San Joaquin River Salmon Population Model

Dean Marston CDFG

SWRCB SJR
Flow Workshop
Sept. 17, 2008

Drs Alan Hubbard U.C. Berkeley

SJR Salmon Trend

Source: USFWS-AFRP

Tuolumne River Escapement

Tuolumne River Adult Salmon Escapement Cohort Production and Spring Flow

SJR Adult Salmon Status

- Production Trend down not up
- Post '99 Decline consistent with spring flow reduction since 1999
Escapement decline began prior to 2005 Ocean condition downturn
- Post-drought trend includes substantial ocean haryest reduction
- ruolume Rjver at moderate-high extinction risk (Mesick 2008)
Change Neededj Status Quo not working

Models

- No "perfect" models

If you have "all" the data: no model needed
Models by nature operate on premise that you take what info you have and extrapolate from it and make inferences
Model utillity depends upon performance (reality double check)
, Models are always in "refinement"

Model Purposes

Science:

- Evaluate Role of South Delta Spring flow on SJR fall-run juvenile thence adult salmon production
- Link Bay-Delta WQCP Objectives (flow \& fish)

Planninge

- One tool for Gaming scenarios (H20 cost vs fish beneffits)
Eglucation
- Delta not isolated-Part of a system
- Link Juvenile and Adult Production

Policys

- Consider benefficial use distribution

Model History Summary

- 2005: SWRCB Periodic Review
- Built simple salmon production model
- Preliminary flow recommendations

2006: Peer review
2007: Model Contracting
2008: Model Refinement

- Peer Review response
- Intermediate model (V.1.5)
- Next Generation (V,2.0) in progress

Peer Review Summary: "Positives"

- Model Generalf
- provides additional insight into role of spring flow, magnitude, duration, and frequency related to Chinook salmon
- fits the historical escapement record using an empirical approach
- is well documented, data carefully analyzed, results probably pretty good
, Model Specjificu
- Ocean survival a constant OK as first step
- Adult replacement ratio: reasonable health metric

Peer Review Summary: "Criticisms"

- Model needs refinement for management use
, Model Lacks!
- Density Dependence
- Resolution
- Statistical parameter fitting
> Model does not Includer
- Important sources of mortality
> ocean conditions \& hajrest
, delta exports
- predation
> water temperature

DFG Response to Comments

Two Staged Response

- Version 1,5
- Replacing linear regression sub-models with proper generalized linear methods
- Accounts for nonlinearities in data
- Allows use of probabiljities to ID best fitt
, Version 2.0
- Add parameters (predation, ocean conditions, harvest, juvenile growth etc)
- Allow biological understanding to drive outcomes (rather than simply empirical relationshijps)

Statistical Models of Version 1.5

Version 1.5 - What is it?

\checkmark Is - Simple linking of statistical models.
Is not - a system's model - does not complete the circle. Version 2.0 is such a model.

What can it do? Estimate the differences in brood year escapement productivity as a function of flow.

Model (Brood Year to Escapement)

Model Strategy

- Examine relationships empiricalily using smooths (generalized additive models).
- Fit corresponding parametric model implied by smooth.
- Inference (e.g., confidence intervals) not formally correct many issues to deal with (autocorrelation, model selection, etc.).

Mossdale Smolt Production GAM smooths by Variable

Vernalis Flow

Spunners

Figure 32. Mossdale Smolt Abundance as a Function of Vernalis Flow

Version 1.0

Mossdale Smolt Production Poisson (log-linear) fit with both variables (\#Spawners, Vernalis Flow)

Form of Mossdale Smolt Model

- The fitted model has the form: S_{t} is the number of smolts at Mossdale, spring of year t, E_{t-1} is the escapement the previous Fallj, Flow is average spring Vernalis flow

$$
\log \left(S_{t}\right)=11.7+8.1 \times 10^{-5} * \text { Flow }+0.15 * \log \left(E_{t-1}\right)
$$

Implies 5.9 times the numbers of fish comparing the max to the min flow in the data, keeping spawners fixed.
Implies 1,9 times the numbers of filsh comparing the max to the min numbers of spawners in the data, keeping flow fixed.

Delta Suivival Model (Mossdale to Chipps)

- Estimate based on the idea that:

1. Survival decreases with distance
2. The percentage surviving over a section of the system can be determined from comparing the capture \% from overlapping capture release experiments.
C)
(c)

Delta Survival Model, cont.

- Survival probability estimated as*:

$$
\hat{S}_{M D \rightarrow C I}=\frac{\left(Y_{M D \rightarrow A n t}+Y_{M D \rightarrow C I}+Y_{M D \rightarrow O C}\right) / R_{M D}}{\left(Y_{J P \rightarrow C I}+Y_{J P \rightarrow O c}\right) / R_{J P}}
$$

, Estimate survival probabilifity as function of flow at Mossdale,
Do separately by HORB status

Delta Survival

Smooths on logit (left) and probability (right) scale

Delta Survival Model - Final Models

, Smooths suggest the linearlogistic will fit relatively well.

$$
\begin{aligned}
& \log \left(\frac{\hat{S}_{M D \rightarrow C I}(\text { flow }, \text { HORB })}{1-\hat{S}_{M D \rightarrow C I}(\text { flow }, \text { HORB })}\right)= \alpha_{\text {HORB }}+\beta_{\text {HORB }} * \text { Flow } \\
& \hat{\alpha}_{\text {IN }}=-5.7, \quad \hat{\beta}_{\text {IN }}=7.8 \times 10^{-4} \\
& \hat{\alpha}_{\text {OUT }}=-2.0, \quad \hat{\beta}_{\text {OUT }}=1.4 \times 10^{-5}
\end{aligned}
$$

, What this means is that comparing the 75 th to 25 th percentile of observed flows, with HORB 1 , estimate a 21 -fold jncrease in survival, with HORB out, 1,1-fold increase.

