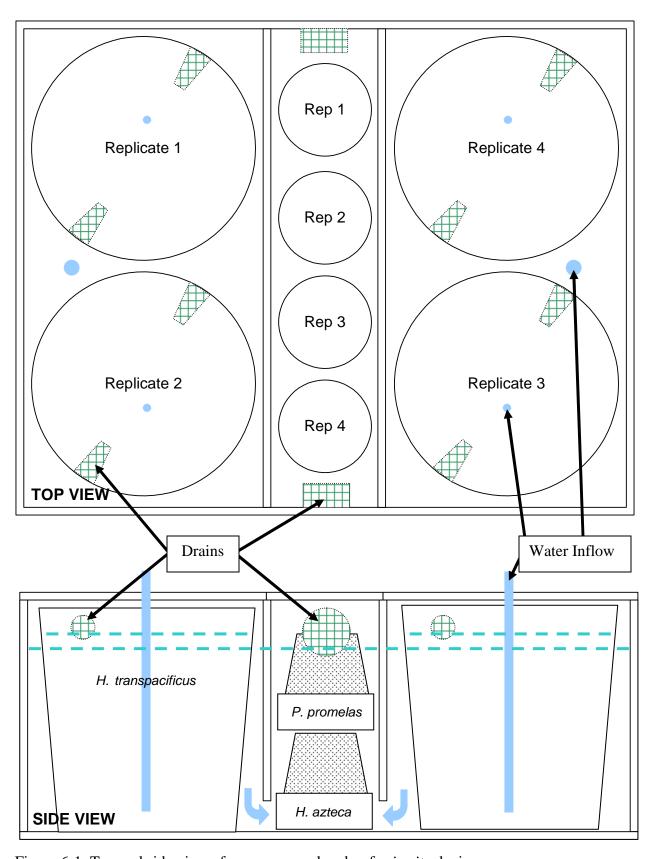



Figure 6-1. Top and side view of an exposure chamber for *in situ* devices.

# 6.1.2 Statistical Analysis

At each site during each sampling event, the performance of each species was compared between control and ambient treatments using USEPA standard single-concentration statistical protocols.

#### 6.2 Results

Tables 6-1 and 6-2 show the survival of *H. transpacificus*, *P. promelas* and *H. azteca* at the Rough and Ready DWR Station at Stockton and the Hood DWR Station on the Sacramento River. No significant reductions in survival were detected at either site during any sampling event. *H. transpacificus* survival was generally higher in ambient waters than in the controls, *H. azteca* survival was consistently high throughout the *in situ* season, and *P. promelas* survival was variable in both the control and ambient waters.

Table 6-1. 96-hour and 7-day survival of animals examined in flow-through tests initiated at the Rough and Ready DWR Station, Stockton, CA.

|           |           | H. transpacificus     |      |                       | P. promelas |                       |      |                       | H. azteca |                          |     |                       |      |
|-----------|-----------|-----------------------|------|-----------------------|-------------|-----------------------|------|-----------------------|-----------|--------------------------|-----|-----------------------|------|
| Date      | Treatment | 96-hr<br>Survival (%) |      | 7-day<br>Survival (%) |             | 96-hr<br>Survival (%) |      | 7-day<br>Survival (%) |           | 96-hr<br>Survival<br>(%) |     | 7-day<br>Survival (%) |      |
|           |           | mean                  | se   | mean                  | se          | mean                  | se   | mean                  | se        | mean                     | se  | mean                  | se   |
| 3/19/2009 | Control   | -                     | -    | 22                    | 10.4        | 94                    | 6.3  | 71                    | 16.1      | 95                       | 5.0 | 95                    | 5.0  |
|           | Ambient   | -                     | -    | 35                    | 9.3         | 80                    | 0.0  | 65                    | 9.6       | 100                      | 0.0 | 100                   | 0.0  |
| 4/2/2009  | Control   | 61                    | 8.9  | 41                    | 7.9         | 60                    | 8.2  | 45                    | 5.0       | 95                       | 5.0 | 95                    | 5.0  |
|           | Ambient   | 75                    | 6.8  | 61                    | 9.4         | 90                    | 10.0 | 90                    | 10.0      | 100                      | 0.0 | 100                   | 0.0  |
| 4/16/2009 | Control   | 63                    | 9.7  | 59                    | 12.4        | 65                    | 12.6 | 65                    | 12.6      | 100                      | 0.0 | 100                   | 0.0  |
|           | Ambient   | 71                    | 9.8  | 66                    | 12.5        | 45                    | 12.6 | 40                    | 8.2       | 100                      | 0.0 | 100                   | 0.0  |
| 4/30/2009 | Control   | 79                    | 12.5 | 68                    | 15.8        | 75                    | 9.6  | 70                    | 12.9      | 95                       | 5.0 | 90                    | 10.0 |
|           | Ambient   | 61                    | 16.5 | 47                    | 14.1        | 70                    | 12.9 | 70                    | 12.9      | 100                      | 0.0 | 85                    | 9.6  |
| 5/14/2009 | Control   | 15                    | 9.6  | 0                     | 0.0         | 95                    | 5.0  | 95                    | 5.0       | 100                      | 0.0 | 95                    | 5.0  |
|           | Ambient   | 15                    | 8.6  | 15                    | 8.6         | 100                   | 0.0  | 100                   | 0.0       | 100                      | 0.0 | 100                   | 0.0  |
| 5/28/2009 | Control   | -                     | -    | -                     | -           | 100                   | 0.0  | 100                   | 0.0       | 100                      | 0.0 | 100                   | 0.0  |
|           | Ambient   | -                     | -    | -                     | -           | 100                   | 0.0  | 100                   | 0.0       | 100                      | 0.0 | 95                    | 5.0  |

| Table 6-2. 96-hour and 7-day survival of animals examined in flow-through tests initiated at the DWR Station on |
|-----------------------------------------------------------------------------------------------------------------|
| the Sacramento River at Hood.                                                                                   |

|           | H. transpacificus |                       |      |                       |      | P. pre                   | omelas |                       | H. azteca |                          |     |                          |     |
|-----------|-------------------|-----------------------|------|-----------------------|------|--------------------------|--------|-----------------------|-----------|--------------------------|-----|--------------------------|-----|
| Date      | Treatment         | 96-hr<br>Survival (%) |      | 7-day<br>Survival (%) |      | 96-hr<br>Survival<br>(%) |        | 7-day<br>Survival (%) |           | 96-hr<br>Survival<br>(%) |     | 7-day<br>Survival<br>(%) |     |
|           |                   | mean                  | se   | mean                  | se   | mean                     | se     | mean                  | se        | mean                     | se  | mean                     | se  |
| 3/19/2009 | Control           | -                     | -    | 21                    | 5.5  | 100                      | 0.0    | 85                    | 15.0      | 100                      | 0.0 | 95                       | 5.0 |
|           | Ambient           | -                     | -    | 46                    | 8.4  | 85                       | 9.6    | 75                    | 15.0      | 95                       | 5.0 | 95                       | 5.0 |
| 4/2/2009  | Control           | 75                    | 4.8  | 62                    | 8.8  | 85                       | 9.6    | 30                    | 5.8       | 95                       | 5.0 | 80                       | 8.2 |
|           | Ambient           | 84                    | 10.3 | 77                    | 7.0  | 90                       | 5.8    | 85                    | 5.0       | 85                       | 9.6 | 80                       | 8.2 |
| 4/16/2009 | Control           | 59                    | 5.0  | 29                    | 5.1  | 95                       | 5.0    | 95                    | 5.0       | 95                       | 5.0 | 90                       | 5.8 |
|           | Ambient           | 74                    | 10.5 | 64                    | 13.8 | 90                       | 5.8    | 85                    | 9.6       | 95                       | 5.0 | 85                       | 9.6 |
| 4/30/2009 | Control           | 47                    | 10.9 | 43                    | 13.3 | 95                       | 5.0    | 95                    | 5.0       | 100                      | 0.0 | 100                      | 0.0 |
|           | Ambient           | 43                    | 6.5  | 40                    | 6.9  | 100                      | 0.0    | 95                    | 5.0       | 100                      | 0.0 | 100                      | 0.0 |
| 5/14/2009 | Control           | 56                    | 18.8 | 44                    | 15.7 | 95                       | 5.0    | 95                    | 5.0       | 100                      | 0.0 | 100                      | 0.0 |
|           | Ambient           | 69                    | 12.0 | 50                    | 10.2 | 100                      | 0.0    | 100                   | 0.0       | 100                      | 0.0 | 100                      | 0.0 |
| 5/28/2009 | Control           | 13                    | 8.0  | 4                     | 4.2  | 85                       | 5.0    | 85                    | 5.0       | 95                       | 5.0 | 95                       | 5.0 |
|           | Ambient           | 34                    | 7.9  | 27                    | 8.4  | 95                       | 5.0    | 85                    | 15.0      | 100                      | 0.0 | 90                       | 5.8 |

#### 6.2.1 Discussion

One of the greatest advantages to the *in situ* exposure is that the organisms experience the fluctuations of toxicant concentrations for the same length of time that stationary organisms in the river would experience them. In contrast, organisms that are exposed in a laboratory setting to a one-time grab sample experience the same water sample for a defined test period. A one-time grab sample can be collected when the concentrations of a chemical are at its peak, fall well below the peak concentration or miss a chemical pulse entirely. Laboratory static renewal tests utilizing one-time sub surface grab samples can therefore overestimate or underestimate toxicity depending on when a sample is collected relative to a toxic pulse moving through the system. The in situ devices renew water continuously with approximately 95% of the water renewed every half hour. The constant flow to the system is representative of the river conditions throughout the exposure period.

No toxicity was detected in the Sacramento River at Hood or the San Joaquin River at Rough and Ready Island suggesting that any toxicant(s) that may have traveled through the system were not at high enough concentrations for enough time to cause reduced survival to the test species. *H. transpacificus* survival was generally higher in ambient water than in the control, which decreased our ability to detect a toxic event with the species. A number of variables, including natural food supply, temperature, and turbidity may have contributed to higher delta smelt survival in ambient water compared to the controls. *H. azteca* survival was consistently high in ambient water and control water while *P. promelas* survival was variable in both, possibly due to the promotion of bacterial growth following the addition of *Nannochloropsis*.

Despite our efforts to slowly acclimate the *H. transpacificus* to the conductivity and temperature conditions of river water at *in situ* sites, survival of delta smelt remained low. Our recommendations are to use a test species that is more tolerant of transport, salinity and temperature stresses. *P. promelas* and *O. mykiss* appear to be far more tolerant of such stressors. *O. mykiss* might be a suitable species to use during the cold months and a warmwater species might be more suitable during the warmer months.

# 7. E. affinis 7-d Toxicity Testing

#### 7.1 Methods

# 7.1.1 Toxicity Testing

A 7-d bioassay using juvenile E. affinis (starter culture obtained from S. Teh, UC Davis) was developed and a test initiated on 5/1/09 with four samples collected from sites 711, Cache-Ulatis, Hood, and Light 55, all of which are sites with low conductivity water. A series of low conductivity controls at 100, 250, 500, 1000, and 1900 µS/cm were included to evaluate the effects of conductivity on copepod survival. The organisms were cultured at 1900 µS/cm (1 ppt). Test methods were modeled after the USEPA Ceriodaphnia dubia Survival and Reproduction Test (USEPA, 2002), chosen for its high likelihood of copepod survival (methods test conducted in April, 2009), minimal water requirements, and ease of recording survival. Each experimental treatment consisted of ten replicate vials, each containing 15 ml of water and one organism. Tests were conducted at 16°C. Eighty percent of test water was renewed daily, and copepods were fed 15 µl of diluted Shellfish Diet (Reed Mariculture, Campbell, CA) which consists of four microalgae, daily. Diet was prepared by adding 30 ml of concentrated Shellfish Diet (approximately 2 billion cells per ml) to 300 ml of culture water. Moderately hard synthetic water was used for culturing and control treatments. Survival was recorded daily. Initial and final water quality measurements including SC, EC, temperature, pH, and DO were taken on Day 0 and Day 1. Ammonia and turbidity were measured for all ambient water samples.

# 7.1.2 Statistical Analysis

Data from this exposure was analyzed using USEPA standard single-concentration statistical protocols (USEPA 2002). The USEPA method of data analysis showed the results of the tests according to the standardized statistical method used in aquatic toxicology monitoring and regulation throughout the United States. Each comparison of a sample to a control was treated as a separate statistical test, in accordance with USEPA 2002, Appendix H.

## 7.2 Results

In the control series, survival was best in the highest conductivity treatment of 1900  $\mu S/cm$  (90% survival after 7 d) and decreased with decreasing conductivity. Survival was generally low in ambient samples with the exception of Cache-Ulatis (100% survival after 7 d). This sample had the highest turbidity (45.9 NTU) and specific conductance (329  $\mu S/cm$ ) of all four sites which may have contributed to better animal performance, despite the low survival encountered in the corresponding conductivity control (Table 7-1). Survival in all ambient samples was higher than survival in the corresponding control water, however it is apparent that conductivity was the most important factor determining copepod survival in all samples tested.

Table 7-1. Results of a *E. affinis* 7-d test initiated 5/1/09 evaluating the toxicity of samples collected on 4/28/09 and 4/30/09.

| Treatment                                     | Measured                      | Survival (%) <sup>1</sup> |      |  |
|-----------------------------------------------|-------------------------------|---------------------------|------|--|
| Treatment                                     | Specific Conductivity (uS/cm) | Mean                      | SE   |  |
| L16 Media @ 1 ppt                             | 1930                          | 90                        | 10.0 |  |
| L16 Media @ 1000 μS/cm                        | 1003                          | 50                        | 16.7 |  |
| L16 Media @ 500 μS/cm                         | 517                           | 30                        | 15.3 |  |
| L16 Media @ 250 μS/cm                         | 282                           | 20                        | 13.3 |  |
| L16 Media @ 100 μS/cm                         | 129                           | 0                         | 0.0  |  |
| Sacramento R. Deep Water Channel, Light 55    | 271                           | 50                        | 22.4 |  |
| Sacramento River at tip of Grand Island (711) | 136                           | 20                        | 13.3 |  |
| Upper Cache Slough at mouth of Ulatis Creek   | 329                           | 100                       | 0.0  |  |
| Sacramento River at Hood DWR Station          | 142                           | 20                        | 13.3 |  |

<sup>1.</sup> Highlighted cells indicate statistically significant reductions in survival compared to the L16 media @ 1 ppt. Ambient samples showed no significant decreases in survival compared to the most appropriate conductivity control waters. Data were analyzed using USEPA standard statistical protocols.

# 8. Species Sensitivity Studies

Effect concentrations for pesticides, copper, and ammonia were determined for *H. transpacificus*, *P. promelas*, *H. azteca*, and *E. affinis*. Although *C. dubia* sensitivity testing is currently in progress, LC50 values obtained from published literature are presented for comparison. Results obtained from sensitivity testing in 2008 are also included.

Samples from each pesticide concentration as well as a control were submitted to CDFG-WPCL to verify nominal chemical concentrations. In tests evaluating toxicity in both control and hatchery waters, only samples of hatchery water were submitted for chemical analysis. Total ammonia measurements for the ammonia chloride tests were measured at the UCD ATL. Sensitivity testing methods for each species are described below.

#### 8.1 Methods

# 8.1.1 H. transpacificus Sensitivity Tests

Larval delta smelt ranging in age from 45 to 47 days post hatch (DPH) were obtained from the UCD FCCL in Byron, CA. The organisms were acclimated a minimum of 24 hours with hatchery water adjusted to a specific conductance (SC) of 900 µS/cm using Instant Ocean and a pH of 7.9 using HCl. *H. transpacificus* were fed *Artemia* nauplii three times daily during acclimation and exposures. After the acclimation period, ten organisms were randomly loaded into each of the four replicate buckets using a 50 ml beaker. Mortality was recorded daily using a small flashlight. On Day 2 of the exposures, 80% of test solutions were renewed during which dead fish, excess artemia, and other detritus were removed. At the end of each 96-h exposure, surviving organisms were euthanized with MS-222 and preserved with liquid nitrogen for subsequent molecular studies.

# 8.1.2 *P. promelas* Sensitivity Tests

Larval fathead minnows were obtained from Aquatox, Inc. (Hot Springs, AR). Organisms used in sensitivity tests were <48 hours old and were acclimated to laboratory conditions 24 hours prior to test initiation.7-d LC50 test methods followed those outlined in the Fathead Minnow Larval Survival and Growth Test (USEPA, 2002). These tests were performed in deionized water amended to US EPA moderately hard standards (DIEPAMH) as well as hatchery water filtered through a 1 micron filter. Water was adjusted to an SC of 900 µS/cm using Instant Ocean and a pH of 7.9 using HCl. Stock solutions were prepared by dissolving pesticides in methanol and ammonia and copper in glass distilled water. Chemicals were spiked into test solutions on Days 0, 2, 4, and 6. Where methanol was used as a solvent, solvent control treatments containing 0.05% methanol (equal to the highest concentration added to insecticide treatments) were added. These methanol treatments were aerated after recognition of dissolved oxygen problems associated with the addition of methanol, likely due to bacterial growth and associated respiration. Mortality was recorded daily, and at test termination, a portion of organisms were preserved using liquid nitrogen for subsequent molecular studies while the rest were dried to a constant weight for the biomass endpoint. If ten surviving fish were present in a replicate at test termination, five were preserved with liquid nitrogen and five were dried; if nine surviving fish were present in a replicate, 4 were preserved with liquid nitrogen and five were

dried; if eight surviving fish were present in a replicate, four were preserved with liquid nitrogen and four were dried. If there were seven or less surviving fish in a replicate, all were dried to calculate biomass and average weight per individual.

# 8.1.3 *H. azteca* Sensitivity Tests

*H. azteca* purchased from Aquatic Research Organisms were received at the UCD ATL 48 hours prior to test initiation and acclimated to laboratory conditions. The 10-day sensitivity tests were conducted in both DIEPAMHR and water collected from the UCD FCCL. Waters were adjusted to a SC of 900 μS/cm using Instant Ocean and a pH of 7.9 using HCl. Prior to initiating bioassays, the water samples were brought to the test temperature of 23° C and aerated at a rate of 100 bubbles/min until the dissolved oxygen concentration was approximately 8.5 mg/L.

Sensitivity tests consisted of four 250 ml replicate glass beakers, each containing 100 ml of sample, a one-square-inch piece of nitex screen and 10 organisms. Tests were initiated with 7-14 day-old *H. azteca*. Animals in each replicate were fed 1000 µl of YCT on test initiation and on days 2, 4, 6 and 8, following the renewal of 75% of the test waters. Each series of sensitivity tests included a standard laboratory control, hatchery water control and any applicable method blanks.

Tests were conducted at a temperature of  $23 \pm 2^{\circ}$  C with a 16h:8h, light:dark photoperiod. Mortality was recorded daily and waters were renewed on days 2, 4, 6 and 8. On day 10, the surviving *H. azteca* were dried and weighed to determine dry tissue weight per individual and relative growth. Effect data such as NOEC, LOEC, LC<sub>10</sub>, LC<sub>50</sub> and EC<sub>25</sub> were calculated on both the 96-h and 10-d endpoints.

# 8.1.4 *E. affinis* Sensitivity Tests

Please refer to Appendix A for E. affinis sensitivity testing methods.

# 8.1.5 Statistical Analysis

Lethal and sublethal effective concentrations were calculated using CETIS v. 1.1.2 (Tidepool Scientific Software, McKinleyville, CA, USA, 2006). NOEC and LOEC were calculated using USEPA standard statistical protocols (USEPA 2002). LC50s and EC50s were calculated using linear regression, non-linear regression, or linear interpolation methods. For each endpoint, toxicity is defined as a statistically significant difference (p < 0.05) to the laboratory control. Percentage minimum significant differences (PMSD) of Dunnett's multiple comparison procedure were calculated for all multiple concentration statistical tests.

# 8.2 Results

# 8.2.1 *H. transpacificus* Sensitivity Tests

Delta smelt sensitivities to ammonia/ium, the organophosphate insecticide chlorpyrifos, and the pyrethroid insecticides esfenvalerate and permethrin, were tested at the 96-hour survival endpoint during July, 2009 (Table 8-1). Effect concentrations obtained from tests conducted in 2008 are also presented (Table 8-2). Among pesticides tested in both 2008 and 2009, delta smelt were most sensitive to bifenthrin, followed in order of decreasing sensitivity by esfenvalerate, cyfluthrin, chlorpyrifos, and permethrin.

Table 8-1. Measured 96-h effect concentrations for ammonia/ium and nominal 96-h effect concentrations for pesticides in *H. transpacificus* tests conducted in July, 2009.

| Age (days   | Analyte                                                | NOEC    | LOEC - | 96-      | hour LC10       | 96-h     | our LC50      |
|-------------|--------------------------------------------------------|---------|--------|----------|-----------------|----------|---------------|
| post hatch) | Allaryte                                               | NOEC    |        | Estimate | 95% C.I.        | Estimate | 95% C.I.      |
| 47          | Total Ammonia<br>Nitrogen (mg/L)<br>Un-ionized Ammonia | 14.4    | 29.0   | 5.38     | < 1.9 - 9.38    | 11.81    | 8.09 - 18.47  |
|             | (mg/L)                                                 | 0.191   | 0.333  | 0.084    | < 0.002 - 0.127 | 0.164    | 0.119 - 0.239 |
| 47          | Chlorpyrifos (µg/L)                                    | 200     | > 200  | 12.89    | < 12.5 - 14.6   | 18.62    | < 12.5 - 23.3 |
| 45          | Esfenvalerate (µg/L)                                   | 0.188   | 0.375  | < 0.094  | < 0.094 - 0.319 | 0.239    | 0.051 - 0.282 |
| 45          | Permethrin (µg/L)                                      | 5.0     | > 5.0  | -        | -               | -        | -             |
| 45          | Chlorpyrifos (µg/L)                                    | < 18.75 | 18.75  | $NA^1$   | $NA^1$          | 10.7     | 1.5 - 31.1    |

<sup>&</sup>lt;sup>1</sup> The LOEC was the lowest concentration tested thus LC10 estimate is not considered reliable.

Table 8-2. Measured 96-h effect concentrations for ammonia/ium, copper, and pesticides in *H. transpacificus* tests conducted in April - May, 2008.

| Age (days   | Analyte                                          | NOEC  | LOEC  | 96-h     | our LC10      | 96-hour LC50 |               |  |
|-------------|--------------------------------------------------|-------|-------|----------|---------------|--------------|---------------|--|
| post hatch) | Anaryte                                          | NOEC  | LOEC  | Estimate | 95% C.I.      | Estimate     | 95% C.I.      |  |
| 51          | Total Ammonia Nitrogen (mg/L) Un-ionized Ammonia | 5     | 9     | 4.2      | NA            | 12.0         | NA            |  |
|             | (mg/L)                                           | 0.066 | 0.105 | 0.055    | NA            | 0.147        | NA            |  |
| 49          | Copper, Total (µg/L)                             | 40.4  | 78.2  | 50.4     | NA            | 88.1         | NA            |  |
| 49          | Copper, Dissolved (µg/L)                         | 41.4  | 76.2  | 50       | NA            | 87           | NA            |  |
| 49          | Bifenthrin (μg/L)                                | 0.120 | 0.260 | 0.095    | 0.061 - 0.117 | 0.143        | 0.116 - 0.169 |  |
| 49          | Cyfluthrin (µg/L)                                | 0.407 | 0.890 | 0.260    | 0.067 - 0.357 | 0.420        | 0.261 - 0.558 |  |

# 8.2.2 *P. promelas* Sensitivity Tests

Cyfluthrin and permethrin sensitivities of *P. promelas* were examined at 96-h survival, 7-d survival, and 7-d biomass endpoints (Tables 8-3 and 8-4) in July, 2009. Effect concentrations obtained from sensitivity tests conducted in 2008 are also presented (Tables 8-5 through 8-9). Analytical data for 2009 tests are pending, therefore nominal effect concentrations are presented here. These tests compared performance in hatchery water obtained from the UCD FCCL to performance in conductivity and pH-adjusted DIEPAMH control water. Performance when exposed to cyfluthrin did not differ between hatchery water and control water. The permethrin sensitivity test showed no differences in sensitivity as measured by the survival endpoints, but a decline in biomass was seen at a lower permethrin concentration in fish exposed in hatchery water, compared to those exposed in DIEPAMH control water. *P. promelas* showed greater sensitivity to cyfluthrin than to permethrin.

Table 8-3. Nominal 96-h and 7-day effect concentrations of cyfluthrin in a *P. promelas* test initiated on 7/07/09.

|                |                            | Cyfluthrin (μg/L) |        |             |               |             |               |  |  |
|----------------|----------------------------|-------------------|--------|-------------|---------------|-------------|---------------|--|--|
| Endpoint       | Matrix                     | NOE               | E LOEG | LC10 / EC10 |               | LC50 / EC25 |               |  |  |
|                |                            | С                 | LOEC   | Estimate    | 95% C.I.      | Estimate    | 95% C.I.      |  |  |
|                | DIEPAMH @ 900 uS/cm        | 1.000             | 2.000  | 1.056       | 0.997 - 1.091 | 1.414       | 1.371 – 1.483 |  |  |
| 96-hr Survival | Hatchery Water @ 900 uS/cm | 1.000             | 2.000  | 1.036       | 0.978 - 1.093 | 1.388       | 1.345 - 1.430 |  |  |
|                | DIEPAMH @ 900 uS/cm        | 1.000             | 2.000  | 0.919       | 0.590 - 1.136 | 1.353       | 1.269 - 1.431 |  |  |
| 7-day Survival | Hatchery Water @ 900 uS/cm | 1.000             | 2.000  | 1.049       | 0.992 - 1.085 | 1.398       | 1.355 - 1.424 |  |  |
|                | DIEPAMH @ 900 uS/cm        | 1.000             | 2.000  | 1.026       | 0.312 - 1.099 | 1.147       | 1.008 - 1.215 |  |  |
| 7-day Biomass  | Hatchery Water @ 900 uS/cm | 1.000             | 2.000  | 1.072       | 0.948 - 1.072 | 1.189       | 1.081 - 1.189 |  |  |

Table 8-4. Nominal 96-h and 7-day effect concentrations of permethrin in a P. promelas test initiated on 7/07/09.

|          | •                          |      | Permethrin (µg/L) |             |           |          |             |  |  |  |  |
|----------|----------------------------|------|-------------------|-------------|-----------|----------|-------------|--|--|--|--|
| Endpoint | Matrix                     |      | _                 | LC10 / EC10 |           | LC5      | 0 / EC25    |  |  |  |  |
|          |                            | NOEC | LOEC              | Estimate    | 95% C.I.  | Estimate | 95% C.I.    |  |  |  |  |
| 96-hr    | DIEPAMH @ 900 uS/cm        | 4.0  | 8.0               | 5.2         | 4.5 - 7.3 | 10.0     | 8.2 - 11.2  |  |  |  |  |
| Survival | Hatchery Water @ 900 uS/cm | 8.0  | 16.0              | 8.2         | 4.2 - 8.8 | 11.1     | 10.3 - 11.5 |  |  |  |  |
| 7-day    | DIEPAMH @ 900 uS/cm        | 4.0  | 8.0               | 4.8         | 4.1 - 5.8 | 9.3      | 6.0 - 10.9  |  |  |  |  |
| Survival | Hatchery Water @ 900 uS/cm | 8.0  | 16.0              | 8.0         | 4.3 - 8.7 | 10.9     | 10.3 - 11.5 |  |  |  |  |
| 7-day    | DIEPAMH @ 900 uS/cm        | 8.0  | 16.0              | 8.6         | 5.3 - 8.6 | 11.4     | 10.4 - 11.4 |  |  |  |  |
| Biomass  | Hatchery Water @ 900 uS/cm | 8.0  | 16.0              | 8.6         | 0.6 - 8.6 | 9.6      | 8.5 - 9.6   |  |  |  |  |

Table 8-5. Measured 96-h and 7-day effect concentrations for ammonia/ium (mg/L) in a larval fathead minnow test initiated on 9/17/08. D900 = DIEPAMH adjusted to 900  $\mu$ S/cm. HW = Hatchery water from the Fish Conservation and Culture Laboratory of the University of California Department of Animal Sciences in Byron, CA.

|                       |                               |                  | Estimate (mg/L) | 95% C.I.    | NOEC  | LOEC  | PMSD   |
|-----------------------|-------------------------------|------------------|-----------------|-------------|-------|-------|--------|
|                       | D900 Ammonia - 96-h Survival  | LC <sub>10</sub> | 17.1            | 16 – 21     | 15    | 30.8  | 16.51% |
| Total                 |                               | $LC_{50}$        | 29.9            | 26 - 34     |       |       |        |
| Ammonia               | D900 Ammonia - 7-day Survival | LC <sub>10</sub> | 17.1            | 16 – 21     | 15    | 30.8  | 16.51% |
| Nitrogen              |                               | $LC_{50}$        | 29.9            | 26 - 34     |       |       |        |
|                       | D900 Ammonia - 7-day Biomass  | $EC_{25}$        | 20.6            | 17 - 25     | 15    | 30.8  | 22.82% |
|                       | D900 Ammonia - 96-h Survival  | LC <sub>10</sub> | 0.597           | 0.56 - 0.73 | 0.518 | 1.004 | 16.51% |
| TT. '                 |                               | $LC_{50}$        | 1.000           | 0.89 - 1.12 |       |       |        |
| Un-ionized<br>Ammonia | D900 Ammonia - 7-day Survival | LC <sub>10</sub> | 0.597           | 0.56 - 0.73 | 0.518 | 1.004 | 16.51% |
| Allillollia           |                               | $LC_{50}$        | 1.000           | 0.89 - 1.12 |       |       |        |
|                       | D900 Ammonia - 7-day Biomass  | EC <sub>25</sub> | 0.713           | 0.61 - 0.86 | 0.518 | 1.004 | 22.82% |
|                       |                               |                  |                 |             |       |       |        |
|                       | HW Ammonia - 96-h Survival    | $LC_{10}$        | 16.0            | 15 - 16     | 15.2  | 29.8  | 4.96%  |
| Total                 |                               | $LC_{50}$        | 20.9            | 20 - 21     |       |       |        |
| Ammonia               | HW Ammonia - 7-day Survival   | LC <sub>10</sub> | 16.0            | 15 – 16     | 15.2  | 29.8  | 4.96%  |
| Nitrogen              |                               | $LC_{50}$        | 20.9            | 20 - 21     |       |       |        |
|                       | HW Ammonia - 7-day Biomass    | $EC_{25}$        | 17.1            | 15 - 18     | 15.2  | 29.8  | 17.85% |
|                       | HW Ammonia - 96-h Survival    | $LC_{10}$        | 0.662           | 0.63 - 0.68 | 0.629 | 1.121 | 4.96%  |
| II. ii. 1             |                               | $LC_{50}$        | 0.827           | 0.80 - 0.85 |       |       |        |
| Un-ionized<br>Ammonia | HW Ammonia - 7-day Survival   | $LC_{10}$        | 0.662           | 0.63 - 0.68 | 0.629 | 1.121 | 4.96%  |
| Allillonia            | -                             | $LC_{50}$        | 0.827           | 0.80 - 0.85 |       |       |        |
|                       | HW Ammonia - 7-day Biomass    | EC <sub>25</sub> | 0.703           | 0.64 - 0.74 | 0.629 | 1.121 | 17.85% |

Table 8-6. Measured 96-h and 7-day effect concentrations for copper ( $\mu$ g/L) in a larval fathead minnow test initiated on 8/7/08. D900 = DIEPAMH adjusted to 900  $\mu$ S/cm. HW = Hatchery water from the Fish Conservation and Culture Laboratory of the University of California Department of Animal Sciences in Byron, CA.

|           |                              |      | Estimate (µg/L) | 95% CI    | NOEC | LOEC | PMSD   |
|-----------|------------------------------|------|-----------------|-----------|------|------|--------|
| Nominal   | D900 Copper - 96-h Survival  | LC10 | 47              | 43 - 66   | 31.3 | 62.5 | 8.06%  |
| _         |                              | LC50 | 99              | 87 - 113  |      |      |        |
|           | D900 Copper - 7-day Survival | LC10 | 38.9            | 35 - 48   | 31.3 | 62.5 | 12.31% |
| _         |                              | LC50 | 80.08           | 70 - 91   |      |      |        |
|           | D900 Copper - 7-day Biomass  | EC25 | >125            | NA        | 125  | >125 | 64.57% |
| Total     | HW Copper - 96-h Survival    | LC10 | 132             | 81 - 150  | 132  | 260  | 6.37%  |
| _         |                              | LC50 | 216             | 188 - 248 |      |      |        |
|           | HW Copper - 7-day Survival   | LC10 | 90              | 79 - 117  | 69.2 | 132  | 7.92%  |
| _         |                              | LC50 | 162             | 146 - 180 |      |      |        |
|           | HW Copper - 7-day Biomass    | EC25 | 132             | 65 - 163  | 69.2 | 132  | 18.61% |
| Dissolved | HW Copper - 96-h Survival    | LC10 | 125             | 74 - 141  | 125  | 238  | 6.37%  |
|           |                              | LC50 | 200             | 175 - 228 |      |      |        |
| •         | HW Copper - 7-day Survival   | LC10 | 82              | 72 - 109  | 62.3 | 125  | 7.92%  |
| _         |                              | LC50 | 151             | 136 - 168 |      |      |        |
|           | HW Copper - 7-day Biomass    | EC25 | 125             | 57 - 154  | 62.3 | 125  | 18.61% |

Table 8-7. Nominal and measured 96-h and 7-day effect concentrations for bifenthrin ( $\mu$ g/L) in a larval fathead minnow test initiated on 9/24/08. D900 = DIEPAMH adjusted to 900  $\mu$ S/cm. HW = Hatchery water from the Fish Conservation and Culture Laboratory of the University of California Department of Animal Sciences in Byron, CA.

|          |                                    |           | Estimate (µg/L) | 95% C.I.      | NOEC  | LOEC  | PMSD   |
|----------|------------------------------------|-----------|-----------------|---------------|-------|-------|--------|
| Nominal  | D900 - Bifenthrin - 96-hr Survival | $LC_{10}$ | 0.125           | 0.098 - 0.147 | 0.125 | 0.250 | 14.31% |
|          |                                    | $LC_{50}$ | 0.214           | 0.188 - 0.244 |       |       |        |
|          | D900 - Bifenthrin - 7-day Survival | $LC_{10}$ | 0.101           | 0.079 - 0.117 | 0.125 | 0.250 | 13.35% |
|          |                                    | $LC_{50}$ | 0.166           | 0.146 - 0.188 |       |       |        |
|          | D900 - Bifenthrin - 7-day Biomass  | $EC_{25}$ | 0.138           | 0.118 - 0.157 | 0.125 | 0.250 | 24.84% |
| Measured | HW - Bifenthrin - 96-hr Survival   | $LC_{10}$ | 0.026           | 0.023 - 0.034 | 0.024 | 0.038 | 29.91% |
|          |                                    | $LC_{50}$ | 0.057           | 0.048 - 0.067 |       |       |        |
|          | HW - Bifenthrin - 7-day Survival   | $LC_{10}$ | 0.024           | 0.018 - 0.029 | 0.024 | 0.038 | 19.34% |
|          |                                    | $LC_{50}$ | 0.045           | 0.038 - 0.053 |       |       |        |
|          | HW - Bifenthrin - 7-day Biomass    | $EC_{25}$ | 0.040           | 0.021 - 0.054 | 0.038 | 0.096 | 32.42% |

Table 8-8. Nominal and measured 96-h and 7-day effect concentrations for esfenvalerate ( $\mu$ g/L) in a larval fathead minnow test initiated on 8/19/08. D900 = DIEPAMH adjusted to 900  $\mu$ S/cm. HW = Hatchery water from the Fish Conservation and Culture Laboratory of the University of California Department of Animal Sciences in Byron, CA.

|          |                                     |                  | Estimate (µg/L) | 95% C.I.      | NOEC  | LOEC  | PMSD   |
|----------|-------------------------------------|------------------|-----------------|---------------|-------|-------|--------|
| Nominal  | D900 Esfenvalerate - 96-h Survival  | $LC_{10}$        | 0.541           | 0.522 - 0.553 | 0.500 | 1.000 | 5.12%  |
|          |                                     | $LC_{50}$        | 0.779           | 0.721 - 0.842 |       |       |        |
|          | D900 Esfenvalerate - 7-day Survival | LC <sub>10</sub> | 0.536           | 0.518 - 0.542 | 0.500 | 1.000 | 6.56%  |
|          |                                     | $LC_{50}$        | 0.719           | 0.700 - 0.739 |       |       |        |
|          | D900 Esfenvalerate - 7-day Biomass  | $EC_{25}$        | 0.607           | 0.575 - 0.635 | 0.500 | 1.000 | 17.43% |
| Measured | HW Esfenvalerate - 96-h Survival    | $LC_{10}$        | 0.516           | 0.490 - 0.537 | 0.500 | 0.920 | 7.10%  |
|          |                                     | $LC_{50}$        | 0.668           | 0.649 - 0.682 |       |       |        |
|          | HW Esfenvalerate - 7-day Survival   | $LC_{10}$        | 0.518           | 0.492 - 0.534 | 0.500 | 0.920 | 7.38%  |
|          |                                     | $LC_{50}$        | 0.669           | 0.650 - 0.680 |       |       |        |
|          | HW Esfenvalerate - 7-day Biomass    | EC <sub>25</sub> | 0.582           | 0.527 - 0.582 | 0.500 | 0.920 | 23.60% |

Table 8-9. Nominal and measured 96-h and 7-day effect concentrations for chlorpyrifos ( $\mu$ g/L) in a larval fathead minnow test initiated on 8/19/08. D900 = DIEPAMH adjusted to 900  $\mu$ S/cm. HW = Hatchery water from the Fish Conservation and Culture Laboratory of the University of California Department of Animal Sciences in Byron, CA.

|          |                                    |                  | Estimate (ug/L) | 95% C.I.  | NOEC | LOEC | PMSD   |
|----------|------------------------------------|------------------|-----------------|-----------|------|------|--------|
| Nominal  | D900 Chlorpyrifos - 96-h Survival  | $LC_{10}$        | 233             | 180 - 272 | 200  | 400  | 5.38%  |
|          |                                    | $LC_{50}$        | >400            | NA        |      |      |        |
|          | D900 Chlorpyrifos - 7-day Survival | LC <sub>10</sub> | 202             | 113 - 230 | 200  | 400  | 11.07% |
|          |                                    | $LC_{50}$        | 332.6           | 228 - 384 |      |      |        |
|          | D900 Chlorpyrifos - 7-day Biomass  | $EC_{25}$        | 79.1            | 41 - 131  | 25   | 50   | 15.10% |
| Measured | HW Chlorpyrifos - 96-h Survival    | $LC_{10}$        | 171             | 128 - 203 | 144  | 311  | 13.64% |
|          |                                    | $LC_{50}$        | > 311           | NA        |      |      |        |
|          | HW Chlorpyrifos - 7-day Survival   | LC <sub>10</sub> | 145             | 88 - 167  | 144  | 311  | 18.91% |
|          |                                    | $LC_{50}$        | 252.7           | NA        |      |      |        |
|          | HW Chlorpyrifos - 7-day Biomass    | EC <sub>25</sub> | 60.6            | 10 - 171  | 43.2 | 82.4 | 24.39% |

# 8.2.3 *H. azteca* Sensitivity Tests

Effect concentrations of pesticides, ammonia and copper are presented for 96-hour survival, 10-day survival, and 10-day weight endpoints (Tables 8-10 through 8-16). We have calculated effect concentrations for bifenthrin, chloropyrifos and permethrin based on measured concentrations. Effect concentrations for ammonia were derived for nominal ammonium concentrations, measured total ammonia nitrogen and un-ionized ammonia calculated from measured ammonia nitrogen, and the mean pH and temperature during the test. Analytical data for cyfluthrin, diazinon and copper are pending and therefore nominal effect concentrations are presented here.

All *H. azteca* sensitivity studies included a comparison of sensitivities in hatchery water collected from the UCD FCCL with sensitivities in DIEPAMHR control water. Both hatchery water and control water was adjusted to an SC of 900  $\mu$ S/cm (855-945) and pH 7.9  $\pm$  0.1.

Effect concentrations in hatchery water did not differ detectably from those in DIEPAMHR for most of the toxicants and endpoints tested. *H. azteca* tended to be more sensitive to cyfluthrin in hatchery water, and also to bifenthrin in hatchery water for the 10-day survival and weight endpoints, though differences were not significant. Sensitivity to permethrin and copper was detectably higher in DIEPAMHR for the 10-day survival endpoint. Sensitivity to total ammonia/um and un-ionized ammonia was significantly higher in DIEPAMHR as measured by ammonia nitrogen and un-ionized ammonia concentrations.

Most of the sensitivity studies showed a decrease in *H. azteca* weight with increasing toxicant concentration, but this effect was not observed in tests with chlorpyrifos, permethrin, and cyfluthrin (DIEPAMHR only).

Table 8-10. Nominal 96-h and 10-day effect concentrations of cyfluthrin in a *H. azteca* test initiated on 12/12/08.

|                  |                      | Cyfluthrin (ng/L) |             |          |             |          |             |  |  |  |
|------------------|----------------------|-------------------|-------------|----------|-------------|----------|-------------|--|--|--|
| Endpoint         | Matrix               | NOEC              | NOEC LOEC - | LC10     | / EC10      | LC50     | LC50 / EC25 |  |  |  |
|                  |                      | NOEC              |             | Estimate | 95% C.I.    | Estimate | 95% C.I.    |  |  |  |
|                  | DIEPAMHR @ 900 uS/cm | 1.95              | 3.91        | 2.12     | 2.04 - 2.21 | 3.04     | 2.75 - 3.54 |  |  |  |
| 96-hour Survival | Hatchery Water       | 0.98              | 1.95        | 1.30     | 1.01 - 1.83 | 2.70     | 2.25 - 3.17 |  |  |  |
|                  | DIEPAMHR @ 900 uS/cm | 1.95              | 3.91        | 2.12     | 2.05 - 2.20 | 2.97     | 2.73 - 3.57 |  |  |  |
| 10-day Survival  | Hatchery Water       | 0.98              | 1.95        | 1.22     | 0.99 - 1.58 | 2.39     | 1.95 - 2.83 |  |  |  |
| Weight           | DIEPAMHR @ 900 uS/cm | 1.95              | > 1.95      | -        | -           | -        | -           |  |  |  |
|                  | Hatchery Water       | < 0.98            | 0.98        | 0.29     | 0.16 - 0.66 | 0.88     | 0.45 - >3.9 |  |  |  |

Table 8-11. Nominal 96-h and 10-day effect concentrations of diazinon in a H. azteca test initiated on 12/30/08.

|          | Matrix               |      | Diazinon (ng/L) |             |              |          |              |  |  |  |  |
|----------|----------------------|------|-----------------|-------------|--------------|----------|--------------|--|--|--|--|
| Endpoint |                      | NOEC | LOEC            | LC10 / EC10 |              | LC5      | 0 / EC25     |  |  |  |  |
|          |                      | NOEC |                 | Estimate    | 95% C.I.     | Estimate | 95% C.I.     |  |  |  |  |
| 96-hour  | DIEPAMHR @ 900 uS/cm | 2000 | 4000            | 2210        | 1410 - 2690  | 4440     | 3300 - 5470  |  |  |  |  |
| Survival | Hatchery Water       | 2000 | 4000            | 2410        | 2000 - 3480  | 4900     | 2790 - 5810  |  |  |  |  |
| 10-day   | DIEPAMHR @ 900 uS/cm | 2000 | 4000            | 1340        | 1150 - 2350  | 2670     | 2190 - 3080  |  |  |  |  |
| Survival | Hatchery Water       | 2000 | 4000            | 2110        | 1950 - 2240  | 3120     | 3000 - 3270  |  |  |  |  |
| Weight   | DIEPAMHR @ 900 uS/cm | 1000 | 2000            | 930         | < 500 - 1390 | 1270     | 0.000 - 1780 |  |  |  |  |
|          | Hatchery Water       | 2000 | > 2000          | 1050        | 550 - 2020   | > 2000   | =            |  |  |  |  |

Table 8-12. Measured 96-h and 10-day effect concentrations of bifenthrin in a *H. azteca* test initiated on 1/14/09.

|          |                      |      | Bifenthrin (ng/L) |             |             |          |             |  |  |  |  |
|----------|----------------------|------|-------------------|-------------|-------------|----------|-------------|--|--|--|--|
| Endpoint | Matrix               | NOEC | LOEC -            | LC10 / EC10 |             | LC50     | / EC25      |  |  |  |  |
|          |                      | NOEC |                   | Estimate    | 95% C.I.    | Estimate | 95% C.I.    |  |  |  |  |
| 96-hour  | DIEPAMHR @ 900 uS/cm | 2    | 8                 | 2.4         | 2.3 - 2.4   | 4.4      | 4.0 - 5.0   |  |  |  |  |
| Survival | Hatchery Water       | 3    | 6                 | 2.9         | 1.4 - 3.4   | 4.3      | 4.0 - 4.9   |  |  |  |  |
| 10-day   | DIEPAMHR @ 900 uS/cm | 2    | 8                 | 2.3         | 2.3 - 2.3   | 4.2      | 4.2 - 4.2   |  |  |  |  |
| Survival | Hatchery Water       | 1    | 3                 | 1.2         | 1.0 - 1.6   | 2.3      | 1.6 - 4.5   |  |  |  |  |
| Weight   | DIEPAMHR @ 900 uS/cm | 0.6  | 2                 | 0.5         | < 0.6 - 1.2 | 1.3      | < 0.6 - 2.3 |  |  |  |  |
|          | Hatchery Water       | < 1  | 1                 | 0.2         | 0.1 - 0.2   | 0.5      | 0.4 - 0.7   |  |  |  |  |

Table 8-13. Measured 96-h and 10-day effect concentrations of chlorpyrifos in a *H. azteca* test initiated on 1/15/09.

|          |                      | Chlorpyrifos (ng/L) |      |             |             |             |               |  |
|----------|----------------------|---------------------|------|-------------|-------------|-------------|---------------|--|
| Endpoint | Matrix               | NOEC                | LOEC | LC10 / EC10 |             | LC50 / EC25 |               |  |
|          |                      | NOEC                |      | Estimate    | 95% C.I.    | Estimate    | 95% C.I.      |  |
| 96-hour  | DIEPAMHR @ 900 uS/cm | 14                  | 128  | 28          | 15.9 - 82.3 | 186.1       | 31.0 - 259.2  |  |
| Survival | Hatchery Water       | 66                  | 133  | 78.3        | 75.4 - 83.4 | 146.6       | 131.4 - 161.8 |  |
| 10-day   | DIEPAMHR @ 900 uS/cm | 14                  | 128  | 18.1        | 13.6 - 22.5 | 67.2        | 32.6 - 164.5  |  |
| Survival | Hatchery Water       | 66                  | 133  | 72.1        | 70.5 - 73.8 | 102.6       | 91.2 - 114.7  |  |
| Weight   | DIEPAMHR @ 900 uS/cm | 14                  | > 14 | -           | -           | -           | -             |  |
| C        | Hatchery Water       | 66                  | > 66 | -           | -           | -           | -             |  |

Table 8-14. Measured 96-h and 10-day effect concentrations of permethrin in a *H. azteca* test initiated on 1/21/09.

|          |                      | Permethrin (ng/L) |      |             |             |          |             |  |
|----------|----------------------|-------------------|------|-------------|-------------|----------|-------------|--|
| Endpoint | Matrix               | NOEC              | LOEC | LC10 / EC10 |             | LC50     | ) / EC25    |  |
|          |                      | NOEC              |      | Estimate    | 95% C.I.    | Estimate | 95% C.I.    |  |
| 96-hour  | DIEPAMHR @ 900 uS/cm | 19                | 90   | 25.3        | 21.9 - 36.2 | 78.3     | 33.9 - > 90 |  |
| Survival | Hatchery Water       | 69                | > 69 | > 69        | =           | > 69     | -           |  |
| 10-day   | DIEPAMHR @ 900 uS/cm | 19                | 90   | 22.9        | 22.2 - 23.4 | 47.8     | 40.8 - 52.5 |  |
| Survival | Hatchery Water       | 40                | 69   | 44.1        | 1.6 - 56.0  | > 69     | -           |  |
| Weight   | DIEPAMHR @ 900 uS/cm | 90                | > 90 | -           | -           | -        | -           |  |
| 3        | Hatchery Water       | 69                | > 69 | -           | -           | -        | -           |  |

Table 8-15. Measured 96-h and 10-day effect concentrations of ammonia/ium in a *H. azteca* test initiated on 2/26/09.

| Analyte  |           |                |       | LOEC    | LC10 / EC10 |                 | LC50 / EC25  |               |
|----------|-----------|----------------|-------|---------|-------------|-----------------|--------------|---------------|
|          | Endpoint  | Matrix         | NOEC  |         | Estim ate   | 95% C.I.        | Estima<br>te | 95% C.I.      |
| Total    | 96-hour   | D. @ 900 uS/cm | 37.0  | 78.0    | 39.4        | 27.3 - 49.8     | 102.2        | 84 - 133      |
| Ammonia  | Survival  | Hatchery Water | 76.0  | 156.8   | 53.9        | 40.0 - 68.9     | 149.3        | 115 - 234     |
| Nitrogen | 10-day    | D. @ 900 uS/cm | 37.0  | 78.0    | 42.8        | 29.5 - 52.3     | 72.9         | 62 - 84       |
| (mg/L)   | Survival  | Hatchery Water | 19.4  | 39.2    | 32.3        | 23.6 - 39.8     | 72.9         | 62 - 88       |
|          | Weight    | D. @ 900 uS/cm | 19.0  | 37.0    | 6.3         | 2.9 - 15.7      | 20.2         | < 4.85 - 28.8 |
|          |           | Hatchery Water | 156.8 | > 156.8 | 40.5        | < 4.85 - 50.6   | 52.5         | 18 - 67       |
| Un-      | 96-hour   | D. @ 900 uS/cm | 1.010 | 1.512   | 1.025       | 0.823 - 1.168   | 1.714        | 1.542 - 1.976 |
| ionized  | Survival  | Hatchery Water | 1.702 | 2.500   | 1.513       | 1.231 - 1.697   | 2.406        | 2.138 - 2.99  |
| Ammonia  | 10-day    | D. @ 900 uS/cm | 1.010 | 1.512   | 1.113       | 0.904 - 1.238   | 1.454        | 1.331 - 1.564 |
| (mg/L)   | Survival  | Hatchery Water | 0.793 | 1.378   | 1.151       | 0.947 - 1.291   | 1.731        | 1.591 - 1.904 |
|          | Weight    | D. @ 900 uS/cm | 0.658 | 1.01    | 0.292       | 0.180 - 0.587   | 0.688        | 0.107 - 0.876 |
|          | vv cigiii | Hatchery Water | 2.500 | > 2.500 | 1.392       | < 0.279 - 1.501 | 1.516        | 0.954 - 1.64  |

Table 8-16. Nominal 96-h and 10-day effect concentrations of copper in a *H. azteca* test initiated on 4/10/09.

|          |                      | Copper (mg/L) |       |             |               |             |               |  |
|----------|----------------------|---------------|-------|-------------|---------------|-------------|---------------|--|
| Endpoint | Matrix               | NOEC          | LOEC  | LC10 / EC10 |               | LC50 / EC25 |               |  |
|          |                      | NOEC          |       | Estimate    | 95% C.I.      | Estimate    | 95% C.I.      |  |
| 96-hour  | DIEPAMHR @ 900 uS/cm | 0.25          | 0.5   | 0.291       | 0.224 - 0.343 | 0.484       | 0.422 - 0.553 |  |
| Survival | Hatchery Water       | 0.5           | 1     | 0.352       | 0.274 - 0.412 | 0.570       | 0.500 - 0.650 |  |
| 10-day   | DIEPAMHR @ 900 uS/cm | 0.125         | 0.25  | 0.125       | 0.036 - 0.140 | 0.174       | 0.165 - 0.183 |  |
| Survival | Hatchery Water       | 0.25          | 0.5   | 0.207       | 0.153 - 0.295 | 0.318       | 0.293 - 0.344 |  |
| Weight   | DIEPAMHR @ 900 uS/cm | < 0.125       | 0.125 | 0.018       | 0.015 - 0.024 | 0.045       | 0.038 - 0.062 |  |
|          | Hatchery Water       | < 0.125       | 0.125 | 0.024       | 0.013 - 0.057 | 0.060       | 0.032 - 0.147 |  |

# 8.2.4 Eurtytemora affinis Sensitivity Tests

*E. affinis*: 96-h LC10 and LC50 values were determined for ammonia, copper, the organophosphate insecticide chlorpyrifos, and the pyrethroid insecticides bifenthrin, cyfluthrin, and permethrin by Dr. Teh (UC Davis, CA). Data generated from these tests show *E. affinis* are highly sensitive to copper and ammonia (See Appendix A for full results).

# 8.2.5 Interspecies Comparison of Sensitivity to Select Toxicants

A comparison of *H. azteca*, *E. affinis* and *C. dubia* shows markedly differing sensitivities to ammonia/um, copper and pesticides (Table 8-17). Effect concentrations for *H. azteca* and *E. affinis* were calculated from test results presented in this report, while *C. dubia* sensitivity values were obtained from the USEPA ECOTOX Database (http://cfpub.epa.gov/ecotox/). Tests to obtain effect concentrations under comparable water quality conditions are currently in process at UCD-ATL. Conductivity, pH and temperature were different in *E. affinis* exposures than in *H. azteca* exposures. *E. affinis* was the most sensitive to ammonia/um and copper, while *H. azteca* was much less sensitive to these materials. The copper sensitivities of *C. dubia* are intermediate, but are more similar to *H. azteca*. *C. dubia* was most sensitive to chlorpyrifos, and was more sensitive than *H. azteca* to diazinon. *H. azteca* was the most sensitive to all pyrethroid insecticides tested (bifenthrin, cyfluthrin and permethrin). *C. dubia* showed the least sensitivity to these materials, while the sensitivity of *E. affinis* was intermediate.

Table 8-17. Comparison of sensitivities for the invertebrates *H. azteca*, *E. affinis*, and *C. dubia* to ammonia, copper, chlorpyrifos, diazinon, bifenthrin, cyfluthrin, and permethrin. \* indicates measured concentrations.

|                    | н           | azteca                | Е          |                                          |               |
|--------------------|-------------|-----------------------|------------|------------------------------------------|---------------|
| Chemical           |             | h LC50 <sup>1</sup>   | 96         | <i>C.dubia</i><br>96-h LC50 <sup>3</sup> |               |
|                    | Estimate    | 95% C.I.              | Estimate   | 95% C.I.                                 | 90-11 LC30    |
| Ammonia Nitrogen*  | 102.2 mg/L* | 84-133 mg/L           | 7.56 mg/L* | 4.07 – 8.95 mg/L                         | -             |
| Un-ionized Ammonia | 1.714 mg/L* | 1.542 - 1.976<br>mg/L | 0.12 mg/L* | 0.06 – 0.14 mg/L                         | -             |
| Copper             | 484 μg/L    | 422 - 553 μg/L        | 3.48 µg/L  | 2.85 – 4.15 μg/L                         | 302 μg/L      |
| Chlorpyrifos       | 186.1 ng/L* | 31.0 - 259.2 ng/L     | 803.2 ng/L | 640.2 – 926.4 ng/L                       | 60 ng/L       |
| Diazinon           | 4440 ng/L   | 3300 - 5470 ng/L      | -          | -                                        | 270-570 ng/L  |
| Bifenthrin         | 4.4 ng/L*   | 4.0 - 5.0 ng/L        | 11.37 ng/L | 8.04 – 14.80 ng/L                        | 37-281 ng/L   |
| Cyfluthrin         | 3.04 ng/L   | 2.75 - 3.54 ng/L      | 12.72 ng/L | 8.05 – 55.55 ng/L                        | -             |
| Permethrin         | 78.3 ng/L*  | 33.9 - >90 ng/L       | 158.1 ng/L | 125.6 – 176.0 ng/L                       | 570-1090 ng/L |

<sup>&</sup>lt;sup>1</sup> Experimental conditions: SC= 900 μS/cm, pH 7.9, T= 23.0°C

<sup>&</sup>lt;sup>2</sup> Data obtained from S. Teh (UC Davis); Experimental conditions: EC= 3000 μS/cm, pH 8.0, T= 20.0°C

<sup>&</sup>lt;sup>3</sup> Data from public databases; experimental conditions varied

A comparison of *H. transpacificus* and *P. promelas* sensitivities to copper, ammonia and pesticides shows higher sensitivity of *H. transpacificus* to all materials with the exception of bifenthrin and permethrin (Table 8-18). *P. promelas* was more sensitive to bifenthrin.

Table 8-18. Comparison of 96-h sensitivities of 39 - 51 day old delta smelt and <48 h old fathead minnows in hatchery water to selected chemicals. \* indicates measured concentrations.

|                       |             | Delta Smelt |             | Fathead Minnow |             |             |  |
|-----------------------|-------------|-------------|-------------|----------------|-------------|-------------|--|
|                       | LOEC        | LC10        | LC50        | LOEC           | LC10        | LC50        |  |
| Copper (total)        | 78.2 μg/L*  | 50.4 μg/L*  | 88.1 μg/L*  | 260 μg/L*      | 132 μg/L*   | 216 μ/L*    |  |
| Copper (dissolved)    | 76.2 µg/L*  | 49.8 μg/L*  | 86.5 µg/L*  | 238 μg/L*      | 125 μg/L*   | 200 μg/L*   |  |
| Ammonia<br>Nitrogen   | 9.0 mg/L*   | 4.2 mg/L*   | 12.0 mg/L*  | 29.8 mg/L*     | 16.0 mg/L*  | 20.9 mg/L*  |  |
| Un-ionized<br>Ammonia | 0.105 mg/L* | 0.055 mg/L* | 0.147 mg/L* | 1.121 mg/L*    | 0.662 mg/L* | 0.827 mg/L* |  |
| Chlorpyrifos          | >200 µg/L   | 12.89 μg/L  | 18.62 μg/L  | 311 µg/L*      | 171 μg/L*   | >311 µg/L*  |  |
| Bifenthrin            | 0.260 μg/L* | 0.095 μg/L* | 0.143 μg/L* | 0.038 µg/L*    | 0.026 μg/L* | 0.057 μg/L* |  |
| Cyfluthrin            | 0.890 µg/L* | 0.260 μg/L* | 0.420 μg/L* | 2.000 μg/L     | 1.036 µg/L  | 1.388 µg/L  |  |
| Permethrin            | >5 µg/L     |             |             | 16.0 μg/L      | 8.2 μg/L    | 11.1 μg/L   |  |
| Esfenvalerate         | 0.375 μg/L  | -           | 0.239 μg/L  | 0.920 μg/L*    | 0.516 µg/L* | 0.668 µg/L* |  |

# 9. Sublethal Indicators of Contaminant Effects

9.1

# TOXICITY OF COMMERCIAL INSECTICIDE FORMULATIONS AND THEIR ACTIVE INGREDIENTS TO LARVAL FATHEAD MINNOW (PIMEPHALES PROMELAS)

Sebastian Beggel<sup>1,2</sup>, Inge Werner<sup>1</sup>, Richard E. Connon<sup>1</sup>, Juergen Geist<sup>2</sup>

#### **ABSTRACT**

In addition to the active ingredient(s), commercial pesticide formulation contain a significant proportion (>90%) of so-called inert ingredients, which may alter the toxicity of the active ingredient(s). Toxic effect concentrations are, however, generally determined using only the pure active ingredient. This study compares the aquatic toxicity of two current-use insecticides, the pyrethroid bifenthrin, and the phenylpyrazole fipronil, to their commercial formulations, Talstar® and Termidor<sup>®</sup>. Both are used for mosquito control, landscape treatment and structural pest control, and can be transported into surface water bodies via storm water and irrigation run-off. We used larval fathead minnow (Pimephales promelas), to determine effect thresholds for survival, growth and swimming performance after short-term (24h) exposure to pure insecticides or the respective formulations. The LC50 and LC10 for bifenthrin were 1.9 µg.L<sup>-1</sup> and 0.92 µg.L<sup>-1</sup> <sup>1</sup>, respectively, and for fipronil 398.29 μg.L<sup>-1</sup> and 305.57 μg.L<sup>-1</sup> (nominal). Detrimental effects on growth were observed at 10% of the LC10 or 53 µg.L<sup>-1</sup> (nominal) fipronil. Swimming performance was significantly impaired at 20% of the LC10 or 0.14 µg.L<sup>-1</sup> bifenthrin, and at 20% of the LC10 or 142 µg.L<sup>-1</sup> fipronil (measured). Both formulations were more toxic than the pure active ingredient, suggesting that altered toxic effects due to inert ingredients should be considered in pesticide risk assessments and establishment of water quality criteria.

#### INTRODUCTION

The effects of pesticides on non-target aquatic species have been a major concern for many years [1-4]. Pesticide residues have been frequently detected at toxic concentrations in surface waters and sediments of the Central Valley in California, USA, an area of intensive agriculture. It is, however, a general misconception that attributes pesticide use to agricultural activities alone, as they are also heavily used in urban areas where application by homeowners and professionals for mosquito control, landscape treatment and structural pest control results in an extensive source of pesticide contamination (REFS). Irrigation run-off during dry seasons and storm water run-off contribute pesticide residues to urban streams and waterways at concentrations potentially hazardous to aquatic ecosystems. The pyrethroid bifenthrin is one of the most frequently found

<sup>&</sup>lt;sup>1</sup>Aquatic Toxicology Laboratory, Dept. of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, USA

<sup>&</sup>lt;sup>2</sup> Unit of Functional Aquatic Ecology and Fish Biology, Department of Animal Science, Technische Universität München, Freising, Germany

contaminants in waters and stream sediments from areas with urban and agricultural land use [5, 6]. Another insecticide widely used in urban areas is the phenylpyrazole fipronil [7]. Lin et al. [8] and Sprague et al. [9] found fipronil to be present in run-off from metropolitan areas throughout (?) the United States. These pesticides are commercially available in a large number of formulated products, generally containing <10% of the active ingredient. Inert ingredients generally comprise more than 90% in volume of commercially available insecticide formulations, and need not be identified on the product label, unless classified as highly toxic [27], [28].

Reported toxicity thresholds such as LC/EC<sub>50</sub> for fish and other aquatic species are generally determined using the pure active ingredient of commercial pesticide products [17], whereas a significant proportion of available insecticide products consist of so called "inert" or "other" ingredients. These ingredients serve several functions, acting as adjuvants, solvents, emulsifiers, surfactants and/or preservatives, and may therefore alter the toxicity of the active ingredient. Over 90% of the volume comprising "inert" ingredients need not to be identified on the product label as they are considered to have non-toxic characteristics, but several studies have shown that the toxicity of commercial formulations may be different from that of the active ingredient [18], [13], [19].

The two insecticides selected for this study differ in their structure and mechanism of action. Bifenthrin  $[[1\alpha 3\alpha(2)]-(\pm)(2-\text{methyl}[1,1'-\text{biphenyl}]-3-y])$  methyl [3-(2-chloro-3,3,3, trifluoro-1propenyl)-2,2-dimethylcyclopropanecarboxylate] (CAS number 82657-04-3) is a fourth generation synthetic pyrethroid [13]. Like all pyrethroids, bifenthrin is highly toxic to aquatic organisms. The main mode of action is the interference with Na<sup>+</sup> channel gating in the nerve cell endings. This leads to continuous neurotransmission, causing hyperexcitability, tremors, convulsions and ultimately death [14], [15]. LC<sub>50</sub> values of bifenthrin for fish have been reported for Sheephead minnow (17.5 μg.L<sup>-1</sup> 96h LC<sub>50</sub>), Bluegill sunfish (0.35 μg.L<sup>-1</sup>, 144h LC<sub>50</sub>) and Rainbow Trout  $(0.15 \text{ µg.L}^{-1}, 96\text{h LC}_{50})$  [16]. Fipronil (5-amino-1 [2,6-dichloro-4-(triflouromethyl) phenyl]-4 [(triflouromethyl) sulfinyl]- 1H-pyrazole-3-carbonitrile) (CAS number 120068-37-3) is a "new generation" insecticide in that its mode of action differs from other substance classes like organophosphates and pyrethroids, to which numerous insects have developed resistance. It interferes with the function of γ-aminobutyric acid (GABA)–gated Cl channels. GABA is a major inhibitory neurotransmitter in the vertebrate central nervous system. In insects and mammals, the behavioral effects of GABA antagonists include hyperactivity, hyperexcitability, and convulsions, which are correlated with increased spontaneous nerve activity [10]. Fish LC<sub>50</sub> values have been reported for Sheephead Minnow (130 µg.L<sup>-1</sup>), Bluegill Sunfish (54 μg.L<sup>-1</sup>) and Rainbow Trout (250 μg.L<sup>-1</sup>) [10], [11]. No data on direct run-off studies were reported at the time this study was undertaken, but recent monitoring work confirms that fipronil and its degradation products are present in water and sediments of urban creeks supplying the Sacramento and San Joaquin rivers of California in low concentrations (4.0 - 8.0 ng.L<sup>-1</sup>) [10], [8]. Furthermore, Schlenk et al. [12] reported fipronil concentrations as high as 9 ug.L<sup>-1</sup> for surface waters downstream of fipronil treated rice fields. The bifenthrin formulation; Talstar®, contains 7.9% of the active ingredient contained in so called microcapsules (Product information, [20]). The insecticide itself is thereby enclosed in a coat of "inert" ingredients, to ensure a slow release of the active ingredient and stabilization against environmental degradation [21]. Termidor®, the fipronil formulation, contains 9.1% active ingredient forming a liquid

## suspension [22].

In this study, we tested the hypothesis that the toxicity of the pure active ingredients, bifenthrin and fipronil, differs from the toxicity of their respective insecticide formulation, Talstar® and Termidor®, using mortality, swimming performance and growth as toxicological endpoints in larval fathead minnow (Pimephales promelas Rafinesque). We used a short exposure period of 24 h, reflective of somewhat realistic exposure scenarios where pesticides are transported off agricultural areas [25] [26]. The fathead minnow is a well-known model for evaluating toxicity to fish, and can be obtained year-round at specific developmental stages.

#### MATERIAL AND METHODS

#### Fish source and acclimation

Fathead minnow larvae were obtained from Aquatox Inc. (Hot Springs, AR, USA) at 7 d post-hatch on the day of arrival. The fish were allowed a minimum acclimation period of four hours in control water at a temperature of 25°C. Almost no mortality occurred during acclimation, and the fish fed and swam normally.

## Pesticide exposure

# **Acute Toxicity**

Pure chemicals bifenthrin and fipronil were obtained by ChemService, West Chester, PA, USA. Commercial insecticide formulations Talstar® Select (US EPA Reg.No. 279-3155) and Termidor® purchased (US **EPA** Reg.No. 7969-210) were online from http:\\www.doyourownpestcontrol.com. All pesticide exposure experiments were conducted at the University of California Davis, Aquatic Toxicology Laboratory, School of Veterinary Medicine. To determine acute toxicity, 7-day old larval fish were exposed to the following nominal concentrations: 0.75, 1.0, 1.5, 2.0, 3.0 and 4.0 µg.L<sup>-1</sup> bifenthrin, 3.0, 4.0, 4.5, 5.0 and 6.0 μg.L<sup>-1</sup> of the bifenthrin formulation Talstar®, 150, 200, 350 and 400 μg.L<sup>-1</sup> of fipronil and 150, 200, 350, 400 and 450 µg.L<sup>-1</sup> of fipronil formulation Termidor® in a 24h acute toxicity assay (Table 1). Method controls consisted of deionized well water, modified with salts to meet US EPA specifications (electric conductivity (EC): 265 - 293 µmhos; hardness: 80-100 as mg CaCO<sub>3</sub>.L<sup>-1</sup>; alkalinity: 57-64 as mg CaCO<sub>3</sub>.L<sup>-1</sup>, [23]). For the pure substances we used 1 ml.L methanol (MeOH) as the solvent carrier and one treatment group containing the same MeOH concentration was added as a solvent control. No solvent carrier was required for the formulations as they are designed to mix with water. The exposure concentrations used for acute toxicity testing refer only to concentrations of active ingredient in the respective formulation to ensure direct comparability. Talstar ® contains 7.9% bifenthrin per volume and Termidor® contains 9.1% of fipronil.

#### Sublethal Toxicity

Sublethal exposure concentrations used for the swimming performance and growth test series were calculated as percentages of the LC<sub>10</sub>-values derived from acute toxicity tests and were: 10%, 20%, 33% and 50% of LC<sub>10</sub>, plus method control and solvent control as described above (Table 2). Four replicate 600ml Pyrex beakers were used per concentration, each replicate containing 250 mL treatment solution and 10 fish. At test initiation the larvae were randomly distributed into beakers and exposed for 24 h at a water temperature of 25°C and a 16:8 light-dark ratio. Fish were not fed during the exposure period.

Sub-samples of each test solution (1 L) were submitted for chemical analysis to the California Department of Fish and Game Water Pollution Laboratory (Rancho Cordova, CA, USA). Talstar® samples were filtered through 0.45µm glass fiber filter prior to analysis to separate microcapsules from the water phase, and determine "particulate" and dissolved bifenthrin concentrations. Measured insecticide concentrations are listed in Table 2.

#### 7-d Growth

Subsequent to the 24 h pesticide exposure, fish were transferred to method control water and maintained for 6 days at  $25^{\circ}$ C and a 16:8 light:dark photoperiod. Each of six treatments, per substance, consisted of four replicate beakers containing 10 fish. For transfer, fish were gently rinsed using a fine-meshed sieve and released into vessels containing control water. On days 2-7, approximately 80% of the water was exchanged daily, the number of surviving fish was recorded, and physicochemical parameters were measured for each treatment before and after the water exchange and at test termination. After each water renewal the beakers were distributed randomly. Fish were fed ad libitum twice a day with newly hatched Artemia nauplii (30 – 50 Artemia on average, every eight hours). At test termination, surviving fish were euthanized with MS-222 (Tricaine Methanesulfonate, Sigma, St. Louis, MO, USA), then transferred to preweighed aluminium weigh boats and dried for 24 hours at  $100^{\circ}$ C. Dry weight per fish ( $\pm$  0.001 mg) was calculated by measuring whole dry weight divided by the number of fish remaining per replicate.

# Swimming performance ("one minute racetrack")

A subsample of fish (n=7/replicate) exposed to pesticides for 24 h in three replicate beakers containing 10 fish were used to determine swimming performance. Swimming-performance was tested at three different time points: (1) Immediately after the 24 h pesticide exposure; (2) after a total of 48 h (24 h recovery in control water), and (3) after a total of 7 d (6 d recovery in control water), using a circular "racetrack" following a method developed by Heath et al. [17, 18]. This racetrack consisted of a 13 cm diameter Petri dish with an upside-down 8 cm diameter Petri dish centrally placed, divided into 8 sectors by radiating lines drawn on the bottom of the testing dish, and filled with control water to a depth of 1 cm. Fish from randomly chosen beakers were transferred individually into the testing device and allowed to acclimatize for 1 minute. A plastic rod was then used to trigger the fish's escape response by repeatedly touching it at the tail fin. The number of lines or sectors crossed by the fish within 1 minute was recorded and used as a measurement of swimming performance. Water in the testing device was renewed after testing 7 fish from each replicate beaker.

#### Statistical analysis

We used the Comprehensive Environmental Toxicity Information System (CETIS) by Tidepool Scientific Software (McKinleyville, CA, USA) to calculate the statistics for 24h survival data (NOEC and LC<sub>50</sub>) of the nominal concentrations of active ingredients. The Shapiro–Wilk normality test was used to evaluate whether quantitative data met the assumptions of the parametric ANOVA. For multiple comparisons the JMP 7.0 Software by SAS Institute Inc. was used. To evaluate differences between treatments in swimming performance and growth data we used one-way ANOVA and Tukey's multiple comparison test post hoc. Additionally, Dunett's multiple comparison test was used to compare formulation treatments to controls, and pure active ingredients to solvent controls. Data from the growth and swimming tests did not always meet

the assumptions of normality and homogeneity of variances at the highest concentrations, but due to the strong signals, the ANOVA is considered to be robust [24].

## **RESULTS**

## Water chemistry

Physicochemical parameters measured at the start and end of the 24 h exposure period were the same for all treatments and within the acceptable range for the test organism. The measured mean values ( $\pm$  standard deviation) were pH: 7.51 ( $\pm$  0.19), dissolved oxygen 7.17 ( $\pm$  0.52) mg.L<sup>-1</sup>, temperature: 23.06 ( $\pm$  0.32) °C, and EC: 278.71 ( $\pm$  6.05)  $\mu$ S.cm<sup>-1</sup>.

## Acute toxicity

Acute toxicity concentrations derived from fathead minnow exposures to both pure compounds and respective formulations are summarized in table 1. The pyrethroid bifenthrin and its formulation Talstar® were both highly toxic to 7-d old fathead minnows. The nominal 24-h LOEC and LC<sub>50</sub> for Talstar® were 3.00  $\mu g.L^{-1}$  and 4.85  $\mu g.L^{-1}$ , while the 24-h LOEC and LC<sub>50</sub> for pure bifenthrin were 1.00  $\mu g.L^{-1}$  of 1.90  $\mu g.L^{-1}$ , respectively. Fipronil was less toxic than bifenthrin. The nominal 24-h LOEC for pure fipronil and its formulation Termidor® was equally 350.00  $\mu g.L^{-1}$ . The LC<sub>50</sub> of the formulation was 379.47  $\mu g.L^{-1}$  and therefore slightly lower than that of the pure fipronil with an LC<sub>50</sub> of 398.29  $\mu g.L^{-1}$ .

# Swimming performance

Nominal and measured pesticide concentrations are shown in Table 2.

Bifenthrin: Immediately following the 24h exposure to pure bifenthrin, the swimming performance of fish from the lowest concentration treatment (0.07µg.L<sup>-1</sup> or 10 % LC<sub>10</sub>) showed no statistical difference to control or solvent control treatments (Figure 1). Swimming performance of fish exposed to concentrations  $\geq$ 0.14 µg.L<sup>-1</sup> (20% LC<sub>10</sub>) was significantly decreased compared to solvent controls (p<0.001). In comparison, exposure to the commercial formulation Talstar® led to decreased swimming performance at  $\geq$ 0.03 µg.L<sup>-1</sup> dissolved bifenthrin (10% LC<sub>10</sub>, p<0.001).

After transfer to control water for and maintenance for an additional 24 h, swimming performance of pesticide-exposed fish improved in most treatments. Fish exposed to  $0.07-0.14~\mu g.L^{-1}$  pure bifenthrin, and  $0.03-0.05~\mu g.L^{-1}$  Talstar® recovered completely (Figure 1). After a recovery period of six days, no statistically significant differences between treatments were observed. When comparing dissolved bifenthrin concentrations between pure bifentrhin and Talstar®, the formulation was more toxic than the pure active ingredient.

Fipronil: Swimming performance after 24 h was significantly decreased in fish exposed to concentrations  $\geq\!142~\mu g.L^{-1}$  pure fipronil (20% LC $_{10}$ , p=0.0005) and  $\geq\!148~\mu g.L^{-1}$  Termidor® (33% LC $_{10}$ , p=0.0036). Although the measured concentrations at this time point are in a similar range, the formulation showed a stronger impact on swimming at higher concentrations. Fish exposed to 192  $\mu g.L^{-1}$  Termidor® (50% LC $_{10}$ ) exhibited statistically significant lower swimming activity than fish exposed to 333  $\mu g.L^{-1}$  fipronil treatment (33% LC $_{10}$ ).

After 24h recovery in control water no significant differences in swimming performance were observed in fish exposed to pure fipronil, although in the highest concentration treatment values

were slightly lower (365  $\mu g.L^{-1}$ , p=0.0534) compared to the solvent control. After the 6-d recovery period, there was a statistically significant effect (p=0.0076) in this treatment. In contrast to the pure fipronil treatments, swimming performance of fish exposed to 192  $\mu g.L^{-1}$  Termidor® (50% LC<sub>10</sub>) remained suppressed after the 24 h recovery period. This effect persisted throughout the test, and no recovery of swimming performance was observed after 6 d (Figure 2).

## 7-d Growth and development

Bifenthrin: Exposure to pure bifenthrin at concentrations  $\leq$ 0.35µg.L<sup>-1</sup> bifenthrin (50% LC<sub>10,</sub>) and Talstar® did not result in a reduction of 7-d growth.

Fipronil: Fish exposed to pure fipronil at all concentrations tested grew significantly more than fish exposed to the solvent alone (53  $\mu$ g.L<sup>-1</sup>:10% LC<sub>10</sub>:, p=0.0165; 333  $\mu$ g.L<sup>-1</sup>: 33% LC<sub>10</sub>, p=0.0067; 365  $\mu$ g.L<sup>-1</sup>: 50% LC<sub>10</sub>, p=0.0035, Figure 3) Exposure to Termidor® did not result in negative or positive effects on growth.

Fish exposed to pure fipronil and Termidor® showed deformities of the spine, namely scoliosis and in some cases both scoliosis and lordosis (Figure ). Spinal deformations were visible four to five days after the 24h pesticide exposure. At test termination 7% of the fish exposed to 365  $\mu g.L^{-1}$  and 2% of the fish exposed to 333  $\mu g.L^{-1}$  pure fipronil had developmental abnormalities. The same effect was visible for 6% of the fish exposed to 192  $\mu g.L^{-1}$  and 2% of the fish exposed to 148  $\mu g.L^{-1}$  Termidor®.

## **DISCUSSION**

This study provides new information on the sublethal toxicity of two technical grade insecticides and two of their commercial formulations to larval fathead minnow after brief, 24 h exposures. Commercial pesticide formulations applied as sprayable solution, wettable powder or granules are of special concern with respect to aquatic environments, if the active ingredient becomes more susceptible to run-off or leaching through properties provided by inert ingredients, or if inert ingredients are toxic or synergize toxicity of the active ingredient. For example, Armbrust et al. [29] reported that the concentration of the insecticide imidacloprid was higher in run-off from turf that was treated with granules compared to application of a wettable powder. The physical properties of microencapsulated pesticide formulations like Talstar® and suspension liquids like Termidor® may also facilitate their environmental transport, and therefore increase the availability to non-target species.

In addition to increasing the likelihood of exposure, inert ingredients can also enhance the toxicity of the active ingredient. We found significant differences in toxicity between formulations and pure A.I. Both formulated products were more toxic than the respective A.I. alone, when compared based on measured dissolved insecticide concentrations. Talstar® impaired fathead minnow swimming performance at 0.03  $\mu$ g.L<sup>-1</sup> (10% LC<sub>10</sub>) while pure bifenthrin was approximately 5 times less toxic (LOEC  $\geq$ 0.14  $\mu$ g.L<sup>-1</sup>; 20% LC<sub>10</sub>). For instance, emulsifiable concentrations of pyrethroids were found to be 2.2 to 8.5 times more lethal than the pure substance [14].

