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Re: Regression Analysis 

 

Dear Chairman Hoppin: 

 

Since 1988, the California Department of Fish and Game (“DFG”) and other Resource Agencies have 

put forth the concept that with more flow there will be more returning adult Chinook salmon 2.5 years 

later.  This assertion was initially supported based on a simple linear regression analysis like the one in 

Figure 5-2 from the 1991 draft State Water Resources Control Board (“State Water Board”) Basin 

Plan. 

 

This regression analysis was highly disputed in 1991 and in the 1995 Bay-Delta proceedings. The data 

used was inconsistent, variable and unreliable, particularly since the data collection methodology 

changed from year to year. Also, a simple linear regression using untransformed, non-normally 

distributed data is an inappropriate statistical method for elucidating the potential factors influencing 

adult escapement returns.  

 

Since 1995, the SJTA has consistently made the point to the State Water Board that although adult 

returns are generally higher 2.5 years after high spring flood flow conditions (>15,000 cfs), the 

correlation is relatively weak under manageable flow conditions (<8,000). However, you, the State 

Water Board, have not taken this into consideration during the process that you have undertaken.  The 

draft of the Substitute Environmental Document put maximum flow limits on the Stanislaus, Tuolumne 

and Merced Rivers.  Combined, those limits do not exceed 7,500 cfs, which is within the range of 

flows where fish returns are highly variable and poorly correlated with flow. The confidence intervals 

surrounding predicted escapement values based on a logistic regression of the full range of flows over 

which a much stronger correlation exists, are still too wide to have any useful predictive power. 
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Therefore, simple linear regression does not provide sound scientific evidence that more flow in the 

managed flow range will result in more adult returns. 

 

More recently, DFG created and submitted a model (i.e., DFG Salmon Survival Model version 1.6; 

Marston 2005, revised in Marston and Hubbard 2008) to the State Water Board to further support their 

assertion that spring flows create more adult returns.  In previous comments to the State Water Board, 

we identified that the “DFG Salmon Survival Model has consistently been found to be inadequate and 

should not be used” (Demko et al. 2010), and provided supporting documentation (Lorden and Bartroff 

2010 Appendix 1 of Demko et al. 2010). Despite receipt of this information, the most recent version 

the State Water Board’s Technical Report (SWRCB 2012) continues to include DFG’s model. 

 

The State Water Board’s Technical Report (SWRCB 2012) ignores the findings regarding DFG’s 

model by several independent CALFED peer reviewers, and the State Water Board’s own hearing 

wherein DFG’s own expert stated, “The model was not ready to be used.”  The DFG has continually 

stated they will update this flawed model according to recommendations by peer review of the DFG’s 

outflow report that heavily criticized the use of the model as the basis for the conclusions; however, 

revisions have still not been made after several years. 

 

In this memorandum, we present the results of two different analyses (prepared by Lorden and Bartroff 

2012a,b) which confirm our initial assertion that simple linear regression does not provide sound 

scientific evidence that more flow in the managed flow range will result in more adult returns, and that 

the DFG Salmon Survival Model is inadequate, not the best available science and should not be used 

as the basis for consideration of modification of flow regimes in the San Joaquin River Basin. (Lorden 

and Bartroff 2012a,b) These two analyses examined the following: 

 

1. Simple linear regression analysis of the relationship between San Joaquin River spring flow 

and fall-run Chinook salmon escapement 2.5 years later (Attachment 1); and 

 

2. DFG’s proposed San Joaquin River Salmon Population model (Attachment 2). 

 

A summary of the key points from each analysis is provided below, followed by the attached report. 

 

Key points regarding the relationship between San Joaquin River spring flow and fall-run 

Chinook salmon escapement 2.5 years later (Attachment 1). 

 

1. There are a few overly-influential points in the data used to fit the straight-line regression 

analysis, and conclusions can change drastically from minor changes in the fitting data. Several 

points represent deviations from the regression that are too large to be consistent with a robust 

correlation. 

 

2. The data itself shows there is no simple linear relationship between escapement and flow.  The 

most recent 2002-2010 data suggests a negative correlation between these variables, the 

opposite of the conclusions drawn by the model’s authors. 
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3. We analyzed the simple linear regression’s performance by comparing its predictions of 

escapement to measured data values and found that the uncertainty in its predictions is so large 

that the technique has little to no predictive value. 

 

4. The type of regression used is not appropriate for the data, which is indicated through standard 

statistical measures such as a low R2 value and a quantile-quantile plot, indicative of violations 

of fundamental statistical assumptions. 

