The Decline of Pelagic Fishes in

 the San Francisco Estuary: An Update

Dr. Ted Sommer

California Department of Water Resources
IEP Pelagic Organism Decline Management Team

POD Management Team

Chuck Armor DFG
 Randy Baxter DFG Rich Breuer DWR
Larry Brown USGS
Mike Chotkowski USBR
Steven Culberson CBDA
Marty Gingras DFG
Bruce Herbold USEPA
Anke Mueller-Solger DWR
Ted Sommer DWR Kelly Souza DFG

POD Principal Investigators

- Dept Fish and Game
- Randy Baxter, Marade Bryant, John Budrick, Kevin Fleming, Kelly Souza, Steve Slater, Kathy Hieb, Marty Gingras
- Dept Water Resources
- Matt Nobriga, Fred Feyrer, Ted Sommer, Bob Suits, Marc Vaysièrres, Heather Peterson, Zoltan Matica, Peggy Lehman, Lenny Grimaldo, Mike Mierzwa, Jim Wilde, Karen Gehrts,
Tanya Veldhuizen
- US Bureau of Reclamation
- Mike Chotkowski
- US EPA
- Bruce Herbold
- US Fish and Wildlife Service
- Gonzalo Castillo, Ken Newman
- US Geological Survey
- Joseph Simi, Cathy Ruhl, Pete Smith
- UC Davis
- Bill Bennett, Swee Teh, Inge Werner, David Ostrach, Frank Loge
- SF State University
- Wim Kimmerer, John Durand
- SF Estuary Institute
- Daniel Oros, Geoff Siemering, Jennifer Hayworth
- Consultant
- Bryan Manly, BJ Miller

Figure from L. Grimaldo

Delta smelt

Longfin smel†

Threadfin shad

Striped bass

Abundance Levels Are Highly Variable

Source: Kimmerer and Nobriga (2005); Sommer et al. (In Review)

The Pelagic Organism Decline

Source: Kimmerer and Nobriga (2005); Sommer et al. (In Review)

Historically Flow Has Helped Predict Fish Abundance

Invasive Species Shifted These Relationships

POD Has Further Shifted Abundance-Outflow Relationships

POD: What We Know Now

Caveats

- Synthesis is from POD MT, not all PIs.

POD: What We Know Now

Caveats

- Synthesis is from POD MT, not all PIs.
- New results = unpolished story.

POD: What We Know Now Caveats

- Synthesis is from POD MT, not all PIs.
- New results = unpolished story.
- The story will change...probably a lot.

POD: What We Know Now

 Caveats- Synthesis is from POD MT, not all PIs.
- New results = unpolished story.
- The story will change...probably a lot.
- Most results have not been written up.

POD: What We Know Now

Caveats

- Synthesis is from POD MT, not all PIs.
- New results = unpolished story.
- The story will change...probably a lot.
- Most results have not been written up.
- Very few results have been peerreviewed.

POD: What We Know Now

Caveats

- Synthesis is from POD MT, not all PIs.
- New results = unpolished story.
- The story will change...probably a lot.
- Most results have not been written up.
- Very few results have been peerreviewed.
- The management implications of this effort are therefore unclear.

TOP-DOWN

The 'Big Three' Questions

- Did anything change at the same time as the Pelagic Organism Decline?
- How and why did these factors change?
- Did these factors affect populations of pelagic organisms?

Quick Answers

	Change with POD?	Mechanism?	Population Impact?
Stock	Yes	????	Yes
Habitat	Yes	Yes	Yes
Food	Some	Some	Yes
Mortality	Yes	Yes	Yes

Stock - Recruitment Effects

- Extremely low stocks

Stock - Recruitment Effects

- Extremely low stocks.

Environmental variables strongly affect recruitment

$$
\begin{gathered}
\text { PHYSICAL } \\
\& \\
\text { CHEMICAL } \\
\text { FISH } \\
\text { HABITAT }
\end{gathered}
$$

FISH ABUNDANCE

Fall "habitat quality" has deteriorated

Source: Feyrer et al. (CJFAS, In press)

Fall "habitat quality" has deteriorated

Fall EQ + Fall Abundance predicts juvenile production

Fall habitat quality decreased as salinity intruded

Source: Feyrer et al. (In press)

Summer habitat changes affect regional delta smelt catches

Source: Nobriga et al. (In review)

Salinity variation also affects clams

Grizzly Bay (1981-2005) - Bivalves

Source: Marc Vaysierres and others (DWR)

Other habitat stressors

- Bioassays showed little effect ($<5 \%$) in 2005 or 2006.
- $<15 \%$ adult delta smelt impaired
- 100 \% of young striped bass show multiple infections

Source: Inge Werner, Swee Teh, and Dave Ostrach (UCD)

Winter Salvage of Delta Smelt (Nov-Mar)

Source: IEP (2005)

Increased winter exports

Low San Joaquin River flow

Source: Simi and others (USGS)

Increased winter exports

Low San Joaquin River flow

Entrainment
Increase in winter salvage.