The observed differences in toxicity were most likely due to the inert ingredients rather than the enantiomeric or chiral composition of the active ingredient. Pure fipronil is a 50:50 racemic mixture, just like its formulation product. Bifenthrin consists of 97% cis-isomer both in the pure compound and the formulated product. Talstar® is formulated as a so called microencapsulation of bifenthrin, resulting in um-sized particles, where the active pesticide forms a core that is coated by an outer wall consisting of "inert' ingredients [21], [30]. The toxicity of this formulation is therefore dependent on how fast and how much of the active ingredient is released through the capsule. As this formulation is designed to be more persistent at the site of application, the release is probably slow and could therefore explain why measured concentrations of dissolved bifenthrin were lower in the Talstar® experiment than in the exposures to pure bifenthrin (Table 2). However, microcapsules may have been ingested by the larval fish, thus adding a dietary exposure route to the aqueous exposure to dissolved bifenthrin. In the case of Termidor®, effects on swimming performance were initially measured at similar concentrations as the pure A.I., fipronil., but impairment was more persistent. In addition, spinal deformities were observed upon exposure to Termidor®, but were less pronounced than those observed following A.I. treatment. Stehr et al.[31] reported notochord degeneration and shortening along the rostral-caudal body axis in zebrafish (Danio rerio) embryos continuously exposed to fipronil at nominal concentrations at or above 0.7mM (333 mg.L<sup>-1</sup>). They also reported ineffective tail flips and uncoordinated muscle contractions in response to touch. Although the concentrations used in our study were below that range, similar behavioral abnormalities were observed and resulted in a measurable decrease of swimming performance. Termidor® is a water-based suspension concentrate liquid containing 9.1% active ingredient. We do not have any information on the chemical composition of the inert ingredients of this formulation, therefore cannot provide a mechanistic explanation for our observations.

Seven-day growth of larval fathead minnows was not the most sensitive endpoint in our study. Although other pyrethroids have been shown to cause a reduction in growth of fathead minnow and other fish species [14]. [37], bifenthrin and Talstar (?) exposure did not significantly affect final fish weight. This may be due to the low concentrations used in our experiments (≤50% of the LC10). We did not rigorously quantify food uptake in this study, but during daily water renewal, remaining food quantity was observed to be greater in treatments with decreased swimming performance than in control treatments and at lower exposure concentrations. Growth of fathead minnows was enhanced after exposure to fipronil., while its formulation product, Termidor® did not have any impact on growth. Enhanced growth following exposure to fipronil has not been previously reported and causative factors should be investigated in more detail, but were beyond the scope of this investigation. A limited number of studies found fipronil to be altering normal thyroid function and thyroid hormone levels in rats [32], [33], [34] and chicken [35]. As thyroid hormones also play a role in larval and juvenile development of fish [36] the observed growth abnormalities may be related to this effect.

Swimming performance is a highly suitable endpoint for estimating individual level effects of environmental contaminants as it integrates biochemical and physiological processes [37], [38] [39], [40]. Our study demonstrated that short term (24 h) exposures to sublethal concentrations of bifenthrin and fipronil and two of their commercial formulations significantly impaired swimming performance of larval fathead minnows at concentrations far below the LC<sub>10</sub> values for each of the tested substances. We used a simple and easy to perform test to assess swimming

behavior. It simulates predatory chase and integrates both neural and metabolic aspects of fish, since swimming involves nerve cell transmissions and muscle activity [41] which is particularly affected by pesticides with a neurotoxic mode of action. This is of crucial importance during early life stages where fish are highly vulnerable to predation. Inability to swim properly after a brief exposure to pesticides therefore has critical influence on individual fitness and survival, and potential population level consequences. As demonstrated in this study, fish can recover if given the chance, but in a field situation; not being able to feed or evade predators for a certain period of time, will likely lead to negative impacts on population dynamics.

In summary, our study has demonstrated that toxicity of commercial insecticide formulations is different from that of the pure ingredients. This information needs to be incorporated into environmental risk assessments of pesticides, possibly by increasing safety factors. The use of sublethal endpoints like swimming behavior offers a more environmentally relevant evaluation of the effects of pesticides on aquatic organisms than lethality or growth.

#### **ACKNOWLEDGEMENTS**

We would like to thank the staff of the UC Davis Aquatic Toxicology Laboratory for their assistance with exposure experiments and for chemical analysis the California Department of Fish and Game Water Pollution Laboratory (Rancho Cordova, CA, USA). This study was supported by the Interagency Ecological Program, Sacramento, California (Contract No. 4600008070 to I. Werner), and a postgraduate scholarship to S. Beggel by Bayerische Forschungsstiftung, Germany.

#### REFERENCES

- [1] Truhaut R. 1977. Ecotoxicology: Objectives, principles and perspectives. Ecotoxicology and Environmental Safety 1:151-173.
- [2] Sprague JB. 1969. Measurement of pollutant toxicity to fish I. Bioassay methods for acute toxicity. Water Research 3:793-821.
- [3] Faust SD. 1964. Pollution of the water environment by organic pesticides. Clin Pharmacol Therap 5:677-686.
- [4] Walker CR. 1972. ECOLOGICAL IMPLICATIONS OF PESTICIDES USED IN OR NEAR AQUATIC ENVIRONMENTS. Institute of Environmental Sciences Proceedings 18:235-237.
- [5] Budd R, Bondarenko S, Haver D, Kabashima J, Gan J. 2007. Occurrence and Bioavailability of Pyrethroids in a Mixed Land Use Watershed. J Environ Qual 36:1006-1012.
- [6] Weston DP, Holmes RW, You J, Lydy MJ. 2005. Aquatic Toxicity Due to Residential Use of Pyrethroid Insecticides. Environmental Science & Technology 39:9778-9784.
- [7] Oros D, Werner I. 2005. Pyrethroid Insecticides: an Analysis of Use Patterns, Distributions, Potential Toxicity and Fate in the Sacramento-San Joaquin Delta and Central Valley. White Paper for the Interagency Ecological Program SFEI Contribution 415 San Francisco Estuary Institute, Oakland, CA.
- [8] Lin K, Haver D, Oki L, Gan J. 2008. Transformation and Sorption of Fipronil in Urban Stream Sediments. Journal of Agricultural and Food Chemistry 56:8594-8600.
- [9] Sprague LA, Nowell LH. 2008. COMPARISON OF PESTICIDE CONCENTRATIONS IN STREAMS AT LOW FLOW IN SIX METROPOLITAN AREAS OF THE UNITED STATES. Environmental Toxicology and Chemistry 27:288-298.
- [10] Gunasekara AS, Truong T, Goh KS, Spurlock F, Tjeerdema RS. 2007. Environmental fate and toxicology of fipronil. Journal of pesticide science 32:189-199.
- [11] PAN Pesticide Database: <a href="http://pesticideinfo.org/List\_AquireAcuteSum.jsp?Rec\_Id=PC35768&Taxa\_Group=Fish">http://pesticideinfo.org/List\_AquireAcuteSum.jsp?Rec\_Id=PC35768&Taxa\_Group=Fish</a>.
- [12] Schlenk D, Huggett DB, Allgood J, Bennett E, Rimoldi J, Beeler AB, Block D, Holder AW, Hovinga R, Bedient P. 2001. Toxicity of Fipronil and Its Degradation Products to Procambarus sp.: Field and Laboratory Studies. Archives of Environmental Contamination and Toxicology 41:325-332.
- [13] Ware GW, Whitacre DM. 2004. An Introduction to Insecticides. The Pesticide Book, 6 ed. MeisterPro Information Resources, Willoughby, Ohio.
- [14] Haya K. 1989. TOXICITY OF PYRETHROID INSECTICIDES TO FISH. Environmental Toxicology and Chemistry 8:381-392.
- [15] Bradbury SP, Coats JR. 1989. TOXICOKINETICS AND TOXICODYNAMICS OF PYRETHROID INSECTICIDES IN FISH. Environmental Toxicology and Chemistry 8:373-380.
- [16] PAN Pesticide Database http://pesticideinfo.org/List\_AquireAll.jsp?Rec\_Id=PC32863&Taxa\_Group=Fish.
- [17] USEPA. 2007. Data Requirements for Pesticide Registration. (http://www.epa.gov/pesticides/regulating/data\_requirements.htm).
- [18] Schmuck R, Pflüger W, Grau R, Hollihn U, Fischer R. 1994. Comparison of short-term aquatic toxicity: Formulation vs active ingredients of pesticides. Archives of Environmental Contamination and Toxicology 26:240-250.

- [19] Paul EA, Simonin HA, Tomajer TM. 2005. A Comparison of the Toxicity of Synergized and Technical Formulations of Permethrin, Sumithrin, and Resmethrin to Trout. Archives of Environmental Contamination and Toxicology 48:251-259.
- [20] <a href="http://store.doyourownpestcontrol.com/">http://store.doyourownpestcontrol.com/</a>.
- [21] Tsuji K. 2001. Microencapsulation of pesticides and their improved handling safety. Journal of Microencapsulation 18:137-147.
- [22] Product booklet Termidor SC. BASF Corporation. 26 Davis Drive. Research Triangle Park, NC 27709.
- [23] USEPA. 2002. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. Fourth edition, EPA/821/R-02/013
- [24] Underwood AJ. 1997. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press Cambridge, UK.
- [25] Pick FE, Van Dyk LP, De Beer PR. 1984. THE EFFECT OF SIMULATED RAIN ON DEPOSITS OF SOME COTTON PESTICIDES. Pesticide Science 15:616-623.
- [26] Werner I, Zalom FG, Oliver MN, Deanovic LA, Kimball TS, Henderson JD, Wilson BW, Krueger W, Wallender WW. 2004. TOXICITY OF STORM-WATER RUNOFF AFTER DORMANT SPRAY APPLICATION IN A FRENCH PRUNE ORCHARD, GLENN COUNTY, CALIFORNIA, USA: TEMPORAL PATTERNS AND THE EFFECT OF GROUND COVERS. Environmental Toxicology and Chemistry 23:2719-2726.
- [27] Cox C, Surgan M. 2006. Unidentified inert ingredients in pesticides: Implications for human and environmental health. Environmental Health Perspectives 114:1803-1806.
- [28] USEPA, 2007. Pesticide Registration (PR) Notice 97-6: Use of Term "Inert" in the Label Ingredients Statement (http://www.epa.gov/opppmsd1/PR\_Notices/pr97-6.html).
- [29] Armbrust KL, Peeler HB. 2002. Effects of formulation on the run-off of imidacloprid from turf. Pest Management Science 58:702-706.
- [30] Scher HB, Rodson M, Lee K-S. 1998. Microencapsulation of pesticides by interfacial polymerization utilizing isocyanate or aminoplast chemistry. Pesticide Science 54:394-400.
- [31] Stehr CM, Linbo TL, Incardona JP, Scholz NL. 2006. The Developmental Neurotoxicity of Fipronil: Notochord Degeneration and Locomotor Defects in Zebrafish Embryos and Larvae. Toxicol Sci 92:270-278.
- [32] Hurley PM, Hill RN, Whiting RJ. 1998. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents. Environmental Health Perspectives 106:437-445.
- [33] Leghait J, Gayrard V, Picard-Hagen N, Camp M, Perdu E, Toutain P-L, Viguié C. 2009. Fipronil-induced disruption of thyroid function in rats is mediated by increased total and free thyroxine clearances concomitantly to increased activity of hepatic enzymes. Toxicology 255:38-44.
- [34] USEPA, 1996. New Pesticide Fact Sheet: Fipronil. EPA-737-F-96-005. US Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.
- [35] Russ M. 2005. An investigation of the effects locust-control pesticides, Fenitrothion and Fipronil, on avian development using an in ovo model. Dissertation. University of Wollongong.
- [36] Power DM, Llewellyn L, Faustino M, Nowell MA, Björnsson BT, Einarsdottir IE, Canario AVM, Sweeney GE. 2001. Thyroid hormones in growth and development of fish.

- Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 130:447-459.
- [37] Floyd EY, Geist JP, Werner I. 2008. Acute, sublethal exposure to a pyrethroid insecticide alters behavior, growth, and predation risk in larvae of the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry 27:1780-1787.
- [38] Kane AS, Salierno JD, Brewer SK. 2005. Fish models in behavioral toxicology: Automated techniques, updates and perspectives. In Ostrander GK, ed, Methods in Aquatic Toxicology Lewis Publishers, Boca Raton, FL, pp 559-590.
- [39] Geist J, Werner I, Eder KJ, Leutenegger CM. 2007. Comparisons of tissue-specific transcription of stress response genes with whole animal endpoints of adverse effect in striped bass (Morone saxatilis) following treatment with copper and esfenvalerate. Aquatic Toxicology 85:28-39.
- [40] Little EE, Finger SE. 1990. SWIMMING BEHAVIOR AS AN INDICATOR OF SUBLETHAL TOXICITY IN FISH. Environmental Toxicology and Chemistry 9:13-20.
- [41] Heath AG, Cech JJ, Zinkl JG, Steele MD. 1993. Sublethal effects of three pesticides on Japanese medaka. Archives of Environmental Contamination and Toxicology 25:485-491.

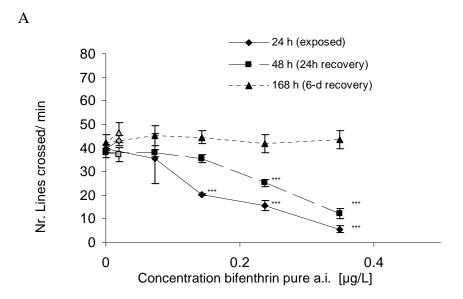

# Tables and Figures

Table 1: Acute nominal effect concentrations for 7d old fathead minnow after 24h exposure to bifenthrin, fipronil and their formulations Talstar @ and Termidor @. Effective Levels,  $LC_{50}$  and  $LC_{10}$  (with 95% confidence limits).

| Substance                     | NOEL<br>[μg/L] | LOEL<br>[µg/L] | 24h LC50 [μg/L]                                 | 24h LC10 [μg/L]    |  |  |
|-------------------------------|----------------|----------------|-------------------------------------------------|--------------------|--|--|
| fipronil pure                 | 300            | 350            | 398.29 (376.27 -<br>438.79)<br>379.47 (355.13 - | 324.12)            |  |  |
| fipronil formulation          | 200            | 350            | 405.48)                                         | 307.94)            |  |  |
| Life of being access          | 0.5            | 1              | 1.0 (1.60 - 2.12)                               | 0.02 (0.72, 1.00)  |  |  |
| bifenthrin pure<br>bifenthrin | 0.5            | 1              | 1.9 (1.69 - 2.12)                               | 0.92 (0.72 - 1.09) |  |  |
| formulation                   | < 3            | 3              | 4.85 (4.47 - 5.34)                              | 2.99 (2.36 -3.39 ) |  |  |

Table 2: Nominal and measured concentrations for 24h exposure of 7d old fathead minnow to bifenthrin, Talstar®, fipronil and Termidor®. Treatment concentrations used for swimming performance and growth tests. Calculated as percentages of the  $LC_{10}$ -value ( 10%, 20%, 33% and 50%  $LC_{10}$ ).

|               | Concentration           |          |          | 33%  |          |
|---------------|-------------------------|----------|----------|------|----------|
| Substance     | [µg/L]                  | 10% LC10 | 20% LC10 | LC10 | 50% LC10 |
| bifenthrin    |                         |          |          |      |          |
| pure          | measured                | 0.07     | 0.14     | 0.24 | 0.35     |
|               | nominal<br>measured -   | 0.09     | 0.18     | 0.31 | 0.46     |
| Talstar®      | dissolved<br>measured - | 0.03     | 0.05     | 0.08 | 0.16     |
|               | particulate             | 0.19     | 0.39     | 0.57 | 0.81     |
|               | nominal                 | 0.29     | 0.59     | 0.99 | 1.49     |
|               |                         |          |          |      |          |
| fipronil pure | measured                | 53       | 142      | 333  | 365      |
|               | nominal                 | 31       | 61       | 102  | 153      |
| Termidor®     | measured                | 28       | 128      | 148  | 192      |
|               | nominal                 | 23       | 47       | 78   | 117      |



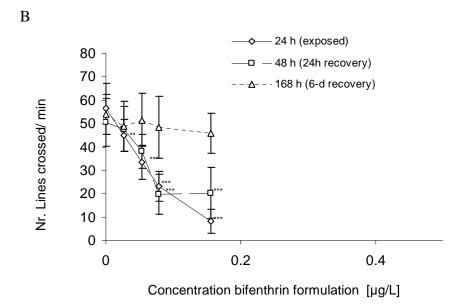
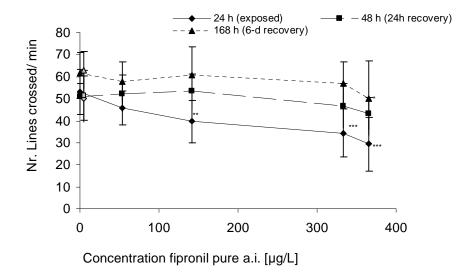




Figure 1: Swimming performance in 7-day old fathead minnow (Pimephales promelas) larvae after 24h exposure bifenthrin and Talstar®, 24h recovery and 6d recovery. Asterisks indicate significant differences in treatments compared to control/solvent control (\*: p<0.05. \*\*: p<0.01. \*\*\*\*: p<0.001). Data shown as arithmetic mean  $\pm$ SD; n=7. A: pure bifenthrin, control group shifted to x=0.02 for visibility (grey); B: Talstar® .

A



В



Concentration fipronil formulation [µg/L]

Figure 2: Swimming performance after 24h exposure, 24h recovery and 6d recovery. Asterisks indicate significant differences in treatments compared to control/ solvent control (\*: p<0.05. \*\*: p<0.01. \*\*\*: p<0.001). Data shown as arithmetic mean  $\pm$ SD; n=7. A: pure fipronil, control group shifted to x=5 for visibility (grey); right: Termidor®.

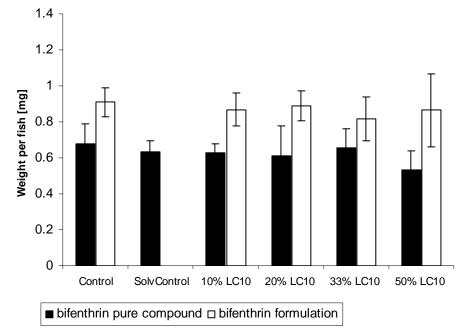



Figure 3: Average dry weight per fish after 24-h exposure to bifenthrin and Talstar® and 6 day recovery. Fish exposed to 0.35  $\mu$ g/L pure bifenthrin (50% LC<sub>10</sub>) showed slightly lower average weight compared to the solvent control. Differences were statistically significant (p<0.05) compared to the control, but not solvent control.

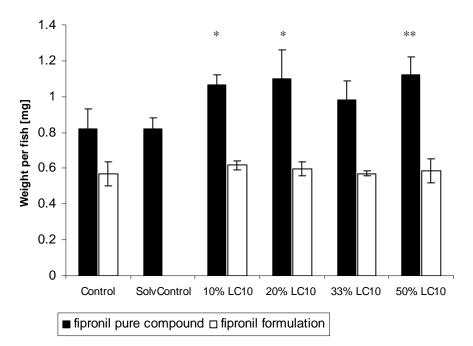



Figure 4: Average dry weight per fish after 24-h exposure to fipronil and Termidor® and 6-d recovery. Fish exposed to pure fipronil had significantly higher average weight than fish in control treatments (\*: p<0.05. \*\*: p<0.01). Fish exposed to Termidor® showed no statistically differences in weight after the 7-day growth period.

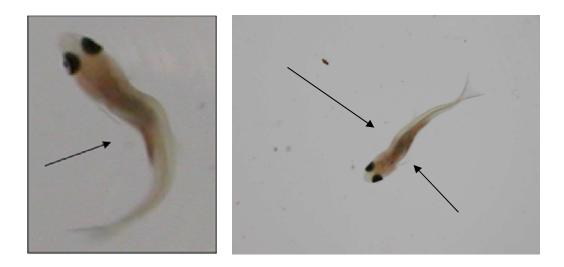



Figure 5: Abnormal spinal development in fish exposed to fipronil and Termidor®.

9.2

Molecular biomarkers in endangered species: neuromuscular impairments following sublethal copper exposures in the delta smelt (*Hypomesus transpacificus*)

Connon, R.E.<sup>1</sup>; Pfeiff, J.<sup>2</sup>; Loguinov A.S.<sup>3</sup>; D'Abronzo L.S.<sup>1</sup>; Vulpe C.D.<sup>3</sup> and Werner, L.<sup>1\*</sup>

#### **Abstract:**

The delta smelt (*Hypomesus transpacificus*) is a pelagic fish species endemic to the Sacramento-San Joaquin Estuary in Northern California. It is listed as threatened under both the USA Federal and Californian State Endangered Species Acts and considered an indicator of ecosystem health in its habitat range. Copper is a contaminant of concern in Californian waterways, common in urban storm-water runoff, present from mining activities and is regularly used as a pesticide in many agricultural areas. To understand the effects of contaminants on *H. transpacificus* we have constructed a microarray with 8,448 Expressed Sequence Tags (ESTs). We applied this tool to measure gene responses in 60-day old juveniles exposed to 50µg.L<sup>-1</sup> copper chloride for 7 days. Responding genes were predominantly involved in digestion and metabolism, and neuromuscular activity with further effects on immune system, redox, and metal ion binding. Selected genes were assessed using q-PCR on 57-day old juveniles, exposed for 96 h to copper concentrations ranging from 2.0 to 32.0 µg.L<sup>-1</sup>, concentrations which resulted in no mortality. Quantitative PCR expression analyses corroborated neuromuscular impairments.

Our results support the use of molecular biomarkers such as amylase-3, myozenin, calpain, sarcoendoplasmic reticulum calcium ATPase (SER-Ca) and creatine kinase in delta smelt in the determination of digestive and neuromuscular responses to sublethal contaminant exposure.

We hypothesize that the measured responses are indicative of direct effects on swimming ability, feeding, and other behavioral parameters, that impact on reproductive success and population growth rates. We present here the application of microarrays, discuss their use in screening species health, and in identifying specific biomarkers for researching factors contributing to the decline in numbers of the delta smelt.

**Keywords:** 'Hypomesus transpacificus', 'delta smelt', microarray, biomarker, copper

<sup>&</sup>lt;sup>1</sup> School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California, Davis, California 95616, USA. <sup>2</sup> School of Veterinary Medicine, Molecular Biosciences, University of California, Davis, California 95616, USA. <sup>3</sup> School of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA.

#### Introduction.

The Delta smelt (*H. transpacificus*) is a pelagic fish species endemic to the Northern Sacramento-San Joaquin Estuary, California, and considered an "indicator species" for ecosystem health in this system. Abundance has dramatically declined since the 1980s and it was listed as threatened in 1993, under both the Federal Endangered Species Act (ESA) and California Endangered Species Act (CESA). Delta smelt have been reared since 1992 at the Fish Conservation and Culture Laboratory (FCCL), UC Davis, providing a refuge population as well as a supply for research. A more recent step decline of the delta smelt population (Sommer et al. 2007) has prompted considerable efforts to understand the causative factors of this decline. A number of complex factors, known and unknown have potentially been affecting populations of delta smelt in its native habitat. Pollution, in the form of agricultural, pharmaceutical and industrial chemicals, along with the effects of water exports for agricultural irrigation and urban uses, toxic algal blooms and habitat destruction, are among the potential causes for the decline in pelagic organisms.

Identifying the impacts of such stressors and their mechanistic effects on individuals and populations is a main challenge in ecotoxicology. Stress responses to toxic chemicals are often preceded by alterations in gene expression, thus gene expression studies offer insights into the overall health of an organism. Microarray gene profiling is a powerful tool for defining genomewide effects of environmental change on biological function. This technology is being applied successfully to the field of ecotoxicology in a number of other species and links are being forged between what is measured at the gene expression level and life history parameters, such as metabolism, growth and reproduction (Connon et al. 2008; Heckmann et al. 2008). The predictive value of microarrays as screening tools is becoming more powerful as our understanding of these responses grows. Gene expression studies carried out over short-term exposures allow for the prediction of chronic effects that stressors may have on the health of the individual, their survival capacity, fecundity and somatic growth. Specific gene responses in individual delta smelt, indicative of their health status, could highlight potential causes for the population decline.

Our aims are to determine specific and general responses to a suite of stressors and develop molecular biomarkers applicable in the delta smelt and relevant to the varying contaminants found in the Californian watersheds. In order to understand the effects of contaminants upon H. transpacificus we have constructed a microarray with over 8,000 Expressed Sequence Tags (ESTs), described in Connon et al. (in review) and Werner et al. (2008). No sequence information was available on any database at the time this project was started.

We used copper to generate stress because biochemical responses to this heavy metal, and adverse effects on the whole organism, are relatively well understood and therefore would aid interpretation of results in this "proof of principle" test. Furthermore, copper is a contaminant of concern in Californian waterways, it is a common contaminant in urban storm-water runoff, is present from mining activities and is regularly used as a pesticide in agricultural areas. We expected neurological responses, respiration, growth and metabolism to be affected by exposure to this contaminant. Reported concentrations of copper in the Sacramento River are above 6μg μg Cu<sup>+</sup>.L<sup>-1</sup> (USGS 1998) though there are seasonal fluctuations due to its application as a

pesticide, where concentrations have been reported to exceed 500 µg Cu<sup>+</sup>.L<sup>-1</sup>in rice field effluents, following copper application (California-DFG 1998).

We present here responses to relatively high levels of copper ( $50\mu gCu^+L^{-1}$ ) examined to establish confidence in significant responses, along with expression analyses carried out a select group of genes at environmentally relevant concentrations.

## Methods

## Fish Exposures and water chemistry.

Delta smelt were obtained from the Fish Conservation and Culture Laboratory, UC Davis and maintained for 24 hours in experimental conditions as described below.

- i. Acute toxicity (exposures used for microarray analyses): 60-day old juveniles were exposed to a control and four concentrations of copper chloride (CuCl2); equivalent to nominal concentrations of 5, 10, 25 and 50 μg Cu<sup>+</sup>.L<sup>-1</sup> for 7 days. Only controls and surviving organisms from the highest exposure concentration (50 μg Cu<sup>+</sup>.L<sup>-1</sup>) were assessed with the microarray in order to identify genes specifically responding to copper exposure, eliminating any possible hormetic responses.
- ii. Sublethal toxicity (exposures used for quantitative PCR analyses): 57-day old juveniles were exposed to a control and four concentrations of copper chloride (CuCl<sub>2</sub>); equivalent to nominal concentrations of 2, 4, 8 16 and 32 μg Cu<sup>+</sup>.L<sup>-1</sup> for 4 days.

For both tests, replicate experimental treatment (n=4) were initiated with 10, juveniles in 7L of water at 20°C. Fish were fed twice daily with artemia (<48 h old). The light:dark cycle was 16h:8h. Approximately 80 percent of the water in each replicate was renewed on the second day for the 4-day exposures and on days 2, 4, and 6, for 7-day exposures.

Water temperature, pH, and DO were measured daily. Ammonia nitrogen (NH3-N) was measured prior to each water renewal. At test end, fish were snap-frozen and storage at -80oC for subsequent analyses.

RNA isolation, cDNA synthesis and fluorescence labeling.

RNA was extracted from whole, individual organisms using a standard phenol:chloroform protocol with Trizol Reagent (Invitrogen). Fifteen micrograms of total RNA were used for cDNA synthesis, spiked with control RNA (CAB, RCA, RBCL and LTP4 (SpotReport, Stratagene) and labeled with Alexa fluor dyes, using SuperScript<sup>tm</sup> Plus Indirect cDNA labeling System (Invitrogen). Each experimental sample and control was combined with a reference pool cDNA prior to hybridization using an automated Tecan HS4800 hybridization station. Slides were scanned using a GenePix 4000B scanner (Axon Instruments).

Microarray images and data from esfenvalerate exposed delta smelt can be accessed at http://www.vetmed.ucdavis.edu/apc/WernerLab/subpage/pelagic\_organism\_decline.html; POD

archive data.

## Microarray Analyses

Normalization and analytical methods are described in Loguinov et al. (2004). In brief, print tip normalization was carried out within slides and sequential single slide data analysis was carried out as an alternative to between-slide normalization. An  $\Box$ -outlier-generating model was used to identify differentially expressed genes by applying the following decision rule for multiple-slide data analysis: a given gene was selected as a candidate if it was detected as significantly up- or downregulated in 4 of 4 replicates (raw p-value = 0.0625 using exact binomial test and considering outcomes as Bernoulli trials). The approach did not use scale estimator for statistical inference and, therefore, it did not require between-slide normalization.

# Sequencing and Annotation

Sequencing was carried out at the CA&ES Genomic Facility, UC Davis. Basic Local Alignment Search Tool; translated nucleotide (BLASTx) searches were performed on specific fragments that responded significantly to the exposure treatments. Only genes that were differentially expressed following esfenvalerate exposure were sequenced. Sequences were annotated according to homologies to protein database searches using translated nucleotide sequences and direct nucleotide queries (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequences were only annotated if they were found to have a BLASTx match with the expect value smaller than 1x10<sup>-5</sup> and a score above 50.

## **Functional Classifications**

Differentially expressed genes were classified according to the Kyoto Encyclopedia of Genes and genomes (KEGG - http://www.genome.jp/kegg/kegg2.html) and Gene Ontology (GO - http://www.uniprot.org/uniprot), and information gathered from literature, into functional groups. Classification was carried out based on gene expression changes in respect of control subjects, regardless of whether these were up or downregulated, or exposure concentrations. Specific genes of interest were selected for further investigation using quantitative PCR (see below).

## Biomarker development

Genes were selected according to level of expression significance, knowledge base from literature, and functional classification. Primer and probes for qPCR analyses were designed using Roche Universal Probe Library Assay Design Center (https://www.roche-appliedscience.com). Designed primers were obtained from Eurofins MWG (http://www.eurofinsdna.com), and TaqMan probes were supplied by Roche. Sequences for all analyses been submitted assessed qPCR have bv (http://www.ncbi.nlm.nih.gov). Primers and probes for investigated biomarkers are detailed in table 1.

| Gene              |                       | q-PCR Primer Sequences      | Roche Probe No. |
|-------------------|-----------------------|-----------------------------|-----------------|
| Vitronectin       | F                     | AGTTGTCCCAAGTGTAGGTCTGG     | 38              |
| Vitronecum        | R                     | AAGTGCCGTTTGAGTCTGGG        | 36              |
| American 2        | F                     | GATCACCATGTTCTTGATCTGACG    | 99              |
| Amylase-3         | R                     | CCATCAATCCTGACCAAACCTG      | 99              |
| TNIE              | F                     | CTTTTTCCGCTGTTCCATGTTC      | 2               |
| TNF               | R                     | GTTACCAGCATACGCAGTGTCC      | 2               |
| SED Co            | F                     | CATGATCATTGGGGGAGCA         | 148             |
| SER-Ca            | R                     | TGCTGTGATGACAACGAGGAC       | 146             |
| TGF-□             | F                     | CAACGCATAGTGCATGTGG         | 76              |
| IGr-              | R                     | GAATGTGTGCACGTTGTTGGT       | 76              |
| Chitinase         | F                     | TGTGATCAAGTTCCTCCGTCAGT     | 147             |
| Cmunase           | R                     | CCGGGGTATTCCCAGTCAAT        | 147             |
| Calcain           | F                     | CCCTCCGACATGGGAAGAGT        | 30              |
| Calpain           | R                     | ACCAACTATGCCTTGCCCAA        | 30              |
| Assessantasantasa | F                     | GGAGGCACACATGGGAATG         | 109             |
| Aspartoacylase    | R                     | CTTCCTCTGAATCTCTGTTCCATTATC | 109             |
| Marania           | F                     | CCAATGTCGTGCTGGTACACC       | 106             |
| Myozenin          | R                     | CTGCCAGACATTGATGTAGCCA      | 106             |
| Craatina Vinasa   | F                     | CGATCGGCGTTGGAGATG          | 162             |
| Creatine Kinase   | R                     | GCCAAGTTCAACGAGATTCTGG      | 163             |
| □ A ation         | F                     | CCTGCCTCGTCGTACTCCTG        | 12              |
| □-Actin           | R CATCCTGGCTTCCCTGTCC |                             | 12              |

**Table 1.** Molecular biomarkers: Primer and probe sequences used for quantitative-PCR analyses of gene expression in striped bass.

# Quantitative PCR

A total of 1.5  $\mu$ g RNA was cDNA synthesized using random primers, and diluted to a total of 50  $\mu$ l with nuclease free to generate sufficient template for qPCR analysis. TaqMan Universal PCR Mastermix (Applied Biosystems) was used in q-PCR amplifications in a reaction containing

10mMTris–HCl (pH 8.3), 50mM KCl, 5mM MgCl2, 2.5mM deoxynucleotide triphosphates, 0.625U AmpliTaq Gold DNA polymerase per reaction, 0.25U AmpErase UNG per reaction and 5μL of cDNA sample in a final volume of 12μL. The samples were placed in 384 well plates and cDNA was amplified in an automated fluorometer (ABI PRISM 7900 Sequence Detection System, Applied Biosystems). Amplification conditions were 2 min at 50°C, 10 min at 95°C, 40 cycles of 15 s at 95°C and 60s at 60°C. Fluorescence of samples was measured every 7 s and signals were considered positive if fluorescence intensity exceeded 10 times the standard deviation of the baseline fluorescence (threshold cycle, CT). SDS 2.2.1 software (Applied Biosystems) was used to quantify transcription.

#### **Statistical analyses**

We use the geNorm algorithm [10] to estimate the variability of the reference genes, and to discover an optimal normalization gene. GeNorm estimates reference gene variability of candidate reference genes. (Vandesompele et al. 2002).

Quantitative PCR data was analyzed using the relative quantification 2(-Delta Delta CT) method (Livak and Schmittgen 2001). Expression was calculated relative to a-actin determined by GeNorm as the least variable gene in this study. One-way ANOVA was used to assess differences in gene expression through out the exposure concentrations, and data were further assessed using Student's T-test at individual concentrations in respect to controls.

#### Results and discussion

## Fish Exposures and water chemistry.

Water chemistry remained stable throughout the exposures except for low concentrations of ammonia at the highest exposure in the acute toxicity tests (see table 2), which was attributed to high mortality and therefore lower number of remaining fish.

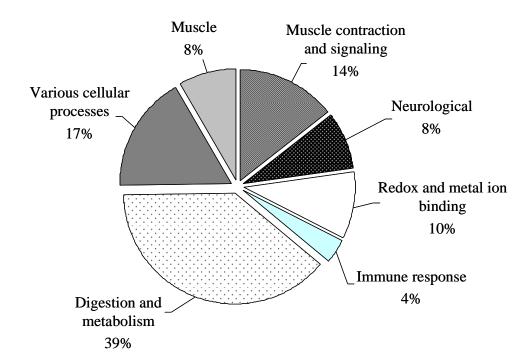
Calculated  $EC_{50-96h}$  was 33.5 µg  $Cu^+.L^{-1}$  and  $EC_{50-7day}$  was 24.7 µg  $Cu^+.L^{-1}$ . The LC50s of juvenile delta smelt for copper are far below the 96-h LC50 value reported by the California Department of Fish and Game of 1.4 mg/L for larval delta smelt (Werner et al. 2008). Our experimental results and other available data indicate that delta smelt is one of the most sensitive fish species to copper. No significant differences were observed in length and weight after the 7-d exposure, though slight weight increase was observed at the higher concentrations attributed to fewer surviving organisms resulting in a relative increase of food and space compared to controls (results not shown).

| Treatment                        | Lab  | Lab pH | Lab EC     | Lab DO | Ammonia |
|----------------------------------|------|--------|------------|--------|---------|
|                                  | Temp |        | (µmhos/cm) | (mg/L) | (mg/L)  |
|                                  | (°C) |        |            |        |         |
| Lab. Control (Dilute Well Water) | 21   | 8.4    | 431        | 8.8    | 0.28    |
| 5 ppb Cu <sup>+</sup>            | 21   | 8.49   | 456        | 8.7    | 0.24    |
| 10 ppb Cu <sup>+</sup>           | 21   | 8.48   | 461        | 9      | 0.23    |
| 25 ppb Cu <sup>+</sup>           | 21   | 8.46   | 455        | 8.8    | 0.37    |
| 50 ppb Cu <sup>+</sup>           | 21   | 8.39   | 457        | 8.9    | 0.14    |

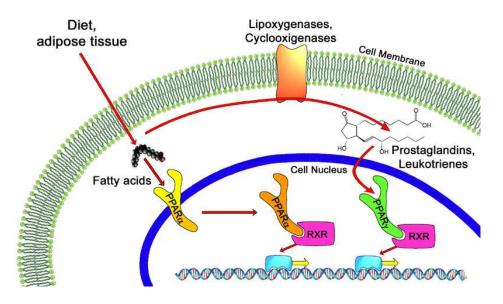
**Table 2.** Water chemistry: summary of water chemistry measurements taken on termination of the delta smelt Cu<sup>+</sup> reference toxicant test.

## Microarray responses

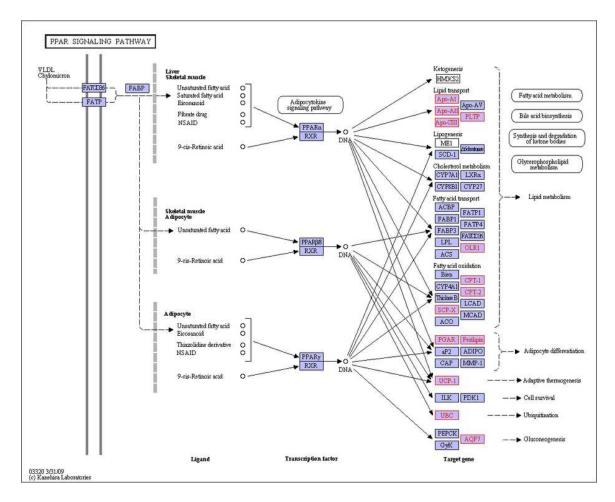
Differentially expressed genes resulting for exposure to  $50 \mu g \, \text{Cu}^+\text{.L}^{-1}$  are presented in table 3. A functional classification based on KEGG and GO of up- and down-regulated genes responding to copper exposure are presented in table 4 and figure 1.


Primary responses were seemingly involved in cardiac muscle contraction (e.g. □-actin), muscle activity (e.g creatine kinase, myozenin, titin a) and neurological effects resulting in calcium and phosphate signaling (e.g. sarcoendoplasmic reticulum calcium ATPase, m-calpain, cyclophilina). Digestion was also affected by copper exposure and was the largest affected functional classification of genes. Digestive genes encoding a number of proteins involved in glycolisis, cholesterol efflux, lipid transport, chymotripsin activity, proteolysis (e.g. amylase-3, gastric chitinase). Other responses indicate compromised immunity (e.g. TNF, TGF-□) and cellular homeostasis and tumor malignancy (e.g. vitronectin), changes in expression of these proteins have been implicated in a variety of diseases.

Peptidylproplyl isomerase A (commonly known as Cyclophilin A). is a complex that inhibits calcium dependent phosphatases, which is though to halt the production of the TNF-□ proinflammatory molecules. Interestingly, Cyclophilin A was significantly up-regulated by copper exposure whilst a TNF receptor was significantly down-regulated, supporting detrimental effects of copper on immune responses.


Gene classification from KEGG Orthology analyses identify the majority of gene expression effects are involved in the Peroxisome Proliferator-Activated Receptor (PPAR) pathway (figure 2 and 3). Peroxisome Proliferator-Activated Receptors are a group of nuclear receptors that function as transcription factors regulating gene expression, playing an essential role in the regulation of cellular differentiation, development, metabolism of carbohydrate, lipids and proteins, and tumorgenesis. This pathway integrates the majority of genes classified into digestion and metabolism; the largest classification effect observed on copper exposure, as well as genes with various other cellular functions.

| Gene most similar to                                                            | Species Match                                 | Accession No          | E-Value              | Score      | Kegg<br>Orthology | Response | Fold         |
|---------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|----------------------|------------|-------------------|----------|--------------|
| 1-acylglycerol-3-phosphate O-acyltransferase 3                                  | Danio rerio                                   | NP_998590             | 4.00E-68             | 261        | K00629            | Up       | 2.36         |
| actin alpha 2, skeletal muscle                                                  | Pagrus major                                  | BAF80060              | 1.00E-94             | 384        | K10354            | Up       | 4.88         |
| actin, alpha 2, smooth muscle, aorta                                            | Danio rerio                                   | AAH75896              | e-107                | 391        | K12314            | Up       | 3.75         |
| actin, alpha, cardiac muscle 1 like                                             | Danio rerio                                   | NP_001001409          | e-127                | 458        | K12314            | Up       | 6.10         |
| actin, beta                                                                     | Acanthopagrus schlegelii                      | AAR84618              | e-122                | 441        | K05692            | Up       | 2.51         |
| aldolase a, fructose-bisphosphate                                               | Danio rerio                                   | NP_919358             | e-124                | 447        | K01623            | Up       | 3.47         |
| alpha tubulin, (protein LOC573122)                                              | Danio rerio                                   | NP_001098596          | e-120                | 434        | K07374            | Up       | 1.86         |
| amylase-3 protein                                                               | Pseudopleuronectes americanus                 | AAF65827              | e-144                | 513        | K01176            | Up       | 3.06         |
| APEX nuclease 2                                                                 | Xenopus tropicalis                            | NP_001006804          | 6.00E-25             | 118        | K10772            | Down     | 4.54         |
| apolipoprotein                                                                  | Tetraodon nigroviridis                        | CAG03661              | 1.00E-38             | 78         | K08757            | Up       | 1.80         |
| apolipoprotein A-I                                                              | Danio rerio                                   | NP_571203             | 1.00E-81             | 306        | K08758            | Up       | 2.28         |
| apolipoprotein A-I-1 precursor (Apo-AI-1)                                       | Oncorhynchus mykiss                           | O57523                | 8.00E-76             | 286        | K08759            | Up       | 3.99         |
| apolipoprotein A-I-2 precursor                                                  | Oncorhynchus mykiss                           | O57524                | 4.00E-71             | 271        | K08760            | Up       | 4.81         |
| apolipoprotein A-IV                                                             | Danio rerio                                   | AAH93239              | 1.00E-73             | 279        | K08761            | Up       | 2.72         |
| apolipoprotein CII                                                              | Oncorhynchus mykiss                           | AAG11410              | 3.00E-19             | 99         | K08763            | Up       | 2.17         |
| apolipoprotein Eb                                                               | Danio rerio                                   | NP_571173             | 2.00E-38             | 162        | K08764            | Up       | 4.16         |
| c1q-like protein                                                                | Dissostichus mawsoni                          | ABN45966              | 3.00E-38             | 162        | K08765            | Up       | 2.17         |
| calpain 1                                                                       | Danio rerio                                   | AAH91999              | 2.00E-68             | 262        | K08766            | Up       | 2.27         |
| chitin binding Peritrophin-A domain                                             | Danio rerio                                   | AAH45331              | 4.00E-69             | 264        | K08767            | Up       | 2.34         |
| chymotrypsinogen 2-like protein                                                 | Sparus aurata                                 | AAT45254              | 1.00E-20             | 101        | K08768            | Up       | 3.93         |
| dopachrome tautomerase                                                          | Salmo salar                                   | ABD73808              | 1.00E-85             | 318        | K08769            | Down     | 1.78         |
| F-type lectin                                                                   | Morone saxatilis                              | ABB29997              | 1.00E-46             | 188        | K08770            | Up       | 3.73         |
| gastric chitinase                                                               | Morone saxatilis                              | ABU93585              | 4.00E-164            | 581        | K08771            | Up       | 4.25         |
| intestinal fatty acid binding protein                                           | Danio rerio                                   | AAF00925              | 3.00E-56             | 221        | K08771            | Up       | 2.82         |
| isocitrate dehydrogenase 3 (NAD+) gamma                                         | Danio rerio                                   | NP_001017713          | 2.00E-14             | 83         | K08772            | Down     | 1.89         |
| lipoxygenase 12R                                                                | Ornithorhynchus anatinus                      | XP_001518171          | 8.00E-06             | 55         | K08773            | Up       | 4.17         |
| m-calpain                                                                       | Oncorhynchus mykiss                           | BAD77825              | e-108                | 396        | K08775            | Down     | 1.99         |
| muscle creatine kinase                                                          | Danio rerio                                   | CAM16434              | e-112                | 406        | K08776            | Up       | 2.21         |
| myozenin 1                                                                      | Danio rerio                                   | NP_991241             | 2.00E-25             | 119        | K08777            | Uр       | 3.91         |
| NADH dehydrogenase subunit 5                                                    | Osmerus mordax                                | ABI35911              | e-107                | 390        | K08777            | Uр       | 3.88         |
| , ,                                                                             |                                               |                       | e-107<br>e-107       | 390        | K08779<br>K08780  |          | 3.03         |
| NADH dehydrogenase subunit 6<br>pancreatic protein with 2 somatomedin B domains | Salangichthys microdon Paralichthys olivaceus | NP_795843<br>BAA88246 | 2.00E-95             | 352        | K08780<br>K08781  | Up       | 7.54         |
| •                                                                               | Trematomus bernacchii                         |                       |                      | 253        |                   | Up       |              |
| pepsin A2                                                                       |                                               | CAD80096              | 2.00E-88             |            | K08782            | Up       | 4.05         |
| pepsinogen                                                                      | Paralichthys olivaceus                        | BAC87742<br>AAD56283  | 3.00E-77<br>3.00E-89 | 291<br>331 | K08783            | Up       | 3.04<br>4.65 |
| pepsinogen A form IIa                                                           | Pseudopleuronectes americanus                 |                       |                      |            | K08785            | Up       |              |
| pepsinogen C (progastricsin)                                                    | Salvelinus fontinalis                         | AAG35646              | e-107                | 390        | K08786            | Up       | 3.41         |
| peptidylprolyl isomerase A (cyclophilin)                                        | Danio rerio                                   | AAQ91263              | 1.00E-61             | 239        | K08788            | Up       | 2.77         |
| phosphoglucose isomerase-2                                                      | Plecoglossus altivelis                        | BAF91566              | e-120                | 435        | K08789            | Up       | 4.86         |
| proteasome (macropain) 26S subunit, ATPase 4                                    | Danio rerio                                   | AAI53480              | e-109                | 396        | K08790            | Down     | 2.92         |
| proteasome subunit alpha type 7                                                 | Danio rerio                                   | NP_998331             | e-112                | 409        | K08791            | Down     | 2.89         |
| sarcoendoplasmic reticulum calcium ATPase                                       | Silurus lanzhouensis                          | ABG90496              | 8.00E-87             | 323        | K08795            | Up       | 2.71         |
| simple type II keratin K8b (S2)                                                 | Oncorhynchus mykiss                           | CAA63300              | 3.00E-74             | 281        | K08799            | Up       | 3.28         |
| SPARC: secreted protein, acidic, rich in cysteine                               | Danio rerio                                   | AAT01213              | 2.00E-31             | 139        | K08800            | Up       | 4.14         |
| suppressor of ypt1                                                              | Danrio rerio                                  | NP_878281             | e-122                | 442        | K08801            | Down     | 2.14         |
| suppressor of ypt1                                                              | Danrio rerio                                  | NP_878281             | e-123                | 445        | K08802            | Down     | 3.01         |
| titin a                                                                         | Danio rerio                                   | ABG48500              | e-125                | 451        | K08805            | Up       | 2.80         |
| TNF (tumor necrosis factor) decoy receptor                                      | Oncorhynchus mykiss                           | AAK91758              | 2.00E-67             | 258        | K08807            | Down     | 4.23         |
| transforming growth factor, beta-induced                                        | Danio rerio                                   | NP_878282             | 3.00E-21             | 105        | K08808            | Up       | 1.59         |
| tripartite motif-containing 45                                                  | Xenopus tropicalis                            | NP_001011026          | 3.00E-27             | 125        | K08809            | Up       | 2.20         |
| zinc finger protein 503                                                         | Danio rerio                                   | NP_942137             | 3.00E-63             | 245        | K08810            | Down     | 2.58         |
| zona pellucida protein X                                                        | Sparus aurata                                 | AAY21008              | 1.00E-68             | 263        | K08811            | Down     | 1.99         |


**Table 4.** Annotation, fold-change in expression, and functional KEGG Orthology codes of delta smelt genes significantly differing (p<0.05) on exposure to copper (50  $\mu$ g Cu<sup>+</sup>.L<sup>-1</sup>).



**Figure 1.** Microarray responses: systematic analysis of KEGG Orthology and Gene Ontology based functional classification of delta smelt genes significantly differing on exposure to copper (50 μg Cu<sup>+</sup>.L<sup>-1</sup>).



**Figure 2**. Peroxisome Proliferator-Activated Receptor showing involvement in metabolism. Genes involved in the PPAR pathway are further highlighted in figure 3.



**Figure 3**. Peroxisome Proliferator-Activated Receptor (PPAR) highlighting genes from microarray analysis, involved in signaling pathway, through KEGG pathways.

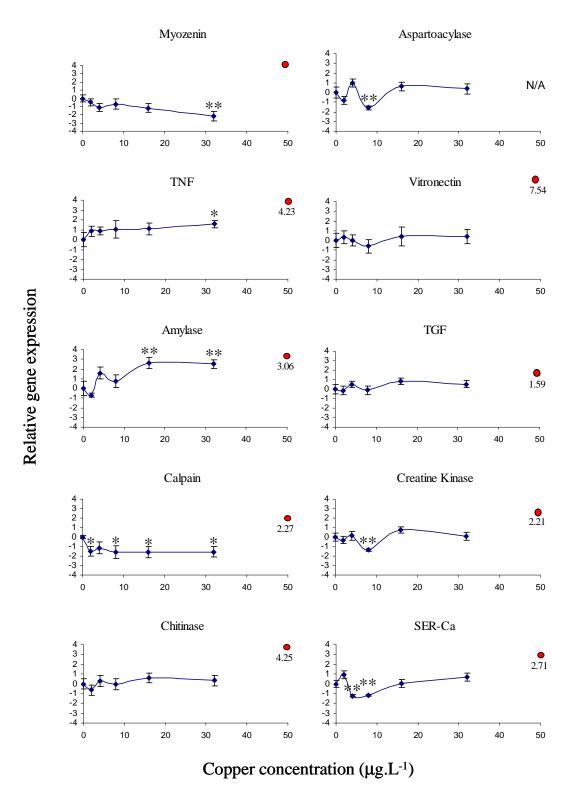
In summary, the overall responses to copper exposure in the delta smelt appear to be from genes involved in regulation of cellular differentiation, development, metabolism of carbohydrate, lipids and proteins, and tumorgenesis. Furthermore, neuromuscular responses were identified as hypothesized. There is also probable compromise to the immune system and suggestions that excess copped may lead to tissue damage.

Confirmation tests were carried out on selected genes identified through the microarray application, and investigated as probable biomarkers using real-time quantitative PCR assessing responses to copper exposure at environmentally relevant concentrations (presented below).

## Biomarker responses

Genes selected from the microarray functional classification were assessed as probable biomarkers of copper exposure. Genes were selected to cover neuromuscular, digestive and immune system responses to copper exposure.

Quantitative PCR responses to sublethal copper exposure are presented in figure 4. Results


confirm microarray identification of neuromuscular effects of sublethal copper concentrations on the delta smelt. Environmentally relevant concentrations elicited significant responses in sarcoendoplasmic reticulum calcium ATPase (SerCa), muscle creatine kinase and myelin aspartoacylase. Furthermore, the response profiles for these three genes display a significant difference in expression (p<0.01) at  $8 \mu g \text{ Cu}^+.\text{L}^{-1}$  with respect to controls.

Compensatory responses are generally observed at low contaminant exposure concentrations, as an organism is capable of metabolizing and detoxifying the chemicals in question.

Hormesis, defined as a biphasic dose response phenomenon (Calabrese 2008), is often observed at low exposure concentrations, with opposing responses to those observed at higher concentrations (Connon et al. 2008; Connon et al. in review; Heckmann et al. 2008). This shockwave response may result from non-specific responses resulting from signaling receptors being triggered. At higher levels of exposure, the responses become more specific, as the organism directly responds to the stressor. Thus, low concentrations of contaminants, may not necessarily have direct detrimental effects upon the organism, but the change in this biphasic response, to a more specific dose-response may be indicative of concentrations at which contaminants begin to be detrimental to overall health. We observe a biphasic response at the lower concentrations in the majority of genes assesses by qPCR, with fluctuating responses at low doses leading to a dose-response relationship at concentrations known to be detrimental.

Four of the investigated biomarkers displayed a dose-response relationship with copper, Calpain, Myozenin, TNF and Amylase. The physiological roles of calpains are still poorly understood. They have been shown to participate in cell mobility and cell cycle progression, potentiation in neurons and cell fusions in myoblasts. Myozenin is involved in muscle contraction. It is a Z-line,  $\alpha$ -actinin- and  $\gamma$ -filamin-binding protein expressed predominantly in skeletal muscle, and has been suggested as a biomarker for muscular dystrophy and other neuromuscular disorders. Tumor Necrosis Factor -  $\square$  (TNF) is a cytokine in systemic inflammation. The primary role of TNF is in the regulation of immune cells, inducing apoptosis to induce inflammation and inhibiting tumorgenesis and viral replication. Amylase is an enzyme that breaks down starch into sugars thus directly involved in digestion.

In summary, the selected biomarkers confirm expression of genes identified through microarray screening and corroborate effects of copper exposure upon digestion, metabolism, neuromuscular activity and immune responses, proving to be useful candidates to investigate effects of contaminants upon the delta smelt.



**Figure 4.** Biomarkers of sublethal toxicity: Quantitative PCR expression profiling of selected delta smelt genes responding to environmentally relevant concentrations of copper. Circular dots indicate comparative responses from exposure to  $50 \, \mu g \, \text{Cu}^+.\text{L}^{-1}$ , as identified through microarray analysis.

## **References:**

- Calabrese EJ. 2008. Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27(7):1451-74.
- California-DFG. 1998. Environmental monitoring for chemical control of Egeria densa in the Sacramento-San Joaquin Delta. Report 3. State of California, The Resourses Agency, Department of Fish and Game.
- Connon R, Hooper HL, Sibly RM, Lim FL, Heckmann LH, Moore DJ, Watanabe H, Soetaert A, Cook K, Maund SJ and others. 2008. Linking molecular and population stress responses in Daphnia magna exposed to cadmium. Environ Sci Technol 42(6):2181-8.
- Connon RE, Geist J, Pfeiff J, A.V. L, L.S. DA, Wintz H, C.D. V, Werner I. in review. Linking mechanistic and behavioral responses to sublethal esfenvalerate exposure in the endangered delta smelt; Hypomesus transpacificus (Fam. Osmeridae). BMC Genomics.
- Heckmann LH, Sibly RM, Connon R, Hooper HL, Hutchinson TH, Maund SJ, Hill CJ, Bouetard A, Callaghan A. 2008. Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna. Genome Biol 9(2):R40.
- Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402-8.
- Loguinov AV, Mian IS, Vulpe CD. 2004. Exploratory differential gene expression analysis in microarray experiments with no or limited replication. Genome Biol 5(3):R18.
- Sommer T, Armor C, Baxter R, Breuer R, Brown L, Chotkowski M, Culberson S, Feyerer F, Gingras M, Herbold B and others. 2007. The collapse of pelagic fishes in the upper san francisco estuary. Fisheries 32(6):270-277.
- USGS. 1998. Water-quality assessment of the Sacramento river basin, California Water quality of fixed sites, 1996-1998. Water-resources investigations report 00-4247. U.S. Department of the Interior, U.S. Geological Survey.
- Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034.
- Werner I, Deanovic LA, Markiewicz D, Stillway M, Offer N, Connon R, Brander S. 2008. Pelagic Organism Decline (POD): Acute and Chronic Invertebrate and Fish Toxicity Testing in the Sacramento-San Joaquin Delta 2006-2007.

9.3

Molecular Evaluation of Environmental Contaminant Extracts in Striped bass collected from Semi Permeable Membrane Devices (SPMD) in the San Francisco Estuary.

Connon R.E., D'Abronzo L.S. and Werner I. (in collaboration with Dr. David Ostrach's research group)

This work was carried out on striped bass samples obtained from Dr. David Ostrach.

## **Background**

Semipermeable membrane devices (SPMDs) are used to assess environmental pollutants from water and air, through the accumulation of hydrophobic organic compounds, such as PCBs, PAHs, and organochlorine pesticides. The principal advantage of SPMD is its sampling of the truly-dissolved and thus bio available phase of these pollutants. SPMDs estimate bioconcentration factors of organic compounds over a period of time, representing a time-weighted average. SPMD derived extracts can be used for conventionally applied aquatic toxicological bioassays.

In an effort to assess bioavailable lipophilic contaminants in the estuary, SPMDs were deployed and extracts used in toxicant bioassays of juvenile striped bass (*Morone saxitilis*). This study was carried out by Dr. David Ostrach. Tissue samples were assessed for gene expression by Dr. Inge Werner's laboratory, in a collaborative approach. Additional tissues will be analyzed in the near future.

#### Methods

## Exposure details:

SPMD extracts dissolved in peanut oil were injected intraperitoneally (100  $\mu$ L/fish) into 4 and 6 month old hatchery juvenile striped bass in two different exposure experiments.

Fish were exposed for 7-days and test terminated by humanely euthanizing the fish in MS222. Livers from each fish were dissected, snap frozen in liquid nitrogen and stored at -80°C for molecular analyses.

## RNA extraction and cDNA synthesis

Total RNA from was extracted from liver tissue using a Qiagen RNeasy Mini kit, with on-column DNase digestion following manufacturer's protocols. Complementary DNA (cDNA) was synthesized using 1µg total RNA, with 50 units of Superscript III reverse transcriptase, 600ng random primers, 10 units of RNaseOut, and 1mM dNTPs (all Invitrogen). Reactions were incubated for 50 min at 50°C, followed by a 5 min denaturation step at 95°C, and were later diluted 3-fold for subsequent real time - PCR assessments.

*Real-time quantitative PCR (rt-qPCR)* 

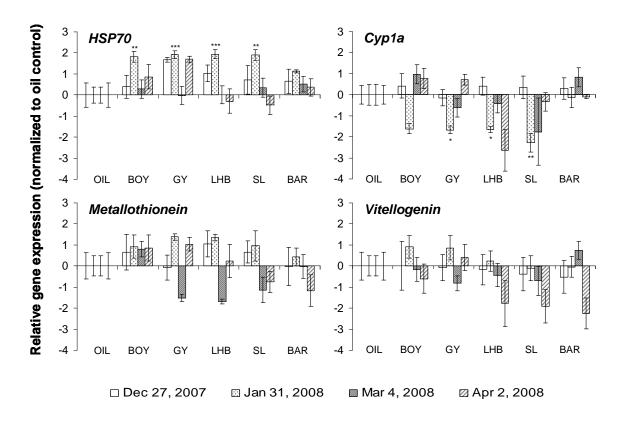
Genes investigated in this study were based on sequences, primers and probes previously developed and validated by (Geist et al. 2007), with the addition of  $\Box$ -actin, used as reference gene, for which primer pairs and fluorescent probes were designed using Roche Applied Science Universal ProbeLibrary Assay Design. All rt-qPCR systems were validated for specificity and amplification efficiencies as described in (Leutenegger et al. 1999). Briefly, a 2-fold dilution series of cDNA samples were tested in triplicate with the respective real-time TaqMan PCR system. The amplification efficiency was calculated using the formula  $E=2^{1/S}-1$ , where S is the slope curve. All amplification efficiencies were above 90%, validating the specificity of the rt-qPCR systems.

Molecular biomarkers (summarized in table 1) were used to evaluate sublethal stress response of proteotoxicity (HSP70), phase I detoxification mechanism (CYP1a), metal-binding (Metallothionein), endocrine disruption (Vitellogenin) and pathogen-defense (Mx protein).

| Gene            | Primer Sequences                                        | Roche Probe Number and<br>Sequence |
|-----------------|---------------------------------------------------------|------------------------------------|
| HSP 70          | F: CATCCTTTCTGGGGACAAGTCAG<br>R: ACACCTCCAGCGGTCTCAATAC | 62<br>ACCTGCTG                     |
| CYP1A1          | F: GCGGCACAACCCCAGAGTA<br>R: CAGCTTTCATGACGGTGTTGAG     | 65<br>CTGGAGGA                     |
| Metallothionein | F: GCGGAGGATCCTGCACTTG<br>R:CAGCCAGAGGCACACTTGGT        | 68<br>CTGCTCCT                     |
| Vitellogenin    | F: CTGATCTGAATTTGGCCTGAGG<br>R: ACCTGTATCCCAAGGACAGTGC  | 156<br>GCTGATGG                    |
| β-Actin         | F: CAATGAGAGGTTCCGTTGC<br>R: CAGGACTCCATACCGAGGAA       | 11<br>CTTCCAGC                     |

**Table 1. Molecular Biomarkers:** List of real-time Quantitative PCR primers and probes used on Striped bass (*Morone saxatilis*)

Real-time TaqMan PCR reactions were prepared with 400nM of each of two primers and 80nM of the appropriate TaqMan probe, and TaqMan Universal PCR Mastermix (Applied Biosystems, Foster City, CA, USA) containing 10mMTris–HCl (pH 8.3), 50mM KCl, 5mM MgCl2, 2.5mM deoxynucleotide triphosphates, 0.625U AmpliTaq Gold DNA polymerase per reaction, 0.25U AmpErase UNG per reaction. A total of 5µl of cDNA was combined with 7µl of the above mix and amplified in 384-well plates with an automated fluorometer (ABI HT 7900 A FAST Sequence Detection System, Applied Biosystems). Amplification conditions were 2 min initial primer annealing at 50°C and 10 min denaturation at 95°C, followed by 40 cycles of 15 sec denaturing at 95°C and 60 sec annealing at 60°C. SDS 2.2.1 software (Applied Biosystems) was used to quantify product amplification.


## Relative quantitation and statistical analyses.

A comparative cycle threshold (CT) method as described in (User Bulletin #2, Applied Biosystems) was applied to quantify gene transcription of investigated stress response genes and

values are therefore expressed as relative transcription to  $\Box$ -actin reference gene and n-fold transcription relative to oil controls. Both Analysis of Variance (ANOVA) and student-T tests were carried out between SPMD site samples and oil controls, as well as between SPMD dialysis and oil controls. Differences between the two tests dates were also assessed through ANOVA and student t-tests.

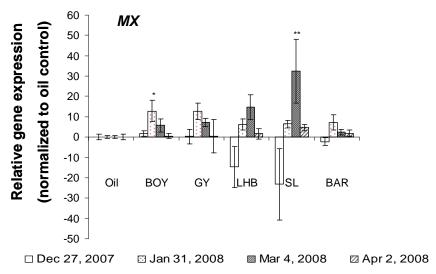
#### **Results and Discussion**

There were significant temporal variations in gene expression over the four SMPD deployment periods (Figure 1 and 2 – presented separately due to expression scale differences)



**Figure 1. Gene Expression:** Biomarker transcription of four selected genes in Striped bass responding to intraperitoneal doses of SPMD accumulated contaminants from five sites in the San Francisco Estuary. Site keys: BAR = Barbie Slough/North Cache Slough; LHB = Little Honker Bay; BY = Boyngton Slough; GY = Goodyear Slough & SL = Sherman Lake. (\* p<0.05, \*\* p<0.01, \*\*\*p<0.001).

Heat Shock Proteins (HSP70) were predominantly up-regulated confirming contaminant induced stress, and that protein increase protein synthesis was still induced at the end of the tests. Expression levels were significantly up-regulated at all sites except for Barbie Slough/North Cache Slough (BAR).


CYP1a were predominantly down-regulated at sites Little Honker Bay (LHB) and Sherman Lake (SL) suggesting probable short term induction leading to sufficient protein synthesis for

detoxification purposes. Goodyear Slough (GY), LHB and SL displayed significant down-regulation in respect of oil controls.

Metallothionein displayed both up and down regulations, with temporal variations. Down-regulation, though not significant at test termination, may be indicative of sufficient protein synthesis for metal sequestration at lower doses, whilst mRNA levels were still highly expressed at 48 hour with elevated contaminants.

Interestingly vitellogenin was down-regulated at LHB, SL and BAR at similar time-points in April 2008, though the expression levels were not significantly different to oil controls.

The cytokine encoding for MX protein (presented in fig 2), was significantly up-regulated at Boynton Slough (BOY) and SL, suggesting effects upon the immune system.



**Figure 2. Gene Expression:** Biomarker transcription of MX in Striped bass responding to intraperitoneal doses of SPMD accumulated contaminants from five sites in the San Francisco Estuary. Site keys: BAR = Barbie Slough/North Cache Slough; LHB = Little Honker Bay; BY = Boyngton Slough; GY = Goodyear Slough & SL = Sherman Lake. (\* p<0.05, \*\* p<0.01, \*\*\*p<0.001).

In summary, HSP70 up-regulation confirms general stress at sites BOYS, GY, LHB and SL, with little to no variation in BAR. Interestingly, the same sites display a down-regulation in Cyp1a, a probable indication that processes have synthesized sufficient protein for this phase I detoxification enzyme. Both BOY and SL samples appear to have further effects upon the striped bass immune system.

It would be of great interest to compare the obtained results with rainfall and flow data for the examined sites, for the duration of the SPMD deployment. This would offer some indication of dilution factors and water volumes to which the membranes were exposed.

Protein analysis data from corresponding samples will enable us to confirm the molecular results

and hypothesized conclusions.

## References.

- Geist J, Werner I, Eder KJ, Leutenegger CM. 2007. Comparisons of tissue-specific transcription of stress response genes with whole animal endpoints of adverse effect in striped bass (Morone saxatilis) following treatment with copper and esfenvalerate. Aquat Toxicol 85(1):28-39.
- Leutenegger CM, Mislin CN, Sigrist B, Ehrengruber MU, Hofmann-Lehmann R, Lutz H. 1999. Quantitative real-time PCR for the measurement of feline cytokine mRNA. Vet Immunol Immunopathol 71(3-4):291-305.

## 10. Quality Assurance/Quality Control

Quality Assurance/Quality Control (QA/QC) measures are included in this project to assess the reliability of the data collected. These QA/QC procedures include positive control tests (i.e., reference toxicant tests), field duplicates, bottle blanks and trip blanks. The components of these QA/QC measures are outlined below.

Reference toxicant tests: Positive control tests (reference toxicant tests) are conducted to ascertain whether organism responses fall within the acceptable range as dictated by US EPA. *Hyalella azteca*: Reference toxicant tests with *H. azteca* using sodium chloride as the toxicant were performed once a month. The  $LC_{50}$  for each reference toxicant test survival endpoint was plotted to determine whether it fell within the 95% confidence interval of the running mean. If the  $LC_{50}$  falls out of the 95% confidence interval, or plus or minus two standard deviations around a running mean, test organism sensitivity is considered atypical and results of toxicity tests conducted during the month of reference toxicant outliers may be considered suspect. From January 1 to June 30, 2009, *H. azteca* performed normally within each reference toxicant test. Delta Smelt: Two reference toxicant tests with Delta smelt using copper chloride (EC = 900  $\mu$ S/cm, T = 16  $\pm$  2°C) as the toxicant were performed in June, 2009. The average control survival for the reference toxicant test conducted on June 24, 2009, did not meet this project's test acceptability criterion of 60%. The  $LC_{50}$  was plotted to determine whether it fell within the 95% confidence interval of the running mean. Excluding the reference toxicant test conducted on June 24, 2009, Delta smelt performed normally within each reference toxicant test.

Table 10-1. Delta smelt RT

| <b>Test Date</b> | Mean Survival | 96-h LC50 | NOEC    | LOEC     |
|------------------|---------------|-----------|---------|----------|
| 6/10/09          | 93.3 %        | 150.3 ppb | 106 ppb | 213 ppb  |
| 6/24/09          | 53.3 %        | 133 ppb   | 213 ppb | >213 ppb |

*Field duplicates:* Field duplicate samples were collected to assess precision. For this report, these QA/QC samples were collected on the following dates:

Table 10-2. Field duplicate collection dates

| Sample Date | Field Duplicate Primary Site |
|-------------|------------------------------|
| January 7   | 602                          |
| January 22  | 711                          |
| February 4  | Light 55                     |
| February 17 | Rough & Ready                |
| March 4     | 340                          |
| April 23    | 902                          |
| May 26      | Suisun                       |
| May 27      | 609                          |
| June 11     | 815                          |
| June 24     | 405                          |
| June 24     | 508                          |

Field duplicate samples are in agreement when the primary sample and its duplicate are both either statistically similar or statistically different from the control. The frequency of field duplicates sharing equivalent results is outlined in Table 3.

**Bottle blanks:** Bottle blank samples were included to evaluate potential incidental contamination due to the sample container. Bottle blanks are analyte-free water samples that are transferred to a clean sample container that is prepared in the laboratory. For this project, bottle blanks were comprised of de-ionized water amended with dry salts to US EPA moderately hard specifications (DIEPAMHR). A bottle blank sample is in agreement when it is statistically similar to the control. The frequency of bottle blanks sharing equivalent results is outlined in Table 3.

*Trip blanks:* Trip blank samples were included in this project to evaluate potential incidental contamination that can occur during field sampling and sample processing. A trip blank is an analyte-free water sample that is transferred into a clean sample container that is prepared in the laboratory, brought out into the field, and treated like any other collected sample throughout the course of the trip. For this project, trip blanks were comprised of DIEPAMHR. A trip blank sample is in agreement when it is statistically similar to the control. The frequency of trip blanks sharing equivalent results is outlined in Table 3.

| Quality Assurance | H. azteca   | Survival    | H. aztec    | a Weight    |
|-------------------|-------------|-------------|-------------|-------------|
| Samples           | Sample Size | % Agreement | Sample Size | % Agreement |
| Field Duplicates  | 11          | 100         | 11          | 91          |
| Bottle Blanks     | 13          | 100         | 13          | 92          |
| Trip Blanks       | 5           | 100         | 5           | 100         |

Table 10-3. Frequency of QA/QC samples sharing equivalent results

In a field duplicate of site Light 55, collected on February 4, 2009, animals exhibited reduced weight when compared to animals in the primary sample. The reason for this discrepancy is unknown. However, as both the primary sample and its duplicate were statistically similar to the control, the results are considered equivalent.

In a field duplicate of site 340, collected on March 4, 2009, animals exhibited reduced weight when compared to the control, whereas animals in the primary sample did not. The mean weight of the animals in the primary sample was 0.040 mg/individual, and the mean weight of animals in the duplicate was 0.034 mg/individual. As the difference in weight between animals in the primary sample and its duplicate is small, we believe that this is an instance where the weights fell on the border between statistically significant and not statistically significant, where the primary sample's weight was not significant, and the duplicate's weight was. Although the results are not equivalent, we believe these data are reliable.

In a bottle blank collected on April 23, 2009, animals exhibited reduced weight when compared to the control. The mean weight of the animals in the control was 0.084 mg/individual, and the mean weight of animals in the bottle blank was 0.057 mg/individual. As there was low variability among replicates within this test, the ability to detect smaller statistical differences between samples increased. We believe that this difference is due to extra sensitivity in the test, rather than contamination from the sample container.

**Precision:** Precision is the degree to which the primary sample agrees with its duplicate. Precision can be measured by calculating the Relative Percent Difference (RPD) between sample measurements. The RPD between a sample and its duplicate can be calculated by using the following equation:

$$RPD = \left(\frac{\left[2*|Dup1 - Dup2|\right]}{\left[Dup1 + Dup2\right]}\right)*100$$

For this project, RPDs were calculated using the aforementioned equation on water chemistry measurements such as DO, pH, EC, hardness, alkalinity and ammonia. Both the individual and average RPDs between duplicates are listed in detail in Tables 4 and 5. Please note that the individual RPD between Site Rough & Ready and its duplicate (collected February 17, 200) and Site 902 and its duplicate (collected April 23, 2009) for ammonia is unusually high at 151% and 100%, respectively (noted with a superscript <sup>A</sup> within Tables 4A and 4B). Caution should be applied when interpreting water quality precision data. This high RPD is due to

unusually small amounts of ammonia being measured, rather than lack of precision.

**Deviations:** Two deviations occurred during this reporting period. The first deviation occurred on April 1, 2009, in which samples 602 and 609 were received at the lab with temperatures of 6.9° C and 7.2° C, respectively, above the EPA criterion of 6° C. This deviation occurred due to a shortage of ice in the transport cooler. Upon receipt, samples were immediately transferred to an environmental chamber maintained between 0-6 °C and stored in the dark until test initiation, which reduced the chance of sample degradation. Additionally, because the receiving temperatures were very close to the EPA criterion of 0-6 °C, and the amount of time the samples were out of range was minimal, we believe that sample integrity was maintained. Therefore, we consider the data reliable.

The second deviation occurred on May 16, 2009, in which the 72-hr holding time was exceeded for test initiation. This deviation occurred because the toxicity test that was initiated within the proper holding time (May 14, 2009) had contamination in the PBO-manipulated samples. Tests with the un-manipulated ambient samples were continued until the scheduled test termination; however the test had to be repeated. It was determined that the PBO stock solution had become contaminated, and a new stock solution was made. The test initiated on May 16, 2009, was a re-test of all samples, using the new PBO stock solution. This test did meet all TAC, and the data are considered reliable.

Table 10-4A. Individual Relative Percent Differences (RPDs) of water chemistry measurements between field duplicates. A High RPD

|                                    |               | <u> </u>                                                   | <u> </u>                            |          |            |                     |
|------------------------------------|---------------|------------------------------------------------------------|-------------------------------------|----------|------------|---------------------|
| Field Duplicate & Sample Date      | EC            | DO                                                         | рН                                  | Hardness | Alkalinity | Ammonia             |
| Site 602<br>January 7, 2009        | 3.94<br>2.96  | 2.41 1.21 4.37<br>0.00 6.71 4.94<br>1.31 6.45 0.00<br>1.24 | 0.26 0.00<br>0.13 0.13<br>0.51 0.13 | 4.48     | 0.00       | 4.08                |
| Site 711<br>January 22, 2009       | 1.80<br>13.26 | 5.85 2.41 5.06<br>3.64 2.60 2.67<br>0.00 3.43 1.32         | 2.64 1.01<br>0.25 0.63<br>0.49 0.62 | 0.00     | 8.28       | 14.29               |
| Site Light 55<br>February 4, 2009  | 0.30<br>4.60  | 2.53 4.76 2.63<br>4.82 3.77 2.44<br>4.08 2.44 0.00<br>1.29 | 1.61 0.62<br>0.74 0.12<br>0.24 0.00 | 8.00     | 7.41       | 14.08               |
| Rough & Ready<br>February 17, 2009 | 0.00<br>1.95  | 3.77 0.00 1.26<br>0.00 3.92 0.00<br>5.33 7.69 5.13<br>2.70 | 1.33                                | 3.70     | 66.67      | 151.02 <sup>A</sup> |
| Site 340<br>March 4, 2009          | 1.47<br>4.27  | 4.82 1.26 1.27<br>1.26 1.26 3.43<br>5.41 7.06 6.54<br>2.53 | 0.38 0.00<br>0.13 0.00<br>0.13 0.00 | 10.91    | 2.15       | 0.00                |

Table 10-4B. Individual Relative Percent Differences (RPDs) of water chemistry measurements between field duplicates. A High RPD

| Field Duplicate & Sample Date | EC           | DO                                                          | рН                                  | Hardness | Alkalinity | Ammonia             |
|-------------------------------|--------------|-------------------------------------------------------------|-------------------------------------|----------|------------|---------------------|
| Site 902<br>April 23, 2009    | 1.19<br>0.29 | 0.00 1.20 1.26<br>1.21 1.24 3.73<br>0.00 4.65 2.70          | 0.00 0.12<br>0.38 0.64<br>0.12 0.63 | 4.88     | 0.00       | 100.00 <sup>A</sup> |
| Site Suisun<br>May 26, 2009   | 0.72<br>0.94 | 1.26 1.21 2.60<br>1.24 3.92 2.38<br>0.00 2.33 1.32<br>2.63  | 1.15                                | 7.41     | 8.11       | 52.63               |
| Site 609<br>May 27, 2009      | 0.81<br>1.60 | 1.24 0.00 2.60<br>2.41 1.32 5.78<br>1.29 3.55 2.67<br>1.31  | 0.50 0.25<br>0.38 0.64<br>0.38 0.38 | 0.00     | 9.09       | 6.45                |
| Site 815<br>June 11, 2009     | 0.62<br>4.02 | 2.44 1.21 0.00<br>1.24 1.29 1.20<br>2.63 3.51 0.00          | 2.25 0.00<br>1.01 0.91<br>0.26 0.78 | 6.45     | 3.51       | 0.00                |
| Site 405<br>June 24, 2009     | 1.78<br>2.84 | 5.13 3.77 9.66<br>4.88 6.71 7.59<br>5.88 10.13 2.86<br>1.40 | 0.39 1.72<br>2.94 0.66<br>0.82 1.21 | 0.00     | 2.35       | 29.79               |
| Site 508<br>June 24, 2009     | 6.23<br>5.46 | 1.26 2.41 2.44<br>3.59 0.00 3.51<br>2.82 5.26 22.56<br>2.70 | 1.53 2.51<br>1.39 2.80<br>0.41 1.60 | 0.00     | 0.00       | 22.22               |

Table 10-5A. Average Relative Percent Difference (RPD) of water chemistry measurements between field duplicates.

| Field Duplicate &                  |             | EC      |      |             | DO      |      |             | рН      |      |
|------------------------------------|-------------|---------|------|-------------|---------|------|-------------|---------|------|
| Sample Date                        | Sample Size | Average | SD   | Sample Size | Average | SD   | Sample Size | Average | SD   |
| Site 602<br>January 7, 2009        | 2           | 3.45    | 0.70 | 10          | 2.87    | 2.55 | 6           | 0.19    | 0.17 |
| Site 711<br>January 22, 2009       | 2           | 7.53    | 8.11 | 10          | 2.85    | 1.75 | 6           | 0.94    | 0.87 |
| Site Light 55<br>February 4, 2009  | 2           | 2.45    | 3.04 | 10          | 2.88    | 1.53 | 6           | 0.55    | 0.59 |
| Rough & Ready<br>February 17, 2009 | 2           | 0.97    | 1.38 | 10          | 2.98    | 2.66 | 6           | 0.53    | 0.50 |
| Site 340<br>March 4, 2009          | 2           | 2.87    | 1.98 | 10          | 3.48    | 2.31 | 6           | 0.11    | 0.15 |

Table 10-5B. Average Relative Percent Difference (RPD) of water chemistry measurements between field duplicates.

| Field Duplicate &           |             | EC      |      |             | DO      |      |             | pН      |      |
|-----------------------------|-------------|---------|------|-------------|---------|------|-------------|---------|------|
| Sample Date                 | Sample Size | Average | SD   | Sample Size | Average | SD   | Sample Size | Average | SD   |
| Site 902<br>April 23, 2009  | 2           | 0.74    | 0.63 | 10          | 1.86    | 1.53 | 6           | 0.32    | 0.28 |
| Site Suisun<br>May 26, 2009 | 2           | 0.83    | 0.55 | 10          | 1.89    | 1.09 | 6           | 0.48    | 0.38 |
| Site 609<br>May 27, 2009    | 2           | 1.20    | 0.56 | 10          | 2.22    | 1.61 | 6           | 0.42    | 0.13 |
| Site 815<br>June 11, 2009   | 2           | 2.32    | 2.40 | 10          | 1.63    | 1.17 | 6           | 0.87    | 0.78 |
| Site 405<br>June 24, 2009   | 2           | 2.31    | 0.75 | 10          | 8.50    | 2.81 | 6           | 1.29    | 0.93 |
| Site 508<br>June 24, 2009   | 2           | 5.85    | 0.54 | 10          | 4.65    | 6.44 | 6           | 1.71    | 0.86 |

## 11. References

- Bacey J., Spurlock F., Starner K., Feng J., Hsu J. and Tran D.M. (2005). Residues and toxicity of esfenvalerate and permethrin in water and sediments, in tributaries of the Sacramento and San Joaquin Rivers, California, USA. *Bulletin of Environmental Contamination and Toxicology*.
- Bloomston M., Ellison E.C., Muscarella P., Al-Saif O., Martin E.W., Melvin W.S., and Frankel W.L. (2007). Stromal Osteonectin Overexpression Is Associated with Poor Outcome in Patients with Ampullary Cancer. *Surgical Oncology*.
- Bradbury, S.P., Coats, J.R. (1989): Toxicokinetics and Toxicodynamics of pyrethroid insecticides in fish. *Environmental Toxicology and Chemistry*, Vol.8, pp. 373-380.
- Bryant, M., Souza, K., 2004. Summer Townet and Fall Midwater Trawl Survey Status and Trends. Interagency Ecological Program Newsletter 17(2), 14-17.
- Connon R.E., Hooper H.L., Sibly R.M., Lim F-L., Heckmann L-H., Moore D.J., Watanabe W., Soetaert A., Cook K., Maund S.J., Hutchinson T.H., Moggs J., De Coen W., Iguchi T. and Callaghan A. (2008) Linking Molecular and Population Stress Responses in *Daphnia magna* exposed to cadmium. *Environmental Science and Technology*.
- Department of Fish and Game, California, (1998). Environmental monitoring for chemical control of *Egeria densa* in the Sacramento-San Joaquin Delta. *Report 3. State of California, The Resourses Agency, Department of Fish and Game.*
- Design and Interpretation Using Analysis of Variance. Cambridge
- United States Environmental Protection Agency ECOTOX Database. Version 4. 23 September 2009. http://cfpub.epa.gov/ecotox/quick\_query.htm.
- Ferreira G.C., Moura J.J.G. and Franco R. (1999). Iron metabolism: inorganic biochemistry and regulatory mechanisms (eds.) Wiley-VCH, Germany. Chapter 5, 65-93.
- Feyrer F., Nobriga M.L., Sommer T.R., 2007. Multidecal trends for three declining fish species: habitat patterns and mechanisms in the San Francisco Estuary, California, USA. Can. J. Fish. Aquat. Sci. 64, 723-734.
- Floyd E.Y., Geist J.P., Werner I. (in press). Short-term exposure of the fathead minnow (*Pimephales promelas*) to a pyrethroid insecticide: Implications for growth, behavior, and predation risk. *Environmental Toxicology and Chemistry*.
- Geist J.P., Werner I., Eder K.J., Leutenegger C.M. (2007). Comparisons of tissue-specific transcription of stress response genes with whole animal endpoints of adverse effect in striped bass (*Morone saxatilis*) following treatment with copper and esfenvalerate. *Aquatic Toxicology* 85:28-39.
- Gunasekara, A.S., Truong, T., Goh, K.S., Spurlock, F., Tjeerdema, R.S.(2007): Environmental fate and toxicology of fipronil. *J. Pestic. Sci.*, **32**(3), 189–199

- Heath A.G. (1987). Effects of waterborne copper or zinc on the osmoregulatory response of bluegill to a hypertonic NaCl challenge. *Comp Biochem Physiol* 88C:307-311.
- Heath, AG., Cech, JJ., Zinkl, JG., Finlayson, B., Fujimura, R., 1993. Sublethal Effects of Methyl Parathion, Carbofuran, and Molinate on Larval Striped Bass. American Fisheries Society Symposium 14: 17-28.
- Heath, AG., Cech, JJ., Zinkl, JG., Steele, D., 1993. Sublethal Effects of Three Pesticides on Japanese Medaka. Archives of Environmental Contamination and Toxicology 25: 485-191.
- Heckmann L-H., Connon R.E., Hutchinson T.H., Maund S.J., Sibly R.M. and Callaghan A. (2006). Expression of target and reference genes in *Daphnia magna* exposed to ibuprofen. *BMC genomics*.
- Heckmann L-H., Sibly R.M., Connon R.E., Hooper H.L., Hutchinson T.H., Maund S.J., Hill C.J., Bouetard A. and Callaghan A. (2008). Systems biology meets stress ecology: Linking molecular and organismal stress responses in Daphnia magna. *Genome Biology*.
- Hieb, K., Bryant, M., Souza, K., Greiner, T., Slater, S., 2005. Place Holder for Bay and Estuary Species 2004 Status and Trends Report. Interagency Ecological Program Newsletter 18(2), 6-10.
- Kane, AS, Salierno, JD, and Brewer, SK. 2005. Fish models in behavioral toxicology: Automated techniques, updates and perspectives. Pages 559-590 In: Ostrander, GK, editor. Methods in Aquatic Toxicology (Chapter 32), Volume 2. Lewis Publishers, Boca Raton, FL.
- Koblinski J.E., Kaplan-Singer B.R., VanOsdol S.J., Wu M., Engbring J.A., Wang S., Goldsmith C.M., Piper J.T., Vostal J.G., Harms J. F., Welch D.R. and Kleinman H.K. (2005). Endogenous Osteonectin/SPARC/BM-40 Expression Inhibits MDA-MB-231 Breast Cancer Cell Metastasis. *Cancer Research*.
- Lane, T.F., Iruela-Arispe, M.L., Johnson, R.S., Sage, E.H., (1994). SPARC is a source of copper-binding peptides that stimulate angiogenesis. *Journal of Cell Biology*.
- Livak K.J. and Schmittgen T.D. (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2<sup>-□Ct</sup> method. *Methods*.
- Loguinov, A.V.; Mian, I.S. and Vulpe, C.D. (2004). Exploratory differential gene expression analysis in microarray experiments with no or limited replication. *Genome Biology*.
- Mokry, L.E., Hoagland, K.D.: Acute Toxicity of five synthetic pyrethroid insecticides to *Daphnia magna* and *Cerodaphnia dubia*.(1999): *Environmental Toxicology and Chemistry*, Vol.9, pp. 1045-1051.
- Moyle, P.B., Williams, J.E., 1990. Biodiversity loss in the temperate zone: decline of the native fish fauna of California. Conserv. Biol. 4 (3), 275-284.
- Moyle, P.B., Herbold, B., Stevens, D.E., Miller, L.W., 1992. Life-History and Status of Delta Smelt in the Sacramento-San-Joaquin Estuary, California. Trans. Am. Fish. Soc. 121(1), 67-77.