 

5. Moreover, we caution against drawing any conclusions of causality between flow and 

escapement based upon such a regression, which is a well-known fallacy. 

 

6. Environment factors (such as, water temperature, dissolved oxygen and exports), which may 

aid in understanding escapement, have been ignored in favor of a singular focus on flow. As an 

example, we have developed a logistic multiple regression using these factors, which describes 

escapement much better than the proposed model. 

 

7. The simple linear regression does not represent best or widely-accepted statistical practices, 

and we caution against its use for making any sort of predictions or drawing any inferences 

about escapement or flow. 
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Key points regarding the DFG’s Salmon Survival Model, a.k.a., San Joaquin River Salmon 

Population Model (Attachment 2). 

 

1. The model’s authors have neither validated its predictions using real data, nor attempted to 

quantify the uncertainty inherent in the modeling process.  Their only evaluation of the model 

ignores uncertainty in its parameter estimate, assumes that the underlying form of their model 

is true and compares its predictions only with historical data that were used to fit the model 

itself, rather than relying upon more recent data. 

 

2. In order to investigate the previous point, we have performed an analysis of the model and 

found its predictions to be highly unreliable because the size of its likely variability is typically 

larger than the prediction itself, making the prediction of no practical use. 

 

3. Each of the component regression models in the “plug-and-play” model appears to have major 

violations of its distributional assumptions, making the models’ behavior unpredictable. 

 

4. The overall model is formed by “chaining together” the component regression models, feeding 

each model’s output into another’s input.  This is not an accepted statistical modeling approach 

because it can lead to amplified errors and uncertainty in the overall model output which are 

difficult to quantify. 

 

5. The model neglects available data on factors much more likely to affect salmon population than 

those it uses, escapement and flow.  These include water temperature, ocean conditions, ocean 

survival, ocean predation and harvesting.  Harvesting seems especially important for modeling 

purposes since it is subject to direct measurement and control. 

  



Attachment 2: Report on the San Joaquin River Salmon

Population Model

Gary Lorden, Ph.D.
Jay Bartroff, Ph.D.

Lordenstats

September 14, 2012

This report lists some statistical concerns with the San Joaquin River Salmon Population Model
(“the model”), version 1.6 (Marston 2005; revised in Marston and Hubbard 2008). Our overall
conclusion is that we are highly skeptical of any predictive value of the model and we strongly
caution against its use for predicting Salmon cohort production. We are led to this conclusion by
the following key points, which are expanded upon below.

1. Each of the component regression models appears to have major violations of its distributional
assumptions, making their behavior unpredictable when used in this way.

2. The overall model is formed by “chaining together” the component regression models by
feeding outputs of component models into other models. This is not an accepted statistical
modeling approach because it can lead to amplified errors and uncertainty in the model output
that are difficult to quantify, which the model’s authors have not addressed.

3. The model’s authors have neither validated the model’s predictions against real data, nor
attempted to quantify the uncertainty inherent in their modeling process. The authors’ only
evaluation of the model ignores uncertainty in its parameter estimates, assumes that the
underlying form of their model is true, and compares its predictions only with historical data
that is used to fit the model itself.

4. In order to investigate the previous point, we have performed an analysis of the model and
found its predictions to be highly unreliable because the size of its likely variability is often
larger than the prediction itself, making the prediction of no practical use.

5. The model neglects available data on factors much more likely to affect Salmon population
than those it uses, escapement and flow. These include water temperature, ocean conditions,
ocean survival, ocean predation, and harvesting. Harvesting seems especially important for
modeling purposes since it is subject to direct measurement and control.
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1 Overall Approach of Model

1.1 Description of the Model

The model has been described as an attempt to predict the number of Salmon smolts at Chipps
Island in a given brood year that later return as spawners, referred to as “cohort production,” by
chaining together the following three regression models.

The Mossdale Smolt Production model is a Poisson regression of Mossdale smolts counts on
flow and escapement, whose expected (i.e., average) value is described by the following equa-
tion:

log(EY (1)) = β
(1)
0 + β

(1)
1 x

(1)
1 + β

(1)
2 log(x

(1)
2 ),

where Y (1) is the Mossdale smolt count, x
(1)
1 is the average Vernalis flow over the period March

15 through June 15, and x
(1)
2 is escapement from the previous Fall.