Negative Old \& Middle River Flows Apparently Increase Adult Delta Smelt Entrainment

Mean Values for December-March 1993-2005

Source: Adapted from Pete Smith (USGS)

Negative Old \& Middle River Flows Seem to Have Similar Effects on Striped Bass \& Longfin Smelt Entrainment

Mean Values for indicated periods 1993-2005

Negative Old \& Middle River Flows Coincided with Low Smelt Indices in POD Years, But Not in All Previous Years

Fall delta smelt index

Summer delta smelt index

Old \& Middle River flows

In Log-Linear Modeling Over 1981-2004, Monthly or SemiMonthly Exports or O\&M River Flows Individually Explain No More Than 1.5\% Of The Variation In Fall Catches

Source: Bryan Manly and Mike Chotkowski (USBR)

Bennett Hypothesis:

Not All Smelt Are Created Equal

Larger/older females:

- Have higher fecundity.
- Spawn early and repeatedly.
- Produce larger offspring that have higher fitness.
- Are more subject to water project effects.

Evidence of Fish Predation Effects

There Also May Be Substantial Inshore Predation for Some Species

Larvae

Adults

Trends in the Pelagic Food Web

Phytoplankton

- Chlorophyll levels very low compared to other estuaries
- Long term declines, especially in Suisun Bay
- But: No evidence of a recent decline in the Delta

Zooplankton (fish food species)

- Long term declines throughout the system
- Recent declines in Suisun Bay
- "Waves" of species invasions

Phytoplankton Primary Production

... is related to

 Fisheries Yields in many Marine Systems (Nixon 1988)

Phytoplankton Primary Production

 ... in Estuaries istypically very HIGH

Phytoplankton Primary Production

... in Estuaries is typically very HIGH

 Source: S. Nixon, 1988

Phytoplankton Primary Production

... in the Delta \&
Suisun Bay is usually very LOW

Sources: A. Jassby (UCD), J. Cloern (USGS), IEP data

Phytoplankton Primary Production

... in the Delta \&
Suisun Bay is usually very LOW
... and has
DECLINED since the 1970s

Sources: A. Jassby (UCD), J. Cloern (USGS), IEP data

Phytoplankton

 Primary Production
... CRASHED in

Suisun Bay right after the 1987 Corbula invasion

Source: J. Cloern (USGS), IEP data

Phytoplankton

 Primary Production
... CRASHED in

Suisun Bay right after the Corbula invasion

Sources: A. Jassby (UCD), J. Cloern (USGS), IEP data

BUT:

Phytoplankton Primary Production

... during the POD years is slightly UP in the Delta \& Suisun Bay.

Sources: A. Jassby (UCD), J. Cloern (USGS), IEP data

Phytoplankton Primary Production

... during the POD years is slightly UP in the Delta \& Suisun Bay.

Quality???

Sources: A. Jassby (UCD), J. Cloern (USGS), IEP data

Zooplankton: Waves of Invasions and Declines

Zooplankton Species Invade in "Waves"

Adult copepods at Chipps Island, yearly averages with 5 -year moving average lines

Source:
A. Mueller-Solger (DWR), IEP data

Zooplankton Species Invade in "Waves"

Adult copepods at Chipps Island, yearly averages with 5 -year moving average lines

Zooplankton Species Invade in "Waves"

Adult copepods at Chipps Island, yearly averages with 5 -year moving average lines

Zooplankton Species Invade in "Waves"

Adult copepods at Chipps Island, yearly averages with 5 -year moving average lines

Zooplankton Species Invade in "Waves"

Adult copepods at Chipps Island, yearly averages with 5 -year moving average lines

Zooplankton Species Invade in "Waves"

Zooplankton Species Invade in "Waves"

Adult copepods at Chipps Island, yearly averages with 5-year moving average lines

Important Fish Food Species have Declined

Eurytemora affinis declined at almost all IEP stations

Pseudodiaptomus forbesi declined in Suisun Bay \& the Confluence

Source: A. Mueller-Solger, DWR

P. forbesi \& E. affinis Abundance in Suisun Bay is Affected by Upstream Subsidies and Clam Grazing

Adapted from John Durand (SFSU)
P. forbesi \& E. affinis Abundance in Suisun Bay is Affected by Upstream Subsidies and Clam Grazing

Adapted from John Durand (SFSU)

Overlap with Food Species Helps Predict Adult Delta Smelt Recruitment

1981-2005

Overlap of Pseudodiaptomus and Eurytemora with Delta Smelt in July

Source: BJ Miller

Reduced Food Availability Affects Abundance-

Outflow Relationships

$2.0 \quad 2.5$
3.0

Adppted from Kimnererer (2002) LOG OUtflow

TOP-DOWN

	Summer	all
D	Clams and Limnoithona	Reduced Outflow
L	Reduced Food in LSZ Increased Predation Loss (?)	Reduced Habitat Area Reduced Size \& Egg Supply
s		
M	I	\downarrow
E	Improved Survival Late Growth Start	High Entrainment of Adults and Early Larvae
	VAMP	Jan-Mar Exports
	Spring	Winter