- Rossi A.M., Eppenberger, H.M., Volpe P., Cortufo R. and Willimann T. (1990). Muscle-type MM creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+ uptake and regulate local ATP/ADP ratios. *The Journal of Biological Chemistry*.
- Stevens, D.E., Miller, L.W., 1983. Effects of River Flow on Abundance of Young Chinook Salmon, American Shad, Longfin Smelt, AND Delta Smelt in the Sacramento-San Joaquin River System. North Am. J. Fish. Manage. 3(4), 425-437.
- Stevens, D.E., Kohlhorst, D.W., Miller, L.W., Kelley, D.W., 1985. The decline of striped bass in the Sacramento-San Joaquin Estuary, California. Trans. Am. Fish. Soc. 114, 12-30. U.S.
- Surguchov A., Palazzo R.E. and Surgucheva I. (2001) gamma synuclein: subcellular localization in neuronal and non-neuronal cells and effect on signal transduction. *Cell Motility and the Cytoskeleton*.
- Teh SJ, Lu M, Teh F-C, Lesmeister S, Werner I, Krause J, Deanovic L (2008). Toxic effects of surface water in the upper San Francisco Estuary on *Eurytemora affinis*. San Luis and Delta-Mendota Water Authority, CA.
- Underwood AJ. 1997. *Experiments in Ecology: Their Logical*University Press, Cambridge, UK. URL 1: PAN Pesticides Database: <a href="http://pesticideinfo.org/List\_AquireAll.jsp?Rec\_Id=PC32863&Taxa\_Group=Fish">http://pesticideinfo.org/List\_AquireAll.jsp?Rec\_Id=PC32863&Taxa\_Group=Fish</a>
- U.S. EPA, 2002. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 4th Ed. USEPA Office of Water, Washington, DC. EPA-821-R-02-013.
- USGS (1998) Water-quality assessment of the Sacramento River basin, California Water quality of fixed sites, 1996-1998. Water-resources investigations report 00-4247. U.S. Department of the Interior, U.S. Geological Survey.
- Werner I., (2005). Acute and Chronic Invertebrate and Fish Toxicity Testing. Pelagic Organism Decline (POD) Progress Report, Interagency Ecological Program, Sacramento, CA.
- Werner I., Deanovic L., Markiewicz D., Stillway M., Offer N., Connon R., Brander S. (2008). Pelagic Organism Decline (POD): Acute and Chronic Invertebrate and Fish Toxicity Testing in the Sacramento-San Joaquin Delta 2006-2007, Final Report, Interagency Ecological Program, Sacramento, CA.
- Westfall J., Barton C., Bottomley J. (2008). Acute Toxicity of Six Synthetic Pyrethroids to *Ceriodaphnia dubia* and *Hyalella azteca*, Poster Presentation. Sanitation Districts of Los Angeles County, Whittier, CA.

# Data Appendices A – I

Pelagic Organism Decline 2008 – 2010 Progress Report III Project Period: January – June 2009

# Appendix A

## Final Report:

Acute Toxicity of Ammonia, Copper, and Pesticides to Eurytemora affinis, of the San Francisco Estuary (Swee et al., 2009)

## **Final Report**

## Acute Toxicity of Ammonia, Copper, and Pesticides to Eurytemora affinis, of the San Francisco Estuary

## **Submitted to:**

Dr. Inge Werner Aquatic Toxicology Laboratory University of California at Davis Davis, California 95616

 $\mathbf{B}\mathbf{y}$ 

Swee J. Teh
Sarah Lesmeister, Ida Flores, Michelle Kawaguchi, and Ching Teh
Aquatic Toxicology Program
Department of Anatomy, Physiology, and Cell Biology
School of Veterinary Medicine,
University of California at Davis
Davis, California 95616
Phone (530)-754-8183
Fax (530)-752-7690

Email: sjteh@ucdavis.edu

## **Executive Summary**

Toxicity testing (96-h) of ambient surface waters in April-May 2008 from several locations in the North and South Delta-San Francisco Estuary (SFE) was shown to significantly affect the survival of *Eurytemora affinis*. Although chemical contaminants such as ammonia, bifenthrin, copper diuron, lambda cyhalothrin, and polyaromatic hydrocarbons have been detected in ambient waters, the impacts of these contaminants to pelagic organisms in the SFE food web are critically unknown particularly to the dominant zooplankton, i.e., E. affinis. The acute toxicity of ammonia, bifenthrin, chlorpyrifos, copper, cyfluthrin and permethrin to E. affinis was addressed in the current study as shown by the results of 96hr-LC50 values of the different contaminants: 1) ammonia - 10.97 mg/L total ammonia or 0.78 mg/L unionized ammonia at pH 8.1, 7.56 mg/L total ammonia or 0.12 mg/L unionized ammonia at pH7.6, and 10.93 mg/L total ammonia or 0.068 mg/L unionized ammonia at pH7.2; 2) bifenthrin - 11.37 ng/L, 3) chlorpyrifos - 803.20 ng/L 4) copper - 3.48 µg/L, 5) cyfluthrin - 12.72 ng/L and 6) permethrin -158.08 ng/L. Current findings indicated that E. affinis were sensitive to ammonia, copper, and pyrethroid pesticides (bifenthrin, cyfluthrin, and permethrin) and organophosphate insecticide (chlorpyrifos). Based on the results of this study, it is likely that the toxicities observed in E. affinis in 2008 may have been due, in part, to the presence of some of these chemicals in examined ambient waters. The potential impact of one or additive effects of these chemicals pose serious implications to the health and survival of zooplankton as important components of the SFE food web.

## Introduction

Eurytemora affinis is an important food source to higher trophic level pelagic fish such as delta smelt, threadfin shad, and longfin smelt in the San Francisco Estuary (SFE). Previous study in this laboratory revealed that ambient surface waters from several locations in the North and South Delta in April-May 2008 showed significant effects to E. affinis survival (Teh et al., 2008). The initial detection of several chemical contaminants including ammonia, bifenthrin, chlorpyrifos, copper, cyfluthrin and permethrin in ambient waters prompted the need to examine their acute toxicity to E. affinis. Assessing the 96-hour LC50 values to establish the toxicity of these contaminants to E. affinis under controlled laboratory conditions was the main objective of the current study.

## **Experimental Details**

## 1. Copepods

Brood stock of *E. affinis* was grown in aerated 120 L tanks placed in an environmentally controlled room at  $20 \pm 1$  °C. Water quality in the tank including dissolved oxygen (>8 mg/L), pH (8.0 ± 0.1), water hardness (100 mg/L), salinity (2.0 ppt), and ammonia (<1  $\mu$ g/L) were monitored weekly. An equal biovolume of the Instant Algae (*Nannochloropsis* and *Pavlova*) mix was given as food at 400  $\mu$ g C.L day-1.

#### 2. Chemicals

Stock solutions of ammonium chloride (10.0 g/L), bifenthrin (8.0 mg/L), chlorpyrifos (4.0 mg/L) copper chloride (4.0 mg/L), cyfluthrin (4.0 mg/L), and permethrin (8.0 mg/L) were prepared by personnel of Aquatic Toxicology Laboratory at UC Davis. The concentrations of the chemical used were: 1) bifenthrin (methanol control, 4.0, 8.0, 16.0, 32.0, and 64.0 ng/L), 2) chlorpyrifos (methanol control, 300, 600, 900, 1200, 1500 ng/L), 3) cyfluthrin (methanol control, 1.0, 3.0, 5.0, 7.0, 9.0 ng/L), and 4) permethrin (methanol control, 150, 175, 200, 225, 250 ng/L). Methanol was used as solvent for these chemicals, and therefore served as control using the highest concentration in each of the chemical treatments. The concentrations used for ammonia were: 1) 0.0, 10.0, 15.0, 20.0, 25.0, and 30.0 mg/L at pH 8.1, 2) 0.0, 10.0, 15.0, 20.0, 25.0, and 30.0 mg/L at pH7.6, and 3) 0.0, 4.0, 6.0, 8.0, 10.0, and 12.0 mg/L at pH7.2 that were prepared by diluting the ammonium chloride stock solution with culture water and the pH adjusted with 1N HCl. The concentrations used for copper chloride were 0.0, 1.0, 2.0, 4.0, 6.0, and 8.0 µg/L. Graded concentrations of these chemicals were prepared by diluting the stock solution with culture water (same source of water as used for culturing the E. affinis) 30-45 minutes prior to the initiation of the 96-hour exposures.

## 3. Acute Toxicity Test

Groups of juvenile E. affinis (N = 20 per replicate; three replicates per concentration) were exposed separately to ammonia, bifenthrin, chlorpyrifos, copper, cyfluthrin and

permethrin using the standard static renewal method for acute toxicity testing (1993). The test conditions used for the acute toxicity tests for ammonia, bifenthrin, chlorpyrifos, copper, cyfluthrin and permethrin are shown in Table 1. Briefly, Copepods were fed with nutritious algae and 80% of the tested water was replaced at 24, 48, and 72 h with newly prepared corresponding treatment solutions previously acclimated to 20 C. Mortalities were recorded daily for 4 days. At the end of 96 hr, the number of survivors in each beaker was counted to derive the mean percentage survival of E. affinis exposed to each chemical concentration. The estimated 96-hour LC50 values (Lethal Concentration causing 50% mortality of the E. affinis) were calculated using the U.S. Environmental Protection Agency **Probit** Analysis Program v1.5 (http://www.epa.gov/nerleerd/stat2.htm).

## 4. Water parameters and chemical analysis

Water quality was monitored and recorded daily for each of the acute toxicity trials. Unionized ammonia was calculated from total ammonia nitrogen using free ammonia calculator (<a href="http://cobweb.ecn.purdue.edu/~piwc/w3-research/free-ammonia/nh3.html">http://cobweb.ecn.purdue.edu/~piwc/w3-research/free-ammonia/nh3.html</a>). The concentrations of the chemicals used for the toxicity trials will be verified at the Aquatic Toxicology Laboratory at UC Davis by testing I L subsamples of each of the chemical concentrations prior to the exposure trials.

## **Results and Discussions**

The mean survival (%) of *E. affinis* at the end of 96 hour of toxicity testing is given in Table 2. The 96hr-LC10 and 96hr-LC50 values with 95% confidence intervals as calculated using the USEPA Probit Analysis Program v1.5 are shown in Table 3.

The data demonstrates that juvenile *E. affinis* are sensitive to the ammonia, copper, pyrethroid pesticides (.bifenthrin, cyfluthrin and permethrin), and organophosphate insecticide (chlorpyrifos). This pilot study aimed to establish LC50 values for *E. affinis* to support the hypothesis that ambient water samples from certain locations in the SFE are toxic to *E. affinis*. Based on the results of this study, it is likely that the toxicities observed in *E. affinis* in 2008 may have been due, in part, to the presence of these chemicals in examined ambient waters. The potential impact of one or additive effects of these chemicals pose serious implications to the health and survival of zooplankton as important components of the SFE food web.

### References

US Environmental Protection Agency. 1993. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms (Fourth Edition). Report EPA/600/4-90/027F/93. Environmental Monitoring Systems Laboratory, Office of Research and Development. Cincinnati, OH.

Teh SJ, Min L, Teh, FC Lesmeister, S, Werner, I, Krause, J, and Deanovic, L. 2008. Toxic effects of surface water in the upper San Francisco Estuary on *Eurytemora affinis*. Final report to San Luis and Delta-Mendota Water Authority.

24-96 h

## Table 1 Test conditions used for Eurytemora affinis

| Temperature (°C)                  | $20 \pm 0.1$                    |
|-----------------------------------|---------------------------------|
| Salinity (ppt)                    | 2                               |
| pН                                | $\textbf{8.0} \pm \textbf{0.1}$ |
| Conductivity (µmhos)              | 3000                            |
| Hardness (mg/L)                   | 360                             |
| Alkalinity (mg/L)                 | 60                              |
| Acceptability in control survival | ≥80%                            |
| Size of test beaker (mL)          | 600                             |
| Volume of test solution (mL)      | 500                             |
| Life stage of copepods            | Juvenile                        |
| # of copepods                     | 20                              |
| # of replicates per concentration | 3                               |
| # of concentrations               | 6                               |
| Feeding regime                    | Daily                           |

**Static-renewal test Duration** 

Table 2 Mean % survivorship of *E. affinis* at the end of 96 hour exposure

| Chemicals      | Concentration    | % Survivorship |
|----------------|------------------|----------------|
| Ammonia        | Control          | 96.66          |
| mg/L           |                  |                |
| at pH 8.1      | 10               | 56.66          |
|                | 15               | 20.00          |
|                | 20               | 5.00           |
|                | 25               | 0              |
|                | 30               | 0              |
| Ammonia        | Control          | 88.33          |
| mg/L           |                  |                |
| at pH 7.6      | 10               | 16.66          |
| _              | 15               | 0              |
|                | 20               | 0              |
|                | 25               | 0              |
|                | 30               | 0              |
| Ammonia        | Control          | 88.33          |
| mg/L           | Control          | 00.55          |
| at pH 7.2      |                  | 60.00          |
| p.11 / 12      | 4                | 60.00          |
|                | 6                | 56.66          |
|                | 8                | 55.00          |
|                | 10               | 46.66          |
| D.6 41 .       | 12<br>Mada 1 - 1 | 35.00          |
| Bifenthrin     | Methanol control | 85.00          |
| ng/L           | 4                | 75.00          |
| (pptr)         | 8                | 43.33          |
|                | 16               | 38.33          |
|                | 32               | 16.67          |
|                | 64               | 3.33           |
| Chlorpyrifos   | Methanol control | 83.33          |
| ng/L           |                  |                |
| (pptr)         | 300              | 76.66          |
|                | 600              | 65.00          |
|                | 900              | 26.66          |
|                | 1200             | 18.33          |
|                | 1500             | 15.00          |
| Copper         | Control          | 88.33          |
| copper<br>μg/L | Control          | 00.33          |
| μg/L<br>(ppb)  | 1                | 00.22          |
| (PPu)          | 1                | 88.33          |
|                | 2                | 61.66          |
|                | 4                | 23.33          |
|                | 6                | 30.00          |
|                | 8                | 13.33          |

| Cyfluthrin<br>ng/L | Methanol control | 88.33 |
|--------------------|------------------|-------|
| (pptr)             | 1                | 85.00 |
|                    | 3                | 68.33 |
|                    | 5                | 56.66 |
|                    | 7                | 68.33 |
|                    | 9                | 46.66 |
| Permethrin<br>ng/L | methanol Control | 88.33 |
| (pptr)             | 150              | 46.66 |
|                    | 175              | 35    |
|                    | 200              | 31.66 |
|                    | 225              | 25    |
|                    | 250              | 11.66 |

Table 3 Estimates LC 10 and 50 values of  $\it E.~affinis$  calculated using Probit Analysis (95% confidence intervals are indicated in parentheses)

| Chemicals         | 96hr-LC10               | 96hr-LC50               |
|-------------------|-------------------------|-------------------------|
| Total Ammonia     | 7.01 (5.50, 8.71)       | 10.97 (9.76, 11.96)     |
| (mg/L; pH8.1)     |                         |                         |
| Unionized Ammonia | 0.46 (0.35, 0.55)       | 0.78 (0.68, 0.86)       |
| (mg/L; pH8.1)     |                         |                         |
| Total Ammonia     | 5.02 (1.42, 6.85)       | 7.56 (4.07, 8.95)       |
| (mg/L; pH7.6)     |                         |                         |
| Unionized Ammonia | 0.08 (0.02, 0.11)       | 0.12 (0.06, 0.14)       |
| (mg/L; pH7.6)     |                         |                         |
| Total Ammonia     | 1.82 (0, 2.79)          | 10.93 (7.34,49.0)       |
| (mg/L; pH7.2)     |                         |                         |
| Unionized Ammonia | 0.011 (0.0, 0.017)      | 0.068 (0.046, 0.306)    |
| (mg/L; pH7.2)     |                         |                         |
| Bifenthrin        | 2.76 (1.27, 4.43)       | 11.37 (8.04, 14.80)     |
| (ng/L; pptr)      |                         |                         |
| Chlorpyrifos      | 384.49 (211.81, 515.58) | 803.20 (640.17, 926.41) |
| (ng/L; pptr)      |                         |                         |
| Copper            | 1.42 (0.61, 1.45)       | 3.48 (2.85, 4.15)       |
| (μg/L; ppb)       |                         |                         |
| Cyfluthrin        | 1.40 (0.05, 2.89)       | 12.72 (8.05, 55.55)     |
| (ng/L; pptr)      |                         |                         |
| Permethrin        | 83.37 (38.71, 110.83)   | 158.08 (125.55, 175.99  |
| (ng/L; pptr)      |                         |                         |

# Appendix B

Hyalella azteca
Ambient Sample Toxicity
10-day Survival and Weight

Table B1-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 1/08/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 1/06/09 - 1/07/09.

|                                                       | Survival (%) <sup>1</sup> |         |           |     |                         |  |  |  |
|-------------------------------------------------------|---------------------------|---------|-----------|-----|-------------------------|--|--|--|
| Treatment                                             | Unmani                    | pulated | 25 ppb PF |     |                         |  |  |  |
|                                                       | mean                      | se      | mean      | se  | vs Non-PBO <sup>2</sup> |  |  |  |
| DIEPAMHR                                              | 98                        | 2.5     | 100       | 0.0 | NS                      |  |  |  |
| High EC Control @ 12.46 mS/cm                         | 98                        | 2.5     | 100       | 0.0 | NS                      |  |  |  |
| High EC Control @ 19.42 mS/cm                         | 98                        | 2.5     | 98        | 2.5 | NS                      |  |  |  |
| Suisun Slough at Rush Ranch <sup>3</sup>              | 100                       | 0.0     | 100       | 0.0 | NS                      |  |  |  |
| Rough and Ready DWR station, Stockton                 | 100                       | 0.0     | 100       | 0.0 | NS                      |  |  |  |
| Sacramento River at Hood DWR Station                  | 98                        | 2.5     | 100       | 0.0 | NS                      |  |  |  |
| Napa River at River Park Blvd. <sup>4</sup>           | 100                       | 0.0     | 100       | 0.0 | NS                      |  |  |  |
| Suisun Bay off Chipps Island (508) <sup>3</sup>       | 100                       | 0.0     | 100       | 0.0 | NS                      |  |  |  |
| Grizzly Bay at Dolphin (602) <sup>4</sup>             | 98                        | 2.5     | 93        | 4.8 | NS                      |  |  |  |
| Field Dup.: Grizzly Bay at Dolphin (602) <sup>4</sup> | 100                       | 0.0     | -         | -   | NA                      |  |  |  |

|                                                       | Weight (mg/surviving individual) <sup>1</sup> |         |           |          |                         |  |  |  |
|-------------------------------------------------------|-----------------------------------------------|---------|-----------|----------|-------------------------|--|--|--|
| Treatment                                             | Unmani                                        | pulated | 25 ppb Pl | BO added |                         |  |  |  |
|                                                       | mean                                          | se      | mean      | se       | vs Non-PBO <sup>2</sup> |  |  |  |
| DIEPAMHR                                              | 0.042                                         | 0.006   | 0.076     | 0.009    | S (181%)*               |  |  |  |
| High EC Control @ 12.46 mS/cm                         | 0.037                                         | 0.005   | 0.061     | 0.007    | S (165%)*               |  |  |  |
| High EC Control @ 19.42 mS/cm                         | 0.065                                         | 0.003   | 0.038     | 0.013    | NS                      |  |  |  |
| Suisun Slough at Rush Ranch <sup>3</sup>              | 0.105                                         | 0.011   | 0.078     | 0.010    | NS                      |  |  |  |
| Rough and Ready DWR station, Stockton                 | 0.117                                         | 0.006   | 0.064     | 0.015    | S (55%)*                |  |  |  |
| Sacramento River at Hood DWR Station                  | 0.100                                         | 0.004   | 0.088     | 0.005    | NS                      |  |  |  |
| Napa River at River Park Blvd.4                       | 0.032                                         | 0.007   | 0.041     | 0.005    | NS                      |  |  |  |
| Suisun Bay off Chipps Island (508) <sup>3</sup>       | 0.066                                         | 0.006   | 0.106     | 0.008    | S (161%)**              |  |  |  |
| Grizzly Bay at Dolphin (602) <sup>4</sup>             | 0.028†                                        | 0.006   | 0.069     | 0.008    | S (246%)**              |  |  |  |
| Field Dup.: Grizzly Bay at Dolphin (602) <sup>4</sup> | 0.047                                         | 0.014   | _         | -        | NA                      |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> These high conductivity samples were compared to the High EC Control @ 12.46 mS/cm.

<sup>4.</sup> These high conductivity samples were compared to the High EC Control @ 19.42 mS/cm.

<sup>†.</sup> This treatment showed lower weight compared to the High EC Control, but not compared to the normal EC Control.

Table B1-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 1/06/09 - 1/07/09.

| Treatment                                |               | Field Cl     | hemistry |              |                    | Total                         |                                |
|------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|--------------------------------|
|                                          | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |
| Suisun Slough at Rush Ranch              | 11140         | 8.5          | 7.43     | 11.9         | 23.8               | 0.23                          | 0.001                          |
| Rough and Ready DWR station, Stockton    | 983           | 8.2          | 7.25     | 11.2         | 5.6                | 0.12                          | 0.000                          |
| Sacramento River at Hood DWR Station     | 216           | 8.2          | 7.25     | 11.3         | 13.0               | 0.56                          | 0.002                          |
| Napa River at River Park Blvd.           | 18370         | 9.6          | 7.24     | 11.4         | 38.6               | 0.23                          | 0.001                          |
| Suisun Bay off Chipps Island (508)       | 12330         | 8.3          | 7.37     | 10.2         | 13.1               | 0.31                          | 0.001                          |
| Grizzly Bay at Dolphin (602)             | 19800         | 8.6          | 7.58     | 11.5         | 13.9               | 0.29                          | 0.001                          |
| Field Dup.: Grizzly Bay at Dolphin (602) | 19800         | 8.6          | 7.58     | 11.5         | 13.0               | 0.30                          | 0.001                          |

Table B1-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 1/08/09 of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 1/06/09 - 1/07/09.

| Treatment                                          | Laboratory Chemistry |                     |                     |                     |                     |           |           | - Hardness                      | Alkalinity                      | Unionized                   |
|----------------------------------------------------|----------------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------|---------------------------------|-----------------------------|
|                                                    | EC (uS/cm)           | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as<br>CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                           | 355                  | 21.0                | 23.4                | 7.2                 | 8.7                 | 7.80      | 7.97      | 104                             | 62                              | -                           |
| High EC Control @ 12.46 mS/cm                      | 11840                | 21.4                | 24.0                | 7.2                 | 8.5                 | 7.75      | 7.82      | 1380                            | 74                              | -                           |
| High EC Control @ 19.42 mS/cm                      | 17925                | 21.1                | 24.1                | 6.6                 | 8.4                 | 7.74      | 7.83      | 2200                            | 83                              | -                           |
| Suisun Slough at Rush Ranch                        | 10520                | 20.7                | 23.9                | 6.4                 | 8.4                 | 7.75      | 8.14      | 1320                            | 164                             | 0.004                       |
| Rough and Ready DWR station, Stockton              | 988                  | 20.9                | 23.4                | 7.1                 | 8.9                 | 7.97      | 8.15      | 200                             | 118                             | 0.004                       |
| Sacramento River at Hood DWR Station               | 262                  | 21.0                | 23.8                | 7.5                 | 8.7                 | 7.84      | 8.02      | 80                              | 88                              | 0.017                       |
| Napa River at River Park Blvd.                     | 17400                | 20.9                | 24.1                | 7.6                 | 8.4                 | 7.62      | 7.91      | 2160                            | 116                             | 0.003                       |
| Suisun Bay off Chipps Island (508)                 | 11545                | 20.8                | 23.4                | 7.6                 | 8.5                 | 7.74      | 7.93      | 1380                            | 96                              | 0.005                       |
| Grizzly Bay at Dolphin (602)                       | 18230                | 20.5                | 23.7                | 6.7                 | 8.4                 | 7.72      | 7.86      | 2280                            | 102                             | 0.004                       |
| Field Dup.: Grizzly Bay at Dolphin (602)           | 18120                | 20.7                | 23.6                | 7.0                 | 8.3                 | 7.74      | 7.87      | 2180                            | 102                             | 0.005                       |
| DIEPAMHR + 25 ppb PBO                              | 395                  | 20.8                | 22.7                | 7.3                 | 8.5                 | 7.80      | 8.02      | -                               | -                               | -                           |
| High EC Control @ 12.46 mS/cm + 25 ppb PBO         | 11485                | 20.5                | 22.7                | 7.3                 | 8.5                 | 7.76      | 7.82      | -                               | -                               | -                           |
| High EC Control @ 19.42 mS/cm + 25 ppb PBO         | 18055                | 20.7                | 23.1                | 6.6                 | 8.3                 | 7.74      | 7.82      | -                               | -                               | -                           |
| Suisun Slough at Rush Ranch + 25 ppb PBO           | 10140                | 20.4                | 22.6                | 7.5                 | 8.4                 | 7.70      | 8.14      | -                               | -                               | -                           |
| Rough and Ready DWR station, Stockton + 25 ppb PBO | 978                  | 20.6                | 22.8                | 7.7                 | 8.7                 | 7.98      | 8.15      | -                               | -                               | -                           |
| Sacramento River at Hood DWR Station + 25 ppb PBO  | 262                  | 20.5                | 22.9                | 7.5                 | 8.7                 | 7.85      | 8.02      | -                               | -                               | -                           |
| Napa River at River Park Blvd. + 25 ppb PBO        | 17070                | 20.5                | 22.7                | 7.6                 | 8.5                 | 7.66      | 7.89      | -                               | -                               | -                           |
| Suisun Bay off Chipps Island (508) + 25 ppb PBO    | 11135                | 20.2                | 22.4                | 7.0                 | 8.6                 | 7.76      | 7.92      | -                               | -                               | -                           |
| Grizzly Bay at Dolphin (602) + 25 ppb PBO          | 18165                | 21.1                | 22.6                | 6.8                 | 8.5                 | 7.75      | 7.87      | -                               | -                               |                             |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B2-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 1/09/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 1/08/09.

|                                                 |        | Survival (%) <sup>1</sup> |               |     |                         |  |  |  |  |  |
|-------------------------------------------------|--------|---------------------------|---------------|-----|-------------------------|--|--|--|--|--|
| Treatment                                       | Unmani | pulated                   | 25 ppb<br>add |     |                         |  |  |  |  |  |
|                                                 | mean   | se                        | mean          | se  | vs Non-PBO <sup>2</sup> |  |  |  |  |  |
| DIEPAMHR                                        | 100    | 0.0                       | 100           | 0.0 | NS                      |  |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55      | 97     | 2.8                       | 100           | 0.0 | NS                      |  |  |  |  |  |
| Sacramento River at tip of Grand Island (711)   | 100    | 0.0                       | 98            | 2.5 | NS                      |  |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 100    | 0.0                       | 100           | 0.0 | NS                      |  |  |  |  |  |
| Confluence of Lindsey Sl. And Cache Sl.         | 98     | 2.5                       | 100           | 0.0 | NS                      |  |  |  |  |  |
| San Joaquin River at Potato Slough (815)        | 100    | 0.0                       | 100           | 0.0 | NS                      |  |  |  |  |  |
| Old River, western arm at railroad bridge (902) | 100    | 0.0                       | 98            | 2.5 | NS                      |  |  |  |  |  |
| Old River at mouth of Holland Cut (915)         | 100    | 0.0                       | 100           | 0.0 | NS                      |  |  |  |  |  |
| Trip Blank                                      | 100    | 0.0                       | -             | -   | NA                      |  |  |  |  |  |

|                                                 |       | Weight (mg/surviving individual) <sup>1</sup> |       |              |                         |  |  |  |  |  |  |
|-------------------------------------------------|-------|-----------------------------------------------|-------|--------------|-------------------------|--|--|--|--|--|--|
| Treatment                                       | Unman | ipulated                                      |       | b PBO<br>ded |                         |  |  |  |  |  |  |
|                                                 | mean  | se                                            | mean  | se           | vs Non-PBO <sup>2</sup> |  |  |  |  |  |  |
| DIEPAMHR                                        | 0.069 | 0.002                                         | 0.056 | 0.008        | NS                      |  |  |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55      | 0.105 | 0.008                                         | 0.106 | 0.008        | NS                      |  |  |  |  |  |  |
| Sacramento River at tip of Grand Island (711)   | 0.085 | 0.012                                         | 0.097 | 0.014        | NS                      |  |  |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 0.124 | 0.008                                         | 0.107 | 0.004        | NS                      |  |  |  |  |  |  |
| Confluence of Lindsey Sl. And Cache Sl.         | 0.111 | 0.010                                         | 0.096 | 0.010        | NS                      |  |  |  |  |  |  |
| San Joaquin River at Potato Slough (815)        | 0.130 | 0.011                                         | 0.126 | 0.018        | NS                      |  |  |  |  |  |  |
| Old River, western arm at railroad bridge (902) | 0.129 | 0.007                                         | 0.129 | 0.006        | NS                      |  |  |  |  |  |  |
| Old River at mouth of Holland Cut (915)         | 0.125 | 0.011                                         | 0.119 | 0.002        | NS                      |  |  |  |  |  |  |
| Trip Blank                                      | 0.063 | 0.004                                         | _     | _            | NA                      |  |  |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

Table B2-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 1/08/09.

|                                                 |               | Field Ch     | emistry |                  | _                  | Total                         | TT:                            |  |
|-------------------------------------------------|---------------|--------------|---------|------------------|--------------------|-------------------------------|--------------------------------|--|
| Treatment                                       | SC<br>(uS/cm) | Temp<br>(°C) | pН      | DO<br>(mg/L<br>) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |  |
| Sacramento R. Deep Water Channel, Light 55      | 297           | 7.9          | 7.52    | 12.5             | 13.0               | 0.31                          | 0.002                          |  |
| Sacramento River at tip of Grand Island (711)   | 313           | 7.9          | 7.42    | 12.1             | 11.2               | 0.39                          | 0.002                          |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 444           | 7.3          | 7.46    | 12.7             | 15.6               | 0.10                          | 0.000                          |  |
| Confluence of Lindsey Sl. And Cache Sl.         | 261           | 7.9          | 7.34    | 12.1             | 11.0               | 0.39                          | 0.001                          |  |
| San Joaquin River at Potato Slough (815)        | 474           | 7.8          | 7.24    | 12.0             | 4.7                | 0.25                          | 0.001                          |  |
| Old River, western arm at railroad bridge (902) | 784           | 7.6          | 7.48    | 11.8             | 4.5                | 0.12                          | 0.001                          |  |
| Old River at mouth of Holland Cut (915)         | 745           | 7.6          | 7.47    | 12.6             | 3.8                | 0.12                          | 0.000                          |  |
| Trip Blank                                      | 363           | 14.9         | 7.94    | 9.6              | 0.1                | 0.00                          | 0.000                          |  |

Table B2-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 1/09/09 of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 1/08/09.

|                                                              |            |                     | Labo                | atory Chen          | nistry              |           |           | - Hardness                      | Alkalinity                      | Unionized<br>Ammonia<br>(mg/L) <sup>1</sup> |
|--------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------|---------------------------------|---------------------------------------------|
| Treatment                                                    | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as<br>CaCO <sub>3</sub> ) |                                             |
| DIEPAMHR                                                     | 329        | 21.2                | 22.6                | 7.0                 | 8.3                 | 7.76      | 8.04      | 104                             | 62                              | -                                           |
| Sacramento R. Deep Water Channel, Light 55                   | 280        | 21.7                | 22.7                | 7.6                 | 8.7                 | 7.90      | 8.17      | 104                             | 104                             | 0.017                                       |
| Sacramento River at tip of Grand Island (711)                | 258        | 21.7                | 23.1                | 7.3                 | 8.7                 | 7.83      | 8.18      | 84                              | 86                              | 0.012                                       |
| Upper Cache Slough at mouth of Ulatis Creek                  | 438        | 22.4                | 23.2                | 7.2                 | 8.6                 | 8.10      | 8.29      | 144                             | 132                             | 0.007                                       |
| Confluence of Lindsey Sl. And Cache Sl.                      | 245        | 21.1                | 22.7                | 7.4                 | 8.5                 | 7.85      | 8.11      | 94                              | 97                              | 0.021                                       |
| San Joaquin River at Potato Slough (815)                     | 433        | 22.5                | 22.8                | 6.9                 | 8.6                 | 7.79      | 8.15      | 100                             | 84                              | 0.013                                       |
| Old River, western arm at railroad bridge (902)              | 715        | 21.9                | 22.5                | 7.1                 | 8.6                 | 7.91      | 8.06      | 136                             | 88                              | 0.005                                       |
| Old River at mouth of Holland Cut (915)                      | 691        | 22.2                | 22.6                | 7.5                 | 8.4                 | 7.90      | 8.11      | 132                             | 85                              | 0.006                                       |
| Trip Blank                                                   | 336        | 22.7                | 22.8                | 7.1                 | 8.4                 | 7.75      | 8.07      | 108                             | 58                              | 0.000                                       |
| DIEPAMHR + 25 ppb PBO                                        | 340        | 22.7                | 22.7                | 7.6                 | 8.2                 | 7.76      | 8.08      | -                               | -                               | -                                           |
| Sacramento R. Deep Water Channel, Light 55 + 25 ppb PBO      | 289        | 22.4                | 23.0                | 7.5                 | 8.3                 | 7.90      | 8.15      | -                               | -                               | -                                           |
| Sacramento River at tip of Grand Island (711) + 25 ppb PBO   | 278        | 22.7                | 22.9                | 7.5                 | 8.5                 | 7.80      | 8.11      | -                               | -                               | -                                           |
| Upper Cache Slough at mouth of Ulatis Creek + 25 ppb PBO     | 448        | 22.7                | 22.9                | 6.8                 | 8.8                 | 8.05      | 8.27      | -                               | -                               | -                                           |
| Confluence of Lindsey Sl. And Cache Sl. + 25 ppb PBO         | 256        | 23.1                | 23.2                | 7.3                 | 8.6                 | 7.80      | 8.13      | -                               | -                               | -                                           |
| San Joaquin River at Potato Slough (815) + 25 ppb PBO        | 460        | 22.9                | 22.9                | 7.3                 | 8.5                 | 7.82      | 8.22      | -                               | -                               | -                                           |
| Old River, western arm at railroad bridge (902) + 25 ppb PBO | 756        | 23.2                | 23.2                | 7.4                 | 8.6                 | 7.89      | 8.06      | -                               | -                               | -                                           |
| Old River at mouth of Holland Cut (915) + 25 ppb PBO         | 733        | 22.6                | 23.1                | 7.4                 | 8.6                 | 7.89      | 8.08      | -                               | -                               | -                                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B3-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 1/22/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 1/20/09 - 1/21/09.

|                                                 |         | Survival (%) <sup>1</sup> |        |     |                         |  |  |  |  |  |  |
|-------------------------------------------------|---------|---------------------------|--------|-----|-------------------------|--|--|--|--|--|--|
| Treatment                                       |         | 1                         | 25 ppb |     |                         |  |  |  |  |  |  |
|                                                 | Unmanip | bulated                   | add    | iea |                         |  |  |  |  |  |  |
|                                                 | mean    | se                        | mean   | se  | vs Non-PBO <sup>2</sup> |  |  |  |  |  |  |
| DIEPAMHR                                        | 100     | 0.0                       | 100    | 0.0 | NS                      |  |  |  |  |  |  |
| High EC Control @ 12.68 mS/cm                   | 100     | 0.0                       | 98     | 2.5 | NS                      |  |  |  |  |  |  |
| High EC Control @ 20.85 mS/cm                   | 92      | 4.8                       | 78*    | 4.8 | NS                      |  |  |  |  |  |  |
| Suisun Slough at Rush Ranch <sup>3</sup>        | 100     | 0.0                       | 100    | 0.0 | NS                      |  |  |  |  |  |  |
| Rough and Ready DWR station, Stockton           | 98      | 2.5                       | 100    | 0.0 | NS                      |  |  |  |  |  |  |
| Napa River at River Park Blvd.4                 | 100     | 0.0                       | 100    | 0.0 | NS                      |  |  |  |  |  |  |
| Suisun Bay off Chipps Island (508) <sup>3</sup> | 100     | 0.0                       | 100    | 0.0 | NS                      |  |  |  |  |  |  |
| Grizzly Bay at Dolphin (602) <sup>4</sup>       | 100     | 0.0                       | 97     | 2.8 | NS                      |  |  |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)          | 100     | 0.0                       | 100    | 0.0 | NS                      |  |  |  |  |  |  |
| Bottle Blank                                    | 100     | 0.0                       | -      | -   | NS                      |  |  |  |  |  |  |

|                                                 |         | Weight (mg/surviving individual) <sup>1</sup> |        |       |                         |  |  |  |  |  |  |
|-------------------------------------------------|---------|-----------------------------------------------|--------|-------|-------------------------|--|--|--|--|--|--|
| Treatment                                       |         |                                               | 25 ppl | o PBO |                         |  |  |  |  |  |  |
| Treatment                                       | Unmanip | ulated                                        | ado    | ded   |                         |  |  |  |  |  |  |
|                                                 | mean    | se                                            | mean   | se    | vs Non-PBO <sup>2</sup> |  |  |  |  |  |  |
| DIEPAMHR                                        | 0.075   | 0.008                                         | 0.067  | 0.009 | NS                      |  |  |  |  |  |  |
| High EC Control @ 12.68 mS/cm                   | 0.054*  | 0.003                                         | 0.040  | 0.005 | S* (74%)                |  |  |  |  |  |  |
| High EC Control @ 20.85 mS/cm                   | 0.043** | 0.003                                         | 0.057  | 0.004 | S* (133%)               |  |  |  |  |  |  |
| Suisun Slough at Rush Ranch <sup>3</sup>        | 0.118   | 0.003                                         | 0.121  | 0.008 | NS                      |  |  |  |  |  |  |
| Rough and Ready DWR station, Stockton           | 0.087   | 0.011                                         | 0.115  | 0.007 | NS                      |  |  |  |  |  |  |
| Napa River at River Park Blvd. <sup>4</sup>     | 0.068   | 0.009                                         | 0.080  | 0.003 | NS                      |  |  |  |  |  |  |
| Suisun Bay off Chipps Island (508) <sup>3</sup> | 0.045   | 0.006                                         | 0.073  | 0.004 | S** (167%)              |  |  |  |  |  |  |
| Grizzly Bay at Dolphin (602) <sup>4</sup>       | 0.040   | 0.005                                         | 0.060  | 0.001 | S** (150%)              |  |  |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)          | 0.110   | 0.008                                         | 0.123  | 0.005 | NS                      |  |  |  |  |  |  |
| Bottle Blank                                    | 0.062   | 0.005                                         | _      | _     | NS                      |  |  |  |  |  |  |

Bottle Blank 0.062 0.005 - - NS

1. Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control.

Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> These high conductivity samples were compared to the High EC Control @ 12.68 mS/cm.

<sup>4.</sup> These high conductivity samples were compared to the High EC Control @ 20.85 mS/cm.

Table B3-2. Summary of water chemistry at field conditions of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 1/20/09 - 1/21/09.

|                                        |               | Field Ch     | emistry |              | _                  | Total                         | TT ' ' 1                       |
|----------------------------------------|---------------|--------------|---------|--------------|--------------------|-------------------------------|--------------------------------|
| Treatment                              | SC<br>(uS/cm) | Temp<br>(°C) | pН      | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |
| Suisun Slough at Rush Ranch            | 11780         | 10.3         | 7.24    | 9.8          | 20.5               | 0.17                          | 0.000                          |
| Rough and Ready DWR station, Stockton  | 1022          | 9.8          | 7.31    | 11.3         | 2.4                | 0.09                          | 0.000                          |
| Napa River at River Park Blvd.         | 20870         | 11.9         | 7.46    | 10.4         | 36.7               | 0.11                          | 0.000                          |
| Suisun Bay off Chipps Island (508)     | 12440         | 9.3          | 7.65    | 11.4         | 9.1                | 0.24                          | 0.001                          |
| Grizzly Bay at Dolphin (602)           | 19140         | 9.6          | 7.69    | 11.7         | 8.3                | 0.22                          | 0.001                          |
| Montezuma Slough at Nurse Slough (609) | 7870          | 9.5          | 7.4     | 11.9         | 24.4               | 0.25                          | 0.001                          |
| Bottle Blank                           | -             | -            | -       | -            | 0.4                | 0.01                          | -                              |

Table B3-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 1/22/09 of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 1/20/09 - 1/21/09.

|                                                     |            |                     | Labor               | atory Chem          | nistry              |           |           | - Hardness                      | Alkalinity                      | Unionized<br>Ammonia<br>(mg/L) <sup>1</sup> |
|-----------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------|---------------------------------|---------------------------------------------|
| Treatment                                           | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as<br>CaCO <sub>3</sub> ) |                                             |
| DIEPAMHR                                            | 347        | 19.5                | 23.6                | 7.3                 | 8.3                 | 7.85      | 8.11      | 100                             | 60                              | -                                           |
| High EC Control @ 12.68 mS/cm                       | 11945      | 19.3                | 23.5                | 7.1                 | 8.8                 | 7.74      | 7.98      | 1400                            | 74                              | -                                           |
| High EC Control @ 20.85 mS/cm                       | 20050      | 20.3                | 23.5                | 7.2                 | 8.3                 | 7.73      | 7.98      | 2360                            | 86                              | -                                           |
| Suisun Slough at Rush Ranch                         | 11210      | 20.4                | 23.2                | 7.2                 | 8.6                 | 7.60      | 8.23      | 1360                            | 152                             | 0.002                                       |
| Rough and Ready DWR station, Stockton               | 1072       | 20.9                | 23.6                | 7.1                 | 8.3                 | 8.03      | 8.18      | 204                             | 116                             | 0.004                                       |
| Napa River at River Park Blvd.                      | 20080      | 21.0                | 23.6                | 6.8                 | 8.5                 | 7.63      | 8.00      | 2360                            | 122                             | 0.002                                       |
| Suisun Bay off Chipps Island (508)                  | 11900      | 20.0                | 23.5                | 6.9                 | 8.5                 | 7.72      | 8.02      | 1440                            | 96                              | 0.004                                       |
| Grizzly Bay at Dolphin (602)                        | 18730      | 21.5                | 23.7                | 7.0                 | 8.3                 | 7.81      | 7.94      | 2280                            | 102                             | 0.005                                       |
| Montezuma Slough at Nurse Slough (609)              | 7660       | 21.0                | 23.7                | 6.9                 | 8.5                 | 7.77      | 8.02      | 880                             | 96                              | 0.005                                       |
| Bottle Blank                                        | 367        | 20.8                | 23.9                | 7.1                 | 8.9                 | 7.83      | 8.09      | 108                             | 58                              | 0.001                                       |
| DIEPAMHR + 25 ppb PBO                               | 365        | 21.2                | 22.9                | 7.2                 | 8.3                 | 7.86      | 8.03      | -                               | -                               | -                                           |
| High EC Control @ 12.68 mS/cm + 25 ppb PBO          | 12215      | 21.9                | 22.9                | 7.1                 | 8.2                 | 7.74      | 7.95      | -                               | -                               | -                                           |
| High EC Control @ 20.85 mS/cm + 25 ppb PBO          | 20285      | 21.3                | 23.3                | 7.0                 | 8.2                 | 7.76      | 7.93      | -                               | -                               | -                                           |
| Suisun Slough at Rush Ranch + 25 ppb PBO            | 11330      | 21.0                | 23.3                | 6.8                 | 8.3                 | 7.66      | 8.15      | -                               | -                               | -                                           |
| Rough and Ready DWR station, Stockton + 25 ppb PBO  | 1066       | 21.9                | 23.4                | 6.9                 | 8.7                 | 8.10      | 8.24      | -                               | -                               | -                                           |
| Napa River at River Park Blvd. + 25 ppb PBO         | 20315      | 21.6                | 23.3                | 6.8                 | 8.0                 | 7.59      | 7.97      | -                               | -                               | -                                           |
| Suisun Bay off Chipps Island (508) + 25 ppb PBO     | 11820      | 21.3                | 23.4                | 7.0                 | 8.4                 | 7.84      | 7.99      | -                               | -                               | -                                           |
| Grizzly Bay at Dolphin (602) + 25 ppb PBO           | 18775      | 22.0                | 23.3                | 7.1                 | 8.0                 | 7.71      | 7.95      | -                               | -                               | -                                           |
| Montezuma Slough at Nurse Slough (609) + 25 ppb PBO | 7750       | 21.4                | 23.6                | 6.9                 | 8.3                 | 7.88      | 8.05      | -                               | -                               | -                                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B4-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 1/23/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 1/22/09 - 1/23/09.

|                                                           |        |         | Survival (%   | (ó) <sup>1</sup> |                             |
|-----------------------------------------------------------|--------|---------|---------------|------------------|-----------------------------|
| Treatment                                                 | Unmani | pulated | 25 ppb<br>add |                  |                             |
|                                                           | mean   | se      | mean          | se               | vs Non-<br>PBO <sup>2</sup> |
| DIEPAMHR                                                  | 92     | 4.8     | 95            | 3.1              | NS                          |
| Low EC Control @ 136.5 uS/cm                              | 98     | 2.3     | 97            | 2.8              | NS                          |
| Confluence of Lindsey Sl. And Cache Sl.                   | 98     | 2.5     | 100           | 0.0              | NS                          |
| Old River at mouth of Holland Cut (915)                   | 98     | 2.5     | 100           | 0.0              | NS                          |
| San Joaquin River at Potato Slough (815)                  | 98     | 2.5     | 100           | 0.0              | NS                          |
| Upper Cache Slough at mouth of Ulatis Creek               | 98     | 2.5     | 100           | 0.0              | NS                          |
| Sacramento R. Deep Water Channel, Light 55                | 95     | 2.9     | 100           | 0.0              | NS                          |
| Old River, western arm at railroad bridge (902)           | 100    | 0.0     | 100           | 0.0              | NS                          |
| Sacramento River at tip of Grand Island (711)             | 100    | 0.0     | 100           | 0.0              | NS                          |
| Sacramento River at Hood DWR Station <sup>3</sup>         | 98     | 2.5     | 100           | 0.0              | NS                          |
| Field Dup.: Sacramento River at tip of Grand Island (711) | 98     | 2.5     | -             | -                | NA                          |

|                                                           |       | Weight ( | mg/survivin | g individua  | $al)^1$                     |
|-----------------------------------------------------------|-------|----------|-------------|--------------|-----------------------------|
| Treatment                                                 | Unman | ipulated |             | b PBO<br>ded | _                           |
|                                                           | mean  | se       | mean        | se           | vs Non-<br>PBO <sup>2</sup> |
| DIEPAMHR                                                  | 0.075 | 0.006    | 0.053       | 0.009        | NS                          |
| Low EC Control @ 136.5 uS/cm                              | 0.112 | 0.005    | 0.067       | 0.007        | S** (60%)                   |
| Confluence of Lindsey Sl. And Cache Sl.                   | 0.115 | 0.018    | 0.105       | 0.013        | NS                          |
| Old River at mouth of Holland Cut (915)                   | 0.084 | 0.016    | 0.127       | 0.005        | S* (151%)                   |
| San Joaquin River at Potato Slough (815)                  | 0.122 | 0.006    | 0.126       | 0.006        | NS                          |
| Upper Cache Slough at mouth of Ulatis Creek               | 0.125 | 0.012    | 0.135       | 0.012        | NS                          |
| Sacramento R. Deep Water Channel, Light 55                | 0.115 | 0.005    | 0.083       | 0.013        | NS                          |
| Old River, western arm at railroad bridge (902)           | 0.127 | 0.006    | 0.075       | 0.008        | S** (59%)                   |
| Sacramento River at tip of Grand Island (711)             | 0.107 | 0.006    | 0.078       | 0.008        | S* (73%)                    |
| Sacramento River at Hood DWR Station <sup>3</sup>         | 0.134 | 0.008    | 0.093       | 0.013        | S* (69%)                    |
| Field Dup.: Sacramento River at tip of Grand Island (711) | 0.098 | 0.009    | -           | -            | NA                          |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> This low conductivity sample was compared to the Low EC Control.

Table B4-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 1/22/09 - 1/23/09.

|                                                           |               | Field Ch     | nemistry |              |                    | Total                         | II.iid                         |  |
|-----------------------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|--------------------------------|--|
| Treatment                                                 | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |  |
| Confluence of Lindsey Sl. And Cache Sl.                   | 271           | 10.2         | 7.61     | 11.3         | 6.4                | 0.35                          | 0.003                          |  |
| Old River at mouth of Holland Cut (915)                   | 741           | 9.5          | 7.51     | 11.5         | 4.0                | 0.04                          | 0.000                          |  |
| San Joaquin River at Potato Slough (815)                  | 392           | 9.5          | 7.42     | 11.4         | 5.1                | 0.18                          | 0.001                          |  |
| Upper Cache Slough at mouth of Ulatis Creek               | 566           | 9.8          | 7.95     | 11.5         | 9.1                | 0.00                          | 0.000                          |  |
| Sacramento R. Deep Water Channel, Light 55                | 303           | 10.0         | 7.90     | 11.2         | 14.1               | 0.25                          | 0.003                          |  |
| Old River, western arm at railroad bridge (902)           | 830           | 9.4          | 7.52     | 11.4         | 4.2                | 0.05                          | 0.000                          |  |
| Sacramento River at tip of Grand Island (711)             | 266           | 10.1         | 7.51     | 11.0         | 4.3                | 0.45                          | 0.003                          |  |
| Sacramento River at Hood DWR Station                      | 207           | 11.0         | 7.49     | 10.4         | 8.9                | 0.49                          | 0.003                          |  |
| Field Dup.: Sacramento River at tip of Grand Island (711) | 266           | 10.1         | 7.51     | 11.0         | 4.4                | 0.39                          | 0.002                          |  |

Table B4-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 1/23/09 of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 1/22/09 - 1/23/09.

|                                                              |            |                     | Labora              | tory Chemi          | stry                |           |           | - Hardness                      | Alkalinity                      | Unionized                   |
|--------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------|---------------------------------|-----------------------------|
| Treatment                                                    | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as<br>CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                     | 356        | 22.6                | 23.4                | 7.1                 | 8.6                 | 7.84      | 8.04      | 100                             | 60                              | -                           |
| Low EC Control @ 136.5 uS/cm                                 | 154        | 22.5                | 23.8                | 7.3                 | 8.8                 | 7.45      | 7.87      | 44                              | 24                              | -                           |
| Confluence of Lindsey Sl. And Cache Sl.                      | 278        | 22.7                | 23.4                | 6.8                 | 8.9                 | 8.00      | 8.14      | 92                              | 99                              | 0.020                       |
| Old River at mouth of Holland Cut (915)                      | 742        | 22.7                | 23.7                | 7.0                 | 8.9                 | 7.95      | 8.08      | 132                             | 98                              | 0.002                       |
| San Joaquin River at Potato Slough (815)                     | 557        | 22.8                | 23.2                | 6.8                 | 8.9                 | 7.88      | 8.04      | 116                             | 88                              | 0.006                       |
| Upper Cache Slough at mouth of Ulatis Creek                  | 569        | 22.8                | 23.0                | 7.1                 | 8.9                 | 8.07      | 8.34      | 168                             | 150                             | 0.000                       |
| Sacramento R. Deep Water Channel, Light 55                   | 318        | 22.7                | 23.4                | 6.9                 | 8.8                 | 8.00      | 8.11      | 92                              | 104                             | 0.011                       |
| Old River, western arm at railroad bridge (902)              | 836        | 22.8                | 23.7                | 6.9                 | 8.8                 | 7.96      | 8.08      | 140                             | 88                              | 0.002                       |
| Sacramento River at tip of Grand Island (711)                | 258        | 22.8                | 23.7                | 6.7                 | 8.9                 | 7.84      | 8.00      | 84                              | 88                              | 0.014                       |
| Sacramento River at Hood DWR Station                         | 217        | 22.8                | 23.5                | 6.9                 | 8.7                 | 7.60      | 8.01      | 72                              | 78                              | 0.009                       |
| Field Dup.: Sacramento River at tip of Grand Island (711)    | 278        | 22.8                | 23.6                | 6.8                 | 8.6                 | 7.90      | 8.05      | 84                              | 81                              | 0.020                       |
| DIEPAMHR + 25 ppb PBO                                        | 345        | 22.8                | 23.0                | 7.0                 | 8.4                 | 7.81      | 8.01      | -                               | -                               | -                           |
| Low EC Control @ 136.5 uS/cm + 25 ppb PBO                    | 156        | 22.8                | 23.5                | 7.1                 | 8.7                 | 7.49      | 7.86      | -                               | -                               | -                           |
| Confluence of Lindsey Sl. And Cache Sl. + 25 ppb PBO         | 486        | 22.7                | 22.9                | 6.8                 | 8.8                 | 7.95      | 8.17      | -                               | -                               | -                           |
| Old River at mouth of Holland Cut (915) + 25 ppb PBO         | 736        | 22.8                | 22.9                | 7.1                 | 8.9                 | 7.98      | 8.09      | -                               | -                               | -                           |
| San Joaquin River at Potato Slough (815) + 25 ppb PBO        | 567        | 22.9                | 22.9                | 6.9                 | 8.7                 | 7.89      | 8.02      | -                               | -                               | -                           |
| Upper Cache Slough at mouth of Ulatis Creek + 25 ppb PBO     | 559        | 22.2                | 22.8                | 6.9                 | 8.6                 | 8.09      | 8.34      | -                               | -                               | -                           |
| Sacramento R. Deep Water Channel, Light 55 + 25 ppb PBO      | 318        | 22.5                | 22.8                | 6.9                 | 8.5                 | 8.02      | 8.17      | -                               | -                               | -                           |
| Old River, western arm at railroad bridge (902) + 25 ppb PBO | 828        | 22.3                | 22.8                | 7.7                 | 8.5                 | 7.95      | 8.07      | -                               | -                               | -                           |
| Sacramento River at tip of Grand Island (711) + 25 ppb PBO   | 247        | 22.6                | 22.9                | 6.9                 | 8.6                 | 7.93      | 8.07      | -                               | -                               | -                           |
| Sacramento River at Hood DWR Station + 25 ppb PBO            | 230        | 22.4                | 22.9                | 6.8                 | 8.7                 | 7.59      | 8.02      | -                               | -                               |                             |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B5-1a. Summary of 10-day *H. azteca* water column toxicity test initiated on 2/05/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 2/03/09 - 2/04/09.

| ligh EC Control @ 10.21 mS/cm ligh EC Control @ 20.48 mS/cm lapa River at River Park Blvd. 4 acramento River at Hood DWR Station uisun Slough at Rush Ranch 3 lough and Ready DWR station, Stockton an Joaquin River at Potato Slough (815) acramento River at tip of Grand Island (711) Ipper Cache Slough at mouth of Ulatis Creek old River, western arm at railroad bridge (902) confluence of Lindsey Sl. And Cache Sl. |        |         | Survival (9 | %) <sup>1</sup> |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|-------------|-----------------|-------------------------|
| Treatment                                                                                                                                                                                                                                                                                                                                                                                                                    | Unmani | pulated | 25 ppb PB   | O added         |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                              | mean   | se      | mean        | se              | vs Non-PBO <sup>2</sup> |
| DIEPAMHR                                                                                                                                                                                                                                                                                                                                                                                                                     | 95     | 3.1     | 98          | 2.3             | NS                      |
| High EC Control @ 10.21 mS/cm                                                                                                                                                                                                                                                                                                                                                                                                | 100    | 0.0     | 100         | 0.0             | NS                      |
| High EC Control @ 20.48 mS/cm                                                                                                                                                                                                                                                                                                                                                                                                | 69**   | 6.8     | 83*         | 3.6             | NS                      |
| Napa River at River Park Blvd. <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                  | 98     | 2.5     | 95          | 2.8             | NS                      |
| Sacramento River at Hood DWR Station                                                                                                                                                                                                                                                                                                                                                                                         | 95     | 2.9     | 97          | 2.8             | NS                      |
| Suisun Slough at Rush Ranch <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                     | 100    | 0.0     | 100         | 0.0             | NS                      |
| Rough and Ready DWR station, Stockton                                                                                                                                                                                                                                                                                                                                                                                        | 100    | 0.0     | 98          | 2.5             | NS                      |
| San Joaquin River at Potato Slough (815)                                                                                                                                                                                                                                                                                                                                                                                     | 98     | 2.5     | 100         | 0.0             | NS                      |
| Sacramento River at tip of Grand Island (711)                                                                                                                                                                                                                                                                                                                                                                                | 100    | 0.0     | 100         | 0.0             | NS                      |
| Upper Cache Slough at mouth of Ulatis Creek                                                                                                                                                                                                                                                                                                                                                                                  | 100    | 0.0     | 100         | 0.0             | NS                      |
| Old River, western arm at railroad bridge (902)                                                                                                                                                                                                                                                                                                                                                                              | 95     | 2.9     | 98          | 2.5             | NS                      |
| Confluence of Lindsey Sl. And Cache Sl.                                                                                                                                                                                                                                                                                                                                                                                      | 100    | 0.0     | 98          | 2.5             | NS                      |
| Old River at mouth of Holland Cut (915)                                                                                                                                                                                                                                                                                                                                                                                      | 100    | 0.0     | 100         | 0.0             | NS                      |
| Sacramento R. Deep Water Channel, Light 55                                                                                                                                                                                                                                                                                                                                                                                   | 100    | 0.0     | 100         | 0.0             | NS                      |
| Field Dup.: Sacramento R. Deep Water Channel, Light 55                                                                                                                                                                                                                                                                                                                                                                       | 100    | 0.0     | -           | -               | NA                      |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> P < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>\*\*\*:</sup> *P* < 0.001

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> This high conductivity sample was compared to the High EC Control @ 10.21 mS/cm

<sup>4.</sup> This high conductivity sample was compared to the High EC Control @ 20.48 mS/cm

<sup>†.</sup> The mean weight of animals exposed to the Field Duplicate of the Light 55 site was significantly lower than that of animals exposed to the original sample.

Table B5-1b. Summary of 10-day *H. azteca* water column toxicity test initiated on 2/05/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 2/03/09 - 2/04/09.

|                                                          |       | Weigh    | t (mg/surviving individual) <sup>1</sup> |         |                         |  |  |
|----------------------------------------------------------|-------|----------|------------------------------------------|---------|-------------------------|--|--|
| Treatment                                                | Unman | ipulated | 25 ppb PB0                               | O added |                         |  |  |
|                                                          | mean  | se       | mean                                     | se      | vs Non-PBO <sup>2</sup> |  |  |
| DIEPAMHR                                                 | 0.066 | 0.009    | 0.052                                    | 0.003   | NS                      |  |  |
| High EC Control @ 10.21 mS/cm                            | 0.057 | 0.004    | 0.028*                                   | 0.008   | S* (49%)                |  |  |
| High EC Control @ 20.48 mS/cm                            | 0.064 | 0.008    | 0.025***                                 | 0.002   | S** (39%)               |  |  |
| Napa River at River Park Blvd. <sup>4</sup>              | 0.066 | 0.007    | 0.022                                    | 0.012   | S* (33%)                |  |  |
| Sacramento River at Hood DWR Station                     | 0.108 | 0.012    | 0.069                                    | 0.012   | NS                      |  |  |
| Suisun Slough at Rush Ranch <sup>3</sup>                 | 0.068 | 0.006    | 0.051                                    | 0.004   | NS                      |  |  |
| Rough and Ready DWR station, Stockton                    | 0.088 | 0.001    | 0.092                                    | 0.005   | NS                      |  |  |
| San Joaquin River at Potato Slough (815)                 | 0.117 | 0.012    | 0.087                                    | 0.006   | NS                      |  |  |
| Sacramento River at tip of Grand Island (711)            | 0.104 | 0.005    | 0.087                                    | 0.014   | NS                      |  |  |
| Upper Cache Slough at mouth of Ulatis Creek              | 0.121 | 0.011    | 0.063                                    | 0.005   | S** (52%)               |  |  |
| Old River, western arm at railroad bridge (902)          | 0.119 | 0.014    | 0.044                                    | 0.012   | S** (37%)               |  |  |
| Confluence of Lindsey Sl. And Cache Sl.                  | 0.105 | 0.004    | 0.060                                    | 0.002   | S*** (57%)              |  |  |
| Old River at mouth of Holland Cut (915)                  | 0.097 | 0.014    | 0.062                                    | 0.006   | NS                      |  |  |
| Sacramento R. Deep Water Channel, Light 55               | 0.079 | 0.005    | 0.050                                    | 0.005   | S** (63%)               |  |  |
| Field Dup.: Sacramento R. Deep Water Channel, Light 55 † | 0.051 | 0.005    | -                                        | -       | NA                      |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>\*\*\*:</sup> *P* < 0.001

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> This high conductivity sample was compared to the High EC Control @ 10.21 mS/cm

<sup>4.</sup> This high conductivity sample was compared to the High EC Control @ 20.48 mS/cm

<sup>†.</sup> The mean weight of animals exposed to the Field Duplicate of the Light 55 site was significantly lower than that of animals exposed to the original sample.

Table B5-2. Water chemistry at field conditions of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 2/03/09 - 2/04/09.

|                                                        |               | Field Ch     | emistry |              |                    | Total                         | TT ' ' 1                       |  |
|--------------------------------------------------------|---------------|--------------|---------|--------------|--------------------|-------------------------------|--------------------------------|--|
| Treatment                                              | SC<br>(uS/cm) | Temp<br>(°C) | pН      | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |  |
| Napa River at River Park Blvd.                         | 20180         | 12.6         | 7.48    | 11.2         | 8.1                | 0.11                          | 0.001                          |  |
| Sacramento River at Hood DWR Station                   | 303           | 10.6         | 7.43    | 10.5         | 12.8               | 0.44                          | 0.002                          |  |
| Suisun Slough at Rush Ranch                            | 10090         | 11.5         | 7.45    | 11.1         | 24.0               | 0.10                          | 0.000                          |  |
| Rough and Ready DWR station, Stockton                  | 1045          | 11.0         | 7.89    | 11.3         | 3.7                | 0.05                          | 0.001                          |  |
| San Joaquin River at Potato Slough (815)               | 572           | 10.5         | 7.56    | 11.4         | 4.0                | 0.16                          | 0.001                          |  |
| Sacramento River at tip of Grand Island (711)          | 417           | 10.9         | 7.68    | 10.8         | 5.3                | 0.26                          | 0.002                          |  |
| Upper Cache Slough at mouth of Ulatis Creek            | 490           | 10.7         | 8.40    | 13.8         | 9.1                | 0.00                          | 0.000                          |  |
| Old River, western arm at railroad bridge (902)        | 723           | 10.9         | 7.60    | 11.1         | 3.8                | 0.06                          | 0.000                          |  |
| Confluence of Lindsey Sl. And Cache Sl.                | 260           | 10.7         | 7.53    | 10.9         | 7.1                | 0.35                          | 0.002                          |  |
| Old River at mouth of Holland Cut (915)                | 664           | 10.7         | 7.63    | 11.1         | 3.1                | 0.02                          | 0.000                          |  |
| Sacramento R. Deep Water Channel, Light 55             | 278           | 10.6         | 7.57    | 11.5         | 8.2                | 0.33                          | 0.002                          |  |
| Field Dup.: Sacramento R. Deep Water Channel, Light 55 | 278           | 10.6         | 7.57    | 11.5         | 7.6                | 0.38                          | 0.003                          |  |

Table B5-3. Water chemistry during a *H. azteca* initial screening toxicity test initiated on 2/05/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 2/03/09 - 2/04/09.

| Camornia Department of 148n and Game (CDFG) for the Department |         |          | •        | ry Chemistry |        |      |      | Hardness            | Alkalinity          | Unionized  |
|----------------------------------------------------------------|---------|----------|----------|--------------|--------|------|------|---------------------|---------------------|------------|
| Treatment                                                      | EC      | Min Temp | Max Temp | Min DO       | Max DO | Min  | Max  | (mg/L as            | (mg/L as            | Ammonia    |
|                                                                | (uS/cm) | (°C)     | (°C)     | (mg/L)       | (mg/L) | pН   | pН   | CaCO <sub>3</sub> ) | CaCO <sub>3</sub> ) | $(mg/L)^1$ |
| DIEPAMHR                                                       | 335     | 20.0     | 23.1     | 7.5          | 8.5    | 7.76 | 8.07 | 108                 | 60                  | -          |
| High EC Control @ 10.21 mS/cm                                  | 9570    | 19.7     | 23.5     | 7.6          | 8.6    | 7.80 | 8.08 | 1160                | 74                  | -          |
| High EC Control @ 20.48 mS/cm                                  | 19625   | 20.5     | 23.3     | 7.4          | 8.1    | 7.79 | 8.04 | 2400                | 88                  | -          |
| Napa River at River Park Blvd.                                 | 18730   | 20.9     | 23.3     | 7.0          | 8.1    | 7.72 | 8.19 | 2360                | 126                 | 0.002      |
| Sacramento River at Hood DWR Station                           | 249     | 20.6     | 23.5     | 7.4          | 8.3    | 7.97 | 8.15 | 80                  | 92                  | 0.019      |
| Suisun Slough at Rush Ranch                                    | 9445    | 20.4     | 23.4     | 7.3          | 8.3    | 7.77 | 8.37 | 1200                | 164                 | 0.002      |
| Rough and Ready DWR station, Stockton                          | 967     | 21.1     | 23.2     | 7.4          | 8.3    | 8.09 | 8.32 | 212                 | 116                 | 0.003      |
| San Joaquin River at Potato Slough (815)                       | 543     | 20.1     | 23.3     | 7.6          | 8.4    | 7.80 | 8.26 | 124                 | 94                  | 0.004      |
| Sacramento River at tip of Grand Island (711)                  | 376     | 20.4     | 23.3     | 7.4          | 8.3    | 8.03 | 8.27 | 100                 | 96                  | 0.013      |
| Upper Cache Slough at mouth of Ulatis Creek                    | 474     | 20.8     | 23.3     | 7.5          | 8.5    | 8.23 | 8.55 | 148                 | 146                 | 0.000      |
| Old River, western arm at railroad bridge (902)                | 707     | 21.2     | 23.4     | 7.7          | 8.6    | 7.90 | 8.21 | 140                 | 92                  | 0.002      |
| Confluence of Lindsey Sl. And Cache Sl.                        | 261     | 21.1     | 23.1     | 7.5          | 8.6    | 8.00 | 8.22 | 96                  | 100                 | 0.021      |
| Old River at mouth of Holland Cut (915)                        | 680     | 21.3     | 23.4     | 7.6          | 8.4    | 7.96 | 8.26 | 140                 | 92                  | 0.001      |
| Sacramento R. Deep Water Channel, Light 55                     | 275     | 21.1     | 23.4     | 7.5          | 8.6    | 8.07 | 8.90 | 104                 | 112                 | 0.021      |
| Field Dup.: Sacramento R. Deep Water Channel, Light 55         | 268     | 21.2     | 23.4     | 7.2          | 8.3    | 8.02 | 8.29 | 96                  | 104                 | 0.018      |
| DIEPAMHR + 25 ppb PBO                                          | 342     | 21.1     | 23.0     | 7.6          | 8.6    | 7.79 | 8.12 | -                   | -                   | -          |
| High EC Control @ 10.21 mS/cm + 25 ppb PBO                     | 9685    | 21.4     | 23.2     | 7.6          | 8.3    | 7.80 | 8.05 | -                   | -                   | -          |
| High EC Control @ 20.48 mS/cm + 25 ppb PBO                     | 19620   | 21.1     | 23.3     | 7.4          | 7.9    | 7.81 | 8.04 | -                   | -                   | -          |
| Napa River at River Park Blvd. + 25 ppb PBO                    | 18885   | 21.3     | 23.4     | 7.2          | 8.1    | 7.81 | 8.19 | -                   | -                   | -          |
| Sacramento River at Hood DWR Station + 25 ppb PBO              | 236.6   | 21.1     | 23.3     | 7.4          | 8.5    | 7.94 | 8.19 | -                   | -                   | -          |
| Suisun Slough at Rush Ranch + 25 ppb PBO                       | 9530    | 21.7     | 23.1     | 7.5          | 8.4    | 7.84 | 8.32 | -                   | -                   | -          |
| Rough and Ready DWR station, Stockton + 25 ppb PBO             | 1011    | 20.9     | 23.1     | 7.6          | 8.6    | 8.08 | 8.36 | -                   | -                   | -          |
| San Joaquin River at Potato Slough (815) + 25 ppb PBO          | 549     | 21.5     | 23.0     | 7.6          | 8.8    | 7.98 | 8.22 | -                   | -                   | -          |
| Sacramento River at tip of Grand Island (711) + 25 ppb PBO     | 376.9   | 21.3     | 23.5     | 7.4          | 8.8    | 7.96 | 8.22 | -                   | -                   | -          |
| Upper Cache Slough at mouth of Ulatis Creek + 25 ppb PBO       | 487.7   | 21.6     | 23.1     | 7.5          | 8.4    | 8.23 | 8.54 | -                   | -                   | -          |
| Old River, western arm at railroad bridge (902) + 25 ppb PBO   | 716     | 21.4     | 22.8     | 7.6          | 8.6    | 7.95 | 8.22 | -                   | -                   | -          |
| Confluence of Lindsey Sl. And Cache Sl. + 25 ppb PBO           | 266.3   | 21.3     | 23.7     | 7.4          | 8.7    | 8.00 | 8.21 | -                   | -                   | -          |
| Old River at mouth of Holland Cut (915) + 25 ppb PBO           | 709     | 21.4     | 23.7     | 7.3          | 8.3    | 8.03 | 8.27 | -                   | -                   | -          |
| Sacramento R. Deep Water Channel, Light 55 + 25 ppb PBO        | 284.5   | 21.4     | 23.8     | 7.3          | 8.6    | 8.00 | 8.30 | -                   | -                   | -          |

Table B6-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 2/06/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 2/05/09.

|                                                 | Survival (%) <sup>1</sup> |         |               |     |                             |  |  |  |  |
|-------------------------------------------------|---------------------------|---------|---------------|-----|-----------------------------|--|--|--|--|
| Treatment                                       | Unmani                    | oulated | 25 ppb<br>add |     |                             |  |  |  |  |
|                                                 | mean                      | se      | mean          | se  | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                        | 98                        | 2.5     | 95            | 2.9 | NS                          |  |  |  |  |
| High EC Control @ 13.57 mS/cm                   | 98                        | 2.5     | 97            | 2.8 | NS                          |  |  |  |  |
| High EC Control @ 19.22 mS/cm                   | 80                        | 9.1     | 79            | 9.4 | NS                          |  |  |  |  |
| Suisun Bay off Chipps Island (508) <sup>3</sup> | 100                       | 0.0     | 97            | 3.1 | NS                          |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)          | 100                       | 0.0     | 98            | 2.5 | NS                          |  |  |  |  |
| Grizzly Bay at Dolphin (602) <sup>4</sup>       | 94                        | 3.4     | 98            | 2.5 | NS                          |  |  |  |  |
| Trip Blank                                      | 98                        | 2.5     | -             | -   | NA                          |  |  |  |  |

|                                                 |         | Weight (mg/surviving individual) <sup>1</sup> |               |              |                             |  |  |  |  |  |  |
|-------------------------------------------------|---------|-----------------------------------------------|---------------|--------------|-----------------------------|--|--|--|--|--|--|
| Treatment                                       | Unmanij | oulated                                       | 25 ppl<br>add | o PBO<br>ded |                             |  |  |  |  |  |  |
|                                                 | mean    | se                                            | mean          | se           | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |  |  |
| DIEPAMHR                                        | 0.046   | 0.004                                         | 0.027         | 0.006        | S* (59%)                    |  |  |  |  |  |  |
| High EC Control @ 13.57 mS/cm                   | 0.029*  | 0.006                                         | 0.034         | 0.004        | NS                          |  |  |  |  |  |  |
| High EC Control @ 19.22 mS/cm                   | 0.025** | 0.005                                         | 0.035         | 0.011        | NS                          |  |  |  |  |  |  |
| Suisun Bay off Chipps Island (508) <sup>3</sup> | 0.028   | 0.004                                         | 0.046         | 0.003        | S* (164%)                   |  |  |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)          | 0.042   | 0.007                                         | 0.038         | 0.009        | NS                          |  |  |  |  |  |  |
| Grizzly Bay at Dolphin (602) <sup>4</sup>       | 0.039   | 0.009                                         | 0.034         | 0.007        | NS                          |  |  |  |  |  |  |
| Trip Blank                                      | 0.049   | 0.005                                         | -             | -            | NA                          |  |  |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> This high conductivity sample was compared to the High EC Control @ 13.57 mS/cm.

<sup>4.</sup> This high conductivity sample was compared to the High EC Control @ 19.22 mS/cm.

