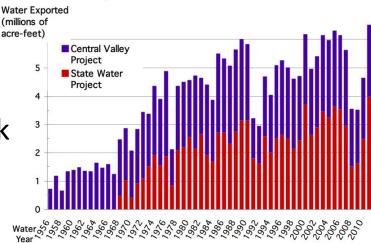
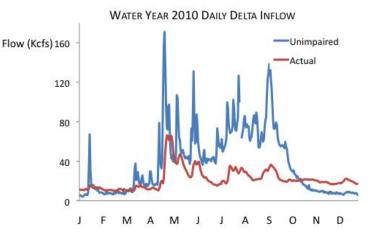
Testimony of Jonathan Rosenfield, Ph.D. Conservation Biologist, The Bay Institute

BEFORE THE STATE WATER RESOURCES CONTROL BOARD

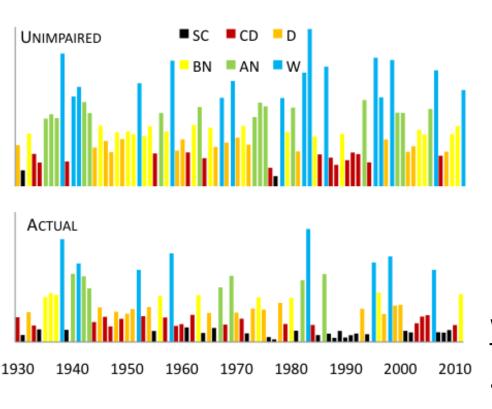
Phase II – Public Trust Fisheries

The Bay Institute


PREPARED FOR: NATURAL RESOURCES DEFENSE COUNCIL TROUT UNLIMITED


Outline

- A) Winter-Spring Delta Outflow
- B) Delta Hydrodynamics
- C) Making Decisions in the Face of Uncertainty


A) Delta Outflows The Board has a Very Strong Scientific Basis for Significantly Increasing Winter-Spring Delta Outflows

- Central Valley water diversions have increased substantially through time
- The magnitude, timing, duration of peak flows has been radically altered
- Populations of numerous fish and invertebrate species have declined precipitously
- Connections between timing, magnitude, frequency, and duration of flow and viability of native fish species are numerous and strong

Increasing Outflow is Critical Because The Bay-Delta Estuary is Experiencing a Man-Made Permanent Drought

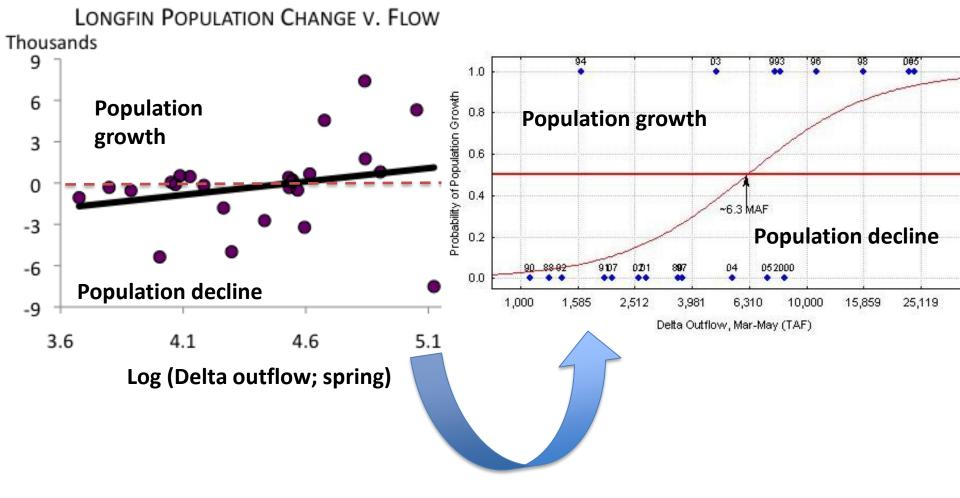
Hydr	ology Since	1967
Yr Type	Unimpaired	Actual