The Delta Survival model is a logistic regression model which, by the authors’ own description,
is applied to the fractional data representing the proportion of smolts that survive from
Mossdale to Chipps Island, whose expected value is described by the following equation:

log

(
EY (2)

1 − EY (2)

)
= β

(2)
0 + β

(2)
1 x

(2)
1 + β

(2)
2 x

(2)
2 + β

(2)
3 x

(2)
1 x

(2)
2 ,

where Y (2) is the proportion of smolts that survive from Mossdale to Chipps Island, x
(2)
1

is daily Vernalis flow over the period March 15 through June 15, and x
(2)
2 is either 1 or 0

according to whether the HORB was in place during that period or not.

The Cohort Production model is another logistic regression model applied to fractional data,
where here the fraction is the proportion of Chipps Island smolts that become spawners, whose
expected value is described by

log

(
EY (3)

1 − EY (3)

)
= β

(3)
0 + β

(3)
1 log(x

(3)
1 ),

where Y (3) is the proportion of smolts at Chipps Island that survive and later return as
spawners, x

(3)
1 is the number of Chipps Island smolts.

The above regression coefficients β
(j)
i are estimated (“fitted”) using historical data, and then

the model is used for prediction of cohort production as follows. Given values of average Vernalis
flow x

(1)
1 , previous year’s escapement x

(1)
2 , daily Vernalis flow x

(2)
1 , and HORB in/out x

(2)
2 , predicted

values of the Mossdale smolt production Ŷ (1) and the Delta Survival fraction Ŷ (2) are generated
using these values, the estimated coefficients, and the above equations. Finally, in the Cohort
Production model, the predicted value Ŷ (3) of the cohort production fraction is generated using the
number of Chipps Island smolts given by x

(3)
1 = Ŷ (1)Ŷ (2), the product of the outputs of the two

previous models. Finally, the predicted value of cohort production is given by Ŷ (1)Ŷ (3), the product
of the predictions of the first and third models.
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1.2 Criticism of the Model

The authors of the model claim that the predictions generated in this way seem to track the historical
data on cohort production reasonably well. However, when making this comparison they do not
highlight the simple fact that the model being used to make these predictions use exact numbers
they are predicting as “inputs” since the historical cohort production data is used in the first step
of the process described in the previous paragraph. In other words, it is not surprising that the
resulting model can replicate well the historical values of estimated cohort production since those
same values are used in deriving the predictions. In fact, a trivial model with the same inputs as
the proposed model can replicate estimated cohort production exactly by simply outputting the
input value for the desired year. Clearly that approach would tell us nothing meaningful. This fact
should be kept in mind when assessing the proposed model, or any model of this type.

The predictions of any model of a complex system, which the San Joaquin River Salmon popula-
tion certainly is, that incorporates just a few types of data must be viewed with skepticism. One of
the most salient features of the current model is that it completely ignores many available sources of
data which are likely to have a much stronger and more direct effect on cohort production than just
escapement and flow, i.e., water temperature, ocean conditions, ocean survival, ocean predation,
and harvesting. The latter is a particularly striking omission since it is a human activity that can
be accurately measured and has a direct and immediate effect on fish populations.

Nonetheless, the uncertainty of any model’s predictions should be presented clearly, as well as
the assumptions made about the data used to build it and “goodness of fit”-type evaluations of
whether these assumptions appear to hold with the data. Unfortunately, these issues are not ad-
dressed for the current model at all. The uncertainty in the predictions of the proposed model and
the model’s assumptions are not discussed by the authors and no goodness of fit tests appear to
have been performed on the aggregate model, other than to look at its average output, which can
easily be misleading as pointed out in the previous paragraph. The accuracy of such a model cannot
be assessed without considering this uncertainty; at the very least, we suggest including confidence
bands for the predictions of the model which include the uncertainty inherent in each “link” in the
chain of models. In Section 3 we have performed such calculations for this model and found that
the confidence intervals are so wide – even including negative numbers for a prediction of fish counts
– that the predictions of the model have no utility. Perhaps the structure of the “chained together”
regression models obscured the effect of the combined uncertainties of each of the individual models
on the model as a whole, which occurs when the outputs of the Mossdale Smolt and Delta Survival
models are used an inputs for the Cohort Production model. This technique seems to have caused
a “multiplicative” effect on the predictions’ uncertainties estimated in Section 3. This violates a
fundamental assumption of the regression models of the type used, that the inputs (i.e., independent
variables) are fixed quantities that are known exactly (e.g., can be measured with minimal mea-
surement error). When this does not hold, a different type of regression model known as “errors in
variables” models should be used. In the current situation, the outputs of the Mossdale Smolt and
Delta Survival models have considerable uncertainty under even the most generous assumptions, so
it seems clear that these assumptions are violated and a different statistical approach is required.