Table B6-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 2/05/09.

| Treatment (                            |               | Field Cl     | nemistry | •            | _                  | Total                         | Unionized<br>Ammonia<br>(mg/L) |  |
|----------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|--------------------------------|--|
|                                        | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) |                                |  |
| Suisun Bay off Chipps Island (508)     | 12810         | 10.6         | 7.7      | 10.8         | 18.4               | 0.25                          | 0.002                          |  |
| Montezuma Slough at Nurse Slough (609) | 5140          | 10.7         | 7.55     | 10.8         | 29.0               | 0.27                          | 0.001                          |  |
| Grizzly Bay at Dolphin (602)           | 17210         | 10.8         | 7.79     | 11.0         | 13.9               | 0.21                          | 0.002                          |  |
| Trip Blank                             | 345           | 16.1         | 8.01     | 10.1         | 0.3                | 0.00                          | 0.000                          |  |

Table B6-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 2/06/09 of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 2/05/09.

|                                                     |            |                     | Labora              | tory Chemi          | stry                |           |           | - Hardness                      | Alkalinity                      | Unionized                   |
|-----------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------|---------------------------------|-----------------------------|
| Treatment                                           | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as<br>CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                            | 327        | 22.1                | 24.1                | 7.7                 | 8.2                 | 7.83      | 8.09      | 108                             | 60                              | -                           |
| High EC Control @ 13.57 mS/cm                       | 13030      | 19.9                | 23.9                | 7.4                 | 8.6                 | 7.77      | 7.84      | 1760                            | 80                              | -                           |
| High EC Control @ 19.22 mS/cm                       | 18995      | 22.5                | 23.9                | 7.2                 | 8.1                 | 7.77      | 7.84      | 2280                            | 86                              | -                           |
| Suisun Bay off Chipps Island (508)                  | 13075      | 22.2                | 23.1                | 7.4                 | 8.2                 | 7.73      | 7.95      | 1800                            | 106                             | 0.005                       |
| Montezuma Slough at Nurse Slough (609)              | 5030       | 22.4                | 23.7                | 7.4                 | 8.1                 | 7.83      | 8.02      | 680                             | 100                             | 0.007                       |
| Grizzly Bay at Dolphin (602)                        | 17090      | 21.8                | 23.0                | 7.0                 | 8.1                 | 7.71      | 7.94      | 2200                            | 106                             | 0.003                       |
| Trip Blank                                          | 355        | 22.5                | 23.9                | 7.6                 | 8.6                 | 7.80      | 8.15      | 108                             | 48                              | 0.000                       |
| DIEPAMHR + 25 ppb PBO                               | 327        | 22.1                | 22.5                | 7.1                 | 8.5                 | 7.78      | 8.06      | -                               | -                               | -                           |
| High EC Control @ 13.57 mS/cm + 25 ppb PBO          | 13090      | 22.1                | 23.3                | 7.4                 | 8.2                 | 7.77      | 7.82      | -                               | -                               | -                           |
| High EC Control @ 19.22 mS/cm + 25 ppb PBO          | 18380      | 22.0                | 23.1                | 7.1                 | 8.1                 | 7.78      | 7.86      | -                               | -                               | -                           |
| Suisun Bay off Chipps Island (508) + 25 ppb PBO     | 12365      | 20.9                | 23.6                | 7.2                 | 8.5                 | 7.77      | 7.96      | -                               | -                               | -                           |
| Montezuma Slough at Nurse Slough (609) + 25 ppb PBO | 5006       | 21.5                | 23.2                | 7.6                 | 8.2                 | 7.91      | 8.00      | -                               | -                               | -                           |
| Grizzly Bay at Dolphin (602) + 25 ppb PBO           | 16875      | 20.4                | 23.0                | 7.2                 | 8.2                 | 7.74      | 7.94      | -                               | -                               | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B7-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 2/19/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 2/17/09 - 2/18/09.

| igh EC Control @ 12.50 mS/cm<br>igh EC Control @ 21.92 mS/cm<br>igh EC Control @ 24.63 mS/cm |         |         | Survival (%   | )1   |                             |
|----------------------------------------------------------------------------------------------|---------|---------|---------------|------|-----------------------------|
| Treatment                                                                                    | Unmanip | oulated | 25 ppb<br>add |      |                             |
|                                                                                              | mean    | se      | mean          | se   | vs Non-<br>PBO <sup>2</sup> |
| DIEPAMHR                                                                                     | 95      | 2.9     | 97            | 2.8  | NS                          |
| High EC Control @ 12.50 mS/cm                                                                | 97      | 2.8     | 92            | 2.7  | NS                          |
| High EC Control @ 21.92 mS/cm                                                                | 69*     | 8.1     | 73            | 13.0 | NS                          |
| High EC Control @ 24.63 mS/cm                                                                | 54**    | 10.9    | 32*           | 10.5 | NS                          |
| Napa River at River Park Blvd.                                                               | 94      | 6.3     | 94            | 6.3  | NS                          |
| Sacramento River at Hood DWR Station                                                         | 95      | 2.9     | 93            | 4.8  | NS                          |
| Suisun Slough at Rush Ranch                                                                  | 100     | 0.0     | 100           | 0.0  | NS                          |
| Rough and Ready DWR station, Stockton                                                        | 100     | 0.0     | 95            | 5.0  | NS                          |
| Suisun Bay off Chipps Island (508)                                                           | 100     | 0.0     | 100           | 0.0  | NS                          |
| Montezuma Slough at Nurse Slough (609)                                                       | 98      | 2.3     | 100           | 0.0  | NS                          |
| Carquinez Strait, West of Benicia army dock (405) <sup>4</sup>                               | 93      | 2.5     | 98            | 2.5  | NS                          |
| Grizzly Bay at Dolphin (602) <sup>3</sup>                                                    | 100     | 0.0     | 100           | 0.0  | NS                          |
| Napa River at Vallejo Seawall (340) <sup>5</sup>                                             | 91      | 6.0     | 88            | 7.5  | NS                          |
| Field Dup.: Rough and Ready DWR station, Stockton                                            | 100     | 0.0     | -             | -    | NA                          |

|                                                                                                                                                                                                                                                                                                                                                                          |          | Weight | (mg/surviving | g/surviving individual) <sup>1</sup> |                             |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------------|--------------------------------------|-----------------------------|--|--|
| High EC Control @ 12.50 mS/cm High EC Control @ 21.92 mS/cm High EC Control @ 24.63 mS/cm Napa River at River Park Blvd. Sacramento River at Hood DWR Station Suisun Slough at Rush Ranch Rough and Ready DWR station, Stockton Suisun Bay off Chipps Island (508) Montezuma Slough at Nurse Slough (609) Carquinez Strait, West of Benicia army dock (405) <sup>4</sup> | Unmanip  | ulated | 25 ppb<br>add |                                      |                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                          | mean     | se     | mean          | se                                   | vs Non-<br>PBO <sup>2</sup> |  |  |
| DIEPAMHR                                                                                                                                                                                                                                                                                                                                                                 | 0.039    | 0.004  | 0.032         | 0.006                                | NS                          |  |  |
| High EC Control @ 12.50 mS/cm                                                                                                                                                                                                                                                                                                                                            | 0.019**  | 0.003  | 0.026         | 0.005                                | NS                          |  |  |
| High EC Control @ 21.92 mS/cm                                                                                                                                                                                                                                                                                                                                            | 0.008*** | 0.002  | 0.009*        | 0.000                                | NS                          |  |  |
| High EC Control @ 24.63 mS/cm                                                                                                                                                                                                                                                                                                                                            | 0.025*   | 0.002  | 0.041         | 0.021                                | NS                          |  |  |
| Napa River at River Park Blvd.                                                                                                                                                                                                                                                                                                                                           | 0.052    | 0.002  | 0.044         | 0.004                                | NS                          |  |  |
| Sacramento River at Hood DWR Station                                                                                                                                                                                                                                                                                                                                     | 0.051    | 0.004  | 0.060         | 0.004                                | NS                          |  |  |
| Suisun Slough at Rush Ranch                                                                                                                                                                                                                                                                                                                                              | 0.035    | 0.006  | 0.060         | 0.001                                | S** (171%)                  |  |  |
| Rough and Ready DWR station, Stockton                                                                                                                                                                                                                                                                                                                                    | 0.040    | 0.003  | 0.050         | 0.004                                | NS                          |  |  |
| Suisun Bay off Chipps Island (508)                                                                                                                                                                                                                                                                                                                                       | 0.046    | 0.009  | 0.045         | 0.008                                | NS                          |  |  |
| Montezuma Slough at Nurse Slough (609)                                                                                                                                                                                                                                                                                                                                   | 0.036    | 0.004  | 0.043         | 0.003                                | NS                          |  |  |
| Carquinez Strait, West of Benicia army dock $\left(405\right)^4$                                                                                                                                                                                                                                                                                                         | 0.020    | 0.003  | 0.033         | 0.003                                | NS                          |  |  |
| Grizzly Bay at Dolphin (602) <sup>3</sup>                                                                                                                                                                                                                                                                                                                                | 0.031    | 0.003  | 0.023         | 0.003                                | NS                          |  |  |
| Napa River at Vallejo Seawall (340) <sup>5</sup>                                                                                                                                                                                                                                                                                                                         | 0.023    | 0.004  | 0.052         | 0.007                                | S* (226%)                   |  |  |
| Field Dup.: Rough and Ready DWR station, Stockton                                                                                                                                                                                                                                                                                                                        | 0.067    | 0.012  | -             | -                                    | NA                          |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>\*\*\*:</sup> *P* < 0.001

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

Table B7-2. Summary of water chemistry at field conditions of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 2/17/09 - 2/18/09.

|                                                   |               | Field C      | hemistry |              | _                  | Total                         | Unionized      |
|---------------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|----------------|
| Treatment                                         | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Ammonia (mg/L) |
| Napa River at River Park Blvd.                    | 454           | 10.0         | 7.31     | 11.4         | 713.3              | 0.35                          | 0.001          |
| Sacramento River at Hood DWR Station              | 196           | 9.5          | 7.55     | 12.0         | 20.2               | 0.06                          | 0.000          |
| Suisun Slough at Rush Ranch                       | 7310          | 9.9          | 7.47     | 10.4         | 41.4               | 0.08                          | 0.000          |
| Rough and Ready DWR station, Stockton             | 1107          | 11.0         | 7.93     | 11.2         | 3.7                | 0.43                          | 0.006          |
| Suisun Bay off Chipps Island (508)                | 6780          | 9.9          | 7.87     | 11.7         | 10.7               | 0.23                          | 0.002          |
| Montezuma Slough at Nurse Slough (609)            | 8000          | 9.8          | 7.65     | 11.4         | 25.0               | 0.21                          | 0.001          |
| Carquinez Strait, West of Benicia army dock (405) | 23650         | 10.2         | 7.83     | 11.0         | 24.4               | 0.22                          | 0.002          |
| Grizzly Bay at Dolphin (602)                      | 12200         | 10.0         | 7.85     | 11.6         | 13.1               | 0.23                          | 0.002          |
| Napa River at Vallejo Seawall (340)               | 22400         | 10.0         | 7.88     | 10.8         | 44.2               | 0.23                          | 0.002          |
| Field Dup.: Rough and Ready DWR station, Stockton | 1107          | 11.0         | 7.93     | 11.2         | 3.5                | 0.06                          | 0.001          |

Table B7-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 2/19/09 of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 2/17/09 - 2/18/09.

|                                                                |            |                     | Labora              | atory Cher          | nistry              |           |           |                                             | A 111::                                       | Unionized                   |
|----------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------------------|-----------------------------------------------|-----------------------------|
| Treatment                                                      | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | Hardness<br>(mg/L as<br>CaCO <sub>3</sub> ) | Alkalinity<br>(mg/L as<br>CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                       | 335        | 22.6                | 23.8                | 7.5                 | 8.0                 | 7.80      | 8.10      | 100                                         | 62                                            | -                           |
| High EC Control @ 12.50 mS/cm                                  | 12110      | 22.7                | 24.0                | 7.3                 | 8.0                 | 7.76      | 7.90      | 1440                                        | 70                                            | -                           |
| High EC Control @ 21.92 mS/cm                                  | 21710      | 22.5                | 24.1                | 7.1                 | 7.7                 | 7.38      | 7.82      | 2520                                        | 84                                            | -                           |
| High EC Control @ 24.63 mS/cm                                  | 23825      | 22.7                | 23.9                | 6.8                 | 7.6                 | 7.69      | 7.91      | 2840                                        | 86                                            | -                           |
| Napa River at River Park Blvd.                                 | 474        | 22.7                | 24.1                | 7.6                 | 8.0                 | 7.52      | 7.81      | 72                                          | 284                                           | 0.011                       |
| Sacramento River at Hood DWR Station                           | 229        | 22.7                | 24.3                | 7.2                 | 8.0                 | 7.82      | 8.10      | 72                                          | 78                                            | 0.004                       |
| Suisun Slough at Rush Ranch                                    | 7045       | 22.7                | 23.8                | 7.3                 | 8.0                 | 7.16      | 8.17      | 840                                         | 172                                           | 0.003                       |
| Rough and Ready DWR station, Stockton                          | 1102       | 22.7                | 23.5                | 7.3                 | 8.4                 | 7.16      | 8.18      | 212                                         | 240                                           | 0.027                       |
| Suisun Bay off Chipps Island (508)                             | 6310       | 22.6                | 23.4                | 7.3                 | 8.4                 | 7.87      | 7.95      | 840                                         | 100                                           | 0.007                       |
| Montezuma Slough at Nurse Slough (609)                         | 7595       | 22.6                | 23.8                | 7.3                 | 8.2                 | 7.84      | 7.99      | 880                                         | 92                                            | 0.008                       |
| Carquinez Strait, West of Benicia army dock (405)              | 20210      | 22.7                | 23.5                | 7.0                 | 7.7                 | 7.70      | 7.92      | 2400                                        | 104                                           | 0.006                       |
| Grizzly Bay at Dolphin (602)                                   | 11600      | 22.7                | 24.0                | 7.3                 | 8.2                 | 7.85      | 7.94      | 1480                                        | 102                                           | 0.007                       |
| Napa River at Vallejo Seawall (340)                            | 22665      | 22.6                | 23.3                | 6.9                 | 7.7                 | 7.75      | 7.83      | 2760                                        | 104                                           | 0.005                       |
| Field Dup.: Rough and Ready DWR station, Stockton              | 1091       | 22.7                | 23.8                | 7.5                 | 8.4                 | 8.05      | 8.29      | 220                                         | 120                                           | 0.005                       |
| DIEPAMHR + 25 ppb PBO                                          | 1791       | 22.6                | 22.9                | 7.6                 | 8.3                 | 7.85      | 8.06      | -                                           | -                                             | -                           |
| High EC Control @ 12.50 mS/cm + 25 ppb PBO                     | 11925      | 22.6                | 23.3                | 7.4                 | 8.0                 | 7.74      | 7.92      | -                                           | -                                             | -                           |
| High EC Control @ 21.92 mS/cm + 25 ppb PBO                     | 21195      | 22.6                | 23.5                | 7.0                 | 7.8                 | 7.69      | 7.89      | -                                           | -                                             | -                           |
| High EC Control @ 24.63 mS/cm + 25 ppb PBO                     | 23640      | 22.6                | 23.3                | 6.9                 | 7.7                 | 7.68      | 7.91      | -                                           | -                                             | -                           |
| Napa River at River Park Blvd. + 25 ppb PBO                    | 450        | 22.6                | 23.2                | 7.5                 | 8.2                 | 7.56      | 7.87      | -                                           | -                                             | -                           |
| Sacramento River at Hood DWR Station + 25 ppb PBO              | 209        | 22.7                | 23.3                | 7.1                 | 8.2                 | 7.84      | 8.19      | -                                           | -                                             | -                           |
| Suisun Slough at Rush Ranch + 25 ppb PBO                       | 6980       | 22.6                | 23.4                | 7.3                 | 8.1                 | 7.96      | 8.17      | -                                           | -                                             | -                           |
| Rough and Ready DWR station, Stockton + 25 ppb PBO             | 1079       | 22.5                | 23.5                | 7.3                 | 8.3                 | 8.08      | 8.20      | -                                           | -                                             | -                           |
| Suisun Bay off Chipps Island (508) + 25 ppb PBO                | 6445       | 22.7                | 23.0                | 7.3                 | 8.0                 | 7.86      | 8.06      | -                                           | -                                             | -                           |
| Montezuma Slough at Nurse Slough (609) + 25 ppb PBO            | 7605       | 22.6                | 23.2                | 7.3                 | 8.1                 | 7.84      | 7.90      | -                                           | -                                             | -                           |
| Carquinez Strait, West of Benicia army dock (405) + 25 ppb PBO | 19965      | 22.7                | 23.5                | 6.9                 | 7.8                 | 7.73      | 7.88      | -                                           | -                                             | -                           |
| Grizzly Bay at Dolphin (602) + 25 ppb PBO                      | 11825      | 22.6                | 23.2                | 7.3                 | 8.2                 | 7.84      | 7.95      | -                                           | -                                             | -                           |
| Napa River at Vallejo Seawall (340) + 25 ppb PBO               | 23020      | 22.6                | 23.2                | 6.9                 | 7.8                 | 7.75      | 7.84      | -                                           | -                                             | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B8-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 2/20/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 2/19/09.

|                                                            | Survival (%) <sup>1</sup> |         |           |                  |                             |  |  |  |  |  |
|------------------------------------------------------------|---------------------------|---------|-----------|------------------|-----------------------------|--|--|--|--|--|
| Treatment                                                  | Unmani                    | pulated | 25 ppb Pl | 25 ppb PBO added |                             |  |  |  |  |  |
|                                                            | mean                      | se      | mean      | se               | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |  |
| DIEPAMHR                                                   | 92                        | 4.8     | 98        | 2.5              | NS                          |  |  |  |  |  |
| Low EC Control @ 152.2 uS/cm                               | 86                        | 5.5     | 98        | 2.5              | NS                          |  |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55                 | 83                        | 13.7    | 100       | 0.0              | NS                          |  |  |  |  |  |
| Sacramento River at tip of Grand Island (711) <sup>3</sup> | 95                        | 3.1     | 70        | 23.4             | NS                          |  |  |  |  |  |
| Old River, western arm at railroad bridge (902)            | 100                       | 0.0     | 100       | 0.0              | NS                          |  |  |  |  |  |
| San Joaquin River at Potato Slough (815)                   | 95                        | 2.9     | 100       | 0.0              | NS                          |  |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek                | 98                        | 2.5     | 95        | 3.1              | NS                          |  |  |  |  |  |
| Old River at mouth of Holland Cut (915)                    | 100                       | 0.0     | 89        | 11.1             | NS                          |  |  |  |  |  |
| Confluence of Lindsey Sl. And Cache Sl.                    | 100                       | 0.0     | 95        | 2.9              | NS                          |  |  |  |  |  |
| Bottle Blank                                               | 97                        | 2.8     | -         | -                | NA                          |  |  |  |  |  |

|                                                            | Weight (mg/surviving individual) <sup>1</sup> |          |          |       |                             |  |  |  |  |  |
|------------------------------------------------------------|-----------------------------------------------|----------|----------|-------|-----------------------------|--|--|--|--|--|
| Treatment                                                  | Unman                                         | ipulated | 25 ppb P |       |                             |  |  |  |  |  |
|                                                            | mean                                          | se       | mean     | se    | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |  |
| DIEPAMHR                                                   | 0.034                                         | 0.006    | 0.030    | 0.006 | NS                          |  |  |  |  |  |
| Low EC Control @ 152.2 uS/cm                               | 0.042                                         | 0.003    | 0.034    | 0.003 | NS                          |  |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55                 | 0.084                                         | 0.005    | 0.094    | 0.015 | NS                          |  |  |  |  |  |
| Sacramento River at tip of Grand Island (711) <sup>3</sup> | 0.055                                         | 0.012    | 0.068    | 0.006 | NS                          |  |  |  |  |  |
| Old River, western arm at railroad bridge (902)            | 0.077                                         | 0.002    | 0.077    | 0.013 | NS                          |  |  |  |  |  |
| San Joaquin River at Potato Slough (815)                   | 0.056                                         | 0.005    | 0.098    | 0.007 | S** (175%)                  |  |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek                | 0.074                                         | 0.008    | 0.042    | 0.006 | S* (57%)                    |  |  |  |  |  |
| Old River at mouth of Holland Cut (915)                    | 0.090                                         | 0.010    | 0.098    | 0.007 | NS                          |  |  |  |  |  |
| Confluence of Linsey Sl. And Cache Sl.                     | 0.085                                         | 0.010    | 0.143    | 0.060 | NS                          |  |  |  |  |  |
| Bottle Blank                                               | 0.035                                         | 0.002    | =        | _     | NA                          |  |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> This low conductivity sample was compared to the Low EC Control.

Table B8-2. Summary of water chemistry at field conditions of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 2/19/09.

|                                                 |      | Field Ch | nemistry     |                    |                               | Total          | Unionized |  |
|-------------------------------------------------|------|----------|--------------|--------------------|-------------------------------|----------------|-----------|--|
| Treatment                                       | i nH |          | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Ammonia (mg/L) |           |  |
| Sacramento R. Deep Water Channel, Light 55      | 385  | 9.5      | 8.03         | 11.5               | 17.4                          | 0.19           | 0.003     |  |
| Sacramento River at tip of Grand Island (711)   | 145  | 8.9      | 7.38         | 11.0               | 82.8                          | 0.33           | 0.001     |  |
| Old River, western arm at railroad bridge (902) | 590  | 10.5     | 7.88         | 11.3               | 5.1                           | 0.09           | 0.001     |  |
| San Joaquin River at Potato Slough (815)        | 354  | 10.5     | 7.74         | 11.0               | 5.6                           | 0.25           | 0.002     |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 377  | 9.7      | 7.81         | 10.0               | 138.3                         | 0.23           | 0.002     |  |
| Old River at mouth of Holland Cut (915)         | 628  | 10.1     | 7.8          | 10.6               | 4.4                           | 0.08           | 0.001     |  |
| Confluence of Lindsey Sl. And Cache Sl.         | 300  | 9.3      | 7.82         | 11.0               | 30.8                          | 0.23           | 0.002     |  |
| Bottle Blank                                    | -    | -        | -            | -                  | 0.2                           | 0.00           | -         |  |

Table B8-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 2/20/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 2/19/09.

|                                                              |            |                     | Labor               | atory Cher          | nistry              |           |           | - Hardness                      | Alkalinity                   | Unionized                   |
|--------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------|------------------------------|-----------------------------|
| Treatment                                                    | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                     | 326        | 21.1                | 23.9                | 7.6                 | 8.0                 | 7.78      | 8.04      | 100                             | 62                           | -                           |
| Low EC Control @ 152.2 uS/cm                                 | 149        | 20.8                | 23.6                | 7.6                 | 8.4                 | 7.46      | 7.81      | 44                              | 26                           | -                           |
| Sacramento R. Deep Water Channel, Light 55                   | 365        | 22.2                | 23.4                | 7.3                 | 8.2                 | 8.05      | 8.28      | 120                             | 104                          | 0.015                       |
| Sacramento River at tip of Grand Island (711)                | 143        | 22.2                | 23.8                | 7.5                 | 8.2                 | 7.62      | 7.80      | 60                              | 52                           | 0.010                       |
| Old River, western arm at railroad bridge (902)              | 557        | 22.3                | 23.9                | 7.3                 | 8.4                 | 7.91      | 8.00      | 124                             | 90                           | 0.004                       |
| San Joaquin River at Potato Slough (815)                     | 340        | 22.2                | 23.6                | 7.4                 | 8.4                 | 7.83      | 8.00      | 100                             | 86                           | 0.008                       |
| Upper Cache Slough at mouth of Ulatis Creek                  | 369        | 22.2                | 23.7                | 7.3                 | 8.3                 | 7.92      | 8.12      | 124                             | 100                          | 0.012                       |
| Old River at mouth of Holland Cut (915)                      | 604        | 22.0                | 23.5                | 7.5                 | 8.2                 | 7.92      | 8.05      | 128                             | 90                           | 0.003                       |
| Confluence of Lindsey Sl. And Cache Sl.                      | 292        | 22.4                | 23.6                | 7.5                 | 8.3                 | 7.96      | 8.09      | 100                             | 108                          | 0.010                       |
| Bottle Blank                                                 | 338        | 22.5                | 23.5                | 7.5                 | 8.2                 | 7.77      | 8.02      | 104                             | 58                           | 0.000                       |
| DIEPAMHR + 25 ppb PBO                                        | 330        | 22.4                | 22.4                | 7.4                 | 8.2                 | 7.78      | 8.01      | -                               | -                            | -                           |
| Low EC Control @ 152.2 uS/cm + 25 ppb PBO                    | 149        | 22.3                | 22.4                | 7.4                 | 8.1                 | 7.48      | 7.81      | -                               | -                            | -                           |
| Sacramento R. Deep Water Channel, Light 55 + 25 ppb PBO      | 362        | 22.2                | 22.4                | 7.4                 | 8.3                 | 8.08      | 8.17      | -                               | -                            | -                           |
| Sacramento River at tip of Grand Island (711) + 25 ppb PBO   | 141        | 22.3                | 22.3                | 7.4                 | 8.3                 | 7.71      | 7.82      | -                               | -                            | -                           |
| Old River, western arm at railroad bridge (902) + 25 ppb PBO | 556        | 22.1                | 22.1                | 7.3                 | 8.2                 | 7.95      | 8.03      | -                               | -                            | -                           |
| San Joaquin River at Potato Slough (815) + 25 ppb PBO        | 336        | 21.9                | 22.0                | 7.4                 | 8.3                 | 7.84      | 8.02      | -                               | -                            | -                           |
| Upper Cache Slough at mouth of Ulatis Creek + 25 ppb PBO     | 359        | 21.9                | 22.1                | 7.4                 | 8.0                 | 7.91      | 8.09      | -                               | -                            | -                           |
| Old River at mouth of Holland Cut (915) + 25 ppb PBO         | 590        | 21.5                | 22.3                | 7.5                 | 8.1                 | 7.92      | 8.05      | -                               | -                            | -                           |
| Confluence of Lindsey Sl. And Cache Sl. + 25 ppb PBO         | 289        | 21.7                | 22.1                | 7.4                 | 8.4                 | 7.95      | 8.08      | -                               | -                            | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B9-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 3/05/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/03/09 - 3/04/09.

|                                                   | Survival (%) <sup>1</sup> |         |               |     |                             |  |  |  |  |  |
|---------------------------------------------------|---------------------------|---------|---------------|-----|-----------------------------|--|--|--|--|--|
| Treatment                                         | Unmani                    | pulated | 25 ppb<br>add |     |                             |  |  |  |  |  |
|                                                   | mean                      | se      | mean          | se  | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |  |
| DIEPAMHR                                          | 95                        | 2.9     | 98            | 2.5 | NS                          |  |  |  |  |  |
| Napa River at River Park Blvd.                    | 98                        | 2.5     | 98            | 2.5 | NS                          |  |  |  |  |  |
| Sacramento River at Hood DWR Station              | 100                       | 0.0     | 98            | 2.3 | NS                          |  |  |  |  |  |
| Suisun Slough at Rush Ranch                       | 100                       | 0.0     | 98            | 2.5 | NS                          |  |  |  |  |  |
| Rough and Ready DWR station, Stockton             | 98                        | 2.5     | 93            | 4.8 | NS                          |  |  |  |  |  |
| Suisun Bay off Chipps Island (508)                | 100                       | 0.0     | 100           | 0.0 | NS                          |  |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)            | 100                       | 0.0     | 100           | 0.0 | NS                          |  |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) | 98                        | 2.5     | 98            | 2.5 | NS                          |  |  |  |  |  |
| Grizzly Bay at Dolphin (602)                      | 100                       | 0.0     | 100           | 0.0 | NS                          |  |  |  |  |  |
| Napa River at Vallejo Seawall (340)               | 98                        | 2.5     | 100           | 0.0 | NS                          |  |  |  |  |  |
| Field Dup.: Napa River at Vallejo Seawall (340)   | 100                       | 0.0     | -             | -   | NA                          |  |  |  |  |  |

|                                                   | Weight (mg/surviving individual) <sup>1</sup> |         |       |                     |                             |  |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------|---------|-------|---------------------|-----------------------------|--|--|--|--|--|
| Treatment                                         | Unmani                                        | nulated |       | 25 ppb PBO<br>added |                             |  |  |  |  |  |
|                                                   | mean                                          | se      | mean  | se                  | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |  |
| DIEPAMHR                                          | 0.057                                         | 0.007   | 0.046 | 0.005               | NS                          |  |  |  |  |  |
| Napa River at River Park Blvd.                    | 0.128                                         | 0.005   | 0.102 | 0.013               | NS                          |  |  |  |  |  |
| Sacramento River at Hood DWR Station              | 0.099                                         | 0.010   | 0.072 | 0.008               | NS                          |  |  |  |  |  |
| Suisun Slough at Rush Ranch                       | 0.100                                         | 0.004   | 0.087 | 0.013               | NS                          |  |  |  |  |  |
| Rough and Ready DWR station, Stockton             | 0.126                                         | 0.008   | 0.106 | 0.008               | NS                          |  |  |  |  |  |
| Suisun Bay off Chipps Island (508)                | 0.131                                         | 0.006   | 0.083 | 0.013               | S* (63%)                    |  |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)            | 0.123                                         | 0.005   | 0.093 | 0.014               | NS                          |  |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) | 0.045                                         | 0.004   | 0.054 | 0.004               | NS                          |  |  |  |  |  |
| Grizzly Bay at Dolphin (602)                      | 0.100                                         | 0.007   | 0.101 | 0.006               | NS                          |  |  |  |  |  |
| Napa River at Vallejo Seawall (340)               | 0.040                                         | 0.010   | 0.065 | 0.008               | NS                          |  |  |  |  |  |
| Field Dup.: Napa River at Vallejo Seawall (340)   | 0.034*                                        | 0.009   | -     | -                   | NA                          |  |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

Table B9-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/03/09 - 3/04/09

|                                                   |               | Field Ch     | nemistry |              |                    | Total                         | Unionizad                      |
|---------------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|--------------------------------|
| Treatment                                         | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |
| Napa River at River Park Blvd.                    | 237           | 12.0         | 7.33     | 10.7         | 88.9               | 0.09                          | 0.000                          |
| Sacramento River at Hood DWR Station              | 187           | 12.8         | 7.28     | 9.5          | 43.9               | 0.25                          | 0.001                          |
| Suisun Slough at Rush Ranch                       | 2673          | 12.6         | 7.26     | 8.3          | 63.9               | 0.19                          | 0.001                          |
| Rough and Ready DWR station, Stockton             | 878           | 13.2         | 7.42     | 8.7          | 5.8                | 0.15                          | 0.001                          |
| Suisun Bay off Chipps Island (508)                | 401           | 12.1         | 7.35     | 10.4         | 39.8               | 0.16                          | 0.001                          |
| Montezuma Slough at Nurse Slough (609)            | 2229          | 12.8         | 7.14     | 11.6         | 68.9               | 0.24                          | 0.001                          |
| Carquinez Strait, West of Benicia army dock (405) | 6510          | 11.9         | 7.47     | 13.0         | 115.3              | 0.24                          | 0.001                          |
| Grizzly Bay at Dolphin (602)                      | 1060          | 11.9         | 7.64     | 13.4         | 90.8               | 0.18                          | 0.001                          |
| Napa River at Vallejo Seawall (340)               | 9460          | 11.9         | 7.52     | 13.0         | 77.9               | 0.23                          | 0.001                          |
| Field Dup.: Napa River at Vallejo Seawall (340)   | 9460          | 11.9         | 7.52     | 13.0         | 76.2               | 0.23                          | 0.001                          |

Table B9-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 3/05/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/03/09 - 3/04/09.

|                                                                |            |                     | Labor               | atory Cher          | mistry              |           |           | <ul> <li>Hardness Alkalinity</li> </ul> | Alkalinity                      | Unionized                   |
|----------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|-----------------------------------------|---------------------------------|-----------------------------|
| Treatment                                                      | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> )         | (mg/L as<br>CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                       | 333        | 21.6                | 22.9                | 7.7                 | 8.7                 | 7.78      | 8.09      | 100                                     | 56                              | -                           |
| Napa River at River Park Blvd.                                 | 230        | 21.9                | 23.1                | 7.8                 | 8.8                 | 7.68      | 7.87      | 70                                      | 54                              | 0.002                       |
| Sacramento River at Hood DWR Station                           | 180        | 21.9                | 23.6                | 7.5                 | 8.5                 | 7.79      | 7.98      | 72                                      | 74                              | 0.009                       |
| Suisun Slough at Rush Ranch                                    | 2556       | 21.9                | 23.9                | 7.6                 | 8.7                 | 7.70      | 8.14      | 380                                     | 130                             | 0.004                       |
| Rough and Ready DWR station, Stockton                          | 844        | 21.3                | 23.8                | 7.5                 | 8.6                 | 7.88      | 8.15      | 186                                     | 110                             | 0.005                       |
| Suisun Bay off Chipps Island (508)                             | 394        | 22.3                | 24.0                | 7.6                 | 8.7                 | 7.86      | 8.00      | 96                                      | 74                              | 0.006                       |
| Montezuma Slough at Nurse Slough (609)                         | 2159       | 21.6                | 23.7                | 7.5                 | 8.5                 | 7.05      | 7.94      | 292                                     | 80                              | 0.006                       |
| Carquinez Strait, West of Benicia army dock (405)              | 6160       | 22.4                | 23.8                | 7.4                 | 8.4                 | 7.82      | 7.92      | 800                                     | 88                              | 0.006                       |
| Grizzly Bay at Dolphin (602)                                   | 972        | 21.6                | 23.7                | 7.4                 | 8.8                 | 7.90      | 8.05      | 152                                     | 74                              | 0.009                       |
| Napa River at Vallejo Seawall (340)                            | 9110       | 22.1                | 23.9                | 7.6                 | 8.9                 | 7.78      | 7.90      | 1040                                    | 92                              | 0.005                       |
| Field Dup.: Napa River at Vallejo Seawall (340)                | 8850       | 21.7                | 24.0                | 7.2                 | 8.6                 | 7.81      | 7.90      | 1160                                    | 94                              | 0.006                       |
| DIEPAMHR + 25 ppb PBO                                          | 345        | 22.3                | 23.5                | 7.6                 | 8.2                 | 7.80      | 8.06      | -                                       | -                               | -                           |
| Napa River at River Park Blvd. + 25 ppb PBO                    | 228        | 22.0                | 23.3                | 7.5                 | 8.6                 | 7.69      | 7.89      | -                                       | -                               | -                           |
| Sacramento River at Hood DWR Station + 25 ppb PBO              | 185        | 22.7                | 23.8                | 7.4                 | 8.5                 | 7.75      | 7.96      | -                                       | -                               | -                           |
| Suisun Slough at Rush Ranch + 25 ppb PBO                       | 2608       | 22.0                | 23.6                | 7.5                 | 8.5                 | 7.88      | 8.15      | -                                       | -                               | -                           |
| Rough and Ready DWR station, Stockton + 25 ppb PBO             | 847        | 21.9                | 24.0                | 7.4                 | 8.6                 | 7.95      | 8.14      | -                                       | -                               | -                           |
| Suisun Bay off Chipps Island (508) + 25 ppb PBO                | 397        | 22.5                | 23.7                | 7.6                 | 8.9                 | 7.83      | 7.97      | -                                       | -                               | -                           |
| Montezuma Slough at Nurse Slough (609) + 25 ppb PBO            | 2121       | 21.6                | 24.1                | 7.3                 | 8.6                 | 7.78      | 7.92      | -                                       | -                               | -                           |
| Carquinez Strait, West of Benicia army dock (405) + 25 ppb PBO | 6175       | 22.4                | 24.1                | 7.4                 | 8.4                 | 7.82      | 7.94      | -                                       | -                               | -                           |
| Grizzly Bay at Dolphin (602) + 25 ppb PBO                      | 966        | 21.9                | 24.0                | 7.6                 | 8.6                 | 7.87      | 8.00      | -                                       | -                               | -                           |
| Napa River at Vallejo Seawall (340) + 25 ppb PBO               | 9015       | 21.5                | 23.8                | 7.7                 | 8.5                 | 7.81      | 7.91      | -                                       | -                               |                             |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B10-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 3/06/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/05/09.

|                                                 | Survival (%) <sup>1</sup> |         |        |     |                             |  |  |  |  |  |
|-------------------------------------------------|---------------------------|---------|--------|-----|-----------------------------|--|--|--|--|--|
| <b>T</b>                                        |                           |         | 25 ppb |     |                             |  |  |  |  |  |
| Treatment                                       | <u>Unmani</u>             | pulated | add    |     |                             |  |  |  |  |  |
|                                                 | mean                      | se      | mean   | se  | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |  |
| DIEPAMHR                                        | 100                       | 0.0     | 95     | 5.0 | NS                          |  |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55      | 98                        | 2.5     | 100    | 0.0 | NS                          |  |  |  |  |  |
| Sacramento River at tip of Grand Island (711)   | 86                        | 14.3    | 95     | 3.1 | NS                          |  |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 97                        | 3.1     | 95     | 2.9 | NS                          |  |  |  |  |  |
| Confluence of Linsey Sl. And Cache Sl.          | 98                        | 2.5     | 95     | 2.9 | NS                          |  |  |  |  |  |
| San Joaquin River at Potato Slough (815)        | 97                        | 2.8     | 100    | 0.0 | NS                          |  |  |  |  |  |
| Old River, western arm at railroad bridge (902) | 100                       | 0.0     | 100    | 0.0 | NS                          |  |  |  |  |  |
| Old River at mouth of Holland Cut (915)         | 98                        | 2.5     | 98     | 2.5 | NS                          |  |  |  |  |  |
| Trip Blank                                      | 98                        | 2.5     | -      | -   | NA                          |  |  |  |  |  |

|                                                 | Weight (mg/surviving individual) <sup>1</sup> |          |        |       |                  |  |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------|----------|--------|-------|------------------|--|--|--|--|--|
|                                                 |                                               |          | 25 ppl | b PBO | _                |  |  |  |  |  |
| Treatment                                       | Unman                                         | ipulated | ado    | ded   |                  |  |  |  |  |  |
|                                                 |                                               |          |        |       | vs Non-          |  |  |  |  |  |
|                                                 | mean                                          | se       | mean   | se    | PBO <sup>2</sup> |  |  |  |  |  |
| DIEPAMHR                                        | 0.045                                         | 0.002    | 0.060  | 0.026 | NS               |  |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55      | 0.089                                         | 0.005    | 0.094  | 0.009 | NS               |  |  |  |  |  |
| Sacramento River at tip of Grand Island (711)   | 0.064                                         | 0.009    | 0.040  | 0.007 | NS               |  |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 0.073                                         | 0.004    | 0.040  | 0.005 | S** (55%)        |  |  |  |  |  |
| Confluence of Linsey Sl. And Cache Sl.          | 0.083                                         | 0.009    | 0.068  | 0.004 | NS               |  |  |  |  |  |
| San Joaquin River at Potato Slough (815)        | 0.089                                         | 0.008    | 0.094  | 0.008 | NS               |  |  |  |  |  |
| Old River, western arm at railroad bridge (902) | 0.101                                         | 0.007    | 0.086  | 0.009 | NS               |  |  |  |  |  |
| Old River at mouth of Holland Cut (915)         | 0.085                                         | 0.010    | 0.055  | 0.007 | NS               |  |  |  |  |  |
| Trip Blank                                      | 0.056                                         | 0.005    | -      | -     | NA               |  |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

Table B10-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/05/09.

|                                                 |                             | Field Cl | nemistry |      | _                             | Total                          | Unionizad |  |
|-------------------------------------------------|-----------------------------|----------|----------|------|-------------------------------|--------------------------------|-----------|--|
| Treatment                                       | SC Temp pH DO (NTU) Nitroge |          | nH       |      | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |           |  |
| Sacramento R. Deep Water Channel, Light 55      | 258                         | 11.7     | 7.44     | 10.1 | 45.8                          | 0.15                           | 0.001     |  |
| Sacramento River at tip of Grand Island (711)   | 137                         | 11.4     | 7.1      | 10.1 | 146.3                         | 0.20                           | 0.000     |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 343                         | 11.4     | 7.48     | 9.3  | 151.3                         | 0.21                           | 0.001     |  |
| Confluence of Linsey Sl. And Cache Sl.          | 211                         | 11.7     | 7.35     | 10.1 | 37.8                          | 0.14                           | 0.001     |  |
| San Joaquin River at Potato Slough (815)        | 209                         | 12.5     | 7.39     | 9.7  | 16.7                          | 0.15                           | 0.001     |  |
| Old River, western arm at railroad bridge (902) | 337                         | 12.3     | 7.48     | 10.3 | 12.0                          | 0.08                           | 0.000     |  |
| Old River at mouth of Holland Cut (915)         | 425                         | 12.6     | 7.42     | 10.3 | 9.2                           | 0.07                           | 0.000     |  |
| Trip Blank                                      | 335                         | 16.9     | 8.03     | 9.0  | 0.3                           | 0.00                           | 0.000     |  |

Table B10-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 3/06/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/05/09.

|                                                              |            |                     | Labora              | atory Cher          | nistry              |           |           | - Hardness                   | Alkalinity                   | Unionized                   |
|--------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|------------------------------|------------------------------|-----------------------------|
| Treatment                                                    | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as CaCO <sub>3</sub> ) | (mg/L as CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                     | 344        | 22.4                | 24.0                | 7.1                 | 8.2                 | 7.77      | 8.04      | 100                          | 56                           | -                           |
| Sacramento R. Deep Water Channel, Light 55                   | 261        | 22.4                | 23.9                | 7.3                 | 8.3                 | 7.83      | 7.94      | 106                          | 90                           | 0.005                       |
| Sacramento River at tip of Grand Island (711)                | 136        | 22.4                | 23.9                | 7.6                 | 8.5                 | 7.63      | 7.82      | 68                           | 54                           | 0.006                       |
| Upper Cache Slough at mouth of Ulatis Creek                  | 347        | 22.4                | 23.9                | 7.3                 | 8.2                 | 7.96      | 8.08      | 128                          | 112                          | 0.009                       |
| Confluence of Linsey Sl. And Cache Sl.                       | 215        | 22.2                | 23.9                | 7.3                 | 8.3                 | 7.83      | 7.94      | 78                           | 78                           | 0.005                       |
| San Joaquin River at Potato Slough (815)                     | 216        | 22.1                | 24.0                | 7.2                 | 8.5                 | 7.73      | 7.83      | 84                           | 60                           | 0.004                       |
| Old River, western arm at railroad bridge (902)              | 344        | 22.2                | 24.3                | 7.6                 | 8.2                 | 7.87      | 7.94      | 84                           | 88                           | 0.003                       |
| Old River at mouth of Holland Cut (915)                      | 423        | 22.2                | 24.0                | 7.5                 | 8.5                 | 7.86      | 7.95      | 108                          | 84                           | 0.003                       |
| Trip Blank                                                   | 348        | 22.3                | 24.1                | 7.0                 | 8.5                 | 7.74      | 8.03      | 110                          | 64                           | 0.000                       |
| DIEPAMHR + 25 ppb PBO                                        | 343        | 22.2                | 22.9                | 7.4                 | 8.1                 | 7.73      | 8.03      | -                            | -                            | -                           |
| Sacramento R. Deep Water Channel, Light 55 + 25 ppb PBO      | 259        | 22.2                | 22.9                | 7.2                 | 8.6                 | 7.83      | 7.99      | -                            | -                            | -                           |
| Sacramento River at tip of Grand Island (711) + 25 ppb PBO   | 135        | 22.2                | 22.8                | 7.4                 | 8.4                 | 7.66      | 7.86      | -                            | -                            | -                           |
| Upper Cache Slough at mouth of Ulatis Creek + 25 ppb PBO     | 339        | 22.2                | 22.7                | 7.4                 | 8.5                 | 8.00      | 8.14      | -                            | -                            | -                           |
| Confluence of Linsey Sl. And Cache Sl. + 25 ppb PBO          | 212        | 22.2                | 22.6                | 7.6                 | 8.8                 | 7.83      | 7.98      | -                            | -                            | -                           |
| San Joaquin River at Potato Slough (815) + 25 ppb PBO        | 210        | 22.2                | 22.4                | 7.5                 | 8.6                 | 7.78      | 7.85      | -                            | -                            | -                           |
| Old River, western arm at railroad bridge (902) + 25 ppb PBO | 340        | 22.2                | 22.4                | 7.0                 | 8.4                 | 7.86      | 7.92      | -                            | -                            | -                           |
| Old River at mouth of Holland Cut (915) + 25 ppb PBO         | 412        | 22.0                | 22.4                | 7.4                 | 8.5                 | 7.88      | 8.02      | -                            | -                            | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B11-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 3/19/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/17/09 - 3/18/09.

|                                                   | Survival (%) <sup>1</sup> |         |      |     |         |  |  |  |
|---------------------------------------------------|---------------------------|---------|------|-----|---------|--|--|--|
| <b>T</b>                                          |                           | _       |      |     |         |  |  |  |
| Treatment                                         | Unmani                    | pulated | add  | led |         |  |  |  |
|                                                   |                           |         |      |     | vs Non- |  |  |  |
|                                                   | mean                      | se      | mean | se  | $PBO^2$ |  |  |  |
| DIEPAMHR                                          | 95                        | 2.8     | 98   | 2.5 | NS      |  |  |  |
| Suisun Bay off Chipps Island (508)                | 100                       | 0.0     | 100  | 0.0 | NS      |  |  |  |
| Montezuma Slough at Nurse Slough (609)            | 100                       | 0.0     | 91   | 6.4 | NS      |  |  |  |
| Grizzly Bay at Dolphin (602)                      | 100                       | 0.0     | 100  | 0.0 | NS      |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) | 98                        | 2.5     | 100  | 0.0 | NS      |  |  |  |
| Napa River at Vallejo Seawall (340)               | 100                       | 0.0     | 100  | 0.0 | NS      |  |  |  |
| Rough and Ready DWR station, Stockton             | 100                       | 0.0     | 100  | 0.0 | NS      |  |  |  |
| Confluence of Lindsey Sl. and Cache Sl.           | 98                        | 2.5     | 98   | 2.5 | NS      |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek       | 100                       | 0.0     | 100  | 0.0 | NS      |  |  |  |
| Sacramento R. Deep Water Channel, Light 55        | 100                       | 0.0     | 100  | 0.0 | NS      |  |  |  |

|                                                   | Weight (mg/surviving individual) <sup>1</sup> |          |       |       |                             |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------|----------|-------|-------|-----------------------------|--|--|--|--|
| Treatment                                         |                                               | . 1.4.1  |       | PBO   |                             |  |  |  |  |
| Heatment                                          | Unman                                         | ipulated | ado   | ded   |                             |  |  |  |  |
|                                                   | mean                                          | se       | mean  | se    | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                          | 0.048                                         | 0.009    | 0.063 | 0.011 | NS                          |  |  |  |  |
| Suisun Bay off Chipps Island (508)                | 0.098                                         | 0.006    | 0.074 | 0.009 | NS                          |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)            | 0.068                                         | 0.009    | 0.058 | 0.006 | NS                          |  |  |  |  |
| Grizzly Bay at Dolphin (602)                      | 0.077                                         | 0.004    | 0.071 | 0.007 | NS                          |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) | 0.075                                         | 0.005    | 0.061 | 0.003 | S* (81%)                    |  |  |  |  |
| Napa River at Vallejo Seawall (340)               | 0.073                                         | 0.002    | 0.057 | 0.005 | S* (78%)                    |  |  |  |  |
| Rough and Ready DWR station, Stockton             | 0.093                                         | 0.006    | 0.064 | 0.007 | S* (69%)                    |  |  |  |  |
| Confluence of Lindsey Sl. and Cache Sl.           | 0.062                                         | 0.009    | 0.065 | 0.004 | NS                          |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek       | 0.069                                         | 0.002    | 0.077 | 0.008 | NS                          |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55        | 0.072                                         | 0.004    | 0.097 | 0.003 | S** (135%)                  |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

Table B11-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/17/09 - 3/18/09.

|                                                   |               | Field Cl     | nemistry |              | _                  | Total                         | Unionized         |  |
|---------------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|-------------------|--|
| Treatment                                         | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Ammonia<br>(mg/L) |  |
| Suisun Bay off Chipps Island (508)                | 358           | 13.6         | 6.91     | 10.3         | 38.4               | 0.16                          | 0.000             |  |
| Montezuma Slough at Nurse Slough (609)            | 2030          | 14.0         | 6.99     | 9.7          | 65.7               | 0.29                          | 0.001             |  |
| Grizzly Bay at Dolphin (602)                      | 425           | 13.8         | 6.75     | 10.5         | 71.8               | 0.18                          | 0.000             |  |
| Carquinez Strait, West of Benicia army dock (405) | 6750          | 13.2         | 7.14     | 10.5         | 97.9               | 0.24                          | 0.001             |  |
| Napa River at Vallejo Seawall (340)               | 11210         | 13.2         | 7.02     | 10.3         | 74.8               | 0.18                          | 0.000             |  |
| Rough and Ready DWR station, Stockton             | 740           | 15.7         | 7.68     | 8.5          | 6.0                | 0.10                          | 0.001             |  |
| Confluence of Lindsey Sl. and Cache Sl.           | 354           | 14.3         | 7.38     | 10.0         | 14.7               | 0.29                          | 0.002             |  |
| Upper Cache Slough at mouth of Ulatis Creek       | 614           | 14.3         | 7.97     | 9.9          | 32.1               | 0.10                          | 0.002             |  |
| Sacramento R. Deep Water Channel, Light 55        | 369           | 13.0         | 7.79     | 10.0         | 18.7               | 0.22                          | 0.003             |  |

Table B11-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 3/19/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/17/09 - 3/18/09.

|                                                                | Laboratory Chemistry |                     |                     |                     |                     |           |           |                                               | Alkalinity                      | kalinity Unionized          |
|----------------------------------------------------------------|----------------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|-----------------------------------------------|---------------------------------|-----------------------------|
| Treatment                                                      | EC (uS/cm)           | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | - Hardness<br>(mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as<br>CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                       | 332                  | 21.8                | 23.5                | 7.6                 | 8.4                 | 7.77      | 8.10      | 100                                           | 58                              | -                           |
| Suisun Bay off Chipps Island (508)                             | 370                  | 21.7                | 23.7                | 7.6                 | 8.4                 | 7.81      | 8.04      | 92                                            | 72                              | 0.006                       |
| Montezuma Slough at Nurse Slough (609)                         | 2587                 | 21.6                | 23.9                | 7.5                 | 8.4                 | 7.77      | 7.86      | 380                                           | 78                              | 0.007                       |
| Grizzly Bay at Dolphin (602)                                   | 420                  | 21.6                | 23.8                | 7.6                 | 8.5                 | 7.86      | 8.06      | 320                                           | 72                              | 0.008                       |
| Carquinez Strait, West of Benicia army dock (405)              | 6590                 | 21.3                | 24.0                | 7.5                 | 8.6                 | 7.77      | 7.88      | 800                                           | 80                              | 0.005                       |
| Napa River at Vallejo Seawall (340)                            | 10390                | 21.6                | 24.3                | 7.3                 | 8.7                 | 7.76      | 7.91      | 1260                                          | 88                              | 0.005                       |
| Rough and Ready DWR station, Stockton                          | 723                  | 21.5                | 23.6                | 7.2                 | 8.4                 | 7.98      | 8.14      | 176                                           | 104                             | 0.004                       |
| Confluence of Lindsey Sl. and Cache Sl.                        | 283                  | 21.5                | 24.2                | 7.5                 | 8.8                 | 7.89      | 8.18      | 100                                           | 100                             | 0.016                       |
| Upper Cache Slough at mouth of Ulatis Creek                    | 577                  | 21.4                | 23.8                | 7.6                 | 8.7                 | 8.14      | 8.38      | 212                                           | 180                             | 0.005                       |
| Sacramento R. Deep Water Channel, Light 55                     | 355                  | 21.5                | 23.6                | 7.5                 | 8.4                 | 8.04      | 8.21      | 124                                           | 124                             | 0.013                       |
| DIEPAMHR + 25 ppb PBO                                          | 332                  | 21.5                | 23.0                | 7.8                 | 8.1                 | 7.80      | 8.09      | -                                             | -                               | -                           |
| Suisun Bay off Chipps Island (508) + 25 ppb PBO                | 352                  | 21.9                | 23.2                | 7.5                 | 8.6                 | 7.81      | 8.02      | -                                             | -                               | -                           |
| Montezuma Slough at Nurse Slough (609) + 25 ppb PBO            | 2530                 | 21.7                | 23.1                | 7.5                 | 8.3                 | 7.70      | 7.84      | -                                             | -                               | -                           |
| Grizzly Bay at Dolphin (602) + 25 ppb PBO                      | 418                  | 21.9                | 23.2                | 7.6                 | 8.5                 | 7.84      | 8.08      | -                                             | -                               | -                           |
| Carquinez Strait, West of Benicia army dock (405) + 25 ppb PBO | 6410                 | 21.7                | 23.0                | 6.3                 | 8.2                 | 7.54      | 7.91      | -                                             | -                               | -                           |
| Napa River at Vallejo Seawall (340) + 25 ppb PBO               | 10275                | 21.7                | 23.4                | 7.3                 | 8.2                 | 7.73      | 7.83      | -                                             | -                               | -                           |
| Rough and Ready DWR station, Stockton + 25 ppb PBO             | 710                  | 21.5                | 23.4                | 7.7                 | 8.5                 | 7.94      | 8.15      | -                                             | -                               | -                           |
| Confluence of Lindsey Sl. and Cache Sl. + 25 ppb PBO           | 286                  | 21.4                | 23.4                | 7.6                 | 8.7                 | 7.90      | 8.23      | -                                             | -                               | -                           |
| Upper Cache Slough at mouth of Ulatis Creek + 25 ppb PBO       | 575                  | 21.2                | 23.5                | 7.6                 | 8.9                 | 8.27      | 8.37      | -                                             | -                               | -                           |
| Sacramento R. Deep Water Channel, Light 55 + 25 ppb PBO        | 357                  | 21.5                | 23.6                | 7.4                 | 8.6                 | 8.00      | 8.26      | -                                             | -                               | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B12-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 3/20/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/18/09 - 3/19/09.

|                                                 | Survival (%) <sup>1</sup> |            |      |     |                             |  |  |  |
|-------------------------------------------------|---------------------------|------------|------|-----|-----------------------------|--|--|--|
| Tourism                                         |                           | 25 ppb PBO |      |     |                             |  |  |  |
| Treatment                                       | Unmani                    | pulated    | add  | led |                             |  |  |  |
|                                                 | mean                      | se         | mean | se  | vs Non-<br>PBO <sup>2</sup> |  |  |  |
| DIEPAMHR                                        | 92                        | 2.6        | 94   | 5.6 | NS                          |  |  |  |
| Sacramento River at tip of Grand Island (711)   | 95                        | 2.9        | 95   | 2.9 | NS                          |  |  |  |
| San Joaquin River at Potato Slough (815)        | 100                       | 0.0        | 100  | 0.0 | NS                          |  |  |  |
| Old River, western arm at railroad bridge (902) | 100                       | 0.0        | 98   | 2.5 | NS                          |  |  |  |
| Old River at mouth of Holland Cut (915)         | 100                       | 0.0        | 98   | 2.5 | NS                          |  |  |  |
| Napa River at River Park Blvd.                  | 100                       | 0.0        | 100  | 0.0 | NS                          |  |  |  |
| Suisun Slough at Rush Ranch                     | 100                       | 0.0        | 100  | 0.0 | NS                          |  |  |  |
| Sacramento River at Hood DWR Station            | 95                        | 5.0        | 95   | 2.9 | NS                          |  |  |  |
| Instant Ocean Control @ 150 mS/cm               | 98                        | 2.5        | -    | -   | NA                          |  |  |  |

|                                                 | Weight (mg/surviving individual) <sup>1</sup> |          |       |              |                             |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------|----------|-------|--------------|-----------------------------|--|--|--|--|
| Treatment                                       | Unman                                         | ipulated |       | b PBO<br>ded |                             |  |  |  |  |
|                                                 | mean                                          | se       | mean  | se           | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                        | 0.026                                         | 0.005    | 0.046 | 0.005        | S* (177%)                   |  |  |  |  |
| Sacramento River at tip of Grand Island (711)   | 0.061                                         | 0.005    | 0.061 | 0.008        | NS                          |  |  |  |  |
| San Joaquin River at Potato Slough (815)        | 0.046                                         | 0.004    | 0.087 | 0.007        | S** (189%)                  |  |  |  |  |
| Old River, western arm at railroad bridge (902) | 0.064                                         | 0.013    | 0.065 | 0.010        | NS                          |  |  |  |  |
| Old River at mouth of Holland Cut (915)         | 0.093                                         | 0.006    | 0.069 | 0.004        | S* (74%)                    |  |  |  |  |
| Napa River at River Park Blvd.                  | 0.084                                         | 0.011    | 0.100 | 0.012        | NS                          |  |  |  |  |
| Suisun Slough at Rush Ranch                     | 0.074                                         | 0.005    | 0.093 | 0.006        | S* (126%)                   |  |  |  |  |
| Sacramento River at Hood DWR Station            | 0.092                                         | 0.003    | 0.067 | 0.006        | S* (73%)                    |  |  |  |  |
| Instant Ocean Control @ 150 mS/cm               | 0.033                                         | 0.004    | -     | -            | NA                          |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

Table B12-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/18/09 - 3/19/09.

|                                                 |               | Field Ch     | nemistry |              | _                  | Total                         | Unionized<br>Ammonia<br>(mg/L) |
|-------------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|--------------------------------|
| Treatment                                       | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) |                                |
| Sacramento River at tip of Grand Island (711)   | 210           | 14.1         | 7.16     | 10.1         | 5.9                | 0.34                          | 0.001                          |
| San Joaquin River at Potato Slough (815)        | 218           | 14.4         | 6.94     | 10.0         | 10.3               | 0.11                          | 0.000                          |
| Old River, western arm at railroad bridge (902) | 258           | 14.8         | 7.39     | 10.1         | 10.9               | 0.05                          | 0.000                          |
| Old River at mouth of Holland Cut (915)         | 319           | 14.8         | 7.21     | 9.8          | 7.6                | 0.03                          | 0.000                          |
| Napa River at River Park Blvd.                  | 466           | 16.6         | 7.96     | 10.5         | 42.3               | 0.05                          | 0.001                          |
| Suisun Slough at Rush Ranch                     | 4106          | 19.0         | 7.42     | 9.2          | 98.5               | 0.16                          | 0.001                          |
| Sacramento River at Hood DWR Station            | 197           | 14.4         | 7.14     | 9.9          | 5.4                | 0.46                          | 0.002                          |

Table B12-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 3/20/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/18/09 - 3/19/09.

|                                                              |            |                     | Labora              | atory Chem          | istry               |           |           | - Hardness                   | Alkalinity                      | Unionized                   |
|--------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|------------------------------|---------------------------------|-----------------------------|
| Treatment                                                    | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as CaCO <sub>3</sub> ) | (mg/L as<br>CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                     | 334        | 22.1                | 23.9                | 7.6                 | 8.4                 | 7.29      | 8.14      | 100                          | 58                              | -                           |
| Sacramento River at tip of Grand Island (711)                | 199        | 22.1                | 23.8                | 7.4                 | 8.4                 | 7.29      | 8.08      | 80                           | 78                              | 0.015                       |
| San Joaquin River at Potato Slough (815)                     | 206        | 22.3                | 24.0                | 7.3                 | 8.7                 | 7.20      | 8.17      | 84                           | 68                              | 0.004                       |
| Old River, western arm at railroad bridge (902)              | 254        | 22.3                | 23.6                | 7.5                 | 8.8                 | 7.27      | 8.14      | 84                           | 68                              | 0.002                       |
| Old River at mouth of Holland Cut (915)                      | 286        | 22.8                | 22.3                | 7.3                 | 8.5                 | 7.34      | 8.11      | 88                           | 70                              | 0.000                       |
| Napa River at River Park Blvd.                               | 453        | 22.4                | 23.8                | 7.3                 | 8.9                 | 7.51      | 8.20      | 88                           | 96                              | 0.003                       |
| Suisun Slough at Rush Ranch                                  | 3885       | 22.3                | 23.9                | 6.9                 | 8.4                 | 7.85      | 8.31      | 620                          | 222                             | 0.009                       |
| Sacramento River at Hood DWR Station                         | 219        | 22.4                | 24.0                | 6.9                 | 8.7                 | 7.28      | 8.22      | 72                           | 80                              | 0.029                       |
| Instant Ocean Control @ 150 mS/cm                            | 156        | 22.3                | 23.5                | 7.5                 | 8.3                 | 5.94      | 8.69      | 40                           | 5                               | -                           |
| DIEPAMHR + 25 ppb PBO                                        | 338        | 22.2                | 23.3                | 7.4                 | 8.5                 | 7.33      | 8.26      | -                            | -                               | -                           |
| Sacramento River at tip of Grand Island (711) + 25 ppb PBO   | 204        | 22.3                | 23.5                | 7.6                 | 8.5                 | 7.39      | 8.25      | -                            | -                               | -                           |
| San Joaquin River at Potato Slough (815) + 25 ppb PBO        | 207        | 22.4                | 23.6                | 7.4                 | 8.7                 | 7.18      | 8.15      | -                            | -                               | -                           |
| Old River, western arm at railroad bridge (902) + 25 ppb PBO | 244        | 22.5                | 23.7                | 7.3                 | 8.7                 | 7.29      | 8.10      | -                            | -                               | -                           |
| Old River at mouth of Holland Cut (915) + 25 ppb PBO         | 289        | 22.3                | 23.4                | 7.2                 | 8.6                 | 7.34      | 8.14      | -                            | -                               | -                           |
| Napa River at River Park Blvd. + 25 ppb PBO                  | 450        | 22.3                | 23.7                | 7.3                 | 8.6                 | 7.51      | 8.23      | -                            | -                               | -                           |
| Suisun Slough at Rush Ranch + 25 ppb PBO                     | 4056       | 22.4                | 23.4                | 7.2                 | 8.3                 | 7.90      | 8.31      | -                            | -                               | -                           |
| Sacramento River at Hood DWR Station + 25 ppb PBO            | 200        | 22.5                | 23.6                | 6.9                 | 8.5                 | 7.31      | 8.24      | -                            | -                               |                             |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B13-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 4/02/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/31/09 - 4/01/09.

|                                                   | Survival (%) <sup>1</sup> |         |      |     |                  |  |  |  |  |
|---------------------------------------------------|---------------------------|---------|------|-----|------------------|--|--|--|--|
| _                                                 |                           | _       |      |     |                  |  |  |  |  |
| Treatment                                         | Unmani                    | pulated | add  | led |                  |  |  |  |  |
|                                                   |                           |         |      |     | vs Non-          |  |  |  |  |
|                                                   | mean                      | se      | mean | se  | PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                          | 95                        | 5.0     | 95   | 3.1 | NS               |  |  |  |  |
| High EC Control @ 19.70 mS/cm                     | 89                        | 4.2     | 89   | 7.0 | NS               |  |  |  |  |
| Sacramento River at Hood DWR Station              | 100                       | 0.0     | 94   | 5.6 | NS               |  |  |  |  |
| Napa River at River Park Blvd.                    | 98                        | 2.5     | 98   | 2.5 | NS               |  |  |  |  |
| Suisun Slough at Rush Ranch                       | 100                       | 0.0     | 100  | 0.0 | NS               |  |  |  |  |
| Rough and Ready DWR station, Stockton             | 100                       | 0.0     | 100  | 0.0 | NS               |  |  |  |  |
| Grizzly Bay at Dolphin (602)                      | 100                       | 0.0     | 100  | 0.0 | NS               |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)            | 95                        | 2.9     | 100  | 0.0 | NS               |  |  |  |  |
| Suisun Bay off Chipps Island (508)                | 98                        | 2.1     | 100  | 0.0 | NS               |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) | 94                        | 3.7     | 94   | 3.4 | NS               |  |  |  |  |
| Napa River at Vallejo Seawall (340)               | 100                       | 0.0     | 95   | 3.1 | NS               |  |  |  |  |

|                                                   | Weight (mg/surviving individual) <sup>1</sup> |          |       |              |                             |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------|----------|-------|--------------|-----------------------------|--|--|--|--|
| Treatment                                         | Unman                                         | ipulated |       | b PBO<br>ded |                             |  |  |  |  |
|                                                   | mean                                          | se       | mean  | se           | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                          | 0.032                                         | 0.003    | 0.046 | 0.007        | NS                          |  |  |  |  |
| High EC Control @ 19.70 mS/cm                     | 0.032                                         | 0.005    | 0.039 | 0.009        | NS                          |  |  |  |  |
| Sacramento River at Hood DWR Station              | 0.064                                         | 0.005    | 0.079 | 0.003        | NS                          |  |  |  |  |
| Napa River at River Park Blvd.                    | 0.084                                         | 0.005    | 0.073 | 0.005        | NS                          |  |  |  |  |
| Suisun Slough at Rush Ranch                       | 0.074                                         | 0.008    | 0.091 | 0.007        | NS                          |  |  |  |  |
| Rough and Ready DWR station, Stockton             | 0.094                                         | 0.008    | 0.102 | 0.010        | NS                          |  |  |  |  |
| Grizzly Bay at Dolphin (602)                      | 0.094                                         | 0.006    | 0.085 | 0.010        | NS                          |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)            | 0.088                                         | 0.003    | 0.091 | 0.002        | NS                          |  |  |  |  |
| Suisun Bay off Chipps Island (508)                | 0.087                                         | 0.008    | 0.130 | 0.017        | NS                          |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) | 0.046                                         | 0.007    | 0.056 | 0.007        | NS                          |  |  |  |  |
| Napa River at Vallejo Seawall (340)               | 0.059                                         | 0.009    | 0.053 | 0.003        | NS                          |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

Table B13-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/31/09 - 4/01/09.

|                                                   |                                                                                                   | Field Ch | nemistry                      |                   | _     | Total | Unionized |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------|----------|-------------------------------|-------------------|-------|-------|-----------|
| Treatment                                         | $\frac{SC}{(uS/cm)}$ $\frac{Temp}{\binom{O}{C}}$ $pH$ $\frac{DO}{(mg/L)}$ $\frac{(NTU)}{Nitrogo}$ |          | Ammonia<br>Nitrogen<br>(mg/L) | Ammonia<br>(mg/L) |       |       |           |
| Sacramento River at Hood DWR Station              | 178                                                                                               | 14.7     | 6.91                          | 9.9               | 6.9   | 0.43  | 0.001     |
| Napa River at River Park Blvd.                    | 1206                                                                                              | 17.4     | 7.77                          | 9.6               | 105.0 | 0.22  | 0.004     |
| Suisun Slough at Rush Ranch                       | 3805                                                                                              | 16.6     | 7.45                          | 9.0               | 343.0 | 0.27  | 0.002     |
| Rough and Ready DWR station, Stockton             | 913                                                                                               | 16.3     | 7.94                          | 10.1              | 7.2   | 0.02  | 0.000     |
| Grizzly Bay at Dolphin (602)                      | 5260                                                                                              | 16.9     | 7.67                          | 10.0              | 68.4  | 0.10  | 0.001     |
| Montezuma Slough at Nurse Slough (609)            | 3439                                                                                              | 15.9     | 7.12                          | 9.0               | 80.3  | 0.25  | 0.001     |
| Suisun Bay off Chipps Island (508)                | 5300                                                                                              | 14.8     | 7.55                          | 10.5              | 40.4  | 0.16  | 0.001     |
| Carquinez Strait, West of Benicia army dock (405) | 17740                                                                                             | 15.7     | 7.53                          | 9.8               | 155.7 | 0.21  | 0.001     |
| Napa River at Vallejo Seawall (340)               | 18760                                                                                             | 15.6     | 6.94                          | 9.6               | 37.5  | 0.12  | 0.000     |

Table B13-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 4/02/09 of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 3/31/09 - 4/01/09.

|                                                                |            |                     | Labora              | atory Cher          | nistry              |           |           | - Hardness                      | Alkalinity                   | Unionized                   |
|----------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------|------------------------------|-----------------------------|
| Treatment                                                      | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                       | 334        | 22.8                | 22.8                | 7.4                 | 8.2                 | 7.77      | 8.06      | 100                             | 56                           | -                           |
| High EC Control @ 19.70 mS/cm                                  | 19135      | 22.4                | 23.1                | 7.0                 | 8.2                 | 7.72      | 7.78      | 2100                            | 82                           | -                           |
| Sacramento River at Hood DWR Station                           | 218        | 22.8                | 23.1                | 7.0                 | 8.5                 | 7.63      | 8.13      | 64                              | 72                           | 0.012                       |
| Napa River at River Park Blvd.                                 | 1325       | 22.1                | 23.1                | 7.3                 | 8.5                 | 7.89      | 8.12      | 240                             | 118                          | 0.007                       |
| Suisun Slough at Rush Ranch                                    | 3705       | 22.5                | 23.1                | 7.4                 | 7.9                 | 7.85      | 8.27      | 496                             | 176                          | 0.007                       |
| Rough and Ready DWR station, Stockton                          | 931        | 23.1                | 23.1                | 7.3                 | 8.3                 | 7.95      | 8.14      | 164                             | 104                          | 0.001                       |
| Grizzly Bay at Dolphin (602)                                   | 4760       | 23.1                | 23.1                | 7.4                 | 8.1                 | 7.83      | 7.96      | 500                             | 86                           | 0.003                       |
| Montezuma Slough at Nurse Slough (609)                         | 3382       | 22.7                | 23.1                | 7.4                 | 8.4                 | 7.71      | 8.00      | 388                             | 84                           | 0.005                       |
| Suisun Bay off Chipps Island (508)                             | 5255       | 23.1                | 23.7                | 7.5                 | 7.9                 | 7.82      | 7.99      | 564                             | 86                           | 0.004                       |
| Carquinez Strait, West of Benicia army dock (405)              | 16675      | 23.1                | 23.4                | 7.1                 | 8.1                 | 7.65      | 7.88      | 1860                            | 98                           | 0.004                       |
| Napa River at Vallejo Seawall (340)                            | 18515      | 23.1                | 23.9                | 7.2                 | 7.7                 | 7.65      | 7.92      | 1996                            | 94                           | 0.002                       |
| DIEPAMHR + 25 ppb PBO                                          | 391        | 22.6                | 23.0                | 7.3                 | 7.9                 | 7.77      | 8.03      | -                               | -                            | -                           |
| High EC Control @ 19.70 mS/cm + 25 ppb PBO                     | 19055      | 22.9                | 23.2                | 6.9                 | 7.8                 | 7.73      | 7.80      | -                               | -                            | -                           |
| Sacramento River at Hood DWR Station + 25 ppb PBO              | 240        | 23.1                | 23.8                | 7.2                 | 8.1                 | 7.70      | 7.97      | -                               | -                            | -                           |
| Napa River at River Park Blvd. + 25 ppb PBO                    | 1362       | 23.2                | 23.4                | 7.4                 | 8.2                 | 7.93      | 8.15      | -                               | -                            | -                           |
| Suisun Slough at Rush Ranch + 25 ppb PBO                       | 3699       | 23.1                | 23.9                | 7.2                 | 8.2                 | 7.89      | 8.27      | -                               | -                            | -                           |
| Rough and Ready DWR station, Stockton + 25 ppb PBO             | 916        | 23.1                | 23.5                | 7.3                 | 8.5                 | 7.96      | 8.17      | -                               | -                            | -                           |
| Grizzly Bay at Dolphin (602) + 25 ppb PBO                      | 4656       | 23.1                | 24.1                | 7.3                 | 8.1                 | 7.81      | 7.95      | -                               | -                            | -                           |
| Montezuma Slough at Nurse Slough (609) + 25 ppb PBO            | 3458       | 23.5                | 23.5                | 7.0                 | 8.5                 | 7.76      | 7.98      | -                               | -                            | -                           |
| Suisun Bay off Chipps Island (508) + 25 ppb PBO                | 5165       | 23.3                | 24.0                | 7.1                 | 8.3                 | 7.81      | 7.96      | -                               | -                            | -                           |
| Carquinez Strait, West of Benicia army dock (405) + 25 ppb PBO | 16845      | 23.2                | 23.6                | 6.9                 | 8.3                 | 7.66      | 7.87      | -                               | -                            | -                           |
| Napa River at Vallejo Seawall (340) + 25 ppb PBO               | 18575      | 23.2                | 23.9                | 7.0                 | 8.1                 | 7.70      | 7.87      | -                               | -                            | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B14-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 4/03/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/02/09.

|                                                 | Survival (%) <sup>1</sup> |         |               |      |                             |  |  |  |  |
|-------------------------------------------------|---------------------------|---------|---------------|------|-----------------------------|--|--|--|--|
| Treatment                                       | Unmani                    | pulated | 25 ppt<br>ado |      |                             |  |  |  |  |
|                                                 | mean                      | se      | mean          | se   | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                        | 100                       | 0.0     | 76            | 17.9 | NS                          |  |  |  |  |
| Instant Ocean Control @ 150 uS/cm               | 100                       | 0.0     | 100           | 0.0  | NS                          |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55      | 98                        | 2.5     | 100           | 0.0  | NS                          |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 100                       | 0.0     | 98            | 2.5  | NS                          |  |  |  |  |
| Confluence of Linsey Sl. And Cache Sl.          | 98                        | 2.5     | 98            | 2.5  | NS                          |  |  |  |  |
| Sacramento River at tip of Grand Island (711)   | 95                        | 2.9     | 98            | 2.5  | NS                          |  |  |  |  |
| San Joaquin River at Potato Slough (815)        | 98                        | 2.5     | 98            | 2.5  | NS                          |  |  |  |  |
| Old River, western arm at railroad bridge (902) | 100                       | 0.0     | 100           | 0.0  | NS                          |  |  |  |  |
| Old River at mouth of Holland Cut (915)         | 98                        | 2.5     | 98            | 2.5  | NS                          |  |  |  |  |

|                                                 | Weight (mg/surviving individual) <sup>1</sup> |         |        |       |                             |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------|---------|--------|-------|-----------------------------|--|--|--|--|
|                                                 |                                               |         | 25 ppl | b PBO |                             |  |  |  |  |
| Treatment                                       | Unmani                                        | pulated | ado    | ded   |                             |  |  |  |  |
|                                                 | mean                                          | se      | mean   | se    | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                        | 0.050                                         | 0.008   | 0.050  | 0.012 | NS                          |  |  |  |  |
| Instant Ocean Control @ 150 uS/cm               | 0.030*                                        | 0.003   | 0.051  | 0.004 | S** (170%)                  |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55      | 0.068                                         | 0.022   | 0.112  | 0.005 | NS                          |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 0.036                                         | 0.005   | 0.106  | 0.005 | S*** (294%)                 |  |  |  |  |
| Confluence of Linsey Sl. And Cache Sl.          | 0.083                                         | 0.006   | 0.088  | 0.005 | NS                          |  |  |  |  |
| Sacramento River at tip of Grand Island (711)   | 0.076                                         | 0.002   | 0.088  | 0.007 | NS                          |  |  |  |  |
| San Joaquin River at Potato Slough (815)        | 0.090                                         | 0.003   | 0.105  | 0.006 | NS                          |  |  |  |  |
| Old River, western arm at railroad bridge (902) | 0.090                                         | 0.007   | 0.124  | 0.007 | S* (138%)                   |  |  |  |  |
| Old River at mouth of Holland Cut (915)         | 0.100                                         | 0.013   | 0.105  | 0.006 | NS                          |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>\*\*\*:</sup> *P* < 0.001

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

Table B14-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/02/09.

|                                                 |                 | Field Cl | nemistry     |                    | _                             | Total             | Unionized |
|-------------------------------------------------|-----------------|----------|--------------|--------------------|-------------------------------|-------------------|-----------|
| Treatment                                       | (uS/cm) (°C) pH |          | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Ammonia<br>(mg/L) |           |
| Sacramento R. Deep Water Channel, Light 55      | 283             | 14.9     | 7.02         | 10.1               | 19.5                          | 0.26              | 0.001     |
| Upper Cache Slough at mouth of Ulatis Creek     | 605             | 15.3     | 7.96         | 10.2               | 29.3                          | 0.04              | 0.001     |
| Confluence of Linsey Sl. And Cache Sl.          | 272             | 15.5     | 6.90         | 9.9                | 14.2                          | 0.28              | 0.001     |
| Sacramento River at tip of Grand Island (711)   | 217             | 16.3     | 7.38         | 9.7                | 8.5                           | 0.38              | 0.003     |
| San Joaquin River at Potato Slough (815)        | 190             | 16.0     | 7.50         | 10.0               | 9.6                           | 0.10              | 0.001     |
| Old River, western arm at railroad bridge (902) | 262             | 15.9     | 7.49         | 9.7                | 12.3                          | 0.04              | 0.000     |
| Old River at mouth of Holland Cut (915)         | 268             | 15.9     | 7.41         | 9.8                | 9.0                           | 0.01              | 0.000     |

Table B14-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 4/03/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/02/09.

|                                                              |            |                     | Labora              | tory Chem           | istry               |           |           | - Hardness                      | Unionized                                     |                             |
|--------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------|-----------------------------------------------|-----------------------------|
| Treatment                                                    | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | Alkalinity<br>(mg/L as<br>CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                     | 335        | 22.1                | 23.5                | 7.5                 | 8.5                 | 7.69      | 8.12      | 100                             | 56                                            | -                           |
| Instant Ocean Control @ 150 uS/cm                            | 155        | 22.6                | 23.4                | 7.5                 | 9.1                 | 6.74      | 7.08      | 32                              | 4                                             | -                           |
| Sacramento R. Deep Water Channel, Light 55                   | 264        | 22.3                | 23.2                | 7.3                 | 8.9                 | 7.78      | 8.10      | 104                             | 92                                            | 0.012                       |
| Upper Cache Slough at mouth of Ulatis Creek                  | 571        | 22.3                | 23.5                | 7.3                 | 8.6                 | 8.24      | 8.39      | 196                             | 172                                           | 0.003                       |
| Confluence of Linsey Sl. And Cache Sl.                       | 248        | 22.6                | 23.4                | 7.0                 | 8.8                 | 7.79      | 8.13      | 92                              | 88                                            | 0.017                       |
| Sacramento River at tip of Grand Island (711)                | 196        | 22.7                | 23.5                | 7.3                 | 8.8                 | 7.72      | 8.04      | 80                              | 134                                           | 0.019                       |
| San Joaquin River at Potato Slough (815)                     | 222        | 22.6                | 23.5                | 7.3                 | 8.3                 | 7.72      | 8.05      | 100                             | 72                                            | 0.005                       |
| Old River, western arm at railroad bridge (902)              | 253        | 22.7                | 23.4                | 7.5                 | 8.8                 | 7.79      | 8.06      | 84                              | 72                                            | 0.002                       |
| Old River at mouth of Holland Cut (915)                      | 256        | 22.7                | 23.3                | 7.4                 | 8.8                 | 7.75      | 8.07      | 88                              | 74                                            | 0.001                       |
| DIEPAMHR + 25 ppb PBO                                        | 334        | 22.7                | 23.5                | 7.6                 | 8.3                 | 7.72      | 8.05      | -                               | -                                             | -                           |
| Instant Ocean Control @ 150 uS/cm + 25 ppb PBO               | 154        | 22.6                | 22.8                | 7.5                 | 8.6                 | 6.75      | 7.09      | -                               | -                                             | -                           |
| Sacramento R. Deep Water Channel, Light 55 + 25 ppb PBO      | 258        | 22.6                | 23.1                | 7.0                 | 8.4                 | 7.74      | 8.06      | -                               | -                                             | -                           |
| Upper Cache Slough at mouth of Ulatis Creek + 25 ppb PBO     | 567        | 22.7                | 23.3                | 7.2                 | 8.5                 | 8.23      | 8.37      | -                               | -                                             | -                           |
| Confluence of Linsey Sl. And Cache Sl. + 25 ppb PBO          | 245        | 22.6                | 22.8                | 7.0                 | 8.5                 | 7.79      | 8.05      | -                               | -                                             | -                           |
| Sacramento River at tip of Grand Island (711) + 25 ppb PBO   | 197        | 22.7                | 23.1                | 7.3                 | 8.5                 | 7.19      | 8.07      | -                               | -                                             | -                           |
| San Joaquin River at Potato Slough (815) + 25 ppb PBO        | 232        | 22.6                | 23.2                | 7.3                 | 8.4                 | 7.74      | 8.05      | -                               | -                                             | -                           |
| Old River, western arm at railroad bridge (902) + 25 ppb PBO | 253        | 22.6                | 22.9                | 7.4                 | 9.0                 | 7.81      | 8.12      | -                               | -                                             | -                           |
| Old River at mouth of Holland Cut (915) + 25 ppb PBO         | 258        | 22.7                | 23.1                | 7.2                 | 8.8                 | 7.78      | 7.97      | -                               | _                                             | -                           |

Table B15-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 4/16/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/14/09.

|                                                   | Survival (%) <sup>1</sup> |         |               |      |                             |  |  |  |  |
|---------------------------------------------------|---------------------------|---------|---------------|------|-----------------------------|--|--|--|--|
| Treatment                                         | Unmaniț                   | oulated | 25 ppb<br>add |      |                             |  |  |  |  |
|                                                   | mean                      | se      | mean          | se   | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                          | 98                        | 2.5     | 83            | 11.1 | NS                          |  |  |  |  |
| High EC Control @ 19.88 mS/cm                     | 87                        | 6.3     | 81            | 10.8 | NS                          |  |  |  |  |
| Rough and Ready DWR station, Stockton             | 100                       | 0.0     | 97            | 2.8  | NS                          |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)            | 100                       | 0.0     | 95            | 2.9  | NS                          |  |  |  |  |
| Grizzly Bay at Dolphin (602)                      | 95                        | 2.7     | 100           | 0.0  | NS                          |  |  |  |  |
| Napa River at Vallejo Seawall (340) <sup>3</sup>  | 95                        | 3.1     | 88            | 4.8  | NS                          |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) | 100                       | 0.0     | 98            | 2.5  | NS                          |  |  |  |  |
| Suisun Bay off Chipps Island (508)                | 98                        | 2.3     | 98            | 2.5  | NS                          |  |  |  |  |

|                                                   | Weight (mg/surviving individual) <sup>1</sup> |         |         |                  |                             |  |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------|---------|---------|------------------|-----------------------------|--|--|--|--|--|
| Treatment                                         | Unmanip                                       | oulated |         | 25 ppb PBO added |                             |  |  |  |  |  |
|                                                   | mean                                          | se      | mean    | se               | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |  |
| DIEPAMHR                                          | 0.046                                         | 0.003   | 0.033   | 0.005            | S*                          |  |  |  |  |  |
| High EC Control @ 19.88 mS/cm                     | 0.023**                                       | 0.006   | 0.008** | 0.001            | S*                          |  |  |  |  |  |
| Rough and Ready DWR station, Stockton             | 0.095                                         | 0.005   | 0.105   | 0.006            | NS                          |  |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)            | 0.072                                         | 0.009   | 0.065   | 0.013            | NS                          |  |  |  |  |  |
| Grizzly Bay at Dolphin (602)                      | 0.044                                         | 0.007   | 0.049   | 0.003            | NS                          |  |  |  |  |  |
| Napa River at Vallejo Seawall (340) <sup>3</sup>  | 0.052                                         | 0.004   | 0.032   | 0.007            | S*                          |  |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) | 0.030*                                        | 0.007   | 0.044   | 0.008            | NS                          |  |  |  |  |  |
| Suisun Bay off Chipps Island (508)                | 0.095                                         | 0.013   | 0.070   | 0.007            | NS                          |  |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard single-concentration statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> This high conductivity sample was compared to the High EC Control.