Delta Survival Final Logistic Model

Figure 34. South Delta Salmon Smolt Survival - Inland CWT Recovery.

Version 1.0

Cohort Production Model Chipp Smolts to Escapement

- Just fit a simple model relating the estimated number of smolts at Chipps to the total escapement from that brood year.
, Use Mossdale smolts, apply Delta Suryival model using observed flows and HORB status to predict number of smolts at chips - this is predictor varable,
* Outcome is total escapenent fiom the brood year

$$
\log \left(\frac{S_{\text {Chipps } \rightarrow \text { Escape }}\left(N_{\text {Chipps }}\right)}{1-S_{\text {Chipps } \rightarrow \text { Escape }}\left(N_{\text {Chipps }}\right)}\right)=f\left(N_{\text {Chipps }}\right)
$$

where $N_{\text {Chipps }}$ is the estimated total number of smolts surviving to Chipps and $S_{\text {Chipps } \rightarrow \text { Escape }}$ is the estinated total escapenent from the brood year.

Proportion of Smolts returning as Spawners GAM smooths (left on proportion scale, right on logit scale)

Version 1.0

Proportion of Smolts returning as Spawners as function of \log (Smolits)

Final logistic model fit (left on logit scale, right on proportion scale)

Model Runs

Scenarios

Case	Flow	HORB in		\#	\#	Delta (\#)	Ratio	Days	Delta (AF)	Cost (AF per fish)
		From	To	Spawners	Escapement Cohort Prediction	Relative to Case 0	Relative to Case 0	HORB In	Relative to Case 0	Relative to Case 0
0	1,500	NA	NA	16,088	1,938	NA	NA	NA	NA	NA
1	2,500	1-Apr	30-Apr	16,088	6,359	4,420	3.3	30	59,504	13.5
2	5,000	1-Apr	30-Apr	16,088	6,771	4,833	3.5	30	208,264	43.1
3	10,000	1-Apr	30-Apr	16,088	7,672	5,734	4.0	30	505,785	88.2
4	2,500	1-Apr	15-May	16,088	7,864	5,926	4.1	45	89,256	15.1
5	5,000	1-Apr	15-May	16,088	8,562	6,624	4.4	45	312,397	47.2
6	10,000	1-Apr	15-May	16,088	10,136	8,198	5.2	45	758,678	92.5
7	2,500	1-Apr	30-May	16,088	9,958	8,019	5.1	60	119,008	14.8
8	5,000	1-Apr	30-May	16,088	11,076	9,137	5.7	60	416,529	45.6
9	10,000	1-Apr	30-May	16,088	13,677	11,739	7.1	60	1,011,570	86.2

Conclusions

- Empirical positive relationship of average spring flow and the estimated number of Spring smolts that pass Mossdale per fish that spawned.
- Empirical positive relationship of concurrent Mossdale flow and survival of smolts fiom Mossdale to Chipps fiom release-capture experiments, Association strongly affected by HORB status.
, Work to be done - 1) using more reffined RSJ data, 2) more refined flow/temperature data, 3) using statistical methods to simultaneously estimate parameters of model, 4) getting proper statistical inference on these estinates, uנ

Next Generation-V.2.0.

Graphical depiction of model 2.0

SJR Model Version 2.0

Relevant Management Questiońs
 Q: Which Ecosystem most limiting?
Q: Which Parameter most limiting?
Q: Which action(s) most Iikely result in substantial production gains?
See Report for details

Americar. River

Riokelumne River
Sta;islaus River
Tuolumne River Merced River
Inland

SAN JOAQUIN RIVER

Water Temperature

- H20 Temperaturer Emerging issue in SJR basin
- Cooler H20 Temps associated with smolt higher survival
- Higher trib and delta flows associated with cooler H20 temps
, Water Jemp Modelu
- Beneffits vs cost

SJR Basin-Wide Water Temperature Model

Covers Main-Stem SJR and all Main Reservoirs and Tributaries in the Basin

SJR Basin-Wide Water Temperature Model

- CALFED (ERP) Sponsored Model
, Simulates System Operation (daily) and Computes Temperature Response in Reservoirs and Streams (sub-daily (6hr)).
, Both Long-Jerm and Short-rerm Water Jemperature Management planiling Jool.
A Approved by Most SJR Stakeholders.
, Already being Used (e,gn, Stanislaus Operation, Fiant Restoration, CVRWQB 303(d) Listing Proceedings),

Conclusion

Model one of many tools

- CDFG offering tool to SWRCB to make informed decisions
- Fish \& flow empirical relationship
- Tributary and Delita connectivity

CDFG offering SWRCB assistance

- Use model
- Adapt model for SWRCB needs

Model refinement continues with next version due in 2009

Thank You

