UNI TED STATES DI STRI CT COURT EASTERN DI STRI CT OF CALI FORNI A HON. OLI VER W WANGER, J UDGE

NATURAL RESOURCES DEFENSE

 COUNCI L, et al.,Pl ai ntiffs,
vs.

No. 05-CV-1207- OWW
HEARI NG RE I NTERI M REMEDI ES DAY 2

DI RK KEMPTHORNE, Secret ary, U.S. Department of the Interior,) et al.

Def endant s.

Fresno, Cal ifornia
Wednesday, August 22, 2007

REPORTER' S TRANSCRI PT OF PROCEEDI NGS

Vol ume 2, Pages 256 to 472, incl usi ve

Reported by: KAREN LOPEZ, Official Court Reporter

APPEARANCES OF COUNSEL:
For the Plaintiffs:

For the Feder al Def endant s:

Earthj ustice Legal Def ense Fund BY: TRENT W ORR 426 17th Street Fifth Fl oor
Oakl and, CA 94612
Nat ural Resources Def ense Council BY: MCHAEL E. WALL and SELENA KYLE and AN ALI J A SWAL
111 Sutter Street
20th FI oor
San Franci sco, CA 94104
U. S. Department of Justice

BY: J AMES MAYSONETT
WIdlife \& Marine Resources
P. O. Box 7369

VAshi ngt on, D. C. 20044-7369
St ate of Cal iforni a
At tor ney General 's Office
BY: CLI FFORD LEE
455 Gol den Gate Avenue
Suite 11000
San Franci sco, CA 94102-7004
State of Cal iforni a
Attorney General 's Office
BY: DEBORAH VDRDHAM
1300 I Street
Suite 1101
Sacr ament o, CA 94244-2550

For Cal i forni a Far m Bur eau:
For the Cal iforni a Dept. Of hater Resources:

G bson, Dunn \& Cr ut cher
BY: CHR STOPHER H BUCKLEY, JR. 1050 Connecticut Avenue Northwest Suite 900
VAshi ngt on, D. C. 20036-5303
CALI FORNI A FARM
BUREAU FEDERATI ON
BY: CHR STI AN SCHEURI NG
2300 Ri ver Plaza Drive
Sacramento, CA 95833

APPEARANCES OF COUNSEL: (Cont'd)

For State Water Cont ract ors:

Best, Best \& Kri eger
BY: GREGORY K WILI NSON
and STEVEN M ANDERSON
3750 Uni versity Avenue
Suite 400
Ri verside, CA 92501
Metropol itan Water District of
Sout her n Cal i f orni a
BY: LI NUS MASOUREDI S
1121 L Street
Suite 900
Sacr ament o, CA 95814-3974

Kroni ck, Mbskovitz,
Ti edemann \& Girard
BY: DAN EL J. O HANLON
400 Capi tol Mal
27th Fl oor
Sacr anent 0, CA 95814-4416
Di epenbrock Harrison
BY: J ON D. RUBI N
400 Capitol Mal
Suite 1800
Sacrament o, CA 95814
Somach, Si mmons \& Dunn
BY: ANDREWM H TCH NGS
813 Si xth Street
Thi rd Fl oor
Sacr ament o, CA 95814-2403

		259
1	I NDEX	
2	PLA NII FFS' WTNESSES:	
3	CHR STI NA SMANSON	260
	DI RECT EXAM NATI ON BY MR. WALL	262
4	CROSS- EXAM NATI ON BY MR. MAYSONETT	426
	CROSS- EXAM NATI ON BY MR. LEE	452
5		
6	*****	
7	EXH Bl TS	
8	PLAI NII FFS'	Mar ked
	6	269
9	7	271
	8	284
10	9	293
	10	323
11	11	335
	12	403
12	DEFENDANTS'	
13	DWR D	462
14	*****	
15		
	PLAI NII FFS'	Recei ved
16	6	270
	7	273
17	10	324
	11	336
18	DEFENDANTS'	
19	DWR D	471
20		
21	*****	
22		
23		
24		
25		

Wednesday, August 22, 2007
Fresno, Cal iforni a 9: 00 a. m

THE COURT: We' re back on the record in NRDC versus Kempt horne. Mr. Wall, you are going to call another witness?

MR. WALL: Yes, Your Honor. We' d like to call Dr. Christina Swanson.

THE COURT: Al I right.

CHRI STI NA SWANSON

called as a witness on behalf of the Plaintiffs, having been first duly sworn, testified as follows:

THE CLERK: Please state your ful name for the record and spell your last name.

THE WTNESS: My name i s Christina Swanson. Last name is $\mathrm{S}-\mathrm{W} A-\mathrm{N}-\mathrm{S}-\mathrm{O}$.

THE COURT: And bef ore you start your exami nation, I et me try to give a little direction to the parties. My sense, as we are going through the evi dence in this case, is that there is some di spute between the parties about the extent of the decline of the species, the extent of its j eopardy and the causes.

What I see is that we have about a six-year period where I think everybody agrees and certai nl y government agrees that the species is in decline and the Court's al ready found the extent of j eopardy that exists.

What we're doing in this remedi es hearing is
det ermining, if we can, the extent of that jeopardy and what should happen in the next year bef ore the Bi ol ogi cal Opi ni on is compl et ed as requi red by the ESA.

Now, there have been proposed, by the plaintiffs on the one hand and the government on the other, certain interim remedi es that would address project operations in relation to protection of the species.

And l will tell you where my mdset is so you can perhaps be effective in focusing your questions and the evi dence you're going to present.

We have a problem The problem needs to be addressed. We need a remedy. And so the idea that we' re not going to have any kind of measures in effect that somehow address the problem that's not going to happen.

So if you want to spend a lot of time cross-examining on whether or not there is a problem l've not pre-judged this case in any way, but that's been deci ded. We have a legal deci sion that's in place.

And so what we're tal king about is the most effective way to deal with this, as you know. l've said in every one of these cases, si nce 1991, that the Court is not going to run the projects, the Court is not going to tell the government how to run the projects. The government has to do it.

But what l'mgoing to say is this: The evi dence more than preponderates, the evi dence is clear and convincing the
government hasn't been able to do that.
And so gi ven where we are, something has to be done, something is going to be done. So that's where you ought to be focusing.

Anybody have any questions? I'm happy to entertain your questions if you have them

I don't see any questions. You may proceed.
MR. WALL: Your Honor, with that in mind, we'll spend a little bit of time describing the causes of the decline because that rel ates to the remedy. But we'll try to get to the remedy.

THE COURT: Well, I thi nk you should do that. I'm not trying to foreclose, l'mjust trying to hel p everybody focus because I want to be as efficient -- we have only this week and I want to be as efficient as we can in making productive the use of our courtroomtime.

MR. WALL: We'll do our best to satisfy that concern. DI RECT EXAM NATI ON

```
BY MR. WALL:
```

Q. Dr. Swanson, could you pl ease introduce yourself to the Court?
A. My name is Christina Swanson. I'mseni or scientist for The Bay Institute, one of the plaintiffs in this case.
Q. Could you briefly describe your educational background?
A. I recei ved my bachel ors degree from Cornell Uni versity in

1980 and my Ph. D. in bi ol ogy from UCLA in 1991. Starting in 1991, I continued work as a post doctoral researcher at UC Davis.
Q. What was the subject of your di ssertation?
A. My di ssertation studi ed the ecol ogy, physiol ogy and behavi or of a marine fish called the milkfish.
Q. And coul d you descri be your work at UC Davis?
A. My work at UC Davis focused primarily on the ecol ogy, physi ol ogy and behavi or of fishes that live in the Sacramento San Joaquin Estuary, the Del ta and the Sacramento-San Joaqui n Wat ershed.
Q. Did a portion of your work focus on the delta smelt?
A. It did.
Q. Could you briefly describe that portion of your work?
A. My early work with delta smelt concerned examining the envi ronment al tolerances and habitat requirements of the species in regards to temperature and salinity. I al so examined their swi ming behavi or and capabilities and then, in Iater years, the research becane -- used information fromthat preliminary foundational work to examine the behavi oral and physi ol ogi cal responses of the fish to water di versions and, in particular, to fish screens on water di versions.
Q. Have you had occasi on to publ ish the results of your research in peer revi ew journal s?
A. I have.
Q. Could you briefly describe the scope of your publ ications in peer revi ew journals?
A. The first journal article that l published on delta strelt, with several co-authors, of course, described our work trying to devel op techni ques to reliably collect and keep al ive del ta strelt collected fromthe San Franci sco Bay Del ta Estuary and to successfully get them back to the laboratory for use in I aborat ory based research experiments.

Subsequent publ ications exami ned the envi ronment al tol erance of the species, of ten in comparison to other species that live in the same habitat. Other research described the swi mming behavi or of the speci es and its capabilities. And the more recent publ ications have exam ned in detail how the fish responds to the flow of water being di verted through a fish screen.
Q. Over what period of years have you published articles on the del ta snelt in peer revi ew journal s?
A. My first article on delta smelt was published in 1996 and the most recent article was published earlier this year in 2007.
Q. And have you publ ished articles in peer revi ew articles on fishes other than del ta swelt?
A. Yes. Those incl ude the work that l did on my di ssertation on the milkfish. l've al so publ ished articles on Chi nook sal mon.
Q. In your more recent time at The Bay Institute, have you continued to publish articles in peer review journal s on the delta swelt and other fishes?
A. I have been working with The Bay Institute si nce 1999, yes, and I have publ ished several articles si nce that time.
Q. Do you serve as a peer revi ewer for any peer revi ew j ournals?
A. Yes, I have for some years. Those journal s include Journal of Fish Bi ol ogy and International Journal of Fish Bi ol ogy. Transactions of the Ameri can Fi shery Soci et y and nost recently l revi ewed a journal article for the Journal San Franci sco Estuary and Watershed Sci ence.
Q. Have you been -- have you served on CALFED Del ta Authorities Adaptive Management Planning Teamfor Del ta Ecosyst em Rest or at i on?
A. Yes, I have and I still do.
Q. Have you served on ot her i nter agency or agency poi nted teans looking at native fishes in Cal ifornia?
A. Yes. For several years l worked on a team of sci entists or gani zed by Nati onal Marine Fi sheries to study the stat us and potential recovery efforts --

THE REPORTER: I'msorry. You lost me somewhere.
THE WTNESS: I'msorry.
THE COURT: A measured pace, if you please. She's got to keep up.

THE WTNESS: I served as a nember of the Central Valley Techni cal Recovery Team whi ch was a group convened by the National Marine Fi sheries Service to eval uate the stat us and potential recovery actions for listed sal mon species in Cal iforni a central valley.

MR. WALL: Your Honor, I move that Dr. Swanson be qual ified as an expert in bi ol ogy of the native fishes of Cal if or ni a.

THE COURT: Is there any obj ection?
The Court accepts the tender and finds that Dr .
Swanson is qual ified to render opi ni ons about the bi ol ogy of central Cal iforni a fishes.

BY MR. WALL:
Q. Dr. Swanson, do you have -- have you reached a concl usi on about the present risk of extinction of the del ta smelt?
A. I bel i eve the delta smelt is at imminent risk of extinction in the near fut ure.
Q. What are the factors you would look at to characterize that risk of extinction?
A. I bel ieve the risk of extinction for del ta smel t can be characterized on the basis of at least four different factors. The first, of course, is the abundance of the species. And the abundance of del ta swelt, as we al ready di scussed, has reached record low levels and has been at record low I evels for the past consecutive three years.

A second characteristic of the speci es whi ch potentially increases its risk for extinction is the di stribution of that species within its habitat. As a species that is more broadl y di stributed within its habitat is at less risk. In contrast, a species that has been concentrated in small areas within its habitat, as, for example, we observed in earlier this year when the entire spawning popul ation of del ta smelt was concentrated in the north Delta. When speci es are concentrated in a small geographic area, they are vul nerable to a catastrophic event because all of the entire speci es is in the same place.

In addition, another important criteria for a viable species that hel ps define its risk for extinction is the di versity of the species. Frequently, this is expressed in ter m s of genetic di versity of a species. And there are concerns that when the genetic di versity of the species declines to a low point, it has less genetic material available to respond to changes in its envi ronment.

However, di versity can al so be expressed in terns of the phenotypic di versity of a species. In ot her words, how -differences in life hi story patterns, for example, differences in the timing at whi ch the species spawn in the year.

I bel ieve delta strelt has experienced, in particul arly these recent years, a decline in the diversity of its popul ation. And l will use as an example the age
structure of the popul ation. Dr. William Bennett's research has shown that, at least in recent years that he has looked at, the entire population or the vast maj ority of the delta smelt population is comprised of fish that were born during a -- or hatched during a very short period of time of the year.

We know, for example, the Delta smelt's spawn and the I arvae are hatched over multiple months usually from March through May. But, in fact, Dr. Bennett's work has shown that in recent years, onl y those fish that were hat ched during an approxi matel y month long period frommid May -- excuse me, mid April to mid May survive to contribute to the population. Therefore, the delta smelt population diversity, interns of its age structure, is lower than it was in the past.

The final characteristic that can be used to describe the risk of extinction to a population, the termthat is used by National Marine Fisheries is productivity. Essentially it's the rate at whi ch the popul ation grows or shrinks. And for delta smelt, the population has been shrinking for the past -- since 1999. So productivity of the speci es is very I ow.

In addition, I would add to that particul ar criterion. We al so have evi dence that the delta smelt is now in such a condition that it is less able to respond to favorable or perhaps less unf avorable conditions within its
habitat with positive popul ation growth.
For example, 2005 and 2006 were generally consi dered to be rel atively good years in terms of the hydrol ogy in the system They were moderately wet, flows were generally good. However, delta smelt population, despite expectations of many sci entists, did not increase. This suggests that the resilience of the species has been reduced.

In addition to these criteria, I think another important piece of evi dence that characterizes the risk of extinction to this species was the population viability studi es conducted by Dr. William Bennett and published in his 2005 paper.

In those anal yses, he clearly showed that based on past population trends and status, that the delta smelt was at rel atively high risk of extinction of falling bel ow certain population levels that he termed or that he identified to mean extinction within the next 20 to 50 years.
Q. Dr. Swanson, l'mgoing to hand you a document to look at. But first let me give it to counsel.

THE COURT: Are you going to mark this as plaintiff's next?

MR. WALL: Plaintiff's 6, Your Honor.
THE COURT: 6. Thank you.
(Pl ai ntiff's Exhi bit 6 was marked for identification.)

BY MR. WALL:
Q. Dr. Swanson, are you familiar with the document you're l ooki ng at?
A. I am
Q. Could you describe what it is?
A. This is a table that shows the results of four different surveys conducted by the California Department of Fish \& Game, which collect delta smelt within their habitat in the estuary and at different lifestages. It shows the results fromthose surveys from 1967 until 2007, for whi ch we only have results for three of the four surveys. The fourth has not yet been compl et ed for this year.
Q. Dr. Swanson, are you the author of this table?
A. I compiled this table using data fromthe California Department of Fish \& Gane.
Q. Does this table accurately reflect the data you got from the State of California?
A. Yes.

MR. WALL: Your Honor, I move to have this admitted in evi dence.

THE COURT: Any obj ection?
Exhi bit 6 is recei ved in evi dence.
(Government's Exhi bit 6 was recei ved.)
BY MR. WALL:
Q. Dr. Swanson, would you briefly characterize the recent
trend in popul ation abundance?
A. All four surveys show that in recent years, fromthe late 1990s, 1999, for most of them the popul ation abundance of delta smelt, as measured by each of these surveys, has declined. For each of these surveys, the most recent numbers, the 2007 numbers or alternativel y, the 2006 for the Fall M dwater Traw, which has not yet been completed, represent record low levels or the second or third record lowest level of abundance as measured by that survey for the duration that it has been conducted.

MR. WALL: May I approach the witness and provi de another exhi bit?

THE COURT: You may.
MR. WALL: This is Pl aintiff's 7.
THE COURT: You can put these on the screen and then you won't have to approach.
(Pl ai ntiff's Exhi bit 7 was narked for
identification.)
MR. WALL: Ri ght. I would have to figure out how to do that.

THE COURT: The courtroom deputy can hel p you.
MR. WALL: If the Court would prefer that. I would still need to hand the exhi bit to -- she'll look at it on the screen.

THE COURT: You can put it on there and she'll see it
on the screen and she can identify it on the screen.
MR. WALL: Wbuld the Court prefer that?
THE COURT: I would if it's not logistically i moossi ble.

THE CLERK: If you put it on there, it will di splay on all the screens.

MR. WALL: Thank you. I went to Iaw school before we had these technol ogi cal advances.

THE COURT: Yes.
BY MR. WALL:
Q. Dr. Swanson, could you describe what Plaintiff's Exhi bit 7 is?
A. This graph represents the data in the table we just revi ewed in graphical form The only difference in the data presented on the graph is that for one of the surveys, the Summer Townet Survey, which was first begun in 1959, the graph shows the data fromthe earlier years whereas the table does not.

I should al so point out that for the Summer Townet Survey, during years 19 -- I thi nk it was ' 66 through ' 69 or possi bly ' 67 through ' 69 and the Fall M dwater Traw in 1974 and 1979, the surveys were not conducted.

And so the blank spots on the graph do not represent I ow abundance of delta smelt or zero abundance, they represent the fact that no data exists for those years for those
sur veys.
Q. Dr. Swanson, do these -- does -- do these figures accuratel y represent the information that's set forth in the exhi bit marked as Pl ai ntiff Exhi bit 6?
A. Yes.

MR. WALL: Your Honor, I move to have Exhi bit 7 recei ved.

THE COURT: Any obj ect i on?
Exhi bit 7 is recei ved in evi dence.
(Pl ai ntiff's Exhi bit 7 was recei ved.)
BY MR. WALL:
Q. Dr. Swanson, could you characterize the variability of these i ndi ces?
A. Particul arly the two long-termsurveys, the Summer Townet Survey and the Fall M dwater Traw demonstrate that the popul ation abundance of delta smelt, at least as measured by these surveys, has al ways been somewhat variable.

There are periods during whi ch the abundance is quite hi gh, for example, during the 1970s. And there are periods when the abundance falls to rel atively low level s as it did during the 1980s. In the 1990s, abundance increased according to the two long-termsurveys, al though not to the same hi gh I evels that were measured 10 and 20 years earlier.

And as l've menti oned bef ore, si nce 1999, abundance has once agai n decl ined, this time to level s which are
substantially lower than the low level s previously measured during the 1980s.
Q. Dr. Swanson, is some degree of variability inherent in the popul ation of this fish species?
A. Yes, it is, as with all fish species.
Q. Do you have an understanding of whet her the variability you see represented in this chart represents the nat ural variability of that species?
A. That's difficult to say gi ven that over the time period for whi ch these data were collected, envi ronmental conditions and ecol ogi cal conditions and human management of delta smelt habitat has changed over time.
Q. Dr. Swanson, are you familiar with an estimate provided in this litigation by Dr. Charles Hanson of the total population of the delta smelt?
A. I am
Q. Are you familiar with the methodol ogy that Dr. Hanson used to devel op that popul ation estimat
A. Yes, I am To the extent that he described it in his decl ar at ion.
Q. Is that methodol ogy reliable?
A. No. Not for cal culating an estimate of delta smelt popul ation abundance that is accurate.
Q. Could you expl ai n that?
A. The cal cul ations that D. Hanson used to essentially
convert data from in the case of his cal culation, one of the survey -- or several of the surveys of the 20 millimeter survey, are based on a number of assumptions about how delta smelt are di stributed within their envi ronment as well as the efficiency of the nets in the survey that were used to collect those delta smelt.

All of the assumptions upon which Dr. Hanson based his cal cul ation are known to be invalid and therefore they represent a cumul ative error that is just accumal ated in all the subsequent cal cul ations that are made in order to arrive at this estimate of the total number of delta smelt within a syst em

If I may offer an example. One of the assumptions is that the distribution of delta smelt within a large area of thei r habitat, is that delta smelt will be distributed within that habitat at the same density, the average density that they're collected at a series of fixed sample sites within that portion of the habitat. And one of the things we know about delta smelt is that they are not evenly di stributed within thei r habitat.

If I may use an anal ogy for an example. If you were to make a transect across this country searching for oil. You started out in San Franci sco and you dug and you would find zero oil. You went to Texas, you dig and you find a lot of oil, we'll say a hundred barrels of oil. You then went
further east and -- east and north and went to Iowa, you might find four barrels of oil. Then if you finally went to New York, you'd probably find zero.

And if you were then to cal cul ate the average amount of oil, the average density of oil fromthose that you cal cul at ed fromthose four sample sites, you would find that you might try to make a prediction that, on average, across the United States, there's an average of 26 barrels of oil per area within the United States.

And as we're all aware, oil is not evenly distributed across the country. And that average would be wrong. And it would mischaracterize the distribution of oil within this country. The exact same thing is true for delta smelt within thei r habitat.

A second assumption is that delta smelt -- that means delta smelt distribution sort of laterally across the area of thei r habitat is known to not be even. It's al so known that delta smelt are not evenly distributed in the water of the estuary on a vertical basis. In fact, delta smelt are princi pally a fish that lives near the surface of the water, usually in the first ten to 12 feet of the water col um. And they are present, if at all, at much lower numbers deeper down in the water.

Wen Dr. Hanson extrapol at ed, in ot her words, sort of multiplied his survey data numbers, he incl uded habitat
vol ures that were much deeper than the typi cal habitat of del ta smelt. Assuming that del ta smelt would be present in deeper waters at the same density at whi ch they had been surveyed by surveying onl y in surface waters. This, as an example, represents a way to grossl y overesti mate the number of delta swelt that are present in the survey.
Q. Do you know whet her Dr. Hanson's estimate of the population of delta smelt is too high or toolow?
A. No. To be - the onl y thing we know about that number is that it's wrong.
Q. Did Dr. Bennett, in his -- are you familiar with a monograph publ ished by Dr. Bennett in 2005 on the delta smelt? A. I am
Q. And di d he provide an estimate of the popul ation of del ta smel t?
A. He did. He cal cul ated estimates of delta srrelt popul ation from two surveys, the Summer Townet Survey and the Fall M dwat er Traw Survey.
Q. And in his article, did he provide - did he articulate a vi ew of the reliability of those estimates?
A. He consi dered themto be based on unreal istic assumptions and that ther ef ore they needed to be consi dered, at best, a first order estimate of the popul ation of the species. And that they needed to be consi dered with extreme care and very cauti ously when using themto do anal yses or make predi ctions
or make comparisons.
Q. Did he provide confidence interval s for his estimates? A. He did. For his estimates for each year, fromeach of the two surveys, he made a series of cal cul ations that tried to accommodate known errors within his assumptions. And for each estimate, for each year, for example, in 1994, the -- he estimated that the -- using Fall M dwater Traw data, the -- he estimated that the Fall M dwater Traw data corresponded to 86, 000 some odd adult delta smelt.

However, he provi ded the information on his confidence, the range of which he thought he had confidence in that val ue. The confidence limit, the 95 percent confidence limit, which is the metric that he provided, essentially tells you that there's a 95 percent chance that the real answer is within the upper and lower bounds of the confidence limit around your central number of 86,000 .

For the 1994 popul ation estimate of 86,000 some odd number of fish, based on visual examination of the graph, the confidence limits ranged fromzero to about 160, 000 fish.

THE COURT: Before the next question is asked, l'd like, if you would, please, to go back to an answer that you gave that expressed a criticismof the popul ation estimate devel oped by Dr. Swanson -- I'msorry, by Dr. Hanson. And this had to do with the vertical range.

And how does the cal cul ation reach a stat us of error?

You' ve indi cated this 10 to 12 foot range from the surface is where the speci es is normally found. And did the survey or the data Dr. Hanson utilized, did it distribute the species at greater depths that, in effect, you say the speci es doesn't exist?

THE WTNESS: To the best of my know edge, the 20 millimeter survey samples del ta smelt in areas of the water near the surface and it does not sample del ta srel t near the bottom So the data that Dr. Hanson used on fish density, whi ch he then multiplied by the vol ume of the habitat, were fromsurveys for the fish conducted by dragging the net onl y through the surface waters.

So to the best of my know edge, he has no information on whet her young delta smelt were present in the deeper waters and, if so, whet her they were present at similar or different densities.

THE COURT: Wbuld that not, however, be a limitation and would that make his estimate more conservative because it is excl uding what fish would be at the deeper l evel s?

THE W TNESS: As I understand the methods used by Dr. Hanson, he assumed that the density of fish collected in the surface water will be the same for all waters that were deeper than that. And when he multiplied the density of fish to the vol ume of water, he incl uded the vol umes of water that were deeper than 12 to 15 feet, whatever it was, with no evi dence
that, in fact, delta smelt really were present in those areas of t he habitat.

THE COURT: So by the si mple process of milliplication, you would overestimate because you are attributing the presence of fish where they're absent?

THE WTNESS: Where they are probably absent, yes, you're correct.

THE COURT: In the deeper regions?
THE WTNESS: Yes. Other surveys have shown that delta smelt are much less numerous in deeper waters than they are in surface waters, so yes, that --

THE COURT: And are you satisfied that the vol ume metric figure that is in this multiplier is an accurate one for the area that is surveyed? I'massumn it's either the north Delta or the Delta.

THE WTNESS: I'massuming that the numbers that Dr. Hanson reports in his declaration, which if I recall correctly, he attributes to the US Geol ogi cal Survey, are accurate. I did not check them nor do I have any way of checki ng them

THE COURT: And is the unit of measure, acre feet or some ot her?

THE WTNESS: The unit of measure was acre feet.
THE COURT: Thank you. You may proceed.
BY MR. WALL:
Q. Dr. Swanson, are there ot her ways in whi ch Dr. Hanson's cal cul ations could potentially overestimate the popul ation -- I'msorry, under esti mate the popul ation? A. Dr. Hanson assumed that the net used to collect the fish for the 20 millimeter traw was equally efficient at all stations and for all of the different places that he collected delta smelt. One of the things that we do have evi dence on is that the ability of the 20 millimeter net, the gear, the sampling gear, the efficiency of the gear is greatest for fish that are larger than 20 to 30 to 40 millimeters compared to a l ower efficiency for the smaller size cl asses.

During the period in whi ch the 20 milli meter survey is conducted, there is a very wi de range of sizes of delta srelt present in the habitat. The sizes of the fish, depending on where they are in the system can vary from substantially less than 20 millimeters in length to greater than 40 or 50 millimeters in length.

Dr. Hanson assumed equal efficiency. And I think that it is likely that in those stations where the fish were predomi nantly smaller, that would tend to be the stations upstreamin the Sacramento River closer to the spawning grounds. The efficiency of the net was probably less, so it's likely that in those areas he was under estimating del ta smel t densities and, by cal cul ation, the popul ation of del ta srelt there. However --

THE COURT: Why? Is that by taking -- I'msorry to interrupt. Is that by taking what's actually in the net, which is less efficient, may not be as much as is represented in the water?

THE WTNESS: The 20 millimeter net would probably be not as good at catching delta smelt in areas where the size of the population of delta smelt was -- where the size of the fish in the population was smaller. And compared to areas of the estuary where the size of the fish was Iarger, where the net would be more efficient. He assumed equal efficiency in his Iarge cal culation where he extrapolated out the popul at ion.

THE COURT: And that doesn't bal ance out?
THE WTNESS: You mean under estimating on one side?
THE COURT: Ri ght.
THE WTNESS: No. And whether it does, we have no i dea.

THE COURT: Thank you.
BY MR. WALL:
Q. Is this related, the -- I thi nk what you might characterize as the rather wi de confidence intervals on Dr. Bennett's characterization of such popul ation estimates? A. I'msorry? Could you repeat that question? Q. That was a poorly formed question. Let metry it again. You' ve mentioned several different assumptions that you
characterize as invalid that were the basis of Dr. Hanson's popul ation estimate. Correct?
A. Yes.
Q. And that some of them could have led to underestimation and some to overestimation.
A. Yes.
Q. Does this contribute in some way to the breadth of the confidence intervals or error bars around the population estimate that might be cal cul at ed?
A. Yes.
Q. Did Dr. Hanson provi de any confidence interval s around his popul ation estimat
A. Not in his declaration, no.
Q. And so do we have any idea what the confidence intervals around his estimates are?
A. Other than that they are al most certai nly very large, no.
Q. If the population of delta smelt were near the lower end of the confidence interval given by Dr. Bennett before 1994, what would that mean for the risk of extinction of the delta smelt?
A. If the popul ation were -- the numbers of fish, were, in fact, near the lower number of cal culation of numbers that he did not cal cul ate, it would mean that there were very few juvenile delta smelt present in the habitat.