Table B15-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/02/09.

|                                                   |               | Field Ch     | emistry |              | _                  | Total                         | Unionized<br>Ammonia<br>(mg/L) |  |
|---------------------------------------------------|---------------|--------------|---------|--------------|--------------------|-------------------------------|--------------------------------|--|
| Treatment                                         | SC<br>(uS/cm) | Temp<br>(°C) | pН      | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) |                                |  |
| Rough and Ready DWR station, Stockton             | 914           | 16.9         | 7.72    | 8.0          | 10.2               | 0.15                          | 0.002                          |  |
| Montezuma Slough at Nurse Slough (609)            | 3895          | 15.4         | 7.05    | 9.3          | 93.5               | 0.34                          | 0.001                          |  |
| Grizzly Bay at Dolphin (602)                      | 5620          | 15.6         | 7.54    | 10.0         | 234.0              | 0.32                          | 0.002                          |  |
| Napa River at Vallejo Seawall (340)               | 19420         | 14.0         | 6.99    | 10.2         | 46.3               | 0.59                          | 0.001                          |  |
| Carquinez Strait, West of Benicia army dock (405) | 9520          | 14.3         | 7.32    | 10.1         | 146.0              | 0.62                          | 0.002                          |  |
| Suisun Bay off Chipps Island (508)                | 597           | 14.9         | 7.14    | 10.2         | 26.8               | 0.31                          | 0.001                          |  |

Table B15-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 4/03/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/02/09.

|            |                                                                                    | Labor                                                                                                                                                                                                                                                                                                                                                                                                                                                           | atory Chei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unionized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EC (uS/cm) | Min<br>Temp<br>(°C)                                                                | Max<br>Temp<br>(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                             | Min<br>DO<br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Max<br>DO<br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Min<br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max<br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (mg/L as CaCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (mg/L as CaCO <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ammonia (mg/L) <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 331        | 22.0                                                                               | 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19135      | 21.6                                                                               | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 877        | 21.5                                                                               | 23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3577       | 20.2                                                                               | 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6280       | 21.9                                                                               | 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 18650      | 22.6                                                                               | 23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8875       | 22.7                                                                               | 23.1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 510        | 22.5                                                                               | 22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 338        | 22.5                                                                               | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19215      | 22.7                                                                               | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 917        | 22.7                                                                               | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3754       | 22.6                                                                               | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7805       | 22.7                                                                               | 23.7                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 18885      | 22.6                                                                               | 24.8                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8820       | 22.7                                                                               | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 524        | 22.6                                                                               | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | (uS/cm)  331 19135 877 3577 6280 18650 8875 510 338 19215 917 3754 7805 18885 8820 | EC (uS/cm)         Temp (°C)           331         22.0           19135         21.6           877         21.5           3577         20.2           6280         21.9           18650         22.6           8875         22.7           510         22.5           338         22.5           19215         22.7           917         22.7           3754         22.6           7805         22.7           18885         22.6           8820         22.7 | EC (uS/cm)         Min Temp (°C)         Max Temp (°C)           331         22.0         23.4           19135         21.6         23.5           877         21.5         23.2           3577         20.2         23.4           6280         21.9         23.3           18650         22.6         23.2           8875         22.7         23.1           510         22.5         22.9           338         22.5         22.5           19215         22.7         23.5           917         22.7         24.4           3754         22.6         24.4           7805         22.7         23.7           18885         22.6         24.8           8820         22.7         24.2 | EC (uS/cm)         Min Temp (°C)         Max Temp (°C)         Min Temp (°C)         Min Temp (°C)         Min DO (mg/L)           331         22.0         23.4         7.6           19135         21.6         23.5         7.5           877         21.5         23.2         7.5           3577         20.2         23.4         7.4           6280         21.9         23.3         7.8           18650         22.6         23.2         6.4           8875         22.7         23.1         7.4           510         22.5         22.9         7.2           338         22.5         22.5         7.7           19215         22.7         23.5         7.2           917         22.7         24.4         7.4           3754         22.6         24.4         7.3           7805         22.7         23.7         7.6           18885         22.6         24.8         7.1           8820         22.7         24.2         7.6 | EC (uS/cm)         Temp (°C)         Temp (°C)         DO (mg/L)         DO (mg/L)           331         22.0         23.4         7.6         8.4           19135         21.6         23.5         7.5         8.6           877         21.5         23.2         7.5         8.8           3577         20.2         23.4         7.4         8.4           6280         21.9         23.3         7.8         8.5           18650         22.6         23.2         6.4         8.1           8875         22.7         23.1         7.4         8.5           510         22.5         22.9         7.2         8.5           338         22.5         22.5         7.7         8.6           19215         22.7         23.5         7.2         8.1           917         22.7         24.4         7.4         8.8           3754         22.6         24.4         7.3         8.7           7805         22.7         23.7         7.6         8.4           18885         22.6         24.8         7.1         8.5           8820         22.7         24.2         7.6         8.4< | EC (uS/cm)         Min Temp (°C)         Max Temp (°C)         Min DO (mg/L)         Max DO (mg/L)         Min pH           331         22.0         23.4         7.6         8.4         7.73           19135         21.6         23.5         7.5         8.6         7.58           877         21.5         23.2         7.5         8.8         8.03           3577         20.2         23.4         7.4         8.4         7.82           6280         21.9         23.3         7.8         8.5         7.83           18650         22.6         23.2         6.4         8.1         7.56           8875         22.7         23.1         7.4         8.5         7.80           510         22.5         22.9         7.2         8.5         7.80           338         22.5         22.5         7.7         8.6         7.83           19215         22.7         23.5         7.2         8.1         7.56           917         22.7         24.4         7.4         8.8         8.00           3754         22.6         24.4         7.3         8.7         7.83           7805         22.7 <t< td=""><td>EC (uS/cm)         Min Temp (°C)         Max Temp (°C)         Min DO (mg/L)         Max DO (mg/L)         Min DO (mg/L)         Min pH         Max pH           331         22.0         23.4         7.6         8.4         7.73         8.02           19135         21.6         23.5         7.5         8.6         7.58         7.87           877         21.5         23.2         7.5         8.8         8.03         8.24           3577         20.2         23.4         7.4         8.4         7.82         8.01           6280         21.9         23.3         7.8         8.5         7.83         8.10           18650         22.6         23.2         6.4         8.1         7.56         7.91           8875         22.7         23.1         7.4         8.5         7.80         8.02           510         22.5         22.9         7.2         8.5         7.80         8.22           338         22.5         22.5         7.7         8.6         7.83         8.12           19215         22.7         23.5         7.2         8.1         7.56         7.86           917         22.7         24.4         <td< td=""><td>EC (uS/cm)         Min Temp (°C)         Max Temp (°C)         Min DO (mg/L)         Max DO (mg/L)         Min pH         Max pH         Max CaCO<sub>3</sub>)           331         22.0         23.4         7.6         8.4         7.73         8.02         100           19135         21.6         23.5         7.5         8.6         7.58         7.87         2680           877         21.5         23.2         7.5         8.8         8.03         8.24         190           3577         20.2         23.4         7.4         8.4         7.82         8.01         452           6280         21.9         23.3         7.8         8.5         7.83         8.10         704           18650         22.6         23.2         6.4         8.1         7.56         7.91         2340           8875         22.7         23.1         7.4         8.5         7.80         8.02         1004           510         22.5         22.9         7.2         8.5         7.80         8.22         98           338         22.5         22.5         7.7         8.6         7.83         8.12         -           19215         22.7         23.</td><td>EC (uS/cm)         Min Temp (°C)         Max Temp (°C)         Min DO (mg/L)         Max DO (mg/L)         Min pH         Max pH         Max CaCO3)         CaCO3)         (mg/L as CaCO3)           331         22.0         23.4         7.6         8.4         7.73         8.02         100         56           19135         21.6         23.5         7.5         8.6         7.58         7.87         2680         82           877         21.5         23.2         7.5         8.8         8.03         8.24         190         112           3577         20.2         23.4         7.4         8.4         7.82         8.01         452         88           6280         21.9         23.3         7.8         8.5         7.83         8.10         704         86           18650         22.6         23.2         6.4         8.1         7.56         7.91         2340         100           8875         22.7         23.1         7.4         8.5         7.80         8.02         1004         88           510         22.5         22.9         7.2         8.5         7.80         8.22         98         76           338         <td< td=""></td<></td></td<></td></t<> | EC (uS/cm)         Min Temp (°C)         Max Temp (°C)         Min DO (mg/L)         Max DO (mg/L)         Min DO (mg/L)         Min pH         Max pH           331         22.0         23.4         7.6         8.4         7.73         8.02           19135         21.6         23.5         7.5         8.6         7.58         7.87           877         21.5         23.2         7.5         8.8         8.03         8.24           3577         20.2         23.4         7.4         8.4         7.82         8.01           6280         21.9         23.3         7.8         8.5         7.83         8.10           18650         22.6         23.2         6.4         8.1         7.56         7.91           8875         22.7         23.1         7.4         8.5         7.80         8.02           510         22.5         22.9         7.2         8.5         7.80         8.22           338         22.5         22.5         7.7         8.6         7.83         8.12           19215         22.7         23.5         7.2         8.1         7.56         7.86           917         22.7         24.4 <td< td=""><td>EC (uS/cm)         Min Temp (°C)         Max Temp (°C)         Min DO (mg/L)         Max DO (mg/L)         Min pH         Max pH         Max CaCO<sub>3</sub>)           331         22.0         23.4         7.6         8.4         7.73         8.02         100           19135         21.6         23.5         7.5         8.6         7.58         7.87         2680           877         21.5         23.2         7.5         8.8         8.03         8.24         190           3577         20.2         23.4         7.4         8.4         7.82         8.01         452           6280         21.9         23.3         7.8         8.5         7.83         8.10         704           18650         22.6         23.2         6.4         8.1         7.56         7.91         2340           8875         22.7         23.1         7.4         8.5         7.80         8.02         1004           510         22.5         22.9         7.2         8.5         7.80         8.22         98           338         22.5         22.5         7.7         8.6         7.83         8.12         -           19215         22.7         23.</td><td>EC (uS/cm)         Min Temp (°C)         Max Temp (°C)         Min DO (mg/L)         Max DO (mg/L)         Min pH         Max pH         Max CaCO3)         CaCO3)         (mg/L as CaCO3)           331         22.0         23.4         7.6         8.4         7.73         8.02         100         56           19135         21.6         23.5         7.5         8.6         7.58         7.87         2680         82           877         21.5         23.2         7.5         8.8         8.03         8.24         190         112           3577         20.2         23.4         7.4         8.4         7.82         8.01         452         88           6280         21.9         23.3         7.8         8.5         7.83         8.10         704         86           18650         22.6         23.2         6.4         8.1         7.56         7.91         2340         100           8875         22.7         23.1         7.4         8.5         7.80         8.02         1004         88           510         22.5         22.9         7.2         8.5         7.80         8.22         98         76           338         <td< td=""></td<></td></td<> | EC (uS/cm)         Min Temp (°C)         Max Temp (°C)         Min DO (mg/L)         Max DO (mg/L)         Min pH         Max pH         Max CaCO <sub>3</sub> )           331         22.0         23.4         7.6         8.4         7.73         8.02         100           19135         21.6         23.5         7.5         8.6         7.58         7.87         2680           877         21.5         23.2         7.5         8.8         8.03         8.24         190           3577         20.2         23.4         7.4         8.4         7.82         8.01         452           6280         21.9         23.3         7.8         8.5         7.83         8.10         704           18650         22.6         23.2         6.4         8.1         7.56         7.91         2340           8875         22.7         23.1         7.4         8.5         7.80         8.02         1004           510         22.5         22.9         7.2         8.5         7.80         8.22         98           338         22.5         22.5         7.7         8.6         7.83         8.12         -           19215         22.7         23. | EC (uS/cm)         Min Temp (°C)         Max Temp (°C)         Min DO (mg/L)         Max DO (mg/L)         Min pH         Max pH         Max CaCO3)         CaCO3)         (mg/L as CaCO3)           331         22.0         23.4         7.6         8.4         7.73         8.02         100         56           19135         21.6         23.5         7.5         8.6         7.58         7.87         2680         82           877         21.5         23.2         7.5         8.8         8.03         8.24         190         112           3577         20.2         23.4         7.4         8.4         7.82         8.01         452         88           6280         21.9         23.3         7.8         8.5         7.83         8.10         704         86           18650         22.6         23.2         6.4         8.1         7.56         7.91         2340         100           8875         22.7         23.1         7.4         8.5         7.80         8.02         1004         88           510         22.5         22.9         7.2         8.5         7.80         8.22         98         76           338 <td< td=""></td<> |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B16-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 4/17/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/15/09 - 4/16/09.

|                                                         | Survival (%) <sup>1</sup> |         |                |     |                         |  |  |  |  |
|---------------------------------------------------------|---------------------------|---------|----------------|-----|-------------------------|--|--|--|--|
| Treatment                                               | Unmanij                   | oulated | 25 ppb<br>adde |     |                         |  |  |  |  |
|                                                         | mean                      | se      | mean           | se  | vs Non-PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                                | 100                       | 0.0     | 100            | 0.0 | NS                      |  |  |  |  |
| Low EC control @147.3 uS/cm                             | 100                       | 0.0     | 94             | 3.2 | NS                      |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55 <sup>3</sup> | 100                       | 0.0     | 100            | 0.0 | NS                      |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek             | 95                        | 5.0     | 93             | 2.5 | NS                      |  |  |  |  |
| Confluence of Linsey Sl. And Cache Sl.                  | 98                        | 2.5     | 95             | 2.9 | NS                      |  |  |  |  |
| Suisun Slough at Rush Ranch                             | 100                       | 0.0     | 98             | 2.5 | NS                      |  |  |  |  |
| Napa River at River Park Blvd.                          | 100                       | 0.0     | 95             | 2.9 | NS                      |  |  |  |  |
| Sacramento River at tip of Grand Island (711)           | 95                        | 2.8     | 93             | 4.8 | NS                      |  |  |  |  |
| Sacramento River at Hood DWR Station <sup>3</sup>       | 97                        | 2.8     | 95             | 2.9 | NS                      |  |  |  |  |

|                                                         | Weight (mg/surviving individual) <sup>1</sup> |         |                |       |                         |  |  |  |  |
|---------------------------------------------------------|-----------------------------------------------|---------|----------------|-------|-------------------------|--|--|--|--|
| Treatment                                               |                                               | pulated | 25 ppb<br>adde |       |                         |  |  |  |  |
|                                                         | mean                                          | se      | mean           | se    | vs Non-PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                                | 0.065                                         | 0.006   | 0.056          | 0.001 | NS                      |  |  |  |  |
| Low EC control @147.3 uS/cm                             | 0.049*                                        | 0.005   | 0.033**        | 0.005 | NS                      |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55 <sup>3</sup> | 0.092                                         | 0.010   | 0.092          | 0.015 | NS                      |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek             | 0.101                                         | 0.011   | 0.096          | 0.009 | NS                      |  |  |  |  |
| Confluence of Linsey Sl. And Cache Sl.                  | 0.083                                         | 0.010   | 0.083          | 0.007 | NS                      |  |  |  |  |
| Suisun Slough at Rush Ranch                             | 0.050                                         | 0.014   | 0.090          | 0.005 | S* (180%)               |  |  |  |  |
| Napa River at River Park Blvd.                          | 0.088                                         | 0.009   | 0.093          | 0.014 | NS                      |  |  |  |  |
| Sacramento River at tip of Grand Island (711)           | 0.081                                         | 0.014   | 0.086          | 0.015 | NS                      |  |  |  |  |
| Sacramento River at Hood DWR Station <sup>3</sup>       | 0.075                                         | 0.016   | 0.079          | 0.006 | NS                      |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> These low EC samples were compared to the Low EC Control.

Table B16-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/15/09 - 4/16/09.

|                                               |                                | Field Ch | nemistry |              | _                  | Total                         | TT-111                         |
|-----------------------------------------------|--------------------------------|----------|----------|--------------|--------------------|-------------------------------|--------------------------------|
| Treatment                                     | Treatment SC Temp (uS/cm) (°C) |          | рН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |
| Sacramento R. Deep Water Channel, Light 55    | 409                            | 15.5     | 7.23     | 9.5          | 18.0               | 0.14                          | 0.001                          |
| Upper Cache Slough at mouth of Ulatis Creek   | 674                            | 15.3     | 8.61     | 11.0         | 46.1               | 0.08                          | 0.007                          |
| Confluence of Linsey Sl. And Cache Sl.        | 674                            | 15.3     | 7.23     | 11.0         | 30.0               | 0.16                          | 0.001                          |
| Suisun Slough at Rush Ranch                   | 4816                           | 16.9     | 7.53     | 8.8          | 395.3              | 0.46                          | 0.004                          |
| Napa River at River Park Blvd.                | 3892                           | 17.9     | 7.98     | 9.9          | 12.7               | 0.09                          | 0.002                          |
| Sacramento River at tip of Grand Island (711) | 148                            | 15.6     | 7.03     | 10.0         | 23.9               | 0.42                          | 0.001                          |
| Sacramento River at Hood DWR Station          | 148                            | 14.4     | 6.85     | 10.0         | 7.8                | 0.52                          | 0.001                          |

Table B16-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 4/17/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/15/09 - 4/16/09.

|                                                            |            |                     | Labora              | atory Cher          | nistry              |           |           | - Hardness                      | Alkalinity                   | Unionized                   |
|------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------|------------------------------|-----------------------------|
| Treatment                                                  | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                   | 326        | 22.7                | 23.4                | 7.7                 | 8.2                 | 7.81      | 8.01      | 104                             | 60                           | -                           |
| Low EC control @147.3 uS/cm                                | 255        | 22.6                | 23.2                | 7.6                 | 8.9                 | 7.55      | 7.85      | 44                              | 26                           | -                           |
| Sacramento R. Deep Water Channel, Light 55                 | 280        | 22.8                | 23.9                | 7.6                 | 8.8                 | 8.06      | 8.17      | 124                             | 108                          | 0.007                       |
| Upper Cache Slough at mouth of Ulatis Creek                | 526        | 22.7                | 23.5                | 7.5                 | 8.6                 | 8.35      | 8.47      | 226                             | 204                          | 0.010                       |
| Confluence of Linsey Sl. And Cache Sl.                     | 533        | 22.7                | 24.3                | 7.3                 | 8.5                 | 8.00      | 8.20      | 114                             | 118                          | 0.009                       |
| Suisun Slough at Rush Ranch                                | 2492       | 22.7                | 23.9                | 7.4                 | 8.7                 | 7.90      | 8.40      | 650                             | 248                          | 0.014                       |
| Napa River at River Park Blvd.                             | 4280       | 22.8                | 23.9                | 7.6                 | 8.5                 | 7.97      | 8.16      | 480                             | 120                          | 0.003                       |
| Sacramento River at tip of Grand Island (711)              | 1986       | 22.7                | 23.7                | 7.4                 | 8.9                 | 7.71      | 7.95      | 56                              | 58                           | 0.018                       |
| Sacramento River at Hood DWR Station                       | 156        | 22.7                | 24.1                | 7.4                 | 8.8                 | 7.71      | 7.90      | 52                              | 52                           | 0.015                       |
| DIEPAMHR + 25 ppb PBO                                      | 240        | 22.7                | 23.6                | 7.6                 | 8.5                 | 7.80      | 8.01      | -                               | -                            | -                           |
| Low EC control @147.3 uS/cm 25 ppb PBO                     | 257        | 22.8                | 23.4                | 7.6                 | 8.9                 | 7.55      | 7.81      | -                               | -                            | -                           |
| Sacramento R. Deep Water Channel, Light 55 + 25 ppb PBO    | 280        | 22.7                | 23.9                | 7.7                 | 8.8                 | 8.13      | 8.40      | -                               | -                            | -                           |
| Upper Cache Slough at mouth of Ulatis Creek + 25 ppb PBO   | 533        | 22.7                | 23.6                | 7.5                 | 8.7                 | 8.34      | 8.49      | -                               | -                            | -                           |
| Confluence of Linsey Sl. And Cache Sl. + 25 ppb PBO        | 533        | 22.7                | 24.1                | 7.4                 | 8.7                 | 8.10      | 8.23      | -                               | -                            | -                           |
| Suisun Slough at Rush Ranch + 25 ppb PBO                   | 2475       | 22.7                | 23.7                | 7.4                 | 8.7                 | 7.78      | 8.39      | -                               | -                            | -                           |
| Napa River at River Park Blvd. + 25 ppb PBO                | 4308       | 22.8                | 24.1                | 7.6                 | 8.4                 | 7.96      | 8.13      | -                               | -                            | -                           |
| Sacramento River at tip of Grand Island (711) + 25 ppb PBO | 1984       | 23.1                | 23.8                | 7.4                 | 8.7                 | 7.78      | 7.93      | -                               | -                            | -                           |
| Sacramento River at Hood DWR Station + 25 ppb PBO          | 154        | 23.2                | 23.9                | 7.4                 | 8.9                 | 7.68      | 7.92      | -                               | -                            | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B17-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 4/24/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/23/09.

|                                                            | Survival (%) <sup>1</sup> |         |           |          |                         |  |  |  |  |
|------------------------------------------------------------|---------------------------|---------|-----------|----------|-------------------------|--|--|--|--|
| Treatment                                                  | Unmani                    | pulated | 25 ppb PF | 3O added |                         |  |  |  |  |
|                                                            | mean                      | se      | mean      | se       | vs Non-PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                                   | 95                        | 2.9     | 98        | 2.5      | NS                      |  |  |  |  |
| Low EC Control @ 191.2 μS/cm                               | 89                        | 0.3     | 98        | 2.5      | NS                      |  |  |  |  |
| Old River at mouth of Holland Cut (915)                    | 90                        | 10.0    | 100       | 0.0      | NS                      |  |  |  |  |
| San Joaquin River at Potato Slough (815)                   | 95                        | 2.9     | 97        | 2.8      | NS                      |  |  |  |  |
| Old River, western arm at railroad bridge (902)            | 100                       | 0.0     | 95        | 2.9      | NS                      |  |  |  |  |
| Field Dup: Old River, western arm at railroad bridge (902) | 98                        | 2.5     | -         | -        | NA                      |  |  |  |  |
| Bottle Blank: DIEPAMHR                                     | 84                        | 5.2     | -         | -        | NA                      |  |  |  |  |

|                                                            | Weight (mg/surviving individual) <sup>1</sup> |         |           |          |                         |  |  |  |  |
|------------------------------------------------------------|-----------------------------------------------|---------|-----------|----------|-------------------------|--|--|--|--|
| Treatment                                                  |                                               | oulated | 25 ppb Pl | BO added |                         |  |  |  |  |
|                                                            | mean                                          | se      | mean      | se       | vs Non-PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                                   | 0.084                                         | 0.005   | 0.025     | 0.005    | S*** (30%)              |  |  |  |  |
| Low EC Control @ 191.2 μS/cm                               | 0.061                                         | 0.004   | 0.031     | 0.002    | S*** (51%)              |  |  |  |  |
| Old River at mouth of Holland Cut (915)                    | 0.087                                         | 0.007   | 0.058     | 0.007    | S* (67%)                |  |  |  |  |
| San Joaquin River at Potato Slough (815)                   | 0.069                                         | 0.007   | 0.054     | 0.005    | NS                      |  |  |  |  |
| Old River, western arm at railroad bridge (902)            | 0.068                                         | 0.004   | 0.045     | 0.003    | S** (66%)               |  |  |  |  |
| Field Dup: Old River, western arm at railroad bridge (902) | 0.061                                         | 0.007   | -         | -        | NA                      |  |  |  |  |
| Bottle Blank: DIEPAMHR                                     | 0.057**                                       | 0.003   | -         | -        | NA                      |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Unmanipulated samples were analyzed using one-way ANOVA and Tukey's Multiple Comparison Procedure (P < 0.05).

Samples with PBO additions were analyzed using two-way ANOVA and Tukey's Multiple Comparison Procedure (P < 0.05).

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>\*:</sup> *P*< 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>\*\*\*:</sup> P < 0.001

Table B17-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/23/09.

|                                                            |     | Field Cl     | nemistry |              |                    | Total                         | Unionized      |  |
|------------------------------------------------------------|-----|--------------|----------|--------------|--------------------|-------------------------------|----------------|--|
| Treatment                                                  |     | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Ammonia (mg/L) |  |
| San Joaquin River at Potato Slough (815)                   | 181 | 18.2         | 7.16     | 9.9          | 7.0                | 0.10                          | 0.000          |  |
| Old River, western arm at railroad bridge (902)            | 252 | 20.5         | 7.24     | 9.4          | 6.8                | 0.06                          | 0.000          |  |
| Old River at mouth of Holland Cut (915)                    | 292 | 20.5         | 7.19     | 9.0          | 6.4                | 0.03                          | 0.000          |  |
| Field Dup: Old River, western arm at railroad bridge (902) | 252 | 20.5         | 7.24     | 9.4          | 7.4                | 0.06                          | 0.000          |  |

Table B17-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 4/24/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/23/09.

|                                                              |            |                     | Labora              | atory Chei          | nistry              |           |           | - Hardness                   | Alkalinity                   | Unionized                   |
|--------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|------------------------------|------------------------------|-----------------------------|
| Treatment                                                    | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as CaCO <sub>3</sub> ) | (mg/L as CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                     | 339        | 22.7                | 24.4                | 7.4                 | 8.5                 | 7.80      | 8.11      | -                            | -                            | -                           |
| Low EC Control @ 191.2 μS/cm                                 | 209        | 22.7                | 24.1                | 7.5                 | 8.7                 | 7.64      | 7.98      | 64                           | 34                           | -                           |
| Old River at mouth of Holland Cut (915)                      | 230        | 22.8                | 24.4                | 7.3                 | 8.9                 | 7.87      | 8.09      | 84                           | 72                           | 0.002                       |
| San Joaquin River at Potato Slough (815)                     | 187        | 22.7                | 24.2                | 7.3                 | 8.5                 | 7.78      | 8.03      | 72                           | 64                           | 0.005                       |
| Old River, western arm at railroad bridge (902)              | 243        | 22.6                | 24.3                | 7.5                 | 8.4                 | 7.88      | 8.10      | 84                           | 70                           | 0.004                       |
| Field Dup: Old River, western arm at railroad bridge (902)   | 244        | 22.5                | 24.4                | 7.3                 | 8.8                 | 7.83      | 8.10      | 80                           | 70                           | 0.001                       |
| Bottle Blank: DIEPAMHR                                       | 334        | 22.6                | 24.2                | 7.5                 | 8.6                 | 7.76      | 8.08      | 64                           | 58                           | 0.003                       |
| DIEPAMHR + 25 ppb PBO                                        | 335        | 22.7                | 24.2                | 7.4                 | 8.4                 | 7.79      | 8.10      | -                            | -                            | -                           |
| Low EC Control @ 191.2 µS/cm + 25 ppb PBO                    | 209        | 22.7                | 24.2                | 7.5                 | 8.9                 | 7.69      | 7.96      | -                            | -                            | -                           |
| Old River at mouth of Holland Cut (915) + 25 ppb PBO         | 283        | 22.8                | 24.1                | 7.3                 | 8.9                 | 7.73      | 8.06      | -                            | -                            | -                           |
| San Joaquin River at Potato Slough (815) + 25 ppb PBO        | 184        | 22.7                | 24.1                | 7.2                 | 8.9                 | 7.74      | 7.96      | -                            | -                            | -                           |
| Old River, western arm at railroad bridge (902) + 25 ppb PBO | 245        | 22.6                | 24.0                | 7.4                 | 8.6                 | 7.83      | 8.13      | -                            | -                            | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B18-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 4/30/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/28/09 - 4/29/09.

|                                                                | Survival (%) <sup>1</sup> |         |               |     |                             |  |  |  |  |
|----------------------------------------------------------------|---------------------------|---------|---------------|-----|-----------------------------|--|--|--|--|
| Treatment                                                      | Unmani                    | pulated | 25 ppb<br>add |     |                             |  |  |  |  |
|                                                                | mean                      | se      | mean          | se  | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                                       | 98                        | 2.5     | 94            | 3.2 | NS                          |  |  |  |  |
| Low EC Control @ 129.1 µS/cm                                   | 98                        | 2.5     | 98            | 2.5 | NS                          |  |  |  |  |
| High EC Control @ 15.30 mS/cm                                  | 95                        | 2.9     | 100           | 0.0 | NS                          |  |  |  |  |
| High EC Control @ 25.00 mS/cm                                  | 79*                       | 4.8     | 82            | 7.7 | NS                          |  |  |  |  |
| Suisun Slough at Rush Ranch                                    | 100                       | 0.0     | 100           | 0.0 | NS                          |  |  |  |  |
| Napa River at River Park Blvd.                                 | 100                       | 0.0     | 97            | 2.8 | NS                          |  |  |  |  |
| Sacramento River at Hood DWR Station <sup>3</sup>              | 100                       | 0.0     | 92            | 5.3 | NS                          |  |  |  |  |
| Rough and Ready DWR station, Stockton                          | 100                       | 0.0     | 100           | 0.0 | NS                          |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) <sup>4</sup> | 100                       | 0.0     | 98            | 2.5 | NS                          |  |  |  |  |
| Suisun Bay off Chipps Island (508)                             | 98                        | 2.3     | 100           | 0.0 | NS                          |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)                         | 97                        | 2.8     | 100           | 0.0 | NS                          |  |  |  |  |
| Grizzly Bay at Dolphin (602)                                   | 98                        | 2.5     | 95            | 2.8 | NS                          |  |  |  |  |
| Napa River at Vallejo Seawall (340) <sup>5</sup>               | 90                        | 5.5     | 95            | 3.1 | NS                          |  |  |  |  |
| Trip Blank: DIEPAMHR                                           | 100                       | 0.0     | -             | -   | NA                          |  |  |  |  |

|                                                                |       | Weight ( | mg/survivir | g individ | lual) <sup>1</sup> |
|----------------------------------------------------------------|-------|----------|-------------|-----------|--------------------|
|                                                                |       |          | 25 ppt      | PBO       | _                  |
| Treatment                                                      | Unman | ipulated | ado         | led       |                    |
|                                                                |       |          |             |           | vs Non-            |
|                                                                | mean  | se       | mean        | se        | PBO <sup>2</sup>   |
| DIEPAMHR                                                       | 0.055 | 0.009    | 0.069       | 0.006     | NS                 |
| Low EC Control @ 129.1 µS/cm                                   | 0.055 | 0.002    | 0.057       | 0.006     | NS                 |
| High EC Control @ 15.30 mS/cm                                  | 0.036 | 0.006    | 0.045*      | 0.005     | NS                 |
| High EC Control @ 25.00 mS/cm                                  | 0.020 | 0.005    | 0.034*      | 0.012     | NS                 |
| Suisun Slough at Rush Ranch                                    | 0.090 | 0.006    | 0.119       | 0.006     | S* (132%)          |
| Napa River at River Park Blvd.                                 | 0.087 | 0.015    | 0.107       | 0.009     | NS                 |
| Sacramento River at Hood DWR Station <sup>3</sup>              | 0.077 | 0.005    | 0.099       | 0.005     | S* (129%)          |
| Rough and Ready DWR station, Stockton                          | 0.100 | 0.009    | 0.120       | 0.009     | NS                 |
| Carquinez Strait, West of Benicia army dock (405) <sup>4</sup> | 0.061 | 0.003    | 0.069       | 0.004     | NS                 |
| Suisun Bay off Chipps Island (508)                             | 0.098 | 0.002    | 0.106       | 0.011     | NS                 |
| Montezuma Slough at Nurse Slough (609)                         | 0.113 | 0.014    | 0.099       | 0.007     | NS                 |
| Grizzly Bay at Dolphin (602)                                   | 0.054 | 0.007    | 0.081       | 0.004     | S* (150%)          |
| Napa River at Vallejo Seawall (340) <sup>5</sup>               | 0.048 | 0.007    | 0.070       | 0.005     | S* (146%)          |
| Trip Blank: DIEPAMHR                                           | 0.068 | 0.008    | -           | -         | NA                 |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard statistical protocols.

- 2. NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.
- 3. This low conductivity sample was compared to the Low EC Control.
- 4. This high conductivity sample was compared to the High EC Control @ 15.30 mS/cm.
- 5. This high conductivity sample was compared to the High EC Control @ 25.00 mS/cm.

<sup>\*:</sup> *P* < 0.05

Table B18-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/28/09 - 4/29/09.

|                                                   |               | Field Ch     | nemistry |              | _                  | Total                         | Unionized<br>Ammonia<br>(mg/L) |  |
|---------------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|--------------------------------|--|
| Treatment                                         | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) |                                |  |
| Suisun Slough at Rush Ranch                       | 4772          | 14.7         | 7.01     | 8.9          | 71.4               | 0.14                          | 0.000                          |  |
| Napa River at River Park Blvd.                    | 9100          | 17.5         | 7.27     | 10.0         | 33.1               | 0.00                          | 0.000                          |  |
| Sacramento River at Hood DWR Station              | 120           | 16.4         | 7.08     | 8.7          | 12.7               | 0.02                          | 0.000                          |  |
| Rough and Ready DWR station, Stockton             | 690           | 18.8         | 7.74     | 7.5          | 12.6               | 0.13                          | 0.002                          |  |
| Carquinez Strait, West of Benicia army dock (405) | 15240         | 15.0         | 7.55     | 10.0         | 424.3              | 0.37                          | 0.002                          |  |
| Suisun Bay off Chipps Island (508)                | 4810          | 15.4         | 7.51     | 10.0         | 37.0               | 0.13                          | 0.001                          |  |
| Montezuma Slough at Nurse Slough (609)            | 4000          | 16.5         | 7.01     | 9.3          | 119.7              | 0.17                          | 0.000                          |  |
| Grizzly Bay at Dolphin (602)                      | 8380          | 15.3         | 7.48     | 10.0         | 379.0              | 0.33                          | 0.002                          |  |
| Napa River at Vallejo Seawall (340)               | 24360         | 14.4         | 7.49     | 9.7          | 57.3               | 0.11                          | 0.001                          |  |
| Trip Blank: DIEPAMHR                              | -             | -            | -        | -            | 0.4                | 0.00                          | -                              |  |

Table B18-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 4/30/09 of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/28/09 - 4/29/09.

|                                                                |            |                     | Labora              | atory Chei          | nistry              |           |           | - Hardness                      | Alkalinity                   | Unionized                   |
|----------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------|------------------------------|-----------------------------|
| Treatment                                                      | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                       | 332        | 22.8                | 24.1                | 7.3                 | 8.2                 | 7.70      | 8.26      | 124                             | 58                           | -                           |
| Low EC Control @ 129.1 μS/cm                                   | 132        | 22.8                | 23.6                | 7.2                 | 8.6                 | 7.43      | 8.20      | 36                              | 20                           | -                           |
| High EC Control @ 15.30 mS/cm                                  | 14790      | 22.9                | 23.9                | 7.2                 | 8.3                 | 7.68      | 7.99      | 1680                            | 70                           | -                           |
| High EC Control @ 25.00 mS/cm                                  | 24215      | 22.8                | 24.0                | 7.1                 | 7.8                 | 7.72      | 7.93      | 3080                            | 80                           | -                           |
| Suisun Slough at Rush Ranch                                    | 4586       | 22.8                | 24.0                | 7.5                 | 8.4                 | 8.11      | 8.15      | 640                             | 158                          | 0.007                       |
| Napa River at River Park Blvd.                                 | 4892       | 22.7                | 24.0                | 7.1                 | 8.6                 | 7.79      | 7.96      | 1200                            | 128                          | 0.000                       |
| Sacramento River at Hood DWR Station                           | 235        | 22.7                | 24.1                | 7.0                 | 8.7                 | 7.62      | 8.11      | 48                              | 51                           | 0.001                       |
| Rough and Ready DWR station, Stockton                          | 863        | 22.7                | 23.6                | 7.2                 | 8.5                 | 7.80      | 8.07      | 144                             | 93                           | 0.007                       |
| Carquinez Strait, West of Benicia army dock (405)              | 14030      | 22.7                | 22.8                | 7.2                 | 8.2                 | 7.68      | 7.88      | 1720                            | 88                           | 0.009                       |
| Suisun Bay off Chipps Island (508)                             | 4674       | 22.7                | 23.9                | 7.4                 | 8.7                 | 7.71      | 8.01      | 520                             | 74                           | 0.005                       |
| Montezuma Slough at Nurse Slough (609)                         | 3830       | 22.8                | 23.4                | 7.4                 | 8.3                 | 7.85      | 7.93      | 500                             | 86                           | 0.006                       |
| Grizzly Bay at Dolphin (602)                                   | 7910       | 22.9                | 23.8                | 7.4                 | 8.2                 | 7.75      | 8.07      | 1000                            | 82                           | 0.014                       |
| Napa River at Vallejo Seawall (340)                            | 22870      | 22.8                | 23.8                | 6.9                 | 7.6                 | 7.64      | 7.87      | 2880                            | 102                          | 0.003                       |
| Trip Blank: DIEPAMHR                                           | 446        | 22.9                | 23.9                | 7.3                 | 8.6                 | 7.73      | 8.16      | 100                             | 57                           | 0.000                       |
| DIEPAMHR + 25 ppb PBO                                          | 339        | 22.5                | 22.8                | 7.3                 | 8.4                 | 7.70      | 8.03      | -                               | -                            | -                           |
| Low EC Control @ 129.1 μS/cm + 25 ppb PBO                      | 161        | 22.5                | 22.8                | 7.2                 | 8.5                 | 7.44      | 8.12      | -                               | -                            | -                           |
| High EC Control @ 15.30 mS/cm + 25 ppb PBO                     | 14580      | 22.4                | 22.9                | 7.3                 | 8.2                 | 7.67      | 7.91      | -                               | -                            | -                           |
| High EC Control @ 25.00 mS/cm + 25 ppb PBO                     | 23910      | 22.5                | 22.9                | 7.0                 | 8.0                 | 7.75      | 7.96      | -                               | -                            | -                           |
| Suisun Slough at Rush Ranch + 25 ppb PBO                       | 4550       | 22.4                | 22.9                | 7.4                 | 8.6                 | 7.92      | 8.21      | -                               | -                            | -                           |
| Napa River at River Park Blvd. + 25 ppb PBO                    | 4820       | 22.3                | 22.9                | 7.3                 | 8.8                 | 7.86      | 7.97      | -                               | -                            | -                           |
| Sacramento River at Hood DWR Station + 25 ppb PBO              | 166        | 22.2                | 22.9                | 7.1                 | 8.6                 | 7.52      | 8.16      | -                               | -                            | -                           |
| Rough and Ready DWR station, Stockton + 25 ppb PBO             | 699        | 22.1                | 22.8                | 7.3                 | 8.6                 | 7.82      | 8.01      | -                               | -                            | -                           |
| Carquinez Strait, West of Benicia army dock (405) + 25 ppb PBO | 14075      | 22.0                | 22.8                | 7.1                 | 8.1                 | 7.72      | 7.91      | -                               | -                            | -                           |
| Suisun Bay off Chipps Island (508) + 25 ppb PBO                | 4428       | 21.9                | 22.8                | 7.4                 | 8.9                 | 7.72      | 7.98      | -                               | -                            | -                           |
| Montezuma Slough at Nurse Slough (609) + 25 ppb PBO            | 3710.5     | 21.8                | 22.8                | 7.2                 | 8.3                 | 7.81      | 7.93      | -                               | -                            | -                           |
| Grizzly Bay at Dolphin (602) + 25 ppb PBO                      | 7890       | 21.9                | 22.9                | 7.5                 | 8.3                 | 7.74      | 7.94      | -                               | -                            | -                           |
| Napa River at Vallejo Seawall (340) + 25 ppb PBO               | 22215      | 21.4                | 22.8                | 6.7                 | 8.4                 | 7.62      | 7.88      | -                               | -                            | -                           |

Napa River at Vallejo Seawall (340) + 25 ppb PBO 22215 21.4 22.8 6.7 8.4 7.62 7.88 - - - 1: This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B19-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 5/01/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/30/09.

|                                                 | Survival (%) <sup>1</sup> |         |                |     |                         |  |  |  |  |
|-------------------------------------------------|---------------------------|---------|----------------|-----|-------------------------|--|--|--|--|
| Treatment                                       | Unmani                    | pulated | 25 ppb<br>adde |     |                         |  |  |  |  |
|                                                 | mean                      | se      | mean           | se  | vs Non-PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                        | 98                        | 2.5     | 98             | 2.5 | NS                      |  |  |  |  |
| Low EC Control @ 120.5 uS/cm                    | 97                        | 2.8     | 100            | 0.0 | NS                      |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55      | 100                       | 0.0     | 98             | 2.5 | NS                      |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 100                       | 0.0     | 100            | 0.0 | NS                      |  |  |  |  |
| Confluence of Lindsey Sl. and Cache Sl.         | 100                       | 0.0     | 98             | 2.5 | NS                      |  |  |  |  |
| Sacramento River at tip of Grand Island (711)   | 97                        | 2.8     | 98             | 2.5 | NS                      |  |  |  |  |
| San Joaquin River at Potato Slough              | 98                        | 2.5     | 100            | 0.0 | NS                      |  |  |  |  |
| Old River, western arm at railroad bridge (902) | 100                       | 0.0     | 100            | 0.0 | NS                      |  |  |  |  |
| Old River at mouth of Holland Cut (915)         | 100                       | 0.0     | 98             | 2.5 | NS                      |  |  |  |  |

|                                                 | Weight (mg/surviving individual) <sup>1</sup> |               |                |       |                         |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------|---------------|----------------|-------|-------------------------|--|--|--|--|
| Treatment                                       |                                               | . 1.4.1       | 25 ppb<br>adde |       |                         |  |  |  |  |
|                                                 | Unman                                         | Unmanipulated |                | ea    |                         |  |  |  |  |
|                                                 | mean                                          | se            | mean           | se    | vs Non-PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                        | 0.057                                         | 0.004         | 0.048          | 0.001 | S*                      |  |  |  |  |
| Low EC Control @ 120.5 uS/cm                    | 0.051                                         | 0.006         | 0.025**        | 0.004 | S**                     |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55      | 0.095                                         | 0.005         | 0.090          | 0.004 | NS                      |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 0.083                                         | 0.009         | 0.087          | 0.005 | NS                      |  |  |  |  |
| Confluence of Lindsey Sl. and Cache Sl.         | 0.106                                         | 0.006         | 0.085          | 0.009 | S*                      |  |  |  |  |
| Sacramento River at tip of Grand Island (711)   | 0.092                                         | 0.008         | 0.093          | 0.005 | NS                      |  |  |  |  |
| San Joaquin River at Potato Slough              | 0.105                                         | 0.006         | 0.114          | 0.010 | NS                      |  |  |  |  |
| Old River, western arm at railroad bridge (902) | 0.109                                         | 0.006         | 0.112          | 0.009 | NS                      |  |  |  |  |
| Old River at mouth of Holland Cut (915)         | 0.118                                         | 0.010         | 0.116          | 0.003 | NS                      |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

Table B19-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/30/09.

|                                                 |                 | Field Ch | nemistry |              |                    | Total                         | Unionized                      |  |
|-------------------------------------------------|-----------------|----------|----------|--------------|--------------------|-------------------------------|--------------------------------|--|
| Treatment                                       | (uS/cm) (°C) pH |          | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |  |
| Sacramento R. Deep Water Channel, Light 55      | 236             | 16.6     | 7.25     | 9.4          | 31.2               | 0.16                          | 0.001                          |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 329             | 16.8     | 6.88     | 9.9          | 45.9               | 0.03                          | 0.000                          |  |
| Confluence of Lindsey Sl. and Cache Sl.         | 246             | 16.8     | 6.8      | 9.5          | 27.5               | 0.20                          | 0.000                          |  |
| Sacramento River at tip of Grand Island (711)   | 120             | 17.1     | 6.88     | 9.8          | 10.1               | 0.04                          | 0.000                          |  |
| San Joaquin River at Potato Slough (815)        | 196             | 19.0     | 6.82     | 10.0         | 4.4                | 0.07                          | 0.000                          |  |
| Old River, western arm at railroad bridge (902) | 243             | 18.3     | 6.81     | 9.3          | 6.1                | 0.04                          | 0.000                          |  |
| Old River at mouth of Holland Cut (915)         | 294             | 19.2     | 6.86     | 9.3          | 5.9                | 0.02                          | 0.000                          |  |

Table B19-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 5/1/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 4/30/09.

|                                                                |            |                     | Labora              | atory Cher          | nistry              |           |           | - Hardness                   | Alkalinity                   | Unionized                   |
|----------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|------------------------------|------------------------------|-----------------------------|
| Treatment                                                      | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as CaCO <sub>3</sub> ) | (mg/L as CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                       | 337        | 23.3                | 23.8                | 7.4                 | 8.3                 | 7.66      | 8.10      | 124                          | 58                           | -                           |
| Low EC Control @ 120.5 uS/cm                                   | 125        | 23.2                | 23.8                | 7.2                 | 8.6                 | 7.29      | 8.05      | 44                           | 20                           | -                           |
| Sacramento R. Deep Water Channel, Light 55                     | 261        | 23.3                | 23.7                | 7.1                 | 8.7                 | 7.75      | 8.13      | 84                           | 78                           | 0.010                       |
| Upper Cache Slough at mouth of Ulatis Creek                    | 320        | 23.4                | 23.9                | 7.3                 | 8.3                 | 7.95      | 8.24      | 100                          | 102                          | 0.002                       |
| Confluence of Lindsey Sl. and Cache Sl.                        | 203        | 23.3                | 23.7                | 7.2                 | 8.9                 | 7.74      | 8.19      | 64                           | 74                           | 0.014                       |
| Sacramento River at tip of Grand Island (711)                  | 120        | 23.3                | 23.8                | 6.9                 | 8.4                 | 7.52      | 8.11      | 48                           | 46                           | 0.002                       |
| San Joaquin River at Potato Slough (815)                       | 195        | 23.1                | 23.7                | 7.2                 | 8.8                 | 7.73      | 8.14      | 64                           | 66                           | 0.004                       |
| Old River, western arm at railroad bridge (902)                | 240        | 23.3                | 23.9                | 7.3                 | 8.5                 | 7.75      | 8.20      | 56                           | 74                           | 0.003                       |
| Old River at mouth of Holland Cut (915)                        | 289        | 23.3                | 23.7                | 7.2                 | 8.4                 | 7.79      | 8.17      | 88                           | 78                           | 0.001                       |
| DIEPAMHR + 25 ppb PBO                                          | 335        | 22.0                | 23.9                | 7.4                 | 8.5                 | 7.70      | 8.06      | -                            | -                            | -                           |
| Low EC Control @ 120.5 uS/cm + 25 ppb PBO                      | 117        | 22.0                | 23.6                | 7.2                 | 8.5                 | 7.29      | 7.95      | -                            | -                            | -                           |
| Sacramento R. Deep Water Channel, Light 55 + 25 ppb PBO        | 245        | 22.2                | 23.8                | 7.1                 | 8.4                 | 7.72      | 8.13      | -                            | -                            | -                           |
| Upper Cache Slough at mouth of Ulatis Creek (815) + 25 ppb PBO | 303        | 21.8                | 23.7                | 7.2                 | 8.6                 | 7.97      | 8.29      | -                            | -                            | -                           |
| Confluence of Lindsey Sl. and Cache Sl. + 25 ppb PBO           | 189        | 21.7                | 23.9                | 7.3                 | 8.6                 | 7.75      | 8.14      | -                            | -                            | -                           |
| Sacramento River at tip of Grand Island (711) + 25 ppb PBO     | 112        | 21.8                | 23.7                | 7.0                 | 8.6                 | 7.57      | 8.10      | -                            | -                            | -                           |
| San Joaquin River at Potato Slough + 25 ppb PBO                | 184        | 21.8                | 23.9                | 7.3                 | 8.9                 | 7.74      | 7.99      | -                            | -                            | -                           |
| Old River, western arm at railroad bridge (902) + 25 ppb PBO   | 231        | 21.8                | 23.9                | 7.3                 | 8.6                 | 7.78      | 8.09      | -                            | -                            | -                           |
| Old River at mouth of Holland Cut (915) + 25 ppb PBO           | 275        | 22.0                | 24.0                | 7.3                 | 8.7                 | 7.77      | 8.08      | -                            | -                            | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B20-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 5/15/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/14/09.

|                                            | Survival (%) <sup>1</sup> |         |      |      |         |  |  |  |  |
|--------------------------------------------|---------------------------|---------|------|------|---------|--|--|--|--|
|                                            | 25 ppb PBO                |         |      |      |         |  |  |  |  |
| Treatment                                  | Unmani                    | pulated | ado  | led  |         |  |  |  |  |
|                                            |                           |         |      |      | vs Non- |  |  |  |  |
|                                            | mean                      | se      | mean | se   | $PBO^2$ |  |  |  |  |
| DIEPAMHR                                   | 91                        | 5.9     | 58   | 25.0 | NS      |  |  |  |  |
| Confluence of Lindsey Sl. and Cache Sl.    | 95                        | 2.9     | 87   | 9.4  | NS      |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55 | 92                        | 5.3     | 100  | 0.0  | NS      |  |  |  |  |

|                                            | Weight (mg/surviving individual) <sup>1</sup> |          |          |            |                  |  |  |  |  |
|--------------------------------------------|-----------------------------------------------|----------|----------|------------|------------------|--|--|--|--|
|                                            |                                               |          | 25 ppl   | 25 ppb PBO |                  |  |  |  |  |
| Treatment                                  | Unman                                         | ipulated | ado      | ded        |                  |  |  |  |  |
|                                            |                                               |          | <u> </u> |            | vs Non-          |  |  |  |  |
|                                            | mean                                          | se       | mean     | se         | PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                   | 0.073                                         | 0.005    | 0.076    | 0.008      | NS               |  |  |  |  |
| Confluence of Lindsey Sl. and Cache Sl.    | 0.090                                         | 0.007    | 0.089    | 0.010      | NS               |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55 | 0.098                                         | 0.005    | 0.109    | 0.008      | NS               |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard statistical protocols.

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

Table B20-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/14/09.

|                                            |               | Field Ch     | emistry |              | =                  | Total                         | Unionizad                      |  |
|--------------------------------------------|---------------|--------------|---------|--------------|--------------------|-------------------------------|--------------------------------|--|
| Treatment                                  | SC<br>(uS/cm) | Temp<br>(°C) | pН      | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |  |
| Confluence of Lindsey Sl. and Cache Sl.    | 207           | 20.7         | 7.29    | 11.0         | 132.7              | 0.16                          | 0.001                          |  |
| Sacramento R. Deep Water Channel, Light 55 | 261           | 21.8         | 7.82    | 8.8          | 96.9               | 0.17                          | 0.005                          |  |

Table B20-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 5/15/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/14/09.

|                                                         |            |                     | Labora              | atory Cher          | nistry              |           |           | - Hardness                   | Alkalinity                   | Unionized<br>Ammonia<br>(mg/L) <sup>1</sup> |
|---------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|------------------------------|------------------------------|---------------------------------------------|
| Treatment                                               | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as CaCO <sub>3</sub> ) | (mg/L as CaCO <sub>3</sub> ) |                                             |
| DIEPAMHR                                                | 359        | 23.4                | 24.3                | 7.4                 | 8.6                 | 7.70      | 8.00      | 80                           | 58                           | -                                           |
| Confluence of Lindsey Sl. and Cache Sl.                 | 254        | 23.5                | 24.2                | 7.3                 | 8.6                 | 7.70      | 8.17      | 76                           | 74                           | 0.011                                       |
| Sacramento R. Deep Water Channel, Light 55              | 291        | 23.6                | 24.2                | 7.4                 | 8.5                 | 7.61      | 8.03      | 76                           | 72                           | 0.009                                       |
| DIEPAMHR + 25 ppb PBO                                   | 362        | 23.4                | 24.0                | 7.3                 | 8.5                 | 7.72      | 8.02      | -                            | -                            | -                                           |
| Confluence of Lindsey Sl. and Cache Sl. + 25 ppb PBO    | 245        | 23.9                | 24.0                | 7.2                 | 8.7                 | 7.72      | 8.18      | -                            | -                            | -                                           |
| Sacramento R. Deep Water Channel, Light 55 + 25 ppb PBO | 290        | 24.0                | 24.3                | 7.1                 | 8.7                 | 7.69      | 8.02      | -                            | -                            | -                                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B21-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 5/16/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/12/09 - 5/13/09.

|                                                   | Survival (%) <sup>1</sup> |         |                                 |  |  |  |  |  |  |
|---------------------------------------------------|---------------------------|---------|---------------------------------|--|--|--|--|--|--|
| Treatment                                         | Unmani                    | pulated | 25 ppb PBO added                |  |  |  |  |  |  |
|                                                   | mean                      | se      | mean se vs Non-PBO <sup>2</sup> |  |  |  |  |  |  |
| DIEPAMHR                                          | 100                       | 0.0     | 87 9.4 NS                       |  |  |  |  |  |  |
| Low EC Control @ 119.2 µS/cm                      | 100                       | 0.0     | 87 6.3 NS                       |  |  |  |  |  |  |
| High EC Control @ 17.30 mS/cm                     | 73*                       | 6.0     | 73 11.1 NS                      |  |  |  |  |  |  |
| Napa River at River Park Blvd.                    | 100                       | 0.0     | 98 2.5 NS                       |  |  |  |  |  |  |
| Suisun Slough at Rush Ranch                       | 100                       | 0.0     | 97 2.8 NS                       |  |  |  |  |  |  |
| Sacramento River at Hood DWR Station <sup>3</sup> | 90                        | 4.1     | 81 3.3 NS                       |  |  |  |  |  |  |
| Rough and Ready DWR station, Stockton             | 100                       | 0.0     | 100 0.0 NS                      |  |  |  |  |  |  |
| Napa River at Vallejo Seawall (340) <sup>4</sup>  | 61                        | 10.1    | 14** 9.0 S*                     |  |  |  |  |  |  |

|                                                   | Weight (mg/surviving individual) <sup>1</sup> |          |                                 |  |  |  |  |  |  |
|---------------------------------------------------|-----------------------------------------------|----------|---------------------------------|--|--|--|--|--|--|
| Treatment                                         | Ummoni                                        | mulata d | 25 ppb PBO<br>added             |  |  |  |  |  |  |
|                                                   | Unmani                                        | purated  |                                 |  |  |  |  |  |  |
|                                                   | mean                                          | se       | mean se vs Non-PBO <sup>2</sup> |  |  |  |  |  |  |
| DIEPAMHR                                          | 0.062                                         | 0.006    | 0.047 0.003 S*                  |  |  |  |  |  |  |
| Low EC Control @ 119.2 μS/cm                      | 0.049                                         | 0.006    | 0.045 0.006 NS                  |  |  |  |  |  |  |
| High EC Control @ 17.30 mS/cm                     | 0.039*                                        | 0.005    | 0.027** 0.004 NS                |  |  |  |  |  |  |
| Napa River at River Park Blvd.                    | 0.099                                         | 0.007    | 0.069 0.002 S**                 |  |  |  |  |  |  |
| Suisun Slough at Rush Ranch                       | 0.101                                         | 0.006    | 0.089 0.012 NS                  |  |  |  |  |  |  |
| Sacramento River at Hood DWR Station <sup>3</sup> | 0.070                                         | 0.008    | 0.043 0.007 S*                  |  |  |  |  |  |  |
| Rough and Ready DWR station, Stockton             | 0.085                                         | 0.004    | 0.084 0.007 NS                  |  |  |  |  |  |  |
| Napa River at Vallejo Seawall (340) <sup>4</sup>  | 0.063                                         | 0.006    | 0.097 0.013 NS                  |  |  |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> This low conductivity sample was compared to the Low EC Control.

<sup>4.</sup> This high conductivity sample was compared to the High EC Control.

Table B21-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/12/09 - 5/13/09.

|                                       |               | Field Cl     | nemistry |              | =                  | Total                         | Unionized<br>Ammonia<br>(mg/L) |
|---------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|--------------------------------|
| Treatment                             | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) |                                |
| Napa River at River Park Blvd.        | 5780          | 20.8         | 6.51     | 10.6         | 47.8               | 0.14                          | 0.000                          |
| Suisun Slough at Rush Ranch           | 4863          | 19.0         | 6.51     | 9.8          | 62.3               | 0.32                          | 0.000                          |
| Sacramento River at Hood DWR Station  | 116           | 19.3         | 6.89     | 11.4         | 21.5               | 0.21                          | 0.001                          |
| Rough and Ready DWR station, Stockton | 491           | 21.3         | 7.43     | 6.9          | 9.6                | 0.09                          | 0.001                          |
| Napa River at Vallejo Seawall (340)   | 16330         | 17.5         | 6.91     | 9.2          | 77.5               | 0.13                          | 0.000                          |

Table B21-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 5/16/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/12/09 - 5/13/09.

|                                                    |            |                     | Labora              | atory Chei          | nistry              |           |           | - Hardness                      | Alkalinity                   | Unionized                   |
|----------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------|------------------------------|-----------------------------|
| Treatment                                          | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                           | 347        | 23.9                | 24.0                | 7.5                 | 8.5                 | 7.72      | 8.06      | 108                             | 60                           | -                           |
| Low EC Control @ 119.2 µS/cm                       | 127        | 23.7                | 24.1                | 7.4                 | 8.5                 | 7.30      | 7.82      | 32                              | 22                           | -                           |
| High EC Control @ 17.30 mS/cm                      | 16505      | 23.9                | 24.1                | 6.9                 | 8.1                 | 7.56      | 7.82      | 2040                            | 82                           | -                           |
| Napa River at River Park Blvd.                     | 5410       | 23.8                | 24.0                | 6.9                 | 8.2                 | 7.78      | 7.98      | 652                             | 116                          | 0.005                       |
| Suisun Slough at Rush Ranch                        | 4550       | 23.9                | 24.0                | 6.9                 | 8.5                 | 8.01      | 8.19      | 384                             | 198                          | 0.017                       |
| Sacramento River at Hood DWR Station               | 124        | 23.7                | 24.0                | 7.0                 | 8.4                 | 7.34      | 7.99      | 44                              | 50                           | 0.010                       |
| Rough and Ready DWR station, Stockton              | 483        | 23.9                | 24.1                | 7.2                 | 8.4                 | 7.66      | 7.91      | 112                             | 70                           | 0.003                       |
| Napa River at Vallejo Seawall (340)                | 15320      | 23.7                | 24.0                | 6.6                 | 8.1                 | 7.58      | 7.81      | 1920                            | 94                           | 0.003                       |
| DIEPAMHR + 25 ppb PBO                              | 239        | 23.7                | 23.7                | 7.2                 | 8.5                 | 7.67      | 7.84      | -                               | -                            | -                           |
| Low EC Control @ 119.2 µS/cm + 25 ppb PBO          | 240        | 23.6                | 24.0                | 7.4                 | 8.5                 | 7.37      | 8.08      | -                               | -                            | -                           |
| High EC Control @ 17.30 mS/cm + 25 ppb PBO         | 16445      | 23.9                | 24.0                | 6.7                 | 8.0                 | 7.60      | 7.84      | -                               | -                            | -                           |
| Napa River at River Park Blvd. + 25 ppb PBO        | 5330       | 23.8                | 24.0                | 7.2                 | 8.4                 | 7.78      | 7.98      | -                               | -                            | -                           |
| Suisun Slough at Rush Ranch + 25 ppb PBO           | 4552       | 23.8                | 24.3                | 6.9                 | 8.3                 | 7.99      | 8.20      | -                               | -                            | -                           |
| Sacramento River at Hood DWR Station + 25 ppb PBO  | 149        | 23.8                | 24.2                | 6.9                 | 8.7                 | 7.44      | 7.83      | -                               | -                            | -                           |
| Rough and Ready DWR station, Stockton + 25 ppb PBO | 485        | 23.9                | 24.2                | 7.0                 | 8.5                 | 7.65      | 7.94      | -                               | -                            | -                           |
| Napa River at Vallejo Seawall (340) + 25 ppb PBO   | 15325      | 23.6                | 24.1                | 6.8                 | 8.2                 | 7.68      | 7.78      | -                               | -                            |                             |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B22-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 5/20/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/18/09.

|                                                                | Survival (%) <sup>1</sup> |         |      |     |                  |  |  |  |  |
|----------------------------------------------------------------|---------------------------|---------|------|-----|------------------|--|--|--|--|
| Tuestant                                                       | •                         |         | PBO  |     |                  |  |  |  |  |
| Treatment                                                      | Unmanij                   | pulated | adde |     |                  |  |  |  |  |
|                                                                |                           |         |      |     | vs Non-          |  |  |  |  |
|                                                                | mean                      | se      | mean | se  | PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                                       | 98                        | 2.5     | 100  | 0.0 | NS               |  |  |  |  |
| High EC Control @ 20360 uS/cm                                  | 100                       | 0.0     | 93   | 4.8 | NS               |  |  |  |  |
| Grizzly Bay at Dolphin (602)                                   | 100                       | 0.0     | 100  | 0.0 | NS               |  |  |  |  |
| Suisun Bay off Chipps Island (508)                             | 100                       | 0.0     | 100  | 0.0 | NS               |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) <sup>3</sup> | 88                        | 7.5     | 93   | 4.8 | NS               |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)                         | 100                       | 0.0     | 100  | 0.0 | NS               |  |  |  |  |

|                                                                | Weight (mg/surviving individual) <sup>1</sup> |         |         |                  |                             |  |  |  |  |
|----------------------------------------------------------------|-----------------------------------------------|---------|---------|------------------|-----------------------------|--|--|--|--|
| Treatment                                                      |                                               | pulated |         | 25 ppb PBO added |                             |  |  |  |  |
|                                                                |                                               | se      | mean    | se               | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                                       | 0.071                                         | 0.002   | 0.081   | 0.005            | NS                          |  |  |  |  |
| High EC Control @ 20360 uS/cm                                  | 0.035*                                        | 0.012   | 0.051** | 0.005            | NS                          |  |  |  |  |
| Grizzly Bay at Dolphin (602)                                   | 0.096                                         | 0.002   | 0.103   | 0.007            | NS                          |  |  |  |  |
| Suisun Bay off Chipps Island (508)                             | 0.087                                         | 0.008   | 0.111   | 0.010            | NS                          |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) <sup>3</sup> | 0.053                                         | 0.007   | 0.058   | 0.002            | NS                          |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)                         | 0.106                                         | 0.009   | 0.102   | 0.004            | NS                          |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> This high conductivity sample was compared to the High EC Control.

Table B22-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/18/09.

|                                                   |               | Field Ch     | nemistry |              | _                  | Total                         | Unionized      |
|---------------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|----------------|
| Treatment                                         | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Ammonia (mg/L) |
| Grizzly Bay at Dolphin (602)                      | 6250          | 19.7         | 7.95     | 9.0          | 54.5               | 0.09                          | 0.003          |
| Suisun Bay off Chipps Island (508)                | 2366          | 19.5         | 6.98     | 9.0          | 28.3               | 0.00                          | 0.000          |
| Carquinez Strait, West of Benicia army dock (405) | 19550         | 18.3         | 7.38     | 9.3          | 10.5               | 0.00                          | 0.000          |
| Montezuma Slough at Nurse Slough (609)            | 3368          | 21.4         | 7.66     | 8.2          | 47.0               | 0.00                          | 0.000          |

Table B22-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 5/20/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/18/09.

|                                                                |            |                     | Labor               | - Hardness          | Alkalinity          | Unionized |           |                              |                              |                             |
|----------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|------------------------------|------------------------------|-----------------------------|
| Treatment                                                      | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as CaCO <sub>3</sub> ) | (mg/L as CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                       | 340        | 22.9                | 23.5                | 7.4                 | 8.4                 | 7.74      | 8.20      | 104                          | 60                           | -                           |
| High EC Control @ 20360 uS/cm                                  | 19550      | 23.6                | 23.6                | 7.0                 | 8.4                 | 7.63      | 7.85      | 2400                         | 90                           | -                           |
| Grizzly Bay at Dolphin (602)                                   | 6135       | 23.0                | 23.6                | 7.4                 | 8.4                 | 7.63      | 7.97      | 760                          | 76                           | 0.003                       |
| Suisun Bay off Chipps Island (508)                             | 2237       | 23.4                | 23.6                | 7.5                 | 8.8                 | 7.65      | 8.06      | 256                          | 64                           | 0.000                       |
| Carquinez Strait, West of Benicia army dock (405)              | 18545      | 23.4                | 23.6                | 7.0                 | 8.4                 | 7.66      | 7.84      | 2200                         | 94                           | 0.000                       |
| Montezuma Slough at Nurse Slough (609)                         | 3159       | 23.5                | 23.7                | 6.8                 | 8.5                 | 7.64      | 8.07      | 360                          | 84                           | 0.000                       |
| DIEPAMHR + 25 ppb PBO                                          | 331        | 23.1                | 23.4                | 7.3                 | 8.4                 | 7.72      | 8.05      | -                            | -                            | -                           |
| High EC Control @ 20360 uS/cm + 25 ppb PBO                     | 19385      | 23.2                | 23.5                | 6.9                 | 8.0                 | 7.58      | 7.78      | -                            | -                            | -                           |
| Grizzly Bay at Dolphin (602) + 25 ppb PBO                      | 5685       | 23.0                | 23.9                | 7.3                 | 8.3                 | 7.66      | 7.90      | -                            | -                            | -                           |
| Suisun Bay off Chipps Island (508) + 25 ppb PBO                | 2217       | 23.0                | 24.0                | 7.1                 | 8.9                 | 7.68      | 7.97      | -                            | -                            | -                           |
| Carquinez Strait, West of Benicia army dock (405) + 25 ppb PBO | 18285      | 23.0                | 24.4                | 7.0                 | 8.9                 | 7.65      | 7.82      | -                            | -                            | -                           |
| Montezuma Slough at Nurse Slough (609) + 25 ppb PBO            | 3173       | 23.2                | 23.6                | 7.4                 | 8.5                 | 7.69      | 8.01      | -                            | -                            | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B23-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 5/21/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/20/09.

|                                                 | Survival (%) <sup>1</sup> |         |               |     |                             |  |  |  |  |
|-------------------------------------------------|---------------------------|---------|---------------|-----|-----------------------------|--|--|--|--|
| Treatment                                       |                           | pulated | 25 ppb<br>add |     |                             |  |  |  |  |
|                                                 | mean                      | se      | mean          | se  | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                        | 97                        | 2.8     | 97            | 2.8 | NS                          |  |  |  |  |
| Low EC Control @ 149.4 µS/cm                    | 98                        | 2.5     | 95            | 2.9 | NS                          |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 100                       | 0.0     | 100           | 0.0 | NS                          |  |  |  |  |
| Sacramento River at tip of Grand Island (711)   | 100                       | 0.0     | 93            | 4.8 | NS                          |  |  |  |  |
| San Joaquin River at Potato Slough (815)        | 100                       | 0.0     | 100           | 0.0 | NS                          |  |  |  |  |
| Old River, western arm at railroad bridge (902) | 100                       | 0.0     | 100           | 0.0 | NS                          |  |  |  |  |
| Old River at mouth of Holland Cut (915)         | 100                       | 0.0     | 100           | 0.0 | NS                          |  |  |  |  |
| Bottle Blank (amber cubitainer)                 | 100                       | 0.0     | -             | -   | NA                          |  |  |  |  |
| Bottle Blank (clear cubitainer)                 | 100                       | 0.0     | -             | -   | NA                          |  |  |  |  |

|                                                 | Weight (mg/surviving individual) <sup>1</sup> |            |       |       |                             |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------|------------|-------|-------|-----------------------------|--|--|--|--|
|                                                 |                                               | 25 ppb PBO |       |       |                             |  |  |  |  |
| Treatment                                       |                                               | ipulated   | ado   | led   |                             |  |  |  |  |
|                                                 | mean                                          | se         | mean  | se    | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                        | 0.061                                         | 0.008      | 0.077 | 0.010 | NS                          |  |  |  |  |
| Low EC Control @ 149.4 µS/cm                    | 0.073                                         | 0.006      | 0.065 | 0.006 | NS                          |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 0.102                                         | 0.007      | 0.097 | 0.004 | NS                          |  |  |  |  |
| Sacramento River at tip of Grand Island (711)   | 0.091                                         | 0.008      | 0.089 | 0.003 | NS                          |  |  |  |  |
| San Joaquin River at Potato Slough (815)        | 0.082                                         | 0.009      | 0.095 | 0.010 | NS                          |  |  |  |  |
| Old River, western arm at railroad bridge (902) | 0.078                                         | 0.005      | 0.097 | 0.005 | NS                          |  |  |  |  |
| Old River at mouth of Holland Cut (915)         | 0.087                                         | 0.011      | 0.104 | 0.009 | NS                          |  |  |  |  |
| Bottle Blank (amber cubitainer)                 | 0.067                                         | 0.003      | -     | -     | NA                          |  |  |  |  |
| Bottle Blank (clear cubitainer)                 | 0.065                                         | 0.005      | -     | -     | NA                          |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard statistical protocols.

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

Table B23-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/20/09.

|                                                 |               | Field Ch     | nemistry |              | _                  | Total                         | Unionized      |
|-------------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|----------------|
| Treatment                                       | SC<br>(uS/cm) | Temp<br>(°C) | рН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Ammonia (mg/L) |
| Upper Cache Slough at mouth of Ulatis Creek     | 282           | 19.9         | 7.24     | 8.3          | 56.6               | 0.09                          | 0.001          |
| Sacramento River at tip of Grand Island (711)   | 144           | 20.7         | 6.61     | 8.4          | 8.0                | 0.38                          | 0.001          |
| San Joaquin River at Potato Slough (815)        | 205           | 21.8         | 6.58     | 8.4          | 7.5                | 0.10                          | 0.000          |
| Old River, western arm at railroad bridge (902) | 229           | 21.8         | 6.58     | 8.4          | 6.6                | 0.08                          | 0.000          |
| Old River at mouth of Holland Cut (915)         | 320           | 22.7         | 6.43     | 8.3          | 4.7                | 0.03                          | 0.000          |
| Bottle Blank (amber cubitainer)                 | -             | -            | -        | -            | -                  | 0.05                          | -              |
| Bottle Blank (clear cubitainer)                 | -             | -            | -        | -            | -                  | 0.03                          | -              |

Table B23-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 5/21/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/20/09.

|                                                              |            |                     | Labor               | atory Cher          | nistry              |           |           | - Hardness Alkalinity        | Unionized                    |                             |
|--------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|------------------------------|------------------------------|-----------------------------|
| Treatment                                                    | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as CaCO <sub>3</sub> ) | (mg/L as CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                     | 334        | 23.0                | 24.5                | 7.4                 | 8.6                 | 7.68      | 8.03      | 104                          | 60                           | -                           |
| Low EC Control @ 149.4 μS/cm                                 | 145        | 23.2                | 24.0                | 7.2                 | 8.6                 | 7.33      | 7.69      | 44                           | 28                           | -                           |
| Upper Cache Slough at mouth of Ulatis Creek                  | 236        | 23.0                | 24.5                | 7.1                 | 8.8                 | 7.83      | 8.19      | 108                          | 92                           | 0.006                       |
| Sacramento River at tip of Grand Island (711)                | 103        | 22.4                | 24.4                | 6.9                 | 8.7                 | 7.46      | 7.91      | 48                           | 56                           | 0.014                       |
| San Joaquin River at Potato Slough (815)                     | 183        | 22.8                | 24.1                | 7.0                 | 8.8                 | 7.58      | 7.99      | 60                           | 58                           | 0.004                       |
| Old River, western arm at railroad bridge (902)              | 167        | 23.7                | 24.1                | 7.0                 | 8.7                 | 7.64      | 8.03      | 72                           | 64                           | 0.004                       |
| Old River at mouth of Holland Cut (915)                      | 242        | 23.0                | 24.2                | 6.9                 | 8.7                 | 7.65      | 8.11      | 84                           | 76                           | 0.002                       |
| Bottle Blank (amber cubitainer)                              | 261        | 22.9                | 24.8                | 7.3                 | 8.7                 | 7.75      | 8.05      | 104                          | 60                           | 0.002                       |
| Bottle Blank (clear cubitainer)                              | 313        | 22.6                | 24.6                | 7.4                 | 8.7                 | 7.68      | 8.03      | 104                          | 60                           | 0.001                       |
| DIEPAMHR + 25 ppb PBO                                        | 329        | 22.5                | 24.4                | 7.4                 | 8.5                 | 7.71      | 8.06      | -                            | -                            | -                           |
| Low EC Control @ 149.4 µS/cm + 25 ppb PBO                    | 144        | 22.3                | 23.8                | 7.3                 | 8.6                 | 7.32      | 7.76      | -                            | -                            | -                           |
| Upper Cache Slough at mouth of Ulatis Creek + 25 ppb PBO     | 235        | 22.1                | 24.5                | 7.1                 | 8.6                 | 7.81      | 8.18      | -                            | -                            | -                           |
| Sacramento River at tip of Grand Island (711) + 25 ppb PBO   | 134        | 22.1                | 24.4                | 6.8                 | 8.6                 | 7.46      | 7.93      | -                            | -                            | -                           |
| San Joaquin River at Potato Slough (815) + 25 ppb PBO        | 221        | 22.2                | 24.4                | 7.1                 | 8.6                 | 7.60      | 7.96      | -                            | -                            | -                           |
| Old River, western arm at railroad bridge (902) + 25 ppb PBO | 205        | 22.6                | 25.1                | 7.0                 | 8.8                 | 7.62      | 8.04      | -                            | -                            | -                           |
| Old River at mouth of Holland Cut (915) + 25 ppb PBO         | 280        | 22.1                | 25.5                | 7.0                 | 8.8                 | 7.74      | 8.07      | -                            | -                            | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B24-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 5/28/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/26/09 - 5/27/09.

|                                                                | Survival (%) <sup>1</sup> |         |               |     |                             |  |  |  |  |
|----------------------------------------------------------------|---------------------------|---------|---------------|-----|-----------------------------|--|--|--|--|
| Treatment                                                      | Unmani                    | pulated | 25 ppb<br>add |     |                             |  |  |  |  |
|                                                                | mean                      | se      | mean          | se  | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                                       | 95                        | 3.1     | 100           | 0.0 | NS                          |  |  |  |  |
| Low EC Control @ 157.5 µS/cm                                   | 100                       | 0.0     | 100           | 0.0 | NS                          |  |  |  |  |
| High EC Control @ 14.50 mS/cm                                  | 100                       | 0.0     | 98            | 2.5 | NS                          |  |  |  |  |
| High EC Control @ 23.36 mS/cm                                  | 94                        | 3.3     | 94            | 6.3 | NS                          |  |  |  |  |
| Suisun Slough at Rush Ranch                                    | 100                       | 0.0     | 100           | 0.0 | NS                          |  |  |  |  |
| Napa River at River Park Blvd.                                 | 100                       | 0.0     | 98            | 2.5 | NS                          |  |  |  |  |
| Sacramento River at Hood DWR Station <sup>3</sup>              | 94                        | 3.3     | 98            | 2.5 | NS                          |  |  |  |  |
| Grizzly Bay at Dolphin (602)                                   | 97                        | 2.8     | 98            | 2.5 | NS                          |  |  |  |  |
| Suisun Bay off Chipps Island (508)                             | 100                       | 0.0     | 98            | 2.5 | NS                          |  |  |  |  |
| Napa River at Vallejo Seawall (340) <sup>5</sup>               | 90                        | 5.8     | 94            | 3.2 | NS                          |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)                         | 98                        | 2.5     | 98            | 2.5 | NS                          |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) <sup>4</sup> | 98                        | 2.5     | 100           | 0.0 | NS                          |  |  |  |  |
| Bottle Blank: DIEPAMHR                                         | 100                       | 0.0     | -             | -   | NA                          |  |  |  |  |
| Field Dup.: Suisun Slough at Rush Ranch                        | 98                        | 2.5     | -             | -   | NA                          |  |  |  |  |
| Field Dup.: Montezuma Slough at Nurse Slough (609)             | 100                       | 0.0     | -             | -   | NA                          |  |  |  |  |

|                                                                | Weight (mg/surviving individual) <sup>1</sup> |          |       |              |                             |  |  |  |  |  |
|----------------------------------------------------------------|-----------------------------------------------|----------|-------|--------------|-----------------------------|--|--|--|--|--|
| Treatment                                                      | Unman                                         | ipulated |       | b PBO<br>ded |                             |  |  |  |  |  |
|                                                                | mean                                          | se       | mean  | se           | vs Non-<br>PBO <sup>2</sup> |  |  |  |  |  |
| DIEPAMHR                                                       | 0.035                                         | 0.006    | 0.078 | 0.006        | S** (223%)                  |  |  |  |  |  |
| Low EC Control @ 157.5 µS/cm                                   | 0.036                                         | 0.005    | 0.045 | 0.008        | NS                          |  |  |  |  |  |
| High EC Control @ 14.50 mS/cm                                  | 0.037                                         | 0.003    | 0.055 | 0.004        | S** (149%)                  |  |  |  |  |  |
| High EC Control @ 23.36 mS/cm                                  | 0.037                                         | 0.006    | 0.036 | 0.007        | NS                          |  |  |  |  |  |
| Suisun Slough at Rush Ranch                                    | 0.097                                         | 0.010    | 0.123 | 0.008        | S* (127%)                   |  |  |  |  |  |
| Napa River at River Park Blvd.                                 | 0.093                                         | 0.011    | 0.084 | 0.006        | NS                          |  |  |  |  |  |
| Sacramento River at Hood DWR Station <sup>3</sup>              | 0.087                                         | 0.006    | 0.090 | 0.008        | NS                          |  |  |  |  |  |
| Grizzly Bay at Dolphin (602)                                   | 0.087                                         | 0.010    | 0.097 | 0.005        | NS                          |  |  |  |  |  |
| Suisun Bay off Chipps Island (508)                             | 0.080                                         | 0.003    | 0.098 | 0.005        | S* (123%)                   |  |  |  |  |  |
| Napa River at Vallejo Seawall (340) <sup>5</sup>               | 0.048                                         | 0.004    | 0.055 | 0.005        | NS                          |  |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)                         | 0.090                                         | 0.001    | 0.075 | 0.005        | S* (83%)                    |  |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) <sup>4</sup> | 0.073                                         | 0.000    | 0.117 | 0.041        | NS                          |  |  |  |  |  |
| Bottle Blank: DIEPAMHR                                         | 0.070                                         | 0.008    | -     | -            | NA                          |  |  |  |  |  |
| Field Dup.: Suisun Slough at Rush Ranch                        | 0.112                                         | 0.009    | -     | -            | NA                          |  |  |  |  |  |
| Field Dup.: Montezuma Slough at Nurse Slough (609)             | 0.103                                         | 0.008    | -     | -            | NA                          |  |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard statistical protocols.