пурс	ommparica	Actual
Wet	11	4
Super- Critical	1	17

Water Year Type Classifications

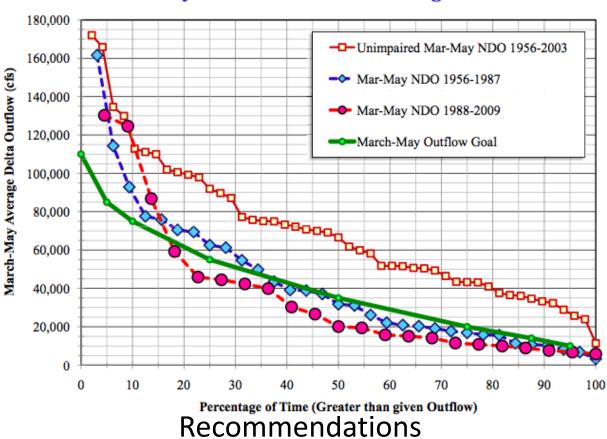
- •~20% exceedence categories
- •"Super Critical" (SC) = 97.5% exceedence

Delta Freshwater Flow Criteria are Closely Linked to Attributes of Viability for Numerous Species


Flow Criteria				
		San Joaquin River	Sacramento River	Delta
	Delta outflows	Delta Inflows	Delts Inflows	Hydrodynamics
Abundance	longfin smelt bay shrimp delta smelt stary founder Sacramento spittall shiped-bass American shad Eutydemosa affinis (spring) habitat ebundence for estuerine species	fall run Chinook salmon spring run-Chinook salmon Abundence of and transport to accessible cold-water dverine habitats and communities		SUR Chinook salmon Secramento River Chinook salmon Gelta amet abundance of habitet for ameit species in the south Deite
	longfin smelt Delta smelt striped bass vov stary founder bay shrimp transport both seaward and landward (e.g. graditational circulation)	fall run Chinook salmon spring run Chinook salmon steehead white sturgeon green sturgeon Sacramento splittail longin smelt Deta smelt Deta smelt Distribution of productive cold-water riverine habitate and communities	Sacramento splittali	longtin smelt Delta smelt fail run Chincok salmon (SJR) spring run Chincok salmon (SJR) Spatial distribution of spawning and maning habitats in the South Delta
Diversity	increased socurrence of juveniles seaward for fresheater spawners and landwards for marine spawners	fall run Chinook salmon apring run Chinook salmon white sturgeon steehead Diversity of riverine hydrographs and habitate in the Central Valley	tall run Chinook sailmon spring run Chinook sailmon winter run Chinook sailmon late fail run Chinook sailmon increased availability of Roodplain habitate	De lta smelt
	longfin amelt bay shrimp	fall run Chinook salmon	fall run Chinook salmon Sacramento splittall spring run Chinook salmon winter run Chinook salmon late-tail run Chinook salmon white sturgeon green sturgeon American Shad striped bass increased production and transport of meterials off of floodplates to river and lidel habitate	longfin amelt Delta smelt SJR Chinook salmon

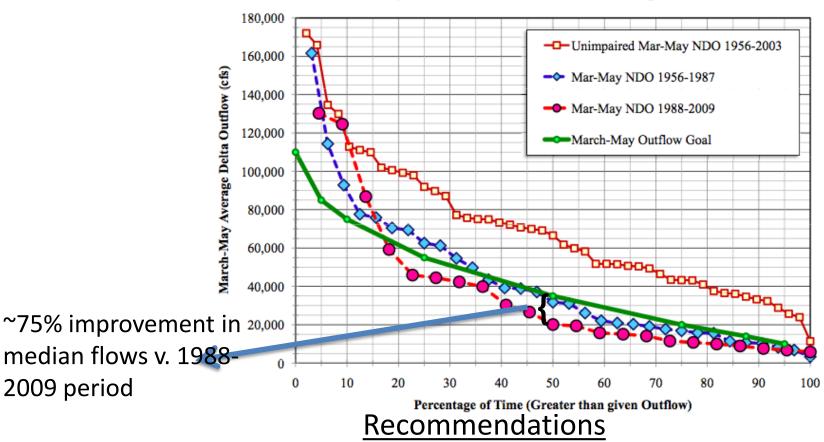
Viability Attribute

Reprinted from TBI et al. (2010)