Some other problems with the “chained together” structure of the model is that it creates
dependencies between the errors in the models’ outputs and inputs, which is another violation of
assumptions of the component regression models which can cause their behavior to be unpredictable
because of increased variability in their output and amplified error propagation. Further, the
component regression models themselves each suffer from “poor fits,” evident through the presence
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of outliers to which the types of models used are well-known to be non-robust, small coefficient
of determination R2, a few overly influential observations, poor quantile-quantile plots, and poor
goodness of fit scores. In the next section we give more details on these and other problems with
the component regression models.

2 Criticism of Individual Components of the Model

2.1 Mossdale Smolt Production Model

There are three main areas of concern regarding the Mossdale Smolt Production model which likely
affect its output and the output of the combined model.

1. Weak relationship between flow and smolt production: The scatterplots in Figure 1, the
data used to fit the Mossdale Smolt Production model, show a weak relationship between flow
and smolt production, which violates a fundamental assumption of the model.

2. Overly influential observations: The data shows a small number of overly influential obser-
vations with high flow levels inflating “upward” trend; see, for example, the three outlying
values in the flow vs. smolts scatterplot in Figure 1. Outliers such as these are well-known to
inflate the estimated relationship between the response variable (smolts) and the input (flow)
in generalized linear models like the Poisson regression model used here. Evidence of this is
that the model fit changes dramatically when these are removed: See Figure 2, which the
shows a linear model fit to the full data set (in black) and the quite different fit to the data
set with the outliers removed (in red). These two fits would produce vastly different outputs
for the “chained together” model.

3. Overdispersion: This model fit also appears to suffer from overdispersion, i.e., when the vari-
ance of data is larger than the average value of the data. A fundamental assumption of the
Poisson regression model is that the mean response is exactly equal to the variance of the
response, which appears to be violated by the data; see the last row or column of Figure 1.

2.2 Delta Survival Model

An area of concern regarding the Delta Survival model which likely affects its output and the output
of the combined model is that, by the authors’ description, an incorrect use of a logistic regression
model: the model was fit with proportions (i.e., percent survival estimates from coded wire tag
studies) rather than binary data (i.e., data comprised of two outcomes, either a 0 or 1). The two
methods are only equivalent if the total number of smolts leaving Mossdale was exactly the same
for each data point (i.e., CWT releases groups were all the same size), which is not true for the data
used (i.e., CWT release groups were variable within and between years). This discrepancy can be
corrected by a re-weighting of the data, but this did not occur in the authors’ description. Using
the Delta Survival model with fractional data violates the fundamental distributional assumption
of logistic regression models.

4
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black, and model fit on data with outliers removed is in red.
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2.3 Cohort Production Model

There are two main areas of concern regarding the Mossdale Smolt Production model which likely
affect its output and the output of the combined model.

1. Fundamental distributional assumption violated: Like the Delta Survival model, the Co-
hort Production model appears to also have been fit with fractional data of different sizes,
as described in the previous paragraph, which violates the distributional assumption of the
logistic regression model.

2. Problematic use of NChipps: The “independent” variable (i.e., the input) in this model is an

estimate NChipps of the number of Chipps smolts (NChipps = Ŷ (1)Ŷ (2) in the notation of
Section 1.1), whereas the output of the overall model itself gets multiplied by NChipps to give
the final prediction of the chained model. This is equivalent to a simple transformation of
NChipps, and it would more accurately be described in that way. Moreover, the “dependent”
variable in this model is the fraction of the number NChipps of smolts at Chipps Island that
return as spawners, so NChipps is also the denominator in the response variable data used to
fit the model. NChipps itself is the output of the Mossdale Smolt Production model, and hence
has an inherent uncertainty beyond what would already be present in a measured data point.
This likely high level of uncertainty thus contributes uncertainty to the output of the Cohort
Production model in three different ways.

3 Our Analysis of the Model

We have performed an analysis of the model in order to address two fundamental questions:

1. How accurate are the model’s point predictions of Salmon cohort production when they are
not calculated from the data it is asked to predict?

2. How much uncertainty is there in the model’s predictions of Salmon cohort production? In
other words, if the same modeling process were repeated with fresh data of the same type,
how much would the predictions change?