And gi ven that we know, from basic fish bi ol ogy, that
the mortality rate fromthe juvenile life fishery stage to adult is typically very high for most fishes, particularly fishes of this kind, small pel agic planktonic fishes. A lower number of j uveniles will translate into a much lower number of adults.

MR. WALL: I'mgoing to need to have another exhi bit marked. One noment.

MR. WALL: Will the El mo work for the multipage document?

THE COURT: Yes, it will. One at a time. Unless you put themside by side.

MR. WALL: Dr. Swanson, l'm going to place a document on the El mo and I believe it will show up on your screen there. This has been marked as Plaintiff's Exhi bit 8 for identification.

THE COURT: Was the I ast EXH BI T 6?
THE CLERK: No, 7.
(Plaintiff's Exhi bit 8 was marked for identification.)

THE WTNESS: May I request that I get a hard copy?
MR. WALL: Sure.
THE WTNESS: My eyes are not good enough.
MR. WALL: May I approach?
THE COURT: You may.
BY MR. WALL:
Q. Dr. Swanson, do you recognize this document?
A. I do.
Q. Could you tell us what it is?
A. It's the decl aration of Charles Hanson in response to interimremedy proposal s of DVR and the federal def endants dated August 21, 2007.
Q. I bel ieve - could you look at the date at the very top of the page.
A. Filed? Is that the date, correct?
Q. Yes.
A. It's filed -- did I just say August? I meant July. I beg your pardon. It says July 23, 2007.
Q. Dr. Swanson, could I have you look at Exhi bit 4 of that docurent.

Do you have an understanding of what Dr. Hanson is representing in this exhi bit?
A. I bel i eve I do.
Q. Could you descri be that for us?
A. What Dr. Hanson did is he applied his methodology for estimating the total popul ation size in terns of numbers of del ta snel t to the indi vidual survey results for the i ndi vi dual sequential surveys that make up Cal ifornia Department of Fish \& Gane's 20 millimet murvey. He estimated del ta smel t popul ation fromthe catch data for those sur veys.

For survey number four, whi ch was conducted in late April; survey number five, whi ch was conducted in early May; survey si x, seven, ei ght and ni ne. The final survey was conducted in the first week of July.
Q. And Dr. Swanson, to the extent you're able to determine it fromthis figure, could you tell us what the population is that he estimated for the seventh survey?
A. I would estimate that it is less than 100,000 fish based on the hei ght of the bar on the graph.
Q. And those would be juvenile fish?
A. Yes.
Q. How would you characterize their rate of survival to adul thood?
A. Based on the estimates that we have for other fish species, as well as those taken from Dr. Bennett's article, of overall perhaps four percent survival fromthe juvenile stage to the adult stage. Four percent of 100,000 would be 4,000 fish.
Q. And when was that survey, the seventh survey conducted?
A. June 4 through June 9 .
Q. If you could look at survey number ei ght. When was that conduct ed?
A. That was conducted two weeks later fromJ une 18 to J une 23.
Q. And how would you characterize -- to the extent you're
able to determine fromthis figure, do you have an understanding of what popul ation Dr. Hanson was cal cul ating two weeks after the seventh survey?
A. Using data fromsurvey number ei ght, he estimated the population of delta smelt in terms of the numbers of delta snelt present in the habitat to be around 800, 000 fish.
Q. And how much I ater was survey number ni ne conducted?
A. Survey number ni ne was conducted two weeks Iater.
Q. And what's the popul ation he estimated then?
A. Two weeks later, in the first week of July, he estimates that there are 1.8 million juvenile delta smelt present in the habi t at .
Q. So roughl y what's that increase in the popul ation of delta smel t in two weeks, according to this graph?
A. Mbre than double. Al most triple.
Q. Wbuld that be a lot of delta smelt to be born in two weeks?
A. Yes.
Q. Dr. Swanson, if I could ask you to look at page five, paragraph 11 of Dr. Hanson's declaration. It -- actually paragraph 11 starts on page four. So maybe if you could just read that paragraph for us and l'll attempt to look at the page on the El mo when we get to the page.
A. Paragraph 11 starts, "The recei pt of the most recent mid June through early July 20 millimeter survey data has
substantially increased the estimate of the current population of delta smelt. A popul ation estimate based on the pre-June/July data would have been extremely low." He cites Exhi bit 4. "And would have increased the vul nerability of the delta smelt to significant impacts associated with various sources of mortality. With the increase in delta smelt abundance observed during the late June and early Jul y" -- excuse me, "during late June and early July, it appears that the 2007 delta smelt popul ation has hi gher abundance than earlier expected. This suggests that with hi gher population abundance, the 2007 delta smelt cohort will be more resistant and resilient to various factors affecting popul ation dynamics and that through implementation of the various protective measures to reduce and avoid significant nortality during the remai nder of the summer, fall and winter, an increased abundance of adult delta smelt would be expected in the spawning popul ations during the winter and early spring of 2008."
Q. Dr. Swanson, do you believe that the abundance of delta swelt increased si gnificantly bet ween June and July?
A. I do not.
Q. Coul d you explain-- do you have an understanding of what phenomenon is expl ai ning the abundance changes that Dr. Hanson's report?
A. Based on my understanding of his methods as well as the
assumptions that he made, I bel ieve the increase in the numbers of popul ation -- of numbers of fish that he estimates are present in the popul ation are rel ated to the increasing size of the juvenile fish that were being sampl ed by the survey.

As I mentioned earlier, the efficiency of the net to catch delta swelt increases as the size of the fish increase. And essentially what we' re seeing here is not an increase in the numbers of delta smelt present in the habitat, but an increase in the number of fish that are successfully capt ured by the net.
Q. And so does that mean that all of the fish being counted in the final survey were not being counted in the earlier sur veys?

Maybe l'Il rephrase that question. l'Il withdraw that question.

Is it your suggestion -- are all the -- when the fourth through ei ghth surveys were conducted, were there del ta smel t in the system that were just not being detected by these sur veys?
A. Yes.

THE COURT: Is this a matter of the fish si mply getting larger as they grow in thei r life cycle?

THE WTNESS: The fish are growing during this period. And the increase in the numbers of fish being caught
in the survey reflect the increasing efficiency of the net for cat chi ng them

THE COURT: Because the fish is bi gger.
THE W TNESS: Exactly.
BY MR. WALL:
Q. So are those - are these surveys able to rel iably find those smaller adult smelt?
A. Not this survey.
Q. Now, I thi nk you were di scussing a popul ation estimate that Dr. Hanson gave based on --

THE COURT: Can I ask one more question?
MR. WALL: Yes. I'msorry, Your Honor.
THE COURT: Thank you. Can you gi ve me your opi ni on, Dr. Swanson, about the numbers that we see here in these last t wo surveys rel ative to popul ation estimate begi nning at about 1.8 milli on.

In ot her words, would you express your opi ni on if -you have al ready stated that you bel ieve that that's over estimating, can you tell us by how much and why?

THE WTNESS: I cannot. I thi nk this number, the onl y thing that we know about this number is that it's wrong. We don't necessarily know whether it's too high or toolow. And for the purposes of eval uating the stat us or the extinction risk to the species, it is not meani ngful or inf ormative except possi bl y to be used in comparison with
numbers similarly cal cul at from other years. And to eval uate trends over time. But as an absol ute number, it has no practical application in my view.

THE COURT: Well, do you know how it was derived? We have a finite number of fish that are in the net.

THE WTNESS: Yes.
THE COURT: And so fromthat number, how do you get to 1.8 million?

THE WTNESS: You get there by maltiplying the number of the fish that you caught in the net per the vol ure that you sampled times the vol ume of the habitat in which you assume those fish are now evenly distributed. The multiplication factors are huge.

For example, the results of the 20 millimeter survey are expressed on the Delta -- excuse me, on the fish and game website and that is where Dr. Hanson says he got the data from As numbers of fish caught per 10,000 cubic meters of water. 10, 000 cubi c meters of water translates to ei ght acre feet. The vol unes of the habitat that he is extrapolating these fish densities to, l would -- actually l suppose l could refer to this. I think it's in here. In Exhibit 3 of Dr. Hanson's decl aration.

The vol unes areas of the habitat range fromarea Al, which is five million acre feet. There are several that are the vol ures of the habitat regi ons that he uses are 500, 000
acre feet, 200, 000 acre feet. So it's a huge multiplier.
And so even very small differences in the numbers of fish caught in the survey translat to extremel y large differences in the ultimate popul ation that he estimates based on those numbers.

THE COURT: And do you share Dr. Mbyle's opi ni on that the fish are not evenly di stributed in the habitat?

THE WTNESS: Yes.
THE COURT: Proceed.
BY MR. WALL:
Q. Now, are you aware that Dr. Hanson provi ded two different estimates of the total population of delta smelt?
A. He provided the estimates in his first declaration and in his second declaration he provided estimates based on the results of a different Fish \& Game survey.
Q. What was the estimate that he gave in his first declaration of the total population of delta smel t
A. The estimate based on the results of survey ni ne of the 20 nillimeter survey fromthis first declaration was that there were 1.8 milli on delta smelt present in the habitat in the first week of July.
Q. In the first week of July. And what was the estimate that he provi ded in his second declaration?
A. In his second declaration, he used data fromthe Fish \& Game's -- Fish \& Game Department's Summer Tounet Survey. And
would it be hel pful if I could refer to the declaration to make sure that l correctly --
Q. Sure. Let me have Dr. Hanson's suppl emental declaration narked as Plaintiff's Exhi bit 9.

THE COURT: Do you want Exhi bit 8 in evi dence?
MR. WALL: Not at this time, Your Honor.
THE COURT: Thi s is the suppl emental declaration of Dr. Hanson?

MR. WALL: Yes, Your Honor.
(Pl ai ntiff's Exhi bit 9 was marked for
identification.)
MR. WALL: May I approach the witness?
THE COURT: You may.
THE WTNESS: I believe it's paragraph ten.
BY MR. WALL:
Q. Dr. Swanson, have you had an opportunity to revi ew paragraph ten of Dr. -- l'msorry. Could you please tell us if you have an understanding of what Plaintiff's Exhi bit 9 is? A. This is the supplemental declaration of Charles Hanson in support of the State Water Contractors' reply to the plaintiff's proposed remedi es filed August 13, 2007.
Q. And Dr. Swanson, have you had an opportunity to revi ew par agraph ten?
A. I have.
Q. And does Dr. Hanson provide a new estimate of the total
population of delta smelt?
A. He does.
Q. What is that new estimate?
A. He estimated the popul ation using similar methods that he used for the 20 millimeter survey. This time using catch results fromFish \& Gane Department's Summer Townet Survey. The survey that he used was the one that was compl et ed between July 4 -- excuse me, 7 and 14 . And his estimate was that the population of delta smelt was 680, 000 fish.
Q. And tell us again what was his estimate for the population the week before that?
A. 1.8 .

THE COURT: It's 1.8.
BY MR. WALL:
Q. So what is the difference in popul ation bet ween those two weeks according to Dr. Hanson?
A. I believe 680, 000 is approxi matel y 60 percent lower than -- maybe 70. I need to do the nath. It's substantially lower. It's less than half of the estimate provided in his earlier declaration.
Q. Do you have a view on whet her those fish died during that week-I ong period?
A. I think the difference between the 1.8 milli on and 680,000 fish, it's unrealistic to assume that that represents nortality of those fish. Instead, I believe the disparities
bet ween these popul ation estimates are a very good example of the magnitude of the error inherent in this approach for cal cul ating population estimates for the species.
Q. If this type of popul ation estimate were published in peer revi ew literature, would you expect it to be accompanied by a confidence interval?
A. Absol utel y.
Q. If we were to assume that Dr. Hanson's population estimates for the delta smelt in July, 2007 were correct, would you have a view on whether the delta smelt was in jeopardy of extinction?
A. 680, 000 juvenile delta smelt, I believe, represents an extremely low number of fish for -- or number within the population for a fish this size at this early lifestage. As we have al ready di scussed, mortality rates between -- natural nortality rates bet ween the juvenile stage and the adult stage of the species, as they approach reproductive maturity, is extrenely hi gh. We're al so dealing with a very small fish that lives in a very Iarge environment.

And in the context of adult fish numbers, which would be substantially bel ow this just based on an estimate using regul ar mortality rates for other pel agic fishes, the numbers of adult fish that would need to find other fish to successfully reproduce when they are making this migration upstreamto reproduce and potentially going to different
places in the Delta at slightly different times of the year. Thi s is an extreme -- it corresponds if you apply that nortality val ue to an extremely low number of delta smelt. Q. Do we know the total population that is needed -- l'm sorry, Your Honor, did you --

THE COURT: I'mworking toward the same question you are. Why don't you ask your question and then l'II ask a question.

MR. WALL: Okay.
Q. Dr. Swanson, do we know the total population that is needed for successful survi val of the species?
A. We do not.
Q. And do we know the total population that would be needed for this species to no longer be likely to be in jeopardy of extinction in the foreseeable future?
A. No.

THE COURT: Let me ask now, Dr. Swanson. If each of these surveys or studies, there are four of them that have been identified gi ves us a limited view based on what the indi vi dual study depicts, that's one part of the question. Then couple that with, based on the present quantitative met hods that are known and available, it doesn't appear that we can get to population figures either for a total population or for minimusurvival of the species. What confidence do we have in the opi ni ons that are expressed about the current
stat us of the speci es?
Because what I'munderstanding -- and this is a compl i cated question. I' m goi ng to make one anec dot al comment. As I'mtrying to understand it, what either statistical, mathematical or scientific consider ations go into trying to extrapol ate from these limited samples to get to popul ation estimates that truly tell us the stat us of the species. Is my question unintelligible or can you answer it?

THE WTNESS: No. And I thi nk I would answer it this way. And my answer is that we don't need these ki nds of popul at i on estimates to allow us to determine what the st at of the species is or what its risk of extinction is.

THE COURT: And why is that?
THE W TNESS: We have ample inf or mation cont ai ned in the data fromthe different surveys conducted by the Department of Fish \& Gare where the important part of that inf or mati on is not what the absol ute number is, it's how that number rel ates to where it was in the past.

Those surveys are desi gned not to look at the absol ute abundance of delta smelt, but tolook at the rel ative abundance. How abundant is it this year compared to what it was last year and the year bef ore that and 20 years back. The results of al of those surveys clearly indicate the del ta swelt are substantially less abundant now than they were in the past. So we can use that to infer the fact that we have a
trend of decline in popul ations.
THE COURT: And from what you know, this is your field of expertise, this is a species in which you specialize; correct?

THE WTNESS: Yes.
THE COURT: What you know today, as of July 27th, 2007, of the scientific opinion on this question of the jeopardy status of the delta smelt, is this opi ni on that we have before us from Dr. Hanson, is that an outlier? Is it essentially a di stinct minority or is this a reasonable opi ni on that's hel d by other scientists of comparable qual ifications to your own?

THE WTNESS: Do you mean his opi ni on with regard to the utility of population estimates or his opi ni on as to the status of the species?

THE COURT: Status of the species.
THE WTNESS: Dr. Hanson reports that he thi nks the stat us of the species, based on these nunbers, is better than we expected and better than it was last year.

THE COURT: Yes.
THE WTNESS: I do not agree with that.
THE COURT: And if you can, are you familiar with, have you studi ed or surveyed ot her scientific opi ni ons in the fieldinthis specialty species, the delta smelt?

THE WTNESS: Based on my conversations with
colleagues fromstate and federal agencies and academia and ot her non- gover nment al organi zations, thei r scientists, the overwhel ming consensus is that this species is on the verge of extinction and high risk of extinction and is in a condition that is worse than it has ever been based on our --

THE COURT: And ot her than Dr. Hanson, do you know of any other fishery biol ogi sts who have the expertise to opine who, in effect, are saying the species is okay at this time? Better than last year?

THE WTNESS: No.
THE COURT: Thank you. You may proceed.
BY MR. WALL:
Q. Dr. Swanson, I'd like to ask you if you could briefly describe for us some of the principle factors which the decline of the delta smelt has been attributed.
A. The general consensus among the scientific commity is that there are multiple factors which affect the population abundance of the species. They incl ude the effects of water management operations, both the direct impacts of those operations killing delta smelt, essentially take at the facilities, as well as the indirect effects of those operations on the quantity and quality of delta smelt habitat.

There is strong suspicions that contamination of their habitat with toxic materials may periodically be affecting thei r popul ation abundance. But there is very
little evi dence to either detect or support that.
There is, I believe --
THE COURT: You know, if you don't mind, let me inter rupt just a moment. Do you agree with what we' ve heard bef ore that when we tal k about habitat here, we're tal king about water?

THE WTNESS: Yes. And the quality -- the certain envi ronment al characteristics of that water and where that sweep of envi ronmental characteristics occurs within the geographic scope of the estuary.

THE COURT: Al I right. And have you al ready broken that down so that we have it clearly? There's nothing that hasn't been said about, if you will, the description and del ineation of the habitat?

THE WTNESS: In termi of delta smelt critical habi tat?

THE COURT: Absol utel y .
THE WTNESS: I -- delta smelt critical habitat has been defined al ready. In fact, delta smelt exists in areas outside the confines of the critical habitat in sone years.

THE COURT: All right. But we don't need to revi sit this?

THE WTNESS: I don't thi nk so.
THE COURT: Thank you. All right. I inter rupted you. You may continue.

THE WTNESS: I had menti oned water project oper ations and toxics. I thi nk there is some evi dence that the overall reduction in the zoopl ankton abundance and bi omass in the est uary, that the decline in zoopl ankt on and bi omass in abundance occurred in the late 1980s has probably been a contri but or to l ower population numbers that we' ve seen si nce that time.

I thi nk there's al so good evi dence that one of the causes of reduced zoopl ankt on bi onmss and abundance in the systemis di rectly rel ated to the i nvasi on and establ i shment of the overbite clam a non- native species which first appeared in 1986 and became abundant in 1987.

And so frequently when scientists are tal king about in shorthand what are the causes of the delta smelt decline, they'll list water project oper ations, toxi cs and invasi ves. And when we refer to "i nvasives," it's usually in rel ation to the effect of those invasi ves on the $p l$ anktoni c food web in delta swelt habitat.

I would add one ot her point, if I may. One of the thi ngs that we see with this species, whi ch is very typi cal of an annual species and common in many fish species, is that the popul ation abundance of the species that you measure in the fall, for example, the rel ative abundance of adult delta smel t surveyed by the Department of Fish \& Game's Fall M dwater Traw Survey is al so strongly dependent, meaning it's affected
by how many juvenile delta smelt were present in the system earlier in the year.

Thi s rel ationshi p bet ween the abundance of j uvenile fish and then the subsequent abundance of adults later in the year is referred to as a stock recruitment rel ationshi p. The numbers of adults you get depends on how many juveniles you started out with.

In addition, the number of j uveniles you get depends on how many adults were around to produce them This rel ationship is strong for delta smelt. And, in fact, it affects the population abundance sort of on top of the effect of all of these other factors.
Q. So Dr. Swanson, in vi ew of this stock recruitment rel ationshi p, what would be the effect over time of an incremental but repeated diminishment of the popul ation? A. All ot her factors causing the decline of the smelt being equal with that, you would see a steadily declining popul ation.
Q. So if some cause were taking a nodest fraction of the popul ation each year, how would that translate into the tot al abundance or prospects of survival for the species? A. If, for example, you started out with an abundance of delta swelt of 100 and each year you took five percent of that away. And assuming all other factors are equal and there's no ot her factors driving the population up or down, the
popul ation would just steadily decline by increments of five percent of what ever the amount was the previ ous year.
Q. And the same would be true if the -- something was taking one percent of the population.
A. True. It would just be a slightly less steep decline.

THE COURT: Now, I'mgoing to jump ahead here and ask you, now that you' ve identified the causes. You know what the argument is here. The argument is that the project operations aren't the problem that it's all the additional factors that are causing the decline perhaps in increasing intensity.

And so what is your opi ni on about the effects of the project operations and the reasons for it as to -- yesterday Dr. Mbyle said it coul dn't be quantified. But there must be some expl anation that can be gi ven about what the real life and realistic effects of project operations are on this species year in and year out.

THE WTNESS: I think there's overwhel ming scientific evi dence that clearly shows that both the direct affects of the water projects on indivi dual delta smelt, in terns of killing them or entraining themat the facilities, and the indirect of water project operations on the quality and quantity of delta smelt habitat are a significant contributor to the population decline that we have seen in recent years as well as inthe past.

The rel ative magnitude of the adverse impacts of
water project operations compared to potential adverse impacts associ ated with low food or a toxic event are unknown and probably vary from year to year.

But I think it is indisputable that water project operations are adversely affecting the species and adversely nodifying its habitat.

THE COURT: And how can you say that? In ot her words, what reasons do you cite?

THE WTNESS: There are multiple published and unpubl ished scientific studi es that have shown these effects. l'Il use just two examples.

The recent research by Dr. William Bennett, which follows up his 2005 paper and which, as Dr. Mbyle said, unfortunatel y has not yet been published indi cates that water project operations, and in particular export operations, I et hally entrain I arge components of the popul ation of juvenile delta smelt during the spring and early summer.

He knows this on the basis of studies that he's done, looking at the age structure of the popul ation by examining the ot ol iths or the ear bones and determining the birth dates of the fish.

And he's found that fish that were born in March and early April generally do not survive to contribute to the population. Whereas fish that were born frommid April to mid May, a period during which exports of the SWP and the CVP are
substantially reduced to comply with water quality requi rements and the Vernalis Adaptive Management Plan, whi ch is al so referred to as the VAMP, V-A-M-P. Fish hatched during that period do survi ve and are found as $j u v e n i l e s ~ a n d ~ a d u l t s ~$ in the population. Fish hatched after that period don't.

His interpretation is that fish hatched at periods when exports are high are lost to the popul ation most likely due to lethal entrai nment at the facilities. That represents a direct and substantial impact of operations on significant components of the delta swelt population reducing both its abundance and, as I mentioned, I believe, diversity.

THE COURT: All right.
THE WTNESS: Second, recently published research has I ooked at the characteristics of delta snelt habitat. And they have examin ned survey data and water quality data and used that to define what is good habitat for delta smelt in terns of three envi ronmental variables. And those envi ronmental variables are temperature, salinity and the clarity of the water, al so referred to as turbi dity.

And they have determined that the anount of good delta smelt habitat has declined over time. Wen they dig into thei r anal yses, they determined that one of the factors driving the decline in habitat quality -- and they made this study, I should have mentioned, during the fall period, from Septenber through December. They determined that one of the
factors driving the decline in habitat quality of delta smelt was reduced fresh water outflows to the Delta.

During the fall fresh water outflow to the Delta is al most al ways entirely controlled by water project operations. So this represents -- and they al so showed that in recent years, fresh water outflows fromthe Delta into the upper estuary have declined compared to where they were in past years, 10 and 20 and 30 years ago.

THE COURT: Wbuld this be anything other than spring flow, fresh water flows?

THE WTNESS: The decline could result fromeither reduced inflows to the Delta and consequent reduced outflows or the same amount of inflow to the Delta and hi gher exports. The authors of the study can look at overall runoff patterns and asked the question, "Well, is it just drier now? Is there Iess water?" And the answer to that was no. Overall runoff patterns have not changed in this way.

THE COURT: Is this the Feyrer study?
THE WTNESS: It is.
THE COURT: All right. So that represents a -- an effect of water project operations on delta smelt habitat where water project operations are clearly degrading the quality and quantity of delta smelt habitat. Or adversely modifying thei r habitat.

THE COURT: Because the operations --

THE WTNESS: Have reduced.
THE COURT: -- determine quantity and al so di rection and fI ow.

THE WTNESS: This is more the issue of the quantity of fresh water flowing out of the Delta into the upper estuary, whi ch is the area of the estuary whi ch del ta smelt i nhabit at this particular life history stage.

During the fall, delta smelt aren't in the Delta much and they're not really close to the pumps, they're further downstream because they prefer to live at that life hi story stage in the slightly salty water.

THE COURT: So t his is what part of the Del ta that the flows are -- it goes out --

MR. WALL: Your Honor, would it be hel pf ul for me to bring the map?

THE COURT: Yes.
THE WTNESS: Where in the Del ta and west of the Del ta, delta swelt are found --

THE COURT: Turn, if you would, the exhi bit so ever ybody could see it. Thank you.

THE WTNESS: Delta smelt are found anywhere from here and here --

THE COURT: You have to describe for the record.
THE WTNESS: I do. You're right.
THE COURT: Ot her wi se "here and here" --

THE WTNESS: Anywhere from the vi ci nity of the confluence of the Sacramento and San Joaquin Rivers down into Sui sun Bay, that I arge embayment there where, within that habi tat, the bul k of t he popul ation is found depends on how much fresh water outflow there is. Because the fish are not I ooking for a geographic location, they' re looking for specific salinity conditions.

In recent years, during the --
THE COURT: Low sal i nity.
THE WTNESS: Lowish, yes. Anywhere from one to five or six or seven parts per thousand. What these authors showed was that in recent years, the anount of outflow from the Del ta had been reduced. Effectively that shifts delta smel t habitat upstream more towards the confluence and less in Sui sun Bay. And by doing that, the overall qual ity of the habitat for the speci es is reduced as well as the quantity.

THE COURT: Thank you. You may conti nue.
BY MR. WALL:
Q. Dr. Swanson, l'd like to ask you to el aborate on a couple of poi nts that you've been di scussing with the Court, if you woul d.

You menti oned that the Bennett research on -- if l have this correct -- ear ot ol iths and the survival of certain age groups of delta swelt are -- has not yet been published; is that correct?
A. That is correct.
Q. Has it been presented in scientific circles?
A. It has. I have myself seen the presentation at least two or three times at different scientific and technical work group fora.
Q. And do you have an understanding as to how that presentation has been recei ved within the community of sci entists working on these issues?
A. Based on my conversations with many of my colleague scientists, Dr. Bennett's results are very compelling. Largel y because what he has done is he has drawn toget her moltiple lines of evi dence frommultiple data sets, survey
 sets on time when I arvae are present in the system and where they are, data sets on what are water management oper ations at these different times of the year.

As well as really the critical data set, which allows hi mto link these together, which is his exami nation of the age structure of delta smelt collected in the surveys during the summer and the fall and his determination as to the birth dates of the fish that survive. It's a very, very compelling i nt egrated comprehensi ve body of research that I find very i nt eresting and, as I say, very compel ling.

I al so firmy bel ieve, and based on my experience with him Dr. Bennettis an extremel y careful scientist. And
he does not present this kind of information until he's quite certain that he has all of the pieces lined up together such that he has a story that stands out.
Q. G ven the time period in which Dr. Bennett has conducted, and I gather compl et ed this research, would you expect it to have been publ ished?
A. No. I'mhoping he will manage to get a manuscript together and perhaps subnitted by late this year or early next. That's the hope on my part. But this is brand new cutting edge hot off the presses research.
Q. Dr. Swanson, you -- if l understand you correctly, just to direct you back to your previ ous testimny, you said that Dr. Bennett was finding that fish hatched during the period of VAMP were survi ving to produce, but fish hatched or delta smelt hat ched on either side of VAMP were not survi ving to reproduce or at least were not surviving to reproduce in the same numbers; is that correct?
A. That's correct. And it's mostly the fish that hat ch bef ore the VAMP. By the time the VAMP is done, most of the hat ching is over. But based on surveys for spawning adults, we know that delta smelt are arriving and spawning, by evi dence of having spent fish, fish that it's clear that they' ve al ready spawned, in March and early April.