	Summer	Fall
S	Clams and Limnoithona Maternal Contaminants	Reduced Outflow
R I P E D	Reduced Food in LSZ Increased Intra-Specific Competition/Predation Impaired Offspring	Reduced Habitat Area Disease/ Intersex/ Lesions
B A S S	High Variability in Annual Survival Ocean Conditions Disease	Only Largest And Healthiest Survive First Winter Increased Entrainment
	Adults	Winter

2006-2007 POD Studies

- 2006 Budget $\$ 3.7$ + million
- 60 study components

Prior Abundance
 PRESENT ABUNDANCE

-Fish and Zooplankton Surveys (DFG)

- Gear Efficiency Studies (DFG)
-Pelagic Fish Population and Egg Supply Estimates (DFG/USFWS)
-Threadfin Shad Population Dynamics (DWR)
-Statistical Analyses of Fish Abundance Trends (USBR/Manly)
-Delta Smelt Growth and Survival (UCD)
-Delta Smelt Stock Structure (UCD)
-Trends in Apparent Growth Rates (DFG)
-Fall and Summer Habitat Trends (DWR)
- Temporal and Spatial Changes in Habitat (EPA)
-Trends in Aquatic Weeds (UCD)
-Effects of Aquatic Weeds on Turbidity (USGS)
-Bioassays (UCD)
-Fish Pathology (UCD, USFWS)
-Climate Effects (USGS)
-Hydrologic Changes (USGS)
-Microcystis Studies (DWR)
-Salinity Effects on Clams (SFSU)

-Effect of Fish Behavior on Entrainment Risk (DWR)
-Effects of Hydrodynamics on Fish Salvage Trends (USGS)
-Particle Tracking Simulations of Entrainment (DWR)
-Statistical Analyses of Salvage Data (DWR, USBR, Manly)
-Power Plant Studies (Mirant, Tenera, Hanson)
-Salvage History (DFG, USBR)
-Modeling Striped Bass Predation in the Estuary (DWR/DFG)
-Phytoplankton Trends (UCD)
-Zooplankton Trends (DWR)
-Zooplankton Community Structure (SFSU)
-Sources of Food Web Disruption (SFSU/UCD)
-Changes in Benthic Biomass and Abundance (DWR)
-Fish Diet and Condition (DFG)
-Food Match/Mismatch (DFG)

Synthesis: Next Steps

-Delta smelt life cycle and individual-based models Bill Bennett UCD; Wim Kimmerer SFSU; Kenny Rose, LSU
-Striped bass life cycle, individual-based, and doseresponse models
Frank Loge UCD; Kenny Rose, LSU
-Statistical analysis of environmental effects on pelagic fish abundance
Bryan Manly, Consultant: Mike Chotkowski, USBR
-Synthesis and evaluation
National Center for Environmental Analysis and Synthesis (NCEAS), UCSB

NATIONAL CENTER for ECOLOGICAL ANALYSIS and SYNTHESIS

- Neutral location, setting, facilities, equipment, and staff to support focused synthetic work
- >400 projects conducted by more than 3700 participants (~45\% non-academic)
- > 1200 publications in respected, peer-reviewed journals
- In top 1% of 38,000 scientific institutions in citations in ecology

NATIONAL CEINTER for ECOLOGICAL ANALYSIS and SYNTLIESIS

NATIONAL CENTER for ECOLOGICAL ANALYSIS and SYNTHESIS

Parent Team Members

Fish Health - Daniel Schlenk, UC Riverside
Fish Population Modeling - Julian Dodson, Universite Laval Geospatial Statistics - Dave Krolich, ECorp

Ecosystem Modeling - George Jackson, Texas A\&M
Estuarine Hydrodynamics - Dave Jewett, US EPA

POD Timeline for Review

- Project Work Teams (Continuous)
- Peer-Reviewed Publications (Continuous)
- Presentations at Major Meetings
- American Fisheries Society National Meeting (Sep 2007)
- State of the Estuary Conference (Oct 2007)
- Completion of Study Elements (Fall 2007-2008)
- POD/NCEAS Synthesis Report I (Late 2007)
- Review by CALFED Science (Late 2007)
- POD/NCEAS Synthesis Report II (2008)

Planning e.g. Pelagic Fish Action Plan, Delta Vision, CALFED, BDCP, SDIP, DRMS, IEP...

Operaijons e.g. Delta Smelt Working Group, Water Operations Management Team, Data Assessment Team ...

Studies, Review, Synthesis, Presentations, Publications

Questions?