Well-supported flow objectives to protect the Public Trust have been identified

Ex. 1 -- Outflow and Longfin Abundance (2010)

Finding:


Flows that allow longfin population to grow in ~50% of years are attainable and consistent with those of the 1956-1987 period

March-May Delta Outflow as Percentage of Time

(2010) ~6.3MAF spring NDO (>50% likelihood of population growth in 50% of years) and that %UIF throughout most of the frequency distribution

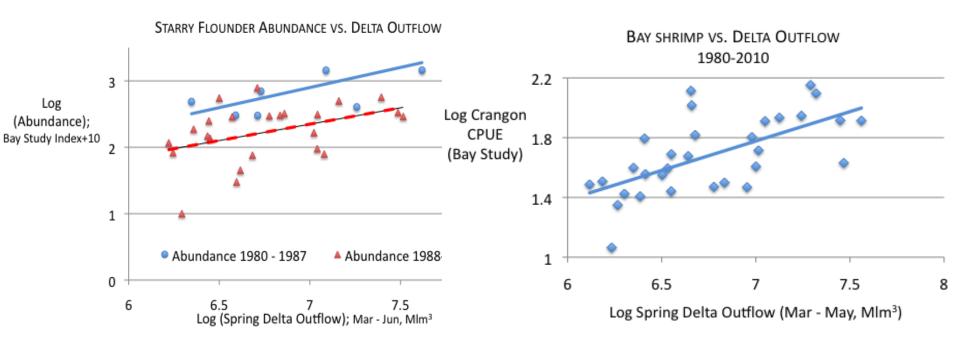
Flow Necessary to Support Restoration of Pelagic Fish Species Far Exceed Flows of the Recent Past

March-May Delta Outflow as Percentage of Time

(2010) ~6.3MAF spring NDO (>50% likelihood of population growth in 50% of years) and that %UIF throughout most of the frequency distribution

Preliminary Findings of New Research:

Given current flow patterns, Longfin populations will not stabilize until they are virtually (or actually) extinct


> 180,000 Unimpaired Mar-May NDO 1956-2003 160,000 March-May Average Delta Outflow (cfs) Mar-May NDO 1956-1987 140,000 Mar-May NDO 1988-2009 120,000 March-May Outflow Goal 100,000 80,000 00000000000 60,000 100000₀ New Minimum 40,000 Flow Criteria 20,000 (specific 0 recommendation 0 10 20 30 40 50 60 80 90 100 70 forthcoming) Percentage of Time (Greater than given Outflow) Recommendations

March-May Delta Outflow as Percentage of Time

(2010)~6.3MAF spring NDO (>50% likelihood of population growth in 50% of years) AND

(2012) ~3+MAF Min. spring NDO (necessary to maintain viable population in driest ~15% of years)

Strong and widespread connections between spring Delta outflow & viability of numerous species

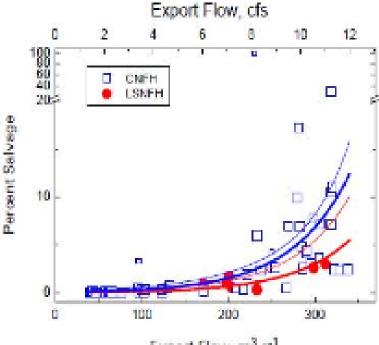
Flows necessary for longfin smelt population growth are consistent with improved abundance of other pelagic species and food web productivity

B) Delta Hydrodynamics The Board has a Very Strong Scientific Basis for Limiting Net Negative (Reverse) Flows in the South Delta

- On average, every year, 10,000,000's – 100,000,000's of fish are entrained by South Delta exports
- A substantial fraction of Delta primary productivity (not to mention production at higher trophic levels) is exported from the Delta via the South Delta exports