The 20 millimeter survey conducted by Fish \& Game detects the presence of delta smelt larvae often throughout
the Delta in March and early April, as well as in April and May.

However, Dr. Bennett's anal ysis of the birthdates of fish collected later in the year, usually either by the summer townet or the Fall M dwater Traw show that the population is comprised of fish onl y those -- or al most only those fish that were hat ched during this one- nonth period of the VAMP, which is typically between mid April and mid May. And so these fish that were hatched earlier that we knew were there are not appearing in the population later.
Q. Dr. Swanson, you mentioned several other possible causes of the Delta smelt's decline, including, if l understood you correctly, toxic chemicals and invasi ve species; is that correct?
A. Yes.
Q. Wbuld you have any reason to expect the effects of those ot her causes to vary between March, April and May consistent with the timing of the VAMP?
A. Concei vably they could vary. However, I am not aware that we have any data to suggest that they do.
Q. For example, is there any reason to think that the application of organophosphates is different in -- bet ween April 10th and April 20th?
A. I have no know edge to suggest that's so. I do not know.
Q. But if I understood you correctly, Dr. Bennett is finding
a difference in the survival rate between smelt born on April 10th and April 20th?
A. Yes.
Q. And one thing that does happen during that time period is that VAMP begi ns to increase flows through the Delta? A. Yes. That is really the predominant visible difference in envi ronmental conditions in the habitat during that period is a substantial change in water export operations as well as -- in that exports are reduced during the VAMP, as well as inflows fromthe San Joaquin River are al so increased during the VAMP. So there's rather dramatic changes in the condition of delta smelt habitat in that entire southern Delta region in terns of directions and magnitudes of flows and overall hydrodynami c conditions.

THE COURT: Let me ask you two questions about this subject location. When is the time of the year that -- l'm going to call it downstream that probably isn't, at least in vertical term, an accurate characterization. Wen do the fish go -- l'mtal king here in all cases about delta smelt. When do the fish go to the bay, if you will, toward Sui sun Bay or even further toward the Pacific?

THE WTNESS: Juvenile delta smelt or Iarval delta smelt that are hat ched in the upper Delta typically March, April and May make their migation downstreamto get to the confluence and further dounstream of that really throughout
that period and beyond. The surveys start to detect juvenile delta smelt down near the confluence frequently as early as April, nore delta smelt arrive in May and June and July. Usually by July, the bulk of the population of delta smelt has moved to or dounstream of the confluence and has arrived in the bracki sh Iow salinity water habitat, which they will then rear in until the winter.

THE COURT: Which is where?
THE WTNESS: Depends on what the outflowis. If the outflowis at minimlevel s required currently under water quality control, the water quality control plan, that bracki sh water habitat that delta smelt prefer tend to be rather near the confluence of the Sacramento and San Joaquin Ri vers.

If outflows are hi gher, for example, in a really wet year like 2006 was, then that low salinity bracki sh water habitat will be located more in Sui sun Bay, further downstream 10 or 15 more kilometers.

THE COURT: And we heard at an earlier hearing in this case that the fish move to the northwest, whi ch would be even out beyond Sui sun Bay. What is your observation experience with that?

THE WTNESS: By "northwest," do you mean into the northern portions of Sui sun Bay?

THE COURT: Yes. Or out more toward the ocean.
THE WTNESS: They rarely get beyond the upstream
portions of San Pablo Bay. And the reason is that by the time you get that far downstreamin the estuary, salinities typi cally are getting into the 10 to 12 and hi gher parts per thousand. So al most one-third sea water, whi ch is the upper limit of their preferred salinity.

So delta smelt are not typically found dounstream of Sui sun Bay unl ess there is a very large anount of fresh water outflow into the estuary that has pushed that low salinity habitat that far down the estuary.

THE COURT: So in a year such as this, 2007, where we don't have a lot of fresh water flowing in, you would or would not expect to see delta smelt -- l'mcalling it northwest because that's the way we referred to it, but in effect out beyond Sui sun Bay?

THE WTNESS: No. Not now.
THE COURT: Thank you. You may conti nue.
BY MR. WALL:
Q. Dr. Swanson --

THE COURT: Well, not now or go back through June. Start June the lst and go through the present.

THE WTNESS: No. They would not have been there. BY MR. WALL:
Q. Dr. Swanson, will you describe the type of year in which you might find delta smelt out beyond the Sui sun Bay?
A. It takes a very wet year to -- and sort of a late spring
as well to have enough fresh water going out into the estuary in the -- it woul d have to be the May -- excuse me, March, April, May, J une period.

So a year like 1983, it was a huge El Ni no year, I thi nk there were some fish detected -- l'd have to revi ew the Fi sh \& Garre surveys. But it woul d take a very wet year with a very large spring outflow pul se to create the ki nd of habitat the delta smelt utilize in San Pablo Bay.
Q. Dr. Swanson, is there ot her evi dence of impacts from CVP, Central Valley Project, and St ate Vater Project, SWP, oper ations on the delta smelt?
A. Other than the di rect impacts that 1 described in tern \boldsymbol{n} of I et hal entrai nment and the indirect impacts of their effects on habitat qual ity and quantity?
Q. What I'm wondering is if there are other -- any ot her princi ple studi es on this subject that you would point to or if you identified the main ones on whi ch you'd rely at this poi nt?
A. Well, with regard to the effects of water project operations on delta smelt habitat, I di scussed the effects of reduced outflows on the qual ity and quantity of the habitat for the fish during the fall when the fish are living and rearing in low sal inity habitat.

Earlier in the year, when the fish are moving through the fresh water portions of the habitat, either on thei r way
up to spawn as adults or on thei r way down from hat ching grounds towards -- downstream towards the bracki sh water habitat, I arge areas within delta smelt critical habitat in the Del ta, the overall habitat and flow conditions in those channel s are al so affected by CVP and SWP water oper ations. Largel y the export oper ations, as well as reduced inflows from the San J oaqui n.

The combi ned effects of that are that they reverse the net flow of water in these channels. All of these channels are, of course, tidal. The water flows back and forth. It sloshes back and forth in these channel s in response to high and low tides.

However, absent the oper ations, absent -- if export oper ations were not going on, in general, flowin all of these channels would be on a net basis after you've filtered out the effects of the tidal swi ngs back and forth, the flow would be net downstream

Wen the CVP and the SWP facilities are exporting at moderate to high rates, the effect of thei r diverting I arge vol unes of water from these rel ativel y small channel sis, in fact, to reverse the net flow of water in many of these channels, such that after you filtered out the effects of the tides, the net flow is in the di rection towards the pumps, whi ch is upstreamfor all of these channels, compared to net flow downstream

For delta smelt, which, as Dr. Mbyle described, is pretty small and not a particul arly good swi mmer, and whi ch use a form of movement through these very dynamic, tidally dynamic habitats called tidal transport, where they use the tide, the tidal flow in a particul ar direction to hel p them nove up or downstream depending on whi ch life hi story stage you're tal king about, the effect of the water projects is to essentially reduce the ability of the fish to successfully do that.

There is no longer, in many portions of the south Del ta under conditions of moder ate to hi gh exports, a net flow of water downstream And so del ta smelt trying to use tidal transport where they're taking advant age of that are unable to successfully migrate through, nostly out of the Del ta.

So that represents anot her way in whi ch water project oper ations are affecting delta srelt habitat. They're changing the flow dynami cs in the channel s, making it harder for the fish to be able to successfully migate through those channel s to get either to spawning habitat or for the I arvae to get down to rearing habitat.

THE COURT: All right. We're going to take the norning recess at this time. We're going to stand in recess until 10 mi nutes before 11 .
(Recess.)
THE COURT: We' re back on the record in NRDC versus

Kempt hor ne. And we have Dr. Swanson on the stand. Mr. Wall, you may conti nue.

MR. WALL: Thank you, Your Honor.
Q. Dr. Swanson, you mentioned -- I bel i eve you di scussed a st udy by Feyrer, et al., rel ating habitat qual ity to the I ocation -- or habitat qual ity on the del ta srelt; is that cor rect?

THE COURT: And if we could, let's spell Feyrer for the record.

THE WTNESS: It's F-E-Y-R-E-R.
THE COURT: Thank you.
BY MR. WALL:
Q. Could you tell us how they defined "habitat qual ity"?
A. The researchers defined habitat quality for delta srelt by using data fromthe Fall M dwater Traw Survey, whi ch sampl es fish from September through December. And at every station at whi ch they caught a del ta smelt, they al so concurrently neasured the water temper at ure, the sal inity and the clarity of the water using a secchi disk. Secchi is S-E-C-C-HI.

And then they then use these results, the fact that -- they were able to define the envel ope of those envi ronment al variables in whi ch del ta smel t are found.

And fromthose three variables, those three water qual ity variables, they then were able to devel op what they called an envi ronment al qual ity index. Roughl y what that
index measures is the quantity of del ta smelt habitat as it is char acterized by these envi ronment al conditions, whi ch define what represents qual ity habitat for delta smelt.
Q. And that the quantity of that qual ity habitat was rel ated to what period?
A. For del ta smelt, the two most important variables were sal inity and the clarity of the water or the secchi disk depth. Temper at ure was al so a factor that they included in thei r anal ysis, but the rel ative contribution that temper at ure made to defining what delta smelt habitat was rel ativel y small.

So the researchers concl uded that the two most i mportant characteristics that defined del ta swel thabitat were sal inity and the clarity of the water.
Q. And how did the findings about habitat rel ate to Del ta strelt's abundance?
A. There's two steps in that anal ysis. The first thing they di d was they look at trends over time in the val ue of the envi ronment al qual ity index. Essentially asking the question has the quantity of delta smelt habitat, as defined by thi s i ndex, changed over time? And they found that si nce 1987, that the habitat index for Del ta-- excuse me. The envi ronment al qual ity index for del ta smel t had declined. And, in fact, in the past several recent years, the most recent three years for whi ch they had data, whi ch I bel i eve is
through 2005, it had declined sharply.
They next rel ated the trends in time of the environmental quality index with the trend in delta smelt popul ation abundance. And found that they were statistically si gnificantly rel ated. And the rel ationship was such that when their envi ronmental quality index was high, indicating that there was lots of delta smelt habitat, that corresponded to years in which there were lots of delta smelt. The abundance was high. When the envi ronmental quality index was Iow, that corresponded to years in which delta smelt popul ation abundance was I ower.

And, in fact, the recent decline in -- for the most recent years of their anal ysis in the habitat quality -- excuse me, environmental quality index corresponded to the nost recent popul ation decline for the species.
Q. Dr. Swanson, is there a rel ationship between envi ronment al quality or habitat quality as defined in this study and outflow through the Delta?
A. Yes. In general, the amount of preferred salinity habitat, which was one of the drivers -- whi ch was one of the i mportant contributors to the environmental quality index was rel ated to the amount of fresh water outflow in the sense that hi gher amounts of fresh water outflow pushed down preferred delta smelt habitat further downstreamin the estuary effectively creating more habitat for the delta smelt.

In a separate anal ysis, the -- for the -- and di scussi on conducted by the Del ta Srel t Wbrking Group and reported in thei r notes of August 21, 2007. They rel at ed the val ue of the -- they called it in these notes, the habitat qual ity index, but it is the results of the research conducted by Feyrer, et al. They rel ated the val ue of the index to X 2 , whi ch was -- that was measured during that September through December period.

X2 is a measurement -- it's a measurement that we use to characterize the amount of fresh water outflow fromthe Del ta into the upper estuary in terns of the location of low sal inity habitat. It's - X2 is defined as the location of the two parts per thousand sal inity isohal ine near the bottom of the channel measured as kil ometers from the Gol den Gate Bridge.

So when outflows are hi gh, X2, the Iocation of I ow sal inity habitat, is much closer to the Gol den Gate Bri dge so the number, as kilometers is lower and when outflows are low, I ow sal inity habitat shifts further upstream and the X 2 number gets hi gher.

These researchers rel ated the habitat index to the X2 that was reasured during thi s September through Decenber period and found that for X 2 val ues, 80 kil ometers and I ower -- so the amount of outflow needed for 80 kilometers or more outflow in or der to mai nt ai n that -- the habitat qual ity
i ndex was generally hi gher than for outflow conditions where X2 was upstream of 80 kilometers.

And so here is an example where they have directly rel ated the habi tat qual ity index to the amount of outflow from the Del ta into the estuary.
Q. Dr. Swanson, l'd like to take you through a coupl e of things you were just describing. First you were describing the article by Feyrer, et al. Correct?
A. I was.
Q. And who were the authors of that? Where did they work?
A. There were three authors, they are all sci entists employed by the Cal iforni a Department of Water Resources.
Q. And then you mentioned an organi zation called the Del ta Srel t Wbrking Group. Wbuld you tell us what that organization is.
A. The Del ta Smelt Wbrking Group is a group of scientists who work for state and federal -- the state and feder al agencies, fish and water, as well as US Envi ronment al Protection Agency. And have been convened by the US Fish \& Wildlife Service to revi ew the avail able sci entific and nonitoring data on del ta snelt and to make specific recommendations for protective actions to protect the species and to mi mi me the adverse i mpacts of water project oper ations on a real time basis. Q. And have you -- how were you familiar with the work of the Del ta Smel t Wbrking Group?
A. I'm not a nember of the Delta Smelt Wbrking Group. However, the working group regul arly publ i shes det ailed not es describing the content of the di scussions of thei reetings and al so the recommendations made by the Del ta Srel t Wbrking Group for specific protections.
Q. And if l heard you correctly, you referred to a meeting of the Del ta Smel t Wbrking Group on August 21, 2007.
A. I --
Q. I don't thi nk that date has come yet, so l just --
A. I beg your pardon. I meant August 21st, 2006 Del ta Smelt Wbrking Group notes.

MR. WALL: May I approach the witness?
THE COURT: You may.
MR. WALL: Your Honor, I've shown the -- handed the witness a document identified -- marked for identification as Pl ai ntiff's Exhi bit 10.

THE COURT: Al I right.
(Pl ai ntiff's Exhi bit 10 was marked for
i dentification.)
BY MR. WALL:
Q. Dr. Swanson, do you recogni ze the document marked as Pl ai ntiff's Exhi bit 10?
A. I do.
Q. Wbul d you describe what that document is?
A. I'msorry. I missed the question.
Q. Could you describe for the Court what that document is, Pl ai ntiff's Exhi bit 10 for identification.
A. This is the meeting notes for the Del ta Snelt Wbrking Group meeting. It appears they did it by conference call, according to the heading, whi ch is dated August 21, 2006. It incl udes a list of participants in the meeting and then the various topi cs they di scussed. The last few pages present graphi cal anal yses that were part of thei r di scussions.
Q. How were you aware what this document is?
A. The Del ta Snelt Wbrking Group notes are posted on the Fi sh \& WIdlife Service website for the delta smelt and are ther ef ore publ icl y avail able.
Q. And did you access these notes from that website?
A. I did.
Q. Does the document identified as Plaintiff's Exhibit 10, is that a true and accurate representation of the document posted on the Fish \& WIdlife website?
A. I bel i eve so.

MR. WALL: Your Honor, I move to have admitted Pl aintiff's Exhi bit 10 in evi dence.

THE COURT: Any obj ect i on?
Exhi bit 10 is recei ved in evi dence.
(Pl ai ntiff's Exhi bit 10 was recei ved.)
BY MR. WALL:
Q. Dr. Swanson, could you pl ease tell us what portion of
these notes you were referring to when describing the rel ati onshi p bet ween sal inity and habitat?
A. The easi est reference point is on the second to the last page, figure two.
Q. Could you describe figure tho or your understanding of what figure two shows.
A. Fi gure two shows a graph that rel ates the fall habi tat i ndex, whi ch they describe in thei r caption as the del ta smel t habitat i ndex based on specific conductance, water clarity and wat er temper at ure. And they're rel ating the val ue of that habi tat index shown on the Y axis with the mean or average Sept enber through Decenber X2 I ocation.

As I mentioned, the location of X 2 is di rectly rel ated to the amount of fresh water outflow from the Del ta into the estuary. When X 2 is high, like 90 or 100 , that corresponds to very l ow fresh water outflow conditions. When X2 i s low, 50 or 60 kilometers, that corresponds to high outflow where low sal inity habitat is located well downstream i n Sui sun Bay.

Thi s X2 is measured during the period from September through December. That's the same period that the habi tat qual ity index was measured using data on those envi ronment al char acteristics and the presence or absence of delta strelt and the Fall M dwater Traw.

What the graph shows -- each poi nt represents a
si ngle year -- is that when X 2 is located bet ween 60 and 80 kilometers during this period in the estuary, whi ch corresponds to moderate fresh water outflow conditions during this period, the habitat quality index is generally higher than at other times.

When X2 is located upstream of 80 kiloneters, you'll see that all the points between 80 and 95 X2 val ues are for I ow habitat indexes.

G ven that the habitat index is essentially a rough indi cation of the vol ure of delta smelt habitat, this suggests that during the fall, outflows that result in the location of X2 or Iow salinity habitat at or downstream of 80 kilometers typi cally correspond to better habitat conditions than when X2 is located upstream of 80 kiloneters during this period. Q. Dr. Swanson, if you could refer to the begi nning of that document. And particularly at the top of the first page, the list of participants. Do you have -- do you recognize the names that are listed there?
A. I do.
Q. Can you tell us generally -- are these indi vi dual s of a particular profession?
A. They're -- I think -- let ne see. They're all fisheries bi ol ogi sts. I would al so point out that one of the participants in this meeting, Matt Nobriga, is one of the co-authors of the Feyrer, et al. paper.
Q. And do you know what agenci es empl oy these scientists?
A. The agencies are listed next to their names, so yes.
Q. It would incl ude the Fish \& WIdlife Service, the Bureau of Recl amation.
A. Yes. Fish \& WIdlife Service, Bureau of Reclamation. Cal iforni a Department of Fish \& Gare, Cal iforni a Department of Water Resources, US Fish \& WIdlife Service and that's it.
Q. Had there been ot her studi es that have attempted to rel ate salinity and del ta smelt abundance?
A. Yes.
Q. Could you descri be those studi es for us?
A. For many other fish species in thi s estuary, thei r popul ation abundance has been shown to be di rectly rel ated to the l ocati on of low salinity habitat during the spring period from Febr uary through June. Or some fraction of those months.

And the typi cal rel ationship found for most of those ot her fish species is that in years when fresh water outflows to the est uary are hi gh and I ow sal inity habitat is located downstream X2 val ues are low, I ater in the year you will have hi gher popul ation abundances for those species.

In contrast, when you have low out flow conditions during the spring and X 2 l ow sal inity habitat is located further upstreamin the estuary, perhaps near the confluence, the popul ation abundance of those fish is measured later in the year will be lower.

Del ta snelt does not exhi bit this rel ationship with X2 during the spring. However, it does appear to exhi bit something similar with regard to this habitat qual ity index, whi ch incorporates X 2 or incorporates an al ter native measure of habitat that is dependent upon the I ocation of X 2 , during the fall.

During the fall for this species is the important rearing period where the fish are growing rapidly, having arrived in the low sal inity habitat a few months earlier. They' re growing rapi dly in preparation of begi nning reproduct i ve maturation and thei r upstream mi gration for spawning in the wi nter and early spring.
Q. Did the Contra Costa Water District conduct an anal ysis rel at ed to this study?
A. Contra Costa Water District conducted an anal ysis where they exami ned the rel ationshi p bet ween the sal inity at a specific geographic location in the Delta, speci fically at Jersey Poi nt. And they rel at ed the val ue of sal inity, what the sal inity at Jersey Poi nt was during the fall. And they rel ated that to the popul ation abundance of del ta smelt juveniles measured the foll owing summer.

They used dat a from 1987, I bel i eve, through 2005. And they found that there was a statistically si gni ficant rel ati onshi p bet ween the sal inity measured at Jersey Point, whi ch is just upstream of the confluence and subsequent
abundance, of j uvenile delta smelt.
When salinity in the fall at Jersey Point was rel ativel y high, the following year the abundance of delta smelt was low. When salinity at Jersey Point was rel atively low, meaning it was less salty and it was more fresh water going through the system the abundance of delta smelt j uveniles measured the following summer was hi gher.
Q. Dr. Swanson, do you recall what years Contra Costa Water District incl uded in its anal ysis?
A. I would prefer to check the documents, but I believe it was from 1987 to 2005.
Q. Did you refer to that Contra Costa Water District anal ysis in one of your declarations in this case?
A. I did.
Q. And since preparing that decl aration, have you recei ved additional information rel ated to Contra Costa Water District's anal ysis?
A. Yes. In the declaration of Mr. Stephen Ford, he updated the anal ysis that l presented in my decl aration by incl udi ng the abundance, the j uvenile abundance data and the fall salinity data for 2006 and 2007. And he found that incl usi on of those additional data points in the anal ysis by increasing the variability in the response bet ween delta smelt abundance and fall salinity the previ ous fall was such that the rel ationshi p bet ween those two variabl es was no longer
statistically significant.
The abundance of delta smelt measured during the most recent three years, which includes the ' 05 data poi nt whi ch was incl uded in the original anal ysis, but the data for ' 05 , 2005, 2006 and 2007 are markedl y lower, the abundances of del ta smelt during those three years are markedly lower than the abundance that was formally predicted on the basis of fall salinity by the Contra Costa Water District's original anal ysis.
Q. Can you draw any concl usi ons fromthat new information?
A. At this point, it's premature to concl ude that fall salinity, in fact, does not affect population abundance of delta smelt. The popul ation decline suffered by the species during the most recent three years is a very significant and sharp draw, which may represent the species declining to a new popul ation, low popul ation level. Some people refer to this as a step decline. I think it's premature to actually concl ude that yet, but it might be the case if we continue to get really low numbers in fut ure years.

My interpretation of the incl usion of these new points was mostly as another indication of high level of concern that we should have for the species. Because what the anal ysis suggests is that salinity conditions during the fall, whi ch for the previous 18 years, corresponded to particular popul ation level s for delta smelt, no longer did. And that,
in fact, the popul ation had dropped to some lower level. I would al so interpret this as another indi cation of the reduced resilience of the population to respond to more favorable conditions with positive population growth.

The salinity -- the fall salinity conditions for those three most recent years were not extremely bad. They were roughly in the middle of the range and, based on the original anal ysis, would not have been expected to correspond to such low popul ation abundance for delta smelt.
Q. Does this mean that -- does the new information have any implication for how delta smelt would respond to a salinity point that was further upstream
A. No. Not that I can thi nk of.
Q. Does this new information affect your thinking about the Feyrer, et al. article?
A. No. Not really. I consi der the Feyrer, et al. anal ysis to be far more rigorous and robust. They looked at multiple envi ronmental factors. They looked over the entire geographic range of delta smelt distribution. They conducted far more sophi sticated statistical anal yses to create their habitat i ndex.

And j ust the quality and the quantity of data incor porated into the anal ysis conducted by Feyrer and the quality and quantity of the statistical anal ysis that they conducted using those datas is far more robust than the Contra

Costa anal ysis. And, in my vi ew, much more meani ngful with regard to how habitat conditions affect the species and offers much more usef ul information to devel op potential actions to improve delta smelt habitat quality.
Q. Dr. Swanson, let me actually ask. There was an exhi bit marked yesterday as Plaintiffs' 4. Can you provi de that to the witness? l'm not sure where it is. This was the declaration of Christina Swanson in support of plaintiffs' reply on renedi es.

THE COURT: You want the witness to have this?
MR. WALL: Yes, please, Your Honor. Thank you, Your Honor .

THE COURT: You are quite wel core.
BY MR. WALL:
Q. Dr. Swanson, if I could ask you to -- should l wait for the Court to have a copy? Maybe I can put it on the El m.

Dr. Swanson, l'd ask you to turn to page 34 of Pl ai ntiffs' Exhi bit 4. There is a table or a graphic on that page. Could you describe to us what that represents?
A. This graph represents a simple anal ysis that I conducted using data on delta smelt abundance fromthe Fall M dwater Trawl and rel ating the abundance of delta smelt to the average combined State Water Project pl us CVP project exports during the December through March period earlier in the same year.

What the results show is that the abundance of delta
smelt as measured by the Fall Mdwater Traw -- so this is the rel ative abundance of the adult fish -- is significantly rel ated to water export rates at the two facilities. And the rel ationship is such that population abundance is lower in years in the fall following a year -- the abundance measured in the fall is lower in years where the winter export rates of the two facilities were high and the abundance is high in years when the wi nter exports were low.
Q. Does this rel ationshi p prove anything to you?
A. It shows that there is a statistically significant effect of water export rates during the winter on the subsequent popul ation abundance of delta smelt.
Q. And can you draw any concl usi ons fromthat?
A. The general concl usi on to be drawn fromthis is that wintertime exports at very high rates would be expected to result in low population abundance of delta smelt.

The -- when you do a rel ationship like this, relating these two variables, this kind of rel ationship is frequently criticized as a correl ation and not a direct measure of some cause and effect rel ationship.

In this case, this anal ysis was conducted essentially to test the hypothesis, which was that exports affect delta srelt popul ation abundance. And it was designed to test it in such a way that was meani ngful gi ven what we know about how exports could potentially affect delta smelt and their life
hi story patterns.
As we' re aware from del ta smelt life history, during the Decentor through March period, the adult fish are making a mingation through the Delta towards upstream spawning habitat areas. We al so know that the take of adult delta smelt at the facilities typically occurs bet ween Decenber and March.

So it's reasonable to ask a question, well, is the magnitude of the export rates that were occurring during the period when the fish were making this migration rel ated to thei r subsequent popul ation abundance?

That is what this anal ysis does. And this anal ysis represents a first step at better understanding the rel ationship and the potential effects of water project operations on delta smelt population abundance.

By itself, it can be interpreted very, very coarsely to suggest that in order to protect delta smelt and mai ntain -- allow themto return to hi gher populations, we need to have much lower exports during the winter.

However, as I mentioned, it represents only a first step. Exports in and anong -- as a metric, as a measurement to eval uate the effect of water project operations on the speci es are one of only several different measurements that coul d be examined. And they're actually a rel atively coarse netric.

We have other information about delta smelt which
tells us that the -- or suggests that the magnitude of the effect of exports and perhaps in terns of the numbers of fish that are entrained is rel at ed not just to the export rate, but al so to the concurrent inflow conditions or installation of in-Delta channel barriers.
Q. Dr. Swanson, l'mgoing to gi ve you a document marked as Pl ai ntiffs' Exhi bit 11 for identification. May I approach the witness?

THE COURT: You may. This is 11?
MR. WALL: Yes, Your Honor.
(Plaintiffs' Exhi bit 11 was marked for
identification.)
BY MR. WALL:
Q. Dr. Swanson, do you recognize this document?
A. I do.
Q. Could you describe what it is?
A. This is my declaration in support of the plaintiffs' proposed interimremedies. It was filed on July 23, 2007. Q. It's a fairly long document. Does it have a series of exhi bits attached to it?
A. It does.
Q. And those were exhi bits to your decl aration?
A. That is correct.

MR. WALL: Your Honor, I move this in evidence.
THE COURT: Any obj ection?

THE COURT: Exhi bit 11 is recei ved in evi dence.
(Pl ai ntiffs' Exhi bit 11 was recei ved.)
BY MR. WALL:
Q. Dr. Swanson, if you could page through there and find Exhi bit S, I would appreci ate it. I would say, by my estimate, about t hree-quarters of the way t hrough.
A. S.
Q. Actually, no, I don't want to nove to Exhi bit S yet, l'm sorry. There was something el se l wanted to do first. Let me wi thdraw that and ask you to look at page 12 of the decl ar ation, Fi gure 8.

Could you describe for us what that represents?
A. Figure 8 is a reproduction of a graph produced by Dr . Peter Smith of the US Geol ogi cal Survey that was al so reproduced in the Del ta Smelt Wbrking Group notes for October 10th, 2006 as is noted in the caption.

The graph shows the rel ati onshi p bet ween the numbers of delta smel t sal vaged or counted as take at the conbi ned Central Valley Project and State Vater Project facilities in rel ati onshi p to the conbi ned flow on $O d$ and M ddle River.