<sup>\*:</sup>  $\vec{P} < 0.05$ 

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> This low conductivity sample was compared to the Low EC Control.

<sup>4.</sup> This high conductivity sample was compared to the High EC Control @ 14.50 mS/cm.

<sup>5.</sup> This high conductivity sample was compared to the High EC Control @ 23.36 mS/cm.

Table B24-2. Summary of water chemistry at field conditions of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/26/09 - 5/27/09.

|                                                    |               | Field C      | hemistry |              | _                  | Total                         | II.:                           |
|----------------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|--------------------------------|
| Treatment                                          | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |
| Suisun Slough at Rush Ranch                        | 4755          | 18.5         | 6.82     | 7.1          | 54.7               | 0.12                          | 0.000                          |
| Napa River at River Park Blvd.                     | 10530         | 20.1         | 6.86     | 8.5          | 13.0               | 0.11                          | 0.000                          |
| Sacramento River at Hood DWR Station               | 152           | 20.7         | 6.55     | 8.3          | 15.3               | 0.33                          | 0.000                          |
| Grizzly Bay at Dolphin (602)                       | 8100          | 22.1         | 6.80     | 9.1          | 28.4               | 0.06                          | 0.000                          |
| Suisun Bay off Chipps Island (508)                 | 3924          | 19.5         | 6.54     | 9.1          | 36.9               | 0.09                          | 0.000                          |
| Napa River at Vallejo Seawall (340)                | 22870         | 18.6         | 6.58     | 8.7          | 32.8               | 0.09                          | 0.000                          |
| Montezuma Slough at Nurse Slough (609)             | 3446          | 21.1         | 6.66     | 8.1          | 137.7              | 0.16                          | 0.000                          |
| Carquinez Strait, West of Benicia army dock (405)  | 14080         | 18.5         | 7.45     | 9.2          | 288.7              | 0.21                          | 0.001                          |
| Field Dup.: Suisun Slough at Rush Ranch            | 4755          | 18.5         | 6.82     | 7.1          | 47.7               | 0.07                          | 0.000                          |
| Field Dup.: Montezuma Slough at Nurse Slough (609) | 3446          | 21.1         | 6.66     | 8.1          | 138.0              | 0.15                          | 0.000                          |

Table B24-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 5/28/09 of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/26/09 - 5/27/09.

| Laboratory (OCDATL) and the California Department of Fish and C |            | /                   | _                   | oratory Cher     |                  |           |           | - Hardness                      | Alkalinity                      | Unionized                   |
|-----------------------------------------------------------------|------------|---------------------|---------------------|------------------|------------------|-----------|-----------|---------------------------------|---------------------------------|-----------------------------|
| Treatment                                                       | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min DO<br>(mg/L) | Max DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as<br>CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                        | 332        | 23.5                | 23.7                | 7.5              | 8.6              | 7.59      | 8.18      | 104                             | 60                              | -                           |
| Low EC Control @ 157.5 μS/cm                                    | 157        | 23.6                | 23.6                | 7.6              | 8.8              | 7.42      | 7.97      | 52                              | 26                              | -                           |
| High EC Control @ 14.50 mS/cm                                   | 14125      | 23.6                | 23.6                | 7.1              | 8.1              | 7.65      | 7.89      | 1720                            | 74                              | -                           |
| High EC Control @ 23.36 mS/cm                                   | 22435      | 23.4                | 23.7                | 7.1              | 8.1              | 7.72      | 7.87      | 2760                            | 90                              | -                           |
| Suisun Slough at Rush Ranch                                     | 4504       | 23.5                | 23.9                | 7.3              | 8.5              | 7.81      | 8.13      | 520                             | 142                             | 0.003                       |
| Napa River at River Park Blvd.                                  | 10125      | 23.4                | 23.7                | 7.0              | 8.6              | 7.84      | 7.98      | 1240                            | 128                             | 0.003                       |
| Sacramento River at Hood DWR Station                            | 146        | 23.5                | 23.7                | 7.1              | 8.4              | 7.62      | 7.82      | 52                              | 54                              | 0.010                       |
| Grizzly Bay at Dolphin (602)                                    | 7690       | 23.4                | 23.7                | 7.3              | 8.4              | 7.67      | 7.92      | 960                             | 68                              | 0.002                       |
| Suisun Bay off Chipps Island (508)                              | 4089       | 23.3                | 23.7                | 7.4              | 8.6              | 7.65      | 7.89      | 500                             | 64                              | 0.003                       |
| Napa River at Vallejo Seawall (340)                             | 21675      | 23.2                | 23.8                | 6.8              | 8.3              | 7.67      | 7.81      | 2640                            | 100                             | 0.001                       |
| Montezuma Slough at Nurse Slough (609)                          | 3253       | 23.2                | 23.8                | 7.4              | 8.4              | 7.80      | 7.94      | 420                             | 92                              | 0.005                       |
| Carquinez Strait, West of Benicia army dock (405)               | 13450      | 23.2                | 23.7                | 7.2              | 8.1              | 7.61      | 7.81      | 1600                            | 94                              | 0.005                       |
| Bottle Blank 052609                                             | 343        | 23.2                | 23.8                | 7.5              | 8.6              | 7.77      | 8.18      | 104                             | 60                              | -                           |
| Field Dup.: Suisun Slough at Rush Ranch                         | 4542       | 23.2                | 23.8                | 7.3              | 8.7              | 7.90      | 8.13      | 52                              | 154                             | 0.002                       |
| Field Dup.: Montezuma Slough at Nurse Slough (609)              | 3292       | 23.2                | 23.8                | 7.5              | 8.9              | 7.78      | 7.96      | 420                             | 84                              | 0.006                       |
| DIEPAMHR + 25 ppb PBO                                           | 339        | 23.1                | 23.5                | 7.5              | 8.7              | 7.73      | 8.24      | -                               | -                               | -                           |
| Low EC Control @ 157.5 μS/cm + 25 ppb PBO                       | 160        | 23.1                | 23.5                | 7.7              | 8.9              | 7.46      | 8.01      | -                               | -                               | -                           |
| High EC Control @ 14.50 mS/cm + 25 ppb PBO                      | 13795      | 23.0                | 23.6                | 7.0              | 8.4              | 7.59      | 7.90      | -                               | -                               | -                           |
| High EC Control @ 23.36 mS/cm + 25 ppb PBO                      | 22405      | 23.1                | 23.7                | 6.9              | 8.2              | 7.65      | 7.88      | -                               | -                               | -                           |
| Suisun Slough at Rush Ranch + 25 ppb PBO                        | 4537.5     | 23.0                | 23.8                | 7.5              | 8.8              | 7.81      | 8.14      | -                               | -                               | -                           |
| Napa River at River Park Blvd. + 25 ppb PBO                     | 10045      | 23.0                | 23.9                | 7.4              | 8.7              | 7.90      | 8.00      | -                               | -                               | -                           |
| Sacramento River at Hood DWR Station + 25 ppb PBO               | 159.2      | 23.0                | 23.8                | 7.3              | 8.8              | 7.63      | 8.00      | -                               | -                               | -                           |
| Grizzly Bay at Dolphin (602) + 25 ppb PBO                       | 7665       | 23.1                | 24.0                | 7.4              | 8.9              | 7.65      | 7.80      | -                               | -                               | -                           |
| Suisun Bay off Chipps Island (508) + 25 ppb PBO                 | 4036       | 23.0                | 24.1                | 7.4              | 8.8              | 7.60      | 7.94      | -                               | -                               | -                           |
| Napa River at Vallejo Seawall (340) + 25 ppb PBO                | 21460      | 23.1                | 24.0                | 6.8              | 8.4              | 7.68      | 7.79      | -                               | -                               | -                           |
| Montezuma Slough at Nurse Slough (609) + 25 ppb PBO             | 3294.5     | 23.0                | 23.8                | 7.6              | 8.8              | 7.81      | 8.07      | -                               | -                               | -                           |
| Carquinez Strait, West of Benicia army dock (405) + 25 ppb PBO  | 13630      | 23.0                | 23.9                | 7.12             | 8.6              | 7.61      | 7.85      | -                               | -                               | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B25-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 5/29/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/27/09 and 5/28/09.

|                                                              | Survival (%) <sup>1</sup> |         |               |     |                         |  |  |  |  |
|--------------------------------------------------------------|---------------------------|---------|---------------|-----|-------------------------|--|--|--|--|
| Treatment                                                    | Unmani                    | pulated | 25 ppb<br>add |     |                         |  |  |  |  |
|                                                              | mean                      | se      | mean          | se  | vs Non-PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                                     | 98                        | 2.5     | 100           | 0.0 | NS                      |  |  |  |  |
| Low EC Control @ 139.6 µS/cm                                 | 95                        | 3.1     | 98            | 2.5 | NS                      |  |  |  |  |
| Rough and Ready DWR station, Stockton                        | 100                       | 0.0     | 98            | 2.5 | NS                      |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55 <sup>3</sup>      | 98                        | 2.5     | 100           | 0.0 | NS                      |  |  |  |  |
| Confluence of Lindsey Sl. and Cache Sl. <sup>3</sup>         | 98                        | 2.5     | 100           | 0.0 | NS                      |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek <sup>3</sup>     | 100                       | 0.0     | 98            | 2.5 | NS                      |  |  |  |  |
| Sacramento River at tip of Grand Island (711) <sup>3</sup>   | 93                        | 2.5     | 98            | 2.5 | NS                      |  |  |  |  |
| Old River at mouth of Holland Cut (915)                      | 95                        | 2.9     | 100           | 0.0 | NS                      |  |  |  |  |
| San Joaquin River at Potato Slough (815) <sup>3</sup>        | 98                        | 2.5     | 100           | 0.0 | NS                      |  |  |  |  |
| Old River, western arm at railroad bridge (902) <sup>3</sup> | 100                       | 0.0     | 98            | 2.5 | NS                      |  |  |  |  |

|                                                              | Weight (mg/surviving individual) <sup>1</sup> |          |       |              |                         |  |  |  |  |
|--------------------------------------------------------------|-----------------------------------------------|----------|-------|--------------|-------------------------|--|--|--|--|
| Treatment                                                    |                                               | ipulated |       | b PBO<br>ded |                         |  |  |  |  |
|                                                              | mean                                          | se       | mean  | se           | vs Non-PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                                     | 0.030                                         | 0.005    | 0.034 | 0.004        | NS                      |  |  |  |  |
| Low EC Control @ 139.6 µS/cm                                 | 0.036                                         | 0.002    | 0.036 | 0.006        | NS                      |  |  |  |  |
| Rough and Ready DWR station, Stockton                        | 0.093                                         | 0.009    | 0.087 | 0.012        | NS                      |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55 <sup>3</sup>      | 0.082                                         | 0.008    | 0.075 | 0.011        | NS                      |  |  |  |  |
| Confluence of Lindsey Sl. and Cache Sl. <sup>3</sup>         | 0.068                                         | 0.010    | 0.081 | 0.008        | NS                      |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek <sup>3</sup>     | 0.082                                         | 0.003    | 0.083 | 0.006        | NS                      |  |  |  |  |
| Sacramento River at tip of Grand Island (711) <sup>3</sup>   | 0.045                                         | 0.009    | 0.074 | 0.014        | NS                      |  |  |  |  |
| Old River at mouth of Holland Cut (915)                      | 0.094                                         | 0.009    | 0.094 | 0.006        | NS                      |  |  |  |  |
| San Joaquin River at Potato Slough (815) <sup>3</sup>        | 0.079                                         | 0.030    | 0.085 | 0.009        | NS                      |  |  |  |  |
| Old River, western arm at railroad bridge (902) <sup>3</sup> | 0.091                                         | 0.011    | 0.100 | 0.013        | NS                      |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard statistical protocols.

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> These low conductivity samples were compared to the Low EC Control.

Table B25-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/27/09 - 5/28/09.

|                                                 |               | Field C      | hemistry |              | _                  | Total                         | II:                            |  |
|-------------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|--------------------------------|--|
| Treatment                                       | SC<br>(uS/cm) | Temp<br>(°C) | рН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |  |
| Rough and Ready DWR station, Stockton           | 435           | 25.8         | 7.08     | 6.0          | 13.3               | 0.09                          | 0.001                          |  |
| Sacramento R. Deep Water Channel, Light 55      | 215           | 20.9         | 7.39     | 8.4          | 32.2               | 0.14                          | 0.001                          |  |
| Confluence of Lindsey Sl. and Cache Sl.         | 188           | 21.1         | 7.52     | 8.4          | 37.8               | 0.11                          | 0.001                          |  |
| Upper Cache Slough at mouth of Ulatis Creek     | 243           | 21.2         | 7.5      | 8.4          | 63.5               | 0.04                          | 0.001                          |  |
| Sacramento River at tip of Grand Island (711)   | 151           | 21.8         | 7.54     | 8.4          | 11.6               | 0.22                          | 0.003                          |  |
| Old River at mouth of Holland Cut (915)         | 286           | 24.1         | 7.18     | 7.7          | 6.4                | 0.00                          | 0.000                          |  |
| San Joaquin River at Potato Slough (815)        | 176           | 22.7         | 7.27     | 8.2          | 6.3                | 0.00                          | 0.000                          |  |
| Old River, western arm at railroad bridge (902) | 231           | 23.6         | 7.29     | 8.0          | 7.2                | 0.00                          | 0.000                          |  |

Table B25-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 5/29/09 of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 5/27/09 - 5/28/09.

|                                                              |            |                     | Labora              | tory Chen           | nistry              |           |           | Hardness Alkali                 | Alkalinity                      | as Ammonia |
|--------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------|---------------------------------|------------|
| Treatment                                                    | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as<br>CaCO <sub>3</sub> ) |            |
| DIEPAMHR                                                     | 339        | 23.1                | 23.5                | 7.3                 | 8.4                 | 7.66      | 8.08      | 108                             | 62                              | -          |
| Low EC Control @ 139.6 µS/cm                                 | 145        | 23.3                | 23.6                | 7.2                 | 8.8                 | 7.37      | 7.83      | 40                              | 25                              | -          |
| Rough and Ready DWR station, Stockton                        | 422        | 23.3                | 23.5                | 7.0                 | 8.7                 | 7.70      | 7.82      | 96                              | 68                              | 0.002      |
| Sacramento R. Deep Water Channel, Light 55                   | 194        | 23.3                | 23.6                | 6.9                 | 8.7                 | 7.70      | 7.94      | 64                              | 66                              | 0.006      |
| Confluence of Lindsey Sl. and Cache Sl.                      | 177        | 23.3                | 23.5                | 6.6                 | 8.7                 | 7.70      | 7.96      | 64                              | 62                              | 0.005      |
| Upper Cache Slough at mouth of Ulatis Creek                  | 229        | 23.3                | 23.5                | 6.4                 | 8.9                 | 7.75      | 8.00      | 76                              | 80                              | 0.002      |
| Sacramento River at tip of Grand Island (711)                | 145        | 23.3                | 23.5                | 6.9                 | 8.5                 | 7.62      | 7.75      | 52                              | 54                              | 0.006      |
| Old River at mouth of Holland Cut (915)                      | 271        | 23.3                | 23.5                | 6.3                 | 8.6                 | 7.80      | 7.87      | 84                              | 70                              | 0.000      |
| San Joaquin River at Potato Slough (815)                     | 172        | 23.3                | 23.5                | 6.4                 | 8.8                 | 7.62      | 7.92      | 56                              | 52                              | 0.000      |
| Old River, western arm at railroad bridge (902)              | 214        | 23.3                | 23.5                | 6.3                 | 8.8                 | 7.69      | 7.94      | 68                              | 60                              | 0.000      |
| DIEPAMHR + 25 ppb PBO                                        | 338        | 23.4                | 23.5                | 7.0                 | 8.8                 | 7.65      | 8.09      | -                               | -                               | -          |
| Low EC Control @ 139.6 µS/cm + 25 ppb PBO                    | 146        | 23.4                | 23.5                | 6.7                 | 8.6                 | 7.31      | 7.84      | -                               | -                               | -          |
| Rough and Ready DWR station, Stockton + 25 ppb PBO           | 423        | 23.3                | 23.5                | 6.7                 | 8.4                 | 7.71      | 7.80      | -                               | -                               | -          |
| Sacramento R. Deep Water Channel, Light 55 + 25 ppb PBO      | 197        | 23.5                | 23.5                | 6.4                 | 8.8                 | 7.69      | 7.93      | -                               | -                               | -          |
| Confluence of Lindsey Sl. and Cache Sl. + 25 ppb PBO         | 181        | 23.4                | 23.5                | 6.6                 | 8.6                 | 7.70      | 7.96      | -                               | -                               | -          |
| Upper Cache Slough at mouth of Ulatis Creek + 25 ppb PBO     | 232        | 23.4                | 23.5                | 6.4                 | 8.8                 | 7.77      | 8.10      | -                               | -                               | -          |
| Sacramento River at tip of Grand Island (711) + 25 ppb PBO   | 144        | 23.6                | 23.9                | 6.3                 | 8.4                 | 7.61      | 8.00      | -                               | -                               | -          |
| Old River at mouth of Holland Cut (915) + 25 ppb PBO         | 266        | 23.6                | 23.7                | 6.2                 | 8.9                 | 7.77      | 8.40      | -                               | -                               | -          |
| San Joaquin River at Potato Slough (815) + 25 ppb PBO        | 164        | 23.7                | 23.7                | 6.2                 | 8.5                 | 7.61      | 7.90      | -                               | -                               | -          |
| Old River, western arm at railroad bridge (902) + 25 ppb PBO | 209        | 23.6                | 23.8                | 6.1                 | 8.7                 | 7.74      | 7.99      | -                               | -                               |            |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B26-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 6/11/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 6/09/09 - 6/10/09.

|                                                                |        | Survival (%) <sup>1</sup> |        |     |                         |  |  |  |  |  |
|----------------------------------------------------------------|--------|---------------------------|--------|-----|-------------------------|--|--|--|--|--|
| Treatment                                                      | T.T    | 1 4 1                     | 25 ppb |     |                         |  |  |  |  |  |
|                                                                | Unmani | pulated                   | add    | iea |                         |  |  |  |  |  |
|                                                                | mean   | se                        | mean   | se  | vs Non-PBO <sup>2</sup> |  |  |  |  |  |
| DIEPAMHR                                                       | 95     | 2.9                       | 98     | 2.5 | NS                      |  |  |  |  |  |
| Low EC Control @ 161.5 μS/cm                                   | 90     | 7.1                       | 95     | 3.1 | NS                      |  |  |  |  |  |
| High EC Control @ 14.06 mS/cm                                  | 95     | 3.1                       | 95     | 2.9 | NS                      |  |  |  |  |  |
| High EC Control @ 23.81 mS/cm                                  | 73     | 4.8                       | 78     | 3.9 | NS                      |  |  |  |  |  |
| Suisun Slough at Rush Ranch                                    | 100    | 0.0                       | 100    | 0.0 | NS                      |  |  |  |  |  |
| Sacramento River at Hood DWR Station <sup>3</sup>              | 87     | 4.7                       | 74     | 6.6 | NS                      |  |  |  |  |  |
| Napa River at River Park Blvd. <sup>4</sup>                    | 98     | 2.5                       | 95     | 2.8 | NS                      |  |  |  |  |  |
| Rough and Ready DWR station, Stockton                          | 100    | 0.0                       | 95     | 5.0 | NS                      |  |  |  |  |  |
| Napa River at Vallejo Seawall (340) <sup>5</sup>               | 74     | 1.6                       | 91     | 5.4 | NS                      |  |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)                         | 100    | 0.0                       | 98     | 2.5 | NS                      |  |  |  |  |  |
| Suisun Bay off Chipps Island (508)                             | 100    | 0.0                       | 100    | 0.0 | NS                      |  |  |  |  |  |
| Grizzly Bay at Dolphin (602)                                   | 97     | 2.8                       | 100    | 0.0 | NS                      |  |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) <sup>4</sup> | 100    | 0.0                       | 98     | 2.5 | NS                      |  |  |  |  |  |
| Trip Blank: DIEPAMHR                                           | 97     | 3.1                       | -      | -   | NA                      |  |  |  |  |  |
| Bottle Blank: DIEPAMHR                                         | 92     | 2.6                       | -      | -   | NA                      |  |  |  |  |  |

|                                                                | Weight (mg/surviving individual) <sup>1</sup> |          |        |       |                         |  |  |  |  |
|----------------------------------------------------------------|-----------------------------------------------|----------|--------|-------|-------------------------|--|--|--|--|
| Torontorout                                                    |                                               |          | 25 ppl | PBO   |                         |  |  |  |  |
| Treatment                                                      | Unman                                         | ipulated | ado    | ded   |                         |  |  |  |  |
|                                                                | mean                                          | se       | mean   | se    | vs Non-PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                                       | 0.053                                         | 0.009    | 0.042  | 0.004 | NS                      |  |  |  |  |
| Low EC Control @ 161.5 µS/cm                                   | 0.044                                         | 0.003    | 0.036  | 0.007 | NS                      |  |  |  |  |
| High EC Control @ 14.06 mS/cm                                  | 0.048                                         | 0.006    | 0.045  | 0.008 | NS                      |  |  |  |  |
| High EC Control @ 23.81 mS/cm                                  | 0.033                                         | 0.002    | 0.028  | 0.004 | NS                      |  |  |  |  |
| Suisun Slough at Rush Ranch                                    | 0.070                                         | 0.005    | 0.074  | 0.007 | NS                      |  |  |  |  |
| Sacramento River at Hood DWR Station <sup>3</sup>              | 0.062                                         | 0.006    | 0.051  | 0.012 | NS                      |  |  |  |  |
| Napa River at River Park Blvd. <sup>4</sup>                    | 0.053                                         | 0.001    | 0.040  | 0.003 | S** (75%)               |  |  |  |  |
| Rough and Ready DWR station, Stockton                          | 0.058                                         | 0.009    | 0.062  | 0.004 | NS                      |  |  |  |  |
| Napa River at Vallejo Seawall (340) <sup>5</sup>               | 0.038                                         | 0.006    | 0.028  | 0.003 | NS                      |  |  |  |  |
| Montezuma Slough at Nurse Slough (609)                         | 0.068                                         | 0.006    | 0.064  | 0.005 | NS                      |  |  |  |  |
| Suisun Bay off Chipps Island (508)                             | 0.066                                         | 0.003    | 0.063  | 0.004 | NS                      |  |  |  |  |
| Grizzly Bay at Dolphin (602)                                   | 0.066                                         | 0.011    | 0.065  | 0.006 | NS                      |  |  |  |  |
| Carquinez Strait, West of Benicia army dock (405) <sup>4</sup> | 0.048                                         | 0.005    | 0.057  | 0.003 | NS                      |  |  |  |  |
| Trip Blank: DIEPAMHR                                           | 0.040                                         | 0.004    | -      | -     | NA                      |  |  |  |  |
| Bottle Blank: DIEPAMHR                                         | 0.038                                         | 0.007    | -      | -     | NA                      |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> This low conductivity sample was compared to the Low EC Control.

<sup>4.</sup> These high conductivity samples were compared to the High EC Control @ 14.06 mS/cm.

<sup>5.</sup> This high conductivity sample was compared to the High EC Control @ 23.81 mS/cm.

Table B26-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 6/9/09 - 6/10/09.

|                                                   |               | Field C      | hemistry |              | _                  | Total                         | Unionized<br>Ammonia<br>(mg/L) |  |
|---------------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|--------------------------------|--|
| Treatment                                         | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) |                                |  |
| Suisun Slough at Rush Ranch                       | 5680          | 18.0         | 7.37     | 7.2          | 51.3               | 0.09                          | 0.001                          |  |
| Sacramento River at Hood DWR Station              | 171           | 21.3         | 7.48     | 8.3          | 16.4               | 0.33                          | 0.004                          |  |
| Napa River at River Park Blvd.                    | 13480         | 21.0         | 7.85     | 8.8          | 18.7               | 0.03                          | 0.001                          |  |
| Rough and Ready DWR station, Stockton             | 552           | 23.3         | 7.51     | 6.2          | 12.7               | 0.07                          | 0.001                          |  |
| Napa River at Vallejo Seawall (340)               | 23140         | 18.1         | 7.78     | 8.8          | 21.3               | 0.10                          | 0.001                          |  |
| Montezuma Slough at Nurse Slough (609)            | 4481          | 19.6         | 7.7      | 8.5          | 63.5               | 0.12                          | 0.002                          |  |
| Suisun Bay off Chipps Island (508)                | 2506          | 19.0         | 7.85     | 9.2          | 30.4               | 0.12                          | 0.003                          |  |
| Grizzly Bay at Dolphin (602)                      | 7520          | 18.7         | 8        | 9.3          | 129.3              | 0.13                          | 0.003                          |  |
| Carquinez Strait, West of Benicia army dock (405) | 12010         | 18.1         | 7.84     | 9.2          | 105.7              | 0.17                          | 0.003                          |  |
| Trip Blank: DIEPAMHR                              | -             | -            | -        | -            | 0.5                | 0.03                          | -                              |  |
| Bottle Blank: DIEPAMHR                            | -             | -            | -        | -            | 0.3                | 0.04                          | -                              |  |

Table B26-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 6/11/09 of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 6/9/09 - 6/10/09.

|                                                                | Laboratory Chemistry |          |          |        |        |      |      |                     | Alkalinity                   | Unionized                   |
|----------------------------------------------------------------|----------------------|----------|----------|--------|--------|------|------|---------------------|------------------------------|-----------------------------|
| Treatment                                                      | EC                   | Min Temp | Max Temp | Min DO | Max DO | Min  | Max  | (mg/L as            | (mg/L as CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
|                                                                | (uS/cm)              | (°C)     | (°C)     | (mg/L) | (mg/L) | pН   | pН   | CaCO <sub>3</sub> ) | CaCO <sub>3</sub> )          | (IIIg/L)                    |
| DIEPAMHR                                                       | 335                  | 23.0     | 23.7     | 7.5    | 8.4    | 7.81 | 8.24 | 88                  | 60                           | -                           |
| Low EC Control @ 161.5 µS/cm                                   | 157                  | 23.0     | 23.4     | 7.6    | 8.6    | 7.43 | 8.27 | 48                  | 22                           | -                           |
| High EC Control @ 14.06 mS/cm                                  | 13325                | 23.0     | 23.9     | 7.4    | 8.2    | 7.67 | 8.00 | 1640                | 96                           | -                           |
| High EC Control @ 23.81 mS/cm                                  | 22670                | 23.0     | 23.5     | 7.0    | 7.9    | 7.63 | 8.00 | 2800                | 88                           | -                           |
| Suisun Slough at Rush Ranch                                    | 5300                 | 23.0     | 23.8     | 7.4    | 8.7    | 8.04 | 8.25 | 620                 | 160                          | 0.004                       |
| Sacramento River at Hood DWR Station                           | 163                  | 23.1     | 23.5     | 7.1    | 8.7    | 7.67 | 8.16 | 60                  | 68                           | 0.021                       |
| Napa River at River Park Blvd.                                 | 12740                | 23.1     | 24.0     | 7.0    | 8.3    | 7.94 | 8.07 | 1560                | 136                          | 0.001                       |
| Rough and Ready DWR station, Stockton                          | 545                  | 23.0     | 23.7     | 7.2    | 8.7    | 7.82 | 8.20 | 148                 | 76                           | 0.005                       |
| Napa River at Vallejo Seawall (340)                            | 22180                | 23.0     | 24.2     | 6.5    | 8.2    | 7.67 | 7.90 | 2760                | 108                          | 0.002                       |
| Montezuma Slough at Nurse Slough (609)                         | 4412                 | 23.0     | 23.9     | 7.4    | 8.5    | 7.62 | 8.10 | 480                 | 84                           | 0.006                       |
| Suisun Bay off Chipps Island (508)                             | 2269                 | 23.1     | 24.2     | 7.6    | 8.4    | 7.80 | 8.03 | 272                 | 74                           | 0.005                       |
| Grizzly Bay at Dolphin (602)                                   | 7445                 | 23.1     | 23.8     | 7.4    | 8.9    | 7.70 | 7.98 | 920                 | 76                           | 0.005                       |
| Carquinez Strait, West of Benicia army dock (405)              | 12135                | 23.1     | 24.1     | 7.0    | 8.2    | 7.69 | 7.90 | 1360                | 80                           | 0.005                       |
| Trip Blank: DIEPAMHR                                           | 351                  | 23.1     | 23.5     | 7.4    | 8.7    | 7.85 | 8.24 | 104                 | 62                           | 0.002                       |
| Bottle Blank: DIEPAMHR                                         | 338                  | 23.1     | 24.2     | 7.5    | 8.6    | 7.80 | 8.17 | 104                 | 64                           | 0.003                       |
| DIEPAMHR + 25 ppb PBO                                          | 338                  | 23.2     | 23.9     | 7.4    | 8.3    | 7.82 | 8.22 | -                   | -                            | -                           |
| Low EC Control @ 161.5 μS/cm + 25 ppb PBO                      | 160                  | 23.2     | 24.0     | 7.5    | 8.4    | 7.46 | 8.16 | -                   | -                            | -                           |
| High EC Control @ 14.06 mS/cm + 25 ppb PBO                     | 13375                | 23.2     | 23.9     | 7.3    | 8.1    | 7.70 | 7.98 | -                   | -                            | -                           |
| High EC Control @ 23.81 mS/cm + 25 ppb PBO                     | 22580                | 23.2     | 24.1     | 7.1    | 8.3    | 7.74 | 8.02 | -                   | -                            | -                           |
| Suisun Slough at Rush Ranch + 25 ppb PBO                       | 5380                 | 23.2     | 24.0     | 7.4    | 8.2    | 8.09 | 8.29 | -                   | -                            | -                           |
| Sacramento River at Hood DWR Station + 25 ppb PBO              | 163.85               | 23.3     | 24.2     | 7.1    | 8.9    | 7.65 | 8.09 | -                   | -                            | -                           |
| Napa River at River Park Blvd. + 25 ppb PBO                    | 12835                | 23.3     | 24.0     | 7.0    | 8.2    | 7.93 | 8.03 | -                   | -                            | -                           |
| Rough and Ready DWR station, Stockton + 25 ppb PBO             | 531.5                | 23.4     | 24.2     | 7.3    | 8.5    | 7.83 | 8.04 | -                   | -                            | -                           |
| Napa River at Vallejo Seawall (340) + 25 ppb PBO               | 22175                | 23.3     | 24.1     | 6.7    | 8.3    | 7.70 | 7.83 | -                   | -                            | -                           |
| Montezuma Slough at Nurse Slough (609) + 25 ppb PBO            | 4334.5               | 23.4     | 24.1     | 7.4    | 8.5    | 7.86 | 8.02 | -                   | -                            | -                           |
| Suisun Bay off Chipps Island (508) + 25 ppb PBO                | 2249.5               | 23.3     | 24.2     | 7.4    | 8.2    | 7.77 | 8.09 | -                   | -                            | -                           |
| Grizzly Bay at Dolphin (602) + 25 ppb PBO                      | 7420                 | 23.4     | 23.9     | 7.5    | 8.2    | 7.60 | 7.97 | -                   | -                            | -                           |
| Carquinez Strait, West of Benicia army dock (405) + 25 ppb PBO | 12080                | 23.4     | 24.1     | 7.2    | 8.4    | 7.72 | 7.96 | -                   | -                            |                             |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B27-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 6/12/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 6/11/09.

|                                                                   | Survival (%) <sup>1</sup> |          |               |     |                         |  |  |  |  |
|-------------------------------------------------------------------|---------------------------|----------|---------------|-----|-------------------------|--|--|--|--|
| Treatment                                                         | Unmani                    | ipulated | 25 ppt<br>add |     |                         |  |  |  |  |
|                                                                   | mean                      | se       | mean          | se  | vs Non-PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                                          | 87                        | 3.0      | 95            | 2.9 | S* (109%)               |  |  |  |  |
| Low EC Control @ 168.2 µS/cm                                      | 90                        | 4.1      | 84*           | 3.2 | NS                      |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55                        | 95                        | 5.0      | 89            | 4.1 | NS                      |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek <sup>3</sup>          | 92                        | 5.3      | 82            | 2.6 | NS                      |  |  |  |  |
| Confluence of Linsey Sl. And Cache Sl. <sup>3</sup>               | 81                        | 11.2     | 95            | 3.1 | NS                      |  |  |  |  |
| Sacramento River at tip of Grand Island (711) <sup>3</sup>        | 78                        | 5.7      | 72            | 8.4 | NS                      |  |  |  |  |
| San Joaquin River at Potato Slough (815) <sup>3</sup>             | 93                        | 7.5      | 93            | 2.5 | NS                      |  |  |  |  |
| Old River, western arm at railroad bridge (902) <sup>3</sup>      | 98                        | 2.5      | 84            | 5.2 | NS                      |  |  |  |  |
| Old River at mouth of Holland Cut (915)                           | 92                        | 5.3      | 90            | 7.1 | NS                      |  |  |  |  |
| Field Dup.: San Joaquin River at Potato Slough (815) <sup>3</sup> | 92                        | 5.3      | -             | -   | NA                      |  |  |  |  |
| Bottle Blank: DIEPAMHR                                            | 84                        | 2.6      | -             | -   | NA                      |  |  |  |  |
| Bottle Blank: Clear Plastic                                       | 86                        | 5.9      | -             | -   | NA                      |  |  |  |  |
| Bottle Blank: Amber Plastic                                       | 95                        | 5.0      | -             | -   | NA                      |  |  |  |  |

|                                                                   | Weight (mg/surviving individual) <sup>1</sup> |          |               |       |                         |  |  |  |  |
|-------------------------------------------------------------------|-----------------------------------------------|----------|---------------|-------|-------------------------|--|--|--|--|
| Treatment                                                         | Unman                                         | ipulated | 25 ppt<br>ado |       |                         |  |  |  |  |
|                                                                   | mean                                          | se       | mean          | se    | vs Non-PBO <sup>2</sup> |  |  |  |  |
| DIEPAMHR                                                          | 0.027                                         | 0.009    | 0.037         | 0.003 | NS                      |  |  |  |  |
| Low EC Control @ 168.2 µS/cm                                      | 0.029                                         | 0.008    | 0.042         | 0.007 | NS                      |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55                        | 0.086                                         | 0.006    | 0.064         | 0.002 | S* (74%)                |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek <sup>3</sup>          | 0.075                                         | 0.014    | 0.084         | 0.012 | NS                      |  |  |  |  |
| Confluence of Linsey Sl. And Cache Sl. <sup>3</sup>               | 0.067                                         | 0.003    | 0.068         | 0.006 | NS                      |  |  |  |  |
| Sacramento River at tip of Grand Island (711) <sup>3</sup>        | 0.056                                         | 0.006    | 0.073         | 0.009 | NS                      |  |  |  |  |
| San Joaquin River at Potato Slough (815) <sup>3</sup>             | 0.079                                         | 0.005    | 0.091         | 0.009 | NS                      |  |  |  |  |
| Old River, western arm at railroad bridge (902) <sup>3</sup>      | 0.081                                         | 0.004    | 0.060         | 0.009 | S* (74%)                |  |  |  |  |
| Old River at mouth of Holland Cut (915)                           | 0.070                                         | 0.003    | 0.078         | 0.004 | NS                      |  |  |  |  |
| Field Dup.: San Joaquin River at Potato Slough (815) <sup>3</sup> | 0.045                                         | 0.009    | -             | -     | NA                      |  |  |  |  |
| Bottle Blank: DIEPAMHR                                            | 0.048                                         | 0.006    | -             | -     | NA                      |  |  |  |  |
| Bottle Blank: Clear Plastic                                       | 0.043                                         | 0.007    | -             | -     | NA                      |  |  |  |  |
| Bottle Blank: Amber Plastic                                       | 0.060                                         | 0.003    | -             | -     | NA                      |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> These low conductivity samples were compared to the Low EC Control.

Table B27-2. Summary of water chemistry at field conditions of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 6/11/09.

|                                                      |               | Field C      | Chemistry |              | _                  | Total                         | Unionized<br>Ammonia<br>(mg/L) |  |
|------------------------------------------------------|---------------|--------------|-----------|--------------|--------------------|-------------------------------|--------------------------------|--|
| Treatment                                            | SC<br>(uS/cm) | Temp<br>(°C) | pН        | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) |                                |  |
| Sacramento R. Deep Water Channel, Light 55           | 255           | 19.6         | 7.96      | 8.9          | 44.7               | 0.10                          | 0.003                          |  |
| Upper Cache Slough at mouth of Ulatis Creek          | 214           | 18.9         | 7.96      | 9.0          | 101.9              | 0.08                          | 0.002                          |  |
| Confluence of Linsey Sl. And Cache Sl.               | 183           | 19.2         | 7.86      | 8.8          | 51.3               | 0.07                          | 0.002                          |  |
| Sacramento River at tip of Grand Island (711)        | 170           | 20.2         | 7.66      | 8.6          | 11.4               | 0.10                          | 0.002                          |  |
| San Joaquin River at Potato Slough (815)             | 182           | 20.7         | 7.87      | 8.9          | 6.7                | 0.00                          | 0.000                          |  |
| Old River, western arm at railroad bridge (902)      | 213           | 21.7         | 7.80      | 8.5          | 6.3                | 0.00                          | 0.000                          |  |
| Old River at mouth of Holland Cut (915)              | 271           | 22.1         | 7.80      | 8.1          | 5.2                | 0.00                          | 0.000                          |  |
| Field Dup.: San Joaquin River at Potato Slough (815) | 182           | 20.7         | 7.87      | 8.9          | 6.3                | 0.00                          | 0.000                          |  |
| Bottle Blank: DIEPAMHR                               | -             | -            | -         | -            | 0.5                | 0.00                          | -                              |  |
| Bottle Blank: Clear Plastic                          | -             | -            | -         | -            | -                  | -                             | -                              |  |
| Bottle Blank: Amber Plastic                          | -             | -            | -         | -            | -                  | -                             | -                              |  |

Table B27-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 6/12/09 of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 6/11/09.

|                                                              |            |                     | Labor               | atory Chem       | istry            |           |           | Hardness                        | Alkalinity                      | Unionized                   |
|--------------------------------------------------------------|------------|---------------------|---------------------|------------------|------------------|-----------|-----------|---------------------------------|---------------------------------|-----------------------------|
| Treatment                                                    | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min DO<br>(mg/L) | Max DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as<br>CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                     | 337        | 22.8                | 24.3                | 7.3              | 8.1              | 7.72      | 8.11      | 88                              | 60                              | -                           |
| Low EC Control @ 168.2 μS/cm                                 | 172        | 22.8                | 24.2                | 7.2              | 8.4              | 7.54      | 7.97      | 52                              | 30                              | -                           |
| Sacramento R. Deep Water Channel, Light 55                   | 248        | 22.8                | 24.4                | 7.2              | 8.3              | 7.64      | 8.10      | 76                              | 72                              | 0.006                       |
| Upper Cache Slough at mouth of Ulatis Creek                  | 199        | 22.8                | 24.3                | 7.4              | 8.4              | 7.78      | 8.22      | 68                              | 70                              | 0.006                       |
| Confluence of Linsey Sl. And Cache Sl.                       | 180        | 22.9                | 24.3                | 7.2              | 8.4              | 7.71      | 8.08      | 64                              | 64                              | 0.004                       |
| Sacramento River at tip of Grand Island (711)                | 163        | 23.0                | 24.4                | 7.1              | 8.3              | 7.68      | 8.03      | 56                              | 64                              | 0.005                       |
| San Joaquin River at Potato Slough (815)                     | 178        | 22.9                | 24.4                | 7.1              | 8.4              | 7.63      | 8.09      | 64                              | 56                              | 0.000                       |
| Old River, western arm at railroad bridge (902)              | 210        | 22.9                | 24.4                | 7.3              | 8.2              | 7.71      | 8.12      | 60                              | 60                              | 0.000                       |
| Old River at mouth of Holland Cut (915)                      | 261        | 23.0                | 24.3                | 7.4              | 8.4              | 7.74      | 8.06      | 72                              | 62                              | 0.000                       |
| Field Dup.: San Joaquin River at Potato Slough (815)         | 181        | 23.1                | 24.4                | 7.1              | 8.7              | 7.69      | 7.96      | 60                              | 58                              | 0.000                       |
| Bottle Blank: DIEPAMHR                                       | 340        | 23.1                | 24.3                | 7.3              | 8.3              | 7.76      | 8.11      | 104                             | 58                              | 0.000                       |
| Bottle Blank: Clear Plastic                                  | 339        | 23.2                | 24.3                | 7.5              | 8.4              | 7.76      | 8.10      | 88                              | 60                              | -                           |
| Bottle Blank: Amber Plastic                                  | 342        | 23.2                | 24.4                | 7.4              | 8.8              | 7.76      | 8.11      | 88                              | 60                              | -                           |
| DIEPAMHR + 25 ppb PBO                                        | 339        | 23.2                | 23.7                | 7.2              | 8.2              | 7.78      | 8.19      | -                               | -                               | -                           |
| Low EC Control @ 168.2 µS/cm + 25 ppb PBO                    | 172        | 23.3                | 23.6                | 7.3              | 8.5              | 7.48      | 7.94      | -                               | -                               | -                           |
| Sacramento R. Deep Water Channel, Light 55 + 25 ppb PBO      | 246        | 23.3                | 23.9                | 7.4              | 8.2              | 7.78      | 8.13      | -                               | -                               | -                           |
| Upper Cache Slough at mouth of Ulatis Creek + 25 ppb PBO     | 201        | 23.3                | 23.9                | 7.6              | 8.7              | 7.79      | 8.20      | -                               | -                               | -                           |
| Confluence of Linsey Sl. And Cache Sl. + 25 ppb PBO          | 180        | 23.5                | 23.7                | 7.3              | 8.3              | 7.73      | 8.11      | -                               | -                               | -                           |
| Sacramento River at tip of Grand Island (711) + 25 ppb PBO   | 163        | 23.4                | 23.9                | 7.3              | 8.6              | 7.66      | 8.06      | -                               | -                               | -                           |
| San Joaquin River at Potato Slough (815) + 25 ppb PBO        | 179        | 23.5                | 23.9                | 7.3              | 8.4              | 7.71      | 8.08      | -                               | -                               | -                           |
| Old River, western arm at railroad bridge (902) + 25 ppb PBO | 208        | 23.6                | 23.9                | 7.3              | 8.4              | 7.74      | 8.02      | -                               | -                               | -                           |
| Old River at mouth of Holland Cut (915) + 25 ppb PBO         | 264        | 23.6                | 23.8                | 7.3              | 8.4              | 7.78      | 8.06      | -                               | -                               | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B28-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 6/25/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 6/23/09 - 6/24/09.

|                                                                           |        |         | Survival | $(\%)^{1}$ |                         |
|---------------------------------------------------------------------------|--------|---------|----------|------------|-------------------------|
| Treatment                                                                 |        |         | 25 ppb   |            | _                       |
| Heatment                                                                  | Unmani | pulated | add      | led        |                         |
|                                                                           | mean   | se      | mean     | se         | vs Non-PBO <sup>2</sup> |
| DIEPAMHR                                                                  | 92     | 2.7     | 95       | 2.9        | NS                      |
| Low EC Control @ 140.9 μS/cm                                              | 95     | 2.6     | 91       | 5.1        | NS                      |
| High EC Control @ 12.53 mS/cm                                             | 100    | 0.0     | 95       | 5.0        | NS                      |
| High EC Control @ 17.69 mS/cm                                             | 98     | 2.5     | 93       | 4.4        | NS                      |
| High EC Control @ 20.23 mS/cm                                             | 80     | 12.2    | 79       | 4.1        | NS                      |
| Napa River, near River Park Blvd. 5                                       | 92     | 5.3     | 93       | 7.5        | NS                      |
| Suisun Slough @ Rush Ranch                                                | 98     | 2.5     | 97       | 2.8        | NS                      |
| Rough and Ready DWR Station, Stockton                                     | 97     | 2.8     | 100      | 0.0        | NS                      |
| Sacramento River at Hood DWR Station <sup>3</sup>                         | 87*    | 3.0     | 66**     | 6.1        | S* (76%)                |
| Carquinez Strait, West of Benicia army dock (405) <sup>6</sup>            | 87     | 10.2    | 90       | 6.7        | NS                      |
| Montezuma Slough at Nurse Slough (609)                                    | 100    | 0.0     | 100      | 0.0        | NS                      |
| Suisun Bay off Chipps Island (508)                                        | 100    | 0.0     | 100      | 0.0        | NS                      |
| Grizzly Bay at Dolphin (602) 4                                            | 97     | 2.8     | 100      | 0.0        | NS                      |
| Trip Blank (DIEPAMHR)                                                     | 97     | 2.8     | -        | -          | NA                      |
| Trip Blank (DIEPAMHR)                                                     | 98     | 2.5     | -        | -          | NA                      |
| Field Dup: Carquinez Strait, West of Benicia army dock (405) <sup>6</sup> | 91     | 5.4     | -        | -          | NA                      |
| Field Dup: Suisun Bay off Chipps Island (508)                             | 100    | 0.0     | -        | -          | NA                      |

|                                                                           |       | Weight   | (mg/surviv | ing individ | lual) <sup>1</sup>      |
|---------------------------------------------------------------------------|-------|----------|------------|-------------|-------------------------|
| _                                                                         |       |          | 25 ppl     |             |                         |
| Treatment                                                                 | Unman | ipulated | ado        | ded         |                         |
|                                                                           | mean  | se       | mean       | se          | vs Non-PBO <sup>2</sup> |
| DIEPAMHR                                                                  | 0.041 | 0.012    | 0.049      | 0.004       | NS                      |
| Low EC Control @ 140.9 µS/cm                                              | 0.041 | 0.004    | 0.042      | 0.005       | NS                      |
| High EC Control @ 12.53 mS/cm                                             | 0.044 | 0.006    | 0.048      | 0.006       | NS                      |
| High EC Control @ 17.69 mS/cm                                             | 0.037 | 0.004    | 0.042      | 0.005       | NS                      |
| High EC Control @ 20.23 mS/cm                                             | 0.037 | 0.001    | 0.028      | 0.006       | NS                      |
| Napa River, near River Park Blvd. <sup>5</sup>                            | 0.043 | 0.005    | 0.042      | 0.005       | NS                      |
| Suisun Slough @ Rush Ranch                                                | 0.089 | 0.011    | 0.093      | 0.017       | NS                      |
| Rough and Ready DWR Station, Stockton                                     | 0.075 | 0.005    | 0.133      | 0.029       | NS                      |
| Sacramento River at Hood DWR Station <sup>3</sup>                         | 0.035 | 0.006    | 0.068      | 0.015       | NS                      |
| Carquinez Strait, West of Benicia army dock (405) <sup>6</sup>            | 0.043 | 0.012    | 0.026      | 0.007       | NS                      |
| Montezuma Slough at Nurse Slough (609)                                    | 0.063 | 0.005    | 0.060      | 0.007       | NS                      |
| Suisun Bay off Chipps Island (508)                                        | 0.052 | 0.009    | 0.047      | 0.010       | NS                      |
| Grizzly Bay at Dolphin (602) <sup>4</sup>                                 | 0.068 | 0.004    | 0.060      | 0.004       | NS                      |
| Trip Blank (DIEPAMHR)                                                     | 0.061 | 0.005    | -          | -           | NA                      |
| Trip Blank (DIEPAMHR)                                                     | 0.046 | 0.005    | -          | -           | NA                      |
| Field Dup: Carquinez Strait, West of Benicia army dock (405) <sup>6</sup> | 0.057 | 0.006    | -          | -           | NA                      |
| Field Dup: Suisun Bay off Chipps Island (508)                             | 0.061 | 0.012    | -          | -           | NA                      |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> This low conductivity sample was compared to the Low EC Control.

<sup>4.</sup> This high conductivity sample was compared to the High EC Control @ 12.53 mS/cm.

<sup>5.</sup> This high conductivity sample was compared to the High EC Control @ 17.69 mS/cm.

<sup>6.</sup> These high conductivity samples were compared to the High EC Control @ 20.23 mS/cm.

Table B28-2. Summary of water chemistry at field conditions of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 6/23/09 - 6/24/09.

|                                                              |               | Field C      | hemistry |              | _                  | Total                         | TT : : 1                       |  |
|--------------------------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|--------------------------------|--|
| Treatment                                                    | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |  |
| Napa River, Near River Park Blvd.                            | 16260         | 24.2         | 7.34     | 6.0          | 14.0               | 0.04                          | 0.000                          |  |
| Suisun Slough at Rush Ranch                                  | 6460          | 20.4         | 7.13     | 5.5          | 51.1               | 0.15                          | 0.001                          |  |
| Rough and Ready DWR Station, Stockton                        | 552           | 23.3         | 7.51     | 6.2          | 11.5               | 0.09                          | 0.001                          |  |
| Sacramento River at Hood DWR Station                         | 149           | 23.2         | 7.11     | 7.5          | 20.4               | 0.30                          | 0.002                          |  |
| Carquinez Strait, west of Benicia army dock (405)            | 19430         | 19.7         | 7.45     | 8.9          | 240.7              | 0.20                          | 0.001                          |  |
| Montezuma Slough at Nurse Slough (609)                       | 5750          | 22.0         | 7.46     | 7.5          | 73.6               | 0.11                          | 0.001                          |  |
| Suisun Bay, off Chipps Island (508)                          | 8510          | 20.5         | 7.6      | 8.8          | 24.6               | 0.08                          | 0.001                          |  |
| Grizzly Bay at Dolphin (602)                                 | 1190          | 21.1         | 7.75     | 8.9          | 177.3              | 0.17                          | 0.004                          |  |
| Trip Blank (DIEPAMHR) 6/23/09                                | -             | -            | -        | -            | 0.4                | 0.02                          | -                              |  |
| Trip Blank (DIEPAMHR) 6/24/09                                | -             | -            | -        | -            | 0.3                | 0.00                          | -                              |  |
| Field Dup: Carquinez Strait, west of Benicia army dock (405) | 19430         | 19.7         | 7.45     | 8.9          | 276.3              | 0.27                          | 0.002                          |  |
| Field Dup: Suisun Bay, off Chipps Island (508)               | 8510          | 20.5         | 7.60     | 8.8          | 24.4               | 0.10                          | 0.001                          |  |

Table B28-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 6/25/09 of samples collected by the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 6/23/09 - 6/24/09.

|                                                                |            |                     | Labo                | ratory Che          | mistry              |           |           | - Hardness                      | Alkalinity                      | Unionized                   |
|----------------------------------------------------------------|------------|---------------------|---------------------|---------------------|---------------------|-----------|-----------|---------------------------------|---------------------------------|-----------------------------|
| Treatment                                                      | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as<br>CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                       | 280        | 22.7                | 23.2                | 7.1                 | 8.4                 | 6.90      | 8.13      | 100                             | 58                              | -                           |
| Low EC Control @ 140.9 μS                                      | 149        | 22.8                | 23.1                | 7.4                 | 8.7                 | 6.98      | 7.84      | 40                              | 26                              | -                           |
| High EC Control @ 12.53 mS                                     | 11240      | 22.9                | 23.3                | 7.3                 | 8.6                 | 6.90      | 7.91      | 1440                            | 74                              | -                           |
| High EC Control @ 17.69 mS                                     | 16970      | 22.9                | 23.6                | 7.1                 | 8.6                 | 6.99      | 8.00      | 1960                            | 84                              | -                           |
| High EC Control @ 20.23 mS                                     | 19720      | 22.8                | 23.4                | 7.2                 | 8.3                 | 7.20      | 7.99      | 2360                            | 84                              | -                           |
| Napa River, near River Park Blvd.                              | 16855      | 22.9                | 23.8                | 7.0                 | 8.5                 | 7.42      | 7.75      | 2280                            | 134                             | 0.001                       |
| Suisun Slough @ Rush Ranch                                     | 6265       | 22.9                | 23.9                | 7.0                 | 8.5                 | 7.56      | 7.97      | 710                             | 138                             | 0.004                       |
| Rough and Ready DWR Station, Stockton                          | 626        | 22.9                | 23.7                | 7.3                 | 8.9                 | 7.50      | 8.00      | 130                             | 82                              | 0.004                       |
| Sacramento River at Hood DWR Station                           | 148        | 22.9                | 23.7                | 6.9                 | 8.9                 | 7.07      | 7.67      | 48                              | 54                              | 0.007                       |
| Carquinez Strait, West of Benicia army dock (405)              | 18475      | 22.9                | 23.6                | 6.6                 | 8.0                 | 7.04      | 7.78      | 2160                            | 86                              | 0.004                       |
| Montezuma Slough at Nurse Slough (609)                         | 5585       | 22.6                | 23.6                | 7.3                 | 8.8                 | 7.39      | 7.78      | 620                             | 92                              | 0.003                       |
| Suisun Bay off Chipps Island (508)                             | 7740       | 22.9                | 23.5                | 5.9                 | 8.5                 | 7.15      | 7.81      | 840                             | 70                              | 0.002                       |
| Grizzly Bay at Dolphin (602)                                   | 11470      | 22.8                | 23.7                | 7.0                 | 8.9                 | 7.26      | 7.85      | 1320                            | 76                              | 0.004                       |
| Trip Blank (DIEPAMHR)                                          | 417        | 22.9                | 24.1                | 7.5                 | 8.7                 | 7.28      | 8.25      | 104                             | 58                              | 0.002                       |
| Trip Blank (DIEPAMHR)                                          | 390        | 22.9                | 24.3                | 7.1                 | 8.6                 | 7.37      | 8.25      | 100                             | 58                              | 0.000                       |
| Field Dup: Carquinez Strait, West of Benicia army dock (405)   | 18880      | 22.9                | 23.4                | 7.0                 | 8.4                 | 7.25      | 7.75      | 2160                            | 84                              | 0.005                       |
| Field Dup: Suisun Bay off Chipps Island (508)                  | 8180       | 22.8                | 23.0                | 7.2                 | 8.7                 | 7.25      | 7.77      | 840                             | 70                              | 0.002                       |
| DIEPAMHR + 25 ppb PBO                                          | 410        | 22.5                | 23.0                | 7.3                 | 8.3                 | 7.13      | 8.13      | -                               | -                               | -                           |
| Low EC Control @ 140.9 µS + 25 ppb PBO                         | 161        | 23.1                | 23.2                | 7.1                 | 8.6                 | 7.13      | 7.92      | -                               | -                               | -                           |
| High EC Control @ 12.53 mS + 25 ppb PBO                        | 12060      | 23.0                | 23.1                | 6.9                 | 8.5                 | 6.94      | 7.97      | -                               | -                               | -                           |
| High EC Control @ 17.69 mS + 25 ppb PBO                        | 16970      | 23.1                | 23.3                | 6.9                 | 8.7                 | 7.23      | 7.97      | -                               | -                               | -                           |
| High EC Control @ 20.23 mS + 25 ppb PBO                        | 19670      | 23.2                | 23.2                | 7.0                 | 8.4                 | 7.29      | 8.00      | -                               | -                               | -                           |
| Napa River, near River Park Blvd. + 25 ppb PBO                 | 16855      | 23.2                | 23.3                | 6.8                 | 8.3                 | 7.37      | 7.83      | -                               | -                               | -                           |
| Suisun Slough @ Rush Ranch + 25 ppb PBO                        | 6395       | 23.0                | 23.2                | 7.0                 | 8.8                 | 7.46      | 7.96      | -                               | -                               | -                           |
| Rough and Ready DWR Station, Stockton + 25 ppb PBO             | 630        | 23.2                | 23.6                | 7.2                 | 8.5                 | 7.26      | 8.14      | -                               | -                               | -                           |
| Sacramento River at Hood DWR Station + 25 ppb PBO              | 151        | 23.2                | 23.8                | 7.0                 | 8.5                 | 7.15      | 7.89      | -                               | -                               | -                           |
| Carquinez Strait, West of Benicia army dock (405) + 25 ppb PBO | 18965      | 23.2                | 23.2                | 6.6                 | 8.0                 | 7.11      | 7.77      | -                               | -                               | -                           |
| Montezuma Slough at Nurse Slough (609) + 25 ppb PBO            | 5640       | 23.3                | 23.8                | 7.4                 | 8.5                 | 7.32      | 7.81      | -                               | -                               | -                           |
| Suisun Bay off Chipps Island (508) + 25 ppb PBO                | 8000       | 23.2                | 23.4                | 7.1                 | 8.8                 | 7.18      | 8.83      | -                               | -                               | -                           |
| Grizzly Bay at Dolphin (602) + 25 ppb PBO                      | 11490      | 23.3                | 23.3                | 7.0                 | 8.5                 | 7.30      | 7.90      |                                 |                                 |                             |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

Table B29-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 6/26/09 examining the toxicity of samples collected by the UC Davis Aquatic Toxicology Laboratory and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 6/25/09.

|                                                            |        |         | Survival      | (%) <sup>1</sup> |                         |
|------------------------------------------------------------|--------|---------|---------------|------------------|-------------------------|
| Treatment                                                  | Unmani | pulated | 25 ppt<br>add |                  |                         |
|                                                            | mean   | se      | mean          | se               | vs Non-PBO <sup>2</sup> |
| DIEPAMHR                                                   | 97     | 3.1     | 95            | 2.8              | NS                      |
| Low EC Control @ 132.6 µS/cm                               | 89     | 6.4     | 77            | 6.1              | NS                      |
| Sacramento River Deep Water Channel, Light 55              | 87     | 3.0     | 88            | 4.8              | NS                      |
| Upper Cache Slough at mouth of Ulatis Creek                | 84     | 7.1     | 74            | 11.6             | NS                      |
| Confluence of Lindsey Sl. and Cache Sl.                    | 74     | 15.4    | 89            | 0.6              | NS                      |
| Sacramento River at tip of Grand Island (711) <sup>3</sup> | 45**   | 7.6     | 61*           | 4.2              | NS                      |
| San Joaquin River at Potato Slough (815)                   | 85     | 11.9    | 84            | 9.7              | NS                      |
| Old River, western arm at railroad bridge (902)            | 90     | 7.1     | 85*           | 4.2              | NS                      |
| Old River at mouth of Holland Cut (915)                    | 85     | 6.4     | 88            | 7.5              | NS                      |
| Bottle Blank Clear (cubitainer)                            | 78     | 7.9     | -             | -                | NS                      |
| Bottle Blank Amber (cubitainer)                            | 93     | 2.5     | -             | -                | NS                      |

|                                                            | Weight (mg/surviving individual) <sup>1</sup> |          |       |       |                         |  |  |  |  |  |  |
|------------------------------------------------------------|-----------------------------------------------|----------|-------|-------|-------------------------|--|--|--|--|--|--|
| Treatment                                                  |                                               |          | • •   | b PBO | _                       |  |  |  |  |  |  |
| Houmon                                                     | Unman                                         | ipulated | ado   | ded   |                         |  |  |  |  |  |  |
|                                                            | mean                                          | se       | mean  | se    | vs Non-PBO <sup>2</sup> |  |  |  |  |  |  |
| DIEPAMHR                                                   | 0.046                                         | 0.010    | 0.044 | 0.005 | NS                      |  |  |  |  |  |  |
| Low EC Control @ 132.6 µS/cm                               | 0.042                                         | 0.007    | 0.035 | 0.003 | NS                      |  |  |  |  |  |  |
| Sacramento River Deep Water Channel, Light 55              | 0.072                                         | 0.011    | 0.057 | 0.002 | NS                      |  |  |  |  |  |  |
| Upper Cache Slough at mouth of Ulatis Creek                | 0.085                                         | 0.005    | 0.072 | 0.004 | NS                      |  |  |  |  |  |  |
| Confluence of Lindsey Sl. and Cache Sl.                    | 0.083                                         | 0.007    | 0.043 | 0.007 | S** (52%)               |  |  |  |  |  |  |
| Sacramento River at tip of Grand Island (711) <sup>3</sup> | 0.075                                         | 0.013    | 0.054 | 0.011 | NS                      |  |  |  |  |  |  |
| San Joaquin River at Potato Slough (815)                   | 0.067                                         | 0.009    | 0.058 | 0.006 | NS                      |  |  |  |  |  |  |
| Old River, western arm at railroad bridge (902)            | 0.061                                         | 0.009    | 0.077 | 0.009 | NS                      |  |  |  |  |  |  |
| Old River at mouth of Holland Cut (915)                    | 0.055                                         | 0.010    | 0.078 | 0.007 | S* (142%)               |  |  |  |  |  |  |
| Bottle Blank Clear (cubitainer)                            | 0.038                                         | 0.010    | -     | -     | NS                      |  |  |  |  |  |  |
| Bottle Blank Amber (cubitainer)                            | 0.026                                         | 0.003    | -     | -     | NS                      |  |  |  |  |  |  |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard statistical protocols.

<sup>\*:</sup> *P* < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>2.</sup> NS: Nonsignificant, S: Significant (% non-PBO mean), NA: Not applicable.

<sup>3.</sup> This low conductivity sample was compared to the Low EC Control @ 312.6 uS/cm.

Table B29-2. Summary of water chemistry at field conditions of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 6/25/09.

|                                                 |               | Field Ch     | nemistry |              | _                  | Total                         | ***                            |
|-------------------------------------------------|---------------|--------------|----------|--------------|--------------------|-------------------------------|--------------------------------|
| Treatment                                       | SC<br>(uS/cm) | Temp<br>(°C) | pН       | DO<br>(mg/L) | Turbidity<br>(NTU) | Ammonia<br>Nitrogen<br>(mg/L) | Unionized<br>Ammonia<br>(mg/L) |
| Sacramento River, Deep Water Channel, Light 55  | 246           | 22.0         | 7.69     | 8.5          | 29.7               | 0.05                          | 0.001                          |
| Upper Cache Slough at Mouth of Ulatis Creek     | 207           | 20.9         | 7.62     | 8.8          | 60.8               | 0.04                          | 0.001                          |
| Confluence of Lindsey Sl. and Cache Sl.         | 188           | 22.1         | 7.5      | 8.6          | 27.9               | 0.10                          | 0.001                          |
| Sacramento River at tip of Grand Island (711)   | 134           | 23.2         | 7.37     | 8.1          | 10.6               | 0.19                          | 0.002                          |
| San Joaquin River at Potato Slough (815)        | 182           | 21.9         | 7.47     | 8.5          | 6.3                | 0.03                          | 0.000                          |
| Old River, western arm at railroad bridge (902) | 204           | 22.4         | 7.90     | 8.5          | 5.3                | 0.03                          | 0.001                          |
| Old River at mouth of Holland Cut (915)         | 217           | 23.3         | 7.63     | 7.9          | 4.3                | 0.01                          | 0.000                          |

Table B29-3. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 6/26/09 of samples collected by the the UC Davis Aquatic Toxicology Laboratory (UCDATL) and the California Department of Fish and Game (CDFG) for the Department of Water Resources (DWR) on 6/25/09.

|                                                              |               |                     | Laborat             | ory Chemis          | try              |           |           | - Hardness                      | Alkalinity                      | Unionized                   |
|--------------------------------------------------------------|---------------|---------------------|---------------------|---------------------|------------------|-----------|-----------|---------------------------------|---------------------------------|-----------------------------|
| Treatment                                                    | EC<br>(uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min<br>DO<br>(mg/L) | Max DO<br>(mg/L) | Min<br>pH | Max<br>pH | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L as<br>CaCO <sub>3</sub> ) | Ammonia (mg/L) <sup>1</sup> |
| DIEPAMHR                                                     | 334           | 22.5                | 23.1                | 6.8                 | 8.3              | 7.52      | 8.02      | -                               | -                               | -                           |
| Low EC Control @ 132.6 µS/cm                                 | 128           | 22.5                | 23.4                | 7.3                 | 8.4              | 7.26      | 7.79      | 40                              | 26                              | -                           |
| Sacramento River Deep Water Channel, Light 55                | 232           | 22.6                | 23.2                | 6.5                 | 8.5              | 7.57      | 8.04      | 76                              | 74                              | 0.002                       |
| Upper Cache Slough at mouth of Ulatis Creek                  | 196           | 22.3                | 23.3                | 7.0                 | 8.6              | 7.43      | 8.08      | 68                              | 74                              | 0.002                       |
| Confluence of Lindsey Sl. and Cache Sl.                      | 174           | 22.5                | 23.2                | 6.7                 | 8.6              | 7.42      | 7.97      | 72                              | 66                              | 0.004                       |
| Sacramento River at tip of Grand Island (711)                | 127           | 22.3                | 23.3                | 6.9                 | 8.4              | 7.39      | 7.80      | 60                              | 52                              | 0.006                       |
| San Joaquin River at Potato Slough (815)                     | 171           | 22.3                | 22.9                | 6.9                 | 8.7              | 7.41      | 8.02      | 64                              | 60                              | 0.001                       |
| Old River, western arm at railroad bridge (902)              | 194           | 22.5                | 23.4                | 6.8                 | 8.5              | 7.42      | 8.00      | 60                              | 58                              | 0.001                       |
| Old River at mouth of Holland Cut (915)                      | 217           | 22.8                | 23.3                | 7.0                 | 8.4              | 7.53      | 7.93      | 72                              | 58                              | 0.000                       |
| Bottle Blank Clear (cubitainer)                              | 324           | 22.4                | 23.1                | 6.9                 | 8.5              | 7.44      | 8.06      | -                               | -                               | -                           |
| Bottle Blank Amber (cubitainer)                              | 325           | 22.8                | 23.2                | 7.1                 | 8.6              | 7.39      | 8.08      | -                               | -                               | -                           |
| DIEPAMHR + 25 ppb PBO                                        | 325           | 22.5                | 23.3                | 7.1                 | 8.3              | 7.59      | 8.06      | -                               | -                               | -                           |
| Low EC Control @ 132.6 µS + 25 ppb PBO                       | 134           | 22.2                | 23.6                | 7.1                 | 8.5              | 7.23      | 7.75      | -                               | -                               | -                           |
| Sacramento River Deep Water Channel, Light 55 + 25 ppb PBO   | 234           | 22.7                | 23.4                | 6.4                 | 8.6              | 7.55      | 8.00      | -                               | -                               | -                           |
| Upper Cache Slough at mouth of Ulatis Creek + 25 ppb PBO     | 191           | 22.3                | 22.4                | 6.9                 | 8.5              | 7.40      | 8.02      | -                               | -                               | -                           |
| Confluence of Lindsey Sl. and Cache Sl. + 25 ppb PBO         | 172           | 22.4                | 23.5                | 6.9                 | 8.5              | 7.46      | 7.99      | -                               | -                               | -                           |
| Sacramento River at tip of Grand Island (711) + 25 ppb PBO   | 131           | 22.4                | 23.5                | 7.2                 | 8.7              | 7.41      | 7.89      | -                               | -                               | -                           |
| San Joaquin River at Potato Slough (815) + 25 ppb PBO        | 180           | 22.5                | 23.3                | 6.6                 | 8.7              | 7.33      | 8.07      | -                               | -                               | -                           |
| Old River, western arm at railroad bridge (902) + 25 ppb PBO | 212           | 22.8                | 23.6                | 7.0                 | 8.5              | 7.38      | 7.95      | -                               | -                               | -                           |
| Old River at mouth of Holland Cut (915) + 25 ppb PBO         | 194           | 22.3                | 23.3                | 6.8                 | 8.8              | 7.53      | 8.00      | -                               | -                               | -                           |

<sup>1:</sup> This unionized ammonia reading is based on the ammonia nitrogen measured upon sample receipt and upon the water chemistry measured at test initiation.

## Appendix C

Hypomesus transpacificus
Ambient Sample Toxicity
96-hour and 7-day Survival

Table C1-1. Results of a *H. transpacificus* (Delta Smelt) 7-day test initiated 3/19/09 evaluating the toxicity of ambient water samples collected on 3/17/09, 3/18/09 and 3/19/09. Test animals were 30 days old at test initiation.

| Treatment                           | Survi<br>(% | EC-specific<br>Statistical |                      |
|-------------------------------------|-------------|----------------------------|----------------------|
| Treathent                           | mean        | se                         | Results <sup>1</sup> |
| Low EC Control                      | 8.3         | 5.3                        | A                    |
| Low EC Low Turbidity Control        | 2.8         | 2.8                        | A                    |
| $Hood^2$                            | 8.7         | 2.9                        | A                    |
| Light 55 <sup>2</sup>               | 23.6        | 9.2                        | A                    |
| Cache Lindsey <sup>2</sup>          | 2.8         | 2.8                        | A                    |
| Mid EC Control                      | 15.3        | 6.4                        | A                    |
| Rough and Ready Island <sup>3</sup> | 2.8         | 2.8                        | A                    |
| High EC Control                     | 18.6        | 7.9                        | В                    |
| High EC Low Turbidity Control       | 18.1        | 6.4                        | В                    |
| Suisun <sup>4</sup>                 | 95.0        | 5.0                        | A                    |
| 3404                                | 88.8        | 4.1                        | A                    |

- 1. Data were analyzed using separate statistical tests for each EC bracket (low, mid, high). The low and high EC brackets were examined using Tukey's tests, while the intermediate EC bracket was examined using a T-test (all tests were two-tailed,  $\alpha=0.05$ ). Statistically different groups of treatments are identified by different letters. Due to the poor performance of the controls, USEPA standard statistics were not performed.
- 2. These low conductivity samples were compared to the Low EC controls.
- 3. This intermediate conductivity sample was compared to the Mid EC Control
- 4. These high conductivity samples were compared to the High EC controls.

Table C1-2. Chemistry of sample waters examined in a *H. transpacificus* (Delta Smelt) 7-day test initiated 3/19/09 evaluating the toxicity of Sacramento River and Delta water samples collected on 3/17/09, 3/18/09 and 3/19/09.

| Treatment                    | Ten  | np (°C) |   | EC ( | uS/cm | ) | SC    | (uS/cm) |   | DC   | (mg/L) |   |
|------------------------------|------|---------|---|------|-------|---|-------|---------|---|------|--------|---|
| Treatment                    | Mean | SD      | N | Mean | SD    | N | Mean  | SD      | N | Mean | SD     | N |
| Low EC Control               | 16.3 | 0.9     | 8 | 172  | 9     | 8 | 206   | 12      | 8 | 9.1  | 0.3    | 8 |
| Suisun                       | 16.1 | 1.1     | 8 | 3234 | 148   | 8 | 3922  | 156     | 8 | 8.9  | 0.2    | 8 |
| Hood                         | 16.0 | 1.0     | 8 | 167  | 10    | 8 | 201   | 13      | 8 | 9.4  | 0.3    | 8 |
| Light 55                     | 16.0 | 1.0     | 8 | 296  | 6     | 8 | 357   | 3       | 8 | 9.3  | 0.2    | 8 |
| Cache Lindsey                | 16.0 | 1.0     | 8 | 235  | 6     | 8 | 284   | 3       | 8 | 9.3  | 0.1    | 8 |
| Rough and Ready Island       | 16.1 | 1.1     | 8 | 602  | 19    | 8 | 724   | 6       | 8 | 9.3  | 0.4    | 8 |
| Mid EC Control               | 16.3 | 0.9     | 8 | 661  | 15    | 8 | 792   | 7       | 8 | 8.9  | 0.4    | 8 |
| High EC Control              | 16.4 | 1.0     | 8 | 3192 | 147   | 8 | 3824  | 139     | 8 | 9.0  | 0.4    | 8 |
| 340                          | 16.2 | 1.1     | 8 | 8531 | 321   | 8 | 10224 | 262     | 8 | 9.1  | 0.4    | 8 |
| Low EC Low Turbidity Control | 16.3 | 1.0     | 8 | 180  | 28    | 8 | 215   | 31      | 8 | 9.1  | 0.3    | 8 |
| Low Turbidity Control        | 16.3 | 1.0     | 8 | 3247 | 139   | 8 | 3886  | 146     | 8 | 9.1  | 0.4    | 8 |

| Treatment                    | Treatment pH |      |   | Ammonia<br>Nitrogen (mg/L) |      |   |       | ed Ammo<br>mg/L) | onia | Turbi | dity (NT | U) | Hardness<br>(mg/L as | Alkalinity<br>(mg/L as |
|------------------------------|--------------|------|---|----------------------------|------|---|-------|------------------|------|-------|----------|----|----------------------|------------------------|
|                              | Mean         | SD   | N | Mean                       | SD   | N | Mean  | SD               | N    | Mean  | SD       | N  | CaCO <sub>3</sub> )  | CaCO <sub>3</sub> )    |
| Low EC Control               | 7.81         | 0.13 | 8 | 0.52                       | 0.38 | 4 | 0.010 | 0.008            | 4    | 5.57  | 1.49     | 7  | -                    | -                      |
| Suisun                       | 7.93         | 0.26 | 8 | 0.15                       | 0.02 | 5 | 0.004 | 0.002            | 5    | 32.66 | 2.90     | 7  | 620                  | 222                    |
| Hood                         | 7.99         | 0.22 | 8 | 0.41                       | 0.07 | 5 | 0.011 | 0.005            | 5    | 3.36  | 0.73     | 7  | 72                   | 80                     |
| Light 55                     | 8.16         | 0.16 | 8 | 0.19                       | 0.02 | 5 | 0.008 | 0.003            | 5    | 7.14  | 0.86     | 7  | 124                  | 124                    |
| Cache Lindsey                | 8.10         | 0.19 | 8 | 0.26                       | 0.04 | 5 | 0.009 | 0.004            | 5    | 5.10  | 0.90     | 7  | 100                  | 100                    |
| Rough and Ready Island       | 7.98         | 0.21 | 8 | 0.12                       | 0.03 | 5 | 0.003 | 0.002            | 5    | 2.60  | 0.81     | 7  | 176                  | 104                    |
| Mid EC Control               | 7.95         | 0.06 | 8 | 0.35                       | 0.19 | 4 | 0.008 | 0.004            | 4    | 5.10  | 1.40     | 7  | -                    | -                      |
| High EC Control              | 7.89         | 0.05 | 8 | 0.20                       | 0.06 | 4 | 0.004 | 0.001            | 4    | 3.58  | 1.14     | 7  | -                    | -                      |
| 340                          | 7.84         | 0.09 | 8 | 0.12                       | 0.03 | 5 | 0.002 | 0.000            | 5    | 10.30 | 3.73     | 7  | 1260                 | 88                     |
| Low EC Low Turbidity Control | 7.92         | 0.12 | 8 | 0.23                       | 0.10 | 4 | 0.006 | 0.005            | 4    | 3.24  | 1.05     | 7  | -                    | -                      |
| Low Turbidity Control        | 7.87         | 0.03 | 8 | 0.13                       | 0.03 | 4 | 0.002 | 0.000            | 4    | 2.13  | 1.68     | 7  | -                    | -                      |

Table C2-1. Results of a *H. transpacificus* 7-day test initiated 4/02/09 evaluating the toxicity of ambient water samples collected on 3/31/09, 4/01/09 and 4/02/09. Test animals were 44 days old at test initiation.

|                                                         |                    |      | Ģ    | 96-hr Survi                   | val (%) <sup>1</sup>                           | _                            |
|---------------------------------------------------------|--------------------|------|------|-------------------------------|------------------------------------------------|------------------------------|
|                                                         | Mean               |      |      | USEP.                         | A Statistics                                   | SC-                          |
| Treatment                                               | Turbidity<br>(NTU) | Mean | SE   | v. SC-<br>specific<br>control | v. SC-<br>specific low<br>turbidity<br>control | specific<br>Tukeys<br>Result |
| Low SC Control                                          | 4.47               | 85.0 | 6.5  | -                             | -                                              | A                            |
| Low SC Low Turbidity Control                            | 3.52               | 66.8 | 5.8  | S*                            | -                                              | A B                          |
| Low SC Control + Tannins                                | 1.94               | 31.8 | 2.8  | S***                          | S**                                            | C                            |
| Sacramento River at Hood DWR Station <sup>2</sup>       | 2.72               | 51.0 | 12.0 | S*                            | NS                                             | ВС                           |
| Sacramento R. Deep Water Channel, Light 55 <sup>2</sup> | 5.19               | 69.3 | 5.4  | NS                            | NS                                             | AΒ                           |
| Confluence of Lindsey Sl. And Cache Sl. <sup>2</sup>    | 4.57               | 53.6 | 8.7  | S*                            | NS                                             | A B C                        |
| Mid EC Control                                          | 8.22               | 81.4 | 3.7  | -                             | -                                              | A                            |
| Rough and Ready DWR station, Stockton <sup>3</sup>      | 3.21               | 43.0 | 6.5  | S**                           | -                                              | В                            |
| High SC Control                                         | 6.66               | 86.1 | 5.8  | -                             | -                                              | A                            |
| High SC Low Turbidity Control                           | 2.21               | 81.6 | 13.1 | NS                            | -                                              | A                            |
| Suisun Slough at Rush Ranch <sup>4</sup>                | 78.16              | 97.7 | 2.3  | NS                            | NS                                             | A                            |
| Napa River at Vallejo Seawall (340) <sup>4</sup>        | 10.68              | 88.6 | 8.6  | NS                            | NS                                             | A                            |

|                                                         |                    | 7-day Survival (%) <sup>1</sup> |      |                               |                                                |                              |  |  |  |  |  |
|---------------------------------------------------------|--------------------|---------------------------------|------|-------------------------------|------------------------------------------------|------------------------------|--|--|--|--|--|
|                                                         | Mean               |                                 |      | USEP                          | A Statistics                                   | SC-                          |  |  |  |  |  |
| Treatment                                               | Turbidity<br>(NTU) | Mean                            | SE   | v. SC-<br>specific<br>control | v. SC-<br>specific low<br>turbidity<br>control | specific<br>Tukeys<br>Result |  |  |  |  |  |
| Low SC Control                                          | 4.47               | 70.0                            | 8.2  | _                             | -                                              | A                            |  |  |  |  |  |
| Low SC Low Turbidity Control                            | 3.52               | 43.0                            | 6.0  | S*                            | -                                              | A B                          |  |  |  |  |  |
| Low SC Control + Tannins                                | 1.94               | 2.5                             | 2.5  | S*                            | S*                                             | C                            |  |  |  |  |  |
| Sacramento River at Hood DWR Station <sup>2</sup>       | 2.72               | 19.5                            | 6.1  | S**                           | S*                                             | ВС                           |  |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55 <sup>2</sup> | 5.19               | 40.7                            | 3.2  | S*                            | NS                                             | A B                          |  |  |  |  |  |
| Confluence of Lindsey Sl. And Cache Sl. <sup>2</sup>    | 4.57               | 25.0                            | 11.4 | S*                            | NS                                             | ВС                           |  |  |  |  |  |
| Mid EC Control                                          | 8.22               | 69.5                            | 4.9  | -                             | -                                              | A                            |  |  |  |  |  |
| Rough and Ready DWR station, Stockton <sup>3</sup>      | 3.21               | 9.3                             | 3.7  | S***                          | -                                              | В                            |  |  |  |  |  |
| High SC Control                                         | 6.66               | 64.5                            | 12.8 | -                             | -                                              | A                            |  |  |  |  |  |
| High SC Low Turbidity Control                           | 2.21               | 61.6                            | 11.2 | NS                            | -                                              | A                            |  |  |  |  |  |
| Suisun Slough at Rush Ranch <sup>4</sup>                | 78.16              | 95.5                            | 2.6  | NS                            | NS                                             | A                            |  |  |  |  |  |
| Napa River at Vallejo Seawall (340) <sup>4</sup>        | 10.68              | 74.8                            | 9.2  | NS                            | NS                                             | A                            |  |  |  |  |  |

<sup>1.</sup> Data were analyzed using a separate statistical tests for each EC bracket (low, mid, high), and both standard USEPA statistics (one-tailed  $\alpha=0.05$ ) and ANOVA with Tukeys multiple comparison (two-tailed  $\alpha=0.05$ ) were performed. The intermediate EC bracket was examined using a T-test instead of Tukey's test. Statistically different groups of treatments are identified by highlighting (USEPA) and by different letters (Tukey).