To answer these questions we have repeated the authors’ modeling process but using only the
data available prior to a given year n, and then used the resulting model to predict cohort production
for year n and compare it with the measured value of cohort production, which we call the “true
value.” We have done this for years n = 1996 through 2001, which is the widest range of years
possible using the data provided by the authors. This validation process is used because it mimics
how the model would be used in practice: The model would be fit using all available data up to the
present, and then it would be used to predict future cohort production, presumably under various
scenarios.

In addition, we have used the standard statistical method known as the Jackknife to assess the
uncertainty in the model’s outputs. This method estimates uncertainty by repeating the parameter
fitting process while leaving out one data point at a time, and seeing how much the predictions
of the resulting model change. This is repeated for all possible data years and the information is
combined to give an overall estimate of the likely variability in the model’s predictions were the
modeling repeated with fresh data of the same type. This is known as the standard error, and is the
accepted way of assessing variability of a prediction. For example, for normally distributed data,
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the average of the data points will fall within one standard error of the population’s true mean
roughly 2/3 of the time, within two standard errors roughly 95% of the time, and within three
standard errors more than 99% of the time.

The results of this analysis are given in Table 1, wherein the predictions of cohort production
differ from the true values by large amounts. For example, for 1997 the predicted cohort production
of 8,713 is less than half the true value of 18,221, while in 2001 the predicted cohort production of
80,524 is nearly 6 times the true value of 13,763. Inaccuracy of these point predictions aside, the
standard errors computed via the Jackknife method are the same order of magnitude, and larger in
most cases, than the predictions themselves. This makes the predictions of the model of essentially
no value since it means that if this method were repeated with similar data (e.g., future data), then
the model’s new predictions could likely be very small, or twice as large.

Table 1: True and predicted values of cohort production, and the predictions’ standard errors, using
a model fit only with data available prior to the given year.

Cohort Production
Year True Value Model’s Prediction Standard Error
1996∗ 7,164 6,789 10,953.5
1997 18,221 8,713 14,309.4
1998∗ 48,491 40,859 70,568.5
1999 18,471 18,570 13,791.5
2000 21,608 55,234 75,696.2
2001∗ 13,763 80,524 77,941.9

In addition to the overwhelmingly large standard errors in Table 1, the uncertainty in the model’s
predictions can further be seen by examining more closely the Jackknife method used to compute
these standard errors which, as mentioned above, “re-fits” the model by leaving out one data point
at a time. For example, the data made available by the authors includes (estimates of) the number
of smolts at Chipps Island and the resulting total cohort production for the years 1988 through
2001. Focusing on the model’s predicted cohort production of 80,524 for the year 2001, in Table 2
we give what the value of this prediction would be if a single year’s data were left out of the Cohort
Production model, with the Mossdale Smolt and Delta Survival models fit using their full data sets
as usual. For example, if the 1988 data is left out when fitting the model, the predicted cohort
production jumps from 80,524 to 100,739; if 1989 is left out instead then this number is still higher
at 114,674; and if the following year 1990 is left out instead then the prediction falls all the way
down to 45,416. Such wide swings in the predictions of the model, resulting from only the small
change in the input data of leaving out one data point, are evidence of the non-robustness and
instability of the modeling method and should be a caution to anyone considering its predictions.

This same technique can be used to analyze the model’s variability from a slightly different
angle, to answer the question, “How different would the model’s sequence of predictions forward
in time be if a single year’s data was left out in the model-fitting process?”’ A robust modeling
technique should not be overly affected by a small change in data like this, but Figure 3 shows that

∗For these years, multiple flow measurements for the Delta Survival model were available in the data, making
multiple model predictions possible. In each case, the flow measurements and model predictions were very similar to
the others of the same year, so we have included only one in the table for each year.
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Table 2: Model’s predictions of cohort production for 2001 when one year is left out of fitting the
Cohort Production component model. The original prediction with no year left out is 80,524.

Year Left Out Model Prediction
1988 100,739
1989 114,674
1990 45,416
1991 76,414
1992 97,236
1993 80,465
1994 81,097
1995 95,786
1996 102,705
1997 64,466
1998 82,678
1999 63,099
2000 56,698

this model’s predictions change drastically when a single year is omitted in the coefficient-fitting
steps. For example, for predicting the cohort production in 1997, the prediction grows by 113% if
the 1988 input data are omitted, while the prediction falls 74% if the 1990 input data are omitted,
a 187% swing.
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Very truly yours, 

O’LAUGHLIN & PARIS LLP 
 

 
_______________________________ 

TIM O’LAUGHLIN 

 

TO/tb 

cc: San Joaquin Tributaries Authority 
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