And the only ki nd of flow that's being shown here on the axis is when flow on O d and M ddle River is negative, meaning that the net flow of water is upstreamtowards the pumps and not downstream towards the confluence.
Q. Dr. Swanson, l'd like to talk a little bit about a word
you just used and is used in this figure. Sal vage. Could you describe for us what sal vage is?
A. Sal vage is a term-- is used to -- it's the number of fish that are taken by the facilities that are counted. Delta smelt that are entrained in to the state or federal water project facilities -- by "entrained," I mean the fish are essentially trapped in the flow of water headi $n g$ towards the pumps and are either unable to escape that flow because it's faster than they can swimor they're not responding appropriately because they may not detect that they' re being drawn towards the pumps.

For both facilities, the fish are supposed to be di verted fromthe water that's heading towards the export pumps by means of a series of screens. The generic termis fish screens. The type of screens that are present at both the state and federal facilities are, in fact, called louvers, they look like vertical Venetian blinds and, in fact, it's unl i ke nore modern fish screens, they don't physically exclude the fish fromthe di verted water, they behavi orally deflect them

For those fish that are successfully deflected by these screens, they are collected in hol di ng tanks. And periodically, the fish being di verted into the hol ding tanks, a subsample of that is taken by personnel at the facilities and the nunbers of delta smelt that are caught in that hol ding
tank are counted. That count is then extrapol ated up to a daily count on the basis of what fraction of the time the subsample, from whi ch they were counting, they actually didit during the day.
Q. Dr. Swanson, what happens to delta smelt that are di verted into this hol ding tank where they're count ed?
A. After they have been hel din the tanks for a while, usually depends on how much fish they're collecting per unit of time, then the tanks are drained and the fish and some water are transferred to a tanker truck and the truck is driven to a location in the central Delta and the fish are di scharged out of the tanker truck into the Delta channels via pi pes.
Q. And how do delta smelt do during that process?
A. All of the available evi dence that we have that l'maware of indi cates that virtually none of the fish survive this process.
Q. The delta smelt?
A. None of the delta smelt survive this process.
Q. So the term"sal vage" here with respect to delta smelt refers to the fish that are -- do not survi ve the process? A. Yes. And for delta smelt, the numbers of fish sal vaged are assumed to be the numbers of fish taken by the facilities or killed. They are assumed to be all killed, but sal vage is not an appropriate description.
Q. Dr. Swanson, are -- have you done some -- has some of your research been conducted on fish screens?
A. Yes. But not the kind of screens at these facilities.
Q. But you're familiar with the screens at these facilities?
A. I am
Q. And you're familiar with the research on the effectiveness of these screens?
A. I am
Q. Do you have an understanding of whet her the fish screens at the State Water Project and the Central Valley Project pumping facilities are effective at di verting delta smelt into these hol ding tanks?
A. In general, they are not very effective for successfully di verting delta smelt into the hol ding tanks. And, in fact, the numbers of delta smelt that are counted as sal vaged represents a substantial under estimate of the total number of delta smelt that are, in fact, legally entrained and di rectly killed by export operations.

There's a number of reasons for that. First of all, in particular, at the State Water Project, water that is -- di verted water is first diverted into a large forebay referred to as Clifton Court Forebay. The water is entrained into the forebay by opening a gate at the entrance to the forebay at certain times in the tide and the water flows into the forebay and then they cl ose the gate. So at that point, a
delta smelt that has becone entrained into the facilities is now in Clifton Court Forebay and it will never get out.

Studi es of other species have shown that most of the fish entrai ned into Clifton Court Forebay, in fact, do not survive to actually reach the fish screens, which are at the opposite end of the forebay. So large numbers of fish are consi dered and thought to be lost. They are either eaten or they die for some ot her reason before they reach the screens, at which point they should be deflected into the hol ding tanks.

In addition to that loss, which is referred to as pre-screen loss -- and it is not known what the magnitude of pre-screen loss is for delta smelt. The louvers used by both facilities are known to be not very efficient for successfully di verting delta smelt. And, in fact, large numbers, a substantial proportion of the delta smelt that approaches a Iouver actually goes right through the louvers because they're not positive barriers, they don't physically excl ude the fish fromthe di verted water.

In fact, the way that louvers are desi gned to function is as what's referred to as a behavioral barrier. And the vertical Venetian blind sort of design of the louvers, what it does is it creates a turbulent flow field on the face of the louver panel. And the way it is supposed to deflect fish is for fish moving in the water flowing to the louvers,
when they detect that turbul ent barrier, they're supposed to respond behavi orally by avoi ding it and swi mming away fromthe turbul ent barrier. Depending on the size of the fish and its ability to swim fish that do not swimin the opposite direction of the turbulent field can physically fit through the louvers and, in fact, are passed through the louvers and at that point they go directly to the pumps and they are never seen or count ed.

The efficiency of louvers for deflecting and successfully di verting delta smelt out of the exported water is known to be low.

The third reason that sal vage can be a very, very problematic number in terms of using it to determine what the direct impact of the projects on delta smelt are, in terns of the numbers of fish they kill, is that fish that are smaller than 20 millimeters in length, even if they are successfully di verted by the louvers and end up in the hol di ng tanks, and even if they are in the hol ding tank and are contai ned in a subsample that's going to be counted per take, any fish smaller than 20 millimeters is not counted. So even if they're seen and detected, they're not counted as take.

So particularly for juvenile delta smelt, the numbers of fish that are counted particularly early in the season represents a very, very large underestimate of the total number of fish that are being entrai ned.

THE COURT: What's the reason for not counting them? THE W TNESS: I understand that the assumption is that the l ouvers are not efficient for diverting fish smaller than 20 millimeters and that theref ore it woul dn't be worthwhile that count fish. That's my understanding of the rati onal e.

THE COURT: Is the purpose of the count to know what's there at the screens?

THE WTNESS: That would be my assumption.
THE COURT: Why then would we not count what's there?
THE WTNESS: Beyond what I said, I don't think I can answer that question for you, Your Honor.

THE COURT: Thank you.
BY MR. WALL:
Q. Dr. Swanson, how would you affect a -- how woul d you expect a larval juvenile smelt to respond to the behavi or al barrier created by these fish screens?
A. Given thei r size and very limited swiming ability, l don't thi nk a louver type fish screen would be at all effective at diverting I arval delta smelt fromthe exported wat er.
Q. Do the state or federal projects make any attempt to count or determine whether I arval del ta smel t are diverted by the fish screen?
A. To the best of $m y$ understanding, no.
Q. So if larval delta smelt were being pulled through the I ouvers and, as you put it, never seen agai n, would we have any information about the extent of that take?
A. No.
Q. If larval juvenile smelt were pulled in the sal vage facility -- and I believe your testimony was they would be counted there; right?
A. That's correct.
Q. And are you able to estimate in any way how the number of I arval juvenile smelt entrai ned by these facilities might rel ate to the total number of fish that are counted in sal vage hol di ng tanks?
A. I can think of some methods that might be minimally useful. I have never done it nyself. Some other researchers have. I think it would be very difficult to do with any degree of accuracy.
Q. Wbuld you expect the number of -- to be Iarger than the number that's actually counted?
A. I think the number --

MR. W LKI NSON: Obj ection. Calls for specul ation.
THE COURT: Is there any basis for answering this question without guessing?

THE WTNESS: The basis would be that during the early months of the spring, March, April and May --

THE COURT: I'mgoing to overrule your objection and
make it subject to a motion to strike after l hear the answer. THE WTNESS: We have information on the size structure of the delta smelt juvenile popul ation fromresults fromthe 20 millimeter surveys. An estimate could be made, based on the proportion of the population at any given time, that was bel ow 20 millimeters. You could estimate -- you could assume that the fish 20 millimeters and Iarger were being counted and estimate what portion of the popul ation those fish represented and then use that to estimate what additional fish might have been sal vaged that were not counted. It would be a very forced estimate.

BY MR. WALL:
Q. What would the rel ationship be in terms of, you know, during those months, the rel ationshi p between the number of I arval smelt and the number of smelt that would be Iarge enough to be counted --
A. In the months of March and April, when the majority of the popul ation is smaller than 20 millimeters, because the fish are all very young, there would be no -- in fact, there usually isn't any detectable sal vage of delta smelt juveniles because the fish are all smaller than 20 millimeters.

Later in the season, when the maj ority of the population is greater than 20 millimeters, those fish, which were successfully di verted into the hol ding tank during a sampling period, would be counted. But that's the extent to
whi ch you can make that comparison.
Q. If I could direct your attention back to Plaintiffs' Exhi bit 11. Excuse me. Have we noved this into evi dence?

THE COURT: Exhi bit 11?
THE CLERK: Yes.
BY MR. WALL:
Q. Page 12, Fi gure 8. Do you have any information -- are you aware of any criticisms of this chart?
A. Yes.
Q. Could you describe those criticisms and the comment you may have on them?
A. This graph shows the numbers of fish sal vaged in relation to the magnitude of negative or reverse flows on Od and M ddle Rivers conbi ned. And the object was to determine whet her the magnitude of the reverse flow -- the object of the anal ysis was to determine whether the magnitude of reverse flow conditions was rel ated to the total numbers of delta smelt taken. And they show here a statistically significant Ii near rel ationship bet ween negative flows and take indi cating that at hi gh negative flow conditions, take is high. And that at low or zero negative flow conditions, take is low.

The criticismthat I have heard about this particular portrayal of this anal ysis is that two of those points down in the bottomleft-hand corner that show up at the zero/zero on the axis essentially, right at the bottomcorner. And those
poi nts are for 1997 and 1998.
In fact, during those years and during thi s period, whi ch is January through February, by the way, flows on ad and M ddle River were -- in fact, they weren't negative and they weren't zero, they were, in fact, positive flows. Net flow on Od and M ddle Ri ver was, in fact, downstreaminstead of upstream And the criticism has been the incl usion of those two points at the zero/zero axis of the graph.
Q. Could you el aborate on how that criticismwould affect the rel ati onship shown on this graph?
A. The incl usi on of three points down there, 1999, of course, is slightly negative flow with a little bit of take. The incl usi on of the additional two points froma statistical perspective tends to pull the regression line down because there's more points down there pulling it that way. And the effect is to make -- to increase the sample size, likely increase the R squared val ue, the statistic for the rel ationshi p, and essentially to fix what's called the intersect at the zero point.
Q. Do you have any vi ew on whether -- do you have any under standing of -- let me strike that.

I believe you testified that the purpose -- your understanding of the purpose of this figure was to eval uate the rel ationshi p bet ween negative flows on Od and Mddl e Ri ver and sal vage at the CVP and the State Water Project
facilities?
A. I bel ieve that was the case, yes.
Q. In view of that purpose, do you have any vi ew on whet her the years 1997 to 1998 coul d have been simpleft of f of the chart?
A. I thi nk they probabl y could have, yes.
Q. And why is that?
A. I don't think they -- removal of those two data points does not change the shape of this rel ationship.
Q. But why would it have been appropriate to take two years of f of this chart?
A. I think it could be argued either way as to whether it's appropriate to incl ude them or not. And it doesn't change the ultimate result or inter pretation of the anal ysis. If the poi nts are included -- if you extend the X axis way out into the positive val ues to accommdate the actual $\mathrm{Ol} d$ and M ddle Ri ver flows on those points, the rel ationship is no longer I i near.

And i nstead, the rel ati onshi p woul d really best be anal yzed by some sort of a step regressi on where you anal yze Old and M ddle River flow conditions that are zero or positive as one di screte set of data and O d and M ddle Ri ver flous that are negative in anot her.
Q. And if you did that when you were anal yzing negati ve Ol and M ddle River flows, those two data poi nts woul d not
appear; is that what you're saying?
A. That would be correct. As I say, the shape of the rel ationship would still be the same. Very possibly the line towards the left side of the line might shift up very slightly to get closer to that point label ed 1999.
Q. Does the criticismthat has been -- you've articulated with respect to this figure affect your view of the val ue of this figure for assessing the rel ationship between fish that are sal vaged at the pumping facilities and negative flows on Od and Mddle River?
A. It does not. My interpretation of this graph, this is a very simple and coarse anal ysis. It's useful, but it's si mple. Is that it shows that the only time take of delta smelt is reliably low during this periodis at Od and M ddle Ri ver flows that are less negative than about minus 4,000 cubic feet per second.

So bet ween zero and 4,000, you don't have very many data points, which is a problemwith the anal ysis. But it's really only -- those are the only conditions under whi ch take appears to be reliably low. And when Od and Mddl e River flows are more negative than about 4,000, you get rel atively hi gh numbers of adult delta smelt taken at the facilities.

The rel ative numbers of that increases the more negative Od and M ddle River flow gets.
Q. Are you aware of a re-interpretation statement by the

Department of Water Resources?
A. I am
Q. And could you describe that re-interpretation?
A. They did a couple of things with regard to their anal ysis of these same data that l consi der hi ghl y questionable. They di d address thi s concern that they'd al ready rai sed about the fact that those two years $O d$ and M ddle River flows were positive. The more serious problem has to do with their decision to arbitrarily split the data which for this graph, as you can see, is for the January through February period. And they arbitrarily split it into single cal endar months. And so now they have two graphs. But for each of those graphs, they've only got half the sal vage data, generally.

And the reason it's a problemis that, if l can use an example, sal vage of adult delta smelt when it occurs at the facilities occurs as a single continuous event. And what it represents, the reason -- what's going on that delta smelt are bei $n g$ sal vaged at the facilities, these are the fish that are begi nni ng to move upstreamfromthei r bracki sh water habitat towards fresh water areas for spawning in the Delta, in the upstream portions of the Delta.

Take of the fish is essentially-- it's detecting the passage of the population past the area of the Delta in which they' re vul nerable to the pumps. It is a continuous event. It's not fish going back and forth. These fish are -- this
is -- they're being taken as they nove from bracki sh water habi tat to upstream habi tat.

Typi cally, if you look at the data, sometimes you start to take delta smelt adults at the pumps indicating they're begi nni ng their migration or they're partway through thei r migration as early as December. Somet mes take doesn't start until late J anuary or early February.

By taking the data for i ndi vi dual cal endar mont hs, the effect of that is to split up this continuous take event. For example, if delta smelt began migrating up the system perhaps a little later than usual, such that the take of del ta smelt really didn't start to happen until the last week in January. And during that week, maybe a thousand fish were taken. And during that month, Old and Mddl e River flous might have aver aged minus 6,000 cubi c feet per second. That yi el ds a data point whi ch suggests onl y a thousand fish were taken at a rel ativel y hi gh magnitude of reverse flow and essentially excl udes consi deration of the fact that this represented a small proportion of the tot al adult popul ation that was being taken in the event.

Li kewi se, if the remai nder of the popul ati on were taken in February, mabe 6, 000 fish were taken in February and agai n, Od and M ddle Ri ver flows aver aged minus 6, 000 cubi c feet per second, the inter pretation for the February graph says that that represents hi gh take at that level of Old and

M ddle Ri ver flows.
It's actually -- in my view, there's no bi ol ogi cal rationale to it, it's statistically unjustified and it tends to -- what's the word I want? It basically is di sgui sing the inf or mation and the data.

THE COURT: Distorting?
THE WTNESS: I'msorry?
THE COURT: Distorting?
THE WTNESS: Distorting is a better word, Your Honor. Thank you.

THE COURT: Let me ask, going to the effect of the reverse flows. It was implicit, but I don't think you stated it specifically. Do the reverse flows carry the fish essentially back to the pumps or do they end up locating them in the south Delta?

THE WTNESS: Reverse flows are measured on two channel s. May I use the map?

THE COURT: Yes.
THE WTNESS: On two channel s, whi ch I ead di rectly towards the escort facilities. These two and the metric is the combi nation of those two reverse flows. The magnitude of the flow of the water towards the pumps -- and it is being drawn towards the pumps, it's negative because it's being drawn towards the pumps I argel y .

The effect of reverse flows is to -- for a fish, a
delta smelt that has become located in either of these two channel s, the net movement of water is towards the pumps and in all likelihood the fish will be unable to escape fromthe channel and will, instead, be drawn towards the pumps and sal vage facilities.

THE COURT: Do the channel s have desi gnations?
THE WTNESS: I refer -- let me see. This is Ol_{d} Ri ver and this is M ddle River here.

THE COURT: Thank you. You may conti nue.
MR. WALL: Your Honor, do you have any esti mate of when we might break for I unch?

THE COURT: I had thought we would break around noon. I have a sentencing proceeding at the noon hour.

MR. WALL: Okay. We have about five minutes I eft just so l can formmy question. Thank you.
Q. Dr. Swanson, are you -- you had an opportunity to revi ew Dr. Hanson's declarations in this case; right?
A. I did.
Q. And are you aware that he draws a comparison between his estimate of the population of delta smelt in early July and the sal vage counts of delta smelt that are sal vaged at the state and federal water project pumping plants?
A. I am
Q. Do you bel ieve that that comparison is inf ormative?
A. No.
Q. Could you tell us why?
A. As we di scussed earlier, the popul ation estimates, we have no idea of the accuracy of those popul ation estimates. The onl y thing that, in my view, we know is that the number is wrong. In contrast, the number of fish sal vaged at the facilities, we al so know is wrong. But we know it is toolow. So he's comparing a number that is known to be wrong to a number that is known to be too low and drawing a concl usion fromit. I consider the comparison without any merit or val ue.
Q. Dr. Swanson, if -- l'mgoing to ask you to assume that the operations of the federal and state pumping facilities near Tracy directly entrain only a small portion of the delta smelt population. Wbuld the loss of that rel ativel y small proportion of the delta smelt population, over time, affect the Delta snelt's prospects for survival?
A. Yes. And the magnitude of its effect on the prospects for survival of the species depends on the status of the species at the time. And even a small adverse impact or a direct take of these fish, rel atively small in proportion to their popul ation, has a greater effect on the stat us and risk of extinction for a species when its overall population abundance, not to mention the other criteria that I identified, distribution, di versity and productivity, are al ready known to be Iow.
Q. Is there evidence on whet her these pumping facilities are taking an increasing proportion of the total delta smelt popul at i on?
A. There are some anal yses that were conducted by Dr. Br uce Herbold of the United States Envi ronmental Protection Plan as part of the research into the pel agic organismdecline where he examin nes sal vage levels during the winter, for the peak generally sal vage of adult delta swelt, over the period from 1993 to -- the most recent data I thi nk he had was 2004 or ' 5.
Q. Dr. Swanson, if I could --
A. Yes, it's in my declaration.
Q. Yeah. If you could turn to Plaintiffs' 11 at page 11, if that would hel p you.
A. The last date of the year. He did it from 1994 to 2005. And he first looked at the total numbers of adult delta smelt sal vage per year. The period he used was, I bel ieve, Novenber through March. So he had a slightly longer period.
Q. Dr. Swanson, l'msorry to interrupt you. Could you just indicate which of these figures you're referring to? A. I beg your pardon. It's Figure 6, page 11 of my declaration. The first step in Dr. Herbol d's anal ysis was to just look at the numbers of delta smelt that were sal vaged each year over this period from 1994 to 2005. And he found that in recent years, the total numbers of delta smelt counted as sal vage at the facilities had increased compared to the
earlier years.
He next asked the question whet her that increase in sal vage reflected an increase in the amount of water being exported fromfacilities during that time. To do that, he rel at ed the numbers of fish sal vaged to the total vol ure di verted during that period and essentially cal cul ated the numbers of delta smelt sal vaged per acre foot of water exported.

When he did that, he found that the recent years still showed di sproportionately high take of delta smelt. The densities of delta smelt, the number of fish per acre foot taken during the winter at the facilities, was hi gher in recent years than it was during the earlier 1990s.

The third thing that he recogni zed was that during this period, the population abundance of delta smelt had been quite variable. It had increased from 1994 up to 1999; but si nce 1999, it had declined markedly to much lower levels. And to accommodate for the fact that there were different numbers of delta smelt out in the habitat, he then rel ated his fish density to the abundance of the population by effectively di vi di $n g$ the density by the abundance index, I believe.

When he did this anal ysis -- so this is looking at sort of the impacts of the take of those fish rel ative to thei r popul ation size. And he found still that in recent years, and in particul ar 2003, 2004 and 2005, the rel ative
take of adult Delta smelts was higher than in al most all previ ous years.
Q. And by "rel ative take" you mean in proportion to the popul at ion?
A. This is a way of describing the impact of take rel ative to the popul ation abundance of delta smelt, yes.

MR. WALL: Your Honor, it's now noon. If this is a good stopping point, maybe we could take up the remedy issues i medi atel y after I unch.

THE COURT: Yes. And give me a time estimate on the bal ance of your direct if you would, please.

MR. WALL: I would hope to nove through it in an hour or maybe an hour and a half.

THE COURT: Al light. Thank you. Anything further bef ore we recess?

All right. We're in recess until $1: 15$.
(Lunch recess.)
THE COURT: Good afternoon, I adi es and gentlemen. Pl ease be seated. We're back on the record in NRDC versus Kempt hor ne. We' re going to resume Dr. Swanson's testimmy. Mr. Wall.

MR. WALL: Thank you, Your Honor.
Q. Dr. Swanson, one last thing l'd like to touch on with you bef ore turning to your proposed remedi al measures. Are you familiar with the concept of take limits?
A. I am
Q. What is your understanding of that term?
A. A take limit is a fixed number of delta smelt that the US Fish \& Wildife has identified for each month of the year with different take limits for different water year types between dry water year types and wetter water year types.

Presumaly if more fish than -- or if the take limit is reached and/or exceeded, it requires that the state and federal water projects rei nitiate consultation with the Fish \& WIdlife Service regarding the need -- possible need for additional protection for the species. That's my understanding of how it works.
Q. I believe I just heard you testify that the take Iimits vary by water year type; is that correct?
A. Yes.
Q. Do they vary by ot her factors?
A. They are different for each month.
Q. Were the -- are you familiar with the take limits that were in the Bi ol ogi cal Opi ni on on the OCAP, the 2005 Bi ol ogi cal Opi ni on on the OCAP whi ch is the subject of this litigation?
A. I am l coul dn't recall the specific numbers, but lam familiar with the numbers that were there, in general terns, and in rel ation to the earlier Bi ol ogi cal Opi nion.
Q. And do you have a vi ew on the adequacy of those take

I imits for insuring that CVP and St ate Water Project oper ations di d not appreciably increase the delta snelt risk of extinction?
A. I do. In my judgment, the take limits are insufficient to provi de adequate protection to the species and avoid jeopardizing it for a number of reasons. I think one of the nost important reasons the take limits provi de literally an unknown level of protection to the species is that the take I imit is not rel ated in any way to the abundance, the popul ation abundance of del ta smel t as measured by any one of the abundance i ndi ces from Fish \& Gare surveys.

Ther ef ore, a take limit that, for example, allowed the take of $1,000 \mathrm{fish}$, if that take limit were reached when the popul ation was very large might represent a rel at ivel y small i mpact on the species.

In contrast, taking that number of fish under -- in a year in whi ch the popul ation abundance of delta snel t were very low, for example in these recent years, most likely represents a much larger i mpact on the species.

Second of all, it's well known that the numbers of del ta smelt that are counted as take at the two facilities is a substantial underestimate of the total numbers of fish that are actually killed by the facilities.

And gi ven that we actually don't know by how much take underestimates the tot numbers of fish killed, the take

Iimits were devel oped and identified with no basis for understanding to what degree they represent some limit, al I owable limit of direct mortality that can be imposed on the species by the projects.
Q. Dr. Swanson, have you devel oped recommendations for protection of delta smelt and, in particular, recommendations for protective measures that could be implemented by the Central Valley Project and the State Water Project to protect the delta smelt?
A. I did. I devel oped a suite of interimremedy protections that, in my judgment, should be implemented during the next year or until a long-term Biol ogical Opinion is put in place. And I believe that these protections are necessary to prevent water project operations fromjeopardizing the continued exi stence of the species and fromadversely modifying thei r habitat.
Q. What did you consider in devel oping your proposed protective measures for the delta smelt?
A. I considered all of the available published and unpublished scientific research on the species of which I was aware, incl uding inf or mation and anal yses di scussed by techni cal working groups, such as the Delta Smelt Wbrking Group, and that presented in scientific and techni cal work group fora, such as Dr. William Bennett's research that has not yet been published. As well as other published research,
incl uding my own experience with the species based on my own scientific research on it.
Q. Dr. Swanson, are your recommendations set forth in writing somewhere?
A. They are. They are attached as an appendix to my nost recent declaration, which was the --
Q. I believe that's --
A. -- August 13th declaration.
Q. Yes. I believe that's Plaintiffs' Exhi bit 4 in evidence.

Dr. Swanson, would you please turn to the appendi x to Pl ai ntiffs' Exhi bit 4. And let's gi ve a monent to everybody to find a copy.

Wbuld the Court prefer I put this on the El mo?
THE COURT: Well, Dr. Swanson has had some difficulty reading it on the El mo.

THE WTNESS: I prefer to read it from hard copy, Your Honor.

THE COURT: All right. Then you may proceed.
BY MR. WALL:
Q. Dr. Swanson, do you have the appendix to your second declaration, Plaintiffs' 4, in front of you?
A. I do.
Q. At the top it says revi sed recommendation -- re?

THE REPORTER: I'msorry?
MR. WALL: I'mnot sure how to get that going, so
l'II just read it sl ow y.
THE REPORTER: That's fine.
MR. WALL: It says across the top, "Revi sed Recommended Interim Protection Actions for Delta Smelt." Q. Dr. Swanson, across the top --

THE CLERK: Counsel, if you would like to try putting it on? Somehow it got turned of f while l stepped out earlier. There you go.

BY MR. WALL:
Q. Across the top of that page, there's a series of col um headi ngs. Could you expl ain to us what those represent? A. Certainly. In the first col um, on the left, I identify each of the interimprotection actions that I have identified by number. There are ten in total.

The second col umm identifies the timing or the time of the year during which the action is to be implemented.

The third col um I abel ed "Iifestage" identifies the life history stage of delta smelt that the interimprotection is directed at.

The fourth -- excuse me, the fourth col um label ed "trigger" or "triggers" identifies the conditions, either envi ronmental conditions or results of survey monitoring, whi ch would trigger implementation of the action.

The fifth col um identifies the action itself and describes it.

The next col umm identifies when the action would end. The next colum identifies the objective of the action.

And the final col um on the right briefly identifies the sources of information and the rationale that underlie the action.
Q. Could you give us an overvi ew of these actions and then we'll ask you to tal k about themmore specifically.
A. There are basically four types of actions. The first type has to do with improving -- with maintaining or improving our current monitoring capacity and improving our ability to detect the presence and distribution of the fish within the system There are three specific actions under that -- in that type.
Q. Are those actions one through three?
A. Those are actions one through three.

The second main type or main -- the second type of actions is desi gned to prevent entrai nment and take of adult delta smelt that are noving upstreamto spawn in the habitat.

The third type of action is desi gned to minime entrainment of Iarval delta smelt and to minimelarval and juvenile delta smelt and to minime and/ or eliminate the numbers of those fish that are legally taken at the export facilities.

And the final type of action is designed to reduce
the degree to which water project operations adversely modify delta smelt habitat during the fall concurrent with the sub-adult life history stage of the species.
Q. And that final category of actions that is designed to benefit the sub-adult lifestage, which action is that?
A. That is action number ten.
Q. I'd like to start, then, by asking you about action number ten. Wi ch is on, l believe, the last page of that appendix.

Could you wal k us through this action?
A. Action ten is desi gned to reduce the degree to whi ch water project operations adversely modify delta smelt habitat during the fall by reducing overall fresh water outflows fromthe Delta during that period.

The timing of the action, the action is intended to occur fromthe month of Septenber through Decenber and it's desi gned to provide improved habitat conditions for the juvenile and sub-adult life history stage of delta smelt that at that time in their life, and at this time of the year, are downstreamin low salinity or brackish water habitat rearing. And, as Dr. Mbyl e sai d, growing rapi dly in preparation of maki ng their upstreammigration later in the winter for spawni ng.
Q. Dr. Swanson, could you show us on the map where the delta smelt might be during that lifestage?
A. The location of delta smelt during this period would
be -- the l ocati on of t he bulk of the popul ation woul d be dependent upon the amount of fresh water outflow from the Del ta into the estuary at this time.