- 2. These low conductivity samples were compared to the Low EC controls.
- 3. This intermediate conductivity sample was compared to the Mid EC Control.
- 4. These high conductivity samples were compared to the High EC controls.

<sup>\*:</sup> P < 0.05

<sup>\*\*:</sup> *P* < 0.01

<sup>\*\*\*:</sup> *P* < 0.001

Table C2-2. Chemistry of sample waters examined in a *H. transpacificus* (Delta Smelt) 7-day test initiated 4/02/09 evaluating the toxicity of Sacramento River and Delta water samples collected on 3/31/09, 4/01/09 and 4/02/09.

| Treatment                                  | Ter  | np (°C) |   | EC (  | uS/cm | ) | SC    | (uS/cm) |   | DO (mg/L) |     |   |
|--------------------------------------------|------|---------|---|-------|-------|---|-------|---------|---|-----------|-----|---|
| Treatment                                  | Mean | SD      | N | Mean  | SD    | N | Mean  | SD      | N | Mean      | SD  | N |
| Low SC Control                             | 16.2 | 0.6     | 8 | 165   | 16    | 8 | 197   | 18      | 8 | 9.6       | 0.3 | 8 |
| Low SC Low Turbidity Control               | 16.2 | 0.6     | 8 | 198   | 46    | 8 | 238   | 54      | 8 | 9.7       | 0.2 | 8 |
| Low SC Control + Tannins                   | 16.3 | 0.6     | 8 | 174   | 25    | 8 | 208   | 29      | 8 | 9.8       | 0.2 | 8 |
| Sacramento River at Hood DWR Station       | 16.1 | 0.7     | 8 | 165   | 26    | 8 | 199   | 31      | 8 | 9.8       | 0.3 | 8 |
| Sacramento R. Deep Water Channel, Light 55 | 16.2 | 0.7     | 8 | 238   | 22    | 8 | 286   | 26      | 8 | 9.8       | 0.3 | 8 |
| Confluence of Lindsey Sl. And Cache Sl.    | 16.1 | 0.6     | 8 | 227   | 24    | 8 | 272   | 29      | 8 | 9.8       | 0.3 | 8 |
| Mid SC Control                             | 16.5 | 0.3     | 8 | 789   | 21    | 8 | 941   | 22      | 8 | 9.6       | 0.3 | 8 |
| Rough and Ready DWR station, Stockton      | 16.1 | 0.7     | 8 | 748   | 20    | 8 | 901   | 20      | 8 | 9.9       | 0.2 | 8 |
| High SC Control                            | 16.5 | 0.3     | 8 | 3158  | 73    | 8 | 3776  | 80      | 8 | 9.6       | 0.3 | 8 |
| High SC Low Turbidity Control              | 16.6 | 0.4     | 8 | 3229  | 77    | 8 | 3848  | 72      | 8 | 9.6       | 0.3 | 8 |
| Suisun Slough at Rush Ranch                | 16.2 | 0.5     | 8 | 3063  | 43    | 8 | 3683  | 53      | 8 | 9.5       | 0.5 | 8 |
| Napa River at Vallejo Seawall (340)        | 16.1 | 0.6     | 8 | 15134 | 543   | 8 | 18245 | 520     | 8 | 9.4       | 0.5 | 8 |

| Treatment                                  | рН   |      |   |      | monia<br>en (mg/ | L) |       | nionized<br>onia (mg/ | L) | Turbi | dity (NT | U) | Hardness (mg/L as   | Alkalinity (mg/L as |
|--------------------------------------------|------|------|---|------|------------------|----|-------|-----------------------|----|-------|----------|----|---------------------|---------------------|
|                                            | Mean | SD   | N | Mean | SD               | N  | Mean  | SD                    | N  | Mean  | SD       | N  | CaCO <sub>3</sub> ) | CaCO <sub>3</sub> ) |
| Low SC Control                             | 7.82 | 0.10 | 8 | 0.38 | 0.29             | 4  | 0.006 | 0.005                 | 4  | 4.47  | 1.79     | 8  | -                   | -                   |
| Low SC Low Turbidity Control               | 7.92 | 0.10 | 8 | 0.17 | 0.13             | 4  | 0.003 | 0.002                 | 4  | 3.52  | 1.24     | 8  | -                   | -                   |
| Low SC Control + Tannins                   | 7.88 | 0.10 | 8 | 0.06 | 0.05             | 4  | 0.001 | 0.001                 | 4  | 1.94  | 0.56     | 8  | -                   | -                   |
| Sacramento River at Hood DWR Station       | 8.01 | 0.22 | 8 | 0.32 | 0.09             | 4  | 0.011 | 0.004                 | 4  | 2.72  | 1.92     | 8  | 64                  | 72                  |
| Sacramento R. Deep Water Channel, Light 55 | 8.11 | 0.15 | 8 | 0.27 | 0.03             | 4  | 0.011 | 0.001                 | 4  | 5.19  | 0.99     | 7  | 104                 | 92                  |
| Confluence of Linsey Sl. And Cache Sl.     | 8.10 | 0.15 | 8 | 0.28 | 0.04             | 4  | 0.010 | 0.002                 | 4  | 4.57  | 0.86     | 7  | 92                  | 88                  |
| Mid EC Control                             | 8.02 | 0.12 | 8 | 0.14 | 0.07             | 4  | 0.004 | 0.001                 | 4  | 8.22  | 4.76     | 8  | -                   | -                   |
| Rough and Ready DWR station, Stockton      | 8.12 | 0.11 | 8 | 0.09 | 0.04             | 4  | 0.003 | 0.002                 | 4  | 3.21  | 1.91     | 8  | 164                 | 104                 |
| High SC Control                            | 7.96 | 0.07 | 8 | 0.18 | 0.11             | 4  | 0.004 | 0.002                 | 4  | 6.66  | 4.89     | 8  | -                   | -                   |
| High SC Low Turbidity Control              | 8.03 | 0.07 | 8 | 0.13 | 0.05             | 4  | 0.003 | 0.002                 | 4  | 2.21  | 1.92     | 8  | -                   | -                   |
| Suisun Slough at Rush Ranch                | 8.06 | 0.24 | 8 | 0.11 | 0.05             | 4  | 0.004 | 0.002                 | 4  | 78.16 | 108.08   | 8  | 496                 | 176                 |
| Napa River at Vallejo Seawall (340)        | 7.83 | 0.12 | 8 | 0.11 | 0.02             | 4  | 0.002 | 0.000                 | 4  | 10.68 | 11.12    | 8  | 1996                | 94                  |

Table C3-1. Results of a *H. transpacificus* 7-day test initiated 4/16/09 evaluating the toxicity of ambient water samples collected on 4/14/09, 4/15/09 and 4/16/09. Test animals were 54 days old at test initiation.

|                                            |                    |      |      | 96-hr S                       | urvival (%) <sup>1</sup>                   |                                 |
|--------------------------------------------|--------------------|------|------|-------------------------------|--------------------------------------------|---------------------------------|
|                                            | Turkiditu          |      |      | USEP                          | A Statistics                               | - CC:E                          |
| Treatment                                  | Turbidity<br>(NTU) | Mean | SE   | v. SC-<br>specific<br>control | v. SC-specific<br>low turbidity<br>control | SC-specific<br>Tukeys<br>Result |
| Low EC Control                             | 4.51               | 84.7 | 2.7  | -                             | -                                          | A                               |
| Low EC / Low Turbidity Control             | 3.47               | 46.7 | 5.4  | S***                          | -                                          | В                               |
| Low EC Control + Antibiotics               | 4.94               | 65.0 | 12.6 | NS                            | NS                                         | AΒ                              |
| Sacramento River at Hood DWR Station       | 2.19               | 67.0 | 8.1  | S*                            | NS                                         | AΒ                              |
| Sacramento R. Deep Water Channel, Light 55 | 5.58               | 71.4 | 10.0 | NS                            | NS                                         | AΒ                              |
| Confluence of Lindsey Sl. And Cache Sl.    | 6.84               | 55.3 | 2.0  | S***                          | NS                                         | A B                             |
| Mid EC Control                             | 4.61               | 75.6 | 3.0  | -                             | -                                          | A                               |
| Rough and Ready DWR station, Stockton      | 3.20               | 59.8 | 7.1  | S*                            | =                                          | A                               |
| High EC Control                            | 5.47               | 82.5 | 4.8  | -                             | -                                          | A B                             |
| High EC / Low Turbidity Control            | 1.78               | 83.3 | 5.6  | NS                            | -                                          | AΒ                              |
| Suisun Slough at Rush Ranch                | 31.39              | 94.7 | 3.1  | NS                            | NS                                         | A                               |
| Napa River at Vallejo Seawall (340)        | 7.14               | 62.2 | 10.9 | S*                            | NS                                         | В                               |

|                                            |           | 7-day Survival (%) <sup>1</sup> |            |                               |                                            |                  |  |  |  |  |  |
|--------------------------------------------|-----------|---------------------------------|------------|-------------------------------|--------------------------------------------|------------------|--|--|--|--|--|
|                                            | Turbidity |                                 | . <u>-</u> | USEF                          | PA Statistics                              | SC-specific      |  |  |  |  |  |
| Treatment                                  | (NTU)     | Mean                            | SE         | v. SC-<br>specific<br>control | v. SC-specific<br>low turbidity<br>control | Tukeys<br>Result |  |  |  |  |  |
| Low EC Control                             | 4.51      | 58.9                            | 7.2        | -                             | -                                          | A B              |  |  |  |  |  |
| Low EC / Low Turbidity Control             | 3.47      | 27.4                            | 4.0        | S**                           | -                                          | В                |  |  |  |  |  |
| Low EC Control + Antibiotics               | 4.94      | 65.0                            | 12.6       | NS                            | NS                                         | A                |  |  |  |  |  |
| Sacramento River at Hood DWR Station       | 2.19      | 30.1                            | 6.6        | S*                            | NS                                         | A B              |  |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55 | 5.58      | 55.8                            | 7.9        | NS                            | NS                                         | A B              |  |  |  |  |  |
| Confluence of Lindsey Sl. And Cache Sl.    | 6.84      | 46.9                            | 8.5        | NS                            | NS                                         | A B              |  |  |  |  |  |
| Mid EC Control                             | 4.61      | 67.5                            | 4.6        | -                             | -                                          | A                |  |  |  |  |  |
| Rough and Ready DWR station, Stockton      | 3.20      | 42.2                            | 3.6        | S**                           | -                                          | В                |  |  |  |  |  |
| High EC Control                            | 5.47      | 70.0                            | 5.8        | -                             | -                                          | A B              |  |  |  |  |  |
| High EC / Low Turbidity Control            | 1.78      | 61.9                            | 3.8        | NS                            | -                                          | В                |  |  |  |  |  |
| Suisun Slough at Rush Ranch                | 31.39     | 92.2                            | 2.6        | NS                            | NS                                         | A                |  |  |  |  |  |
| Napa River at Vallejo Seawall (340)        | 7.14      | 62.2                            | 10.9       | NS                            | NS                                         | В                |  |  |  |  |  |

<sup>1.</sup> Data were analyzed using a separate statistical tests for each EC bracket (low, mid, high). Significant reductions in survival compared to EC-specific controls according to USEPA statistics are indicated by shaded cells, groups of treatments found to be significantly different by Tukey's tests are identified by different letters.

<sup>2.</sup> These low conductivity samples were compared to the Low EC controls.

<sup>3.</sup> This intermediate conductivity sample was compared to the Mid EC Control.

<sup>4.</sup> These high conductivity samples were compared to the High EC controls.

Table C3-2. Chemistry of sample waters examined in a *H. transpacificus* (Delta Smelt) 7-day test initiated 4/16/09 evaluating the toxicity of Sacramento River and Delta water samples collected on 4/14/09, 4/15/09 and 4/16/09.

| Treatment                                  | Ten  | np (°C) |   | EC (  | uS/cm)  | ) | SC    | (uS/cm) |   | DO (mg/L) |     |   |
|--------------------------------------------|------|---------|---|-------|---------|---|-------|---------|---|-----------|-----|---|
| Treatment                                  | Mean | SD      | N | Mean  | Mean SD | N | Mean  | SD      | N | Mean      | SD  | N |
| Low EC Control                             | 17.0 | 0.2     | 8 | 160   | 31      | 8 | 189   | 36      | 8 | 10.1      | 0.6 | 8 |
| Low EC / Low Turbidity Control             | 17.0 | 0.3     | 8 | 165   | 31      | 8 | 193   | 34      | 8 | 9.8       | 0.6 | 8 |
| Low EC Control + Antibiotics               | 17.0 | 0.3     | 8 | 201   | 50      | 8 | 236   | 58      | 8 | 9.7       | 0.6 | 8 |
| Sacramento River at Hood DWR Station       | 16.7 | 0.5     | 8 | 143   | 36      | 8 | 169   | 42      | 8 | 10.2      | 0.5 | 8 |
| Sacramento R. Deep Water Channel, Light 55 | 16.7 | 0.4     | 8 | 332   | 6       | 8 | 387   | 18      | 8 | 10.0      | 0.6 | 8 |
| Confluence of Linsey Sl. And Cache Sl.     | 16.6 | 0.4     | 8 | 301   | 6       | 8 | 358   | 7       | 8 | 10.2      | 0.6 | 8 |
| Mid EC Control                             | 16.8 | 0.4     | 8 | 760   | 64      | 8 | 897   | 70      | 8 | 9.3       | 0.4 | 8 |
| Rough and Ready DWR station, Stockton      | 16.6 | 0.4     | 8 | 766   | 10      | 8 | 909   | 8       | 8 | 10.8      | 2.3 | 8 |
| High EC Control                            | 16.7 | 0.6     | 8 | 4101  | 139     | 8 | 4857  | 159     | 8 | 9.8       | 0.5 | 8 |
| High EC / Low Turbidity Control            | 16.8 | 0.5     | 8 | 4212  | 114     | 8 | 4943  | 149     | 8 | 9.7       | 0.5 | 8 |
| Suisun Slough at Rush Ranch                | 16.7 | 0.4     | 8 | 4036  | 106     | 8 | 4785  | 97      | 8 | 9.9       | 0.9 | 8 |
| Napa River at Vallejo Seawall (340)        | 16.8 | 0.4     | 8 | 15918 | 209     | 8 | 18785 | 222     | 8 | 9.6       | 0.4 | 8 |

| Treatment                                  | рН   |      |   |      | Ammonia<br>Nitrogen (mg/L) |   |       | ed Ammo<br>mg/L) | onia | Turbi | dity (NT | U) | Hardness (mg/L as   | (mg/L as            |
|--------------------------------------------|------|------|---|------|----------------------------|---|-------|------------------|------|-------|----------|----|---------------------|---------------------|
|                                            | Mean | SD   | N | Mean | SD                         | N | Mean  | SD               | N    | Mean  | SD       | N  | CaCO <sub>3</sub> ) | CaCO <sub>3</sub> ) |
| Low EC Control                             | 7.89 | 0.11 | 8 | 0.28 | 0.16                       | 4 | 0.006 | 0.003            | 4    | 4.51  | 0.97     | 7  | -                   | -                   |
| Low EC / Low Turbidity Control             | 7.89 | 0.17 | 8 | 0.22 | 0.08                       | 4 | 0.005 | 0.002            | 4    | 3.47  | 1.42     | 7  | -                   | -                   |
| Low EC Control + Antibiotics               | 7.87 | 0.21 | 8 | 0.19 | 0.02                       | 4 | 0.005 | 0.003            | 4    | 4.94  | 0.89     | 7  | -                   | -                   |
| Sacramento River at Hood DWR Station       | 7.98 | 0.26 | 8 | 0.45 | 0.09                       | 4 | 0.017 | 0.006            | 4    | 2.19  | 0.69     | 7  | 52                  | 52                  |
| Sacramento R. Deep Water Channel, Light 55 | 8.20 | 0.12 | 8 | 0.14 | 0.03                       | 4 | 0.007 | 0.002            | 4    | 5.58  | 2.23     | 7  | 124                 | 108                 |
| Confluence of Linsey Sl. And Cache Sl.     | 8.23 | 0.12 | 8 | 0.15 | 0.04                       | 4 | 0.008 | 0.003            | 4    | 6.84  | 1.58     | 6  | 114                 | 118                 |
| Mid EC Control                             | 8.01 | 0.12 | 8 | 0.34 | 0.17                       | 4 | 0.009 | 0.004            | 4    | 4.61  | 1.43     | 7  | -                   | -                   |
| Rough and Ready DWR station, Stockton      | 8.13 | 0.17 | 8 | 0.16 | 0.03                       | 4 | 0.007 | 0.002            | 4    | 3.20  | 1.43     | 8  | 190                 | 112                 |
| High EC Control                            | 7.97 | 0.08 | 8 | 0.29 | 0.13                       | 4 | 0.007 | 0.003            | 4    | 5.47  | 1.26     | 7  | -                   | -                   |
| High EC / Low Turbidity Control            | 7.95 | 0.10 | 8 | 0.12 | 0.05                       | 4 | 0.003 | 0.001            | 4    | 1.78  | 0.96     | 7  | -                   | -                   |
| Suisun Slough at Rush Ranch                | 8.15 | 0.33 | 8 | 0.16 | 0.03                       | 4 | 0.008 | 0.002            | 4    | 31.39 | 4.74     | 7  | 650                 | 248                 |
| Napa River at Vallejo Seawall (340)        | 7.89 | 0.14 | 8 | 0.11 | 0.02                       | 4 | 0.002 | 0.001            | 4    | 7.14  | 2.65     | 7  | 2340                | 100                 |

Table C4-1. Results of a *H. transpacificus* (Delta Smelt) 7-day test initiated 4/30/09 evaluating the toxicity of ambient delta water samples collected on 4/28/09, 4/29/09 and 4/30/09. Smelt were XX days post hatch at test initiation.

|                                                         | Tumbidite          | 96-hr Surv | vival (%) <sup>1</sup> | Comparison                    | Comparison to EC-specific   |
|---------------------------------------------------------|--------------------|------------|------------------------|-------------------------------|-----------------------------|
| Treatment                                               | Turbidity<br>(NTU) | Mean       | SE                     | to EC-<br>Specific<br>Control | Low<br>Turbidity<br>Control |
| Low EC Control: No Antibiotics                          | 6                  | 79.2       | 4.8                    | NS                            | NS                          |
| Low EC Control                                          | 7                  | 88.2       | 7.0                    | -                             | -                           |
| Low EC / Low Turbidity Control                          | 7                  | 92.5       | 4.8                    | NS                            | -                           |
| Sacramento River at Hood DWR Station <sup>2</sup>       | 5                  | 79.5       | 7.8                    | NS                            | NS                          |
| Sacramento R. Deep Water Channel, Light 55 <sup>2</sup> | 16                 | 85.0       | 5.0                    | NS                            | NS                          |
| Confluence of Linsey Sl. And Cache Sl. <sup>2</sup>     | 16                 | 82.5       | 6.3                    | NS                            | NS                          |
| Mid-EC Control                                          | 7                  | 88.0       | 4.6                    | -                             | -                           |
| Rough and Ready DWR station, Stockton <sup>3</sup>      | 7                  | 90.7       | 6.4                    | NS                            | -                           |
| High EC Control                                         | 6                  | 100.0      | 0.0                    | -                             | -                           |
| Low Turbidity Control                                   | 5                  | 88.6       | 4.4                    | NS                            | -                           |
| Suisun Slough at Rush Ranch <sup>4</sup>                | 29                 | 97.5       | 2.5                    | NS                            | NS                          |
| Napa River at Vallejo Seawall (340) <sup>4</sup>        | 16                 | 97.7       | 2.3                    | NS                            | NS                          |

|                                                         | Turbidity          | 7-day Sur | vival (%) <sup>1</sup> | Comparison to EC-   | Comparison to EC-specific   |
|---------------------------------------------------------|--------------------|-----------|------------------------|---------------------|-----------------------------|
| Treatment                                               | Turbidity<br>(NTU) | Mean      | SE                     | Specific<br>Control | Low<br>Turbidity<br>Control |
| Low EC Control: No Antibiotics                          | 6                  | 69.4      | 5.5                    | NS                  | NS                          |
| Low EC Control                                          | 7                  | 85.9      | 8.8                    | -                   | -                           |
| Low EC / Low Turbidity Control                          | 7                  | 85.2      | 3.0                    | -                   | -                           |
| Sacramento River at Hood DWR Station <sup>2</sup>       | 5                  | 55.3      | 4.4                    | S*                  | S**                         |
| Sacramento R. Deep Water Channel, Light 55 <sup>2</sup> | 16                 | 80.2      | 10.1                   | NS                  | NS                          |
| Confluence of Linsey Sl. And Cache Sl. <sup>2</sup>     | 16                 | 67.5      | 7.5                    | NS                  | S*                          |
| Mid-EC Control                                          | 7                  | 76.4      | 4.6                    | -                   | -                           |
| Rough and Ready DWR station, Stockton <sup>3</sup>      | 7                  | 88.2      | 7.0                    | NS                  | NS                          |
| High EC Control                                         | 6                  | 100.0     | 0.0                    | -                   | -                           |
| Low Turbidity Control                                   | 5                  | 86.1      | 2.5                    | -                   | -                           |
| Suisun Slough at Rush Ranch <sup>4</sup>                | 29                 | 93.1      | 2.3                    | NS                  | NS                          |
| Napa River at Vallejo Seawall (340) <sup>4</sup>        | 16                 | 88.2      | 7.0                    | NS                  | NS                          |

<sup>1.</sup> Highlighted areas indicate significant reductions in survival, weight or biomass compared to the appropriate EC-specific control. Data were analyzed using both USEPA standard single concentration statistical protocols and ANOVA with Tukey's multiple comparison procedure. Tukey's procedure did not detect any significant differences.

<sup>2.</sup> These low conductivity samples were compared to the Low EC control.

<sup>3.</sup> This intermediate conductivity sample was compared to the Mid-EC control.

<sup>4.</sup> This high conductivity sample was compared to the High EC control.

Table C4-2. Chemistry of sample waters examined in a *H. transpacificus* 7-day test initiated 4/30/09 evaluating the toxicity of Sacramento River and Delta water samples collected on 4/28/09, 4/29/09 and 4/30/09.

| Tuestment                                  | Tei  | mp (°C) |   | EC (  | uS/cm | ) | SC (  | uS/cm) | DO (mg/L) |      |     |   |
|--------------------------------------------|------|---------|---|-------|-------|---|-------|--------|-----------|------|-----|---|
| Treatment                                  | Mean | SD      | N | Mean  | SD    | N | Mean  | SD     | N         | Mean | SD  | N |
| Low EC Control: No Antibiotics             | 17.1 | 1.3     | 8 | 158   | 43    | 8 | 182   | 52     | 8         | 9.4  | 0.2 | 8 |
| Low EC Control                             | 17.0 | 1.2     | 8 | 171   | 30    | 8 | 199   | 37     | 8         | 9.6  | 0.2 | 8 |
| Low EC / Low Turbidity Control             | 17.0 | 1.2     | 8 | 179   | 36    | 8 | 207   | 44     | 8         | 9.6  | 0.2 | 8 |
| Sacramento River at Hood DWR Station       | 16.9 | 1.2     | 8 | 150   | 30    | 8 | 175   | 36     | 8         | 9.8  | 0.2 | 8 |
| Sacramento R. Deep Water Channel, Light 55 | 16.8 | 1.5     | 7 | 244   | 24    | 8 | 291   | 30     | 8         | 9.8  | 0.3 | 8 |
| Confluence of Linsey Sl. And Cache Sl.     | 16.7 | 1.4     | 8 | 243   | 22    | 8 | 287   | 30     | 8         | 9.9  | 0.3 | 8 |
| Mid-EC Control                             | 17.0 | 1.2     | 8 | 716   | 21    | 8 | 845   | 35     | 8         | 9.6  | 0.3 | 8 |
| Rough and Ready DWR station, Stockton      | 16.8 | 1.2     | 8 | 602   | 19    | 8 | 713   | 31     | 8         | 9.5  | 0.6 | 8 |
| High EC Control                            | 17.0 | 1.2     | 8 | 3975  | 74    | 8 | 4698  | 80     | 8         | 9.6  | 0.4 | 8 |
| Low Turbidity Control                      | 16.9 | 1.2     | 8 | 3774  | 362   | 8 | 4626  | 54     | 8         | 9.7  | 0.3 | 8 |
| Suisun Slough at Rush Ranch                | 16.9 | 1.2     | 8 | 3863  | 56    | 8 | 4598  | 112    | 8         | 9.5  | 0.4 | 8 |
| Napa River at Vallejo Seawall (340)        | 16.8 | 1.4     | 8 | 19420 | 637   | 8 | 23134 | 572    | 8         | 9.1  | 0.4 | 8 |

| Treatment                                  |      | рН   |   |      | Ammonia<br>Nitrogen (mg/L) |   |       | ionized<br>nia (mg/ | Turbio | dity (N | ΓU) | Hardness (mg/L as | Alkalinity<br>(mg/L as |                     |
|--------------------------------------------|------|------|---|------|----------------------------|---|-------|---------------------|--------|---------|-----|-------------------|------------------------|---------------------|
|                                            | Mean | SD   | N | Mean | SD                         | N | Mean  | SD                  | N      | Mean    | SD  | N                 | CaCO <sub>3</sub> )    | CaCO <sub>3</sub> ) |
| Low EC Control: No Antibiotics             | 7.77 | 0.12 | 8 | 0.1  | 0.1                        | 4 | 0.002 | 0.002               | 4      | 6       | 2   | 8                 | =                      | -                   |
| Low EC Control                             | 7.97 | 0.20 | 8 | 0.1  | 0.1                        | 4 | 0.002 | 0.002               | 4      | 7       | 1   | 8                 | -                      | -                   |
| Low EC / Low Turbidity Control             | 7.95 | 0.14 | 8 | 0.1  | 0.0                        | 4 | 0.002 | 0.002               | 4      | 7       | 1   | 8                 | -                      | -                   |
| Sacramento River at Hood DWR Station       | 7.97 | 0.06 | 8 | 0.0  | 0.0                        | 4 | 0.001 | 0.001               | 4      | 5       | 4   | 8                 | 48                     | 51                  |
| Sacramento R. Deep Water Channel, Light 55 | 8.02 | 0.04 | 8 | 0.1  | 0.1                        | 4 | 0.003 | 0.003               | 4      | 16      | 7   | 8                 | 84                     | 78                  |
| Confluence of Lindsey Sl. And Cache Sl.    | 8.06 | 0.07 | 8 | 0.1  | 0.1                        | 4 | 0.004 | 0.003               | 4      | 16      | 5   | 8                 | 64                     | 74                  |
| Mid-EC Control                             | 7.93 | 0.08 | 8 | 0.1  | 0.1                        | 4 | 0.003 | 0.002               | 4      | 7       | 2   | 8                 | -                      | -                   |
| Rough and Ready DWR station, Stockton      | 7.95 | 0.10 | 8 | 0.1  | 0.1                        | 4 | 0.003 | 0.002               | 4      | 7       | 3   | 8                 | 144                    | 93                  |
| High EC Control                            | 7.87 | 0.05 | 8 | 0.1  | 0.1                        | 4 | 0.002 | 0.001               | 4      | 6       | 2   | 8                 | -                      | -                   |
| Low Turbidity Control                      | 7.83 | 0.05 | 8 | 0.1  | 0.1                        | 4 | 0.001 | 0.001               | 4      | 5       | 3   | 8                 | -                      | -                   |
| Suisun Slough at Rush Ranch                | 7.90 | 0.17 | 8 | 0.1  | 0.1                        | 4 | 0.002 | 0.001               | 4      | 29      | 17  | 8                 | 640                    | 158                 |
| Napa River at Vallejo Seawall (340)        | 7.71 | 0.05 | 8 | 0.1  | 0.1                        | 4 | 0.001 | 0.001               | 4      | 16      | 17  | 8                 | 2880                   | 102                 |

Table C5-1. Results of a *H. transpacificus* 7-day test initiated 5/14/09 evaluating the toxicity of ambient delta water samples collected on 5/12/09, 5/13/09 and 5/14/09. Smelt were 41 days post hatch at test initiation.

|                                                         |           | 96-hour Survival (%) <sup>1</sup> |      |                               |                                            |                             |  |  |  |  |
|---------------------------------------------------------|-----------|-----------------------------------|------|-------------------------------|--------------------------------------------|-----------------------------|--|--|--|--|
|                                                         | Turbidity |                                   |      | USEI                          | PA Statistics                              | SC-                         |  |  |  |  |
| Treatment                                               | (NTU)     | Mean                              | SE   | v. SC-<br>specific<br>control | v. SC-specific<br>low turbidity<br>control | specific<br>Tukey's<br>Test |  |  |  |  |
| Low EC Control                                          | 6         | 76.4                              | 9.3  | -                             | -                                          | A B                         |  |  |  |  |
| Low EC / Low Turbidity Control                          | 5         | 68.8                              | 5.0  | NS                            | -                                          | A B                         |  |  |  |  |
| Sacramento River at Hood DWR Station <sup>2</sup>       | 12        | 62.9                              | 6.0  | NS                            | NS                                         | В                           |  |  |  |  |
| Sacramento R. Deep Water Channel, Light 55 <sup>2</sup> | 41        | 84.7                              | 6.4  | NS                            | NS                                         | A B                         |  |  |  |  |
| Confluence of Lindsey Sl. And Cache Sl. <sup>2</sup>    | 35        | 94.7                              | 3.1  | NS                            | NS                                         | A                           |  |  |  |  |
| Mid-EC Control                                          | 6         | 80.3                              | 4.5  | -                             | -                                          | A                           |  |  |  |  |
| Rough and Ready DWR station, Stockton <sup>3</sup>      | 5         | 56.7*                             | 9.1  | S*                            | -                                          | В                           |  |  |  |  |
| High EC Control @ 4000 uS/cm                            | 5         | 86.4                              | 4.7  | -                             | -                                          | A                           |  |  |  |  |
| High EC / Low Turbidity Control                         | 3         | 85.4                              | 2.6  | NS                            | -                                          | A                           |  |  |  |  |
| Suisun Slough at Rush Ranch <sup>4</sup>                | 21        | 80.4                              | 12.8 | NS                            | NS                                         | A                           |  |  |  |  |
| High EC Control @ 17000 uS/cm                           | 7         | 72.1                              | 10.0 | -                             | -                                          | A                           |  |  |  |  |
| Napa River at Vallejo Seawall (340) <sup>5</sup>        | 19        | 68.9                              | 5.0  | NS                            | -                                          | A                           |  |  |  |  |

|                                                         |           |         |      | 7-day Sur        |                       |                 |
|---------------------------------------------------------|-----------|---------|------|------------------|-----------------------|-----------------|
|                                                         | Turbidity |         |      | USE              | PA Statistics         | SC-             |
| Treatment                                               | (NTU)     | Mean    | SE   | v. SC-           | v. SC-specific        | specific        |
|                                                         |           |         |      | specific control | low turbidity control | Tukey's<br>Test |
| Low EC Control                                          | 6         | 71.4    | 11.6 | -                | -                     | A               |
| Low EC / Low Turbidity Control                          | 5         | 59.7    | 7.6  | NS               | -                     | A               |
| Sacramento River at Hood DWR Station <sup>2</sup>       | 12        | 52.3    | 7.8  | NS               | NS                    | A               |
| Sacramento R. Deep Water Channel, Light 55 <sup>2</sup> | 41        | 85.5    | 9.8  | NS               | NS                    | A               |
| Confluence of Lindsey Sl. And Cache Sl. <sup>2</sup>    | 35        | 80.1    | 5.6  | NS               | NS                    | A               |
| Mid-EC Control                                          | 6         | 71.9    | 3.4  | -                | -                     | A               |
| Rough and Ready DWR station, Stockton <sup>3</sup>      | 5         | 28.1*** | 7.3  | S***             | =                     | В               |
| High EC Control @ 4000 uS/cm                            | 5         | 80.8    | 3.9  | -                | -                     | A               |
| High EC / Low Turbidity Control                         | 3         | 55.2*   | 10.1 | S*               | -                     | A               |
| Suisun Slough at Rush Ranch <sup>4</sup>                | 21        | 85.7    | 14.3 | NS               | NS                    | A               |
| High EC Control @ 17000 uS/cm                           | 7         | 62.5    | 13.0 | -                | -                     | A               |
| Napa River at Vallejo Seawall (340) <sup>5</sup>        | 19        | 63.9    | 3.6  | NS               | -                     | A               |

<sup>1.</sup> Highlighted areas indicate significant reductions in survival, weight or biomass compared to the appropriate EC-specific control. Data were analyzed using both USEPA standard single concentration statistical protocols and ANOVA with Tukey's multiple comparison procedure.

<sup>2.</sup> These low conductivity samples were compared to the Low EC control.

<sup>3.</sup> This intermediate conductivity sample was compared to the Mid-EC control.

<sup>4.</sup> This high conductivity sample was compared to the High EC control @ 4000 uS/cm.

<sup>5.</sup> This high conductivity sample was compared to the High EC Control @ 17,000 uS/cm.

Table C5-2. Chemistry of sample waters examined in a *H. transpacificus* (Delta Smelt) 7-day test initiated 5/14/09 evaluating the toxicity of Sacramento River and Delta water samples collected on 5/12/09, 5/13/09 and 5/14/09.

| Treetment                                  | Tei  | mp (°C) | ) | EC (  | uS/cm | ) | SC (  | uS/cm) |   | DO (mg/L) |     |   |
|--------------------------------------------|------|---------|---|-------|-------|---|-------|--------|---|-----------|-----|---|
| Treatment                                  | Mean | SD      | N | Mean  | SD    | N | Mean  | SD     | N | Mean      | SD  | N |
| Low EC Control                             | 17.0 | 0.3     | 8 | 161   | 16    | 8 | 189   | 18     | 8 | 9.5       | 0.2 | 8 |
| Low EC / Low Turbidity Control             | 16.9 | 0.6     | 8 | 198   | 115   | 8 | 224   | 125    | 8 | 9.5       | 0.2 | 8 |
| Sacramento River at Hood DWR Station       | 16.7 | 0.3     | 8 | 164   | 55    | 8 | 390   | 562    | 8 | 9.8       | 0.2 | 8 |
| Sacramento R. Deep Water Channel, Light 55 | 16.9 | 0.5     | 8 | 265   | 14    | 8 | 316   | 18     | 8 | 9.7       | 0.3 | 8 |
| Confluence of Lindsey Sl. and Cache Sl.    | 16.6 | 0.4     | 8 | 226   | 23    | 8 | 268   | 27     | 8 | 9.8       | 0.2 | 8 |
| Mid-EC Control                             | 17.0 | 0.3     | 8 | 506   | 28    | 8 | 596   | 32     | 8 | 9.4       | 0.2 | 8 |
| Rough and Ready DWR station, Stockton      | 16.7 | 0.4     | 8 | 454   | 28    | 8 | 541   | 35     | 8 | 9.4       | 0.6 | 8 |
| High EC Control @ 4000 uS/cm               | 17.0 | 0.3     | 8 | 4019  | 68    | 8 | 4773  | 92     | 8 | 9.6       | 0.2 | 8 |
| High EC / Low Turbidity Control            | 17.0 | 0.5     | 8 | 4060  | 65    | 8 | 4810  | 71     | 8 | 9.4       | 0.3 | 8 |
| Suisun Slough at Rush Ranch                | 16.8 | 0.3     | 8 | 3995  | 65    | 8 | 4767  | 80     | 8 | 9.4       | 0.7 | 8 |
| High EC Control @ 17000 uS/cm              | 17.1 | 0.5     | 8 | 14473 | 204   | 8 | 17058 | 243    | 8 | 9.1       | 0.4 | 8 |
| Napa River at Vallejo Seawall (340)        | 16.8 | 0.3     | 8 | 13404 | 146   | 8 | 15951 | 155    | 8 | 9.4       | 0.4 | 8 |

| Treatment                                  | рН   |      |   |      | Ammonia<br>Nitrogen (mg/L) |   |       | ionized<br>onia (mg/ | L) | Turbic | lity (N7 | ΓU) | Hardness (mg/L as   | Alkalinity (mg/L as |  |
|--------------------------------------------|------|------|---|------|----------------------------|---|-------|----------------------|----|--------|----------|-----|---------------------|---------------------|--|
|                                            | Mean | SD   | N | Mean | SD                         | N | Mean  | SD                   | N  | Mean   | SD       | N   | CaCO <sub>3</sub> ) | CaCO <sub>3</sub> ) |  |
| Low EC Control                             | 7.60 | 0.25 | 8 | 0.2  | 0.1                        | 4 | 0.002 | 0.001                | 4  | 6      | 1        | 8   | -                   | -                   |  |
| Low EC / Low Turbidity Control             | 7.80 | 0.17 | 8 | 0.2  | 0.1                        | 4 | 0.004 | 0.005                | 4  | 5      | 2        | 8   | -                   | -                   |  |
| Sacramento River at Hood DWR Station       | 7.75 | 0.23 | 8 | 0.2  | 0.0                        | 4 | 0.004 | 0.001                | 4  | 12     | 14       | 8   | 44                  | 50                  |  |
| Sacramento R. Deep Water Channel, Light 55 | 7.98 | 0.07 | 8 | 0.1  | 0.0                        | 4 | 0.004 | 0.002                | 4  | 41     | 25       | 8   | 76                  | 72                  |  |
| Confluence of Lindsey Sl. and Cache Sl.    | 7.98 | 0.20 | 8 | 0.1  | 0.0                        | 4 | 0.003 | 0.002                | 4  | 35     | 39       | 8   | 76                  | 74                  |  |
| Mid-EC Control                             | 7.89 | 0.15 | 8 | 0.3  | 0.1                        | 4 | 0.006 | 0.005                | 4  | 6      | 2        | 8   | -                   | -                   |  |
| Rough and Ready DWR station, Stockton      | 7.79 | 0.13 | 8 | 0.2  | 0.0                        | 4 | 0.004 | 0.001                | 4  | 5      | 2        | 8   | 112                 | 70                  |  |
| High EC Control @ 4000 uS/cm               | 7.93 | 0.12 | 8 | 0.1  | 0.1                        | 4 | 0.003 | 0.002                | 4  | 5      | 3        | 8   | -                   | -                   |  |
| High EC / Low Turbidity Control            | 7.97 | 0.15 | 8 | 0.1  | 0.0                        | 4 | 0.003 | 0.002                | 4  | 3      | 2        | 8   | -                   | -                   |  |
| Suisun Slough at Rush Ranch                | 7.80 | 0.27 | 8 | 0.2  | 0.1                        | 4 | 0.003 | 0.002                | 4  | 21     | 17       | 8   | 384                 | 198                 |  |
| High EC Control @ 17000 uS/cm              | 7.90 | 0.17 | 8 | 0.1  | 0.1                        | 4 | 0.002 | 0.002                | 4  | 7      | 2        | 8   | -                   | -                   |  |
| Napa River at Vallejo Seawall (340)        | 7.67 | 0.06 | 8 | 0.1  | 0.0                        | 4 | 0.001 | 0.001                | 4  | 19     | 24       | 8   | 1920                | 94                  |  |

Table C6-1. Results of a *H. transpacificus* (Delta Smelt) 7-day test initiated 5/28/09 evaluating the toxicity of ambient water samples collected on 5/26/09, 5/27/09 and 5/28/09. Test animals were 55 days old at test initiation.

| Treatment                                               | 96-hr St<br>(% |      | 7-day Sı<br>(% |      |
|---------------------------------------------------------|----------------|------|----------------|------|
| Troumont                                                | mean           | se   | mean           | se   |
| Low EC Control                                          | 79.2           | 10.7 | 76.4           | 10.2 |
| Low EC / Low Turbidity Control                          | 87.5           | 4.8  | 75.0           | 2.9  |
| Sacramento River at Hood DWR Station <sup>2</sup>       | 89.7           | 7.1  | 71.1           | 4.7  |
| Sacramento R. Deep Water Channel, Light 55 <sup>2</sup> | 91.9           | 5.3  | 86.9           | 5.1  |
| Confluence of Lindsey Sl. And Cache Sl. <sup>2</sup>    | 91.3           | 3.0  | 81.3           | 4.4  |
| Mid-EC Control                                          | 70.8           | 8.3  | 62.8           | 10.3 |
| Rough and Ready DWR station, Stockton <sup>3</sup>      | 86.1           | 8.3  | 72.8           | 5.8  |
| High EC Control @ 4000 uS/cm                            | 92.5           | 2.5  | 82.5           | 4.8  |
| High EC / Low Turbidity Control                         | 92.5           | 4.8  | 71.4           | 10.0 |
| Suisun Slough at Rush Ranch <sup>4</sup>                | 89.2           | 4.5  | 86.4           | 5.4  |
| High EC Control @ 17000 uS/cm                           | 70.8           | 17.2 | 68.1           | 15.8 |
| Napa River at Vallejo Seawall (340) <sup>5</sup>        | 67.5           | 4.8  | 62.5           | 2.5  |

<sup>1.</sup> Highlighted areas indicate significant reductions in survival, weight or biomass compared to the appropriate EC-specific control. Data were analyzed using both USEPA standard single concentration statistical protocols and ANOVA with Tukey's multiple comparison procedure. Neither statistical procedure detected any significant differences.

- 2. These low conductivity samples were compared to the Low EC control.
- 3. This intermediate conductivity sample was compared to the Mid-EC control.
- 4. This high conductivity sample was compared to the High EC control @ 4000 uS/cm.
- 5. This high conductivity sample was compared to the High EC Control @ 17,000 uS/cm.

Table C6-2. Chemistry of sample waters examined in a *H. transpacificus* 7-day test initiated 5/28/09 evaluating the toxicity of Sacramento River and Delta water samples collected on 5/26/09, 5/27/09 and 5/28/09.

| Treatment                                  | Ten  | np (°C) |   | EC (  | uS/cm) |   | SC    | (uS/cm) |   | DO   | (mg/L) | ) |
|--------------------------------------------|------|---------|---|-------|--------|---|-------|---------|---|------|--------|---|
| Treatment                                  | Mean | SD      | N | Mean  | SD     | N | Mean  | SD      | N | Mean | SD     | N |
| Low EC Control                             | 16.6 | 0.3     | 8 | 144   | 8      | 8 | 171   | 11      | 8 | 9.4  | 0.4    | 8 |
| Low EC / Low Turbidity Control             | 16.4 | 0.6     | 8 | 197   | 21     | 8 | 233   | 25      | 8 | 9.6  | 0.3    | 8 |
| Sacramento River at Hood DWR Station       | 16.4 | 0.6     | 8 | 151   | 6      | 8 | 180   | 8       | 8 | 9.7  | 0.5    | 8 |
| Sacramento R. Deep Water Channel, Light 55 | 16.6 | 0.5     | 8 | 196   | 11     | 8 | 234   | 15      | 8 | 9.7  | 0.5    | 8 |
| Confluence of Lindsey Sl. And Cache Sl.    | 16.5 | 0.5     | 8 | 173   | 7      | 8 | 207   | 10      | 8 | 9.6  | 0.5    | 8 |
| Mid-EC Control                             | 16.5 | 0.3     | 8 | 430   | 24     | 8 | 511   | 27      | 8 | 9.7  | 0.5    | 8 |
| Rough and Ready DWR station, Stockton      | 16.4 | 0.3     | 8 | 384   | 4      | 8 | 459   | 9       | 8 | 9.3  | 1.0    | 8 |
| High EC Control @ 4000 uS/cm               | 16.4 | 0.4     | 8 | 4061  | 115    | 8 | 4847  | 102     | 8 | 9.4  | 0.4    | 8 |
| High EC / Low Turbidity Control            | 16.5 | 0.5     | 8 | 3976  | 122    | 8 | 4740  | 95      | 8 | 9.2  | 0.2    | 8 |
| Suisun Slough at Rush Ranch                | 16.5 | 0.6     | 8 | 3843  | 83     | 8 | 4578  | 75      | 8 | 9.3  | 0.9    | 8 |
| High EC Control @ 17000 uS/cm              | 16.4 | 0.4     | 8 | 17080 | 2945   | 8 | 20368 | 3576    | 8 | 9.0  | 0.4    | 8 |
| Napa River at Vallejo Seawall (340)        | 16.2 | 0.4     | 8 | 18059 | 744    | 8 | 21615 | 723     | 8 | 9.1  | 0.5    | 8 |

| Treatment                                  |      | pН   |   | Am<br>Nitroge | monia<br>en (mg/ | L) |       | ionized<br>nia (mg/ | L) | Turbio | dity (NT | U) | Hardness (mg/L as   | Alkalinity (mg/L as |
|--------------------------------------------|------|------|---|---------------|------------------|----|-------|---------------------|----|--------|----------|----|---------------------|---------------------|
|                                            | Mean | SD   | N | Mean          | SD               | N  | Mean  | SD                  | N  | Mean   | SD       | N  | CaCO <sub>3</sub> ) | CaCO <sub>3</sub> ) |
| Low EC Control                             | 7.85 | 0.45 | 8 | 0.15          | 0.10             | 4  | 0.005 | 0.005               | 4  | 11.95  | 8.11     | 8  | -                   | -                   |
| Low EC / Low Turbidity Control             | 7.97 | 0.60 | 8 | 0.13          | 0.11             | 4  | 0.004 | 0.006               | 4  | 7.62   | 1.71     | 8  | -                   | -                   |
| Sacramento River at Hood DWR Station       | 7.90 | 0.33 | 8 | 0.38          | 0.08             | 4  | 0.013 | 0.010               | 4  | 4.93   | 1.54     | 8  | 52                  | 54                  |
| Sacramento R. Deep Water Channel, Light 55 | 7.97 | 0.24 | 8 | 0.19          | 0.05             | 4  | 0.007 | 0.004               | 4  | 18.22  | 5.82     | 8  | 64                  | 66                  |
| Confluence of Lindsey Sl. And Cache Sl.    | 7.93 | 0.22 | 8 | 0.21          | 0.05             | 4  | 0.007 | 0.004               | 4  | 20.07  | 7.32     | 8  | 64                  | 62                  |
| Mid-EC Control                             | 8.04 | 0.21 | 8 | 0.16          | 0.10             | 4  | 0.005 | 0.003               | 4  | 10.52  | 8.81     | 8  | =                   | -                   |
| Rough and Ready DWR station, Stockton      | 7.87 | 0.28 | 8 | 0.13          | 0.06             | 4  | 0.004 | 0.003               | 4  | 8.48   | 1.65     | 8  | 96                  | 68                  |
| High EC Control @ 4000 uS/cm               | 7.90 | 0.20 | 8 | 0.13          | 0.06             | 4  | 0.002 | 0.001               | 4  | 10.43  | 8.04     | 8  | =                   | -                   |
| High EC / Low Turbidity Control            | 7.75 | 0.40 | 8 | 0.09          | 0.06             | 4  | 0.001 | 0.001               | 4  | 3.87   | 2.47     | 8  | -                   | -                   |
| Suisun Slough at Rush Ranch                | 7.68 | 0.31 | 8 | 0.13          | 0.05             | 4  | 0.002 | 0.001               | 4  | 20.09  | 2.66     | 8  | 520                 | 142                 |
| High EC Control @ 17000 uS/cm              | 7.95 | 0.11 | 8 | 0.05          | 0.04             | 4  | 0.001 | 0.001               | 4  | 10.5   | 8.1      | 8  | -                   | -                   |
| Napa River at Vallejo Seawall (340)        | 7.71 | 0.12 | 8 | 0.07          | 0.04             | 4  | 0.001 | 0.001               | 4  | 10.89  | 9.30     | 8  | 2640                | 100                 |

## Appendix D

In Situ Toxicity
Water Chemistry Summary

Table D1. Chemistry of ambient river water at the Rough and Ready DWR Station in Stockton, CA during 7-day in situ exposures.

| Test Initiation | 1     | Ambien | nt SC (uS | S/cm) |   | A  | Amb | ient T | urbidity | y (NTU | ) |
|-----------------|-------|--------|-----------|-------|---|----|-----|--------|----------|--------|---|
| Date            | Mean  | SD     | Min       | Max   | N | Me | ean | SD     | Min      | Max    | N |
| 3/19/2009       | 811.5 | 89.5   | 725.0     | 922.0 | 6 | 2  | 2   | 15     | 6        | 49     | 9 |
| 4/2/2009        | 870.0 | -      | -         | -     | 1 | 3  | 3   | 34     | 8        | 111    | 8 |
| 4/16/2009       | -     | -      | -         | -     | - | 1  | 3   | 7      | 7        | 29     | 8 |
| 4/30/2009       | 726.0 | -      | -         | -     | 1 | 1  | 3   | 3      | 10       | 21     | 8 |
| 5/14/2009       | 489.0 | -      | -         | -     | 1 | 1  | 2   | 3      | 9        | 17     | 8 |
| 5/28/2009       | 425.5 | -      | -         | -     | 1 | 2  | 3   | 12     | 12       | 42     | 8 |

Table D2. Chemistry of ambient water from the Sacramento River at the Hood DWR Station during 7-day in situ exposures.

| Test Initiation | 1     | Ambien | nt SC (uS | S/cm) |   |   | Amb  | ient T | urbidity | y (NTU | ) |
|-----------------|-------|--------|-----------|-------|---|---|------|--------|----------|--------|---|
| Date            | Mean  | SD     | Min       | Max   | N | - | Mean | SD     | Min      | Max    | N |
| 3/19/2009       | 174.6 | 11.0   | 164.2     | 195.0 | 6 |   | 24   | 24     | 5        | 87     | 9 |
| 4/2/2009        | 179.0 | -      | -         | -     | 1 |   | 12   | 8      | 6        | 29     | 8 |
| 4/16/2009       | -     | -      | -         | -     | - |   | 14   | 8      | 6        | 31     | 8 |
| 4/30/2009       | 131.5 | -      | -         | -     | 1 |   | 11   | 7      | 5        | 26     | 8 |
| 5/14/2009       | 110.8 | -      | -         | -     | 1 |   | 14   | 4      | 8        | 22     | 8 |
| 5/28/2009       | 136.7 | -      | -         | -     | 1 |   | 12   | 3      | 9        | 18     | 8 |

Table D3a. Chemistry of water in exposure chambers during 7-day in situ tests at the Rough and Ready DWR Station in Stockton, CA.

| Treatment               |      | Te  | mp (°C | )    |   |      | EC  | (uS/cm | 1)  |   |      | SC  | (uS/cn | 1)   |    |      | DO  | ) (mg/l | <u>.</u> _) |   |
|-------------------------|------|-----|--------|------|---|------|-----|--------|-----|---|------|-----|--------|------|----|------|-----|---------|-------------|---|
|                         | Mean | SD  | Min    | Max  | N | Mean | SD  | Min    | Max | N | Mean | SD  | Min    | Max  | N  | Mean | SD  | Min     | Max         | N |
| Control Exposure 031909 | 16.8 | 0.9 | 15.1   | 17.8 | 8 | 688  | 98  | 584    | 826 | 8 | 803  | 99  | 720    | 970  | 14 | 9.6  | 0.4 | 8.9     | 10.3        | 8 |
| Ambient Exposure 031909 | 16.2 | 0.8 | 15.4   | 17.8 | 8 | 698  | 72  | 615    | 793 | 8 | 836  | 88  | 730    | 948  | 14 | 9.0  | 0.8 | 7.2     | 9.6         | 8 |
| Control Exposure 040209 | 17.6 | 0.5 | 16.5   | 18.1 | 8 | 787  | 14  | 765    | 812 | 8 | 915  | 13  | 895    | 944  | 15 | 9.3  | 0.4 | 8.8     | 9.9         | 8 |
| Ambient Exposure 040209 | 17.0 | 0.5 | 16.3   | 17.5 | 8 | 783  | 31  | 740    | 851 | 8 | 915  | 29  | 879    | 1005 | 15 | 9.4  | 0.4 | 8.7     | 9.9         | 8 |
| Control Exposure 041609 | 19.7 | 1.9 | 16.8   | 22.3 | 8 | 834  | 37  | 795    | 898 | 7 | 899  | 35  | 849    | 958  | 16 | 8.8  | 0.5 | 8.1     | 9.5         | 8 |
| Ambient Exposure 041609 | 19.0 | 1.8 | 16.8   | 21.8 | 8 | 767  | 19  | 729    | 791 | 7 | 852  | 47  | 790    | 925  | 14 | 8.7  | 0.5 | 7.7     | 9.1         | 7 |
| Control Exposure 043009 | 19.3 | 0.5 | 18.7   | 20.1 | 8 | 591  | 108 | 482    | 832 | 8 | 569  | 199 | 131    | 947  | 16 | 8.7  | 0.2 | 8.4     | 8.9         | 8 |
| Ambient Exposure 043009 | 18.7 | 0.4 | 18.2   | 19.5 | 8 | 490  | 59  | 429    | 589 | 8 | 546  | 65  | 472    | 668  | 15 | 7.2  | 0.2 | 7.0     | 7.5         | 8 |
| Control Exposure 051409 | 23.2 | 1.0 | 21.5   | 24.3 | 8 | 479  | 93  | 388    | 696 | 8 | 495  | 99  | 410    | 744  | 16 | 8.1  | 0.3 | 7.8     | 8.6         | 8 |
| Ambient Exposure 051409 | 22.7 | 0.9 | 21.5   | 23.9 | 8 | 423  | 29  | 385    | 461 | 8 | 439  | 29  | 405    | 498  | 15 | 7.1  | 0.3 | 6.5     | 7.4         | 8 |
| Control Exposure 052809 | 24.4 | 0.2 | 24.0   | 24.7 | 8 | 437  | 25  | 407    | 492 | 8 | 440  | 47  | 290    | 508  | 16 | 8.0  | 0.2 | 7.8     | 8.4         | 8 |
| Ambient Exposure 052809 | 24.0 | 0.4 | 23.2   | 24.4 | 8 | 420  | 5   | 415    | 430 | 8 | 416  | 55  | 275    | 446  | 15 | 6.1  | 0.3 | 5.6     | 6.5         | 8 |

| Treatment               |      |      | pН   |      |    | Amn  | nonia N | itrogen | (mg/L) |   | Unio  | onized A | mmonia ( | (mg/L) |   |
|-------------------------|------|------|------|------|----|------|---------|---------|--------|---|-------|----------|----------|--------|---|
|                         | Mean | SD   | Min  | Max  | N  | Mean | SD      | Min     | Max    | N | Mean  | SD       | Min      | Max    | N |
| Control Exposure 031909 | 7.83 | 0.12 | 7.66 | 7.98 | 11 | 0.15 | 0.12    | 0.03    | 0.34   | 8 | 0.003 | 0.003    | 0.000    | 0.009  | 8 |
| Ambient Exposure 031909 | 7.69 | 0.10 | 7.56 | 7.85 | 11 | 0.07 | 0.02    | 0.06    | 0.10   | 8 | 0.001 | 0.000    | 0.001    | 0.001  | 8 |
| Control Exposure 040209 | 7.56 | 0.19 | 7.34 | 7.84 | 7  | 0.27 | 0.18    | 0.04    | 0.52   | 7 | 0.002 | 0.001    | 0.001    | 0.003  | 7 |
| Ambient Exposure 040209 | 7.85 | 0.08 | 7.67 | 7.91 | 7  | 0.08 | 0.04    | 0.04    | 0.17   | 7 | 0.001 | 0.000    | 0.001    | 0.002  | 7 |
| Control Exposure 041609 | 7.71 | 0.08 | 7.60 | 7.85 | 8  | 0.30 | 0.15    | 0.11    | 0.50   | 8 | 0.005 | 0.003    | 0.001    | 0.010  | 8 |
| Ambient Exposure 041609 | 7.94 | 0.11 | 7.81 | 8.14 | 7  | 0.09 | 0.02    | 0.05    | 0.11   | 7 | 0.002 | 0.001    | 0.001    | 0.003  | 7 |
| Control Exposure 043009 | 7.68 | 0.22 | 7.50 | 8.19 | 8  | 0.28 | 0.17    | 0.09    | 0.53   | 8 | 0.004 | 0.002    | 0.001    | 0.007  | 8 |
| Ambient Exposure 043009 | 7.55 | 0.11 | 7.41 | 7.66 | 7  | 0.10 | 0.04    | 0.07    | 0.18   | 7 | 0.001 | 0.001    | 0.001    | 0.003  | 7 |
| Control Exposure 051409 | 7.61 | 0.07 | 7.54 | 7.72 | 8  | 0.22 | 0.16    | 0.00    | 0.49   | 8 | 0.004 | 0.003    | 0.000    | 0.009  | 8 |
| Ambient Exposure 051409 | 7.48 | 0.04 | 7.43 | 7.53 | 7  | 0.10 | 0.11    | 0.00    | 0.29   | 7 | 0.001 | 0.001    | 0.000    | 0.004  | 7 |
| Control Exposure 052809 | 7.83 | 0.15 | 7.61 | 8.05 | 8  | 0.12 | 0.12    | 0.00    | 0.30   | 8 | 0.003 | 0.003    | 0.000    | 0.008  | 8 |
| Ambient Exposure 052809 | 7.37 | 0.06 | 7.29 | 7.46 | 7  | 0.10 | 0.06    | 0.05    | 0.22   | 7 | 0.001 | 0.001    | 0.001    | 0.002  | 7 |

Table D3b. Chemistry of water in exposure chambers during 7-day in situ tests at the Rough and Ready DWR Station in Stockton, CA, cont'd.

| Treatment               |       | Turbi | dity (NT | U)    |   | Hard | ness (n | ng/L as | CaCO3) | ) | Alkal | inity (1 | ng/L as | CaCO3) | ) |
|-------------------------|-------|-------|----------|-------|---|------|---------|---------|--------|---|-------|----------|---------|--------|---|
|                         | Mean  | SD    | Min      | Max   | N | Mean | SD      | Min     | Max    | N | Mean  | SD       | Min     | Max    | N |
| Control Exposure 031909 | 4.42  | 1.70  | 2.55     | 8.26  | 8 | 142  | 16      | 120     | 164    | 7 | 77    | 11       | 56      | 86     | 7 |
| Ambient Exposure 031909 | 8.67  | 2.04  | 6.67     | 12.50 | 8 | 178  | 11      | 160     | 190    | 7 | 105   | 3        | 102     | 110    | 7 |
| Control Exposure 040209 | 2.87  | 1.04  | 1.82     | 4.79  | 7 | 134  | 8       | 124     | 148    | 7 | 68    | 3        | 64      | 72     | 7 |
| Ambient Exposure 040209 | 12.29 | 2.30  | 8.49     | 15.90 | 7 | 189  | 3       | 184     | 192    | 7 | 112   | 3        | 107     | 116    | 7 |
| Control Exposure 041609 | 2.58  | 0.87  | 1.60     | 4.01  | 8 | 143  | 10      | 128     | 160    | 8 | 75    | 10       | 54      | 84     | 8 |
| Ambient Exposure 041609 | 9.72  | 2.42  | 7.04     | 13.80 | 7 | 181  | 10      | 168     | 196    | 7 | 111   | 3        | 106     | 114    | 7 |
| Control Exposure 043009 | 4.71  | 1.29  | 3.61     | 7.72  | 8 | 103  | 16      | 84      | 132    | 7 | 60    | 9        | 48      | 77     | 7 |
| Ambient Exposure 043009 | 13.87 | 4.44  | 11.50    | 23.90 | 7 | 125  | 12      | 112     | 144    | 6 | 82    | 4        | 76      | 88     | 6 |
| Control Exposure 051409 | 2.80  | 1.08  | 1.43     | 4.53  | 8 | 83   | 15      | 72      | 116    | 8 | 52    | 5        | 44      | 60     | 8 |
| Ambient Exposure 051409 | 10.83 | 2.35  | 8.57     | 14.60 | 7 | 97   | 6       | 88      | 104    | 7 | 67    | 4        | 60      | 72     | 7 |
| Control Exposure 052809 | 6.51  | 4.35  | 2.46     | 16.46 | 8 | 100  | 5       | 92      | 108    | 8 | 71    | 4        | 66      | 76     | 8 |
| Ambient Exposure 052809 | 17.29 | 7.65  | 9.33     | 33.23 | 7 | 95   | 14      | 64      | 104    | 7 | 65    | 7        | 52      | 70     | 7 |

Table D4a. Chemistry of water from the Sacramento River in exposure chambers during 7-day in situ tests at the Hood DWR Station.

| Tuestuesut              |      | SC  | (uS/cm | 1)   |   |      | EC | (uS/cm | n)  |   |      | SC | C (uS/c | m)  |    |      | DO  | ) (mg/. | L)  |   |
|-------------------------|------|-----|--------|------|---|------|----|--------|-----|---|------|----|---------|-----|----|------|-----|---------|-----|---|
| Treatment               | Mean | SD  | Min    | Max  | N | Mean | SD | Min    | Max | N | Mean | SD | Min     | Max | N  | Mean | SD  | Min     | Max | N |
| Control Exposure 031909 | 15.4 | 0.4 | 15.0   | 15.9 | 7 | 153  | 8  | 143    | 162 | 7 | 189  | 8  | 172     | 200 | 14 | 9.3  | 0.5 | 8.2     | 9.8 | 9 |
| Ambient Exposure 031909 | 14.8 | 0.6 | 14.0   | 15.5 | 7 | 140  | 7  | 130    | 153 | 8 | 173  | 7  | 161     | 188 | 13 | 9.1  | 0.5 | 8.0     | 9.4 | 8 |
| Control Exposure 040209 | 15.9 | 0.4 | 15.0   | 16.0 | 8 | 152  | 13 | 141    | 179 | 7 | 183  | 19 | 159     | 230 | 15 | 9.2  | 0.3 | 8.8     | 9.6 | 7 |
| Ambient Exposure 040209 | 15.3 | 0.5 | 15.0   | 16.0 | 8 | 133  | 11 | 115    | 146 | 7 | 160  | 11 | 140     | 177 | 15 | 9.0  | 0.3 | 8.4     | 9.5 | 7 |
| Control Exposure 041609 | 18.3 | 1.8 | 16.0   | 20.0 | 8 | 135  | 6  | 126    | 142 | 7 | 153  | 7  | 145     | 167 | 16 | 8.9  | 0.5 | 8.3     | 9.6 | 8 |
| Ambient Exposure 041609 | 17.4 | 1.6 | 15.0   | 19.0 | 8 | 124  | 6  | 117    | 133 | 8 | 148  | 15 | 133     | 194 | 15 | 8.6  | 0.5 | 7.8     | 9.0 | 7 |
| Control Exposure 043009 | 16.3 | 0.7 | 15.0   | 17.0 | 8 | 111  | 7  | 104    | 123 | 8 | 130  | 7  | 122     | 142 | 14 | 9.4  | 0.3 | 8.9     | 9.8 | 8 |
| Ambient Exposure 043009 | 15.5 | 0.5 | 15.0   | 16.0 | 8 | 104  | 11 | 94     | 119 | 7 | 127  | 9  | 114     | 140 | 15 | 9.3  | 0.4 | 8.5     | 9.6 | 7 |
| Control Exposure 051409 | 20.9 | 1.0 | 19.0   | 22.0 | 8 | 120  | 7  | 109    | 131 | 8 | 129  | 6  | 118     | 139 | 16 | 8.4  | 0.1 | 8.3     | 8.6 | 8 |
| Ambient Exposure 051409 | 20.1 | 0.8 | 19.0   | 21.0 | 8 | 117  | 12 | 102    | 140 | 8 | 129  | 10 | 114     | 152 | 15 | 8.2  | 0.1 | 8.1     | 8.5 | 7 |
| Control Exposure 052809 | 21.8 | 0.5 | 21.0   | 22.0 | 8 | 133  | 18 | 111    | 160 | 7 | 148  | 29 | 83      | 211 | 16 | 8.2  | 0.2 | 8.0     | 8.7 | 8 |
| Ambient Exposure 052809 | 21.0 | 0.5 | 20.0   | 22.0 | 8 | 131  | 14 | 114    | 155 | 7 | 137  | 21 | 89      | 170 | 14 | 7.7  | 0.2 | 7.4     | 8.1 | 7 |

| T                       |      |      | рН   |      |   | Amr  | nonia N | itrogen | (mg/L) |   | Un    | ionized A | Ammonia | (mg/L) |   |
|-------------------------|------|------|------|------|---|------|---------|---------|--------|---|-------|-----------|---------|--------|---|
| Treatment               | Mean | SD   | Min  | Max  | N | Mean | SD      | Min     | Max    | N | Mean  | SD        | Min     | Max    | N |
| Control Exposure 031909 | 7.35 | 0.36 | 6.50 | 7.76 | 9 | 0.21 | 0.17    | 0.02    | 0.49   | 8 | 0.002 | 0.001     | 0.000   | 0.003  | 8 |
| Ambient Exposure 031909 | 7.52 | 0.17 | 7.17 | 7.73 | 8 | 0.42 | 0.12    | 0.28    | 0.59   | 7 | 0.004 | 0.001     | 0.002   | 0.006  | 7 |
| Control Exposure 040209 | 7.35 | 0.11 | 7.22 | 7.48 | 7 | 0.15 | 0.10    | 0.00    | 0.26   | 7 | 0.001 | 0.001     | 0.000   | 0.002  | 7 |
| Ambient Exposure 040209 | 7.40 | 0.09 | 7.26 | 7.49 | 7 | 0.42 | 0.17    | 0.13    | 0.64   | 7 | 0.003 | 0.001     | 0.001   | 0.005  | 7 |
| Control Exposure 041609 | 7.57 | 0.23 | 7.23 | 7.96 | 8 | 0.22 | 0.17    | 0.03    | 0.51   | 8 | 0.003 | 0.002     | 0.000   | 0.005  | 8 |
| Ambient Exposure 041609 | 7.52 | 0.09 | 7.34 | 7.61 | 7 | 0.37 | 0.14    | 0.24    | 0.66   | 7 | 0.004 | 0.001     | 0.003   | 0.005  | 7 |
| Control Exposure 043009 | 7.56 | 0.11 | 7.36 | 7.67 | 8 | 0.14 | 0.11    | 0.04    | 0.38   | 8 | 0.001 | 0.001     | 0.000   | 0.003  | 8 |
| Ambient Exposure 043009 | 7.56 | 0.16 | 7.37 | 7.81 | 7 | 0.22 | 0.15    | 0.02    | 0.45   | 7 | 0.002 | 0.001     | 0.000   | 0.004  | 7 |
| Control Exposure 051409 | 7.36 | 0.14 | 7.08 | 7.49 | 8 | 0.24 | 0.16    | 0.08    | 0.46   | 8 | 0.002 | 0.002     | 0.001   | 0.005  | 8 |
| Ambient Exposure 051409 | 7.32 | 0.10 | 7.16 | 7.46 | 7 | 0.29 | 0.05    | 0.23    | 0.35   | 7 | 0.002 | 0.001     | 0.002   | 0.004  | 7 |
| Control Exposure 052809 | 7.43 | 0.10 | 7.30 | 7.57 | 8 | 0.25 | 0.18    | 0.00    | 0.50   | 8 | 0.003 | 0.002     | 0.000   | 0.006  | 8 |
| Ambient Exposure 052809 | 7.37 | 0.09 | 7.25 | 7.50 | 7 | 0.32 | 0.14    | 0.18    | 0.53   | 7 | 0.003 | 0.002     | 0.001   | 0.006  | 7 |

Table D4b. Chemistry of water from the Sacramento River in exposure chambers during 7-day in situ tests at the Hood DWR Station, cont'd.

| Tuestment               | Hard | ness (n | ng/L as | CaCO3) | ) | Alkal | inity (1 | ng/L as | CaCO3 | ) |       | Turbid | lity (NT | U)    |   |
|-------------------------|------|---------|---------|--------|---|-------|----------|---------|-------|---|-------|--------|----------|-------|---|
| Treatment               | Mean | SD      | Min     | Max    | N | Mean  | SD       | Min     | Max   | N | Mean  | SD     | Min      | Max   | N |
| Control Exposure 031909 | 41   | 3       | 36      | 44     | 7 | 34    | 9        | 18      | 45    | 7 | 2.26  | 0.91   | 0.59     | 3.24  | 7 |
| Ambient Exposure 031909 | 69   | 3       | 64      | 72     | 7 | 71    | 3        | 68      | 76    | 7 | 24.99 | 9.01   | 15.90    | 40.20 | 7 |
| Control Exposure 040209 | 37   | 5       | 32      | 44     | 7 | 32    | 4        | 26      | 36    | 7 | 2.05  | 0.66   | 1.22     | 3.28  | 7 |
| Ambient Exposure 040209 | 56   | 6       | 48      | 64     | 7 | 62    | 5        | 56      | 68    | 7 | 17.80 | 8.86   | 6.55     | 30.20 | 7 |
| Control Exposure 041609 | 34   | 5       | 24      | 40     | 8 | 29    | 5        | 22      | 36    | 8 | 3.72  | 1.86   | 1.16     | 6.24  | 8 |
| Ambient Exposure 041609 | 52   | 3       | 48      | 56     | 7 | 53    | 8        | 34      | 58    | 7 | 18.39 | 8.13   | 9.25     | 33.80 | 7 |
| Control Exposure 043009 | 25   | 4       | 20      | 32     | 7 | 21    | 5        | 12      | 26    | 7 | 5.49  | 1.33   | 3.54     | 6.97  | 7 |
| Ambient Exposure 043009 | 49   | 3       | 44      | 52     | 6 | 53    | 4        | 48      | 58    | 6 | 38.53 | 19.29  | 10.90    | 63.20 | 6 |
| Control Exposure 051409 | 28   | 10      | 12      | 44     | 8 | 23    | 7        | 12      | 32    | 8 | 4.44  | 1.07   | 2.51     | 5.71  | 8 |
| Ambient Exposure 051409 | 45   | 4       | 40      | 48     | 7 | 47    | 3        | 44      | 52    | 7 | 23.31 | 8.50   | 12.50    | 34.30 | 7 |
| Control Exposure 052809 | 32   | 3       | 28      | 36     | 8 | 27    | 3        | 24      | 32    | 8 | 2.67  | 1.08   | 1.19     | 4.03  | 8 |
| Ambient Exposure 052809 | 50   | 6       | 44      | 60     | 7 | 53    | 4        | 48      | 60    | 7 | 19.20 | 5.79   | 13.70    | 28.30 | 7 |

## Appendix E

Eurytemora affinis
7-day Toxicity Test
Water Chemistry Summary

Table E1. Water chemistry during a E. affinis 7-day test initiated on 5/01/09 evaluating the toxicity of ambient delta water samples collected on 4/28/09 and 4/30/09.

|                   |               | Day        | y 0 - Initi  | al           |      |               | Da         | ıy 1 - Fina  | .1           |      |
|-------------------|---------------|------------|--------------|--------------|------|---------------|------------|--------------|--------------|------|
| Treatment         | SC<br>(uS/cm) | EC (uS/cm) | Temp<br>(°C) | DO<br>(mg/L) | pН   | SC<br>(uS/cm) | EC (uS/cm) | Temp<br>(°C) | DO<br>(mg/L) | pН   |
| L16 @ 1 ppt       | 1920          | 1574       | 16.0         | 10.0         | 7.99 | 1930          | 1567       | 15.6         | 9.5          | 7.87 |
| L 16 @ 1000 µS/cm | 1004          | 825        | 16.1         | 9.7          | 7.97 | 1003          | 828        | 16.3         | 9.2          | 7.88 |
| L 16 @ 500 µS/cm  | 538           | 441        | 16.0         | 9.7          | 7.97 | 517           | 427        | 16.3         | 9.9          | 7.90 |
| L 16 @ 250 µS/cm  | 304           | 248        | 15.8         | 9.7          | 8.00 | 282           | 232        | 16.1         | 9.8          | 7.85 |
| L 16 @ 100 µS/cm  | 160           | 131        | 15.8         | 9.6          | 7.98 | 129           | 106        | 16.0         | 9.8          | 7.79 |
| Light 55          | 335           | 276        | 16.2         | 9.6          | 8.01 | 271           | 225        | 16.4         | 9.5          | 8.05 |
| 711               | 164           | 136        | 16.5         | 10.0         | 7.90 | 136           | 114        | 17.0         | 9.5          | 7.91 |
| CU                | 393           | 325        | 16.4         | 10.0         | 8.24 | 329           | 276        | 16.9         | 9.6          | 8.17 |
| Hood              | 150           | 124        | 16.5         | 10.6         | 8.02 | 142           | 121        | 17.6         | 9.4          | 8.00 |

## Appendix F

*Hypomesus Transpacificus* 96-hour Survival Sensitivity Tests

Table F1-1. Results of a *H. transpacificus* (Delta Smelt) 7-day test initiated 7/08/09 evaluating the toxicity of ammonia. Test animals were 47 days old at test initiation.

|                                     |                              | Measured ia (mg/L)   | 96-hr Su<br>(% |      | 7-day Survival<br>(%) |     |
|-------------------------------------|------------------------------|----------------------|----------------|------|-----------------------|-----|
| Treatment                           | Total<br>Ammonia<br>Nitrogen | Unionized<br>Ammonia | Mean           | SE   | Mean                  | SE  |
| Filtered Hatchery Water @ 900 uS/cm | 0.1                          | 0.002                | 67.5           | 13.1 | 15.0                  | 8.7 |
| 2.5 ppm Ammonium Chloride           | 1.9                          | 0.032                | 75.0           | 18.9 | 22.5                  | 7.5 |
| 5 ppm Ammonium Chloride             | 3.7                          | 0.064                | 80.0           | 9.1  | 22.5                  | 4.8 |
| 10 ppm Ammonium Chloride            | 7.1                          | 0.099                | 61.1           | 3.2  | 2.5                   | 2.5 |
| 20 ppm Ammonium Chloride            | 14.4                         | 0.191                | 27.5           | 8.5  | 0.0                   | 0.0 |
| 40 ppm Ammonium Chloride            | 29.0                         | 0.333                | 0.0            | 0.0  | 0.0                   | 0.0 |
| 80 ppm Ammonium Chloride            | 57.8                         | 0.645                | 0.0            | 0.0  | 0.0                   | 0.0 |

<sup>1.</sup> The 96-hour endpoint was analyzed using USEPA standard multiple concentration statistical protocols. Highlighted areas indicate significant reductions in survival, weight or biomass compared to the hatchery water control.

Table F1-2. Chemistry of sample waters examined in a *H. transpacificus* (Delta Smelt) 7-day test initiated 7/08/09 evaluating the toxicity of ammonia.

| Treatment                           | Temp (°C) |     |   | DO   | DO (mg/L) |   |      | рН   |   |      | SC<br>(uS/cm) |
|-------------------------------------|-----------|-----|---|------|-----------|---|------|------|---|------|---------------|
|                                     | Mean      | SD  | N | Mean | SD        | N | Mean | SD   | N | Mean | Mean          |
| Filtered Hatchery Water @ 900 uS/cm | 17.3      | 0.5 | 8 | 8.9  | 0.7       | 8 | 7.84 | 0.18 | 8 | 758  | 908           |
| 2.5 ppm Ammonium Chloride           | 17.2      | 0.6 | 8 | 8.8  | 0.9       | 8 | 7.76 | 0.19 | 8 | 777  | 926           |
| 5 ppm Ammonium Chloride             | 17.3      | 0.8 | 7 | 8.8  | 0.7       | 8 | 7.75 | 0.19 | 8 | 792  | 948           |
| 10 ppm Ammonium Chloride            | 17.2      | 0.4 | 8 | 8.8  | 0.9       | 8 | 7.67 | 0.16 | 8 | 820  | 979           |
| 20 ppm Ammonium Chloride            | 17.1      | 0.5 | 7 | 9.0  | 0.7       | 7 | 7.66 | 0.13 | 7 | 882  | 1057          |
| 40 ppm Ammonium Chloride            | 17.0      | 0.2 | 4 | 9.3  | 0.6       | 4 | 7.61 | 0.11 | 4 | 1017 | 1200          |
| 80 ppm Ammonium Chloride            | 16.9      | 0.0 | 2 | 9.4  | 0.1       | 2 | 7.62 | 0.04 | 2 | 1264 | 1493          |

| Treatment                           |       | Ammonia<br>Nitrogen (mg/L) |   |       | Unionized<br>Ammonia (mg/L) |   |       | Hardness<br>(mg/L as | Alkalinity<br>(mg/L as |
|-------------------------------------|-------|----------------------------|---|-------|-----------------------------|---|-------|----------------------|------------------------|
|                                     | Mean  | SD                         | N | Mean  | SD                          | N | (NTU) | CaCO <sub>3</sub> )  | CaCO <sub>3</sub> )    |
| Filtered Hatchery Water @ 900 uS/cm | 0.09  | 0.06                       | 8 | 0.002 | 0.001                       | 8 | 0.84  | 100                  | 66                     |
| 2.5 ppm Ammonium Chloride           | 1.88  | 0.08                       | 8 | 0.032 | 0.013                       | 8 | -     | -                    | -                      |
| 5 ppm Ammonium Chloride             | 3.74  | 0.13                       | 8 | 0.064 | 0.027                       | 8 | -     | -                    | -                      |
| 10 ppm Ammonium Chloride            | 7.08  | 0.72                       | 8 | 0.099 | 0.040                       | 8 | -     | -                    | -                      |
| 20 ppm Ammonium Chloride            | 14.43 | 0.49                       | 7 | 0.191 | 0.056                       | 7 | -     | -                    | -                      |
| 40 ppm Ammonium Chloride            | 28.95 | 2.22                       | 4 | 0.333 | 0.100                       | 4 | -     | -                    | -                      |
| 80 ppm Ammonium Chloride            | 57.80 | 4.81                       | 2 | 0.645 | 0.105                       | 2 | _     | -                    | -                      |

Table F2-1. Results of a *H. transpacificus* 96-hr test initiated 7/08/09 evaluating the toxicity of chlorpyrifos. Test animals were 47 days old at test initiation.

| Treatment                           | 96-hr St<br>(%) | 1    |
|-------------------------------------|-----------------|------|
| rreatment                           | Mean            | SE   |
| Filtered Hatchery Water @ 900 uS/cm | 42.5            | 12.5 |
| Filtered Hatchery Water + Methanol  | 35.2            | 11.8 |
| 12.5 ppb Chlorpyrifos               | 33.9            | 11.5 |
| 25 ppb Chlorpyrifos                 | 4.8             | 2.8  |
| 50 ppb Chlorpyrifos                 | 7.0             | 4.4  |
| 100 ppb Chlorpyrifos                | 5.0             | 2.9  |
| 200 ppb Chlorpyrifos                | 2.5             | 2.5  |

<sup>1.</sup> Data were analyzed using EPA standard statistical protocols, and no significant reductions in survival were observed. All calculations were based on the solvent control.