Selected Fish Species	1993-2011 Annual Salvage	
Selected Fish Species	Average	Maximum
American shad	1,022,700	2,510,184
Bluegill	127,133	394,952
Channel catfish	45,799	131,484
Chinook salmon (winter run)		
Chinook salmon (spring run)	E1 055	100.000
Chinook salmon (fall run)	51,955	183,890
Chinook salmon (late-fall run)		
Delta smelt	29,918	154,820
Green sturgeon	58	363
Inland silverside	62,838	142,652
Largemouth bass	54,180	234,198
Longfin	6,228	97,686
Prickly sculpin	76,403	274,691
Steelhead (Rainbow trout)	5,278	18,580
Redear sunfish	1,609	5,611
Riffle sculpin	155	798
Sacramento sucker	3,443	27,362
Sacramento splittail	1,201,585	8,989,639
Striped bass	1,773,079	13,451,203
Threadfin shad	3,823,099	9,046,050
White catfish	296,543	941,972
White sturgeon	151	873
Yellowfin goby	193,399	1,189,962

Sellitte


Average yearly salvage total: 9,237,444

Entrainment as a Multi-faceted Problem (with strong mechanistic underpinnings)

• Abundance Effects

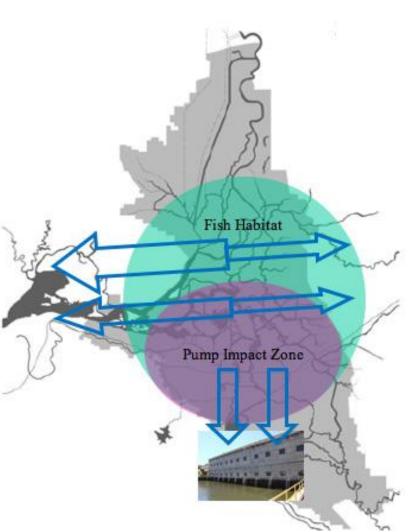
For some species, entrainment mortality is an episodic and substantial impact to the population

(e.g. Bennett 2005; Kimmerer 2008; NMFS 2008; CDFG 2009; USFWS 2008, 2012)

Export Flow, m³ s⁻¹ Reprinted from Kimmerer 2008

"...a loss [of Delta smelt] to export pumping on the order reported by Kimmerer (2008) can be simultaneously nearly undetectable in regression analysis, and devastating to the population. This also illustrates how inappropriate statistical significance is in deciding whether an effect is biologically relevant." [Kimmerer 2011]

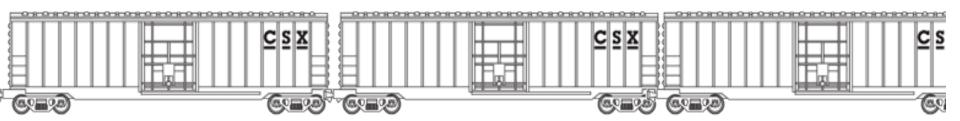
The Many Faces of Entrainment


- Abundance Effects
- Life History Diversity Erosion

Similar life history impacts would be expected for many native species including longfin smelt and Chinook salmon Inter-generational loss of life history variation. i.e., unnatural selection pressure reduces adaptive fit. Loss of genetic diversity, reduced fecundity, survival, & potential to rebound.

Slide reprinted with permission, B. Bennett 2012

The Many Faces of Entrainment


- Abundance Effects
- Life History Diversity Erosion
- Range Constriction
 - Consistent mortality + poor South Delta conditions restrict range of fishes including Delta smelt; longfin smelt (Rosenfield 2010); and San Joaquin Salmon
 - Range restriction increases susceptibility to catastrophic events (Rosenfield 2002)