But under conditions that have been typi cal for most years, recently the maj ority of the popul ation would likely be l ocated in and around the confluence of the Sacramento and San J oaqui n Ri vers and somewhat downstream of that. But woul d not likel y be l ocated way far down in Sui sun Bay.
Q. And why is that?
A. The l ocation of delta smelt within thei r habitat is I argel y determined by the I ocation of I ow salinity habitat. And the fish tend to congregate in areas where the sal inity ranges from one or some -- one or somewhat less than one part per thousand into areas where the sal inity is reaching as high as five to six or seven parts per thousand. They're sometimes found further down, but not very often. The I ocation in the est uary where that habitat is, as I mentioned, dependent upon the anount of fresh water outflow.
Q. What is your tenth proposed action, what would the agenci es need to do?
A. The action proposes or recommends that, starting in Sept ember, if the I ocation of X 2 , the I ocation of t he t wo parts per thousand i sohal ine and roughl y low sal inity habitat is, at that point, upstream of 80 kilometers, which is in the vi ci nity or somewhat downstream of the confluence, then water
project operations should be modified to increase outflows to a minimulevel of 7500 cubic feet per second or an al ternative metric to mai ntain X 2 as the 14-day running average at a location that is at or actually downstream of 80 ki I ometers.

THE COURT: How far downstream
THE WTNESS: They need to locate X2 and modulate the outflow they let out of the Delta such that X 2 is at 80 kilometers or bel ow, I should say.

THE COURT: So as close to 80 kilometers as possible. Because downstream could mean anything.

THE WTNESS: 80 kilometers is a fixed location within the estuary.

THE COURT: I'muith you on that. But you said or, in the alternative, downstream So that would apparently be --

THE WTNESS: The action offers two alternative ways to measure compliance with the measure. One is to mai nt ain a minimum Delta outflow of 7500 cubic feet per second.

THE COURT: So is that going to be a reduction or an increase at that time of year?

THE WTNESS: It would most likely be an increase compared to current minimurequirements for out flow during those months. According to my cal cul ations, a steady outflow of 7500 cubic feet per second will maintain X2 at 80
kil oreters in the estuary, assuming you' ve gotten it there first.

The alternative metric is to base compliance upon the Iocation of X2 and the recommendation for that is that the 14- day runni ng average of X 2 be located at downstream of 80 kil ometers.

The action al so goes on to suggest that of these two alter natives, whichever one requires less fresh water outflow, would be the one that could be used as the compliance metric.

THE COURT: And it is this alternative that l still don't understand. Because you're not mai ntaining it at 80 kilometers, you're maintaining it downstream but how far downstream Because it's going to take a certain amount of water to achi eve the salinity level that you want.

THE WTNESS: According to my cal cul ations, using equations that have been devel oped to cal cul ate and predict the Iocation of X 2 on the basis of Delta outflow, a rel atively steady outflow of 7500 cubi c feet per second should correspond to an X2 Iocation of 80 kilometers.

MR. WALL: Your Honor, I mi ght be able to elicit an answer that's responsive if I ask a couple of questions.

THE WTNESS: I'msorry.
THE COURT: Al right. I still don't understand, but mmybe you can --

MR. WALL: I'mgoing to try to hel p you. Feel free
to talk some more with the witness.
THE COURT: You may proceed.
BY MR. WALL:
Q. Dr. Swanson, when you say "dounstream of 80 kilometers," do you mean at out at the Farallones?
A. No.
Q. Do you nean in San Pablo Bay?
A. No. It means just anywhere that's -- it means just i medi at el y downstream of 80 ki lomet ers.
Q. So effectively at or equal to 80 kilometers?
A. At or just --

THE COURT: Why not just make it that?
THE WTNESS: That would be another way to express this, yes.

THE COURT: This, quite frankly, is hopel essly anbi guous because it doesn't tell us where downstream it could be one inch, it could be 600 kilometers, it could be a mile downstream

THE WTNESS: I bel i eve the objective of the I anguage that I intended when I wrote it was that so long as it was dounstream of 80 kilometers, regardless of how far downstream of 80 kilometers, that was okay. With the expectation that the -- it would be unlikely that hi gher level s of outflow that would result in X2 further, much further downstreamthan 80 kil oneters would, in fact, be operated for.

THE COURT: Remember, part of the reason that t hi s Bi ol ogi cal Opi ni on was i nval i dated was for doing just what you' re now proposing to do. To make it so indefinite and uncertain that there was not requi red precisi on that would enable the oper at or to operate and for everybody to know under what conditions the standards have to be met.

If what you're trying to achi eve is just that it is ei ther at or downstreamfromthe X2 80 kilometer mark, that's all you should say. So long as it is either at or downstream from But if you simply say "downstream" wi thout saying the 80 kil ometers in your second standard, then it's open- ended.

THE W TNESS: Uh-huh.
THE COURT: Do you under st and?
THE WTNESS: I thi nk I do. And I thi nk that woul d represent a fairly simple revision to be made in the I anguage her e.

THE COURT: But that is what you intend?
THE WTNESS: Yes.
THE COURT: Proceed.
MR. WALL: Thank you, Your Honor.
Q. During what time period would this tenth protective measure be i mpl emented?
A. Thi s action should be i mpl emented from the begi nni ng of September t hrough the end of December, unl ess in the second hal f of Decenber there were a-- there was a wi nter stormor a
rain or flow pul se event that would cause Sacramento -- whi ch we call -- let me see, that woul d cause river inflows to the Delta to increase sharply over a short three- day period, whi ch constitutes the trigger for one of the other protective actions.

If this winter pulse flow event doesn't occur, then action ten should be continued to be implemented through the end of Decenber.

THE COURT: And if you know, is this water normally in storage that would be requi red to mai ntain flows of 3500 cfs in the system

THE WTNESS: Currently min mum flow requi rements requi re between 3,000 and 4500 -- dependi $n g$ on the nonth and water year type -- min num Del ta out flows al ready. In order to achi eve the target out flow of this represents an increase of outflow between three and maybe 5,000 or 4500 or 4,000 cubic feet per second.

The source of that water is not specified by this action. But there are -- based on my working know edge of water project operations in this system the increased outflow could be implemented by increasing rel eases from reservoirs to increase inflows and outflows to the Delta. Or alternatively, by decreasing the water export rates fromthe Delta and allowing a greater proportion of existing levels of Delta inflow to pass through the Delta to the -- into the estuary or
some conbi nation of both.
THE COURT: And do you know what the export rates at that time of year are?

THE WTNESS: I do. And I had specified average export rates for those months in one of $m y$ declarations. BY MR. WALL:
Q. I think it's in the declaration in front of you.
A. I think you --
Q. Plaintiffs' 4. And it may be in -- let me find the paragraph and direct your attention to it.

THE COURT: While he's looking for that. The ultimate objective of this is to do what with the smelt, get them to move to the spawning grounds or something el se?

THE WTNESS: This objective is for juvenile and sub-adult delta smelt during this fall period. And the objective is to reduce the adverse modification of delta smelt habitat caused by reduced outflows and which result from current levels of water project operations and improve the quality and quantity of delta smelt habitat.

The scientific basis for the action is principally the research published by Feyrer, et al., whi ch showed that delta smelt habitat quality was a function of outflow. And that in recent years outflows during this period had been lower than they were in the past. And that that was not a result of changes in hydrol ogical patterns. And that
decreased habitat qual ity, using the index they devel oped, corresponded to reduced population of hundreds of delta smelt.

THE COURT: And what we're tal king about, agai n, habitat, is water quality, clarity, salinity.

THE WTNESS: Those three characteristics which the authors use to characterize delta smelt habitat quality. This one principally addresses the salinity aspect of habitat qual ity and improves the habitat quality index Iargely by shifting the location of low salinity habitat just a little bit further downstream increasing the overall amount of habitat available to the species.

THE COURT: But this is not the time when the fish are starting to nove upstream

THE WTNESS: This is just before the fish start to nove up. This is while they're still rearing in this low salinity bracki sh water habitat. They're feeding and they're growing.

THE COURT: Septenber to Decenber?
THE WTNESS: Septenber through Decenber. It's possible, if a flow pul se occurred in December, that that would trigger or cue the fish to begin their migration.

THE COURT: Thank you. Find it?
MR. WALL: Yes, I bel i eve so.
Q. Dr. Swanson, if you could look at page 19 and 20 of Plaintiffs' 4 at paragraph 21 . This may be what you're
thi nki ng of.
A. It is. I cal cul ated the average monthly water export rate fromthe conbi ned CVP and SWP export facilities for the nonths of September, October, Novenber and Decenber for the period si nce 1994 through 2007.

I found that overall average export rates during the month of Septenber were 9, 598 cubic feet per second. The range was between roughl y 7,000 and 11,500 cubic feet per second.

In October, the average export rate conbi ned for the two facilities was 8, 026 cubic feet per second.

In Novenber, the average export rate for the two facilities was 7,721 cubic feet per second.

And in Decenber, the average export rate for the facilities was 7,866 cubic feet per second.
Q. Dr. Swanson, you mentioned that a principle basis for this action was the Feyrer, et al. findings. Were there any other factors that went into your devel opment of this?
A. There are other anal yses whi ch tend to support the finding that reduced outflows during the fall are detrimental to delta smelt. In particular, the anal ysis conducted by Contra Costa Water District, which showed the statistically significant rel ationshi p bet ween the salinity measure at Jersey Point in the fall and the population abundance of $j u v e n i l e ~ d e l t a ~ s m e l t ~$ measured the following spring for the period of 1987 through
2005. Thi s rel ationshi p is statistically signi ficant and i ndi cates that in years when outflows during this period are I ower, such that sal inity at Jersey Poi nt is hi gher, the popul ation abundance of del ta smel the following summer is l ower than following years where there's greater amounts of outflow and I ower sal inity at Jersey Point.

Incl usi on of the most recent popul ation abundance data for delta smelt, the last two years, has rendered the statistical rel ationshi p bet ween these two variables to be no I onger si gni ficant, at least at the probability level of. 05 or five percent.

However, I thi nk the presence of the si gni ficant rel ationshi p based on the maj ority of the data bef ore the popul ation collapsed to its current low levels still provides some rationale for this action.

I n addition, there has been some di scussi on that el evated sal inity level s in the western Del ta during this peri od nay have allowed the i nvasi ve overbite clamto extend its range upstream further upstreamfrom where it had previ ousl y been di stributed and encroaching somewhat more towards Del ta channel s.

G ven that there is some concern that the presence of the clam has adverse effects on the zoopl ankt on food supply for these species, it's possible that increased range and potentially overall popul ation abundance for the clamspecies
could al so adversel y affect delta snelt by further reducing thei r habitat. Although at this point l am not aware of a great deal of empirical evi dence to support that part of the hypot hesi s.

Collectivel y, those sets of inf ormation inf ormed my devel opment of this action. But as I mentioned, the really princi ple source was the research conducted by Feyrer, et al. and publ ished.

THE COURT: Once the clamis established, if the salinity in the water is reduced, does that have any effect on the presence of the clam

THE WTNESS: Apparently, as l understand it, the overbite clam it is a brackish water clam lt lives in slightly salty water. It can tol erate fresh water for some period of time, although I think the duration is not known, before it dies.

But, in fact, there is evi dence that I have heard that, under fresh water conditions, the clam does not feed. It essentially closes its shell and does not filter the water and remove the phyt opl ankt on and the zoopl ankt on.

THE COURT: You may proceed.
BY MR. WALL:
Q. Dr. Swanson, are there other cl ans that are present in the habitat of the delta smelt?
A. There is another invasive clamspecies that has been
present in fresh water habitats for a longer period of time, l bel ieve, named Corbicula. Corbicula is a fresh water clam It does not tolerate salty or bracki sh water conditions. Q. Are you aware of any hypothesis about how the Corbicula clam-- and you might want to spell that for us. How the Corbicula clam would respond to an increasing zone of low sal inity habitat?

THE COURT: We had the spelling. C-OR-B-I-C-UL-A. We had it yesterday.

MR. WALL: I appreciate it, Your Honor.
THE WTNESS: Well done. Some peopl e have suggest ed that if we extend the area of fresh water habitat further downstream that the Corbicula clam may extend its range further downstream and therefore -- and potentially have the same effects of --

THE COURT: And can you show us on the map where, generally speaki ng, the clamspeci es are established?

THE WTNESS: In a general sense, I can, Your Honor.
THE COURT: Generally.
THE WTNESS: In general, the Corbula clam the overbite clam is distributed in this area of the estuary.

THE COURT: Downstream
THE WTNESS: Downstream of the confluence. I do not know to the extent whi ch they're in the areas of the confluence right now.

Corbicula is distributed within the Delta here and, in fact, most concentrated through the center of the Delta, as I understand it.

THE COURT: So you would say it's havi ng the most jeopar di zing effect than the ot her?

THE WTNESS: Based on everything I've heard, I do not believe Corbicula has nearly as important an effect via its impacts on the planktonic food web pattern as Corbula does. Largely because delta smelt spend most of their time in overbite clam habitat, not Corbicula habitat.

MR. LEE: Your Honor, I amgoing to object generally to this line of questioning. We now heard the witness say "based on things that I have heard" now twi ce in this process. Asi de fromthe hearsay objection, we don't know the source of what she's heard from whether the people have -- who have made those statements are qualified to make them Sol'm going to object to this line of what we have heard reasoning.

THE COURT: You mean to the answer?
MR. LEE: To the answer, yes.
THE COURT: And the Court's understanding is that an expert can rely on hearsay. Mbst do. And if you want identification of this underlying inf ormation foundationally, I'Il permit you to voir dire. Is that what you want to do?

MR. LEE: We'd simply ask the witness to identify precisely the sources that she's rel ying upon if she's going
to move in this area.
THE COURT: Al I right. To your best know edge, from whom or what source have you heard the information you just provi ded us about the clans?

THE WTNESS: I have heard these descriptions and di scussions of the clambiol ogy distribution and population dynamics in a number of scientific and technical fora, incl uding a recent CALFED science workshop on the effects of variable salinities in the Delta, which was held earlier this year.

THE COURT: Thank you. Obj ection is overrul ed. BY MR. WALL:
Q. Dr. Swanson, did Professor Peter Mbyle partici pate in that particul ar workshop?
A. I bel i eve he did.
Q. Have you di scussed this rel ationship with Professor Mbyle as well?
A. Briefly.
Q. Dr. Swanson, is there some uncertainty about the effectiveness of your proposed protective action number ten? A. In my judgment, based on my under standing of the research done by Feyrer, et al., there is very little uncertainty that increases in outflow to shift the location of low salinity habitat during the fall would improve the val ue or the measured val ue of their habitat quality index.

There's al so little uncertainty that habitat qual ity, in part driven by reductions in outflow during the fall, has decl ined over the past few years compared to 10 and 20 years ago.

There is uncertainty as to how the delta smelt popul ation -- or how the del ta strelt would respond with regard to changes in popul ation abundance.

So with we -- we can be fairly certain that this action improve delta smelt habitat qual ity and reduce the degree to whi ch water project operations adversely modify that habitat. There is less certainty with regard to whet her this i mproved habitat conditions during this one part of the year will be sufficient by itself to improve conditions for delta smelt such that thei r popul ation can increase.
Q. Dr. Swanson, were you present in the courtroomyesterday when Prof essor Peter Mbyle was cross-exami ned?
A. I was.
Q. Do you recall counsel cross-examining Professor Mbyle regarding a document that was known as the Pel agic Fi sh Action Plan, as l recall correctly, pel agic action plan?
A. I do.
Q. And do you recall some di scussi on of a measure that would have increased outflow through the Del ta in the summer and fall months?
A. Yes.
Q. Wbuld it be hel pful if I provided the Pel agic Fi sh Action Plan for you?
A. Yes.
Q. I believe it's State Water Contractor Exhi bit C. If you could turn to page 47, please.
A. I do not have a copy of the document. What was the page agai n, pl ease?

THE COURT: 47.
BY MR. WALL:
Q. There's a di scussion -- there's a heading that says "Mai ntain X2 west of Collinsville during May- Decenber (summer/fall)." Do you see that di scussion?
A. Yes.
Q. Are you familiar with this measure as described in the Pel agi c Fish Action Plan?
A. Yes.
Q. Is this the same action as you proposed in action number ten?
A. It is similar, but it is not exactly the same.
Q. How does it differ?
A. It differs in the duration over which the action is to be i mplemented. This action -- this action calls for X2 to be mai ntai ned at or down -- an average X2 position west or seaward of 80 kilometers from May through Decentber. In contrast, action 10 in the -- of the recommended interim
protections that I devel oped, this action is to be implemented onl y during September through Decenber.
Q. What was the rationale for -- that's listed on page 47 for the action in the Pel agic Fish Action Plan?
A. I will read fromthe report. It says, "Hi gher Delta outflow in the summer and fall can increase the amount of habitat for delta smelt. If smelt use this habitat and their di stribution is wi der and shifted downstream subsequent entrai nment in the winter will be reduced."
Q. Now, why did you not propose an action that would I ast from May through Decenber?
A. In part, other protection actions that we -- that are proposed in ny interimprotections cover a portion of that period from May through June and per haps Ionger, depending on other triggers, and provided protection which was likely comparable or perhaps better than this.

But the most important reason that I recommended implementing this action for the Septenber through Decenber period was because the action is based on the research conducted by Feyrer, et al.
Q. Which action? I'msorry.
A. Action ten is based on the research by Feyrer, et al.
Q. Your action.
A. My action ten is based on that, yes. And Feyrer, et al. devel oped thei r habitat, their envi ronmental quality index,
whi ch characterizes del ta smelt habitat qual ity using data from onl y the period from Septenber through Decenber. And I di d not feel as comfortable extrapol ating the results to ot her times of the year for which l did not have data or sci entific basis to make that recommendation.
Q. Dr. Swanson, if you could turn the page -- actually, I et me back up for a second. l'll strike that question.

If you could look at Pl ai ntiffs' Exhi bit 10, please. This is the Del ta Smelt Wbrking Group meeting notes from August 21, 2006. And if you could look at the second page. Unf ortunately, the pages are not numbered. But the second page, under the heading "Fall Fl ows."

Is there a di scussi on on that page of whether the Del ta Smelt Wbrking Group should recommend fall flows si milar to those that you have proposed in your tenth protective measure?
A. There is.
Q. If you could look at the second sentence under that iittle table there and read that for us.
A. The sentence starting "currently"?
Q. I'msorry. The third sentence.
A. "Over the range of fall X2 positions observed since 1970, del ta smelt habitat quality does not increase detectably until X2 passes seaward of Br oad Sl ough." They refer to Figure 2 and 3.
Q. And is Br oad Sl ough, where does that lie rel ative to 80 ki I omet er s?
A. According to the reference made to Br oad Sl ough in the Pel agi c Fish Action Plan, Broad Sl ough roughl y corresponds to the l ocation of 80 kil oreters.
Q. Do you have -- could you read the rest of the paragraph.
A. The paragraph conti nues, "The anount of envi ronment al water requi red to move X 2 seaward of Broad Sl ough to Chi pps Island and keep it throughout the fall is three to four times the annual EWA" -- that's Envi ronment al hater Account -- "budget."
Q. So Dr. Swanson, is it -- do you have an understanding, based on that, why the Del ta Smelt Wbrking Group might not have recommended your proposed action?

MR. LEE: Obj ection, Your Honor, would requi re specul ation.

MR. WALL: I did ask for the witness' understanding.
THE COURT: Al right. I will first ask if the witness has any basis to answer the question.

THE WTNESS: I bel i eve the basi s is contai ned in the content of these notes.

THE COURT: Al I right. The objection is over ruled. You may answer.

THE W TNESS: My inter pretation of the di scussion in these notes, as well as ot her working group notes, whi ch al so
refer to the fall action, is that the expectation was that i mplementing an action that increased Del ta outflow during this period would require themto use large amounts of the fixed and finite supply of envi ronmental water resources that the Delta Snelt Wbrking Group had access to to implement all of t hei r protective actions for delta smel t.

And they determined that first this action would requi re using up a large amount, if not more than they actually had in the Envi ronment al Water Account, and that ther ef ore they chose not to recommend implement ation of this action and to save that limited amount of environmental water for later in the year to implement protections ai red at ot her Iife history stages.

BY MR. WALL:
Q. Coul d you describe, in a bri ef way, your understanding of the Envi ronment al Vater Account?
A. The Envi ronment al hater Account is a supply of water that is I argel y acqui red through purchase by the water project agenci es that is available for the fisheries agenci es to use in a di screti onary way to compensate the water projects for any reductions in water del iveries that might result fromthem i mol ementing a change in water export operations.

And by "change," I usually mean a reduction of the water exports that were recommended for the purpose of protecting delta smelt or some ot her endangered species.

Effectivel y the Envi ronment al hater Account is used to compensate the water projects for the anount of water that they are unable to export at one time of the year. And to compensate for those reductions, Envi ronment al Water Account water is given to the water projects to be exported or del i vered, if it's al ready south of the Del ta, to compensate for those losses at some ot her time of the year.

Typi cally Envi ronment al Water Account actions to -- or medi ated actions to curtail exports occur during the spring. Typi cally most Envi ronment al hater Account water is purchased fromsources in the north of the Delta, frequently fromthe Yuba Ri ver. And typically Envi ronmental hater Account water is transferred through the Del ta by i ncreasing export rates during the late summer and fall for the purpose of del ivering this compensatory water to the projects south of the Del ta.
Q. I'mgoing to ask you to assume that you could deci de what was best for the delta smelt to prevent jeopardy to the del ta smel t and to ensure that the projects don't reduce the val ue of their critical habitat for recovery or for survival. And I' m going to ask you to assume that you are not limited by any amount of water t hat has been set asi de in an Envi ronment al Vat er Account.

Based on your know edge of the bi ol ogy of the del ta swel t and the peer revi ew literature, woul d you recommend that
those -- protective measure ten proceed?
A. Yes.
Q. Dr. Swanson, when you were generally descri bing your protective measures, you al so indi cated that there was a group of measures rel ating to continuing or improving monitoring for del ta smelt. Coul d you descri be those, please?
A. Yes. Those are actions one, two and three on this table. Action one is just a recommendation that the currently-- the current monitoring prograns that are ongoing right now and conducted by the Department of Fish \& Game, in particul ar the Kodi ak traw survey, the 20 millimeter survey, the Summer Townet Survey and the Fall M dwater Traw Survey be continued and fully i mplemented in the future.

The second action to improve -- so that's essentially mai nt ai n current monitoring efforts, which are so important for determining both the status of the species as well as thei r di stribution $\mathrm{i} n$ the habitat.

The second action recommends that the current sal vage monitoring operations at the Central Valley Project fish facilities be enhanced by increasing the frequency with whi ch they subsample exported water for the purposes of counting the numbers of fish sal vaged.

Currently the CVP sal vage facility sampl es water for the purpose of counting sal vaged fish about ei ght percent of the time that they're exporting. This is l ower than the
sub-sampling effort conducted at the State Water Project.
And it was my opi ni on that this needed to be -- the frequency of the effort needed to be increased for a couple of reasons. One is l think there's evi dence that the efficiency of the sal vage sampling programat the CVP is less than that of t he SWP.

The second is that delta smelt popul ation abundance is currently so low that we run the risk of making an error when we're sampling infrequently and, for example, not detecting any fish, but we may, in fact, be really missing fish that are really there just because we sampled for such a short period of time.

So that was the basis for recommending that they increase the frequency of sal vage monitoring at the Central Valley Project.

The third action applies to both of the water project facilities. And that is that both of themimplement a monitoring programfor the purpose of being able to detect the presence of I arval and small juvenile delta smelt that are stwaller than 20 millimeters in length.

As discussed earlier, current nonitoring at the facilities specifically does not either detect, count or measure fish that are smaller than 20 millimeters. And given the new science whi ch suggests that, in fact, one of the more i mportant impacts, adverse impacts of water project operations
may be I et hal entrai nment of these very small Iife hi story stages, I felt it was essential that monitoring for those lifestages of delta smelt at the facilities be implemented.

THE COURT: Do you have any know edge what the vi ew of the respective agencies, the state and federal agenci es that are in this case, is toward your proposals, these l'm going to call theminformational enhancing proposal s?

THE WTNESS: One of the repl y decl ar ations that I revi ewed di scussed my recommendation for this. It was from Mr. Stephen Ford of the Department of Water Resources. Am I correct in that? I think.

He rejected it on three bases. He said -- he first expressed concern that it was too dangerous to sample for these fish because it required putting a very small mesh net out in water that was flowing very rapidly.

This, I thi nk, is not a legitimate criticismbecause there's many alternative ways to sample these fish that does not require doing it in the hi gh vel ocity export flow. Larvae could be sampl ed at the hol ding tanks at the SWP. Larvae could be sampl ed fromClifton Court Forebay.

I've not proposed a quantitative monitoring program Thi s is strictly a monitoring programto detect the presence of these fish here, to gi ve us an idea of when they first arrive.

THE COURT: Any ot her obj ections?

THE W TNESS: There were and I'mtrying to remenber what they were. Can I revi ew my -- it's in here. If I nay.

THE COURT: And these woul d be performed excl usi vel y by agency personnel --

THE WTNESS: I n my vi ew --
THE COURT: -- state and federal ?
THE WTNESS: -- it concei vably represents an extensi on of the current monitoring programthat is al ready ongoing at the tho facilities.

THE COURT: Well, they can tell us when we get there. As I ong as there is objection, that's all we need to know for now so not to take the time. Let's nove on.

MR. WALL: Okay, Your Honor.
THE WTNESS: It is responded to in my reply decl aration as well.

MR. WALL: We won' t --
THE COURT: What page?
MR. WALL: -- go into that now. It's page --
THE WTNESS: Page 23, paragraph 28.
THE COURT: That's your first or second?
THE WTNESS: Second decl ar ation.
MR. WALL: It's Pl ai ntiffs' 4.
THE COURT: You may proceed.
BY MR. WALL:
Q. Dr. Swanson, would you next describe for us your fourth
proposed protective measure.
A. Action four is to be implemented during the winter for the pur pose of protecting pre-spawning adult delta smelt. The action is triggered by an envi ronmental cue that research and anal ysis suggests is an important trigger to stimulate dela smelt to begin their migration upstreamtoward spawning habitat. And that is the rapid increase in fresh water inflows to the Delta fromeither the Sacramento or the San Joaquin River. I specify quantitative criteria for that.

In al most all of my actions, l offered multiple triggers in the event that one trigger doesn't occur or in the event that a second trigger, based on survey information, is unable to detect the fish. For this action, the first alternative trigger is this increase in Sacramento or San Joaquin Ri ver inflows.

Alternatively, if either the Fall M dwater Trawl or the Kodiak survey detect the presence of delta smelt moving upstreamtoward delta smelt habitat, in other words, they're noving beyond thei r low salinity habitat into fresh water areas of the Delta, that would trigger implementation of the action.

And absent either of those triggers occurring, by January 15th, I specify that the action should be triggered. The action has two parts. The first part is implemented i medi ately following the trigger event and the action is to
modify water project operations or restrict export operations such that the conbi ned flow on Od and M ddle River is not limited. Meaning greater than or equal to positive, zero or positive cubic feet per second based on a five-day average. This action should go on for a mi mum of ten days following the trigger event. Following that initial action --

THE COURT: The water cost of that woul d be approxi mately what? Assuming what the normal flows are at that time of year.

THE WTNESS: Your Honor, I di dn't cal cul ate the water cost for these. My colleague did, Mr. Rosekrans, and he has submitted a declaration identifying the costs for that.

THE COURT: So it's in there.
THE WTNESS: Yes, it is.
The second part of the action, following the ten- day period during which Od and M ddle River flows should be reduced to prevent entrai nment of delta smelt towards the central and south Delta and Ioss at pumps is to moderate water project operations and to allow Ol d and Md dle River flows to average minus 3500 cubic feet per second.