Table F2-2. Chemistry of sample waters examined in a *H. transpacificus* (Delta Smelt) 96-hr test initiated 7/08/09 evaluating the toxicity of chlorpyrifos.

| Treatment                           | Tem       | np (°C) | )    | DO  | (mg/L | )    |         | рН   |           | EC (uS/cm) | SC (uS/cm) |
|-------------------------------------|-----------|---------|------|-----|-------|------|---------|------|-----------|------------|------------|
|                                     | Mean SD N |         | Mean | SD  | N     | Mean | Mean SD |      | (us/ciii) | (us/cIII)  |            |
| Filtered Hatchery Water @ 900 uS/cm | 17.2      | 0.3     | 4    | 9.4 | 0.3   | 4    | 7.92    | 0.12 | 4         | 768        | 904        |
| Filtered Hatchery Water + Methanol  | 17.2      | 0.3     | 4    | 9.0 | 0.9   | 4    | 7.86    | 0.21 | 4         | 765        | 901        |
| 12.5 ppb Chlorpyrifos               | 17.2      | 0.2     | 4    | 9.1 | 0.9   | 4    | 7.80    | 0.22 | 4         | 768        | 900        |
| 25 ppb Chlorpyrifos                 | 17.3      | 0.1     | 4    | 9.3 | 0.3   | 4    | 7.85    | 0.23 | 4         | 767        | 901        |
| 50 ppb Chlorpyrifos                 | 17.4      | 0.2     | 4    | 8.7 | 1.2   | 4    | 7.79    | 0.30 | 4         | 768        | 894        |
| 100 ppb Chlorpyrifos                | 17.4      | 0.1     | 4    | 9.3 | 0.5   | 4    | 7.89    | 0.14 | 4         | 768        | 901        |
| 200 ppb Chlorpyrifos                | 17.4      | 0.1     | 4    | 9.2 | 0.7   | 4    | 7.84    | 0.20 | 4         | 774        | 896        |

| Treatment                           |      | monia<br>en (mg/ | L) |       | Unionized<br>Ammonia (mg/L) |   |  |  |
|-------------------------------------|------|------------------|----|-------|-----------------------------|---|--|--|
|                                     | Mean | SD               | N  | Mea   | n SD                        | N |  |  |
| Filtered Hatchery Water @ 900 uS/cm | 0.09 | 0.09             | 4  | 0.002 | 2 0.002                     | 4 |  |  |
| Filtered Hatchery Water + Methanol  | 0.04 | 0.04             | 4  | 0.00  | 0.001                       | 4 |  |  |
| 12.5 ppb Chlorpyrifos               | 0.02 | 0.01             | 4  | 0.00  | 0.000                       | 4 |  |  |
| 25 ppb Chlorpyrifos                 | 0.02 | 0.01             | 4  | 0.00  | 0.000                       | 4 |  |  |
| 50 ppb Chlorpyrifos                 | 0.02 | 0.02             | 4  | 0.00  | 0.000                       | 4 |  |  |
| 100 ppb Chlorpyrifos                | 0.03 | 0.02             | 4  | 0.00  | 0.000                       | 4 |  |  |
| 200 ppb Chlorpyrifos                | 0.02 | 0.01             | 4  | 0.00  | 0.000                       | 4 |  |  |

Table F3-1. Results of a *H. transpacificus* 96-hour test initiated 7/22/09 evaluating the toxicity of esfenvalerate. Test animals were 45 days old at test initiation.

| Treatment                    | 96-hr Survival (%)  Mean SE  30.2 1.2 28.3 6.5 21.4 3.6 24.4 9.6 |     |  |  |
|------------------------------|------------------------------------------------------------------|-----|--|--|
| rreatment                    | Mean                                                             | SE  |  |  |
| Hatchery Tap Water           | 30.2                                                             | 1.2 |  |  |
| Hatchery Tap Water + Solvent | 28.3                                                             | 6.5 |  |  |
| 94 pptr Esfenvalerate        | 21.4                                                             | 3.6 |  |  |
| 188 pptr Esfenvalerate       | 24.4                                                             | 9.6 |  |  |
| 375 pptr Esfenvalerate       | 0.0                                                              | 0.0 |  |  |
| 750 pptr Esfenvalerate       | 0.0                                                              | 0.0 |  |  |
| 1500 pptr Esfenvalerate      | 0.0                                                              | 0.0 |  |  |

<sup>1.</sup> Data were analyzed using USEPA standard statistical protocols. Highlighted cells indicate significant reductions in survival compared to the solvent control.

Table F3-2. Chemistry of sample waters examined in a *H. transpacificus* (Delta Smelt) 96-hr test initiated 7/22/09 evaluating the toxicity of esfenvalerate.

| Treatment                    | Tem  | p (°C) |   | EC (ı | EC (uS/cm) SC (uS/cm) |   |      |    | DO (mg/L) |      |     |   |
|------------------------------|------|--------|---|-------|-----------------------|---|------|----|-----------|------|-----|---|
| Treatment                    | Mean | SD     | N | Mean  | SD                    | N | Mean | SD | N         | Mean | SD  | N |
| Hatchery Tap Water           | 17.5 | 0.7    | 4 | 769   | 6                     | 2 | 906  | 3  | 2         | 9.5  | 0.2 | 4 |
| Hatchery Tap Water + Solvent | 17.4 | 0.5    | 4 | 757   | 31                    | 2 | 890  | 19 | 2         | 9.4  | 0.6 | 4 |
| 94 pptr Esfenvalerate        | 17.2 | 0.5    | 4 | 757   | 13                    | 2 | 899  | 6  | 2         | 9.2  | 0.6 | 4 |
| 188 pptr Esfenvalerate       | 17.2 | 0.4    | 4 | 753   | 28                    | 2 | 887  | 21 | 2         | 9.4  | 0.5 | 4 |
| 375 pptr Esfenvalerate       | 17.1 | 0.5    | 4 | 757   | 13                    | 2 | 900  | 4  | 2         | 9.3  | 0.6 | 4 |
| 750 pptr Esfenvalerate       | 17.1 | 0.6    | 3 | 750   | 30                    | 2 | 885  | 16 | 2         | 9.6  | 0.1 | 3 |
| 1500 pptr Esfenvalerate      | 17.4 | 0.1    | 2 | 769   | -                     | 1 | 900  | -  | 1         | 9.7  | 0.2 | 2 |

| Treatment                    |      | рН   |   |      | mmonia<br>gen (mg/ | L) |       | Unionized<br>Ammonia (mg/L) |   |  |  |
|------------------------------|------|------|---|------|--------------------|----|-------|-----------------------------|---|--|--|
|                              | Mean | SD   | N | Mean | SD                 | N  | Mean  | SD                          | N |  |  |
| Hatchery Tap Water           | 8.22 | 0.11 | 4 | 0.18 | 0.15               | 2  | 0.008 | 0.007                       | 2 |  |  |
| Hatchery Tap Water + Solvent | 8.09 | 0.13 | 4 | 0.07 | 0.02               | 2  | 0.002 | 0.000                       | 2 |  |  |
| 94 pptr Esfenvalerate        | 8.08 | 0.17 | 4 | 0.07 | 0.01               | 2  | 0.002 | 0.000                       | 2 |  |  |
| 188 pptr Esfenvalerate       | 8.02 | 0.17 | 4 | 0.05 | 0.03               | 2  | 0.001 | 0.001                       | 2 |  |  |
| 375 pptr Esfenvalerate       | 8.01 | 0.13 | 4 | 0.07 | 0.04               | 2  | 0.001 | 0.000                       | 2 |  |  |
| 750 pptr Esfenvalerate       | 8.08 | 0.14 | 3 | 0.03 | -                  | 1  | 0.001 | -                           | 1 |  |  |
| 1500 pptr Esfenvalerate      | 8.21 | 0.04 | 2 | 0.04 | -                  | 1  | 0.002 | -                           | 1 |  |  |

Table F4-1. Results of a *H. transpacificus* 96-hour test initiated 7/22/09 evaluating the toxicity permethrin. Test animals were 45 days old at test initiation.

| Treatment            | , , , , , , , | 0 6.4<br>5 1.9 |  |  |  |  |  |
|----------------------|---------------|----------------|--|--|--|--|--|
| Heatment             | mean          | se             |  |  |  |  |  |
| Hatchery Tap Water   | 26.0          | 6.4            |  |  |  |  |  |
| 313 pptr Permethrin  | 59.5          | 1.9            |  |  |  |  |  |
| 625 pptr Permethrin  | 38.1          | 10.0           |  |  |  |  |  |
| 1250 pptr Permethrin | 36.6          | 3.2            |  |  |  |  |  |
| 2500 pptr Permethrin | 41.4          | 5.5            |  |  |  |  |  |
| 5000 pptr Permethrin | 35.8          | 6.3            |  |  |  |  |  |

Table F4-2. Chemistry of sample waters examined in a *H. transpacificus* 96-hour test initiated 7/22/09 evaluating the toxicity of permethrin.

| Treatment            | Temp (°C) |     | EC (ı | ıS/cm) |    | SC (u | S/cm) |    | DO ( | mg/L) |     |   |
|----------------------|-----------|-----|-------|--------|----|-------|-------|----|------|-------|-----|---|
|                      | Mean      | SD  | N     | Mean   | SD | N     | Mean  | SD | N    | Mean  | SD  | N |
| Hatchery Tap Water   | 17.2      | 0.6 | 4     | 763    | 21 | 2     | 901   | 5  | 2    | 9.4   | 0.3 | 4 |
| 313 pptr Permethrin  | 17.2      | 0.3 | 4     | 756    | 27 | 2     | 890   | 22 | 2    | 9.3   | 0.5 | 4 |
| 625 pptr Permethrin  | 17.2      | 0.4 | 4     | 766    | 19 | 2     | 901   | 8  | 2    | 9.4   | 0.5 | 4 |
| 1250 pptr Permethrin | 17.4      | 0.4 | 4     | 763    | 22 | 2     | 892   | 14 | 2    | 9.2   | 0.5 | 4 |
| 2500 pptr Permethrin | 17.2      | 0.3 | 4     | 753    | 21 | 2     | 887   | 21 | 2    | 9.2   | 0.6 | 4 |
| 5000 pptr Permethrin | 17.2      | 0.3 | 4     | 765    | 15 | 2     | 900   | 6  | 2    | 9.4   | 0.5 | 4 |

| Treatment            |      | рН   |   |  |      | monia<br>en (mg/ | L) | Un<br>Ammo | L)    |   |
|----------------------|------|------|---|--|------|------------------|----|------------|-------|---|
|                      | Mean | SD   | N |  | Mean | SD               | N  | Mean       | SD    | N |
| Hatchery Tap Water   | 8.05 | 0.16 | 4 |  | 0.20 | 0.14             | 2  | 0.005      | 0.003 | 2 |
| 313 pptr Permethrin  | 8.08 | 0.16 | 4 |  | 0.06 | 0.01             | 2  | 0.001      | 0.000 | 2 |
| 625 pptr Permethrin  | 8.07 | 0.16 | 4 |  | 0.05 | 0.01             | 2  | 0.001      | 0.000 | 2 |
| 1250 pptr Permethrin | 7.98 | 0.15 | 4 |  | 0.07 | 0.02             | 2  | 0.001      | 0.000 | 2 |
| 2500 pptr Permethrin | 8.01 | 0.13 | 4 |  | 0.07 | 0.01             | 2  | 0.002      | 0.000 | 2 |
| 5000 pptr Permethrin | 8.05 | 0.16 | 4 |  | 0.07 | 0.00             | 2  | 0.002      | 0.001 | 2 |

Table F5-1. Results of a *H. transpacificus* 96-hr test initiated 7/29/09 evaluating the toxicity of chlorpyrifos. Test animals were 45 days old at test initiation.

| Treatment                    | 96-hr St<br>(% |      |
|------------------------------|----------------|------|
| Heatment                     | Mean           | SE   |
| Hatchery Tap Water           | 31.6           | 4.4  |
| Hatchery Tap Water + Solvent | 42.5           | 11.1 |
| 18.75 ppb Chlorpyrifos       | 12.5           | 4.8  |
| 37.5 ppb Chlorpyrifos        | 5.0            | 2.9  |
| 75 ppb Chlorpyrifos          | 0.0            | 0.0  |
| 150 ppb Chlorpyrifos         | 0.0            | 0.0  |
| 300 ppb Chlorpyrifos         | 0.0            | 0.0  |

<sup>1.</sup> Data were analyzed using EPA standard statistical protocols. Comparisons to both the method control and the solvent control showed a significant reduction in survival at 18.75 ppb.

Table F5-2. Chemistry of sample waters examined in a *H. transpacificus* 96-hour test initiated 7/29/09 evaluating the toxicity of chlorpyrifos.

| Treatment                     | Tem  | p (°C) |   | EC ( | EC (uS/cm) SC (uS/cm) |   |      |    | DO | DO (mg/L) |     |   |
|-------------------------------|------|--------|---|------|-----------------------|---|------|----|----|-----------|-----|---|
| Treatment                     | Mean | SD     | N | Mean | SD                    | N | Mean | SD | N  | Mean      | SD  | N |
| Hatchery Tap Water            | 17.0 | 0.7    | 4 | 747  | 14                    | 2 | 877  | 1  | 2  | 9.5       | 0.2 | 4 |
| Hatchery Tap Water + Methanol | 17.1 | 0.4    | 4 | 379  | 525                   | 2 | 878  | 16 | 2  | 9.5       | 0.5 | 4 |
| 18.75 ppb Chlorpyrifos        | 17.3 | 0.4    | 4 | 749  | 19                    | 2 | 878  | 10 | 2  | 9.4       | 0.5 | 4 |
| 37.5 ppb Chlorpyrifos         | 17.2 | 0.3    | 4 | 745  | 8                     | 2 | 875  | 0  | 2  | 9.6       | 0.5 | 4 |
| 75 ppb Chlorpyrifos           | 17.3 | 0.6    | 4 | 755  | 8                     | 2 | 884  | 6  | 2  | 9.4       | 0.7 | 4 |
| 150 ppb Chlorpyrifos          | 17.1 | 0.5    | 4 | 745  | 11                    | 2 | 880  | 1  | 2  | 9.4       | 0.6 | 4 |
| 300 ppb Chlorpyrifos          | 17.2 | 0.6    | 3 | 752  | 16                    | 2 | 885  | 2  | 2  | 9.6       | 0.3 | 3 |

| Treatment                     |      | рН   |   | _ =  | mmonia<br>ogen (mg/ | L) | _     | Unionized<br>Ammonia (mg/L |   |  |
|-------------------------------|------|------|---|------|---------------------|----|-------|----------------------------|---|--|
|                               | Mean | SD   | N | Mear | s SD                | N  | Mean  | SD                         | N |  |
| Hatchery Tap Water            | 7.85 | 0.12 | 4 | 0.04 | 0.05                | 4  | 0.001 | 0.001                      | 4 |  |
| Hatchery Tap Water + Methanol | 7.83 | 0.15 | 4 | 0.02 | 0.02                | 4  | 0.001 | 0.000                      | 4 |  |
| 18.75 ppb Chlorpyrifos        | 7.80 | 0.15 | 4 | 0.02 | 0.02                | 4  | 0.001 | 0.001                      | 4 |  |
| 37.5 ppb Chlorpyrifos         | 7.87 | 0.08 | 4 | 0.02 | 0.02                | 4  | 0.000 | 0.000                      | 4 |  |
| 75 ppb Chlorpyrifos           | 7.81 | 0.17 | 4 | 0.02 | 0.01                | 4  | 0.000 | 0.000                      | 4 |  |
| 150 ppb Chlorpyrifos          | 7.81 | 0.14 | 4 | 0.02 | 0.01                | 4  | 0.000 | 0.000                      | 4 |  |
| 300 ppb Chlorpyrifos          | 7.85 | 0.13 | 3 | 0.02 | 0.02                | 3  | 0.000 | 0.001                      | 3 |  |

## Appendix G

*Pimephales promelas*7-day Survival and Biomass Sensitivity Tests

Table G1-1. Results of a *P. promelas* 7-day test initiated 7/07/09 evaluating the toxicity of Cyfluthrin in laboratory control water and in water collected from the UC Davis Delta Smelt Hatchery in Byron, CA.

| Treatment                       | 96-hr Sur<br>(%) <sup>1</sup> |     | 7 Day Survival (%) <sup>1</sup> |     | Biomass (mg) <sup>1</sup> |       |
|---------------------------------|-------------------------------|-----|---------------------------------|-----|---------------------------|-------|
|                                 | Mean                          | SE  | Mean                            | SE  | Mean                      | SE    |
| DIEPAMH                         | 100.0                         | 0.0 | 100.0                           | 0.0 | 0.280                     | 0.009 |
| DIEPAMH @ 900 uS/cm (D900)      | 97.5                          | 2.5 | 97.5                            | 2.5 | 0.333                     | 0.017 |
| D900 Solvent Control            | 100.0                         | 0.0 | 97.5                            | 2.5 | 0.311                     | 0.018 |
| D900 + 125 pptr Cyfluthrin      | 100.0                         | 0.0 | 97.5                            | 2.5 | 0.369                     | 0.017 |
| D900 + 250 pptr Cyfluthrin      | 100.0                         | 0.0 | 100.0                           | 0.0 | 0.324                     | 0.013 |
| D900 + 500 pptr Cyfluthrin      | 100.0                         | 0.0 | 100.0                           | 0.0 | 0.341                     | 0.005 |
| D900 + 1000 pptr Cyfluthrin     | 97.5                          | 2.5 | 87.5                            | 4.8 | 0.318                     | 0.025 |
| D900 + 2000 pptr Cyfluthrin     | 2.5                           | 2.5 | 0.0                             | 0.0 | 0.000                     | 0.000 |
| Hatchery Water @ 900 uS/cm (HW) | 97.5                          | 2.5 | 97.5                            | 2.5 | 0.370                     | 0.019 |
| HW Solvent Control              | 100.0                         | 0.0 | 95.0                            | 2.9 | 0.293                     | 0.021 |
| HW + 125 pptr Cyfluthrin        | 100.0                         | 0.0 | 100.0                           | 0.0 | 0.316                     | 0.015 |
| HW + 250 pptr Cyfluthrin        | 97.5                          | 2.5 | 97.5                            | 2.5 | 0.346                     | 0.002 |
| HW + 500 pptr Cyfluthrin        | 100.0                         | 0.0 | 100.0                           | 0.0 | 0.323                     | 0.010 |
| HW + 1000 pptr Cyfluthrin       | 95.0                          | 2.9 | 95.0                            | 2.9 | 0.343                     | 0.033 |
| HW + 2000 pptr Cyfluthrin       | 0.0                           | 0.0 | 0.0                             | 0.0 | 0.000                     | 0.000 |

<sup>1.</sup> Highlighted areas indicate significant reduction in survival or biomass compared to the solvent control. Data were analyzed using USEPA standard statistical protocols.

Table G1-2. Water chemistry data taken during a *P. promelas* 7-day test initiated 7/07/09 evaluating the toxicity of Cyfluthrin in laboratory control water and in water collected from the UC Davis Delta Smelt Hatchery in Byron, CA.

|                                 |            |                     | Labor               | atory Chemi      | stry                |           |           |
|---------------------------------|------------|---------------------|---------------------|------------------|---------------------|-----------|-----------|
| Treatment                       | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min DO<br>(mg/L) | Max<br>DO<br>(mg/L) | Min<br>pH | Max<br>pH |
| DIEPAMH                         | 285        | 23.6                | 24.6                | 7.5              | 8.6                 | 7.61      | 8.04      |
| DIEPAMH @ 900 uS/cm (D900)      | 887        | 23.5                | 24.7                | 7.3              | 8.5                 | 7.78      | 8.14      |
| D900 Solvent Control            | 880        | 23.6                | 24.8                | 5.8              | 8.5                 | 7.53      | 8.19      |
| D900 + 125 pptr Cyfluthrin      | 881        | 23.6                | 24.9                | 6.7              | 8.6                 | 7.67      | 8.19      |
| D900 + 250 pptr Cyfluthrin      | 879        | 23.5                | 24.9                | 6.5              | 8.5                 | 7.61      | 8.18      |
| D900 + 500 pptr Cyfluthrin      | 884        | 23.5                | 24.9                | 6.0              | 8.6                 | 7.55      | 8.19      |
| D900 + 1000 pptr Cyfluthrin     | 884        | 23.6                | 25.0                | 5.7              | 8.6                 | 7.40      | 8.20      |
| D900 + 2000 pptr Cyfluthrin     | 892        | 23.5                | 24.5                | 5.0              | 8.6                 | 7.44      | 8.08      |
| Hatchery Water @ 900 uS/cm (HW) | 882        | 23.8                | 25.1                | 7.3              | 8.6                 | 7.78      | 8.09      |
| HW Solvent Control              | 883        | 23.7                | 25.2                | 4.3              | 8.6                 | 7.43      | 8.11      |
| HW + 125 pptr Cyfluthrin        | 884        | 23.5                | 25.0                | 7.1              | 8.6                 | 7.79      | 8.09      |
| HW + 250 pptr Cyfluthrin        | 884        | 23.5                | 25.0                | 6.7              | 8.6                 | 7.64      | 8.06      |
| HW + 500 pptr Cyfluthrin        | 880        | 23.8                | 25.0                | 5.0              | 8.5                 | 7.48      | 8.07      |
| HW + 1000 pptr Cyfluthrin       | 883        | 23.8                | 25.1                | 4.3              | 8.6                 | 7.44      | 8.09      |
| HW + 2000 pptr Cyfluthrin       | 887        | 23.9                | 24.4                | 4.4              | 8.6                 | 7.42      | 8.09      |

Table G2-1. Results of a *P. promelas* 7-day test initiated 7/07/09 evaluating the toxicity of permethrin in laboratory control water and in water collected from the UC Davis Delta Smelt Hatchery in Byron, CA.

| Treatment                       | 96-hr Surv | ival (%) <sup>1</sup> | 7 Day Sur | vival (%) <sup>1</sup> | Biomass (mg) <sup>1</sup> |       |  |
|---------------------------------|------------|-----------------------|-----------|------------------------|---------------------------|-------|--|
| Treatment                       | Mean       | SE                    | Mean      | SE                     | Mean                      | SE    |  |
| DIEPAMH                         | 100.0      | 0.0                   | 100.0     | 0.0                    | 0.369                     | 0.015 |  |
| DIEPAMH @ 900 uS/cm (D900)      | 97.5       | 2.5                   | 97.5      | 2.5                    | 0.332                     | 0.012 |  |
| D900 Solvent Control            | 100.0      | 0.0                   | 97.5      | 2.5                    | 0.377                     | 0.020 |  |
| D900 + 2 ppb Permethrin         | 100.0      | 0.0                   | 100.0     | 0.0                    | 0.379                     | 0.019 |  |
| D900 + 4 ppb Permethrin         | 100.0      | 0.0                   | 97.5      | 2.5                    | 0.422                     | 0.020 |  |
| D900 + 8 ppb Permethrin         | 72.5       | 8.5                   | 62.5      | 11.1                   | 0.470                     | 0.086 |  |
| D900 + 16 ppb Permethrin        | 0.0        | 0.0                   | 0.0       | 0.0                    | 0.000                     | 0.000 |  |
| D900 + 32 ppb Permethrin        | 0.0        | 0.0                   | 0.0       | 0.0                    | 0.000                     | 0.000 |  |
| Hatchery Water @ 900 uS/cm (HW) | 100.0      | 0.0                   | 100.0     | 0.0                    | 0.324                     | 0.059 |  |
| HW Solvent Control              | 100.0      | 0.0                   | 97.5      | 2.5                    | 0.355                     | 0.021 |  |
| HW + 2 ppb Permethrin           | 97.5       | 2.5                   | 97.5      | 2.5                    | 0.387                     | 0.010 |  |
| HW + 4 ppb Permethrin           | 100.0      | 0.0                   | 100.0     | 0.0                    | 0.380                     | 0.035 |  |
| HW + 8 ppb Permethrin           | 92.5       | 4.8                   | 90.0      | 4.1                    | 0.378                     | 0.023 |  |
| HW + 16 ppb Permethrin          | 0.0        | 0.0                   | 0.0       | 0.0                    | 0.000                     | 0.000 |  |
| HW + 32 ppb Permethrin          | 0.0        | 0.0                   | 0.0       | 0.0                    | 0.000                     | 0.000 |  |

<sup>1.</sup> Highlighted areas indicate significant reduction in survival or biomass compared to the solvent control. Data were analyzed using USEPA standard statistical protocols.

Table G2-2. Water chemistry data taken during a *P. promelas* 7-day test initiated 7/07/09 evaluating the toxicity of Permethrin in laboratory control water and in water collected from the UC Davis Delta Smelt Hatchery in Byron, CA.

|                                 |         |          | Laborato  | ry Chemistr | y      |      |      |
|---------------------------------|---------|----------|-----------|-------------|--------|------|------|
| Treatment                       | EC      | Min Temp | Max       | Min DO      | Max DO | Min  | Max  |
|                                 | (uS/cm) | (°C)     | Temp (°C) | (mg/L)      | (mg/L) | pН   | pН   |
| DIEPAMH                         | 329     | 23.5     | 25.1      | 6.5         | 8.4    | 7.55 | 8.22 |
| DIEPAMH @ 900 uS/cm (D900)      | 875     | 23.6     | 25.1      | 6.4         | 8.3    | 7.50 | 8.19 |
| D900 Solvent Control            | 870     | 23.6     | 25.1      | 3.9         | 8.5    | 7.25 | 8.16 |
| D900 + 2 ppb Permethrin         | 872     | 23.8     | 25.1      | 4.1         | 8.4    | 7.28 | 8.18 |
| D900 + 4 ppb Permethrin         | 869     | 24.0     | 25.3      | 4.0         | 8.3    | 7.25 | 8.39 |
| D900 + 8 ppb Permethrin         | 877     | 24.1     | 24.7      | 3.5         | 8.5    | 7.23 | 7.99 |
| D900 + 16 ppb Permethrin        | 877     | 24.2     | 24.7      | 3.9         | 8.2    | 7.25 | 8.01 |
| D900 + 32 ppb Permethrin        | 875     | 24.2     | 24.7      | 3.9         | 8.3    | 7.26 | 8.02 |
| Hatchery Water @ 900 uS/cm (HW) | 878     | 24.0     | 25.4      | 6.6         | 8.6    | 7.56 | 8.37 |
| HW Solvent Control              | 880     | 24.0     | 25.3      | 2.8         | 8.6    | 7.25 | 8.20 |
| HW + 2 ppb Permethrin           | 881     | 23.8     | 25.4      | 6.1         | 8.5    | 7.48 | 8.43 |
| HW + 4 ppb Permethrin           | 879     | 23.8     | 25.3      | 4.2         | 8.4    | 7.27 | 8.12 |
| HW + 8 ppb Permethrin           | 882     | 24.0     | 25.5      | 2.5         | 8.3    | 7.23 | 8.11 |
| HW + 16 ppb Permethrin          | 882     | 24.3     | 24.8      | 1.3         | 8.2    | 7.11 | 8.06 |
| HW + 32 ppb Permethrin          | 880     | 24.2     | 24.8      | 1.3         | 8.2    | 7.16 | 8.05 |

| Treatment                       | Hardness (mg/L<br>as CaCO <sub>3</sub> ) | Alkalinity (mg/L<br>as CaCO <sub>3</sub> ) | Ammonia<br>Nitrogen (mg/L) | Unionized<br>Ammonia (mg/L) <sup>1</sup> |
|---------------------------------|------------------------------------------|--------------------------------------------|----------------------------|------------------------------------------|
| DIEPAMH                         | 80                                       | 56                                         | 0.00                       | 0.000                                    |
| DIEPAMH @ 900 uS/cm (D900)      | 120                                      | 64                                         | 0.02                       | 0.001                                    |
| Hatchery Water @ 900 uS/cm (HW) | 128                                      | 66                                         | 0.05                       | 0.002                                    |

## Appendix H

Hyalella azteca
10-day Survival and Weight Sensitivity Tests

Table H1-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 12/12/08 examining the toxicity of cyfluthrin.

| examining the toxicity of cylluthrin.                |                 |     |                 |     |                                                     |       |  |  |  |  |
|------------------------------------------------------|-----------------|-----|-----------------|-----|-----------------------------------------------------|-------|--|--|--|--|
| Treatment                                            | 96-h<br>Surviva |     | 10-c<br>Surviva |     | Weight<br>(mg/surviving<br>individual) <sup>1</sup> |       |  |  |  |  |
|                                                      | mean            | se  | mean            | se  | mean                                                | se    |  |  |  |  |
| DIEPAMHR (Method Control)                            | 100             | 0.0 | 97              | 2.8 | 0.060                                               | 0.006 |  |  |  |  |
| DIEPAMHR @ 900 uS/cm (D900)                          | 100             | 0.0 | 100             | 0.0 | 0.057                                               | 0.008 |  |  |  |  |
| D900 Solvent Control                                 | 100             | 0.0 | 100             | 0.0 | 0.042                                               | 0.005 |  |  |  |  |
| D900 w/ 0.977 pptr Cyfluthrin                        | 98              | 2.5 | 98              | 2.5 | 0.040                                               | 0.006 |  |  |  |  |
| D900 w/ 1.953 pptr Cyfluthrin                        | 100             | 0.0 | 100             | 0.0 | 0.053                                               | 0.005 |  |  |  |  |
| D900 w/ 3.906 pptr Cyfluthrin <sup>2</sup>           | 20              | 8.2 | 15              | 9.6 | 0.067                                               | 0.003 |  |  |  |  |
| D900 w/ 7.813 pptr Cyfluthrin <sup>2</sup>           | 3               | 2.5 | 3               | 2.5 | 0.080                                               | -     |  |  |  |  |
| D900 w/ 15.625 pptr Cyfluthrin                       | 0               | 0.0 | 0               | 0.0 | -                                                   |       |  |  |  |  |
| Hatchery Water                                       | 100             | 0.0 | 100             | 0.0 | 0.064                                               | 0.004 |  |  |  |  |
| Hatchery Water Solvent Control                       | 98              | 2.5 | 98              | 2.5 | 0.073                                               | 0.004 |  |  |  |  |
| Hatchery Water w/ 0.977 pptr Cyfluthrin              | 98              | 2.5 | 98              | 2.5 | 0.050                                               | 0.003 |  |  |  |  |
| Hatchery Water w/ 1.953 pptr Cyfluthrin              | 72              | 6.0 | 65              | 8.4 | 0.057                                               | 0.004 |  |  |  |  |
| Hatchery Water w/ 3.906 pptr Cyfluthrin <sup>2</sup> | 20              | 5.8 | 8               | 2.5 | 0.187                                               | 0.020 |  |  |  |  |
| Hatchery Water w/ 7.813 pptr Cyfluthrin              | 0               | 0.0 | 0               | 0.0 | -                                                   | -     |  |  |  |  |
| Hatchery Water w/ 15.625 pptr Cyfluthrin             | 0               | 0.0 | 0               | 0.0 | -                                                   |       |  |  |  |  |

 $<sup>1. \</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control.\\$ 

Table H1-2. Summary of water chemistry during a *H. azteca* initial screening toxicity test initiated on 12/12/08 examining the toxicity of cyfluthrin.

|                                          |            |                     | Lat                 | oratory Che      | mistry           |        |        |
|------------------------------------------|------------|---------------------|---------------------|------------------|------------------|--------|--------|
| Treatment                                | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min DO<br>(mg/L) | Max DO<br>(mg/L) | Min pH | Max pH |
| DIEPAMHR (Method Control)                | 346        | 20.2                | 24.6                | 7.2              | 8.8              | 7.72   | 8.03   |
| DIEPAMHR @ 900 uS/cm (D900)              | 650        | 20.2                | 24.8                | 7.3              | 8.5              | 7.70   | 7.95   |
| D900 Solvent Control                     | 643        | 20.5                | 25.0                | 5.0              | 8.2              | 7.41   | 8.00   |
| D900 w/ 0.977 pptr Cyfluthrin            | 919        | 20.1                | 24.9                | 6.9              | 8.6              | 7.56   | 7.92   |
| D900 w/ 1.953 pptr Cyfluthrin            | 916        | 19.9                | 24.8                | 6.9              | 8.3              | 7.69   | 7.95   |
| D900 w/ 3.906 pptr Cyfluthrin            | 909        | 20.3                | 24.9                | 7.2              | 8.6              | 7.74   | 7.94   |
| D900 w/ 7.813 pptr Cyfluthrin            | 890        | 20.3                | 24.8                | 6.6              | 8.4              | 7.72   | 7.94   |
| D900 w/ 15.625 pptr Cyfluthrin           | 833        | 21.1                | 23.3                | 7.9              | 8.1              | 7.92   | 8.07   |
| Hatchery Water                           | 885        | 20.0                | 24.4                | 6.7              | 8.2              | 7.96   | 8.09   |
| Hatchery Water Solvent Control           | 871        | 19.9                | 24.5                | 3.6              | 8.2              | 7.49   | 8.10   |
| Hatchery Water w/ 0.977 pptr Cyfluthrin  | 888        | 20.3                | 24.5                | 6.7              | 8.4              | 7.89   | 8.13   |
| Hatchery Water w/ 1.953 pptr Cyfluthrin  | 894        | 19.4                | 24.3                | 7.0              | 8.4              | 7.89   | 8.14   |
| Hatchery Water w/ 3.906 pptr Cyfluthrin  | 889        | 20.3                | 24.3                | 7.2              | 8.5              | 7.94   | 8.14   |
| Hatchery Water w/ 7.813 pptr Cyfluthrin  | 846        | 21.5                | 23.6                | 8.0              | 8.0              | 8.06   | 8.25   |
| Hatchery Water w/ 15.625 pptr Cyfluthrin | 845        | 21.3                | 23.7                | 8.0              | 8.1              | 8.01   | 8.24   |

<sup>2.</sup> These treatments were excluded from analysis of weight effects because of the difficulty of weighing a small number of surviving animals.

Table H2-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 12/30/08 examining the toxicity of diazinon.

| Treatment                                        |      | 96-hr<br>Survival<br>(%) <sup>1</sup> |      | 10-day<br>Survival (%) <sup>1</sup> |       | ight<br>rviving<br>dual) <sup>1</sup> |
|--------------------------------------------------|------|---------------------------------------|------|-------------------------------------|-------|---------------------------------------|
|                                                  | mean | se                                    | mean | se                                  | mean  | se                                    |
| DIEPAMHR (Method Control)                        | 100  | 0.0                                   | 93   | 2.5                                 | 0.029 | 0.009                                 |
| DIEPAMHR @ 900 uS/cm (D900)                      | 100  | 0.0                                   | 100  | 0.0                                 | 0.047 | 0.002                                 |
| D900 w/ 0.05% Methanol Control                   | 100  | 0.0                                   | 100  | 0.0                                 | 0.043 | 0.006                                 |
| D900 w/ 0.50 ppb Diazinon                        | 100  | 0.0                                   | 100  | 0.0                                 | 0.040 | 0.003                                 |
| D900 w/ 1.00 ppb Diazinon                        | 100  | 0.0                                   | 100  | 0.0                                 | 0.038 | 0.004                                 |
| D900 w/ 2.00 ppb Diazinon                        | 100  | 0.0                                   | 75   | 9.5                                 | 0.019 | 0.005                                 |
| D900 w/ 4.00 ppb Diazinon <sup>2</sup>           | 58   | 8.5                                   | 13   | 4.8                                 | 0.020 | 0.005                                 |
| D900 w/ 8.00 ppb Diazinon                        | 5    | 3.1                                   | 0    | 0.0                                 | -     | -                                     |
| Hatchery Water                                   | 98   | 2.5                                   | 98   | 2.5                                 | 0.037 | 0.004                                 |
| Hatchery Water w/ 0.05% Methanol Control         | 100  | 0.0                                   | 100  | 0.0                                 | 0.045 | 0.003                                 |
| Hatchery Water w/ 0.05 ppb Diazinon              | 100  | 0.0                                   | 100  | 0.0                                 | 0.049 | 0.003                                 |
| Hatchery Water w/ 1.00 ppb Diazinon              | 98   | 2.5                                   | 98   | 2.5                                 | 0.039 | 0.002                                 |
| Hatchery Water w/ 2.00 ppb Diazinon              | 100  | 0.0                                   | 95   | 2.8                                 | 0.033 | 0.002                                 |
| Hatchery Water w/ 4.00 ppb Diazinon <sup>2</sup> | 68   | 13.1                                  | 23   | 2.5                                 | 0.013 | 0.004                                 |
| Hatchery Water w/ 8.00 ppb Diazinon              | 5    | 2.9                                   | 0    | 0.0                                 |       |                                       |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control.

Table H2-2. Summary of water chemistry during a *H. azteca* toxicity test initiated on 12/30/08 examining the toxicity of diazinon.

| Treatment                                | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min DO<br>(mg/L) | Max DO (mg/L) | Min pH | Max pH |
|------------------------------------------|------------|---------------------|---------------------|------------------|---------------|--------|--------|
| DIEPAMHR (Method Control)                | 314        | 20.4                | 24.1                | 7.3              | 8.8           | 7.83   | 8.24   |
| DIEPAMHR @ 900 uS/cm (D900)              | 854        | 20.3                | 24.0                | 7.2              | 8.9           | 7.71   | 8.22   |
| D900 w/ 0.05% Methanol Control           | 852        | 20.6                | 24.2                | 4.1              | 8.6           | 7.47   | 8.13   |
| D900 w/ 0.50 ppb Diazinon                | 853        | 20.5                | 24.1                | 6.9              | 8.8           | 7.68   | 8.22   |
| D900 w/ 1.00 ppb Diazinon                | 856        | 20.5                | 23.9                | 7.1              | 8.8           | 7.70   | 8.11   |
| D900 w/ 2.00 ppb Diazinon                | 855        | 20.6                | 24.1                | 7.0              | 8.7           | 7.67   | 8.17   |
| D900 w/ 4.00 ppb Diazinon                | 866        | 20.6                | 25.1                | 4.6              | 8.6           | 7.51   | 8.13   |
| D900 w/ 8.00 ppb Diazinon                | 810        | 20.5                | 24.4                | 5.1              | 8.6           | 7.61   | 8.16   |
| Hatchery Water                           | 866        | 19.3                | 23.5                | 7.5              | 8.7           | 7.97   | 8.16   |
| Hatchery Water w/ 0.05% Methanol Control | 864        | 20.2                | 24.0                | 3.4              | 8.7           | 7.53   | 8.14   |
| Hatchery Water w/ 0.05 ppb Diazinon      | 872        | 20.5                | 23.7                | 7.5              | 8.8           | 7.89   | 8.16   |
| Hatchery Water w/ 1.00 ppb Diazinon      | 863        | 20.7                | 23.6                | 7.1              | 8.7           | 7.87   | 8.13   |
| Hatchery Water w/ 2.00 ppb Diazinon      | 879        | 20.7                | 23.4                | 4.0              | 8.8           | 7.57   | 8.11   |
| Hatchery Water w/ 4.00 ppb Diazinon      | 867        | 20.6                | 23.5                | 4.0              | 8.7           | 7.56   | 8.16   |
| Hatchery Water w/ 8.00 ppb Diazinon      | 822        | 20.4                | 23.9                | 3.9              | 8.6           | 7.55   | 8.13   |

<sup>2.</sup> These treatments were excluded from analysis of weight effects because of the difficulty of weighing a small number of surviving animals.

Table H3-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 1/14/09 examining the toxicity of bifenthrin.

| Treatment                                         | Measured<br>Bifenthrin<br>(pptr) | Survi | 96-hr<br>Survival<br>(%) <sup>1</sup> |      | 10-day<br>Survival<br>(%) <sup>1</sup> |       | ight<br>rviving<br>dual) <sup>1</sup> |
|---------------------------------------------------|----------------------------------|-------|---------------------------------------|------|----------------------------------------|-------|---------------------------------------|
|                                                   | (PP <sup>ti</sup> )              | mean  | se                                    | mean | se                                     | mean  | se                                    |
| DIEPAMHR (Method Control)                         |                                  | 100   | 0.0                                   | 100  | 0.0                                    | 0.062 | 0.006                                 |
| DIEPAMHR @ 900 uS/cm (D900)                       |                                  | 100   | 0.0                                   | 100  | 0.0                                    | 0.078 | 0.008                                 |
| D900 w/ 0.05% Methanol Control                    | ND                               | 98    | 2.5                                   | 98   | 2.5                                    | 0.069 | 0.004                                 |
| D900 w/ 1.0 pptr Bifenthrin                       | 0.6                              | 100   | 0.0                                   | 100  | 0.0                                    | 0.062 | 0.010                                 |
| D900 w/ 2.0 pptr Bifenthrin                       |                                  | 98    | 2.5                                   | 98   | 2.5                                    | 0.053 | 0.004                                 |
| D900 w/ 4 pptr Bifenthrin                         | 2.0                              | 100   | 0.0                                   | 100  | 0.0                                    | 0.045 | 0.003                                 |
| D900 w/ 8 pptr Bifenthrin <sup>2</sup>            |                                  | 75    | 5.0                                   | 35   | 6.5                                    | 0.028 | 0.007                                 |
| D900 w/ 16 pptr Bifenthrin                        | 8.0                              | 8     | 4.8                                   | 0    | 0.0                                    | -     | -                                     |
| Hatchery Water                                    | ND                               | 100   | 0.0                                   | 100  | 0.0                                    | 0.101 | 0.004                                 |
| Hatchery Water w/ 0.05% Methanol Control          | ND                               | 100   | 0.0                                   | 100  | 0.0                                    | 0.088 | 0.005                                 |
| Hatchery Water w/ 1 pptr Bifenthrin               | ND                               | 100   | 0.0                                   | 100  | 0.0                                    | 0.089 | 0.010                                 |
| Hatchery Water w/ 2 pptr Bifenthrin               | ND                               | 100   | 0.0                                   | 100  | 0.0                                    | 0.055 | 0.010                                 |
| Hatchery Water w/ 4 pptr Bifenthrin               | 1.0                              | 100   | 0.0                                   | 98   | 2.5                                    | 0.050 | 0.002                                 |
| Hatchery Water w/ 8 pptr Bifenthrin <sup>2</sup>  | 3.0                              | 90    | 4.1                                   | 33   | 19.2                                   | 0.055 | 0.016                                 |
| Hatchery Water w/ 16 pptr Bifenthrin <sup>3</sup> | 6.0                              | 13    | 6.3                                   | 3    | 2.5                                    | 0.090 | -                                     |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control.

Table H3-2. Summary of water chemistry during a 10-day H. azteca test initiated on 1/14/09 examining the toxicity of bifenthrin.

| Treatment                                | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min DO<br>(mg/L) | Max DO (mg/L) | Min<br>pH | Max<br>pH |
|------------------------------------------|------------|---------------------|---------------------|------------------|---------------|-----------|-----------|
| DIEPAMHR (Method Control)                | 321        | 21.8                | 24.4                | 7.5              | 8.6           | 7.82      | 8.28      |
| DIEPAMHR @ 900 uS/cm (D900)              | 846        | 22.0                | 24.1                | 7.6              | 8.4           | 7.84      | 8.16      |
| D900 w/ 0.05% Methanol Control           | 840        | 22.0                | 24.4                | 4.1              | 8.6           | 7.49      | 8.13      |
| D900 w/ 1 pptr Bifenthrin                | 856        | 22.3                | 24.2                | 7.6              | 8.5           | 7.88      | 8.11      |
| D900 w/ 2 pptr Bifenthrin                | 839        | 22.1                | 24.5                | 7.4              | 8.6           | 7.81      | 8.14      |
| D900 w/ 4 pptr Bifenthrin                | 854        | 22.2                | 24.4                | 7.4              | 8.6           | 7.87      | 8.18      |
| D900 w/8 pptr Bifenthrin                 | 841        | 22.2                | 24.6                | 7.7              | 8.6           | 7.85      | 8.18      |
| D900 w/ 16 pptr Bifenthrin               | 829        | 22.4                | 24.4                | 7.2              | 8.5           | 7.82      | 8.09      |
| Hatchery Water                           | 841        | 22.3                | 23.8                | 7.5              | 8.7           | 7.93      | 8.19      |
| Hatchery Water w/ 0.05% Methanol Control | 840        | 22.3                | 23.9                | 3.6              | 8.7           | 7.45      | 8.18      |
| Hatchery Water w/ 1 pptr Bifenthrin      | 855        | 22.2                | 25.5                | 7.6              | 8.8           | 7.92      | 8.14      |
| Hatchery Water w/ 2 pptr Bifenthrin      | 853        | 22.1                | 24.0                | 7.6              | 8.9           | 5.08      | 8.20      |
| Hatchery Water w/ 4 pptr Bifenthrin      | 850        | 21.9                | 24.1                | 7.6              | 8.7           | 7.98      | 8.29      |
| Hatchery Water w/ 8 pptr Bifenthrin      | 842        | 22.1                | 24.0                | 7.7              | 8.8           | 7.92      | 8.13      |
| Hatchery Water w/ 16 pptr Bifenthrin     | 839        | 22.2                | 24.0                | 7.5              | 8.6           | 7.91      | 8.15      |

<sup>2.</sup> These treatments were excluded from analysis of weight effects because of the difficulty of weighing a small number of surviving animals.

<sup>3.</sup> This treatment was excluded from analysis of weight because surviving animals were found in only one replicate.

Table H4-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 1/15/08 examining the toxicity of chlorpyrifos.

| Treatment                                            | Measured<br>Chlorpyrifos | 96-hr Survival (%) <sup>1</sup> |      | 10-day Survival<br>(%) <sup>1</sup> |      | Weight (mg/surviving individual) <sup>1</sup> |       |
|------------------------------------------------------|--------------------------|---------------------------------|------|-------------------------------------|------|-----------------------------------------------|-------|
|                                                      | (pptr)                   | mean                            | se   | mean                                | se   | mean                                          | se    |
| DIEPAMHR (Method Control)                            |                          | 100                             | 0.0  | 100                                 | 0.0  | 0.073                                         | 0.005 |
| DIEPAMHR @ 900 uS/cm (D900)                          |                          | 100                             | 0.0  | 100                                 | 0.0  | 0.089                                         | 0.005 |
| D900 w/ 0.05% Methanol Control                       | ND                       | 100                             | 0.0  | 100                                 | 0.0  | 0.071                                         | 0.004 |
| D900 w/ 31.25 pptr Chlorpyrifos                      | 14                       | 100                             | 0.0  | 98                                  | 2.5  | 0.080                                         | 0.005 |
| D900 w/ 62.5 pptr Chlorpyrifos                       |                          | 98                              | 2.5  | 98                                  | 2.5  | 0.092                                         | 0.006 |
| D900 w/ 125 pptr Chlorpyrifos <sup>2</sup>           | 128                      | 68                              | 13.1 | 31                                  | 13.1 | 0.096                                         | 0.002 |
| D900 w/ 250 pptr Chlorpyrifos                        |                          | 3                               | 2.5  | 0                                   | 0.0  | -                                             | -     |
| D900 w/ 500 pptr Chlorpyrifos                        | 540                      | 0                               | 0.0  | 0                                   | 0.0  | -                                             | -     |
| Hatchery Water                                       | ND                       | 100                             | 0.0  | 100                                 | 0.0  | 0.102                                         | 0.006 |
| Hatchery Water w/ 0.05% Methanol Control             | ND                       | 100                             | 0.0  | 100                                 | 0.0  | 0.097                                         | 0.007 |
| Hatchery Water w/ 31.25 pptr Chlorpyrifos            | 17                       | 100                             | 0.0  | 100                                 | 0.0  | 0.101                                         | 0.007 |
| Hatchery Water w/ 62.5 pptr Chlorpyrifos             | 66                       | 100                             | 0.0  | 100                                 | 0.0  | 0.089                                         | 0.008 |
| Hatchery Water w/ 125 pptr Chlorpyrifos <sup>2</sup> | 133                      | 59                              | 4.2  | 21                                  | 8.2  | 0.123                                         | 0.011 |
| Hatchery Water w/ 250 pptr Chlorpyrifos              | 252                      | 0                               | 0.0  | 0                                   | 0.0  | -                                             | -     |
| Hatchery Water w/ 500 pptr Chlorpyrifos              | 420                      | 0                               | 0.0  | 0                                   | 0.0  | -                                             | -     |

Table H4-2. Summary of water chemistry during a H. azteca 10-day test initiated on 1/15/09 examining the toxicity of chlorphyrifos.

| Treatment                                 | EC (uS/cm) | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min DO<br>(mg/L) | Max DO (mg/L) | Min<br>pH | Max<br>pH |
|-------------------------------------------|------------|---------------------|---------------------|------------------|---------------|-----------|-----------|
| DIEPAMHR (Method Control)                 | 323        | 19.9                | 23.4                | 7.9              | 8.7           | 7.94      | 8.28      |
| DIEPAMHR @ 900 uS/cm (D900)               | 845        | 20.0                | 23.5                | 7.9              | 8.6           | 7.86      | 8.19      |
| D900 w/ 0.05% Methanol Control            | 848        | 20.4                | 23.6                | 4.2              | 8.5           | 7.65      | 8.17      |
| D900 w/ 31.25 pptr Chlorpyrifos           | 843        | 20.4                | 23.8                | 7.6              | 8.7           | 7.78      | 8.22      |
| D900 w/ 62.5 pptr Chlorpyrifos            | 853        | 22.1                | 23.8                | 7.2              | 8.6           | 7.82      | 8.17      |
| D900 w/ 125 pptr Chlorpyrifos             | 863        | 20.7                | 23.8                | 6.8              | 8.5           | 7.74      | 8.22      |
| D900 w/ 250 pptr Chlorpyrifos             | 818        | 22.2                | 23.7                | 4.9              | 8.4           | 7.63      | 8.10      |
| D900 w/ 500 pptr Chlorpyrifos             | 882        | 22.9                | 23.5                | 6.8              | 8.4           | 7.72      | 8.06      |
| Hatchery Water                            | 859        | 21.9                | 23.5                | 7.4              | 8.8           | 8.02      | 8.15      |
| Hatchery Water w/ 0.05% Methanol Control  | 855        | 22.4                | 23.3                | 3.8              | 8.8           | 7.58      | 8.16      |
| Hatchery Water w/ 31.25 pptr Chlorpyrifos | 865        | 21.7                | 23.6                | 7.7              | 8.7           | 8.02      | 8.18      |
| Hatchery Water w/ 62.5 pptr Chlorpyrifos  | 879        | 22.1                | 23.6                | 7.7              | 8.9           | 8.02      | 8.15      |
| Hatchery Water w/ 125 pptr Chlorpyrifos   | 863.5      | 21.9                | 23.7                | 7.6              | 8.9           | 7.93      | 8.17      |
| Hatchery Water w/ 250 pptr Chlorpyrifos   | 822        | 20.8                | 23.8                | 6.9              | 8.8           | 7.71      | 8.10      |
| Hatchery Water w/ 500 pptr Chlorpyrifos   | 877.5      | 23.1                | 23.5                | 4.5              | 8.5           | 7.59      | 8.15      |

Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control.
 These treatments were excluded from analysis of weight effects because of the difficulty of weighing a small number of surviving animals.

Table H5-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 1/21/09 examining the toxicity of permethrin in a variety of matrices.

| Treatment                                | Measured<br>Permethrin |      | 96-hr Survival (%) <sup>1</sup> |      | 10-day<br>Survival (%) <sup>1</sup> |       | ight<br>rviving<br>dual) <sup>1</sup> |
|------------------------------------------|------------------------|------|---------------------------------|------|-------------------------------------|-------|---------------------------------------|
|                                          | (pptr)                 | mean | se                              | mean | se                                  | mean  | se                                    |
| DIEPAMHR (Method Control)                |                        | 100  | 0.0                             | 100  | 0.0                                 | 0.054 | 0.004                                 |
| DIEPAMHR @ 900 uS/cm (D900)              | 16                     | 100  | 0.0                             | 100  | 0.0                                 | 0.062 | 0.004                                 |
| D900 w/ 0.05% Methanol Control           |                        | 100  | 0.0                             | 100  | 0.0                                 | 0.060 | 0.005                                 |
| D900 w/ 6.25 pptr Permethrin             | 6                      | 100  | 0.0                             | 98   | 2.5                                 | 0.045 | 0.003                                 |
| D900 w/ 12.5 pptr Permethrin             |                        | 100  | 0.0                             | 100  | 0.0                                 | 0.041 | 0.007                                 |
| D900 w/ 25 pptr Permethrin               | 19                     | 100  | 0.0                             | 100  | 0.0                                 | 0.044 | 0.011                                 |
| D900 w/ 50 pptr Permethrin               |                        | 100  | 0.0                             | 98   | 2.5                                 | 0.051 | 0.005                                 |
| D900 w/ 100 pptr Permethrin <sup>2</sup> | 90                     | 45   | 17.1                            | 15   | 5.0                                 | 0.090 | 0.037                                 |
| Hatchery Water                           | ND                     | 100  | 0.0                             | 100  | 0.0                                 | 0.061 | 0.007                                 |
| Hatchery Water w/ 0.05% Methanol Control | ND                     | 100  | 0.0                             | 100  | 0.0                                 | 0.038 | 0.004                                 |
| Hatchery Water w/ 6.25 pptr Permethrin   | 15                     | 100  | 0.0                             | 100  | 0.0                                 | 0.072 | 0.007                                 |
| Hatchery Water w/ 12.5 pptr Permethrin   | 14                     | 100  | 0.0                             | 100  | 0.0                                 | 0.062 | 0.004                                 |
| Hatchery Water w/ 25 pptr Permethrin     | 19                     | 100  | 0.0                             | 94   | 5.6                                 | 0.041 | 0.008                                 |
| Hatchery Water w/ 50 pptr Permethrin     | 40                     | 95   | 2.9                             | 93   | 2.5                                 | 0.033 | 0.010                                 |
| Hatchery Water w/ 100 pptr Permethrin    | 69                     | 98   | 2.5                             | 72   | 6.0                                 | 0.038 | 0.004                                 |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control.

Table H5-2. Summary of water chemistry during a *H. azteca* 10-day test initiated on 1/21/09 examining the toxicity of permethrin.

|                                          | Laboratory Chemistry |                     |                     |                  |               |           |           |
|------------------------------------------|----------------------|---------------------|---------------------|------------------|---------------|-----------|-----------|
| Treatment                                | EC (uS/cm)           | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min DO<br>(mg/L) | Max DO (mg/L) | Min<br>pH | Max<br>pH |
| DIEPAMHR (Method Control)                | 325                  | 20.2                | 23.6                | 8.0              | 8.6           | 7.76      | 8.24      |
| DIEPAMHR @ 900 uS/cm (D900)              | 821                  | 20.2                | 23.4                | 8.2              | 8.7           | 7.56      | 8.40      |
| D900 w/ 0.05% Methanol Control           | 843                  | 21.0                | 23.7                | 4.0              | 8.8           | 7.56      | 8.10      |
| D900 w/ 6.25 pptr Permethrin             | 831                  | 20.9                | 23.8                | 8.0              | 8.7           | 7.75      | 8.13      |
| D900 w/ 12.5 pptr Permethrin             | 870                  | 21.2                | 23.7                | 8.1              | 8.9           | 7.78      | 8.16      |
| D900 w/ 25 pptr Permethrin               | 836                  | 21.1                | 23.9                | 8.0              | 8.7           | 7.69      | 8.20      |
| D900 w/ 50 pptr Permethrin               | 859                  | 21.2                | 23.6                | 7.9              | 8.8           | 7.80      | 8.16      |
| D900 w/ 100 pptr Permethrin              | 856                  | 21.3                | 23.8                | 7.6              | 8.8           | 7.71      | 8.19      |
| Hatchery Water                           | 871                  | 21.8                | 23.9                | 7.9              | 8.9           | 7.98      | 8.19      |
| Hatchery Water w/ 0.05% Methanol Control | 867                  | 21.3                | 23.7                | 3.5              | 8.7           | 7.56      | 8.19      |
| Hatchery Water w/ 6.25 pptr Permethrin   | 771                  | 21.8                | 23.9                | 8.0              | 8.8           | 7.98      | 8.18      |
| Hatchery Water w/ 12.5 pptr Permethrin   | 881                  | 21.3                | 23.9                | 8.0              | 8.9           | 7.99      | 8.15      |
| Hatchery Water w/ 25 pptr Permethrin     | 857                  | 21.6                | 23.9                | 7.7              | 8.8           | 7.99      | 8.18      |
| Hatchery Water w/ 50 pptr Permethrin     | 864                  | 21.7                | 23.9                | 8.0              | 8.8           | 7.99      | 8.14      |
| Hatchery Water w/ 100 pptr Permethrin    | 861                  | 21.8                | 24.0                | 7.9              | 8.8           | 7.98      | 8.18      |

<sup>2.</sup> These treatments were excluded from analysis of weight effects because of the difficulty of weighing a small number of surviving animals.

Table H6-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 4/10/09 examining the toxicity of ammonia.

| Treatment                                                  | Ammonia<br>Nitrogen<br>(mg/L) |       | 96-hour<br>Survival (%) <sup>1</sup> |     |      |     | 10-day Su<br>(%) <sup>1</sup> | rvival |  | ight<br>rviving<br>dual) <sup>1</sup> |
|------------------------------------------------------------|-------------------------------|-------|--------------------------------------|-----|------|-----|-------------------------------|--------|--|---------------------------------------|
|                                                            | (8 —)                         | (8/)  | Mean                                 | SE  | Mean | SE  | Mean                          | SE     |  |                                       |
| DIEPAMHR (Method Control)                                  | 0.02                          | 0.001 | 98                                   | 2.5 | 95   | 2.9 | 0.057                         | 0.006  |  |                                       |
| DIEPAMHR @ 900 μS/cm (D900)                                | 0.03                          | 0.002 | 100                                  | 0.0 | 98   | 2.5 | 0.083                         | 0.003  |  |                                       |
| D900 w/ 6.25 mg/L NH <sub>4</sub> Cl                       | 4.70                          | 0.236 | 100                                  | 0.0 | 100  | 0.0 | 0.084                         | 0.004  |  |                                       |
| D900 w/ 12.5 mg/L NH <sub>4</sub> Cl                       | 9.05                          | 0.368 | 100                                  | 0.0 | 100  | 0.0 | 0.063                         | 0.012  |  |                                       |
| D900 w/ 25 mg/L NH <sub>4</sub> Cl                         | 19.0                          | 0.658 | 97                                   | 2.8 | 92   | 8.3 | 0.066                         | 0.004  |  |                                       |
| D900 w/ 50 mg/L NH <sub>4</sub> Cl                         | 37.0                          | 1.010 | 92                                   | 5.3 | 89   | 4.6 | 0.046                         | 0.010  |  |                                       |
| D900 w/ 100 mg/L NH <sub>4</sub> Cl                        | 78.0                          | 1.512 | 69                                   | 3.6 | 49   | 4.3 | 0.033                         | 0.005  |  |                                       |
| D900 w/ 200 mg/L NH <sub>4</sub> Cl                        | 158.4                         | 2.107 | 23                                   | 9.9 | 0    | 0.0 | -                             | -      |  |                                       |
| Hatchery Water                                             | 0.1                           | 0.007 | 100                                  | 0.0 | 100  | 0.0 | 0.056                         | 0.005  |  |                                       |
| Hatchery Water w/ 6.25 mg/L NH <sub>4</sub> Cl             | 4.85                          | 0.279 | 100                                  | 0.0 | 100  | 0.0 | 0.072                         | 0.010  |  |                                       |
| Hatchery Water w/ 12.5 mg/L NH <sub>4</sub> Cl             | 10.15                         | 0.554 | 100                                  | 0.0 | 100  | 0.0 | 0.055                         | 0.006  |  |                                       |
| Hatchery Water w/ 25 mg/L NH <sub>4</sub> Cl               | 19.4                          | 0.793 | 100                                  | 0.0 | 98   | 2.5 | 0.071                         | 0.004  |  |                                       |
| Hatchery Water w/ 50 mg/L NH <sub>4</sub> Cl               | 39.2                          | 1.378 | 92                                   | 5.3 | 84   | 3.1 | 0.059                         | 0.009  |  |                                       |
| Hatchery Water w/ 100 mg/L NH <sub>4</sub> Cl              | 76.0                          | 1.702 | 86                                   | 5.5 | 50   | 9.6 | 0.034                         | 0.005  |  |                                       |
| Hatchery Water w/ 200 mg/L NH <sub>4</sub> Cl <sup>2</sup> | 156.8                         | 2.500 | 44                                   | 5.2 | 11   | 7.9 | 0.125                         | 0.045  |  |                                       |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard statistical protocols.

Table H6-2. Water chemistry during a 10-day H. azteca water column toxicity test initiated on 4/10/09 examining the toxicity of ammonia.

| Treatment                                      | Initial<br>EC | Temp | p (°C) | DO ( | mg/L) | p    | Н    | Amm<br>Nitro<br>(mg | ogen  |         | nized<br>nonia<br>g/L) |
|------------------------------------------------|---------------|------|--------|------|-------|------|------|---------------------|-------|---------|------------------------|
|                                                | (uS/cm)       | Min  | Max    | Min  | Max   | Min  | Max  | Initial             | Final | Initial | Final                  |
| DIEPAMHR (Method Control)                      | 338           | 23.1 | 23.7   | 5.8  | 8.7   | 7.43 | 8.18 | 0.02                | 0.71  | 0.001   | 0.019                  |
| DIEPAMHR @ 900 μS/cm (D900)                    | 881           | 23.2 | 23.8   | 5.6  | 8.6   | 7.40 | 8.17 | 0.03                | 0.65  | 0.002   | 0.010                  |
| D900 w/ 6.25 mg/L NH <sub>4</sub> Cl           | 917           | 23.2 | 23.8   | 5.8  | 8.7   | 7.41 | 8.06 | 4.70                | 1.78  | 0.236   | 0.043                  |
| D900 w/ 12.5 mg/L NH <sub>4</sub> Cl           | 956           | 23.2 | 23.7   | 6.2  | 8.8   | 7.35 | 7.97 | 9.05                | 1.79  | 0.368   | 0.035                  |
| D900 w/ 25 mg/L NH <sub>4</sub> Cl             | 1039          | 23.2 | 24.0   | 6.4  | 8.7   | 7.39 | 7.89 | 19.0                | 1.69  | 0.658   | 0.037                  |
| D900 w/ 50 mg/L NH <sub>4</sub> Cl             | 1214          | 23.2 | 23.6   | 6.5  | 8.7   | 7.36 | 7.80 | 37.0                | 1.69  | 1.010   | 0.030                  |
| D900 w/ 100 mg/L NH <sub>4</sub> Cl            | 1567          | 23.1 | 24.1   | 6.6  | 8.9   | 7.29 | 7.64 | 78.0                | 1.67  | 1.512   | 0.022                  |
| D900 w/ 200 mg/L NH <sub>4</sub> Cl            | 2157          | 23.9 | 23.9   | 6.7  | 8.6   | 7.10 | 7.49 | 158.4               | -     | 2.107   | -                      |
| Hatchery Water                                 | 883           | 23.1 | 23.5   | 5.5  | 8.9   | 7.57 | 8.19 | 0.10                | 0.63  | 0.007   | 0.024                  |
| Hatchery Water w/ 6.25 mg/L NH <sub>4</sub> Cl | 910           | 23.3 | 23.9   | 6.6  | 8.4   | 7.54 | 8.12 | 4.85                | 1.69  | 0.279   | 0.063                  |
| Hatchery Water w/ 12.5 mg/L NH <sub>4</sub> Cl | 958           | 23.2 | 23.8   | 6.5  | 8.5   | 7.55 | 8.10 | 10.15               | 1.66  | 0.554   | 0.051                  |
| Hatchery Water w/ 25 mg/L NH <sub>4</sub> Cl   | 1046          | 23.4 | 23.5   | 6.3  | 8.7   | 7.52 | 7.98 | 19.4                | 1.55  | 0.793   | 0.042                  |
| Hatchery Water w/ 50 mg/L NH <sub>4</sub> Cl   | 1213          | 23.4 | 23.7   | 6.6  | 8.3   | 7.50 | 7.91 | 39.2                | 1.67  | 1.378   | 0.035                  |
| Hatchery Water w/ 100 mg/L NH <sub>4</sub> Cl  | 1567          | 23.7 | 23.9   | 6.6  | 8.4   | 7.39 | 7.71 | 76.0                | 1.74  | 1.702   | 0.027                  |
| Hatchery Water w/ 200 mg/L NH <sub>4</sub> Cl  | 2204          | 23.5 | 23.9   | 6.5  | 8.6   | 7.22 | 7.57 | 156.8               | 1.60  | 2.500   | 0.018                  |

<sup>2.</sup> This treatment was excluded from weight dose-response calculations because of a lack of precision in weighing the few surviving test animals.

Table H7-1. Summary of 10-day *H. azteca* water column toxicity test initiated on 4/10/09 examining the toxicity of copper.

| Treatment                          | 96-hour S<br>(%) | •    | 10-day Survival<br>(%) <sup>1</sup> |     | Weight<br>(mg/surviving<br>individual) <sup>1</sup> |       |
|------------------------------------|------------------|------|-------------------------------------|-----|-----------------------------------------------------|-------|
|                                    | Mean             | SE   | Mean                                | SE  | Mean                                                | SE    |
| DIEPAMHR (Method Control)          | 100              | 0.0  | 92                                  | 2.6 | 0.068                                               | 0.004 |
| DIEPAMHR @ 900 μS/cm (D900)        | 100              | 0.0  | 100                                 | 0.0 | 0.080                                               | 0.003 |
| D900 w/ 0.125 ppm Copper           | 100              | 0.0  | 90                                  | 4.1 | 0.027                                               | 0.004 |
| D900 w/ 0.250 ppm Copper           | 98               | 2.5  | 7                                   | 7.1 | -                                                   | -     |
| D900 w/ 0.500 ppm Copper           | 42               | 7.8  | 4                                   | 3.6 | -                                                   | -     |
| D900 w/ 1.000 ppm Copper           | 5                | 3.1  | 0                                   | 0.0 | -                                                   | -     |
| D900 w/ 2.000 ppm Copper           | 0                | 0.0  | 0                                   | 0.0 | -                                                   | -     |
| Hatchery Water                     | 100              | 0.0  | 100                                 | 0.0 | 0.095                                               | 0.012 |
| Hatchery Water w/ 0.125 ppm Copper | 100              | 0.0  | 100                                 | 0.0 | 0.047                                               | 0.009 |
| Hatchery Water w/ 0.250 ppm Copper | 98               | 2.5  | 85                                  | 6.5 | 0.016                                               | 0.003 |
| Hatchery Water w/ 0.500 ppm Copper | 69               | 11.2 | 0                                   | 0.0 | -                                                   | -     |
| Hatchery Water w/ 1.000 ppm Copper | 6                | 3.6  | 0                                   | 0.0 | -                                                   | -     |
| Hatchery Water w/ 2.000 ppm Copper | 0                | 0.0  | 0                                   | 0.0 | -                                                   | -     |

<sup>1.</sup> Highlighted areas indicate a significant reduction in survival or weight compared to the appropriate control. Data were analyzed using USEPA standard statistical protocols.

Table H7-2. Water chemistry during a 10-day H. azteca water column toxicity test initiated on 4/10/09 examining the toxicity of copper.

|                                    | Laboratory Chemistry |                     |                     |                  |               |           |           |  |
|------------------------------------|----------------------|---------------------|---------------------|------------------|---------------|-----------|-----------|--|
| Treatment                          | EC (uS/cm)           | Min<br>Temp<br>(°C) | Max<br>Temp<br>(°C) | Min DO<br>(mg/L) | Max DO (mg/L) | Min<br>pH | Max<br>pH |  |
| DIEPAMHR (Method Control)          | 333                  | 22.7                | 24.0                | 7.0              | 8.8           | 7.73      | 8.22      |  |
| DIEPAMHR @ 900 μS/cm (D900)        | 873                  | 23.1                | 23.7                | 7.8              | 8.6           | 7.73      | 8.21      |  |
| D900 w/ 0.125 ppm Copper           | 873                  | 22.8                | 24.0                | 7.6              | 8.7           | 7.72      | 8.12      |  |
| D900 w/ 0.250 ppm Copper           | 877                  | 22.6                | 24.0                | 7.4              | 8.9           | 7.88      | 8.15      |  |
| D900 w/ 0.500 ppm Copper           | 872                  | 22.7                | 24.3                | 7.7              | 9.1           | 7.84      | 8.12      |  |
| D900 w/ 1.000 ppm Copper           | 854                  | 23.9                | 23.9                | 7.7              | 8.5           | 7.80      | 7.94      |  |
| D900 w/ 2.000 ppm Copper           | 861                  | 23.9                | 23.9                | 7.9              | 8.5           | 7.76      | 7.91      |  |
| Hatchery Water                     | 870                  | 22.7                | 24.0                | 7.9              | 9.0           | 7.61      | 8.16      |  |
| Hatchery Water w/ 0.125 ppm Copper | 866                  | 22.8                | 23.8                | 7.7              | 8.9           | 7.82      | 8.16      |  |
| Hatchery Water w/ 0.250 ppm Copper | 875                  | 22.9                | 24.1                | 7.6              | 8.8           | 7.89      | 8.14      |  |
| Hatchery Water w/ 0.500 ppm Copper | 859                  | 22.7                | 24.2                | 7.6              | 8.9           | 7.94      | 8.17      |  |
| Hatchery Water w/ 1.000 ppm Copper | 868                  | 22.6                | 24.2                | 7.9              | 9.0           | 7.94      | 8.08      |  |
| Hatchery Water w/ 2.000 ppm Copper | 855                  | 24.1                | 24.1                | 7.9              | 8.1           | 7.96      | 7.96      |  |

| Treatment                   | Hardness<br>(mg/L as<br>CaCO <sub>3</sub> ) | Alkalinity<br>(mg/L as CaCO <sub>3</sub> ) | Total Ammonia<br>Nitrogen (mg/L) | Unionized<br>Ammonia<br>(mg/L) <sup>1</sup> |
|-----------------------------|---------------------------------------------|--------------------------------------------|----------------------------------|---------------------------------------------|
| DIEPAMHR (Method Control)   | 100                                         | 56                                         | 0.02                             | 0.001                                       |
| DIEPAMHR @ 900 μS/cm (D900) | 168                                         | 60                                         | 0.03                             | 0.002                                       |
| Hatchery Water              | 148                                         | 82                                         | 0.10                             | 0.006                                       |

## Appendix I

Analyte Method Detection & Reporting Limits

Table I-1. List of organophosphate pesticide analytes with corresponding method detection and reporting limits.

| Organophosphate Pesticides | Method Detection Limit (µg/L) | Reporting limit (µg/L) |
|----------------------------|-------------------------------|------------------------|
| Azinphos methyl            | 0.030                         | 0.050                  |
| Chlorpyrifos               | 0.010                         | 0.020                  |
| Diazinon                   | 0.005                         | 0.020                  |
| Dimethoate                 | 0.030                         | 0.050                  |
| Disulfoton                 | 0.010                         | 0.050                  |
| Malathion                  | 0.030                         | 0.050                  |
| Methidathion               | 0.030                         | 0.050                  |
| Parathion, Methyl          | 0.010                         | 0.050                  |
| Phorate                    | 0.030                         | 0.050                  |
| Phosmet                    | 0.030                         | 0.050                  |

Table I-2. List of pyrethroid pesticide analytes with corresponding method detection and reporting limits.

| Pyrethroid Pesticides     | Method Detection Limit (µg/L) | Reporting limit (µg/L) |
|---------------------------|-------------------------------|------------------------|
| Bifenthrin                | 0.001                         | 0.002                  |
| Cyfluthrin                | 0.002                         | 0.004                  |
| Cypermethrin              | 0.002                         | 0.004                  |
| Deltamethrin              | 0.002                         | 0.004                  |
| Esfenvalerate/Fenvalerate | 0.001                         | 0.002                  |
| Fenpropathrin             | 0.002                         | 0.004                  |
| Lambda Cyhalothrin        | 0.001                         | 0.002                  |
| Permethrin, Cis           | 0.003                         | 0.005                  |
| Permethrin, Trans         | 0.003                         | 0.005                  |

Table I-3. List of carbamate pesticide analytes with corresponding method detection and reporting limits.

| Carbamate Pesticides | Method Detection Limit (µg/L) | Reporting limit (µg/L) |
|----------------------|-------------------------------|------------------------|
| Aldicarb             | 0.002                         | 0.005                  |
| Captan               | 0.002                         | 0.005                  |
| Carbaryl             | 0.001                         | 0.002                  |
| Carbofuran           | 0.0005                        | 0.001                  |
| Diuron               | 0.002                         | 0.005                  |
| Linuron              | 0.002                         | 0.005                  |
| Methiocarb           | 0.002                         | 0.005                  |
| Methomyl             | 0.0005                        | 0.001                  |

Table I-4. List of Fipronil and Metabolites analytes with corresponding method detection and reporting limits.

| Fipronil & Metabolites | Method Detection Limit (µg/L) | Reporting limit (µg/L) |
|------------------------|-------------------------------|------------------------|
| Fipronil               | 0.100                         | 0.200                  |
| Fipronil Desulfinyl    | 0.100                         | 0.200                  |
| Fipronil Sulfide       | 0.100                         | 0.200                  |
| Fipronil Sulfone       | 0.100                         | 0.200                  |

Table I-5. List of Trace Metal analytes with corresponding method detection and reporting limits.

| Trace Metals | Method Detection Limit | Reporting limit |
|--------------|------------------------|-----------------|
|              | $(\mu g/L)$            | (µg/L)          |
| Aluminum     | 1.70                   | 5.00            |
| Arsenic      | 0.01                   | 0.03            |
| Cadmium      | 0.004                  | 0.01            |
| Chromium     | 0.10                   | 0.30            |
| Copper       | 0.03                   | 0.10            |
| Lead         | 0.002                  | 0.006           |
| Manganese    | 0.01                   | 0.03            |
| Nickel       | 0.01                   | 0.03            |
| Selenium     | 0.45                   | 1.00            |
| Silver       | 0.001                  | 0.003           |
| Zinc         | 0.05                   | 0.15            |

Table I-6. List of PAH analytes with corresponding method detection and reporting limits.

| PAHs                             | Method Detection Limit (µg/L) | Reporting limit (µg/L) |
|----------------------------------|-------------------------------|------------------------|
| Naphthalene                      | 0.00474                       | 0.005                  |
| Methylnaphthalene, 2-            | 0.00457                       | 0.005                  |
| Methylnaphthalene, 1-            | 0.00437                       | 0.005                  |
| Dimethylnaphthalene, 2,6-        | 0.00293                       | 0.005                  |
| Trimethylnaphthalene, 2,3,5-     | 0.00726                       | 0.010                  |
| Naphthalenes, C1-                | <del>-</del>                  | 0.005                  |
| Naphthalenes, C2-                | -                             | 0.005                  |
| Naphthalenes, C3-                | -                             | 0.005                  |
| Naphthalenes, C4-                | -                             | 0.005                  |
| Biphenyl                         | 0.00293                       | 0.005                  |
| Acenaphthylene                   | 0.00456                       | 0.005                  |
| Acenaphthene                     | 0.00251                       | 0.005                  |
| Fluorene                         | 0.00372                       | 0.005                  |
| Methylfluorene, 1-               | 0.00656                       | 0.010                  |
| Fluorenes, C1-                   | -                             | 0.005                  |
| Fluorenes, C2-                   | _                             | 0.005                  |
| Fluorenes, C3-                   | _                             | 0.005                  |
| Dibenzothiophene                 | 0.00195                       | 0.005                  |
| Methyldibenzothiophene, 4-       | 0.00371                       | 0.005                  |
| Dibenzothiophenes, C1-           | -                             | 0.005                  |
| Dibenzothiophenes, C2-           | _                             | 0.005                  |
| Dibenzothiophenes, C3-           | _                             | 0.005                  |
| Phenanthrene                     | 0.00317                       | 0.005                  |
| Methylphenanthrene, 1-           | 0.00762                       | 0.010                  |
| Dimethylphenanthrene, 3,6-       | 0.00552                       | 0.005                  |
| Phenanthrene/Anthracene, C1-     | 0.00332                       | 0.005                  |
| Phenanthrene/Anthracene, C2-     | _                             | 0.005                  |
| Phenanthrene/Anthracene, C3-     | _                             | 0.005                  |
| Phenanthrene/Anthracene, C4-     | _                             | 0.005                  |
| Anthracene                       | 0.00281                       | 0.005                  |
| Fluoranthene                     | 0.00340                       | 0.005                  |
| Methylfluoranthene, 2-           | 0.00410                       | 0.005                  |
| Fluoranthene/Pyrenes, C1-        | 0.00410                       | 0.005                  |
| Pyrene                           | 0.00379                       | 0.005                  |
| Benz(a)anthracene                | 0.00379                       | 0.005                  |
| Chrysene                         | 0.00304                       | 0.005                  |
| •                                | 0.00239                       |                        |
| Chrysenes, C1-<br>Chrysenes, C2- | <del>-</del>                  | 0.005<br>0.005         |
| Chrysenes, C3-                   | -                             | 0.005                  |
|                                  | 0.00290                       |                        |
| Benzo(k)fluoranthene             | 0.00380                       | 0.005                  |
| Benzo(k)fluoranthene             | 0.00377                       | 0.005                  |
| Benzo(e)pyrene                   | 0.00285                       | 0.005                  |
| Benzo(a)pyrene                   | 0.00345                       | 0.005                  |
| Perylene                         | 0.00313                       | 0.005                  |
| Indenol(1,2,3-c,d)pyrene         | 0.00950                       | 0.010                  |
| Dibenz(a,h)anthracene            | 0.00498                       | 0.005                  |
| Benzo(g,h,i)perylene             | 0.00276                       | 0.005                  |