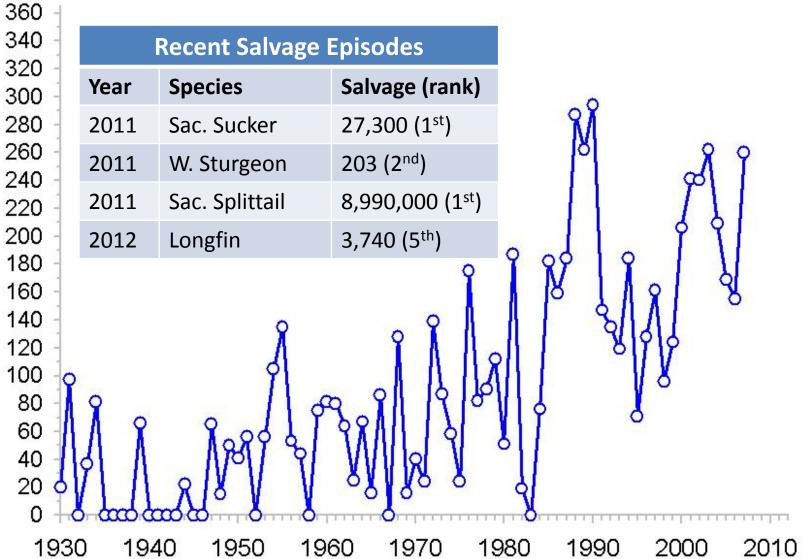
The Many Faces of Entrainment

- Abundance Effects
- Life History Diversity Erosion
- Range Constriction
- Loss of Productivity (population and system-wide)

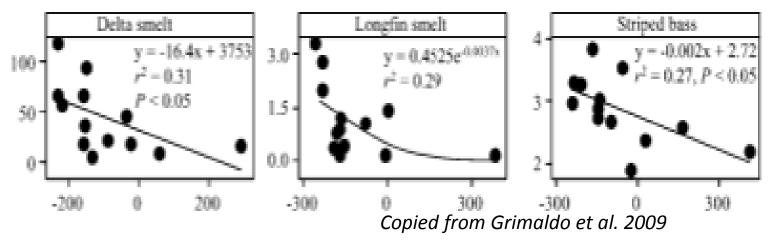
"Water export from the Sacramento-San Joaquin Delta is a direct source of mortality to fish... and export plus within-Delta depletion alters system energetics of an already low-productivity ecosystem by removing phytoplankton biomass equivalent to 30% of Delta primary production." [Cloern and Jassby, in press].

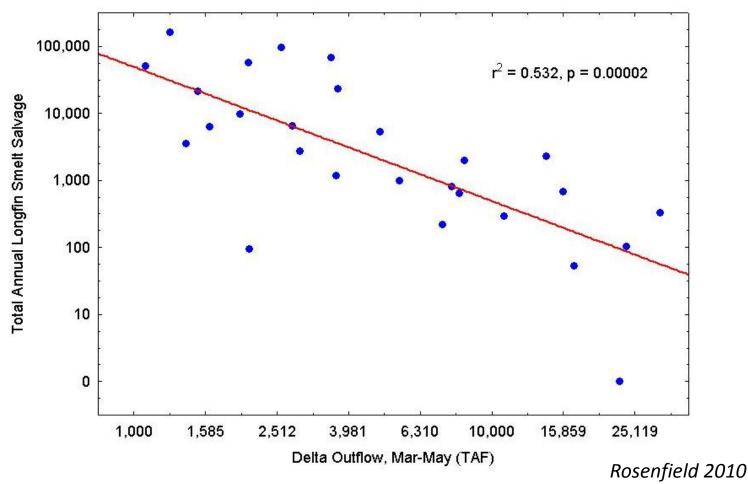
~three 50' boxcars worth of water (& food) exported every second

Specific Levels of in-Delta Flows that are Consistent with Maintaining Public Trust Resources Remain Undetermined


But, there is zero compelling scientific evidence supporting maintenance of quasi-permanent net negative flow conditions, particularly in drier years

Slide reprinted with permission from B. Bennett 2012


Flows Required to Prevent Extinction of Endangered Species may not Adequately Protect Other Species


Well-supported Delta Hydrodynamic Objectives to Protect Public Trust Resources Can Be Identified Ex. 2 – ENTRAINMENT AND NET OMR FLOWS

OMR indexes entrainment risk for some species

Entrainment risks increase substantially when OMR flows < 0cfs

Entrainment of Many Pelagic Fishes Increases When Outflow is Low (i.e. When it is Dry)

This is consistent with our understanding of spawning and early rearing ecological requirements for these fish

Public Trust Flow Objectives For Delta Hydrodynamics Must Do More Than "Avoid Extinction"