I provi ded a range of 3500 pl us or minus 750 cubic feet per second. So the action specifies that $O d$ and M ddle Ri ver flows should be between minus 2750 cubic feet per second and 4250 cubic feet per second cal culated on the basis of a five- day average. If --

BY MR. WALL:
Q. Dr. Swanson -- I'msorry.
A. No, go ahead.
Q. What's the objective of this protective measure?
A. The objective is to prevent or reduce the entrai nment of del ta smelt, of pre-spawning adult delta swelt who are moving upstreamthrough the Del ta towards upstream Delta spawning habi tats to prevent their entrai nment into the south and central Del ta and to prevent their entrai nment into the water export facilities.
Q. And could you descri be the inf ormati on you took into account in devel oping this recommendation?
A. Thi s action, the devel opment -- thi s action was devel oped I argel y based on di scussi ons of the Delta Smelt Wbrking Group as they anal yzed data trying to determine what are the triggers for del ta smelt upstream movement and potential protective actions that they were consi dering recommending. It's similar, but not exactly the same as thei r recommendations.

THE COURT: What's actually happeni ng to cause the need for this recommendation?

THE WTNESS: Thi s action needs to be i mpl emented at the time when adult del ta smelt begin to move up into the Delta and are vul nerable as they pass by the influence of the pumps of becoming entrai ned into that portion of the habitat
or into the pumps. So it's triggered not necessarily by a date, but by envi ronmental conditions and a bi ol ogi cal response of the species.

The level of Od and M ddle River flow recommended after the initial ten-day period during which Ol_{d} and M ddle Ri ver flows are recommended to be at zero cubic feet per second. The minus 3500 is al so based on working group recomendations and di scussions and some of which were al so incorporated in to parts of actions in the Delta Pel agic Fi sh Action Pl an.

The 3500 val ue, the minus 3500 val ue is -- it's the lower end of the flow range recommended by the working group in their -- in their recommendations. They made a recomendation that Od and Mddle River flows range no more negative than bet ween 3500 and 5, 000 .

G ven our hei ghtened level of concern for the species, I felt a more protective level was better. And this flow level al so recommends negative flow conditions that are generally better than those that have been measured in recent years during the months of January and February. The recent years that I used for my cal culations were the 1999 through 2005 period. I excl uded water year 2006 because it was ext remel y wet. But I didincl ude data from 2007. BY MR. WALL:
Q. Do you have an understanding of whether the Delta Smelt

Wbrking Group consi dered a proposal like yours?
A. Based on their notes, they di scussed similar types of actions, incl uding sharp reductions in exports in response to pul se flow events to avoid entraining the fish that are i mmedi ately moving up into the pumps.

And as I mentioned, the level of Od and M ddle River flows recommended for the subsequent, the second part of the action, is similar although at the low end of the recommended flow levels that they ultimately used.
Q. Do you recall whether thei r notes reflect a bi ol ogi cal basis for not proposing those flow level s?
A. I do not.
Q. Could I ask you to turn to Exhi bit S of this declaration. It's about three-quarters of the way through.
A. Okay. That's not this declaration.
Q. It's Plaintiffs' Exhi bit 4 at the top of it, it should say -- well, it will be Plaintiffs' Exhi bit 4 on the cover. And it was actually filed originally two documents, one was 421 and the exhi bits were filed as separate documents because they were too Iengthy, so the top of Exhi bit S has document 422 on it.
A. I do not thi nk my copy has that.
Q. Are you looking at a declaration that says -- l'msorry.

THE COURT: Plaintiffs' 4 is --
MR. WALL: It's PI ai ntiffs' 11.

THE COURT: Is --
MR. WALL: It's Pl ai ntiffs' 11. I apol ogi ze for that.

THE W TNESS: Exhi bit S, you say?
BY MR. WALL:
Q. Yes.
A. Yes, I have it.

THE COURT: Let me suggest one thing counsel, here.
MR. WALL: Yes.
THE COURT: In consideration of time. What you're doing now is antici pating, quite frankly, what the federal def endants may or the state defendants may say about this or the state intervenors. And my sense is just put your best foot forward and let themtake care of obj ecting or arguing with what you' re proposing.

MR. WALL: Sure, Your Honor. Actually --
THE COURT: I thi nk that would be preferable. Because we' re going to run out of time at the pace we're goi ng .

MR. WALL: Okay, Your Honor. We'll just move on and we can deal with this exhi bit later if we need to.

THE COURT: Thank you.
BY MR. WALL:
Q. You mentioned --

THE COURT: I mean, you don't remenber, at the
present time, what the agency objections were to this proposal number four specifically?

THE WTNESS: No.
THE COURT: All right. Then let's go -- if you're going to go to number five, let's go to number five. BY MR. WALL:
Q. Perhaps you could take five through seven as a group and expl ain those to the Court.
A. Actions five, six and seven are timed to occur fromthe onset of spawning and the first occurrence of I arvae, del ta smelt I arvae in the system to the end of the period whi ch I arvae are present in the Del ta.

And the object of the actions is to prevent or reduce the entrai nment of primarily the I arvae and young juveniles, but al so any remai ni ng spawning adults that haven' t compl et ed spawning. And also, excuse me, to facilitate the transport of I arval and juvenile del ta smelt downstreamfromthe Delta and fromthei r upstreamspawning areas downstreamto their rearing habitat in brackish waters beyond the confluence and in Sui sun Bay.

The action requi res -- the action is, as l say, triggered by the detection that spawning has occurred and/ or that I arval del ta smelt are present in the system And there are multiple triggers, agai n, in case one is unable to detect the presence of delta smelt, there are alternative triggers.

For example, the presence of spent delta smelt is an indi cation that spawning has occurred. Water temper at ures greater than 12 degrees mean that the temperature is now within a spawning range for the species. And/ or the deduction of I arval delta smelt by either Fish \& Game surveys or this new nonitoring programthat we' ve recommended be implement ed at the export facilities.

The action is to modify water project operations to achi eve conbi ned Od and M ddle River flows that are bet ween minus 750 cubic feet per second and minus 2250 cubic feet per second. The middle of that is minus 1500 cubic feet per second.

THE COURT: So let me hear that -- it's -- the middle is mínus 1500.

THE WTNESS: I shoul d have said the average, Your Honor.

THE COURT: The average, yes. So we're at -- what are the two outer limits?

THE WTNESS: The object of providing a range in the target flows for the Od and Mddl e River was based on practical considerations. There have been concerns expressed in some reply declarations by water project operators saying that it was extremely difficult for themto actually manage at a specific fixed target level, particularly given the tidal nat ure of the estuary. And they argued that a range made it
easier for themto --
THE COURT: So fromzero to minus 3,000 ?
THE WTNESS: The range that l've gi ven them-- first of all, the target that I initially identified was Od and M ddle River flows at minus 1500 cubic feet per second. In this revised version, instead of specifying the target as a single number, l've specified the target as that -- a range around that. It's essentially minus 1500 pl us or minus 750 cubic feet per second. So there's a range of 1500 cubic feet per second. They have a 1500 cubic feet per second range to work within.

THE COURT: Understood. So minus 750 to minus -THE WTNESS: 2250.

THE COURT: -- 2250.
THE WTNESS: Correct. Thi s level of Od and M ddle Ri ver flowis based on the results of research conducted by Dr. William Bennett. It's -- this research that he's done that has shown that only del ta smelt Iarvae that hat ch during the period of the VAMP, the Vernalis Adaptive Management Plan, a period during which regul ar water project exports are severely curtailed and inflows fromthe San Joaquin River are i ncr eased.

And Dr. Bennett's research has shown that onl y during the period when these conditions exist in the Delta during the spring and early summer, that's the onl y period from whi ch

I arvae hat ched in that period survive to contribute to the popul ation later on.

THE COURT: We di scussed that earlier.
THE WTNESS: We did. To address this, I al so examined the Od and M ddle River flow data fromthe months precedi ng VAMP and after VAMP to determine what those Od and M ddle River flow conditions were. And I presented that information graphically in my first declaration as Figure 9. BY MR. WALL:
Q. This is Plaintiffs' 11. Fi gure 9 at page 12.

THE COURT: I thi nk we' ve got that. So why don't we go ei ght.

THE WTNESS: Okay. That was, as I mentioned, that was the basis for the level of --

THE COURT: Yes.
THE WTNESS: -- Od and M ddle Ri ver flows that was established for this action.

Action six specifies j ust that the VAMP be continued, that is generally expected to be continued.

Action seven continues the protection for the period after the VAMP is concl uded until such time as monitoring and survey data indicate that delta smelt I arvae have successfully i mmingrat fromthe Del ta down to thei r bracki sh water habitat.

THE COURT: So that's approxi matel y mid May?

THE WTNESS: Md May is the usual concl usi on of the VAMP. And acti on seven begi ns at the end of the VAMP and extends until such time as the I arvae have successfully got ten --

THE COURT: In practical experience, based on all your observations, when is that? Wen are we done with this I arval, the sub-j uvenile stage?

THE WTNESS: According to anal yses presented in one of the decl arations of the defendants or defendant intervenors, I bel ieve, the medi an time for the end of sal vage of j uvenile del ta smelt in recent years has been mid $\mathrm{Jul} y$. However, i n recent years, $O d$ and M ddl e River - $O d$ and M ddle River flow conditions during the period after VAMP have been for extremely hi gh magnitude negative flows. And --

THE COURT: That's the time the water is needed in the south.

THE WTNESS: That's the time when exports are typi cally extremel y high, yes. And it's, in my vi ew, likely that sal vage of delta smelt is more protracted and extends further into the year because of the hi gher reverse flow conditions whi ch tend to retain the Delta-- excuse re, the I arvae within the Delta.

THE COURT: But they haven' t grown up by then?
THE WTNESS: They're growing, but they're -- they haven't managed to successfully reach thei rearing habitat in
bracki sh water.
THE COURT: Thank you.
THE WTNESS: Action ei ght and ni ne prohi bit the installation of a set of in-Delta channel barriers that are typi cally installed. These are temporary rock barriers whi ch are installed on several south delta channels and al so at the junction of the San Joaquin River and Old River. That barrier is referred to as the Head of Od River Barrier. Installation and operation of these barriers has been shown to exacerbate entrainment of delta smelt in to the water export facilities and al so to exacer bate and increase the magnitude of negative flows in O_{d} and M ddle River.

THE COURT: Why? Because more water is flowing?
THE WTNESS: The barriers, the Head of $\mathrm{O} d$ Ri ver Barrier functions to prevent flow fromthe San Joaquin River fromturni ng left at Od River and flowing into the south Delta down towards the pumps and the confluence, reducing that inflow fromthat area makes negative flows worse.

The agricultural barriers, of which there are three, function as tidal barriers. And the way they work is they have flap gates on them When the tide comes in and the water flows upstreaminto the Delta, the flap gates open and allow the water to flow past the barrier into the channel upstream When the tide goes out, the barrier closes and the water is unable to flow back out. That al so functions to exacerbate
negative flows.
THE COURT: Those aren't the head gates?
THE WTNESS: I'm not certain what you mean by the "head gates."

THE COURT: Well, we've seen ref er ence to head gates and them being in pl ace or removed. And I don't know whether they're the same, synonymous with these agricultural barriers or whet her they' re somet hing different. Who can tell us?

MR. W LKI NSON: Your Honor, what was the question?
THE COURT: Are these agricultural barriers that have just been referred to as flap gates the same as what is ref erred to in, for instance, the agency proposal s about renoving head gates at various times of operations. I want to know if these are different from or they are the head gates that are referred to.

MR. WALL: Your Honor, they may be -- l bel i eve there's a di stinction bet ween the Head of Old River Barrier, whi ch is the subject of Dr. Swanson's next protective measure, and the agriculture barriers whi ch are the subject of --

THE COURT: That I understand. I know they're di fferent. And l'm asking semantically to know whet her the flap gates are the head gates or whether there's three different kinds of, if you will, barriers or gates. Because the first that are tal ked about are rocks, the second are tidal barriers or flap gates and then l want to know if head
gates are yet a third type of barrier.
MR. MAYSONETT: Your Honor, thi s is James Maysonet t for the federal defendants. My understanding is that there is the Head of Od diver Barrier and that separatel y there are the agricultural barriers whi ch rel y on flap gates.

THE COURT: All right. And that's all. Those are the onl y barriers.

MR. MAYSONETT: Those are the onl y two, to my under st andi ng.

THE COURT: Thank you. Is that your under standing, too, Dr. Swanson?

THE W TNESS: I bel i eve so, Your Honor.
THE COURT: Thank you.
BY MR. WALL:
Q. And Dr. Swanson, if you could briefly describe protective measure ni ne.
A. Protective measures ei ght refers to the three south Del ta agricultural barriers --

THE COURT: We just di d that.
THE WTNESS: Protection action ni ne refers specifically to the Head of Old River Barrier and both of the actions precl ude installation of those barriers until I arvae are no longer present in the Del ta.

THE COURT: All right. Well, let me be clear then. Acti on si x pertai ns to VAMP. And then seven, does that extend
the time for flow adj ust ment after the VAMP period to mid July or did I understand that that addressed the Head of Od River Barrier?

THE WTNESS: Action --
THE COURT: Seven.
THE WTNESS: -- seven extends the reduced $O d$ and M ddle River flow conditions through June 15th or until the I arvae have departed the -- the Iarvae and the j uveniles have departed the Delta.

THE COURT: Al l right. I have it. Thank you.
BY MR. WALL:
Q. Dr. Swanson, that covers the ten protective measures you' ve proposed; correct?
A. It does.

MR. WALL: Your Honor, l'd like to approach the witness and have her look at the protective measures proposed by the Fish \& Wildife Service.

THE COURT: All right.
(Pl ai ntiffs' Exhi bit 12 was marked for identification.)

BY MR. WALL:
Q. Dr. Swanson, I've shown you what has been marked as Pl ai ntiffs' 12 titled declaration of Cay Colte Goude. And I'd ask you to please look at the page that says " 8 of 24 " in the top right corner.
A. I have that.
Q. It says at the top "Exhi bit 2 delta smelt Action Matrix for Water Year 2008." Is it your understanding that this document sets forth proposed remedial measures put forth by the US Fish \& Wildlife Service?
A. It is.
Q. Could you, in the interest of time, as expeditiously as possible, describe for the Court the differences between this set of proposals and your proposals and why you believe that your proposal s are more appropriate?

If you could just start with number one and compare it to which action you have for it.
A. Action one and two are of the Fish \& WIdlife Service's recommended protections are similar to action four in the plaintiffs' recomended protections. They're both designed to protect adults, pre-spawning adult delta smelt that are making their migration through the Delta, to the delta smelt spawning habitat.

The first action identified by Fish \& Widlife is upon -- they use, instead of a trigger based on increase, rapid increases in river flows, they use a trigger based on increases in turbidity, which is highly correl ated with rapid increases in inflows. And the action is to modify water project operations such that Od and M ddle River flows do not exceed negative 2000 centimeter -- cubic feet per second for a
ten- day period.
Following this, they recommend that water project operations be modified to mai ntain Od and M ddle River flows no more negative than minus 4 -- excuse me -- min nus 4500 cubic feet per second. They al so propose to use a 14-day running average for the purpose of cal culation of what Od and Mddl e Ri ver flow will be.

THE COURT: So your recommendations are more aggressi ve than this?

THE WTNESS: That is correct. They are more protective.

THE COURT: Understood.
THE WTNESS: The third action proposed by the Fish \& WIdlife Service is for the purpose of protecting juvenile and I arval and juvenile delta smelt before -- let me see, I want to make sure l get this right. Before and for two weeks after the VAMP, which is typically implemented bet ween mid April and mid May.

The action specifies that Od and M ddle River flows be moder at ed somewhere bet ween zero and minus 4, 000 cubic feet per second. This -- not on this table, but the ot her Attachment A of this exhi bit describes the decision process the Fish \& WIdlife Service proposed to use to determine what the specific level of $O d$ and M ddle River flow should be to provi de what they consi der would be necessary protection for
delta smelt.
THE COURT: Do you have any criticismof it?
THE WTNESS: I do. I have two main criticisms of it. The first is that, based on our sci entific understanding of the rel ationshi p bet ween take and Od and M ddle River flows, which is largely based on the rel atively si mple rel ationships bet ween take and Od and Mddl e River flows devel oped by the US Geol ogi cal Survey, I do not thi nk that we have either sufficient resolution or precision in our under standing of that rel ationshi p to have any meani ngf ul basis for making a decision between protecting delta smelt by calling for minus 3,000 cubic feet per second versus minus 4, 000 cubic feet per second. So I'muncertain as to how they -- what will we be -- the real rationale and basis for that.

THE COURT: Well, how much more does yours call for in the same period?

THE WTNESS: Mne is based on a different piece of scientific evi dence than theirs. Theirs is based, as far as l'mable to determine, on this rel ationship bet ween take and Od and M ddle Ri ver flows, whi ch shows that the nore negative the flows, the more fish are taken.

The recommended levels for old and middle flows that I devel oped in my protections for the purpose of protecting I arvae in juveniles are based on the research of Dr. Bennett.

And they're based on the level of -- the average level of Ol and M ddle River flows that have been measured during the past six to seven years during the VAMP.

Dr. Bennett's research has shown that onl y Iarvae hat ched during the VAMP survive. Therefore, the level of Ol and Mddl e River flow that I recommended was based on the conditions that occurred during the period during which --

THE COURT: That's 750 negative --
THE WTNESS: -- that range --
THE COURT: -- to 2250.
THE WTNESS: That range that's centered around min nus 1500.

THE COURT: So agai n, requiring more protection in terns of water to achi eve.

THE WTNESS: It is more protective and it's based on research that suggests that under those conditions del ta smelt I arvae hatched during those periods will survive. There's no comparable evi dence for Od and M ddle River flow conditions that are different than that.

The other concern I have with Fish \& Wildlife's protective action three is the protocol they have identified for making and implementing the decision to do the protection. And what they have done is they're suggesting that the working group will first eval uate the data on delta smelt di stributions. They will al so use tools, such as Particle

Tracking Mbdel, to eval uate the risk of entrainnent for the delta smelt. That's part of my concern is that I don't know that those tools provide sufficient precision or validation.

THE COURT: You said they're not needed because your pl an doesn't. Correct?

THE WTNESS: Correct.
THE COURT: You don't need to tal k about it and test for it and send it on to the Water Operations Management Team

THE WTNESS: Exactly. And that represents my second concern with the protocol is that the Fish \& Wildlife proposes to make a recommendation to the Water Operations Management Team vith no certai nty that the Water Oper ations Management Team will, in fact, implement that protection. So I consi der --

THE COURT: That's back to the DSRAM
THE WTNESS: It appears to be similar to that, yes, Your Honor.

Action four is intended to provide some unspecified level of protection for delta smelt for a little later in the season, after June 1st. Agai n, based on survey data and thei r determination of entrai nment risk. And as I understand it, using the same decision protocol.

THE COURT: It's going to be the DSRAM process agai n.
THE WTNESS: I bel ieve so, Your Honor.
The fifth action is essentially very similar to my
actions ei ght and ni ne. They actually say that the Head of Od River Barrier will not be installed, similar to mine. And that the flap gates on the agricultural barriers will be tied open. But onl y for the 31-day period during the VAMP, which, as we know, encompasses only a portion of the period during whi ch Iarval delta smelt are vul nerable to entrainment and to water project operations.

THE COURT: Al right.
BY MR. WALL:
Q. Just two qui ck questions about this and then I'd like to nove on to Dr. Hanson's proposal.

First question is: Does the Fish \& WIdlife Service proposal provide for any improvements in monitoring?
A. No, it does not.
Q. And do some of their actions trigger of f of whether or not they detect sal mon -- sorry, delta smelt?
A. That appears to be the case, yes. They' re using detection and information on di stribution of Iarval delta smelt as determined by the 20 millimeter surveys.
Q. And do you bel ieve those triggers that they propose are adequate without improvements in long term
A. I do not. And I think we saw a very excellent example this past year of the kind of concern we should have over rel ying on those kinds of monitoring programs. Mbnitoring is essential, but with delta smelt populations solow, it's clear
that our regul ar ongoing survey programs may not be able to detect delta smelt in the low numbers that they are currently present in the habitat.

THE COURT: Well, let's assume for the purpose of this question that the monitoring of all of these, the four exi sting methods pl us the two additional that you recommend, were conducted 25 percent of the time. That bei ng conducted by the agenci es.

G ven the uncertainty about overall information on all of these issues, is it your opi ni on that that would provi de -- I'mgoing to call it a realistic, it's an anbiguous term but l mean an effective benefit, having more of that information or is that just an exercise in futility?

THE WTNESS: I firmy believe that having more information, in particular about Iarval delta smelt and their presence at the facilities, is essential. Fish \& Wildlife is essentially proposing to eval uate entrai nment risk using the survey data whi ch this year was unable to detect delta smelt in the south Delta. And Particle Tracking Mbdel, which is usef ul but not perfect. And they're using that to eval uate entrai nment risk. They have no idea whether that is an effective way of eval uating entrai nment risk because they're not measuring entrai nment.

THE COURT: Thank you. Let's take the afternoon recess at this time. We're going to stand in recess until ten
minutes after three.
(Recess.)
THE COURT: $W \notin '$ re back on the record in NRDC versus Kempt horne. We're going to continue the testimony of Dr.

Swanson.
BY MR. WALL:
Q. Dr. Swanson, were there any other principle concerns you had with the Fish \& Wildife Service Action Matrix that you wanted to call to our attention?
A. The maj or deficiency -- ot her than the fact that the levels of water project operation modification for the purpose of reducing entrainment, are less protective than those recommended in ours -- is there is no action to address the known effects and known adverse modification of water project operations on delta smelt critical habitat at any time of the year.
Q. So is there anything comparable to your fall action, your action ten?
A. There is not.
Q. Dr. Swanson, I believe you may have in front of you or with you, Plaintiffs' 8. Do you have that there?
A. I do.
Q. It's the declaration of Charles Hanson.
A. I have it.
Q. And I'd Iike to ask you about Dr. Hanson's proposed
remedy. Have you had an opportunity to revi ew this decl aration?
A. I have.
Q. You're generally familiar with his proposed remedy?
A. I amgenerally familiar with it, yes.
Q. Does it have three tiers?
A. Yes. It proposes protections based on three tiers of different levels of changes in water management operations. Q. Could you briefly describe tier one as Dr. Hanson describes it, or at least some -- what you view as some key feat ures and your vi ews on those feat ures.
A. For this tier one protection, which Dr. Hanson recommends go from Decenber through June, he recommends that water project operations be nodified such that net flows in the I ower San Joaqui n Ri ver be in a net westerly direction. By that, l interpret it to mean non- negative flows in the lower San Joaquin River. He proposes that this level of protection be impl emented until other events suggest that concern that be hi gher.

My maj or concern with this particular action is, first of all, it's actually very unclearly unspecified as to exactly what he means. It's not clear what part bel ow the San Joaqui n Ri ver he's tal king about, where there will be a specific compliance point.

However, I di d make some assumptions as I eval uat ed
his action, and l assume that he meant net westerly flows on the northern San Joaquin River at Jersey Point as is cal culated by DWR's DAYFLOW data set and it's described in that data set as a term-- the termthey use is Q west. Q usually means vel ocity. West means vel ocity in the western di rection of the river. So I assume he meant something similar to Q west of zero or greater.

This particular variable or this particular condition in the estuary when flows on the lower San Joaquin River can be zero or net westerly doesn't really correspond to any other particular environmental variable in the system Doesn't correspond in any particular way to the level of negative flows on $O d$ and M ddle River. It's -- it's not a particularly useful metric for identifying specific levels of envi ronment al conditions in the estuary.

In addition, this particul ar variable, Q west, has, to the best of my know edge, no known rel ationship with delta snelt abundance, di stribution, survival or habitat quality.

And so, in my view, Dr. Hanson proposed an action for whi ch he has no idea whet her it provides any benefit one way or the other for delta smelt.
Q. Dr. Swanson, if I could direct you to page ei ght of Pl ai ntiffs' Exhi bit 8.
A. I'msorry. Which exhi bit? Ours? Or Dr. Hanson's?
Q. It's Dr. Hanson's declaration.
A. Yes.
Q. Page ei ght.
A. I'mon page ei ght.
Q. And there's a sentence that begins at line ni ne with the word "results." Coul d you read that sentence to us, please?
A. "Results of these Particle Tracking Mbdel ing exercises i ndi cate that by mai nt ai ni ng a net" -- excuse re, "a positive net westerly flow of water within the I ower San Joaqui n Ri ver through regul ation of combi nation of flow through the Del ta cross-channel, San Joaqui n Ri ver flow, and SWP and CVP exports during the period extending from approxi matel y December 1 thr ough J une 30, the vul nerability of sub-adult, adult, I arval, and early juvenile lifestages of delta smelt to project export effects can be substantially reduced or el i mi nat ed. "
Q. Do you have an understanding as to how Dr. Hanson is using this Particle Tracking Mbdel ing exercise in devel oping this proposal ?
A. Only to the extent that it is described in his decl aration, whi ch is extremel y briefly. He has not described, ot her than net westerly flow conditions in the I ower San J oaqui n, what are the ot her envi ronment al or oper ational conditions in the system For example, what are export rates, what are Old and M ddle River flow rates, what are Sacramento River inflow rates? Those are not specified in
hi s description of the -- of the model and its results. So l am unable to interpret his results.

However, I al so have particul ar concerns with his rel i ance on Particle Tracking Mbdel to infer or predict the novement and di stribution of adult delta smelt. And particularly at this -- at that life hi story stage.
Q. Why is that?
A. As Dr. Mbyle descri bed, particle tracking essentially is a computer simlation of the flow conditions in-Del ta channels. And then on a computer, you can inject neutrally buoyant particles into Delta channels and the tracking model will tell you where they will go on the basis of the flow of the water, it incorporates the tidal fluxes and whatever input variables you want to incl ude.

As Dr. Mbyle reported, the difficulty with directly inter preting Particle Tracking Mbdel to infer the behavi or of fish is that fish behave. And, in fact, even larval fish behave. Small juvenile fish may not be able, delta smelt may not be able to swi mvery fast, but they are able to take advant age of differential flow vel ocities in different portions of the channel by going up and down in the water col um. Some - - a behavi or that we have observed al ready in this speci es.

In regards to using particle tracking for predicting the movements or distribution of adult delta smelt, l think
it's even more of a problem The reason is that not only are adult delta swelt larger and can swi mfaster utilizing all the same behavi or al tricks that smaller fish woul d use, adult del ta snelt, particul arly during the period from Decentber, J anuary and February, are not responding to flow in a sense that they're going where the flow is. They are, in fact, in the process of making a focused volitional di rected migration upstream agai nst this net westerly flow that Dr. Hanson has suggested would prevent themfrom going up this river.

So I have no confidence that the results of Particle Tracking Mbdel that he describes here, in fact, woul d mean anything meani ngful to del ta smelt, particularly at that life hi st ory stage.
Q. Dr. Swanson, moving on to Dr. Hanson's tier two action. Do you have an understanding of what that would provide for? A. Dr. Hanson suggests that in the event the tier one action were i nsufficient frompreventing the fish frombecoming entrai ned into the south Del ta and/ or being sal vaged at the facilities, this tier two action would be implemented. He has based thi s action on the -- what l believe is flawed re-inter pretation of the sal vage versus $O d$ and M ddle River flow, negati ve flows rel ati onshi p origi nally devel oped by Dr . Peter Smith of US Geol ogi cal Survey.

And the specific action recommended as the tier two protection is that in the event del ta smel t are detected in
the southern and central Delta by surveys or as sal vage at the facilities, that water project operations be modified such that negative flows are no more negative than min 6,000 cubic feet per second.

Based on my interpretation of the original graph, whi ch contai ns all the sal vage data for any particular year as well as all the flow data, minus 6, 000 cubic feet per second represents conditions under which take can be quite high and therefore is not particularly protective.

I would al so note that I examined data on average Od and Mddle River flows during the months that this tier two protection might be i mplemented, J anuary, February, March, April, and found that for most of the months, minus 6,000 cubi c feet per second on Od and M ddle River was, in fact, nore negative than aver age negative flows measured for Od and M ddle River for most years during the past six to seven years.

And therefore, this particular protection potentially represents managing for conditions, $\quad \mathrm{Od}$ and M ddle River flow conditions, that are actually worse than the conditions we' ve had during many months in the past years and during the period when the delta smelt population collapsed.
Q. Dr. Swanson, I think you mentioned that this action as proposed by Dr. Hanson would trigger of f of detection of delta smelt; is that correct?
A. I bel i eve so. This action would be i mpl emented i mmedi at el y in the event that fishery surveys and sal vage monitoring demonstrate increased vul nerability of del ta smelt to export rel ated events. That was on page ei ght at the bottom first paragraph 19.
Q. And do you have a vi ew on the appropriateness of t hat particul ar trigger?
A. I think it represents a trigger that is likely to i mpl ement what Dr. Hanson has suggested he thi nks is protective, whi ch I do not, that is al ready toolate because it's clear that overall flow conditions have al ready allowed the fish to become entrai ned in to the area of the southern Del ta, where they' re vul nerable to being taken and/ or being taken at the sal vage facilities.

Once delta smelt are entrained into that area, it is very difficult for themto get out. And as Ms. Goude reported in her decl aration, the most important way to reduce ent rai nment is to prevent the fish from coming into near proximity of the facilities. In other words, to prevent entrai nment rather than to respond to it.
Q. Dr. Swanson, are you - - could you bri efly describe for us Dr. Hanson's tier three action and your vi ews of that. A. The final level of protection recommended by Dr. Hanson, the tier three level, is triggered by an incidence of -- or l bel i eve his words were a dramatic increase in sal vage of del ta
smelt at the facilities.
In response to such an event, Dr. Hanson recommends that Od and M ddle River flows be further moderated to -- l'm looking for the level -- it's possible he does not specify the level. But they would be further reduced, curtailed to a minimul evel necessary to meet heal th and saf ety requir renents for a period of four days. It's not clear what would happen after four days, although there is, l believe, an assumption that it would continue its sal vage continued at high rates.

In my view, this represents essentially something equi val ent to locking the barn door after the horse has gotten out. This is implementing reduction in exports and reduction in Od and M ddle River flows for the purpose of preventing sal vage after sal vage of delta smelt has al ready become a serious problem

It is al so likely that the effectiveness of this action, because the fish have al ready been entrained into the south Delta, will be greatly reduced compared to how effective it would have been if it had been implement ed earlier to prevent sal vage.
Q. Dr. Swanson, does Dr. Hanson propose any remedi al measures to provide benefits for delta smelt during the fall months? A. No.
Q. Dr. Swanson, do you have any other si gni ficant concerns that you'd like to highlight with Dr. Hanson's proposed set of
remedi es?
A. Vi ewed in whol e, this proposal appears to be recommending actions that will have the effect of perpet uating what really are the same kind of conditions as we have been operating for the past several years.

For example, the tier one protection, net westerly flows on San Joaqui n River, regul arly corresponds to Od and M ddle River flows that are more negative than 6 to 9,000 cubic feet per second.

The tier two protection is as bad, if not worse than aver age Ol and Mddl e River flow conditions that we' ve had during the past six to ei ght years.

The tier three protection is very short duration, nore dramatic decrease in exports and Od and Md dlle River flow conditions. Is very similar to what we have been trying to do during the past few years using the Environmental Water Account, which, as I mentioned, was a supply of water used by the fisheries agencies to get the water projects to agree to cut exports to protect fish, delta smelt in nost cases, now and with the promise of compensating them using Envi ronmental Water Account Iater.

Exhaustive revi ews of the Envi ronmental Water Account, which uses this reactive approach and short duration export curtailments for the object of reducing the numbers of del ta smelt taken -- exhaustive revi ew of the Envi ronmental

Water Account by an independent panel of scientists, this revi ew has been done five times si nce the EWA was first i mpl ement ed in 2000, 2001, has found no evi dence that use of this approach and this tool has done anything to ei ther protect effectively or prombe the recovery of the del ta smelt.

So I do not consi der Dr. Hanson's recommendations for protections to be really anything better than what we're currently doing to manage the system and to try to protect del ta srelt with these very min mal tools. And gi ven the trends and population of del ta smel that we veen during that time, l think this proposal is clearly inadequate to prevent water project oper ations fromjeopardizing the speci es and adversel y modi fying its habitat.
Q. Dr. Swanson, I have just one more short I ine of questioning on a different topic and then l thi nk the direct testimony will be concl uded.

Are you familiar with -- are you aware that one of the experts that's been desi gnated to testify for intervening def endants is a Dr. William MII er?
A. I am
Q. And are you familiar with Dr. Mller's anal ysis with respect to del ta swel t and food?
A. I am
Q. Could you pl ease briefly descri be that anal ysis and your
views of that anal ysis and its reliability.
A. Dr. Mller has devel oped an anal ysis whi ch he claims is desi gned to i nvestigate the effect of food availability on del ta smelt popul ation abundance. Rat her than taking a direct approach to the anal ysis of comparing the amount of food available in the estuary to del ta smel t numbers, he has i nstead created an anal ysis where he has effectively created a new vari able. A new pi ece of data. By combi ning inf or mati on on the abundance of j uvenile del ta smelt and the co-occurring abundance of zoopl ankton food.

So he has a new dat um whi ch come conbi nes i nf ormati on on two different things. And then he rel ates that variable to the popul ation of del smelt measured later in the year. And he has found that, at least for the short peri od bet ween 1996, I bel i eve, and 2005, possibly ' 6 , that he cl ai $\mathrm{n} \$$ there's a very strong rel ationshi p bet ween the numbers of del ta smelt that occur with food in thei r envi ronment and the numbers of delta smelt that are measured later in the syst em

The probleml find with this anal ysis, ot her than some statistical irregul arities, is that he' s combi ned tho variables whi ch may affect del ta smel t population into a si ngle one. We al ready know that delta snelt popul ation abundance measured in the fall depends on how many del ta smel t were measured in the system during the summer. And we al ready
know that that -- if there's few del ta smelt in the summer, there will be few delta smelt in the fall. If there's a lot of delta smelt in the summer, there will be alot of delta smelt in the fall.

Because of that, I find it impossible to interpret Dr. MIler's results because l can't tell whether it's the numbers of delta smelt that are driving the rel ationship or the food. Is it the amount of food that's driving the popul ation abundance in the fall? You can't tell because you can't tease apart the two parts of the variable.

And as a consequence, partly based on the fact that we al ready know there's a rel ationshi p between the number of j uvenile delta smelt and the numbers of adult delta smelt, my interpretation is that the effect of the amount of food available where those numbers of j uvenile were probably has a small effect. But it's impossible to detect fromthis anal ysis. So I find it --

THE COURT: How do you cal cul ate it?
THE WTNESS: The more strai ght forward approach woul d have been to do a multiple regressi on model, Your Honor, which is where you're essentially asking the question does the abundance of delta smelt in the fall depend on the abundance of j uveniles or the amount of food or some interaction between those variabl es?

THE COURT: What is the measure of the anount of
food?
THE WTNESS: Dr. Han -- excuse me, MIIer, I bel ieve, used density of -- and he al so used only two zoopl ankton species, so that would be -- I believe, from what I can detect fromhis declarations, the number of those two species of zoopl ankton per vol ume of water. And --

THE COURT: And is there any generally accepted or scientifically recognized measure of what quantity of these -- what are they -- microscopic organi sm® exi st in any body of water?

THE WTNESS: The arount of zoopl ankton organi sns present in the water of the Delta is regul arly surveyed in the system And Dr. MIler is using those data. So it would -- it's -- there's no reason not to do an anal ysis where you ask the simpler question: Is the popul ation abundance of delta smelt dependent on how much food is available in the habitat? And it's my --

THE COURT: What's the historical experience about variation in the quantity of the food year to year?

THE WTNESS: The amount of zoopl ankton in this estuary has changed dramatically. It does fluctuate to some extent fromyear to year. But the largest change occurred in the 1980s following the introduction of the Corbula overbite clam Following the introduction of that cl am the total amount of zoopl ankton, whether you're measuring it in terns of
numbers of zoopl anktons or numbers per vol ume of water, decl ined subst antially.

THE COURT: And what's been the experience, for instance, in the last ten years?

THE WTNESS: My understanding of the dat a is that over the last ten years, and, in fact, since 1987, so al most 20 years, in general the overall abundance of zoopl ankt on has not changed. It's low, but it has not markedly changed.

Now, I do want to qual ify that by saying that this is beyond my own research and anal ytical expertise and I' m basing my statements on present ations that I have heard others make.

THE COURT: Thank you.
BY MR. WALL:
Q. Dr. Swanson, do you consi der Dr. MIler's anal ysis to be rel i abl e?
A. I don't know whether it's reliable. What I do think is it's not useful because it doesn't -- it cannot be interpreted. Ther ef ore it's probably not a reliable predictor of abundance because we don't know what's predi cting abundance.
Q. Dr. Swanson, has - to your knowledge, has Dr. Mller publ ished this anal ysis in any peer revi ewed liter at ure? A. To my know edge, no.

MR. WALL: Thank you. I thi nk we' ve concl uded with our direct examination with this witness, Your Honor.

THE COURT: Mr. Maysonett, cross-exami nation.
MR. MAYSONETT: Yes, Your Honor.

CROSS- EXAM NATI ON

BY MR. MAYSONETT:
Q. Good afternoon, Dr. Swanson. I'mJames Maysonett, the attorney for the federal defendants. I'd like to ask you just a few questions in cross-examination.

Let's talk about monitoring for a minte, if we can. Dr. Swanson, the plaintiffs have proposed a new monitoring programfor the delta smelt smaller than 20 millimeters to be conducted at the projects; is that right?
A. I would consider it an extension of the ongoing monitoring programto include fish smaller than 20 millimeters, but yes, it is additional effort compared to what is currently being done.
Q. Wbuld it be fair to say it would be a new aspect of the monitoring program

A. Yes.

Q. And under the plaintiffs' proposal, who would conduct that noni t or ing?
A. We did not specify that, but I would assume that it would be conducted by the same entities that are conducting the current sal vage monitoring.
Q. And do you know who those entities are?
A. I believe the monitoring programis the responsibility of
the bureau and DWR at thei r respective facilities.
Q. And how would the monitoring that you propose be conduct ed?
A. That al so is not specified in our interimremedies recommendation because -- in part, because I think there's a number of ways that it could be done. The object of the monitoring is for -- is to detect the presence of small Iarval delta smelt at the facilities for the purpose of having more information to eval uate the overall entrai nment risk and the di stribution of the species during this early life history stage and for the purposes of refining, if necessary, any necessary protections for that life history stage.
Q. And when the delta smelt hatch, Dr. Swanson, how small are they?
A. Approxi mately five millimeters in length.
Q. So under the monitoring that you're proposing, would we be looking for delta smelt between five millimeters and 20 millimeters?
A. Yes.
Q. Is that the idea?
A. Yes.
Q. And you said that there will be several possible designs
for that sort of monitoring; is that correct?
A. I believe there could be, yes.
Q. Could you identify some of those designs?
A. It could be as simple as regul arly taking a plankton net or some other net desi gned to catch fish in this size class and setting it in water flowing towards the export facilities. If the vel ocities of that water were too high, it could be set in, for example, at the state, at Clifton Court Forebay, where the I arge area of the forebay, the Iarge vol une and area attenuate local water vel ocities.

Concei vably you could al so pump water fromthe fish hol ding tanks through some sort of a small mesh net to detect these Iarvae. I will not profess to be an expert as to how this could be accomplished. However, I do know that there have been, at least short duration, nostly research efforts, to monitor for Iarvae at the facilities in the past. And I would assume that they would have sone experience with this and would apply that experience to design an appropriate and safe program
Q. And if you, for example, had proposed that perhaps one method might be to put a plankton net as you described it in the flow somewhere, the mesh of that net would have to be small enough to capture the five millimeter smelt; isn't that correct?
A. That is correct.
Q. And do you have any know edge as to what extent such a net would catch other debris or itens in the flow?
A. I don't.
Q. And the plaintiffs haven't proposed any sort of engi neering design for the monitoring program $W \underbrace{\prime}$ ve confirmed that; haven't we?
A. No. I mean yes, we have not.
Q. We have not. And are you aware of any design for this sort of monitoring that's been proposed in papers or subject of peer revi ew?
A. Not that I can recall at the noment.
Q. And would this kind of monitoring, would the agencies be able to conduct this kind of monitoring at the projects using the gear that they currently use for their monitoring program A. I don't know what gear they currently use, so I don't know.
Q. Dr. Swanson, will there be other Iarvae present in the water when it's inspected for delta smelt smaller than 20 millimeters?
A. Yes.
Q. And is it easy to di stingui sh bet ween delta smelt I arvae bet ween five millimeters and 20 millimeters in size and the I arvae of other speci es?
A. I am not an expert at di stingui shing I arval fish species. However, it is done for the California Department of Fish \& Game 20 millimeter survey, which collects I arvae ot her than delta smelt. I do know that keys to -- that can be used to identify the characteristics that distingui sh the different
species of the different I arvae do exist.
BY MR. MAYSONETT:
Q. And when you say it's done for the 20 millimeter survey, you mean when they catch Iarvae of the 20 millimeter size or Iarger, that they're distingui shed from other similarly sized I arvae?
A. The 20 millimeter survey catches delta smelt fromfive millimeters in length all the way to in excess of 40 and 50 millimeters in length.
Q. So you' re saying they do catch larvae between five and 20 millimeters during the 20 millimeter survey and that they di stingui sh those Iarvae fromthe other I arvae present in the Delta?
A. Based on the data that l've seen, yes.
Q. And did you say the California Department of Fish \& Game does that?
A. Yes.
Q. And what kind of personnel make those di stinctions, are they trai ned bi ol ogi sts?
A. I don't know.
Q. Do we have any data fromprevious years on the detection of delta smelt smaller than 20 millimeters at the projects? A. I don't know. I do believe that there have been some short-termresearch efforts to do it in past years, but other than that I do not know.
Q. And have you seen the results of those --
A. I have not.
Q. -- research efforts?

And the I arval monitoring program, the sub- 20
millimeter monitoring programthat pl ai ntiffs have proposed, when woul d that begi n ?
A. That typi cally begins in March, I bel ieve.
Q. And when would it typically stop?
A. M ddl e of $\mathrm{Jul} y$.
Q. Is it fair to say, Dr. Swanson, that part of the val ue of the exi sting surveys and monitoring that we have for the delta smel t is that they have been conducted for some number of years?
A. Yes.
Q. And because they've been conducted for some number of years, it means we could compare the results fromyear to year and draw concl usi ons; is that right?
A. That is correct.
Q. So would the results of the sub- 20 millimeter I arval monitoring that you' ve proposed be less useful in light of the fact that we do not have the results of that sort of monitoring from previ ous years?
A. Given the objective of the programthat I have proposed is si mol y the detection of the presence of that life history stage at the facilities and not necessarily the rel at ive
abundance or density of the fish, the lack of data from earlier years is irrel evant.
Q. And just to confirm you're -- the monitoring programyou have, the plaintiffs have proposed, does not purport -- does not propose to count the number of sub- 20 millimeter delta smelt I arvae, but simply to detect whether they're present? A. That would probably be sufficient. Actually counting them would add information to the exercise.
Q. And can you -- but can you tell me which -- what do the pl ai ntiffs propose specifically?
A. At a minimum detection.
Q. Ckay. We could move on. Let's di scuss the so-called fall action, the X2 action a bit. You said that you -- the pl ai $n t \mathrm{iffs}$, of course, have proposed in their action that the X 2 be mai ntai ned at a certain position or that minmm Del ta outflows be mai ntai ned at 7500 cfs ; is that correct?
A. That is correct.
Q. And you' ve said that you're fairly certain that that would improve habitat quality for the delta smelt?
A. Based on my understanding of the research that's been conducted, yes.
Q. And can you quantify in any way the benefit to improving habitat quality that this action ten would provi de?
A. The way to do that would be to quantify the effect of the action on the delta smelt habitat quality index.
alternativel y referred to as the environmental quality index by Feyrer, et al.
Q. And have you done so?
A. No.
Q. But it's your position that it would be possible, based on Feyrer's work, to derive an environmental quality index val ue for the plaintiffs' proposal ; is that correct?
A. I believe it would be possible.
Q. And would it be similarly possible to assess an envi ronmental quality index val ue for the current requirements under the State Water Quality Control Board for minimmfows during that same period?
A. Yes. The difficulty is that we're proposing to mani pulate onl y a single of the three variables that comprise the index. So assumptions would need to be made about the val ues of the ot hers.
Q. But it is -- at least in theory, it would be possible to make some sort of compari son and arrive at a concl usi on about the actual quantified benefit of this action ten?
A. I believe so, yes.
Q. But you have not done so.
A. I have not.
Q. And Dr. Swanson, are you familiar with, I believe you're probably familiar by now with the Pel agic Fish Action Plan. Thi s has been marked as State Water Contractors Exhi bit C.
A. I am
Q. Could we provi de a copy of St ate hater Contractors Exhi bit C. Do you al ready have one, Dr. Swanson?

And when you get a chance, if you would, pl ease turn to page 47, whi ch we' ve seen several times al ready during the proceedi ngs.

MR. WALL: Counsel, I'msorry, could I have that page number agai n, pl ease?

MR. MAYSONETT: I'msorry. It's page 47.
MR. WALL: Thank you.
Q. And Dr. Swanson, I bel i eve you testified that the proposal that's di scussed here on page 47 of the Pel agic Fi sh Action Plan is similar, but not identical to the pl ai ntiffs' proposed action number ten; is that correct?
A. That is correct.
Q. Dr. Swanson, coul d you look at the section headed "Mai ntain X2 West of Collinsville"?
A. Yes.
Q. And I ooking at the second par agraph, could you read for me the second sentence begi nni ng, "Thi s action migt be i mpl ement ed. "
A. "This action might be implemented if the current water year type is 'above normal' or wetter, whi ch is largel y determined by preci pitation and runoff in the previ ous wi nter and spring. "
Q. And coul d you continue on to read just the next sentence, pl ease.
A. "This action would not be consi dered for implement at ion if the water year is 'bel ow normal' or drier year because wat er costs would exceed 1 million acre-feet and such flows cannot be provi ded by storage rel eases without dramatic effects on storage levels and temperat ure conditions for fish upstream in the fall."
Q. Thank you. Dr. Swanson, could you turn to the next page, pl ease, page 48. I promise there's onl y -- onl y two more sentences to read. If you could look at the section marked "Costs," please. And begi nning with the second sentence.
A. "I n bel ow normal water years, the water costs woul d exceed 1 milli on acre-feet and such flows cannot be provi ded by storage rel eases without dramatic effects on storage levels and temper at ure conditions for fish upstreamin the fall." Shall I continue?
Q. Yeah, please, just that last sentence.
A. "Therefore, it is impractical to provide such flows in bel ow nor mal and drier years."
Q. Thank you, Dr. Swanson.

So is it fair to say that in the Pel agic Fish Action Plan, they express some concerns about the effects that this sort of proposal would have on storage levels and temper at ure conditions?

MR. WALL: Obj ection as to form
THE COURT: The objection is sustai ned to the ext ent the questi on is compound. You have two subjects. Break it down.

BY MR. MAYSONETT:
Q. I'll start agai n, Dr. Swanson.

Is it fair to say, Dr. Swanson, that in this section of the Pel agic Fish Action Pl an they express concerns about the kind of effects of this proposed action?
A. Yes.
Q. And what, in your opi ni on, were those concerns?
A. The concerns expressed have to do with implementing the action by way of increased rel eases fromstorage reservoi rs and the potential effects of those increased releases on the ability to later provide sufficient cold water for fish in streans bel ow the reservoi rs.
Q. And when they said "sufficient cold water," is it your understanding that that would be for endangered sal mon speci es?
A. Yes.
Q. Do you share any of the concerns rai sed by the -- in this Pel agi c Fish Action Pl an about the possibilities of a fall act i on?
A. First let me clarify that the Pel agic Fish Action Plan action is different than the one that we proposed in ours. In
particular, with regard to its duration, which is nearly twice as I ong.
Q. Having clarified that, would you let me know whether you share thei r concerns about possible water costs of a fall act i on?

MR. WALL: Objection. I think it misstates the Pel agic Fish Action Plan. The Pel agic Fish Action Plan does not discuss a fall action, it di scusses an action from May through Decenber as the witness just pointed out.

MR. MAYSONETT: I'Il --
THE COURT: The objection is sustai ned. You may rephrase.

BY MR. MAYSONETT:
Q. To rephrase the question, Dr. Swanson. Having cl arified the differences between the action proposed in the Pel agic Fish Action Plan and your action, the plaintiffs' proposed action number ten, do you share any of the concerns identified here on the possible effects and water costs of the action proposed in the Pel agic Fish Action Plan with the action proposed by the plaintiffs?

MR. WALL: Obj ection as to form
THE COURT: Do you understand the question?
THE WTNESS: I amuncertain whether to compare the concerns bet ween --

THE COURT: Then we'll have it rephrased.

THE WTNESS: -- the t wo actions --
THE COURT: The obj ection is sust ai ned.
MR. MAYSONETT: l'Il try one more time.
Q. The Pel agic Fish Action Pl an --

THE COURT: Perhaps you could ask the question di rectly. Eliminate the "Pel agic Fi sh Action Pl an" and just ask her whet her she's concer ned about the water cost effects of i mplementing the pl an that the pl ai ntiffs propose.

MR. MAYSONETT: Thank you, Your Honor. I'II take that suggestion.
Q. Dr. Swanson, do you --

THE COURT: That's a wi se lawyer. Can you answer the quest i on? BY MR. MAYSONETT:
Q. Do you have concerns about the water costs of the pl aintiffs' proposed action pl an -- the fall action plan? A. I do not. Because those concerns are based on the assumption that the action will be i mplement ed ther excl usi vel y or in large part through increased rel eases from sel ected reservoi rs.
Q. Okay.

THE COURT: Where el se woul d the water come from
THE WTNESS: Al ter native approaches for i mpl ementing the action could incl ude reductions in export level s, which, as I testified earlier, are typi cally between 7500 cfs and

9, 000 cfs during that period. Alternativel y, water could be rel eased fromreservoirs bel ow which listed sal monid species do not exist and therefore there are no temperature concerns. Alternatively, water from other sources could be acquired by the water projects, for example, water fromthe Yuba River could be purchased for rel ease during this period.

Either implementation of the action through export reductions or rel eases from other reservoirs or acqui sition of water from other sources indi vidually or in conbi nation would allow the implementation -- the action to be implemented in a way that has no effect on listed sal moni ds and/or col dwater pool in the reservoirs that the concerns are being rai sed about.

BY MR. MAYSONETT:
Q. So is it your testimony, Dr. Swanson, that the fall action pl an could be implemented certai $\mathrm{nl} y$ without having any effect on the col dwater pool age, the Shasta Reservoir, for example, through the combi nation of reduced export levels, purchasing waters fromsel lers and rel ease of the water from other reservoirs?
A. Yes.
Q. And is it your position that that will al ways be true regardl ess of the hydrol ogic conditions in the Delta?
A. I don't know that I can answer that question. I don't have --

THE COURT: If you had a doonsday drought, the answer woul d be -- if we had the 1928 to the 1934 conditions exi sting, then there probably woul dn't be enough water.

THE WTNESS: I cannot answer without examining those dat a.

MR. MAYSONETT: Well --
THE COURT: I think you're being asked, within what we would call reasonable scientific certainty, can you foresee drought or other water shortage conditions in the operational hi story that you know of and that you expect to reasonably occur in the future where exi sting supplies would be insufficient to implement the plan you propose for fall, if you will, protection?

THE WTNESS: Yes. But I don't think conditions this year are in that state.

THE COURT: Thank you.
BY MR. MAYSONETT:
Q. And let's -- let me focus a little bit on those issues.

Is it correct to say, Dr. Swanson, that it has been classified as a critically dry year on the San Joaqui n ?
A. That is my understanding.
Q. And has it been classified as a dry year on the

Sacr ament o?

A. I believe so.
Q. To your know edge, Dr. Swanson, are there any forecasts on
whet her next year will be a dry year?
A. I' m not aware of any.
Q. Is it your testimony, Dr. Swanson, that if the coming year is a dry year, that reduced pumping al one would be sufficient to implement the fall action proposed by the plaintiffs? A. Yes.

THE COURT: If you'll accept a friendly word of advi ce. When you ask the witness "is it your testimony" bef ore you pref ace the predicate of the question, you've asked t wo questions. And so instead of asking it in compound form, it's al so argumentative, why don't you ask the question di rectly.

MR. MAYSONETT: Thank you, Your Honor.
Q. Dr. Swanson, could you identify the reservoirs that might be drawn on by water for fall action?
A. To the best of my know edge, the State Vater Project control s Oroville Reservoir, the Central Vall ey Project controls Shasta Reservoir, the Fol som Reservoi r and New Mel ones Reservoi r. I could al so add that the Central Valley Project controls Friant or MIIerton Reservoir as well.

THE COURT: You have San Luis and Del ta- Mendota here. BY MR. MAYSONETT:
Q. Do you know what the current levels of those reservoirs are, Dr. Swanson?
A. I do not.
Q. And have you made - - have you done any anal ysi s of what l evel s those reservoirs might be at if the fall action is i mpl ement ed next year?
A. I have not --
Q. That is to say if the fall action is implement do you have any anal ysis of what the reservoi r levels will be next year?
A. I have not done such an anal ysis, no.
Q. And if next year is a dry year and we i mplement the fall action, have you done any anal ysis on what the reservoi r I evel s might be in subsequent years?

MR. WALL: Obj ection. I ncompl et e hypot hetical.
THE COURT: Are you able to answer the question based on its present content?

THE W TNESS: Could I hear the question repeated, pl ease?

THE COURT: Yes. Can you read it back, pl ease, miss reporter.
(Record read as requested.)
THE WTNESS: No.
BY MR. MAYSONETT:
Q. Dr. Swanson, would you assume for me that we're entering a critically dry year on both the Sacramento and San Joaquin Ri vers and that the pl ai ntiffs' actions are, incl uding the fall action, are implement od over the next year.

If the year after is al so dry and we were agai n requi red to implement the fall action, have you done any anal ysis of whether it would be necessary to draw on the col dwater pool at Shasta?
A. No.
Q. Dr. Swanson, you've indicated, I think, several times that -- strike that.

Dr. Swanson, is it fair to say that you have based the proposal the plaintiffs put forward in part on the anal ysis of the Delta Smelt Wbrking Group?
A. Yes.
Q. Could we provide the plaintiff with a -- l'msorry, Dr. Swanson with a copy of Plaintiffs' Exhi bit 10, please. This is the August 21st, 2006 Delta Smelt Wbrking Group notes.
A. I have it.

THE COURT: You have it?
BY MR. MAYSONETT:
Q. Dr. Swanson, could you turn to the second page for me.