- May be managed adaptively (in real time and across WQCP Triennial review periods) to learn what works
- Requirements of the Biological Opinions to avoid jeopardy must be the floor (lower limit) of the adaptive range
- OMR > Ocfs during ecologically sensitive seasons will be necessary during drier years and/or when abundance falls below critical threshholds
- Upper end of the adaptive range should include net positive flows with duration increasing as hydrology permits

C) Addressing Uncertainty in a Planning Framework

- What specific, measureable ecological outcomes represent adequate protection of the Public Trust? By when will these be attained?
- What stressors prevent the attainment of those goals and targets currently?
- How much change (specifically) in those stressors is necessary to contribute to the Biological Targets? By when will this stressor reduction occur?
- What actions will the Board implement in order to affect stressor reduction targets within the specified time frame?
- How much is each of these actions expected to contribute to stressor reduction?

Biological Outcomes – Goals and Targets Guide All Actions in Conservation Planning

Salmonids and Sturgeon

•Doubling from 1967-1991 average (by when?)

- -CVPIA/State Law
- •San Joaquin Restoration Settlement Act

•Recovery Plans

Pelagics

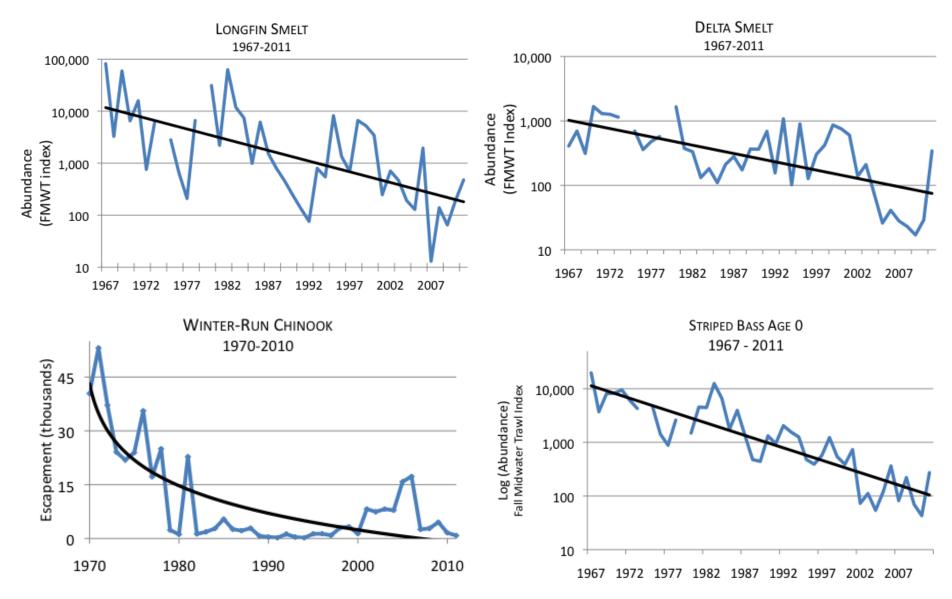
•Draft USFWS Recovery Plan (1995)

-Attain population dynamics \cong 1967-1984 (by when?)

Red Herring #1

We cannot go back to the ecosystem of the past (a.k.a. "Regime Change")

≠


...we must settle for less; or near extinction is the best we can do; or scarcity is our future

With flow <u>and</u> habitat improvements necessary for some species (e.g. smelt), other species (e.g. splittail, salmon) could do substantially better than we've witnessed since sampling began

Red Herring #2

The 2010 Flow Criteria Report is too aggressive; the Board should tweak flow criteria and use "Adaptive Management" to better understand the problem and evaluate potential solutions

Precarious Nature of the Bay-Delta's Public Trust Resources Provides Little Scope for a Tepid or Incremental Approach

Summary

Improvements in Delta outflow and hydrodynamic conditions are absolutely necessary, if not alone sufficient, to protect and restore native fishes and invertebrates

Scientifically supported flow recommendations necessary to support various elements of the Public Trust are contained in our earlier submissions to the Board

Adaptive management is appropriate to address uncertainty regarding specific parameters, but it cannot be a rationale for inadequate protections of imperiled resources

The Bay Institute