Dr. Swanson, is it fair to say that the -- in this set of Delta Srelt Wbrking Group notes, the Delta Smelt Wbrking Group anal yzed a fall action that is similar to the action proposed by pl aintiffs?
A. Yes.
Q. And could you read that, the third sentence of that first paragraph for me.
A. The first paragraph titled "Fall Flows"?
Q. Yes, doctor, begi nni ng "The working group is not opposed." A. Thi rd sentence starts with "Note"? Or is -- l beg your pardon, is it "The working group"?
Q. Yes, please. "The working group is not opposed." .
A. "The working group is not opposed to this action, but did not recommend it because $7,000 \mathrm{cfs}$ is not enough flow to detectably change physical habitat quantity/quality for del ta smelt and will not likel y change overbite clam di stribution or abundance (attachment, Fi gure 2)."
Q. Thank you, Dr. Swanson. And could you read the I ast sentence of that section, the Fall Fl ows section, please, al so begi ns with "The working group."
A. "The working group bel i eves"?
Q. Yes, thank you.
A. "The working group bel ieves that any fall flow control action should be set up as a full-fledged experiment to test competing hypotheses, (i.e., reduction inclam di stribution or abundance or reduction in entrai nment susceptibility of adult del ta snelt during wi nter or reduction of I arval susceptibility to entrai nment the following spring, et cet er a.)"
Q. So Dr. Swanson, the -- is it fair to say the Delta Smelt Wbrking Group consi dered a fall action similar to the action proposed by the pl ai ntiffs but chose not to recommend it?
A. Yes.
Q. And to your know edge, has the Delta Smelt Wbrking Group ever recommended a fall action similar to the fall action proposed by the plaintiffs?
A. To my know edge, no.
Q. Dr. Swanson, the plaintiffs' proposed fall action is based in part on the research of Dr. Feyrer; is that correct?
A. It's Mr. Feyrer, yes.
Q. Mr. Feyrer. Isn't it true, Dr. Swanson, that two of the co-authors of the paper authored by Dr. Feyrer on this issue are -- sit on the Delta Smelt Wbrking Group?
A. I'm not completely positive of the official mentbership of the Delta Snelt Wbrking Group. Matt Nobriga's name appears on the notes for this August 21st notes. But I cannot speak beyond that.
Q. Dr. Swanson, could we move on to another subject. Specifically the popul ation estimate by Dr. Bennett that you di scussed in your direct testimony. Yesterday Dr. Mbyle characterized Dr. Bennett's popul ation estimate as really terrible given its own acknow edged limitations. Do you agree with Dr. Mbyle's opi ni on?
A. I think --

MR. WALL: Obj ection. I'm not sure that accuratel y characterizes Dr. Mbyle's testimony.

MR. MAYSONETT: I believe that it does.

MR. WALL: You know, I --
THE COURT: Thank you. What I'mgoing to suggest is I et's just assume that Dr. Mbyle is critical of Dr. Bennett's monograph. Do you agree or di sagree with that criticismp

THE WTNESS: Actually, I thi nk Dr. Mbyle is quite i mpressed with most of the content of the monograph. He recogni zed the assumptions upon whi ch Dr. Bennett based his cal cul ati on of the popul ation estimates were unreal istic and that ther ef ore the estimates were --

THE COURT: Unrel i abl e?
THE W TNESS: And uncertai n.
BY MR. MAYSONETT:
Q. Is it your opi ni on, Dr. Swanson, that it's better to use the sorts of indices gener ated by the surveys than the sorts of popul ation esti mates that Dr. -- popul ation estimate that Dr. Bennett devel oped in his paper?
A. Could you cl arify what you mean by "use," use for what?
Q. Let me try to rephrase the question. Actually let me try to get at it a different way.

Wen you are reaching concl usi ons about the stat us of the delta smelt, have you relied on Dr. Bennett's popul ation est i mate?
A. No.
Q. Why not?
A. Because l think there's more information to be found in
the results of the multiple surveys conducted by Department of Fi sh \& Game. And I eval uate those in the context of multiple criteria that provide information on the current status and risk of extinction of delta smelt, which incl udes their abundance and rel ative abundance and changes in abundance in time but al so incl udes ot her information, for example, their di stribution within their habitat.
Q. And in reaching concl usi ons about the stat us of the smelt, how would you characterize the useful ness of popul ation estimates in general ?
A. Mnimal .
Q. Dr. Swanson, I believe you testified that it is your opi ni on -- allow me to rephrase the question.

Dr. Swanson, is it your opi ni on that the actions identified in the plaintiffs' action pl an are necessary to avoi d j eopardizing the continued exi stence of the delta smelt?
A. Yes.
Q. And is it your understanding, Dr. Swanson, that under the Endangered Species Act, the service, the US Fish \& WI dlife Servi ce reaches that sort of concl usion in a Biol ogi cal Opi ni on?
A. I'mnot exactly certain of the gist of your question. I apol ogize. Could you repeat?
Q. I'll attempt to rephrase to get it nore clearly. Dr.

Swanson, is it fair to say you' ve revi ewed bi ol ogi cal opi ni ons
in the past?
A. I have.
Q. And you' ve revi ewed the Bi ol ogi cal Opi ni on for the del ta smel that was the center of this lawsuit until recently?
A. I did.
Q. And is it your understanding, Dr. Swanson, that the pur pose of a Bi ol ogi cal Opi ni on is to reach a concl usi on about whet her or not certain actions may jeopardize the exi stence of a speci es?
A. Yes.
Q. And in reaching that concl usion, is it your under standing that the Fish \& Wildlife Service anal yzes several issues, i ncl uding the stat us of the speci es and the envi ronment al basel ine, the effects of the action; is that correct?
A. It is my understanding that is what they're supposed to do.
Q. And as part of that, the service may i dentify steps to be taken to reduce the effects of the action; is that correct?
A. I bel i eve so.
Q. And they might identify take limits al so in a Biol ogi cal Opi ni on; is that correct?
A. Yes.
Q. Now, you have reached your own concl usi on on jeopardy, on whet her or not the current operations of the projects may jeopardize the continued exi stence of the delta smelt; is that
cor rect?
A. I have.
Q. And in doing so, have you written a Bi ol ogi cal Opi ni on? Have you written that sort of document?
A. No.

MR. WALL: Objection, Your Honor.
THE COURT: It's been asked and answered.
BY MR. MAYSONETT:
Q. And is your anal ysis of those issues set out in writing anywhere -- l'm going to rephrase.

Is your anal ysis of those issues set down in writing anywhere ot her than the decl arations that you' ve submitted as part of this litigation?

MR. WALL: Obj ection as to form It's vague.
THE COURT: Do you understand the question?
THE WTNESS: I thi nk so. And the answer is no.
THE COURT: Obj ection is over rul ed.
BY MR. MAYSONETT:
Q. We di scussed take limits or, I beg your pardon, you di scussed take limits briefly during your direct testimony. Have you identified any proposed take limits that would be appropriate as part of the pl ai ntiffs' proposed action pl an? A. I have not.
Q. Dr. Swanson, can l ask you to turn briefly to Pl ai ntiffs' Exhi bit 12. Thi s is the decl aration of Cay Goude.
A. I do not have a copy here.
Q. It's got the chart of the Service's proposed actions.
A. I'msorry. I think I do have a copy here.
Q. I thi nk we were di scussing it --
A. 12.
Q. Yes.
A. Uh-huh. Excuse me, Your Honor.

THE COURT: Yes.
THE WTNESS: May I correct an answer to a question that was recently answered?

THE COURT: If you feel the need. Do you have any obj ection, Mr. Maysonett?

MR. MAYSONETT: I don't, Your Honor.
THE COURT: Al right.
THE WTNESS: The question referred to whether I had written anything ot her than my decl arations describing my eval uation of the status and risk of extinction of delta smelt.

BY MR. MAYSONETT:
Q. Yes.
A. I have al so written tho petitions to change the listing stat us of delta smelt. One was submitted to the Fish \& Wildlife Service in 2006, the other was recently submitted to the California Department of Fish \& Game in 2007. Those in effect, I believe, represent the kind of document that you
were describing and I apol ogize for having forgotten that. Q. Thank you.

Turning to Pl ai ntiffs' Exhi bit 12. Could you I ook for re, please, at the proposed action number three.
A. Are we on the table?
Q. Yes, please. This is -- it's listed as page ei ght.
A. I have it.
Q. I'msorry. And in the service's proposed action number three, what range of flows is identified?
A. In the col umm label ed "Action," the range of flows for Old and M ddl e River is fromzero to -- it actually says -- oh, it says upstream whi ch means negative $O d$ and M ddle River flows fromzero to 4, 000.
Q. So it's fair to say it's zero to negative 4, 000; is that cor rect?
A. That is, l believe, correct.
Q. And what are the comparable flows under the plaintiffs' proposed action?
A. We have recommended flows aver aging minus 1500 cubic feet per second plus or mi nus 750. So within the range of mi nus 750 to minus 2250 cubic feet per second is our recommended range.
Q. Is it fair to say, Dr. Swanson, that if the target were set at zero cfs, that would be more protective than flows of negati ve 750 cfs ?
A. Yes.

MR. MAYSONETT: I thi nk that's all I have, Dr.
Swanson.
THE COURT: Thank you. Mr. Lee, do you wi sh to cross- exami ne?

MR. LEE: Yes, Your Honor.

CROSS- EXAM NATI ON

BY MR. LEE:
Q. Good afternoon, Dr. Swanson. I'd like to start out with some questions rel ating to monitoring, if l could. And l'd I ike to talk specifically about I arval sampling at the $\mathrm{Cl} i f t o n$ Court Forebay or the State Water Project pumping facilities.

What level of expertise would be requi red, in your prof essi onal opi ni on, to tell the difference bet ween a delta srelt I arval, a I arvae bet ween 5 millimeters and 20 milimeters, a longfin swelt I arvae or a hagasaki I arvae, what type of expertise?
A. I would assume the same level of expertise that is currently present in the personnel for the Department of Fish \& Game that conduct those monitoring eval uations. The specific level of expertise, l cannot specify.
Q. You would have no idea of what qual ifications? Wbuld a masters in bi ol ogy do this?
A. I think that with appropriate training, a staf f person woul d not requi re an advanced degree in order to make these
identifications.
Q. Is there -- are there a large number of people that have this area of specialization to determine the difference between I arval smelt of these sizes?
A. I do not know.
Q. How I ong would it take to determine, upon recei pt of the smelt in the hol ding tanks, whether they were, in fact, delta smelt Iarvae or I ongfin smelt Iarvae or Wagasaki Iarvae?
A. I don't know.

MR. WALL: Obj ection. I ncompl ete hypot hetical.
THE COURT: You're asking for the identification of the speci es or subspecies.

MR. LEE: Yes. How long will it take to identify.
THE COURT: Overruled. The answer will stand.
BY MR. LEE:
Q. Is it your testimony that 100 percent of the j uvenile and I arvae smelt sal vaged die after sal vage?

THE COURT: I thought we stipul at ed to that in this litigation, that sal vage means death. BY MR. LEE:
Q. Well, I -- the question was whether 100 percent of the I arvae and juveniles, in fact, die upon sal vage.
A. That is my understanding fromall of the information and research that I have read.
Q. Thank you. I would like to ask a question about sone of
your testimnny that was earlier today. It was my understanding that you said that the delta smelt Iarvae and juveniles are not particularly good swi mers, but they use the tides as a transportation mechanism ls that correct?
A. That is what the available research on the species suggests.
Q. Okay. Does that mean that they float with the tides or do they choose to benefit fromtides, either one set of tides or the other set of tides?

MR. WALL: Obj ection as to form
BY MR. LEE:
Q. How do the tidal transport --

THE COURT: The question has been amended.
MR. LEE: I'msorry. Wthdraw the question.
Q. How does the tidal transportation mechani sm work?
A. Based on my understanding of the research that has been done on this --
Q. Yes.
A. -- with delta smelt and other species, small larval fishes do have very low swi ming capabilities.
Q. Yes.
A. In fact, early larvae don't have very well devel oped fins at all. And, in fact, they do tend to move with the novement of t he water.

The way fishes utilized tidal transport is by
regul ating their depth in the water col umm in a channel and utilizing different areas of the channel where the flow may be at different vel ocities and concei vably, in some areas, actually in different directions in regards to tidal flow. And depending on the di rection that the fish are -- for example, for a dounstreammigrating Iarval delta smelt, those fish would be riding the ebb tide downstream And when the tide switched and it began to flood, they would seek ref uge in sore other portion of the channel where the vel ocity of the water was lower so they would be transported upstreamless far. It's a zi g-zag sort of ratcheting novement.
Q. So they would be in effect tidal riders. They would choose the currents, is that correct, they choose the currents that they feel would be most beneficial to them
A. To the extent that a fish chooses.
Q. Yes. So, for example, the Iarval fish that want to move downstream they would choose, to the extent fish choose, occurrence when they are moving downstream is that correct? Or tidal currents moving downstream
A. My interpretation is that they would move to a position in the channel where they maximized their ability to catch the ebb flow goi ng downstream during the period when the tide was ebbi ng .
Q. And when the converse occurs, when tide was not ebbing,
what would the I arval smelt be doing?
A. Presumably what they do is they move to some ot her position in the channel, probably near the bottom where water vel ocities are lower. And so that they would move less far back up on the flood tide.
Q. Thank you very much. That's been very hel pf ul.

Now, I'd like to apply that anal yses --
THE COURT: I had to admoni sh Mr. Wi ki nson
yesterday, so today it's your turn. Please don't comment on the answer of the witness.

MR. LEE: Thank you.
Q. The criticism l believe that you have mentioned the Particle Tracking Mbdels, is that particles do not have capability of novement; is that correct?
A. That is my understanding, yes. And by "movement," I mean in a different place in the channel.
Q. In a different --
A. Up and down vertically in the channel.
Q. You were noving your hand up and down, and that was not apparent in the transcript. So could you repeat that with a verbal clarification what you were saying.
A. It's my understanding with Particle Tracking Mbdels, which actually use, l believe, only one or two di mensional model of novement of flow through these channel s, that they are not able to impart behavi or of the particles such that it moves a
different anount downstream on a flow rel ative to the anount it moves upstreamon a floor.
Q. Given your discussion about the capacity of the I arval delta smelt to move, woul dn't that mean that the Particle Tracking Mbdel s, to the extent they were mimicking I arval snelt would have a rel atively conservative determination of the swelt's presence in terns of location to the pumps?

MR. WALL: Obj ection as to form
THE COURT: Do you understand the question?
THE WTNESS: No.
THE COURT: Rephrase. The obj ection is sustai ned. BY MR. LEE:
Q. Given your testimony regarding the movement of the delta smelt, would the Particle Tracking Mdels so similarly nove as the smelt? Wbuld the particles in the Particle Tracking Mbdel nove similarly as the smelt nould nove?
A. The assumption is that they move similar to small larval smelt. How correct that assumption is unknown.
Q. If the smelt are moving downstream because of tidal influences, would that movement occur under the Particle Tracking Mbdel ?
A. If there were net downstreamflow.
Q. If the particle -- if the delta smelt, under your testimny, were moving to the lower end of the water col unm and avoi ding the incoming tide, would thei r novement al so
mimic the Particle Tracking Mbdel as to incoming tide?
A. No.

MR. WALL: Obj ection.
THE COURT: It's been answered.
MR. LEE: Thank you.
Q. I n your suppl ement al declaration of August 13th, 2007, you were critical of the US Fish \& WIdlife Service's del ta srelt Action Matrix. And the defendant intervenors' variant of that matrix on the grounds that they were dependent upon, I bel i eve, i nadequate monitoring prograns.

I n paragraph seven of your suppl ement al decl aration dated August 13th, you state, "Del ta smel t numbers have fallen to such low level s that they are bel ow the detection limits of at I east two key Cal iforni a Department of Fish \& Game surveys (i.e., the 20 millimeter survey and the Summer Townet Survey), and there is no monitoring to detect the presence critical early lifestages of delta smelt, (i.e., fish smaller than millimeters in lengthen) at the water export facilities. Mspl aced confidence in these unrel iable results to determine the entrai nment risk of del ta smelt could del ay or precl ude the implement ation of needed protections and/ or reduce the magnitude of protective actions."

In addressing this, l'd like you to look, if you have that with you, DVR Exhi bit A. This would be attachment A. A. I do not thi nk I have that.

MR. LEE: Well, Your Honor, l'mgoing to try this.
THE COURT: Well, we're going to find it right now.
THE CLERK: What was the number agai n ?
MR. LEE: Your Honor, I have a copy here.
THE COURT: Perhaps we could use your copy in the interest of time.

MR. LEE: May I approach the witness?
THE COURT: You may.
MR. WALL: What's the title of that so l can find it? BY MR. LEE:
Q. I would like to have you focus on paragraph two of the first page of attachment A. First of all, and read the -- and read paragraph two including the lettered bullet poi nts.
A. The DSWG --
Q. By your self, please.
A. I'msorry.
Q. Just by yourself and tell me when you' ve compl et ed.

Are you compl et ed reading paragraph two, Dr. Swanson?
A. I have.
Q. Is the Summer Townet Survey expressly incl uded in paragraph two?
A. No.
Q. Does paragraph two mention ot her sources of real time inf or mati on other than the 20 millimeter survey?
A. It mentions the Spring Kodi ak Traw Survey, sal vage
information fromthe CVP and SWP facilities and Delta temperat ure data.
Q. Is Delta temperature data a usef ul indi cator of the onset of adult spawning?
A. It is believed to be.
Q. And would the presence of spawning adult smelt, as det ermined by the temperature data, be a useful indicator of the subsequent presence of Iarval smelt?
A. Yes.
Q. After the smelt have spauned, how long -- how many days would it be before the eggs become larvae? Hatch and become I ar vae?
A. The time to hat ch is dependent upon water temper at ure. But within the range of temperatures the delta smelt typically spawn in, the duration of incubation for eggs is approxi mately one to two weeks.
Q. Okay. Does the data fromthe Kodi ak survey serve as a useful indicator of the maturation stage of delta smelt or the presence of spent swelt?
A. Yes.
Q. And would this real time information be a usef ul indicator of the presence of Iarval smelt?
A. Yes.
Q. Does the plaintiffs' fish actions number three, five, ei ght and ni ne incl ude water temperature as a trigger action?
A. Three, five --

THE COURT: Ei ght and ni ne.
THE WTNESS: Yes.
BY MR. LEE:
Q. Do the plaintiffs' fish actions two, three, four, five, ei ght and ni ne rely on the Kodi ak survey data as a trigger act ion?
A. Two --

THE COURT: Al 1 of them or any of them
THE WTNESS: Actions two, three, four, five, those four -- wait, ei ght and ni ne use information from the Kodi ak traw survey as a trigger.

BY MR. LEE:
Q. Based upon the temper at ure dat a and the Kodi ak survey data, woul dn't we likel y to see spawning adults bef ore we see I arval smelt?
A. Probably, yes.
Q. Has the Delta Srelt Wbrking Group expressly recommended new sampl ing for I arval fish near the State Vater Project pumping facilities?
A. Not that I'maware of.
Q. Did the March 2007 Pel agi c Fi sh Action Pl an recommend the adoption of new sampl ing for I arval fish at the State Vater Project pumping plants?
A. Not that I'maware.
Q. On page 12 of your supplemental decl aration, you are critical of the US Fish \& Widdife Service matrix because quote, "The US Fish \& WIdlife Service clearly recognizes the limitations of the current survey programs to accurately detect the presence and determine the di stribution of delta smelt."

MR. WALL: Wbul d you gi ve us the line number?
THE WTNESS: I'mnot certain it's page 12.
BY MR. LEE:
Q. On paragraph 12. Excuse me. I'msorry.
A. Yes.
Q. And after that quotation, there is a citation to the Goude reply declaration at paragraph six; is that correct?
A. There is.

MR. LEE: Your Honor, the State of Californi a would like to mark as Exhi bit D for the Department of Water Resources the August 3rd, 2007 declaration of Cay Collette Goude.

THE COURT: Let me -- we have the July 3 rd decl aration of Ms. Goude. And so this is the August 3rd declaration. It will be marked Exhi bit -- DWR Exhi bit D for identification.
(Defendant's Exhi bit DWR D was marked for
identification.)
THE COURT: Let me ask this, Mr. Lee. What's your
estimated time to completion of cross?
MR. LEE: I'mafraid, Your Honor, I have -- I have at I east 45 mintes to an hour of cross.

THE COURT: Al right. You want to go another 15 min nut es?

MR. LEE: Your Honor, that would be fine with me.
THE COURT: Does everybody agree? Hearing no obj ection, you may proceed.

MR. LEE: Thank you, Your Honor.
Q. Wbuld you take a look at pages 4 and 5 of the DWR Exhi bit D? Have you recei ved a copy?
A. Is that number 396-5?
Q. 433-4.

MR. LEE: Your Honor, I don't believe the witness has a copy. May I approach the witness?

THE COURT: You may.
BY MR. LEE:
Q. Is the reference that you di scuss on paragraph 12 of your suppl enental declaration on paragraph six or is it on paragraph five?
A. I believe the correct reference would be to paragraph five rather than paragraph six. Or reference to the limitations of the survey prograns to accuratel y detect the presence of Iarval delta smelt.
Q. Could you pl ease read paragraph five.

THE COURT: Out I oud?
MR. LEE: Yes. Out I oud.
THE WTNESS: "Acti on three, minimize I arval.
entrai nment: This action is intended to mi mize the I arval delta smelt entrai ned at the export facilities. Delta smelt I arvae less than 15 millimeters in total length are not sampled efficiently by the CDFG 20 millimeter survey. In addition, del ta smelt I arvae less than 20 millimeters in total length are not counted at the projects' fish sal vage facilities. These sampling constrai nts result in uncertainty in the di stribution of del ta strel t I arvae in the Del ta and thei r occurrence at the export pumps. Recently the low abundance of delta strel t may have resulted in lower sampling efficiencies, whi ch has further limited the rel iability of the survey inf ormation. Ther ef ore, because of the inherent limitations in the survey dat a, ot her factors are used to infer the presence of del ta smelt larvae. Mbst successful delta smelt spawning occurs inthe range of 12 to 18 degrees centigrade. Ther ef ore, where Del ta water temperat ures have risen to 12 degrees centigrade, the presence of del ta swelt I arvae may be inferred."

BY MR. LEE:
Q. In light of your review of paragraph five of the Goude decl aration, isn't it ther ef ore true that the criticismof the survey prograns by Ms . Goude is limited to the 20 millimeter sur vey?
A. With reference to the ability of the 20 millimeter survey to efficiently and accurately detect the presence of del ta smel t I arvae, yes.
Q. Thank you. I would like to talk briefly about the fall action measures with you.

In paragraph 21 of your August 13th, 2007
suppl enent al decl aration, you stated that the project can meet the pl ai ntiffs' September through Decenber fall actions through the reduction of private exports fromthe south Del ta.

What was the basis for this concl usi on?
A. The basis for the concl usi on that implementation of the fall action could be fully met by export reductions was based on my understanding of the current min num fow requi rements for Delta outflow during those months requi red by the State Water Resources Control Board and the current or the recent past average export levels fromthe CVP and SWP facilities during that period.
Q. What averaging period did you use in making that cal cul at i on?
A. I used an aver age of the days within a single month. So
it was a nonthly average.
Q. I'msorry. My question was not very clear. What -- what years did you use for the averaging purpose?
A. For the average export levels?
Q. Yes.
A. As stated in my declaration, I used the years since 1994 through 2007.
Q. How many of those years were wet years and how many of those -- how many of those years were wet years?
A. I would have to consult a reference identifying year type to be explicit and correct on that answer.
Q. Did you, in reaching your concl usi on, revi ew how many of those years were wet years, how many of those years were above normal years or any ot her year type anal ysis?
A. I did not.
Q. I see. Doesn't the water year type, in your opi ni on, commonly affect the anهunt of export?
A. It can.
Q. Did your anal ysis consider this year's water year type on the likely exports fromthe south Delta with regard to compliance with the fall action?
A. If I may ask for clarification. Do you mean forecasted export rates?
Q. I'mtal king about this year's hydrol ogic conditions.
A. And you're asking me to predict export rates for the

Septenber through Decenber period?
Q. That's correct.
A. I can't do that.
Q. I see. Did your anal ysis consi der the impact of meeting the fall actions in the plaintiffs' action ten through export reductions on the storage levels at San Luis Reservoir?
A. No.
Q. Then do you have any opi ni on as to whet her reliance on export reductions would have reduced San Luis Reservoir to under 300, 000 acre feet?
A. No.
Q. Do you have any opi ni on as to whet her reliance on export reductions would reduce storage at San Luis Reservoir to under 80, 000 acre feet?
A. No.
Q. In paragraph 21 of your August 13th, 2007 declaration, you state that projects could feet meet the fall action by rel easing water, quote, "from thei r ot her reservoi r s incl udi ng Oroville, Fol somand New Mel ones, instead of rel yi ng so heavily or excl usi vely on Shasta Reservoir."

In reaching this concl usion, did you consi der the i mpact of using Oroville Reservoir storage to meet the fall action on Oroville Reservoir's ability to rel ease water for the protection of spring-run sal mon and steel head in the Feather River?
A. No.
Q. In reachi ng this concl usion, di d you consi der the impact of requi ring Fol som Reservoir to rel ease storage for the protection of sal mon under your -- excuse me, srel t under your fall action on Fol som Reservoir's ability to rel ease water for the protection of steel head in the American River?
A. No.
Q. Are the central valley spring-run sal mon a listed speci es?
A. Yes.
Q. Are the central valley steel head a listed speci es?
A. Yes.
Q. I n paragraph 21 of your August 13th, 2007 suppl emental decl aration, you state that projects could meet fall action by acqui ring -- by, quote, "Acqui re water to i ncrease Del ta inflows from ot her rivers," end of quote.

Are you aware of specific willing sellers of water, quote, "fromother rivers" that would allow the projects to meet the fall action starting this Septenmer through vol unt ary purchases of water by the CVP or the SWP?
A. No.
Q. Do you know how much water woul d actually be available over the next year to meet the fall action through vol unt ary purchases of water by the CVP or the SWP?

MR. WALL: Obj ect i on. I ncompl et e hypot het i cal .
THE COURT: Do you understand the question?

THE WTNESS: Yes. And the answer is no.
THE COURT: Overruled. You may answer. The answer st ands.

BY MR. LEE:
Q. Isn't the suggestion that there is sufficient water available through vol untary transfers to materially assist the projects in meeting the fall action simply speculation on your part?

MR. WALL: Obj ection.
THE COURT: Overruled. You may answer. Do you know?
THE WTNESS: I'mnot certain that I suggested that vol unt ary transfers --

THE COURT: Well, "acqui sition" is the word I think you used.

THE WTNESS: Okay. And now pl ease repeat the question.

BY MR. LEE:
Q. Isn't it the suggestion that there is sufficient water available through vol untary acqui sitions of water to materially assist the projects in meeting the fall action si mply specul ation on your part?

MR. WALL: Obj ection. This misstates testimony or the declaration.

THE COURT: The objection -- do you understand the question? Take the word "vol untary" out of it and -- let me
ask the question.
You propose that one of the ways to supply water for the implementation of the fall pl an would be to acquire water in the open market. Did you do any research to determine what the availability of water would be to do that --

THE WTNESS: I did not.
THE COURT: -- purchase?
Thank you. You know that the agenci es have gone out and in this year have al ready spent five million dollars acquiring water to meet protection --

THE WTNESS: I'mnot familiar with the specifics.
THE COURT: -- measures.
THE WTNESS: But I amaware that they have acqui red wat er.

THE COURT: Thank you.
BY MR. LEE:
Q. In paragraph ni ne of your July 23rd, 2007 declaration, you reproduce a graph desi gnated as Figure 4 fromthe Gurei n , Gartrell and Denton 2006 presentation. Regarding Iinkages bet ween fall salinity Delta outflow and delta smelt.

Have you revi ewed the update of that graph provi ded in the Stephen Ford declaration that adds j uvenile smelt abundance data from 2006 and 2007?
A. Nay I correct your interpretation of this?

THE COURT: Actually, you can't ask the questions.

You have to accept the question as propounded. But your at torney can obj ect.

MR. WALL: Yeah, I would object as to-- I'mstill trying to figure out what document you were referring to. I coul dn't even get that far.

THE COURT: On that hi gh note, let us call these proceedi ngs to a halt today. And we will resure tonorrow norning -- can ever ybody be here at 8: 30?

MR. LEE: Yes, Your Honor.
THE COURT: Al l right. Let's resume at 8: 30 a.m and let's let the court reporter free.

Do you want DVR D in evi dence?
MR. LEE: Yes, I ike to move Exhi bit D in evi dence.
THE COURT: Any obj ection?
DVR D is recei ve in evi dence.
(Def endant's Exhi bit DVR D was recei ved.)
THE COURT: These are Pl ai ntiffs' Exhi bits. 8, 9 and 12. Two of those were decl arations of Dr. Hanson, as I remenber.

MR. WALL: You know, at this timel don't see any need to put themin evi dence.

THE COURT: Al I right. They're not admitted into evi dence then.

Al I right. We're now concl uded. We're in recess except we're going to talk without the court reporter. We're

1 going to talk of f the record about logistics.

 (Of f the record.)

- oOO-

